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Abstract. We consider the existence of positive solutions of the following
semilinear elliptic problem inRN :

−∆u + u = a(x)up + f(x) in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

(∗)

where1 < p <
N + 2
N − 2

(N ≥ 3), 1 < p < ∞ (N = 1, 2), a(x) ∈ C(RN ),

f(x) ∈ H−1(RN ) andf(x) ≥ 0. Under the conditions:

1◦ a(x) ∈ (0, 1] for all x ∈ R
N ,

2◦ a(x) → 1 as|x| → ∞,
3◦ there existδ > 0 andC > 0 such that

a(x) − 1 ≥ −Ce−(2+δ)|x| for all x ∈ R
N ,

4◦ a(x) �≡ 1,

we show that(∗) has at least four positive solutions for sufficiently small
‖f‖H−1(RN ) butf �≡ 0.
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0. Introduction

In this paper, we study the existence and themultiplicity of positive solutions
for the following semilinear elliptic problem:

−∆u + u = a(x)up + f(x) in R
N , (0.1)

u > 0 in R
N , (0.2)

u ∈ H1(RN ), (0.3)

where1 < p <
N + 2
N − 2

(N ≥ 3), 1 < p < ∞ (N = 1, 2). We assume that

a(x) ∈ C(RN ) satisfies

a(x) > 0 for all x ∈ R
N , (0.4)

a(x) → 1 as|x| → ∞ (0.5)

andf(x) satisfies
f(x) ∈ H−1(RN ), (0.6)

f(x) ≥ 0. (0.7)

Under the assumptions (0.4)–(0.7), our problem (0.1)–(0.3) can be regarded
as a perturbation problem of the following homogeneous problem:

−∆u + u = up in R
N , (0.8)

u > 0 in R
N , (0.9)

u ∈ H1(RN ). (0.10)

It is known that (0.8)–(0.10) has a unique positive radial solutionω(x) =
ω(|x|) and any positive solutionu(x) of (0.8)–(0.10) can be written as

u(x) = ω(x − x0) for somex0 ∈ R
N .

(See Kwong [17], c.f. Kabeya-Tanaka [16]).
Our main question is whether positive solutions can survive after a per-

turbation of type (0.1)–(0.3) or not. Such a questionwas studied by Zhu [25],
Cao-Zhou [11], Jeanjean [15], Hirano [14] and Adachi-Tanaka [1]. See also
Ambrosetti and Badiale [3] for a perturbation result via Poincaré-Melnikov
type arguments. Zhu [25] (c.f. Hirano [14]) were mainly concerned with the
casea(x) ≡ 1 andf(x) ≥ 0, f(x) �≡ 0 and succeeded to find the existence
of at least two positive solutions under the situation

‖f‖H−1(RN ) ≤ M, (0.11)
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where the constantM > 0was chosen so that the corresponding functional:

I(u) =
1
2

∫
RN

|∇u|2 + |u|2 dx − 1
p + 1

∫
RN

up+1 dx −
∫

RN

fu dx

possesses themountain pass environment. That is, there existδ0 > 0,ρ0 > 0
ande ∈ H1(RN ) such that

I(u) ≥ δ0 for all ‖u‖H1(RN ) = ρ0

and
‖e‖H1(RN ) > ρ0, I(e) < 0.

Generalizations of the result of [25] were done by Cao-Zhou [11], Jeanjean
[15] and Adachi-Tanaka [1]. They studied more general nonlinearities

−∆u + u = g(x, u) + f(x) in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),
(0.12)

under suitable conditions. [11] and [15] showed the existence of at least two
positive solutions especially under the assumption:

a(x) ≥ 1 for all x ∈ R
N (0.13)

or

g(x, u) ≥ g(u)
(

= lim
|x|→∞

g(x, u)
)

for all x ∈ R
N andu > 0.

(0.14)
Recently [1] has succeeded to show the existence without assuming (0.13),
(0.14).

To find positive solutions, in [1], [11], [14], [15], [25], they argued in the
following way: first they considered minimization problem:

minimizeI(u) in B(ρ0) = {u ∈ H1(RN ) ; ‖u‖H1(RN ) < ρ0}
and found the first positive solutionu0(x) as a minimizer ofI(u) inB(ρ0).
We remark that iff �≡ 0, 0 is not a solution of our problem and the first
positive solution is obtained as a perturbation of0. The second positive
solutionu1(x)wasobtained through theMountainPassTheorem.Thekeyof
their arguments is that the minimax value given by Mountain Pass Theorem
—we call it the MP levelin short — is lower than the first level of breaking
down of the Palais-Smale condition.

From now on, we restrict ourselves to the problem (0.1)–(0.3) and we
pay attention to the conditions (0.13), (0.14). This condition makes it easy
to study (0.1)–(0.3) via variational methods. For the casef(x) ≡ 0, we can
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see the MP level is lower than the first level of breaking down of the Palais-
Smale condition. Thus we can obtain a positive solution of (0.1)–(0.3) with
f ≡ 0 via the Mountain Pass Theorem. On the other hand, ifa(x) satisfies

a(x) ∈ (0 , 1] for all x ∈ R
N (0.15)

and

a(x) �≡ 1,

the situation is completely different. For the casef(x) ≡ 0, we can see
that the MP level is exactly equal to the first level of breaking down of the
Palais-Smale condition and we can not get a positive solution through the
Mountain Pass Theorem. Here we give two remarks:

(i) Bahri-Li [5] showed the existence of at least one positive solution of
(0.1)–(0.3) withf(x) ≡ 0 under the conditions (0.4)–(0.5) and

a(x) − 1 ≥ −C exp(−(2 + δ)|x|) for all x ∈ R
N (0.16)

for someδ > 0, C > 0. In Sect. 1, we observe that under (0.15), the
critical value of their solution is strictly greater than the first break down
of the Palais-Smale condition. See also Bahri-Lions [6], in which they
showed the existence of at least one positive solution under condition
N ≥ 2 and

a(x) − 1 ≥ −C exp(−δ|x|) for all x ∈ R
N .

See also Bianchi [8] and Bianchi and Egnell [9], [10].
(ii) Adachi-Tanaka [1] showed that iff(x) ≥ 0 andf(x) �≡ 0, theMP level
is lower than the first level of breaking down of Palais-Smale condition
even under the condition (0.15).

From the above remarks, under the condition (0.15), it is observed that the
positive solution obtained in [1] is essentially different from one obtained
in [5]. More precisely, even if||f ||H−1(RN ) → 0, the solution of [1] does
not approach to the solution of [5], since their critical values are different.
Thus the existence of more than two positive solutions is expected.

In this paper, we study the multiplicity of positive solutions under (0.15)
and our main result is the following

Theorem 0.1. Assume (0.4), (0.5) and (0.15), (0.16). Then there exists an
δ0 > 0 such that for non-negative functionf(x) satisfying0 < ‖f‖H−1(RN )
≤ δ0, the problem (0.1)–(0.3) possesses at least four positive solutions.

As to an asymptotic behavior of solutions obtained in Theorem 0.1 as
‖f‖H−1(RN ) → 0, we have
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Theorem0.2.Assume that a sequence of non-negative functions(fj(x))∞
j=1

⊂ H−1(RN ) satisfiesfj(x) �≡ 0 and

‖fj‖H−1(RN ) → 0 asj → ∞.

Then there exist a subsequence of(fj(x))∞
j=1 —still denoted by(fj(x))∞

j=1

— and four sequences(u(k)
j (x))j∈N (k = 1, 2, 3, 4) of positive solutions of

(0.1)–(0.3) withf(x) = fj(x) such that
(i) ‖u(1)

j ‖H1(RN ) → 0 asj → ∞.

(ii) There exist sequences(y(2)
j )∞

j=1, (y
(3)
j )∞

j=1 ⊂ R
N such that

|y(k)
j | → ∞,

‖u(k)
j (x) − ω(x − y

(k)
j )‖H1(RN ) → 0

asj → ∞ for k = 2, 3. Hereω(x) is the unique positive radial solution of
(0.8)–(0.10).
(iii) There exists a positive solutionv0(x) of (0.1)–(0.3) withf ≡ 0 such
that

‖u(4)
j (x) − v0(x)‖H1(RN ) → 0 asj → ∞.

We remark that the solutionsu(2)
j (x), u(3)

j (x) do not converge strongly to
solutions of (0.1)–(0.3) withf ≡ 0. As an immediate corollary to The-
orem 0.2, we have the following result on symmetry-breaking of positive
solutions for (0.1)–(0.3).

Corollary 0.3. Suppose thata(x) = a(|x|), f(x) = f(|x|) are radially
symmetric in addition to (0.4), (0.5), (0.15), (0.16). Then there exists a
δ1 > 0 such that iff(x) ≥ 0, f(x) �≡ 0, ‖f‖H−1(RN ) ≤ δ1, then (0.1)–(0.3)
possesses at least one positive solution which is not radially symmetric.

Proof of Corollary 0.3.Suppose that the conclusion of Corollary 0.3 does
not hold. Then there exists a sequence of non-negative radially symmetric
functions(fj(x))∞

j=1 such that‖fj‖H−1(RN ) → 0 asj → ∞ and all positive
solutionsof (0.1)–(0.3)withf(x) = fj(x)are radially symmetric.However,
by Theorem 0.2, there exist a subsequence of(fj(x))∞

j=1 — still denoted

by (fj(x))∞
j=1 — and sequences of solutions(u(1)

j (x))∞
j=1, (u(2)

j (x))∞
j=1,

(u(3)
j (x))∞

j=1, (u(4)
j (x))∞

j=1 of (0.1)–(0.3) withf(x) = fj(x) satisfying

the conclusion (i)–(iii) of Theorem 0.2. Clearly,(u(2)
j (x))∞

j=1, (u
(3)
j (x))∞

j=1
are not radially symmetric for largej. This contradicts the assumption on
(fj(x))∞

j=1. Thus Corollary 0.3 holds. ��



68 S. Adachi, K. Tanaka

We remark that under the condition (0.13) such a symmetry breaking
does not occur in general. In fact, we have

Theorem 0.4. Suppose thata(x) = a(|x|), f(x) = f(|x|) are radially
symmetric positive function and satisfy

a(r) ≥ 1 for all r > 0,

ar(r) ≤ 0 for all r > 0,

f(r) ≥ 0 for all r > 0,

fr(r) ≤ 0 for all r > 0.

Then all positive solutions of (0.1)–(0.3) are radially symmetric.

Proof. We can derive Theorem 0.4 from the results of C. Li [18], [19] and
Gidas-Ni-Nirenberg [12], [13]. ��

In the following sections, we give proofs of Theorem 0.1 and Theo-
rem 0.2.We use variational methods to find positive solutions of (0.1)–(0.3).

We writeu+(x) = max{u(x) , 0}, ‖u‖2
H1(RN ) =

∫
RN

(|∇u|2 + |u|2) dx
and we define for givena(x) andf(x),

Ia,f (u) =
1
2
||u||2H1(RN ) − 1

p + 1

∫
RN

a(x)up+1
+ dx −

∫
RN

f(x)u(x) dx

: H1(RN ) → R

and
Ja,f (v) = max

t>0
Ia,f (tv) : Σ+ → R,

where
Σ = {v ∈ H1(RN ) ; ‖v‖H1(RN ) = 1},
Σ+ = {v ∈ Σ ; v+ �≡ 0}.

We will see that critical points ofIa,f (u) : H1(RN ) → R or Ja,f (v) :
Σ+ → R are corresponding to positive solutions of (0.1)–(0.3).

Wewill find critical points ofIa,f (u),Ja,f (u) in the following way. First
we find one positive solutionu(1)(a, f ;x) = ulocmin(a, f ;x) as a local
minimum of Ia,f (u) near0. Next we see the Palais-Smale compactness
condition forIa,f (u) andJa,f (u) breaks down only at levels

Ia,f (u0(x)) + kI1,0(ω) k = 1, 2, ...

whereI1,0(u) is a functional corresponding to (0.8)–(0.10),ω(x) is a unique
positive radial solutionof (0.8)–(0.10) andu0(x) is a critical point ofIa,f (u).
In particular, we will see that the Palais-Smale condition holds under the
level Ia,f (ulocmin(a, f ;x)) + I1,0(ω).
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To find the second and third positive solutions, we use notation:

[Ja,f ≤ c] = {u ∈ Σ+ ; Ja,f (u) ≤ c}

for c ∈ R. We will observe that for sufficiently smallε > 0

[Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε]

is not empty and

cat ([Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε]) ≥ 2 (0.17)

providedf(x) ≥ 0, f(x) �≡ 0 and‖f‖H−1(RN ) is sufficiently small. Here
cat stands for the Lusternik-Schnirelman category. We find two positive
solutionsu(2)(a, f ;x) andu(3)(a, f ;x) satisfying

Ia,f (u(k)(a, f ;x)) < Ia,f (ulocmin(a, f ;x)) + I1,0(ω) for k = 2, 3.
(0.18)

We remark that forf ≡ 0, we see that

ulocmin(a, 0;x) ≡ 0

and

[Ja,0 ≤ Ia,0(ulocmin(a, 0;x)) + I1,0(ω)] = ∅ (0.19)

and (0.17) is the key of our proof. To get (0.17), we use the following
interaction phenomenon as in [1] (c.f. Bahri-Li [5], Bahri-Lions [6]):

Ia,f (ulocmin(a, f ;x) + ω(x − y)) < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)

for sufficiently large|y| ≥ 1.
To find the fourth positive solution, we adapt the minimax method of

Bahri-Li [5] to our functionalJa,f (v) and we will find positive solution
u(4)(a, f ;x) with

Ia,f (u(4)(a, f ;x)) > Ia,f (ulocmin(a, f ;x)) + I1,0(ω)

for sufficiently small‖f‖H−1(RN ). To showTheorem 0.2, we also use (0.18)
and (0.19) in an essential way.

Thus our paper is organized as follows: In Sect. 1, we will give a func-
tional frame work, some preliminaries and we will find a local minimizer
of Ia,f (u) near0. Section 2 will be devoted to the proof of (0.17). Finally
in Sects. 3 and 4, we complete proofs of our Theorems 0.1 and 0.2.
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1. Preliminaries

1.1. Functional frame work

In what follows, we denote the usual Sobolev space byE = H1(RN ) and
we use notation:

〈u, v〉E =
∫

RN

∇u · ∇v dx +
∫

RN

uv dx,

‖u‖E = 〈u , u〉
1
2
E

for u, v ∈ E. We also denote the duality product betweenE∗ = H−1(RN )
andE by 〈· , ·〉E∗,E and

‖f‖E∗ = sup
‖u‖E=1

〈f , u〉E∗,E .

For all functionsa(x), f(x) : R
N → R, we define a functionalIa,f (u) :

E → R by

Ia,f (u) =
1
2
‖u‖2

E − 1
p + 1

∫
RN

a(x)up+1
+ dx −

∫
RN

f(x)u(x) dx.

In what follows, we assume (0.4)–(0.7) and we have the following char-
acterization of non-negative solutions of (0.1)–(0.3).

Lemma 1.1. Assume (0.4)–(0.7). Then

(i) Ia,f (u) ∈ C2(E ,R) and

I ′
a,f (u)h = 〈u, h〉E −

∫
RN

a(x)up+h dx −
∫

RN

fh dx, (1.1)

I ′′
a,f (u)(h , h) = ||h||2E − p

∫
RN

a(x)up−1
+ h2 dx (1.2)

for h ∈ E.
(ii) If u ∈ E is a critical point ofIa,f (u), thenu(x) is a non-negative
solution of (0.1)–(0.3). Moreover ifu(x) �≡ 0 or f �≡ 0, thenu(x) is a
positive solution of (0.1)–(0.3).

Proof. (i) can be proved in a standard way. We prove only (ii). Suppose that
u ∈ E satisfiesI ′

a,f (u) = 0. By (1.1),∫
RN

(∇u · ∇h + uh − a(x)up+h − fh) dx = 0
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for all h ∈ E. Thusu(x) is a weak solution of

−∆u + u = a(x)up+ + f in R
N . (1.3)

By the assumption (0.7), the right hand side of (1.3) is non-negative and we
can see thatu(x) is non-negative by the maximal principle. Ifu(x) �≡ 0 or
f(x) �≡ 0, we can see the right hand side of (1.3) is non-negative and not
equivalently equal to0. Thusu(x) is positive inR

N . ��
Hereafter, we try to find critical points ofIa,f (u). We will use the fol-

lowing estimate frequently:

‖u‖p+1 ≤ Cp+1‖u‖E for u ∈ E, (1.4)

where

‖u‖p+1 =
(∫

RN

|u|p+1 dx

) 1
p+1

.

The best constant̄Cp+1 for (1.4) plays an important role.̄Cp+1 can be
characterized as

C̄−1
p+1 = inf

u 
=0

‖u‖E
‖u‖p+1

. (1.5)

It is known that the infimum in (1.5) is attained and the set of theminimizers
can be written as

{λω(x − y) ; λ ∈ R \ {0}, y ∈ R
N},

whereω(x) is the unique positive radial solution of (0.8)–(0.10), i.e., a
critical point ofI1,0(u). In particular, we have

C̄−1
p+1 = inf

u 
=0

‖u‖E
‖u‖p+1

=
‖ω‖E

‖ω‖p+1
. (1.6)

We can also see thatω(x) is a critical point ofI1,0(u) corresponding to the
mountain pass theorem, that is,

I1,0(ω) = inf
γ∈Γ

max
t∈[0,1]

I1,0(γ(t)).

Here,
Γ = {γ ∈ C([0, 1], E) ; γ(0) = 0, I1,0(γ(1)) < 0}.

In particular,
I1,0(ω) = max

t≥0
I1,0(tω). (1.7)

We can also see the set of critical points ofI1,0(u) is

{0} ∪ {ω(x − y) ; y ∈ R
N}.
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One of the virtue of the unperturbed functionalI1,0(u) is the following fact
— all critical points except0 can be obtained through constraint problem:(∫

RN

vp+1
+ dx

)−1

: {v ∈ E; ||v||E = 1} → R.

1.2. Properties ofIa,f (u) and existence of a local minimizer

To find critical points ofIa,f (u), first we observe that if‖f‖E∗ is sufficiently
small, thenIa,f (u) has a similar feature toI1,0(u). That is,

(Ia,f -1) Ia,f (u) has a unique critical pointulocmin(a, f ;x) in a neighbour-
hood of0.

(Ia,f -2) All critical points exceptulocmin(a, f ;x) can be obtained through
the following constraint problem:

Ja,f (v) = max
t>0

Ia,f (tv) : Σ+ → R,

where
Σ = {v ∈ E ; ‖v‖E = 1},
Σ+ = {v ∈ Σ ; v+ �≡ 0}.

We remark that iff ≡ 0,

Ja,0(v) = Ia,0

((∫
RN

a(x)vp+1
+ dx

)− 1
p−1

v

)

=
(

1
2

− 1
p + 1

)(∫
RN

a(x)vp+1
+ dx

)− 2
p−1

. (1.8)

In particular,

J1,0(v) =
(

1
2

− 1
p + 1

)(∫
RN

vp+1
+ dx

)− 2
p−1

and

inf
v∈Σ+

J1,0(v) = J1,0(
ω

‖ω‖E ) =
(

1
2

− 1
p + 1

)( ‖ω‖E
‖ω‖p+1

) 2(p+1)
p−1

=
(

1
2

− 1
p + 1

)
C̄

− 2(p+1)
p−1

p+1 . (1.9)

We remark thatJ1,0(
ω

‖ω‖E ) = I1,0(ω). Thus

inf
v∈Σ+

J1,0(v) = J1,0(
ω

‖ω‖E ) = I1,0(ω). (1.10)
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Recalling (0.4)–(0.5) and setting

a = inf
x∈RN

a(x) > 0,

a = sup
x∈RN

a(x) ≥ 1,

we have from (1.8)

a
− 2

p−1J1,0(v) = Ja,0(v) ≤ Ja,0(v) ≤ Ja,0(v)

= a
− 2

p−1J1,0(v) for all v ∈ Σ+.

Thus
a

− 2
p−1 I1,0(ω) ≤ inf

v∈Σ+
Ja,0(v) ≤ a

− 2
p−1 I1,0(ω). (1.11)

To see (Ia,f -1) and (Ia,f -2), first we observe

Lemma 1.2. (i) For u ∈ E andε ∈ (0, 1),

(1 − ε)I a
1−ε

,0(u) − 1
2ε

‖f‖2
E∗ ≤ Ia,f (u) ≤ (1 + ε)I a

1+ε
,0(u) +

1
2ε

‖f‖2
E∗ .

(1.12)
(ii) For v ∈ Σ+ andε ∈ (0, 1),

(1−ε)
p+1
p−1Ja,0(v)− 1

2ε
‖f‖2

E∗ ≤ Ja,f (v) ≤ (1+ε)
p+1
p−1Ja,0(v)+

1
2ε

‖f‖2
E∗ .

(1.13)
(iii) In particular, there exists ad0 > 0 such that if‖f‖E∗ ≤ d0, then

inf
v∈Σ+

Ja,f (v) > 0.

Proof. (i) Since forε ∈ (0, 1)∣∣∣∣
∫

RN

fu dx

∣∣∣∣ ≤ ‖f‖E∗‖u‖E ≤ ε

2
‖u‖2

E +
1
2ε

‖f‖2
E∗ ,

we have

1 − ε

2
‖u‖2

E − 1
p + 1

∫
RN

a(x)up+1
+ dx − 1

2ε
‖f‖2

E∗ ≤ Ia,f (u)

≤ 1 + ε

2
‖u‖2

E − 1
p + 1

∫
RN

a(x)up+1
+ dx +

1
2ε

‖f‖2
E∗ .

Thus we get (1.12).
(ii) From (i), we deduce forv ∈ Σ+

(1 − ε)J a
1−ε

,0(v) − 1
2ε

‖f‖2
E∗ ≤ Ja,f (v) ≤ (1 + ε)J a

1+ε
,0(v) +

1
2ε

‖f‖2
E∗ .
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We also have from (1.8)

J a
1±ε

,0(v) =
(

1
2

− 1
p + 1

)(∫
RN

a(x)
1 ± ε

vp+1
+ dx

)− 2
p−1

= (1 ± ε)
2

p−1Ja,0(v).

Thus we get (1.13).
(iii) By (1.11) and (1.13), we have

inf
v∈Σ+

Ja,f (v) ≥ (1 − ε)
p+1
p−1 inf

v∈Σ+
Ja,0(v) − 1

2ε
‖f‖2

E∗

≥ (1 − ε)
p+1
p−1a

− 2
p−1 I1,0(ω) − 1

2ε
‖f‖2

E∗ .

Therefore inf
v∈Σ+

Ja,f (v) > 0 for sufficiently small‖f‖E∗ . ��

Next we study properties of a function

[0 , ∞) → R; t �→ Ia,f (tv)

for v ∈ Σ+.

Lemma 1.3.

(i) For everyv ∈ Σ+, the functiont �→ Ia,f (tv) has at most two critical
points in[0 , ∞).

(ii) If ‖f‖E∗ ≤ d0 (d0 is given in Lemma 1.2), then for anyv ∈ Σ+ there
exists a uniqueta,f (v) > 0 such that

Ia,f (ta,f (v)v) = Ja,f (v).

Moreover,ta,f (v) > 0 satisfies

ta,f (v) >

(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

≥
(
paC̄p+1

p+1

)− 1
p−1

, (1.14)

I ′′
a,f (ta,f (v)v)(v , v) < 0. (1.15)

(iii) If t �→ Ia,f (tv) has a critical point different fromta,f (v), then it lies in
[0 , (1 − 1

p)
−1‖f‖E∗ ].

Proof. We set

g(t) = Ia,f (tv) =
1
2
t2 − 1

p + 1

∫
RN

a(x)vp+1
+ dx · tp+1 −

∫
RN

fv dx · t.

(i) We can see that

g′′(t) = 1 − p

∫
RN

a(x)vp+1
+ dx · tp−1.
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Thus

g′′(t) > 0 for t <

(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

,

g′′(t) < 0 for t >

(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

.

(1.16)

Thereforeg′(t) has at most two zerost1, t2 and they satisfy

0 ≤ t1 ≤
(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

≤ t2.

(ii) Remark thatg(0) = 0, g(t) → −∞ ast → ∞ andsup
t>0

g(t) > 0 by (iii)

of Lemma 1.2. Thus there exists ata,f (v) ≥
(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

such thatIa,f (ta,f (v)v) = Ja,f (v). We remark that

ta,f (v) =
(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

cannot take a place. If it does, it follows from (1.16) that

g′(t) ≤ 0 for all t > 0.

It contradictssup
t>0

g(t) > 0. Thus we get (1.14). Sinceg′′(t) = I ′′
a,f (tv)(v,

v), (1.15) follows from (1.14).
(iii) Suppose thatg(t) has a critical pointt different fromta,f (v). By (1.14)
and (1.16),t satisfies

t ≤
(
p

∫
RN

a(x)vp+1
+ dx

)− 1
p−1

. (1.17)

It follows from g′(t) = 0 that

t −
∫

RN

a(x)vp+1
+ dx · tp −

∫
RN

fv dx = 0.

That is,

t

(
1 −

∫
RN

a(x)vp+1
+ dx · tp−1

)
=
∫

RN

fv dx.

By (1.17), we have

t ≤
(

1 − 1
p

)−1

‖f‖E∗ ��
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As to the behavior ofIa,f (u) near0, we have

Lemma 1.4. There existr1 > 0 andd1 ∈ (0 , d0] such that
(i) Ia,f (u) is strictly convex inB(r1) = {u ∈ E; ||u||E < r1}.
(ii) If ‖f‖E∗ ≤ d1, then

inf
‖u‖E=r1

Ia,f (u) > 0.

Moreover,Ia,f (u) has a unique critical pointulocmin(a, f ;x) in B(r1)
and it satisfies

ulocmin(a, f ;x) ∈ B(r1),
Ia,f (ulocmin(a, f ;x)) = inf

u∈B(r1)
Ia,f (u).

Proof. (i) By (1.2),

I ′′
a,f (u)(h, h) = ‖h‖2

E − p

∫
RN

a(x)up−1
+ h2 dx

≥ (1 − paC̄p+1
p+1‖u‖p−1

E )‖h‖2
E .

ThusI ′′
a,f (u) is positive definite foru ∈ B(r1), wherer1 = (paC̄p+1

p+1 )− 1
p−1 ,

andIa,f (u) is strictly convex inB(r1).
(ii) For ‖u‖E = r1, we have again by (1.4),

Ia,f (u) =
1
2
‖u‖2

E − 1
p + 1

∫
RN

a(x)up+1
+ dx −

∫
RN

fu dx

≥ 1
2
r2
1 − a

p + 1
C̄p+1
p+1r

p+1
1 − ‖f‖E∗r1

=
(

1
2

− a

p + 1
C̄p+1
p+1r

p−1
1

)
r2
1 − ‖f‖E∗r1

=
(

1
2

− 1
p(p + 1)

)
r2
1 − ‖f‖E∗r1.

Thus there exists ad1 ∈ (0 , d0] such that

inf
‖u‖E=r1

Ia,f (u) > 0 for ‖f‖E∗ ≤ d1.

SinceIa,f (u) is strictly convex inB(r1) and inf
‖u‖E=r1

Ia,f (u) > Ia,f (0),

there exist a unique critical pointulocmin(a, f ;x) of Ia,f (u) in B(r1) and
it satisfies

Ia,f (ulocmin(a, f ;x)) = inf
‖u‖E≤r1

Ia,f (u). ��

Remark 1.5.(i) From the uniqueness of critical points, it follows that

ulocmin(a, 0;x) = 0.



Four positive solutions 77

(ii) In [1], [11], [15], [25] , the existence of a local minimizer is proved just
under the assumption of the mountain pass geometry.

The following property ofulocmin(a, f ;x) can be proved easily.

Lemma 1.6. ulocmin(a, f ;x) → 0 strongly inE as‖f‖E∗ → 0. ��
Now we can prove (Ia,f -1) and (Ia,f -2).

Proposition 1.7. Let d2 = min{d1 , (1 − 1
p

)r1} > 0 and suppose that

‖f‖E∗ ≤ d2. Then

(i) Ja,f (v) ∈ C1(Σ+ , R) and

J ′
a,f (v)h = ta,f (v)I ′

a,f (ta,f (v)v)h (1.18)

for all h ∈ TvΣ+ = {h ∈ E ; 〈h , v〉E = 0}.
(ii) v ∈ Σ+ is a critical point ofJa,f (v) if and only if ta,f (v)v ∈ E is a
critical point of Ia,f (u).

(iii) Moreover the set of critical points ofIa,f (u) can be written as

{ta,f (v)v ; v ∈ Σ+, J ′
a,f (v) = 0} ∪ {ulocmin(a, f ;x)}. (1.19)

Proof. (i) By (1.15), we have

d2

dt2

∣∣∣∣
t=ta,f (v)

Ia,f (tv) < 0.

Thus by the implicit function theorem, we can see thatta,f (v) ∈ C1(Σ+,
(0,∞)). Therefore

Ja,f (v) = Ia,f (ta,f (v)v) ∈ C1(Σ+ , R).

Since

I ′
a,f (ta,f (v)v)v = 0, (1.20)

we have

J ′
a,f (v)h = I ′

a,f (ta,f (v)v)(ta,f (v)h + (t′a,f (v), h)v)
= ta,f (v)I ′

a,f (ta,f (v)v)h

for h ∈ TvΣ+ = {h ∈ E , 〈h , v〉E = 0}.
(ii) By (i), J ′

a,f (v) = 0 if and only if

I ′
a,f (ta,f (v)v)h = 0 for all h ∈ TvΣ+.
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By (1.20), it is equivalent toI ′
a,f (ta,f (v)v) = 0.

(iii) Suppose thatu ∈ E is a critical point ofIa,f (u). We writeu = tv with
v ∈ Σ+ andt ≥ 0. By (iii) of Lemma 1.3, we have either

t = ta,f (v) or t ≤
(

1 − 1
p

)−1

‖f‖E∗ .

Thusu ∈ E is corresponding to a critical point ofJa,f (v) or

‖u‖E = t ≤
(

1 − 1
p

)−1

d2 ≤ r1.

ByLemma1.4,Ia,f (u)hasauniquecritical point inB(r1)and it isulocmin(a,
f ;x). ��

1.3. The Palais-Smale condition forIa,f (u) andJa,f (v)

Next we study the break down of the Palais-Smale condition forIa,f (u)
andJa,f (v). The unique positive solutionω(x) of (0.8)–(0.10) plays an
important role to describe an asymptotic behavior of Palais-Smale sequence
for Ia,f (u).

Proposition1.8.Assume(0.4)–(0.7)andsuppose thatasequence(uj)∞
j=1 ⊂

E satisfies
I ′
a,f (uj) → 0 in E∗,
Ia,f (uj) → c ∈ R

asj → ∞. Then there exist a subsequence— still we denote by(uj)∞
j=1 —,

a critical pointu0(x) of Ia,f (u), an integer' ∈ N ∪ {0}, and' sequences
of points(y1

j )
∞
j=1, . . . , (y

�
j)

∞
j=1 ⊂ R

N such that

1◦ |ykj | → ∞ asj → ∞ for all k = 1, 2, . . . , ',
2◦ |ykj − yk

′
j | → ∞ asj → ∞ for k �= k′,

3◦
∥∥∥∥∥uj(x) −

(
u0(x) +

�∑
k=1

ω(x − ykj )

)∥∥∥∥∥
E

→ 0 asj → ∞,

4◦ Ia,f (uj) → Ia,f (u0) + 'I1,0(ω) asj → ∞.

Proof. This is rather standard result. See [7], [20], [21] for analogous argu-
ments. ��

As toJa,f (v), we have the following

Proposition 1.9. Suppose that‖f‖E∗ ≤ d2, whered2 > 0 is given in
Proposition 1.7. Then we have
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(i) Ja,f (v) → ∞ as distE(v, ∂Σ+) ≡ inf{‖v − u‖E ; u ∈ Σ, u+ ≡
0} → 0.

(ii) Suppose that(vj)∞
j=1 ⊂ Σ+ satisfies asj → ∞

Ja,f (vj) → c for somec > 0, (1.21)
‖J ′
a,f (vj)‖T ∗

vj
Σ+ ≡ sup{J ′

a,f (vj)h ; h ∈ TvjΣ+, ‖h‖E = 1} → 0.

(1.22)

Then there exist a subsequence—still we denote by(vj)∞
j=1 —, a critical

pointu0(x) ∈ E of Ia,f (u), an integer' ∈ N ∪ {0} and' sequences of
points(y1

j )
∞
j=1, . . . , (y

�
j)

∞
j=1 ⊂ R

N such that

1◦ |ykj | → ∞ asj → ∞ for all k = 1, 2, . . . , ',
2◦ |ykj − yk

′
j | → ∞ asj → ∞ for k �= k′,

3◦

∥∥∥∥∥∥∥∥∥
vj(x) −

u0(x) +
�∑
k=1

ω(x − ykj )∥∥∥∥u0(x) +
�∑
k=1

ω(x − ykj )
∥∥∥∥
E

∥∥∥∥∥∥∥∥∥
E

→ 0 asj → ∞,

4◦ Ja,f (vj) → Ia,f (u0) + 'I1,0(ω) asj → ∞.

Proof. (i) By (ii) of Lemma 1.2 and (1.8), we have

Ja,f (v) ≥ (1 − ε)
p+1
p−1Ja,0(v) − 1

2ε
‖f‖E∗

≥ (1 − ε)
p+1
p−1

(
1
2

− 1
p + 1

)(∫
RN

a(x)vp+1
+ dx

)− 2
p−1

k! − 1
2ε

‖f‖E∗ .

Sincedist (v , ∂Σ+) → 0 impliesv+ → 0 in E, in particular,∫
RN

a(x)vp+1
+ dx → 0,

we get (i).
(ii) Recalling (1.14) and (1.18), we have

‖I ′
a,f (ta,f (vj)vj)‖E∗ =

1
ta,f (vj)

‖J ′
a,f (vj)‖T ∗

vj
Σ+

≤ (paC̄p+1
p+1 )

1
p−1 ‖J ′

a,f (vj)‖T ∗
vj
Σ+

→ 0 asj → ∞.

We also have
Ia,f (ta,f (vj)vj) = Ja,f (vj) → c.

Applying Proposition 1.8, we get the conclusion (ii). ��
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As to the corollary to Proposition 1.9, we have

Corollary 1.10. Suppose that‖f‖E∗ ≤ d2. ThenJa,f (v) satisfies the con-
dition (PS)c for c < Ia,f (ulocmin(a, f ;x)) + I1,0(ω).

Herewesay thatJa,f (v) satisfies (PS)c if andonly if any sequence(vj)∞
j=1 ⊂

Σ+ satisfying (1.21) and (1.22) has a strongly convergent subsequence in
E.

Proof. By Proposition 1.9, (PS)c breaks down only for

c = Ia,f (u0) + 'I1,0(ω),

whereu0 ∈ E is a critical point ofIa,f (u) and' ∈ N. By (1.19), (iii) of
Lemma 1.2 and

Ia,f (ulocmin(a, f ;x)) = inf
u∈B(r1)

Ia,f (u) ≤ Ia,f (0) = 0,

we have

Ia,f (ulocmin(a, f ;x))
= inf{Ia,f (u0); u0 ∈ E is a critical point ofIa,f (u)}.

Thus the lowest level of breaking down of (PS)c is Ia,f (ulocmin(a, f ;x)) +
I1,0(ω). ��

Later in Sect. 2, we will find two critical points below the level

Ia,f (ulocmin(a, f ;x)) + I1,0(ω).

1.4. Properties ofJa,0(v)

Herewegive someproperties of the functionalJa,0(v) ∈ C1(Σ+ , R) under
the condition (0.15) and (0.16) in addition to (0.4) and (0.5).

Lemma 1.11. Assume (0.4), (0.5) and (0.15). Then
(i) inf

v∈Σ+
Ja,0(v) = I1,0(ω).

(ii) inf
v∈Σ+

Ja,0(v) is not attained.

(iii) Ja,0(v) satisfies(PS)c for c ∈ (−∞ , I1,0(ω)) ∪ (I1,0(ω) , 2I1,0(ω)).

Proof. This is a rather standard result. See for example [20],[21]. ��
The following property ofJa,0(v) is important to obtain the multiplicity

of solutions for (0.1)–(0.3).
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Lemma 1.12. Assume that (0.4), (0.5) and (0.15). Then there exists a con-
stantδ0 > 0 such that ifJa,0(v) ≤ I1,0(ω) + δ0, then∫

RN

x

|x|(|∇v|2 + |v|2) dx �= 0. (1.23)

Proof. Since inf
v∈Σ+

Ja,0(v) = I1,0(ω) is not attained, it follows from (ii) of

Proposition 1.9 that for anyR ≥ 1 there exists anε = ε(R) > 0 with the
following property: ifv ∈ Σ+ satisfies

Ja,0(v) ≤ I1,0(ω) + ε,
‖J ′
a,0(v)‖T ∗

vΣ+ ≤ ε

then ∥∥∥∥v − ω(x − y)
‖ω‖E

∥∥∥∥
E

≤ 1
R

for some|y| ≥ R. (1.24)

We chooseR ≥ 1 sufficiently large so that (1.24) implies (1.23). Suppose
thatv ∈ Σ+ satisfiesJa,0(v) ≤ I1,0(ω) + δ0. Then by Ekeland’s principle,
there exists̃v ∈ Σ+ such that

‖ṽ − v‖E ≤
√
δ0,

‖J ′
a,0(ṽ)‖T ∗

ṽΣ+ ≤
√
δ0,

Ja,0(ṽ) ≤ I1,0(ω) + δ0.

Choosingδ0 ≤ min{ε(2R)2, ε(2R),
1

4R2 }, we have
∥∥∥∥v − ω(· − y)

‖ω‖E

∥∥∥∥
E

≤ ‖v − ṽ‖E +
∥∥∥∥ṽ − ω(· − y)

‖ω‖E

∥∥∥∥
E

≤
√
δ0 +

1
2R

≤ 1
R

for some|y| ≥ 2R. Thus we have (1.23). ��
As to the existence of a critical point ofJa,0(v), we deduce the following

result from [5].

Proposition 1.13. (c.f. [5].) Assume that (0.4), (0.5), (0.15) and (0.16).
ThenJa,0(v) has at least one critical pointva(x) ∈ Σ+, which can be
characterized as

Ja,0(va) = inf
γ∈Γ

sup
y∈RN

Ja,0(γ(y)).
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HereΓ is given by

Γ = {γ ∈ C(RN , Σ+) ; γ(y) =
ω(· − y)
‖ω‖E for large |y|}. (1.25)

Moreoverva(x) satisfies

Ja,0(va) ∈ (I1,0(ω), 2I1,0(ω)).

Proof. This result is essentially due to Bahri and Li [5]. See also [23] for a
similar argument. Here we use notation in [23]. We consider two values:

ba = inf
v∈Σ+

Ja,0(v),

ba = inf
γ∈Γ

sup
y∈RN

Ja,0(γ(y)).

HereΓ is given in (1.25). Using an idea from [5], we can seeba < 2I1,0(ω)
under the condition (0.16). By (0.15), we can seeba = I1,0(ω). By the
argument of [5], we can see ifba = I1,0(ω), then there exists a critical
point v ∈ Σ+ such thatJa,0(v) = ba = I1,0(ω). However this contradicts
Lemma 1.11. Thusba ∈ (I1,0(ω) , 2I1,0(ω)) andba is a critical value of
Ja,0(v). ��

Finally in this section we state some refinement of Corollary 1.10.

Proposition 1.14.Assume that (0.4), (0.5), (0.15) and (0.16). Then for any
ε > 0 there existsd(ε) ∈ (0 , d2] such that for‖f‖E∗ ≤ d(ε)
(i) ‖ulocmin(a, f ;x)‖E ≤ ε.
(ii) inf

v∈Σ+
Ja,f (v) ∈ [I1,0(ω) − ε , I1,0(ω) + ε].

(iii) Ja,f (v) satisfies(PS)c for

c ∈ (−∞ , Ia,f (ulocmin(a, f ;x)) + I1,0(ω))
∪(Ia,f (ulocmin(a, f ;x)) + I1,0(ω) , 2I1,0(ω) − ε).

Proof. (i) follows from Lemma 1.6. Sinceinf
v∈Σ+

Ja,0(v) = I1,0(ω), (ii)

follows from Lemma 1.2. Now we prove (iii). As in Corollary 1.10, (PS)c

breaks down only at levelsc = Ia,f (u0) + 'I1,0(ω), whereu0(x) is a
critical point ofIa,f (u) and' ∈ N. It follows from (iii) of Proposition 1.7
thatu0(x) = ulocmin(a, f ;x) or

Ia,f (u0) ≥ inf
v∈Σ+

Ja,f (v) ≥ I1,0(ω) − ε.

Thus, (PS)c breaks down for

c = Ia,f (ulocmin(a, f ;x)) + I1,0(ω) or c ≥ 2I1,0(ω) − ε.

Therefore we get (iii). ��
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2. Category of[Ja,f ≤ Ia,f(uloc min(a, f ; x)) + I1,0(ω) − ε]

As in the introduction, we use notation:

[Ja,f ≤ c] = {v ∈ Σ+ ; Ja,f (v) ≤ c}
for c ∈ R. To find critical points ofJa,f (v), we show for a sufficiently small
ε > 0

cat([Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε]) ≥ 2. (2.1)

To prove (2.1), we need some preliminaries.

2.1. Some energy estimates

The following estimate plays an essential role in the proof of (2.1).

Proposition 2.1. (c.f. Proposition 3.1 of [1])Assume (0.4), (0.5), (0.16) and
suppose that‖f‖E∗ ≤ d2, f ≥ 0 andf �≡ 0. Then there existsR0 > 0 such
that

Ia,f (ulocmin(a, f ;x) + tω(x − y))
< Ia,f (ulocmin(a, f ;x)) + I1,0(ω) (2.2)

for all |y| ≥ R0 andt ≥ 0.

Proof. Straightforward computation gives us

Ia,f (ulocmin(a, f ;x) + tω(x − y)) =
1
2
‖ulocmin(x) + tω(x − y)‖2

E

− 1
p + 1

∫
RN

a(x)(ulocmin(x) + tω(x − y))p+1 dx

−
∫

RN

f(ulocmin(x) + tω(x − y)) dx

=
1
2
‖ulocmin(x)‖2

E +
t2

2
‖ω‖2

E + t〈ulocmin(x) , ω(x − y)〉E

− 1
p + 1

∫
RN

a(x)ulocmin(x)p+1 dx − tp+1

p + 1

∫
RN

a(x)ω(x − y)p+1 dx

− 1
p + 1

∫
RN

a(x){(ulocmin(x) + tω(x − y))p+1

− ulocmin(x)p+1 − tp+1ω(x − y)p+1} dx

−
∫

RN

f(x)(ulocmin(x) + tω(x − y)) dx . (2.3)
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Here we writeulocmin(x) = ulocmin(a, f ;x). SinceI ′
a,f (ulocmin(x)) = 0,

we have

〈ulocmin(x) , h〉E =
∫

RN

a(x)ulocmin(x)ph dx +
∫

RN

fh dx

for all h ∈ E.

Settingh(x) = tω(x − y), we have

t〈ulocmin , ω(x − y)〉E = t

∫
RN

a(x)ulocmin(x)pω(x − y) dx

+t

∫
RN

f(x)ω(x − y) dx.

Thus

Ia,f ( ulocmin(x) + tω(x − y))

= Ia,f (ulocmin(x)) + I1,0(tω)

+
1

p + 1

∫
RN

(1 − a(x))tp+1ω(x − y)p+1 dx

− 1
p + 1

∫
RN

a(x){(ulocmin(x) + tω(x − y))p+1 − ulocmin(x)p+1

−tp+1ω(x − y)p+1 − (p + 1)ulocmin(x)ptω(x − y)} dx

= Ia,f (ulocmin(x)) + I1,0(tω) + (I) − (II).

Using (1.7), we have

Ia,f (ulocmin(x) + tω(x − y)) ≤ Ia,f (ulocmin(x)) + I1,0(ω) + (I) − (II).

Since

Ia,f (ulocmin(x) + tω(x − y)) → Ia,f (ulocmin(x)) < 0 ast → 0,

Ia,f (ulocmin(x) + tω(x − y)) → −∞ ast → ∞,

we can easily find0 < m < M such that

Ia,f (ulocmin(x) + tω(x − y)) ≤ 0 for t ∈ [0 ,m] ∪ [M ,∞).

Thus it suffices to prove (2.2) fort ∈ [m, M ].
We recall the fact that for somec > 0

ω(|x|) |x|N−1
2 exp(|x|) → c as |x| → ∞.

(See Bahri-Li [5], Bahri-Lions [6], Gidas-Ni-Nirenberg [12,13] and Kwong
[17]). In particular, we have
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(i) there exists a constantC0 > 0 such that

ω(x) ≤ C0 exp(−|x|) for all x ∈ R
N ;

(ii) for any ε > 0 there exists a constantCε > 0 such that

ω(x) ≥ Cε exp(−(1 + ε)|x|) for all x ∈ R
N .

We also remark that

(i) (s+t)p+1−sp+1−tp+1−(p+1)spt ≥ 0 for all (s, t) ∈ [0,∞)×[0,∞);
(ii) for any r > 0 we can find a constantA(r) > 0 such that

(s + t)p+1 − sp+1 − tp+1 − (p + 1)spt ≥ A(r)t2

for all (s, t) ∈ [r,∞) × [0,∞).

Thus, settingA = A(min|x|≤1 ulocmin(a, f ;x)) > 0, we have

(II) ≥ 1
p + 1

∫
|x|≤1

a(x){(ulocmin + tω)p+1 − ulocmin
p+1 − tp+1ωp+1

− (p + 1)ulocminptω} dx

≥ aA

∫
|x|≤1

ω(x − y)2 dx

≥ aAC ′
ε exp(−2(1 + ε)|y|). (2.4)

We also have from (0.16)

(I) ≤ 1
p + 1

∫
RN

C exp(−(2 + δ)|x|)Cp+1
0 exp(−(p + 1)|x − y|) dx

≤ C ′ exp(− min{p + 1 , 2 + δ}|y|). (2.5)

Since (2.4) holds for anyε > 0, choosing2ε < δ, we can findR0 > 0 such
that

(I) < (II) for |y| ≥ R0.

Thus we get (2.2). ��

Remark 2.2.A similar argument is given in [1] to show the existence of at
least two positive solutions for (0.12). This idea is originally used by Bahri-
Li [5] to show ba < 2I1,0(ω). See also Bahri-Lions [6], Bahri-Coron [4],
Taubes [24].

Remark 2.3.(2.2) does not hold forf(x) ≡ 0. In fact, if f(x) ≡ 0, then
ulocmin(a, 0;x) = 0 and

Ia,0(ulocmin(a, 0;x) + ω(x − y)) = Ia,0(ω(x − y)) > I1,0(ω).
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2.2. Lusternik-Schnirelman category

Now we are going to show (2.1). First of all, we recall the definition of
Lusternik-Schnirelman category.

Definition. (i) For a topological spaceX, we say a non-empty, closed subset
A ⊂ X iscontractible to a point inX if and only if there exists a continuous
mapping

η : [0 , 1] × A → X

such that for somex0 ∈ X

1◦ η(0, x) = x for all x ∈ A,
2◦ η(1, x) = x0 for all x ∈ A.

(ii) We define

cat(X) = min{k ∈ N ; there exist closed subsetsA1, . . . , Ak ⊂ X
such that
1◦ Aj is contractible to a point inX for all j,

2◦
k⋃
j=1

Aj = X}.

When there do not exist finitely many closed subsetsA1,...,Ak ⊂ X such
that1◦ and2◦ hold, we saycat(X) = ∞.

For fundamental properties of Lusternik-Schnirelman category, we refer
to Ambrosetti [2] and Schwartz [22]. Here we use the following property:

Proposition 2.4.Suppose thatM is a Hilbert manifold andΨ ∈ C1(M,R).
Assume that forc0 ∈ R andk ∈ N

1◦ Ψ(x) satisfies(PS)c for c ≤ c0,
2◦ cat({x ∈ M ; Ψ(x) ≤ c0}) ≥ k.

ThenΨ(x) has at leastk critical points in{x ∈ M ; Ψ(x) ≤ c0}. ��
To estimate Lusternik-Schnirelman category, the following lemma is

useful.

Lemma 2.5. LetN ≥ 1 andX be a topological space. Suppose that there
exist two continuous mapping

F : SN−1 = {y ∈ R
N ; |y| = 1} → X, G : X → SN−1

such thatG◦F is homotopic to identity: SN−1 → SN−1 ; x �→ x, that is,
there exists a continuous mappingζ : [0 , 1] × SN−1 → SN−1 such that

ζ(0, x) = (G ◦ F )(x) for all x ∈ SN−1,
ζ(1, x) = x for all x ∈ SN−1.
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Then
cat(X) ≥ 2.

Proof. We argue indirectly and suppose thatcat(X) = 1. That is,X is
contractible to a point in itself. Thus there exists

η : [0 , 1] × X → X

such that for somex0 ∈ X

η(0, x) = x for all x ∈ X,
η(1, x) = x0 for all x ∈ X.

Now we consider a homotopyβ : [0 , 1] × SN−1 → SN−1 defined by

β(s, x) = G(η(s, F (x))).

Clearly
β(0, x) = (G ◦ F )(x) for all x ∈ X,

β(1, x) = G(x0) for all x ∈ X.

ThusG ◦ F is homotopic to a constant mapping. However, by assumption,
G ◦ F is homotopic to the identity. This is a contradiction and we have
cat(X) ≥ 2. ��

From now on, we construct two mappings

F : SN−1 → [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε],

G : [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε] → SN−1,

so thatG ◦ F is homotopic to the identity.

2.3. A mappingFR : SN−1 → Σ+

We define a mappingFR : SN−1 → Σ+ in the following way: in Proposi-
tion 2.1, we observed that for|y| ≥ R0

Ia,f (ulocmin(a, f ;x) + tω(x − y)) < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)
for all t ≥ 0.

For |y| ≥ R0, we finds = s(f, y) > 0 such that

ulocmin(a, f ;x) + sω(x − y) = ta,f

(
ulocmin(a, f ;x) + sω(x − y)

‖ulocmin(a, f ;x) + sω(x − y)‖E

)

× ulocmin(a, f ;x) + sω(x − y)
‖ulocmin(a, f ;x) + sω(x − y)‖E ,
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that is,
‖ulocmin(a, f ;x) + sω(x − y)‖E

= ta,f

(
ulocmin(a, f ;x) + sω(x − y)

‖ulocmin(a, f ;x) + sω(x − y)‖E

)
.

(2.6)

This implies

Ja,f

(
ulocmin(a, f ;x) + sω(x − y)

‖ulocmin(a, f ;x) + sω(x − y)‖E

)
= Ia,f (ulocmin(a, f ;x) + sω(x − y))

< Ia,f (ulocmin(a, f ;x)) + I1,0(ω).

Proposition 2.6. Assume (0.4), (0.5) and (0.16). Then there existd3 ∈
(0 , d2] andR1 > R0 such that for any‖f‖E∗ ≤ d3 and for any|y| ≥ R1
there exists a uniques = s(f, y) > 0 in a neighborhood of1 satisfying
(2.6). Moreover

{y ∈ R
N ; |y| ≥ R1} → (0 , ∞) ; y �→ s(f, y)

is continuous.

Proof. We use the implicit function theorem to prove Proposition 2.6. Set

Φ(s, f, y) = 〈I ′
a,f (ulocmin(a, f ;x) + sω(x − y)),

ulocmin(a, f ;x) + sω(x − y)〉E∗,E

= ‖ulocmin(a, f ;x) + sω(x − y)‖2
E

−
∫

RN

a(x)(ulocmin(a, f ;x) + sω(x − y))p+1 dx

−
∫

RN

f(ulocmin(a, f ;x) + sω(x − y)) dx.

Then (2.6) holds if and only ifΦ(s, f, y) = 0. Sinceω(x) is a unique positive
radial solution of (0.8)–(0.10), we have

‖ω‖2
E −

∫
RN

ωp+1 dx = 0.

Using this fact, we see that

Φ(1, 0, y) = 〈I ′
a,0(ω(x − y)) , ω(x − y)〉E∗,E

= ||ω||2E −
∫

RN

a(x)ω(x − y)p+1 dx

→ 0 as|y| → ∞,

∂
∂s

∣∣∣∣
s=1

Φ(s, 0, y) = 2||ω||2E − (p + 1)
∫

RN

a(x)ω(x − y)p+1 dx

→ −(p − 1)||ω||2E < 0 as|y| → ∞.
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Thus by the implicit function theorem, we can find a uniques = s(f, y) in a
neighborhood of1 such thatΦ(s, f, y) = 0. The continuity ofy �→ s(f, y)
is also clear. ��

Now we define a functionFR : SN−1 = {y ∈ R
N ; |y| = 1} → Σ+ by

FR(y) =
ulocmin(a, f ;x) + s(f,Ry)ω(x − Ry)

‖ulocmin(a, f ;x) + s(f,Ry)ω(x − Ry)‖E
for ‖f‖E∗ ≤ d3 andR ≥ R1. Then we have

Proposition 2.7. For 0 < ‖f‖E∗ ≤ d3 andR ≥ R1 there existsε0(R) > 0
such that

FR(SN−1) ⊂ [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε0(R)].

Proof. By construction, we have

FR(SN−1) ⊂ [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)].

SinceF (SN−1) is compact, the conclusion holds. ��
Thus we construct a mapping

FR : SN−1 → [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε0(R)].

2.4. A mappingG : [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)] → SN−1

First we remark that

Lemma 2.8. There existsd4 ∈ (0 , d3] such that if‖f‖E∗ ≤ d4, then

[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)] ⊂ [Ja,0 < I1,0(ω) + δ0], (2.7)

whereδ0 > 0 is given in Lemma 1.12.

Proof. By (1.13), we have for anyε ∈ (0 , 1)

Ja,0(v) ≤ (1−ε)− p+1
p−1

(
Ja,f (v) +

1
2ε

‖f‖2
E∗

)
for all v ∈ Σ+. (2.8)

RecallingIa,f (ulocmin(a, f ;x)) ≤ 0,

v ∈ [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)]

impliesJa,f (v) < I1,0(ω). Thus by (2.8), we have

Ja,0(v) ≤ (1 − ε)− p+1
p−1

(
I1,0(ω) +

1
2ε

‖f‖2
E∗

)
for all v ∈ [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(ω)].
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Sinceε ∈ (0 , 1) is arbitrary, we have (2.7) for sufficiently small‖f‖E∗ .
��

Now we can define

G : [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)] → SN−1

by

G(v) =
∫

RN

x

|x|(|∇v|2 + |v(x)|2) dx
/∣∣∣∣

∫
RN

x

|x|(|∇v|2 + |v(x)|2) dx
∣∣∣∣ .

By Lemma 2.8 and Lemma 1.12,∫
RN

x

|x|(|∇v|2 + |v(x)|2) dx �= 0

for all v ∈ [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)] andG(v) is well-
defined. Moreover we have

Proposition 2.9. For a sufficiently largeR ≥ R1 and for sufficiently small
‖f‖E∗ > 0

G ◦ FR : SN−1 → SN−1 ; y �→ G(FR(y))

is homotopic to the identity.

Proof. We define

ζ(θ, y) : [0 , 1] × SN−1 → SN−1

by

ζ(θ, y) =




G(
(1 − 2θ)FR(y) + 2θω(x − Ry)

‖(1 − 2θ)FR(y) + 2θω(x − Ry)‖E ), for θ ∈ [0 , 1/2),

G(
ω(x − R

2(1−θ)y)

‖ω(x − R
2(1−θ)y)‖E

), for θ ∈ [1/2 , 1),

y, for θ = 1.

We can easily see thatζ(θ, y) ∈ C([0 , 1] × SN−1 , SN−1) and

ζ(0, y) = G(FR(y)) for all y ∈ SN−1,

ζ(1, y) = y for all y ∈ SN−1,

providedR > 0 is sufficiently large and‖f‖E∗ > 0 is sufficiently small.
��

Therefore, applying Lemma 2.5, we have
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Proposition 2.10. For sufficiently largeR ≥ R1,

cat([Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω) − ε0(R)]) ≥ 2. ��

Thus we have

Theorem 2.11. Assume (0.4), (0.5), (0.15) and (0.16). Then there exists
d5 > 0 such that if‖f‖E∗ ≤ d5, f ≥ 0, f �≡ 0, thenJa,f (v) has at least
two critical points in

[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)].

Proof.Since (PS)c holds forJa,f (v) for c ∈ (−∞ , Ia,f (ulocmin(a, f ;x))+
I1,0(ω)), Theorem 2.11 follows from Proposition 2.4 and Proposition 2.10.

��

3. A positive solution related to Bahri-Li’s solution
and proof of Theorem 0.1

Next we observe that if‖f‖E∗ is sufficiently small, Bahri-Li’s minimax
argument also works forJa,f (v). We define

ba,f = inf
γ∈Γ

sup
y∈RN

Ja,f (γ(y))

whereΓ is defined in (1.25). By (1.13), we have for anyε ∈ (0 , 1)

(1 − ε)
p+1
p−1 ba − 1

2ε
‖f‖2

E∗ ≤ ba,f ≤ (1 + ε)
p+1
p−1 ba +

1
2ε

‖f‖2
E∗ , (3.1)

whereba = inf
γ∈Γ

sup
y∈RN

Ja,0(γ(y)). Thus we have

Lemma 3.1. For anyδ > 0 there existsd6 > 0 such that if‖f‖E∗ ≤ d6,
then

ba,f ∈ (ba − δ , ba + δ). ��

In particular, sinceba ∈ (I1,0(ω) , 2I1,0(ω)) by Proposition 1.13, we
have

Theorem 3.2. There exists ad7 > 0 such that if‖f‖E∗ ≤ d7, thenJa,f (v)
has a critical pointva,f (x) such that

Ja,f (va,f ) = ba,f ≥ Ia,f (ulocmin(a, f ;x)) + I1,0(ω).
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Proof. Sinceba ∈ (I1,0(ω) , 2I1,0(ω)), choosingδ > 0 small and applying
Lemma 3.1, we can find for‖f‖E∗ ≤ δ

ba,f ∈ (I1,0(ω) + ε , 2I1,0(ω) − ε)

for someε > 0. By (iii) of Proposition 1.14,Ja,f (v) satisfies (PS)c for
c = ba,f and there exists a critical point corresponding toba,f . ��

Now we can complete the proof of Theorem 0.1.

End of the proof of Theorem 0.1.First we setu(1)(x) = ulocmin(a, f ;x).
u(1)(x) satisfies

Ia,f (u(1)(x)) < 0. (3.2)

By Theorem 2.11, there exist two critical pointsv(2)(x), v(3)(x) in

[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(ω)].

Let u(2)(x) = ta,f (v(2))v(2)(x), u(3)(x) = ta,f (v(3))v(3)(x) be corre-
sponding solutions. They satisfy

0 < Ia,f (u(k)(x)) = Ja,f (v(k)(x))
< Ia,f (u(1)(x)) + I1,0(ω) for k = 2, 3.

(3.3)

By Theorem 3.2, there exists another critical pointv(4)(x). Let u(4)(x) be
a corresponding positive solution. Then it satisfies

Ia,f (u(4)(x)) = Ja,f (v(4)(x)) ≥ Ia,f (u(1)(x)) + I1,0(ω). (3.4)

By (3.2)–(3.4),u(1)(x),u(2)(x),u(3)(x),u(4)(x), aredistinct and (0.1)–(0.3)
possesses at least four positive solutions. ��

4. Proof of Theorem 0.2

Finally in this section, we give a proof of Theorem 0.2.

Proof of Theorem 0.2.Suppose that(fj(x))∞
j=1 ⊂ H−1(RN ) is a sequence

of non-negative functions such thatfj(x) �≡ 0 and‖fj‖H−1(RN ) → 0 as
j → ∞. Let

u
(1)
j (x) = ulocmin(a, fj ;x)

andu(2)
j (x), u(3)

j (x) be positive solutions corresponding to Theorem 2.11

and letu(4)
j (x) be a positive solution corresponding to Theorem 3.2. By

Lemma 1.6,

u
(1)
j (x) = ulocmin(a, fj ;x) → 0 in E asj → ∞.
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On the other hand, by (1.13),v(2)
j = u

(2)
j (x)/‖u(2)

j (x)‖E , v(3)
j = u

(3)
j (x)

/‖u(3)
j (x)‖E satisfy for anyε ∈ (0, 1)

Ja,0(v
(k)
j (x)) ≤ (1 − ε)− p+1

p−1 (Ja,fj (v
(k)
j (x)) +

1
2ε

‖fj‖E∗)

≤ (1 − ε)− p+1
p−1 (Ia,fj (ulocmin(a, fj ;x)

+I1,0(ω) +
1
2ε

‖fj‖E∗)

≤ (1 − ε)− p+1
p−1 (I1,0(ω) + 1

2ε‖fj‖E∗)

for k = 2, 3.
Letting j → ∞, we have

lim sup
j→∞

Ja,0(v
(k)
j (x)) ≤ (1 − ε)− p+1

p−1 I1,0(ω).

Sinceε ∈ (0, 1) is arbitrary, we have

lim sup
j→∞

Ja,0(v
(k)
j (x)) ≤ I1,0(ω).

Thus by (i) of Lemma 1.11,Ja,0(v
(k)
j (x)) → I1,0(ω) for k = 2, 3.

Recalling thatinfv∈Σ+ Ja,0(v) = I1,0(ω) is not achieved and using (ii)
of Proposition 1.9, we can get the second statement (ii) of Theorem 0.2.
(iii) For u(4)

j (x), we have from (3.1) that

(1 − ε)− p+1
p−1 ba − 1

2ε
‖fj‖2

E∗ ≤ Ia,fj (v
(k)
j (x)) = ba,fj

≤ (1 + ε)− p+1
p−1 ba +

1
2ε

‖fj‖2
E∗ .

Letting j → ∞ andε → 0, we find

lim
j→∞

Ia,fj (u
(4)
j (x)) = ba ∈ (I1,0(ω), 2I1,0(ω)). (4.1)

We can also see that

I ′
a,0(u

(4)
j (x))h = I ′

a,fj
(u(4)
j (x))h +

∫
RN

fj(x)h(x) dx

=
∫

RN

fj(x)h(x) dx for all h ∈ E.

Thus,

‖I ′
a,0(u

(4)
j (x))‖E∗ = ‖fj‖E∗ → 0 asj → ∞. (4.2)
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By (4.1) and (4.2), we can deduce thatu
(4)
j (x) is bounded inE asj → ∞

and
Ia,0(u

(4)
j (x)) → ba ∈ (I1,0(ω), 2I1,0(ω)). (4.3)

SinceIa,0(u) satisfies(PS)c for c ∈ (I1,0(ω), 2I1,0(ω)), we can extract a

convergent subsequence — still we denote byu
(4)
j (x) — such that

u
(4)
j (x) → u0(x) in E.

Clearly u0(x) is a critical point ofIa,0(x), that is, a positive solution of
(0.1)–(0.3) withf ≡ 0. ��
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