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Abstract. We consider the existence of positive solutions of the following
semilinear elliptic problem iR :

—Au+u = a(x)uf + f(z) inRY,
u >0 inRY, (%)
u e HYRY),
wherel < p < xt; (N >3),1<p<oo(N=1,2),a(z) € C(RY),
f(z) € HY(RY) and f(x) > 0. Under the conditions:

1°a(z) € (0,1] for all z € RV,
2° a(z) — 1 as|z| — oo,
3° there existy > 0 andC > 0 such that

a(z) — 1> —Ce~ o)l forall z € RY,

4° a(x) # 1,

we show thafx) has at least four positive solutions for sufficiently small
| f[l -1 vy but f # 0.
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0. Introduction

Inthis paper, we study the existence and the multiplicity of positive solutions
for the following semilinear elliptic problem:

—Au+u = a(zx)uf + f(z) inRY, (0.1)
u >0 in RY,
ue HY(RY),
N 42

wherel < p < N3 (N>3),1<p<oo(N=1,2). We assume that
a(r) € C(RY) satisfies
a(z) >0  forallz ¢ RY, (0.4)
a(z) = 1 as|z| — oo 0.5)
andf(x) satisfies
f(z) € HTH(RY), (0.6)
f(z) > 0. (0.7)

Under the assumptions (0.4)—(0.7), our problem (0.1)—(0.3) can be regarded
as a perturbation problem of the following homogeneous problem:

—Au+u=uP inRY, (0.8)
u>0 in RY, (0.9)
ue HYRN). (0.10)

It is known that (0.8)—(0.10) has a unique positive radial soluti¢n) =
w(]z|) and any positive solution(z) of (0.8)—(0.10) can be written as

u(x) = w(x — xp) for somezy € RY.

(See Kwong [17], c.f. Kabeya-Tanaka [16]).

Our main question is whether positive solutions can survive after a per-
turbation of type (0.1)—(0.3) or not. Such a question was studied by Zhu [25],
Cao-Zhou [11], Jeanjean [15], Hirano [14] and Adachi-Tanaka [1]. See also
Ambrosetti and Badiale [3] for a perturbation result via Poigestielnikov
type arguments. Zhu [25] (c.f. Hirano [14]) were mainly concerned with the
casea(z) = landf(x) > 0, f(x) # 0 and succeeded to find the existence
of at least two positive solutions under the situation

[f -1 @y < M, (0.11)
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where the constarit/ > 0 was chosen so that the corresponding functional:

1 1
T — \V/ 2 2d _ p+1 dr — d
(u) Q/RN ul” + |ul* dx ] RNu x szfu x
possesses the mountain pass environment. Thatis, therégexist, pg > 0
ande € H'(R") such that

I(u) > g for all ||u||H1(RN) = o

and
lell 1wy > pos 1(e) <O.

Generalizations of the result of [25] were done by Cao-Zhou [11], Jeanjean
[15] and Adachi-Tanaka [1]. They studied more general nonlinearities

—Au+u = g(xz,u) + f(z) inRY,
u >0 inRY, (0.12)
u e HYRY),

under suitable conditions. [11] and [15] showed the existence of at least two
positive solutions especially under the assumption:

a(z)>1 forallz e RY (0.13)

or

g(z,u) > g(u) <: lim g(:z,u)) for all z € RN andu > 0.

|z|—o00
(0.14)
Recently [1] has succeeded to show the existence without assuming (0.13),
(0.14).
To find positive solutions, in [1], [11], [14], [15], [25], they argued in the
following way: first they considered minimization problem:

minimizeI(u) in B(pg) = {u € H*(RY); 1wl g vy < po}

and found the first positive solutian(x) as a minimizer of (u) in B(pp).
We remark that iff # 0, 0 is not a solution of our problem and the first
positive solution is obtained as a perturbation0ofThe second positive
solutionu; () was obtained through the Mountain Pass Theorem. The key of
their arguments is that the minimax value given by Mountain Pass Theorem
— we call itthe MP levein short — is lower than the first level of breaking
down of the Palais-Smale condition.

From now on, we restrict ourselves to the problem (0.1)—(0.3) and we
pay attention to the conditions (0.13), (0.14). This condition makes it easy
to study (0.1)—(0.3) via variational methods. For the c&se = 0, we can
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see the MP level is lower than the first level of breaking down of the Palais-
Smale condition. Thus we can obtain a positive solution of (0.1)—(0.3) with
f = 0 via the Mountain Pass Theorem. On the other handif satisfies

a(z)e (0,1  forallz e RN (0.15)

and
a(z) # 1,

the situation is completely different. For the cg&e:) = 0, we can see
that the MP level is exactly equal to the first level of breaking down of the
Palais-Smale condition and we can not get a positive solution through the
Mountain Pass Theorem. Here we give two remarks:

(i) Bahri-Li [5] showed the existence of at least one positive solution of
(0.1)—(0.3) withf(x) = 0 under the conditions (0.4)—(0.5) and

a(x) — 1> —Cexp(—(2+9)|z|) forallz € RY (0.16)

for somes > 0, C > 0. In Sect. 1, we observe that under (0.15), the
critical value of their solution is strictly greater than the first break down
of the Palais-Smale condition. See also Bahri-Lions [6], in which they
showed the existence of at least one positive solution under condition
N > 2 and

a(x) — 1> —Cexp(—d|z|) forallz € RV,

See also Bianchi [8] and Bianchi and Egnell [9], [10].

(if) Adachi-Tanaka[1] showed thatff(x) > 0andf(x) # 0, the MP level
is lower than the first level of breaking down of Palais-Smale condition
even under the condition (0.15).

From the above remarks, under the condition (0.15), it is observed that the
positive solution obtained in [1] is essentially different from one obtained
in [5]. More precisely, even if| f|| ;-1 z~) — 0, the solution of [1] does
not approach to the solution of [5], since their critical values are different.
Thus the existence of more than two positive solutions is expected.

In this paper, we study the multiplicity of positive solutions under (0.15)
and our main result is the following

Theorem 0.1. Assume (0.4), (0.5) and (0.15), (0.16). Then there exists an
do > 0 such that for non-negative functigifz) satisfyingd < [ f{| -1 )
< dg, the problem (0.1)—(0.3) possesses at least four positive solutions.

As to an asymptotic behavior of solutions obtained in Theorem 0.1 as
£ ]l -1 (rvy — 0, we have



Four positive solutions 67

Theorem 0.2. Assume that a sequence of non-negative functipits) )72,
c H Y(RY) satisfiesf;(z) # 0 and

HfjHH—l(RN) —0 asj — oo.

Then there exist a subsequencéfffz));2, — still denoted by f;(x))72,
— and four sequencéagk) (x))jen (K =1,2,3,4) of positive solutions of
(0.1)—(0.3) withf(x) = f;(«) such that

(1) 1Sl g1 vy — 0 @S — oo

(if) There exist sequenc(ag ) (yj(‘g))j , € RY such that

"] = oo,

k
1l (2) — (@ =) vy = 0

asj — oo for k = 2, 3. Herew(x) is the unique positive radial solution of
(0.8)—(0.10).
(ili) There exists a positive solutiag(z) of (0.1)—(0.3) withf = 0 such
that

1S (x) — vo (@)l 1wy =0 @sj — oo,

We remark that the solutlons(g) 5 )( ) do not converge strongly to
solutions of (0.1)—(0.3) withf = O As an immediate corollary to The-
orem 0.2, we have the following result on symmetry-breaking of positive
solutions for (0.1)—(0.3).

Corollary 0.3. Suppose that(xz) = a(|z|), f(z) = f(]z|) are radially
symmetric in addition to (0.4), (0.5), (0.15), (0.16). Then there exists a
61 > Osuchthatiff(x) > 0, f(x) Z0, || fll -1~y < d1, then (0.1)—(0.3)
possesses at least one positive solution WhICh is not radially symmetric.

Proof of Corollary 0.3. Suppose that the conclusion of Corollary 0.3 does
not hold. Then there exists a sequence of non-negative radially symmetric
functions(f;(z))52, suchthat| f;|| -1 (r~) — 0asj — oo and all positive
solutions of (0.1)—(0.3) witlf (x) = f;(x) are radially symmetric. However,

by Theorem 0.2, there exist a subsequencéfgfx °, — still denoted

by (f;(2))22, — and sequences of solutioxs," (x ));‘;1, (Wl ()22,

(Wl ()32, (u§4>( )2, of (0.1)~(0.3) with f(z) = f;(x) satisfying
the conclusion (i)—(iii) of Theorem 0.2. Clear(w;?) ()52, (u§~3) (7))524
are not radially symmetric for larggé This contradicts the assumption on
(fj(z))j21. Thus Corollary 0.3 holds. O
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We remark that under the condition (0.13) such a symmetry breaking
does not occur in general. In fact, we have

Theorem 0.4. Suppose that(x) = a(|z]), f(z) = f(|z|) are radially
symmetric positive function and satisfy

a(r) > 1 forall » > 0,

ar(r) <0 forall r > 0,

f(r)>0 forall » > 0,

fr(r) <0 forall r > 0.
Then all positive solutions of (0.1)—(0.3) are radially symmetric.
Proof. We can derive Theorem 0.4 from the results of C. Li [18], [19] and
Gidas-Ni-Nirenberg [12], [13]. a

In the following sections, we give proofs of Theorem 0.1 and Theo-
rem 0.2. We use variational methods to find positive solutions of (0.1)—(0.3).
We write uy (z) = max{u(zx), 0}, ||UH§-11(RN) = / (IVul? + |ul?) dz

RN
and we define for given(z) and f(x),

L2 1 +1
T 0) = gty 7 [ awnt o= [ fayuta) da
cH'(RY) = R
and
Ja r(v) = I%l;)g([a,f(tv) X = R,
where

X ={ve H'RY); [ollgrgry = 1},
Y ={ve ;v #£0}.

We will see that critical points of,, f(u) : HY(RY) — R or J, ¢(v) :
X'+ — R are corresponding to positive solutions of (0.1)—(0.3).

We will find critical points ofl, (u), J,, r(u) in the following way. First
we find one positive solution™ (a, f;2) = weemin(a, f;2) as a local
minimum of I, ;(u) near0. Next we see the Palais-Smale compactness
condition for/, ¢(u) and.J, ¢(u) breaks down only at levels

I f(uo(2) + klhip(w)  k=1,2,..

wherel; o(u) is a functional corresponding to (0.8)—(0.10}y) is a unique
positive radial solution of (0.8)—(0.10) ang(x) is a critical point off, ¢(u).

In particular, we will see that the Palais-Smale condition holds under the
level I, ¢ (Uioemin(a, f;x)) + I o(w).
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To find the second and third positive solutions, we use notation:
[Jag < ={ue Xy; Joy(u) <c}

for ¢ € R. We will observe that for sufficiently smadl> 0

[Ja,f < La,f(Uocmin(a, f;2)) + T 0(w) — €]
is not empty and

cat ([Ja,r < Lo f(Wocmin(a, fi2)) + Iio(w) —¢]) > 2 (0.17)

providedf(z) > 0, f(x) # 0 and||f| g1 (r~) is sufficiently small. Here
cat stands for the Lusternik-Schnirelman category. We find two positive

solutionsu(® (a, f; z) andu'® (a, f; z) satisfying

Lo (u®(a, f;2)) < Io f(woemin(a, f;2)) + Lo(w)  fork=2,3.

(0.18)
We remark that forf = 0, we see that
ulocmin(av O; .T) =0
and
[Ja,O < Ia,O(ulocmin(aao; 93)) + Il,O(w)] = @ (019)

and (0.17) is the key of our proof. To get (0.17), we use the following
interaction phenomenon as in [1] (c.f. Bahri-Li [5], Bahri-Lions [6]):

Ia,f(ulocmin(a> f; ‘T) + w(az - y)) < Ia,f(ulocmin(ay f; SC)) + Il,()(w)

for sufficiently largely| > 1.
To find the fourth positive solution, we adapt the minimax method of
Bahri-Li [5] to our functionalJ, ¢(v) and we will find positive solution

u® (a, f;2) with

Ia,f(u(4) (CL, f; l’)) > Ia,f(ulocmm(aa f; 517)) + ]170((*‘])

for sufficiently small| f{| ;71 (z~). To show Theorem 0.2, we also use (0.18)
and (0.19) in an essential way.

Thus our paper is organized as follows: In Sect. 1, we will give a func-
tional frame work, some preliminaries and we will find a local minimizer
of I, (u) near0. Section 2 will be devoted to the proof of (0.17). Finally
in Sects. 3 and 4, we complete proofs of our Theorems 0.1 and 0.2.
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1. Preliminaries
1.1. Functional frame work

In what follows, we denote the usual Sobolev spacézby H'(RY) and
we use notation:

(u,v)p = Vu-Vvda:+/ uv dz,
RN RN
1
lullg = (u, wg
for u,v € E. We also denote the duality product betwegh= H~!(R")
andE by (-, -) g+ g and

I1f1

gr= sup (f,uw) e+ E.
lul =1

For all functionsa(z), f(z) : RY — R, we define a functional, ¢(u) :
E — R by

1

1
log () = gl — = [

a(:v)ujj_Jrl dx — f(@)u(z) dz.
RN
In what follows, we assume (0.4)—(0.7) and we have the following char-
acterization of non-negative solutions of (0.1)—(0.3).
Lemma 1.1. Assume (0.4)—(0.7). Then
(i) I, ¢(u) € C*(E ,R) and

o.p(w)h = (u, h)g —/ a(x)u’L hdz — /]RN fhdz, (1.1)

]RN
" @), h) = [l — p / a(e)a? ' h? da (12)
RN
forh € E.

(i) If w € E is a critical point of I, ¢(u), thenu(x) is a non-negative
solution of (0.1)—(0.3). Moreover if(z) # 0 or f # 0, thenu(z) is a
positive solution of (0.1)—(0.3).

Proof. (i) can be proved in a standard way. We prove only (ii). Suppose that
u € E satisfiesl;, ;(u) = 0. By (1.1),

/RN(VU - Vh+uh —a(z)u’.h — fh)dx =0
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forall h € E. Thusu(z) is a weak solution of
—Au+u=a(z)u} + f in RY. (1.3)

By the assumption (0.7), the right hand side of (1.3) is hon-negative and we
can see that(z) is non-negative by the maximal principle.dfz) # 0 or
f(z) # 0, we can see the right hand side of (1.3) is non-negative and not
equivalently equal t0. Thusu(x) is positive inR”. 0

Hereafter, we try to find critical points df, ;(u). We will use the fol-
lowing estimate frequently:

[ullpt1 < Cpiallulle foru e E, (1.4)

1
P
s = ( / |u|p“dx)” .
RN

The best constant’,.; for (1.4) plays an important roleC,;; can be
characterized as

where

Oty = g 1lE
P w0 [fuflpa

Itis known that the infimum in (1.5) is attained and the set of the minimizers
can be written as

{Mw(z—y); A€ R\ {0}, y € RV},

(1.5)

wherew(z) is the unique positive radial solution of (0.8)—(0.10), i.e., a
critical point of I; o(u). In particular, we have

cot _ e luls el

- - . (1.6)
P w0 lullprn @l

We can also see that(x) is a critical point ofl; o(u) corresponding to the
mountain pass theorem, that is,

I — inf I ).
1,0(w) Inf max 1,0(7(t))

Here,
I'={yeC([0,1,E); v(0) = 0, I ,o(~(1)) < 0}.

In particular,
Lip(w) = max I o (tw). (1.7)

We can also see the set of critical points/pf(u) is

{0} U{w(z —y); y e RV}
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One of the virtue of the unperturbed functiodab («) is the following fact
— all critical points excepb can be obtained through constraint problem:

-1
(/ vﬁ’erx) {veE; =1} > R.
RN

1.2. Properties of,, ¢(u) and existence of a local minimizer
To find critical points ofl, ¢(u), firstwe observe thatiff|| £ is sufficiently
small, then/, ¢(u) has a similar feature t o(u). That s,

(Ia,£-1) 1, ¢(u) has a unique critical point;,. i (a, f; ) in a neighbour-
hood of0.

(Ia,£-2) All critical points exceptuo.min(a, f; ) can be obtained through
the following constraint problem:

Jo f(v) =max 1, ¢(tv) : X = R,
’ t>0 ’
where

Y={vekFl,;|v|g=1}
2+:{U€E;U+¢O}.

We remark that iff = 0,

Jao() = Io << /R N a(x)o dx) e v)
_ (; - pil) (/RN a(zyr ! dx>_pil C1s)

2

1 1 Tp-1
Jio(v) = (2 T 1> (/RN vﬂ“ d:c>

In particular,

and
YA A s
N w w E p—
inf Jiow)=J10(——)=1[=—
o) = (= (5 577) <kup+1)
L1 ke
=(=-— = 1.
(2 p—i—l)qp'H (1.9)
We remark thaﬂl,o(L) = I10(w). Thus
wlle
. w
inf JLQ(’U) :JLQ(i) :IL()((A)). (1.10)

Ve, el
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Recalling (0.4)—(0.5) and setting

a= inf a(z) >0,
z€RN

a= sup a(z) >1,
zeRN

we have from (1.8)

a7 1J10(v) = Jro(v) < Jao(v) < Jao(v)

)

2
=a ?1Jo(v) forallve X,.

Thus

2

a7 Lo(w) < inf Jao(v) <a P 1low). (1.11)
U€Z+

To see (, -1) and (, ¢-2), first we observe
Lemma 1.2. (i) For v € E ande € (0, 1),

1 1
(1 =)l e o(u) - 27_:Hf||2E* < op(u) < (L4 e)l e o(u) + o [If] -

(1.12)

(i) Forv € Xy ande € (0,1),

(1 =e)r T Jao(v) = o[ flle- < Jas(v) < (1+e)rJao(v) + o[ Fllz--
(1.13)
(iii) In particular, there exists &y > 0 such that if|| f|| z- < do, then

mf Ja,f(v) > 0.

veX

Proof. (i) Since fore € (0,1)

€ 1
[ Fude) < 151l < Sl + 52151
RN e
we have
1— 1 .
. L @ e AR < L)
1 + 13 1 1
< 2l - p+1AQa()p+dm+Hﬂb*

Thus we get (1.12).
(if) From (i), we deduce fop € X',

1 1
(1 =)o 0(0) = I < Jag (@) < (L4 )T 2 o(0) + 513
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We also have from (1.8)

2
_ (1 1 a(r) pr1 .\ PL
J11570(v)_ <2 p—l—l) (/RN 1:|:5v+ dz

= (1+e)7TJao(0).

Thus we get (1.13).
(iii) By (1.11) and (1.13), we have

p+1

1
inf Jos(0) > (1= )P inf Juo(v) = o[ f

2
veEX L B

+1

2 Lo
ta 1 p(w) - ja\\fHE*-

Therefore inzf Ja,r(v) > 0 for sufficiently small|| f|
vEZ 4

Next we study properties of a function

> (1—5)5

B*. d

[0, 00) = R; t = I ¢(tv)
forve X,.
Lemma 1.3.

() Foreveryv € X, the functiort — I, ¢(tv) has at most two critical
points in[0, co).

(i) If||fllgx < do (do is given in Lemma 1.2), then for anye X, there
exists a unique, (v) > 0 such that

Imf(ta,f(v)v) = Ja,f(’l)).
Moreovert, ¢(v) > 0 satisfies
_ 1 1

1 _ 1
ta,f(v) > <p/RN a(:c)vf_Jrl dm) > (p&C’ﬁii) (1.14)

a.f(ta,f(V)v) (v, v) <0 (1.15)
(i) 1ft — I, ¢(tv) has a critical point different from, ¢(v), thenitliesin

0, (1= 3~ flls-):

Proof. We set
1 1 +1 1
g(t) = I p(tv) = 5t Toh T Jan a(z)vh " do - P — /]RN fodz - t.

(i) We can see that

Jg"(t) =1 —p/ a(;r)viJrl dx - P71,
RN
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Thus

1

g'(t) >0 fort< <p/ a(x) p+1d:1:> .
RN
1
g"(t) <0 fort> (p/ a(z)v ﬂ“dm) T
RN
Thereforey'(¢) has at most two zeras, ¢, and they satisfy

1
T p—1
0<t < (p/Na( ) p“d:c> T <t
R

(ii) Remark thaig(0) = 0, g(t) — —oc ast — oo andsup g(t) > 0 by (iii)
>0

(1.16)

-1
of Lemma 1.2. Thus there existstas(v) > <p/ a(x)vﬁ“dx) ’
RN
such thatl, ¢(ta,f(v)v) = Jo,r(v). We remark that

1
ta,f(v) = (p/RN a(x)vl pl dx) o
cannot take a place. If it does, it follows from (1.16) that
gt)y<o forallt>0.
It contradictssup g(¢) > 0. Thus we get (1.14). Sinag'(t) = I/ ,(tv)(v,

t>0

v), (1.15) follows from (1.14).
(iif) Suppose thay(t) has a critical point different fromt¢, r(v). By (1.14)
and (1.16)¢ satisfies

t< (p/RN a(z) p“da;)”ll. (1.17)

It follows from ¢'(t) = 0 that

t— / a(z)vif'f_1 dx - P — / fvdx =0.
RN RN

t (1 - / a(:v)vﬁ“ dx - tp_l) = fvdz.
RN RN

By (1.17), we have
1 —1
< (1 - ) 1l .
D

That is,
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As to the behavior of, ¢(u) near0, we have
Lemma 1.4. There exist; > 0 andd; € (0, dy] such that
(i) Lo, f(u) is strictly convex inB(r1) = {u € E; ||u||p < r1}.
@ii) If | f|lz= < dy, then

inf I, ¢(u) > 0.
[ullz=r1
Moreover,], r(u) has a unique critical pointi,c min (a, f;x) in B(r1)
and it satisfies
Ulocmin(aa f; .CU) € B(rl)v

Ia,f (ulocmin(a, f; l')) = ueiél(frl) Ia,f(u)~

Proof. (i) By (1.2),

) (k) = [~ p /ﬂ% o)t da
> (1 - paCyfy [lull )1l
Thus!j ((u) is positive definite fou € B(ry), wherer; = (paégﬂ)*p%l,
andl, ¢(u) is strictly convex inB(r).
(i) For ||u|| g = r1, we have again by (1.4),
1

1 1
I f(u) = 5||u||2E T Jan a(:v)u‘ﬁf;_+ dr — /RN fudz

2 @ Ap+l p+l
> —=r{ — T
=9l e

— 1A llz=r

1 a4 =pt1 p-1

= (55 Ot ) ot = e
1 1

= 2—p(p+1)>7“%—HfHE*7"1-

Thus there exists @& € (0, dp] such that
inf Ia7f(u) >0 for HfHE* < dj.

lull =r1

Sincel, f(u) is strictly convex inB(ri) and inf I, r(u) > I, ¢(0),

ul|g=r1

there exist a unique critical poif,c min(a, f;x) of I, r(u) in B(ry) and

it satisfies
Ia,f(ulocmin(a7f§x>) = inf Ia,f(u)- O

llull E<r1

Remark 1.5.(i) From the uniqueness of critical points, it follows that

ulocmin(aa 0; .T) =0.
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(i) In[1], [11], [15], [25] , the existence of a local minimizer is proved just
under the assumption of the mountain pass geometry.

The following property ofujoc min (a, f; ) can be proved easily.
Lemma 1.6. wocmin(a, f;2) — 0 strongly inE as|| f| g+ — 0. O

Now we can provel, ;-1) and (,, ;-2).

. 1
Proposition 1.7. Letd; = min{d;, (1 — —)r;} > 0 and suppose that
p
”fHE* < ds. Then
(i) Jo.r(v) € CH(X4, R) and

o.p (V) = ta f (V)T 4 (tar(v)V)R (1.18)

forall he T, X ={h € E; (h, v)g = 0}.

(i) v € X4 is a critical point of J, ¢(v) if and only ift, s(v)v € Eis a
critical point of I, ¢(u).

(iif) Moreover the set of critical points df, ;(«) can be written as

{ta.f(v)v;ve Xy, Jé’f(v) = 0} U{uocmin(a, f;2)}. (1.19)

Proof. (i) By (1.15), we have

d2

ﬁ Iahf(tfl)) < 0.

t:ta’f(v)

Thus by the implicit function theorem, we can see that(v) € C1(Z,,
(0,00)). Therefore

Jmf(?)) = a}f(t(l’f(v)v) € Cl(E+, R).

Since
I, ¢ (ta,p(v)v)v =0, (1.20)

we have

(;f(v)h = (’lvf(ta’f(v)v)(tmf(v)h + (t; (v), h)v)
— b 1Tt (D))l

forhe T, Xy ={he E, (h,v)g =0}
(i) By (i), J; ;(v) = 0if and only if

I ¢ (tas(v)v)h =0  forallh e T,%,.
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By (1.20), itis equivalent td;, ,(t,,¢(v)v) = 0.
(iif) Suppose that, € E is a critical point ofl,, ¢(u). We writeu, = tv with
v € Xy andt > 0. By (iii) of Lemma 1.3, we have either

1 —1
L= tos(0) or tg<1—p) s

Thusu € E'is corresponding to a critical point of, (v) or

1 —1
HUHE:tS <1—) dQSTl.
p

By Lemma 1.4/, ;(u)hasaunique critical pointif () and itisuioc min (a,

f;z). 0

1.3. The Palais-Smale condition féy ;(u) andJ, ¢(v)

Next we study the break down of the Palais-Smale conditior/ fgi(u)

and J, ¢(v). The unique positive solutiow(x) of (0.8)—(0.10) plays an
important role to describe an asymptotic behavior of Palais-Smale sequence
for I, r(u).

Proposition 1.8. Assume (0.4)—(0.7) and suppose thata sequenge; C
E satisfies
a.f(uj) =0 inE",
Ia7f(uj) —ceR

as;j — oo. Then there exist a subsequence — still we denote Hy°, —,
a critical pointug(x) of I, (u), an integer¢ € NU {0}, and/ sequences

of points(y})32,, ..., (y5)52, C RY such that
1° |yf| - ccasj — coforall k=1,2,... ¢,

2° |yf—yf/]—>ooasj—>oof0rk7ék’,
—0asj — oo,

¢
uj(x) — (w(l‘) +> w(r - y}“))
k=1 E

4° Ia7f(Uj) — Ia,f(uo) + EILU(W) asj — oo.

30

Proof. This is rather standard result. See [7], [20], [21] for analogous argu-
ments. 0

Asto J, ¢(v), we have the following

Proposition 1.9. Suppose thaf f|
Proposition 1.7. Then we have

g+ < do, Whereds > 0 is given in
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(i) Jo,f(v) — oo asdistp(v,02y) = inf{|lv —ullp; v € X, uy =
0} — 0.
(i) Suppose thatv;);2, C X satisfies ag — oo

Jaf(vj) — ¢ forsomec > 0, (1.21)
16, @Wi)l7s =, = sup{J, ;()hs h € Ty, Xy, |Ih]|p =1} — 0.
(1.22)

Then there exist a subsequence — still we denotehy- ; —, a critical
pointug(x) € E of I, ¢(u), an integer? € NU {0} and/ sequences of

points(y;)52,, ... , (y5)52, € RY such that
1° |yF| — coasj — oo forall k =1,2,... ¢,
2° |y;c —yf/| — ooasj — oo fork # K,

wo(z) + 3wz — )
k=1

3° ||vj(z) — —0asj — oo,

l
ug(x) + 3 wlz —yf)
k=1 EllE
4° Ja7f(’l)j) — Imf(uo) + 5[170(01) asj — OQ.

Proof. (i) By (ii) of Lemma 1.2 and (1.8), we have

p+1

1
Jug(0) > (1= )5 Jao(v) = o1 f 16+

p+1 /1 1 f P 1
>1— =1 — — ——— p+1 ‘—7 * .
>(1-¢) (2 pﬂ)(/wa() dx) K= oIl le

Sincedist (v, 0X;) — 0 impliesvy — 0in E, in particular,

/ a(x) Trl dx — 0,
RN

bS]

we get (i).
(i) Recalling (1.14) and (1.18), we have
11 f( a,f (V3)0;)| = = tas ( )H f(UJ)HT* Xy

< (paCl) 7T g 1 (v))
—0 asj — oo.

5 2

We also have
I £ (ta,£(vj)v5) = Jo5(vs) = c.
Applying Proposition 1.8, we get the conclusion (ii). a
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As to the corollary to Proposition 1.9, we have

Corollary 1.10. Suppose thatf| g« < do. ThenJ, ¢(v) satisfies the con-
dition (PS): forc < Ia,f(ulocmin(aa f; l’)) + Il,O(w)'

Here we saythal, ;(v) satisfies (PS)fand only if any sequence; )72, C
X, satisfying (1.21) and (1.22) has a strongly convergent subsequence in
E.

Proof. By Proposition 1.9, (PS)reaks down only for
c =1, (uo) + I p(w),

whereug € E is a critical point of/, ;(u) and?¢ € N. By (1.19), (iii) of
Lemma 1.2 and

Ia,f(ulocmin(aa f; .CC)) = ueiél(fm)Ia,f<u) < Ia,f(o) = 07

we have

Ia,f(ulocmin(aa f; .Z‘))
= inf{l, r(uo); up € E is a critical point ofl, ;(u)}.

Thus the lowest level of breaking down of (R®) I, t (tiocmin(a, f;)) +
117()((4)). d

Later in Sect. 2, we will find two critical points below the level

Ia,f(ulocmin(aa f; .I')) + II,O(W)-

1.4. Properties of/, o(v)
Here we give some properties of the functiofiah (v) € C*(X; , R) under
the condition (0.15) and (0.16) in addition to (0.4) and (0.5).

Lemma 1.11. Assume (0.4), (0.5) and (0.15). Then
0) leﬂzf Ja,0(v) = I 0(w).
Vet

(i) inEf Ja,0(v) is not attained.
ISPIEN
(III) Ja?g(v) satisfies(PS)c forc ¢ (—OO, Il’o(w)) U (Il,()(w) , 2[1@((4})).

Proof. This is a rather standard result. See for example [20],[21]. O

The following property of/, o(v) is important to obtain the multiplicity
of solutions for (0.1)—(0.3).
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Lemma 1.12. Assume that (0.4), (0.5) and (0.15). Then there exists a con-
stantdy > 0 such that ifJ, o(v) < I; o(w) + do, then

AN;ﬁWM2+vﬂdx#0 (1.23)

Proof. Since inEf Jao(v) = I1 p(w) is not attained, it follows from (i) of
(USPINE

Proposition 1.9 that for anjg > 1 there exists as = ¢(R) > 0 with the
following property: ifv € 3, satisfies

Ja,0(v) < Iip(w) + ¢,
[ Jao(W)lTss, <e

then
H _wE—g| 1
lwlle g~ R

We choosek > 1 sufficiently large so that (1.24) implies (1.23). Suppose
thatv € X, satisfies/, o(v) < I1 o(w) + 0. Then by Ekeland’s principle,
there existg € X, such that

15 = vll5 < Véo,

|| oz s, < Voo,
0,0(0) < I1o(w) + do.

for somejy| > R. (1.24)

Choosingy < min{e(2R)?,¢(2R), é}, we have

Hv_ St 71 PP Ot )
lwliz g . lwllz g
< i
\[0 + °R
R
for somely| > 2R. Thus we have (1.23). O

As to the existence of a critical point df, o(v), we deduce the following
result from [5].

Proposition 1.13. (c.f. [5].) Assume that (0.4), (0.5), (0.15) and (0.16).
ThenJ,o(v) has at least one critical point,(z) € X, which can be
characterized as

Ja,0(va) = inf sup Joo(v(y))-
’YEFyeRN
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HereI' is given by
w(- —y)

lwl[e

I={yeCR®R", £,);v(y) = forlarge|yl}.  (1.25)

Moreovery, (z) satisfies
Ja70(va) € (1170(6‘)),2]1,0((,0)).

Proof. This result is essentially due to Bahri and Li [5]. See also [23] for a
similar argument. Here we use notation in [23]. We consider two values:

b, = inf J, ,
:a ’UlenZ].Q_ 70(1))

b, = inf sup J, .
vefyeﬂgv o(1(y))

Herel is given in (1.25). Using an idea from [5], we can $ge< 21, (w)
under the condition (0.16). By (0.15), we can gge= I; o(w). By the
argument of [5], we can see #, = I o(w), then there exists a critical
pointv € X such that/, o(v) = b, = I 0(w). However this contradicts
Lemma 1.11. Thus, € (l1o(w), 211 0(w)) andb, is a critical value of

J(L’o(’U). a
Finally in this section we state some refinement of Corollary 1.10.

Proposition 1.14. Assume that (0.4), (0.5), (0.15) and (0.16). Then for any
e > 0 there existsi(¢) € (0, d] such that for| f|| g« < d(¢)
() Hulocmin(ay f»:E)HE <e.
(i) lenZ‘f Jmf(’l)) € [ILQ((U) —£, Iljo(w) + gl
vely

(i) J, ¢ (v) satisfiegPS). for
Cc e (—OO, [a,f(ulocmin(av f; :ZZ)) + Il,O(w))
U(Ia,f(ulocmin(aa f; I)) + ILO(W) ) 211,0(("}) - 5)'

Proof. (i) follows from Lemma 1.6. Sinceinzf Jao(v) = I10(w), (i)
[SPIEE

follows from Lemma 1.2. Now we prove (iii). As in Corollary 1.10, (RS)
breaks down only at levels = I, ¢(ug) + ¢110(w), Whereug(x) is a
critical point of /, ¢(u) and? € N. It follows from (jii) of Proposition 1.7
thatuo(z) = weemin(a, f;x) OF

Iajf(u()) > inf Jmf(v) > IL()(LU) — €.
veEX L
Thus, (PS) breaks down for

c= Ia,f(ulocmin(a7 f,$)> + Il,()(w) or c¢2=> 2[1’0((&) —¢&.
Therefore we get (iii). a
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2. Category Of[Ja,f S Ia,f(ulocm'in(a'a .f; w)) + Il,O(w) - E]
As in the introduction, we use notation:
o <cl={veXy;Jr(v) <c}

for c € R. To find critical points ofJ, ¢(v), we show for a sufficiently small
e>0

cat([Ja,f < In f(Uioemin(a, f52)) + I p(w) —€]) > 2. (2.1)

To prove (2.1), we need some preliminaries.

2.1. Some energy estimates

The following estimate plays an essential role in the proof of (2.1).

Proposition 2.1. (c.f. Proposition 3.1 of [1]Assume (0.4), (0.5), (0.16) and
suppose that f ||z« < da, f > 0and f # 0. Then there exist®, > 0 such
that

Ia,f(ulocm'm(aa f; .T}) + tw(x - y)) (2 2)

< Ia,f(ulocmin(av f; .%')) + Il,O(w) ‘

forall |y| > Ry andt > 0.

Proof. Straightforward computation gives us

1
Lo, f (Woemin(a, f;7) +tw(z —y)) = §||Ulacmm(l“) + tw(z —y)||%
1
a m RN a(x)(ulocmin<x) + tw(a; — y))p‘H dx
- / f(ulocmin(l') + tw(x — y)) dx
RN
1 9 t2 )
- §||ulocmm(:r)||E + §||WHE + e min(z) , w(z — Y))E
_ L CL(ZE)U . (ZL‘)P'H dr — tpﬂ/ a(m)w(:p _ y)p+1 dx
p+1 Jrn locmin 1 Jen
1
B m RN a(x){(ulocmin(x) + tw(a: - y))erl

- ulocmin(x)p+1 - tp+1w(x - y)p+1} dx

- /RN f (@) (Wocmin(x) + tw(x — y)) dx . (2.3)
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Here we Writeuoc min () = iocmin(a, f; ). SINCEI,, ¢ (Uioemin(x)) = 0,
we have

(tioemin(z) s W) = / o(2)ttemin(@Phdz + | fhdz
RN RN
forallh € E.

Settingh(z) = tw(z — y), we have

t<ulocmina w(iL‘ - y))E = t/]RN a('r)ulocmin(x)pw(x - y) dx

+t /RN f@)w(r —y)dz.
Thus
Ia,f( Ulocmin(x) + tw(x - y))

= a,f(ulocmin(-x)) + II,O(tw)

1
+ﬁ RN(l —a(zx)) P w(z — y)P T da
1
- a(){ (Wocmin(T) + tw(x — y))p—H - ulocmm(x)erl
p+1 /ey

~t"w(@ = y)P T — (p+ Dttoemin (€) tw(a — y)} do
= Lo, f(Wocmin()) + T10(tw) + (I) — (II).
Using (1.7), we have
I (Wocmin(x) + tw(x — y)) < In (Uoemin(x)) + T10(w) + (I) — (II).
Since
Lo, (Wiocmin(x) + tw(z —y)) = Lo f(Uocmin(x)) <0 ast — 0,
Lo, (e min (x) + tw(z — ) — —c0  ast — oo,
we can easily find < m < M such that
Lot (Uoc min(x) + tw(z —y)) <0 fort € [0,m]U[M ,oc0).

Thus it suffices to prove (2.2) fare [m, M].
We recall the fact that for some> 0

w(z)) 2] T exp(lz]) = ¢ as|z| — oo.

(See Bahri-Li [5], Bahri-Lions [6], Gidas-Ni-Nirenberg [12, 13] and Kwong
[17]). In particular, we have
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(i) there exists a constant, > 0 such that
w(z) < Cpexp(—|z|) forall z € RY;
(if) for any e > 0 there exists a consta6t > 0 such that
w(z) > Ceexp(—(1 +¢)|z|) forall z € RY.
We also remark that

(i) (s4-t)PTL—sPTL P+l _(p41)sPt > Oforall (s, t) € [0, 00)x [0, 00);
(i) for any > 0 we can find a constant(r) > 0 such that

(s +t)PTE — sPHL P _ (p 4 1)sPt > A(r)t?
forall (s,t) € [r,00) X [0, 00).

Thus, settingd = A(min, < Yo min(a, f;2)) > 0, we have

1
(I1) > m ] a(z){(Wocmin + tw)p+1 — Ulocminp+1 — PHiptl
z|<1

- (p + 1)ulocminptw} dx

ZGA/ w(r —y)*dr
|z<1

> aACL exp(—2(1 +¢)|y]). (2.4)
We also have from (0.16)
1
D)< —= / Cexp(—(2+0)[z))CF ™ exp(—(p+ 1)|w — y|) da
P + 1 RN
< C'exp(—min{p+1, 2+ d6}|y|). (2.5)

Since (2.4) holds for any > 0, choosin2e < 4, we can findRy > 0 such
that
(I) < (1)  forly| > Ro.

Thus we get (2.2). O

Remark 2.2.A similar argument is given in [1] to show the existence of at
least two positive solutions for (0.12). This idea is originally used by Bahri-
Li [5] to show b, < 2I; o(w). See also Bahri-Lions [6], Bahri-Coron [4],
Taubes [24].

Remark 2.3.(2.2) does not hold fof () = 0. In fact, if f(z) = 0, then
ulocmin(a, O; l’) = (0 and

Ia,O(ulocmin(aa O7$) + w(l‘ - y)) = Ia,O(w(x - y)) > 11,0("‘))'
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2.2. Lusternik-Schnirelman category

Now we are going to show (2.1). First of all, we recall the definition of
Lusternik-Schnirelman category.

Definition. (i) For atopological spack, we say a non-empty, closed subset
A C X iscontractible to a point inX if and only if there exists a continuous
mapping

n:[0,1]xA—-X
such that for someg € X

1°n(0,z2) == forallz € A,
2°n(l,z) = xo forallz € A.

(i) We define
cat(X) = min{k € N; there exist closed subsets, ... , A, C X
such that
1° A, is contractible to a point ik for all j,
k
2° | J 4 =x}.
j=1

When there do not exist finitely many closed subséts.., A, € X such
that1° and2° hold, we sayat(X) = oc.

For fundamental properties of Lusternik-Schnirelman category, we refer
to Ambrosetti [2] and Schwartz [22]. Here we use the following property:

Proposition 2.4. Suppose that/ is a Hilbert manifold and € C*(M, R).
Assume that forg € R andk € N

1° ¥(z) satisfieg PS).. for ¢ < ¢y,
2° cat({x € M; ¥(x) < co}) > k.

Then?(x) has at leask critical points in{x € M; ¥(z) < ¢o}. O

To estimate Lusternik-Schnirelman category, the following lemma is
useful.

Lemma 2.5. Let N > 1 and X be a topological space. Suppose that there
exist two continuous mapping

F:SV 1 =lyeRY; |y=1}-X,G: X - SV!

such thaiG o F' is homotopic to identity SN¥—1 — SN=1: z s z, that s,
there exists a continuous mappiag [0, 1] x S¥—1 — S¥=1 such that

€(0,2) = (Go F)(x) forallze SN,
((l,z)==x forall x € SN-1.
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Then
cat(X) > 2.

Proof. We argue indirectly and suppose that(X) = 1. That is, X is
contractible to a point in itself. Thus there exists

n:[0,1]]xX—X
such that for somey € X

n(0,z) ==z forall z € X,
n(l,z) = xg forall z € X.

Now we consider a homotopy : [0, 1] x SV—! — SN-1 defined by

B(s,x) = Gn(s, F(x))).

Clearly
B(0,z) = (G o F)(x) forallz € X,

B(1,z) = G(xg) forallz € X.

ThusG o F'is homotopic to a constant mapping. However, by assumption,
G o F is homotopic to the identity. This is a contradiction and we have
cat(X) > 2. 0

From now on, we construct two mappings
F SN_l — [Ja7f < Ia,f(ulocmin<a> f,.l‘)) + Il,O(w) - 5]7

G : [Ja,f < Ia,f(“lOcmin(aaf;x)) + 11,0((")) - E] — SN_la
so thatG' o F' is homotopic to the identity.

2.3. AmappingFr : SVt = X,

We define a mapping : SV~! — X in the following way: in Proposi-
tion 2.1, we observed that fog| > Ry

Ia,f(ulocmin(a7 f; LL‘) + tw(x - y)) < Ia,f(ulocmin(a7 f; .’B)) + Il,O<W)
forall ¢ > 0.

For|y| > Ry, we finds = s(f,y) > 0 such that

ulocmin(aa f; IL‘) + sw(a: - y) >

Hulocmin(aa f; x) + sw(x - y)HE
Uloc min\Qy f; ZE) + sw(m B y)

Hulocmin(aa f; :E) + Sw(gj - y)HE’

ulocmin(av f; l') + SW(I - y) = ta,f <
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that is,
||ulacmin(a’ f; CC) + sw(x - y)HE
—¢ ulocmin(a7 f,.l‘) + sw(x B y) ) (26)
= la,f . :
||ulocmin(a> f7 .Z') + Sw(x - y)HE
This implies

Ja,f ( ulocmin(aa f; 1") + sw(m - y) >

[wocmin(a, ;) + sw(z —y)|e
= Lo,f (Uocmin(a, f;x) + sw(z — y))
< o, f(wocmin(a, f32)) + I 0(w).
Proposition 2.6. Assume (0.4), (0.5) and (0.16). Then there existe
(0, do] and R; > Ry such that for anyj| ||z« < ds and for any|y| > Ry

there exists a unique = s(f,y) > 0 in a neighborhood of satisfying
(2.6). Moreover

{y e RY; |yl > Ri} = (0, 00); y = s(f, )
is continuous.
Proof. We use the implicit function theorem to prove Proposition 2.6. Set

Q(Sa fv y) = < c/L,f(ulocmin(aa fa ‘T) + sw(x - y))7
Ulocmin(a7 f,ﬁ?) + Sw($ - y)>E*7E
= ||tioe min(a, f; ) + sw(z — y)||%

— /]RN a(x) (Uoe min (@, f;2) + sw(x — y))PT dz

— /]RN [ (Wioemin(a, f;2) + sw(x —y)) dz.

Then (2.6) holdsifand only i (s, f,y) = 0. Sincew(x) is a unique positive
radial solution of (0.8)—(0.10), we have

wl|% — / WPt dz = 0.
RN
Using this fact, we see that
P(1,0,y) = (Iop(w(z —y)), w(z —y))p~ 5
—Jllf [ alwhele — gt do
RN
—0 asl|y| — oo,
% &(s,0,y) = 2Hw\|% —(p+1) /RN a(x)w(z — y)p+1 dx

s=1

= =(p-Dlwllz <0 asly| - co.
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Thus by the implicit function theorem, we can find a unigue s(f,y)ina
neighborhood ot such that®(s, f,y) = 0. The continuity ofy — s(f,y)
is also clear. O

Now we define a functio’r : SV1 = {y e RV ; |y| =1} — ¥, by
FR(y) _ ulocmin(aa f; .Z') + 8(f7 Ry)w(:c — Ry)
Hulocmin(aa f; CL‘) + 3<f7 Ry)w(x - Ry)HE
for || f||g= < ds andR > R;. Then we have

Proposition 2.7. For 0 < || f||g+ < d3s andR > R; there existsy(R) > 0
such that

FR(SNil) C [Ja,f < Ia,f(ulocmin(av f; {E)) + II,O(W) - EO(R)]

Proof. By construction, we have

FR(SN_l) - [Jayf < Ia,f(ulocmin(a7 B .ZL')) + Il,o(w)]'
SinceF (S™V~1) is compact, the conclusion holds. 0
Thus we construct a mapping

Fr: SNt = [Jop < Lot (Woemin(a, f32)) + Tio(w) — so(R)).

24.A mappmg; : [Ja,f < Ia,f(ulocmin(a’ f»x)) + Il,O(w)] - SN_l

First we remark that
Lemma 2.8. There existgly € (0, ds] such that if|| f|| g~ < d4, then

[Ja,f < Ia,f(ulocmm(a, I JI)) + Il,o(w)] C [Jap < 1170(&}) + 50], (2.7)

wheredy > 0is given in Lemma 1.12.

Proof. By (1.13), we have forany € (0, 1)

_ptl 1
Jao(v) < (1—¢) = <Ja7f(’l)) + 2€HfH%*> forallv € Xy. (2.8)
Recalling[a,f(ulocmin(av f; .%')) <0,

v € [Jo,r < o f(Uocmin(a, f52)) + I o(w)]
implies J, ¢ (v) < I o(w). Thus by (2.8), we have

(o) < (=) FF (1060 + 11

for all v E [Ja,f < Ia,f(ulocmin(av Ve JI)) + Il,O(w)]‘
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Sincee € (0, 1) i

Now we can define
G : {Ja,f < Ia,f(ulocmin(a) fvm)) + Il,U(w)] - SN_l
by

G) = [ Tl + @) //y/ (V0P +Jo(x)P) do

By Lemma 2.8 and Lemma 1.12,
| 19eP + o)) do £ 0
RN [2]

forall v € [Jo 5 < Iof(Woemin(a, fi2)) + I10(w)] and G(v) is well-
defined. Moreover we have

Proposition 2.9. For a sufficiently largek > R; and for sufficiently small
Ifllz= >0

GoFp: SN7t 5 N7V 4 s G(Fr(y))
is homotopic to the identity.
Proof. We define
¢0,y) : [0,1] x SN — gN—1

by
( (1 -20)Fgr(y) + 20w(x — Ry)
U= 20) Faly) + 20le — Ry O 0 €101/
w(z — 5t
C(0.9) =4 @~ su-9)¥) ), forf € [1/2, 1),
@ — iy wlle
Y, for6 = 1.

We can easily see thatd,y) € C([0, 1] x S¥=1 §N¥=1)and
¢(0,y) = G(Fgr(y))  forally e s¥1,

((Ly) =y forally e SV,

providedR > 0 is sufficiently large and| ||z~ > 0 is sufficiently small.
O

Therefore, applying Lemma 2.5, we have



Four positive solutions 91

Proposition 2.10. For sufficiently largeR > Ry,

Cat([Ja,f < Ia,f(ulocmin(aa f; -’E)) + Il,O(W) - 50(R)]) > 2. O

Thus we have

Theorem 2.11. Assume (0.4), (0.5), (0.15) and (0.16). Then there exists
ds > 0 such that if| f||g- < d5, f > 0, f # 0, thenJ, ¢(v) has at least
two critical points in

[Ja,f < Ia,f(ulocmin(av fax)) + 11,0(("))]'

Proof. Since (PS)holdsfor.J, s(v)forc € (—oo, Iy f(wocmin(a, f;x))+
I o(w)), Theorem 2.11 follows from Proposition 2.4 and Proposition 2.10.
0

3. A positive solution related to Bahri-Li’s solution
and proof of Theorem 0.1

Next we observe that if f|| g« is sufficiently small, Bahri-Li’'s minimax
argument also works fof, ((v). We define

ba,y = inf sup Jo r(v(y))
7EFyGRN

wherel" is defined in (1.25). By (1.13), we have for ang (0, 1)

ptl_ 1 ptl_ 1
(1= )7 ba = ol < bay < (L+0)7 ot o |If B (31)

whereb, = inf sup J,o(7(y)). Thus we have
’YGFyeRN

Lemma 3.1. For anyd > 0 there existsls > 0 such that if|| f|| g~ < dg,
then

ba,r € (ba — 8, b +9). O
In particular, sinceh, € (I10(w), 211 0(w)) by Proposition 1.13, we
have

Theorem 3.2. There exists @; > 0 such that if| f|| g~ < d7, thenJ, ¢(v)
has a critical pointo, ¢(z) such that

Ja,f(aa,f) = ba,f > Ia,f(ulocmin(aaf;x)) + Il,()(w)‘
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Proof. Sinceb, € (I1,0(w), 2I1,0(w)), choosingd > 0 small and applying
Lemma 3.1, we can find faff|| g« < 0

ba,f S (]170((41) +e, 2[170((.0) — E)

for somee > 0. By (iii) of Proposition 1.14,J, ¢(v) satisfies (PS)for
c = b,y and there exists a critical point corresponding 9. a

Now we can complete the proof of Theorem 0.1.

End of the proof of Theorem 0.First we setuV) () = wjoe min (@, f; ).
uV () satisfies
L.y (uM(x)) <0. (3.2)

By Theorem 2.11, there exist two critical point®) (), v (z) in
[Ja,f < Ia,f(ulocmin(a> f; .%')) + Il,O(W)]'

Let u@ (z) = to (@)@ (2), u®(2) = t, (03O (z) be corre-
sponding solutions. They satisfy

0 < I p(uP (@) = Jo r (0P ()
<1 ,f< () + ha(w) fork=2, 3 (3:3)

By Theorem 3.2, there exists another critical paifft (z). Let u® () be
a corresponding positive solution. Then it satisfies

Lo (@) = Jo s 0D (@) 2 Loy (uV(2)) + L1o(w).  (34)

By (3.2)-(3.4)uM (z),u® (x),u® (z),u™ (x), are distinct and (0.1)—(0.3)
possesses at least four positive solutions. O

4. Proof of Theorem 0.2

Finally in this section, we give a proof of Theorem 0.2.

Proof of Theorem 0.2Suppose thatf;(r))32, C H~ L(RY) is a sequence
of non-negative functions such that(x) ;é 0 and| fillg-1 @~y — 0 as

j — oo. Let
ugl) («T) = ulocmin(av fj; x)
andu ( ) ug?’ (z) be positive solutions corresponding to Theorem 2.11

and Ietu )(x) be a positive solution corresponding to Theorem 3.2. By
Lemma 1 6,

ug-l)(:r) = Woemin(a, fj;2) = 0 in £ asj — oc.
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Oon the other hand, by (1.13){” = u{” (2)/[[u{” (@)l v{* = u{¥(2)
/Huj (z)|| g satisfy for anye € (0, 1)

Jao (P (@) < (1= &)™ (T, (0 () + o= 11l )
< (1 - 5)7%(Ia fj(ulocmm(a f]7 )
+11,0(w) + il )

<(1-e) fwho<> + L11f508)

fork =2, 3.
Lettingj — oo, we have

lim sup J,0(v (k)(x)) <(l-¢)" 5+111 o(w).

_]*)OO

Sincee € (0, 1) is arbitrary, we have

lim sup Jg o J(k)(a?)) < Iip(w).

j*)OO

Thus by (i) of Lemma 1.1l]a,0(’l)](~k) () = L p(w) for k = 2, 3.

Recalling thatnf,cx, J,0(v) = I10(w) is not achieved and using (ii)
of Proposition 1.9, we can get the second statement (ii) of Theorem 0.2.
(iii) For u§.4) (), we have from (3.1) that

_Qb(u(»:%h

p+1_

< (A+e) 7 Tba+ oo HfJHE*

(1— ) 515, - *ny

Lettingj — oo ande — 0, we find

lim I, 1, (ul (2)) = ba € (I10(w), 2L10(w)). (4.1)

]—)OO

We can also see that

1o @)h = 1, (ul( h+/ f3(2)h(z) dz

= fi(@)h(z) dx forallh € E.

Thus,
12, o (S (@) 2+ = 1151

g — 0 asj — oo. (4.2)
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By (4.1) and (4.2), we can deduce théf) (x) is bounded ik asj — oo
and

Loo(\? () = by € (I10(w), 211 0(w))- (4.3)
Sincel, o(u) satisfies(PS). for ¢ € (I10(w),2I1 o(w)), We can extract a
convergent subsequence — still we denotmﬁ?/(x) — such that

u

i () = uo(z) in E.

Clearly ug(x) is a critical point of/, o(x), that is, a positive solution of
(0.1)—(0.3) withf = 0. 0

AcknowledgementsThe Authors would like to thank the unknown referee for helpful com-
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