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Abstract. We give a description of the ultimate dynamics for the simplest
evolution equation compatible with the Van der Waals Free Energy. We
establish existence of stable sets of solutions corresponding to the physical
motion of a small, almost semicircular interface (droplet) intersecting the
boundary of the domain and moving towards a point where the curvature
has a local maximum. Our results represent a particular extension of the
Equilibrium theory of Modica and Sternberg to the next dynamic level in
the Morse decomposition of the flow.

MathematicsSubjectClassifications (1991):35A35, 35C20, 35K55, 35B25.

1 Introduction

In this paper we study the functional

Jε̂(u) =
∫
Ω

(
ε̂2

2
|∇u|2 +W (u)

)
dx,

u ∈
{
v ∈ H1(Ω) :

1
|Ω|
∫
Ω
vdx = m

}
(1.1)
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Fig. 1. (a). GeneralW (u), (b). NormalizedW (u)

and its associated gradient flow inL2(Ω). Herem is a constant andW is a
double-well potential. By adding a linear function ofu toW if necessary,
we can normalizeW without affecting the dynamics so as to have wells of
equal depth. We take the global minimum ofW to be0 and attained only at
u = ±1 (Fig. 1(a), (b)).

In the 70’s, DeGiorgi et al. [66,67] introduced the family of functionals
{1

ε̂Jε̂(u)}ε̂>0 as a means of approximating the perimeter functional

PΩ(E) = |∂E|, E ⊂ Ω. (1.2)

Independently Cahn and his collaborators [5,19,20] introduced (1.1) for
describing the evolution of the concentrationu for a binary alloy. Some of
these ideas had been introduced before by Van Der Waals [63].

TheW term favors functions that take values close to its minima. We
call such functions layered. We callinterfaces the zero level sets of such
a function, and we callstates, the values close to±1 thatu takes almost
uniformly away from the interface. Note that the zero level set could be
replaced by any other level set strictly between−1 and1. Notice also that
themass constraint1|Ω|

∫
Ω udx = m,m ∈ (−1, 1), forces separation, that is

both states have to be taken. In contrast, the gradient term favors the uniform
unlayered state and penalizes interfaces by registering their perimeter. The
result of this competition is the formationof layered functionswith interfaces
movingsoas to reduce the total perimeter [41,42,64].Surface tensionenergy
is proportional to the perimeter and is a second order effect in relation to the
bulk energy, and sôε is naturally small.

In the present paper we study the motion and stability properties of such
interfaces for small̂ε. We restrict ourselves to a single connected interface
intersecting the boundary. We also limit ourselves to two space dimensions
and therefore to interfaces that are curves. The discussion above suggests
that most of the energy of a layered state is concentrated on and near the
interface. This in turn suggests that perhaps for smallε̂ the study of (1.1)
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can be reduced to a purely geometric problem associated to the perimeter
functional. This intuition is generally false because the remaining part of
the energy which is diffused through out can make a difference. This fact
distinguishes diffuse from sharp interface models and makes the former
much more interesting from the dynamic point of view. In the present paper
size is an important parameter. After stimulating work of Carr, Gurtin and
Slemrod [21] in one space dimension, Modica [55], improving on Modica
and Mortola [67], and independently Sternberg [61] (see also Owen and
Sternberg [57]) established a general relationship between (1.1) and (1.2),
asε̂ tends to zero, for globalminimizers. In two space dimensions1Chen and
Kowalczyk [31] described the structure of local minimizers of (1.1) of small
mass by showing that (in the limit) the interface is a circular arc intersecting
the boundary orthogonally, and enclosing a point on the boundary where the
curvature has a local maximum.2 The constraint in (1.1) at the geometric
level (1.2) is translated into fixed enclosed area . It is clear at the level of (1.2)
that one can construct a circular arc intersecting the boundary orthogonally
and enclosing a fixed area only at very special locations which are related to
the critical points of the curvature of the boundary. It is also intuitive that the
interface will be minimal when the curvature of the boundary is maximal.
This intuition is behind the Chen-Kowalczyk result.

By the heuristic reasoning above one expects circular interfaces enclos-
ing a point of local minimum of the curvature to correspond to unstable
critical points of the functional (1.1). Moreover one expects this unstable
equilibria tohaveunstablemanifoldsof dimensionequal to that of thebound-
ary∂Ω. A rigorous statement to this effect is stated in Theorem 1.1 below.

In this paper we study dynamics. We consider the simplest dynamical
system associated to the constrained functional (1.1), which results after
taking the gradient inL2 of the functional on the Hilbert manifold made up
ofL2 functions with fixed average [40,65]. This produces the so calledmass
conserving Allen-Cahn equation studied by Rubinstein and Sternberg[59]


φε̂
t (y, t) = ε̂2∆yφ

ε̂(y, t)− f(φε̂(y, t)) +
∫∫−Ωf(φε̂(·, t)),

y ∈ Ω, t > 0

∂nφ
ε̂(y, t) = 0, y ∈ ∂Ω, t > 0,

φε̂(y, 0) = φε̂
0(y), y ∈ Ω

(1.3)

1 Wehave not attempted higher space dimensions because of the complexity of the asymp-
totic expansion, in particular the difficulty of the geometric problem (seeSect. 2.6). Naturally
several ingredients of our analysis extend effortlessly to higher dimensions.

2 Ni and his collaborators (see [69] where also further references can be found) have for
some time now identified the critical points of the (mean) curvature of∂Ω as possible loca-
tions for the peaks of certain equilibrium solutions which they call spikes. The nonlinearities
as well as the equilibrium they study are fundamentally different from these in the present
paper. Nevertheless there are relationships (see Remark 4.5, and also the Appendix).
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Fig. 2.Four key stages in the evolution for an elliptical domainΩ. Stage IV is the object of
study in the present paper. We allow general two-dimensional domainsΩ

whereΩ is a fixed bounded domain with smooth boundary∂Ω, ∂n is the
exterior normal derivative to∂Ω,∆y represents the Laplacian with respect
to y, and

∫∫−Ω = 1
|Ω|
∫∫

Ω represents the average overΩ. Heref is the

derivative ofW . We assume the following conditions forf ∈ C∞(IR1):

f(±1) = 0, f ′(±1) > 0,
∫ s

−1
f =
∫ s

1
f > 0 for all s ∈ (−1, 1).

(1.4)
For this dynamical system we construct a set inL2(Ω) which captures

all the unstable equilibria alluded to above, together with their unstable
manifolds. We do this in appropriate coordinates so that the reduced flow
on the one dimensional unstable manifolds corresponds in an unambiguous
way to the motion of a (roughly) semicircular interface on the boundary
moving towards the increasingly curved region, see Fig. 2.

If the interface happens to be close to a small semicircular shape (that
we calldroplet) one expects (on the basis of isoperimetric reasoning for
example) that it will stay semicircular for economizing the perimeter and
therefore that its evolution could be described in terms of the motion of one
point on the boundary of the domain, which can be thought as the barycenter
of the droplet.

Expressing our work in this paper in the language of dynamical systems
we would say that we are describing a piece of the attractor of (1.3) for
small ε̂. This piece is lying in a sublevel set of energy very close to that of
the global minimizer. It is also a very stable and attracting set, and therefore
our result renders precise information on the ultimate dynamics of a typical
solution to (1.3) see Fig. 3.

We consider the sublevel setsHc = {φ/Jε(φ) ≤ c} and look for the
maximal compact invariant setsKc of (1.3) contained inHc. It is known that
for gradient systems these sets are made up of unstable equilibria and their
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Fig. 3.

unstable manifolds [49]. We expect from bifurcation theory that there must
be critical valuescε1 < cε2 < . . . < cεn < . . . at which the maximal invariant
set will change dimension,cε0 < cε1 < . . . < cεn < . . ., dimKc = i,
cεi < c < cεi+1. Figure 3 describes pictorially the first few invariant sets for
an elliptical domainΩ. In the picture, which lives in the infinite dimensional
phase space, we have indicated the equilibria, their unstable manifolds, and
the sense of the flow. In this paper we studyK1.

This procedure of slicing the attractor in terms of the energy and iden-
tifying the maximal compact invariant sets contained therein, is known as
the Morse Decomposition of the flow (Hale [49]). This approach was de-
scribed for one-dimensional bistable gradient systems in Mischaikow [75]
and implemented for the viscous Cahn-Hilliard equation in Grinfeld and
Novick-Cohen [76]. We note that for the problem at hand, the limit of the
whole attractor, aŝε goes to zero, does not exist in any sense while the limits
of these invariant sets are meaningful. Such geometrical ideas and methods
were introduced in Fusco and Hale [45], Fusco [44], and in Carr and Pego
[22,23] for the 1-dimensional Allen-Cahn equation. For relatedmore recent
work we refer to [1,13,7,8] and to the references therein.

We now state (informally) two of the main results in this paper. We use
z = z(ξ̂) to parametrize∂Ω whereξ̂ is the arc-length parameter. We denote
byKΩ(ξ̂) the curvature of∂Ω atz(ξ̂).

Theorem 1.1 (Equilibria/Stability) 3 Assume that

m = 1− πδ2

|Ω| , δ � 1, 0 < ε̂ � δ3. (1.5)

3 See Theorems 4.3, 4.4 for precise statements.
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Let z(ξ̂0) be a point on∂Ω such that the curvature of∂Ω experiences a
strict extreme; namely,

K′
Ω(ξ̂0) = 0, K′′

Ω(ξ̂0) 
= 0.

Then there exists a unique equilibriumφ(y) of (1.3) such that the zero level
set ofφ(y) is close to the circle centered atz(ξ̂0) with radiusδ. In addition,
if K′′

Ω(ξ̂0) > 0, i.e., the curvatureKΩ(·) experiences a local minimum
at ξ̂0, then the equilibrium is unstable with an one dimensional unstable
manifold. IfK′′

Ω(ξ̂0) < 0, i.e, the curvature functionKΩ(·) experiences a
local maximum at̂ξ0, then the equilibrium is exponentially stable.

Theorem 1.2 (Motion)Assume (1.5) and thatφε̂
0(y) is a “layered” initial

data whose interface is close to a semicircle centered atz(ξ̂0)with radiusδ.
Then the solution of (1.3) is also layered with interface close to a semicircle
with radius δ centered atz(ξ̂(t)). In addition, ξ̂(t) is determined by the
following O.D.E.


d

dt
ξ̂(t) =

4ε̂2δ

3π
K′

Ω(ξ̂(t)) +O(ε̂2δ2), t ∈ (0,∞),

ξ̂(0) = ξ̂0

(1.6)

whereO(ε̂δ2) is bounded byCε̂2δ2 with some positiveC independent of
t ∈ (0,∞).

Wenow proceed to explain some of the ideas. The success of themethod
employed depends on our ability to construct a good approximation to the
invariant set. Our approach is based on perturbation theory. Our reference
problem is (1.3) on the upper half plane or better yet, on a large circular
disc.

This problem clearly possesses a one-dimensionalmanifold of equilibria
(whose interfaces are semicircles centered on the real line with radiusδ)
and provides the first approximation to the manifold. The key idea is that
shrinking the droplet is equivalent to flattening the boundary so size is the
extra parameter.

A main obstruction however comes later after realizing that we can not
shrink the droplet arbitrarily and therefore improve the approximation at
will; There isacritical size (̂ε

1
3 ) belowwhich thedroplet shape itself becomes

unstable; it “melts down”, and the uniform state becomes energeticallymore
efficient (see Appendix). We are therefore forced to refine the approxima-
tion provided by the reference problem above by some other means that
does not involve further shrinking of the droplet. We do this by the method
of matched asymptotic expansions applied tothe equation of the manifold
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(see (1.10)). This involves inner/outer expansions, boundary layer expan-
sions, and the solution of a geometric problem for interfaces intersecting
the boundary and enclosing a fixed area. We need several terms in the ex-
pansion: Seven terms for Theorem 1.1 and five terms for Theorem 1.2. In
this way by truncating the expansion we construct a certain manifoldM,
which in general is not invariant. Next we linearize the operator about a
generic point onM and show that the spectrum splits into two parts: an
O(ε̂2) order eigenvalue (corresponding to the motion on the manifold), and
the rest, which is bounded away from zero by a gap of the order(ε̂)2/δ2,
whereδ can be thought as the “radius” of the droplet. The restriction on the
radius not being too small (and also not too large) enters in establishing the
gap. The conclusion we draw out of this spectral information concerns the
stability of the setM, in other words, the stability of the droplet shape. We
also construct a thin invariant tube inL2, about the setM. By introducing
coordinates aboutM we describe the solutions in the tube in terms of their
projection onM. The manifoldM is a very good approximation to the
maximal compact invariant set (manifold)̃M contained in the tube.

What we have presented above is a synthesis of certain results for de-
scribing the motion of interfaces intersecting the boundary.

We now give a more detailed description of this work. We begin by de-
scribing the contents ofSect. 2.Wefind it convenient throughout to introduce
a change of variables that fixes the size of the droplet. Let

y = δx, ε̂ = εδ, uε(x, t) = φε̂(y, t),
Ωδ = δ−1Ω := {x; δx ∈ Ω} . (1.7)

We can write (1.3) as


uε
t (x, t) = ε2∆uε(x, t)− f(uε(x, t)) +

∫∫−Ωδ
f(uε(·, t)),

x ∈ Ωδ, t > 0
∂nu

ε(x, t) = 0, x ∈ ∂Ωδ, t > 0,
uε(x, 0) = uε

0(x), x ∈ Ωδ

(1.8)

where∆ is the Laplacian with respect tox, ∂n is the normal derivative to
∂Ωδ with respect tox.

Similarly, we parameterize∂Ωδ by zδ(ξ) whereξ is the arc–length pa-
rameter of∂Ωδ; that is, we use the transformation

ξ̂ = ξδ, zδ(ξ) =
1
δ
z
(
ξ̂
)
=

1
δ
z
(
δξ
)

(1.9)

wherez(ξ̂) is the arc–length parameterization of∂Ω.
Weareseekingan invariantmanifold̃Mconsistingof functionsu(·, ξ, ε),

parametrized in terms of the scalarξ. The invariance of this manifold under
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(1.8) is a purely geometric condition stating the tangency of the vector field
to the manifold, can be written analytically in the form:



−ε2∆u+ f(u) + ε2cuξ + εσ = 0,
x ∈ Ωδ, t > 0, ξ ∈ IR1,

∂nu(x, ξ, ε) = 0, x ∈ ∂Ωδ, ξ ∈ IR1,∫∫
Ωδ

u(·, ξ, ε) = |Ωδ| − π.

(1.10)

Hereσ = σ(ξ, ε) andc = c(ξ, ε) are constants inx. The scalingsε2c,
εσ can be guessed. Observe that if we defineuε(x, t) = u(x,Ξ, ε) where
Ξ = Ξ(t, ε) solves the ODE

d

dt
Ξ(t, ε) = ε2c(Ξ, ε), t ∈ IR1 (1.11)

thenuε(x, t) is a solution to (1.8). Equation (1.11) represents the reduced
flow on the manifold. We callc thespeedof the droplet. Ifc(ξ0, ε) = 0 then
u(x, ξ0, ε) is an equilibrium solution.

We shall find (approximate) solutions to theManifold Equation (1.10)
(cf. [8ii]) We decomposeu asu = uI + uB and solve for(uI, uB, σ, c) in
the following four steps.

Step 1. First, we consider the differential equation (1.10a), neglecting
the boundary condition (1.10b) and the area constraint (1.10c). Namely, for
given parameters(σ, c), we find a solutionuI solving the followinginterior
problem:

(PI) − ε2∆uI + f(uI) + ε2cuI
ξ + εσ = 0, x ∈ Ωδ, ξ ∈ IR1.

(1.12)
Though there are infinitely many solutions, we are only interested in solu-
tions having a certain special profile and whose interfaceΓ (ξ, ε) defined
by

Γ (ξ, ε) := {x ∈ Ω;uI(x, ξ, ε) = 0} (1.13)

is a smooth (in space, inξ, and inε), simple curve intersecting∂Ωδ at exactly
two points. Letr (distance) ands (arc length) be the canonical coordinates
of x with respect to the interface andR = r

ε be the stretched variable. We
seekuI in the formuI(x, ξ, ε) = U(R)+ ε

∑
j≥0 ε

juI
j (R, s, ξ) whereU is

the heteroclinic solution to

Ü − f(U) = 0, U(±∞) = ±1, U(0) = 0,
∫
R
RU̇2(R)dR = 0,

(1.14)
The basic linear problem underlying the construction ofuI

j , j = 0, 1, 2,
· · ·, is {

φ′′(R)− f ′(U(R))φ(R) = q(R), R ∈ IR,

φ(0) = 0, φ ∈ L∞(IR).
(1.15)
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We remark here that (1.15) has a unique solution if and only ifq satisfies
the following compatibility (or solvability) condition∫

IR
q(R)U̇(R)dR = 0 (1.16)

Consider the followingquestion:Givena familyof curves{Γ (ξ, ε)}ξ∈IR1

and constantsσ(ξ, ε) andc(ξ, ε), what is the necessary and sufficient condi-
tion for the existenceof a unique solutionuI of (PI) havingΓ as its interface?
In step 1, we shall use asymptotic expansions to derive such a necessary and
sufficient condition which can be expressed in terms of a set of differen-
tial equations governingΓ . We shall refer to these governing equations as
the interfaceequation. They are derived from the compatibility condition
(1.16).

Step 2. WithuI obtained in Step 1, we seek a functionuB such that if we
defineu = uI+uB, thenu satisfies both the differential equation (1.10a) and
the boundary condition (1.10b). Namely, we seekuB to solve the following
boundary layerproblem

(PB)




{
ε2∆ − f ′(uI)

}
uB = ε2cuB

ξ +N(uI, uB),
x ∈ Ωδ, ξ ∈ IR1,

∂nu
B = −∂nu

I , x ∈ ∂Ωδ, ξ ∈ IR1,

uB = O
(
exp(−ν

εdist(x, ∂Ωδ))
)
.

(1.17)

Here and in the sequel,N(a, b) := f(a+ b)− f(a)− f ′(a)b.
Denoting byh(x) the distance fromx to ∂Ωδ and byH the stretched

variableh
ε , we seeku

B in the formuB(R,H, ξ, ε) =
∑

j≥1 ε
juB

j (R,H, ξ).
The basic underlying linear problem here is,{

φRR + φHH − f ′(U)φ = G, onD := IR × IR+

φH(R, 0) = g(R) on IR, φ(0, 0) = 0.
(1.18)

We have the following fact (Lemma 2.1): Problem (1.18) has a unique
bounded solution if and only if∫∫

IR×IR+
G(R,H)U̇(R)dRdH +

∫
IR

g(R)U̇(R) = 0. (1.19)

Sinceweask foruB to decayexponentially fast forxaway from theboundary
∂Ωδ, it turns out that for suchuB to exist, it is necessary and sufficient
that the angles at the intersections of∂Ωδ with Γ have to satisfy certain
relations which we callcontact angleconditions. They are derived from the
compatibility condition (1.19).
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Step 3. We find conditions onσ andc such thatu = uI + uB satisfies
the area constraint condition (1.10c); namely,

(PA)
∫∫

Ωδ

(uI+uB)(·, ξ, ε) = |Ωδ|−π. (1.20)

Step 4. We solve the followinggeometricproblem: Find (Γ, σ, c) such
that the interface equation from Step 1, the contact angle conditions from
Step 2, and area constraint condition from Step 3 are all satisfied.

We remark that our geometric problem is different from a free boundary
problem, which is frequently obtained after formal asymptotic expansions,
and needs only to be solved fort ∈ [0,∞). In the current situation, if one
considersξ as time, then we are looking for a solution which is periodic
with period equal to the arc length of the boundary∂Ωδ. Here, we are not
going to establish an existence theorem (since what we want is more infor-
mation about the solution) but instead, we shall again use formal asymptotic
expansions to find an approximate solution.

In summary, we construct approximate solutions to (1.10) as follows.
Step 1: AssumeΓε is known, solve foruI

ε. The solvability condition for
uε yields the governing equation forΓε.

Step 2: Solve foruB
ε which satisfiesuB

ε = O
(
e−ν|R|−νH

)
. The solution

for uB
ε yields the contact angle ofΓε with ∂Ω, π

2 +O(ε2δ).
Step 3: Solve(PA). This yields the area constant onΩε(ξ).
Step 4: Find(Γε, σ(ξ, ε), c(ξ, ε)) such that the required condition in

Steps 1-3 are fulfilled.
Finally,wehave toemphasize that our solutionsof (1.10) areonly asymp-

totic solutions, in the sense that they can be accurate toO(εK) for any a
priori fixed integerK. This is a very brief description of the construction of
the approximate manifoldM, which approximates the evolution stage we
are describing in this paper.

The stability is done in Sect. 3 which we now describe. We remark that
most of the spectral theory results are quite general and can be adapted
to different situations by trivial modifications. Some, as in Lemma 3.9 for
example, already read in generality. This section could have been written
as a separate paper. For stability, one needs to study, for anyu ∈ M, the
following eigenvalue problem:


Lφ := −ε2∆φ̄+ f ′(u)φ̄ = λ̄φ̄ − λ̂ in Ωδ

∂φ
∂n = 0 on∂Ωδ∫
Ωδ

φdx = 0,

(1.21)

where(λ̄, φ̄) is theunknowneigenvalue/eigenfunctionandλ̂ = −∫∫−Ωδ
f ′(u)

φdx.
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A related more familiar eigenvalue problem is{−ε2∆φ+ f ′(u)φ = λφ in Ωδ

∂φ
∂n = 0 on∂Ωδ

(1.22)

and corresponds to the standard Allen-Cahn equation. We study both eigen-
value problems althoughwe need only the former for carrying out the proofs
of our main results in the present paper.

We prove the following result.

Theorem 1.3 (Small Eigenvalues)Let u be any point inM and let
{φj , λj}∞

j=1 and{(φ̄j , λ̄j)}∞
j=1 be the complete solution of the eigenvalue

problems (1.22) and (1.21) where the eigenvalues are ordered from small to
large. Assume that for some large enoughC∗, δ2 ≥ C∗ε. Then

λj =
ε2π2

|Γ |2
{
(j − 1)2 − 1 +O(δ)

}
, (1.23)

φj = ε−1/2U̇
(

r
ε

)
cos
(
(j − 1)π5

)
+O(δ)

j = 1, 2, 3, ...

λ̄j =
ε2π2

|Γ |2
{
j2 − 1 +O(ε2δ)

}
, j = 2, 3, . . . (1.24)

φ̄j = ε−1/2U̇
(

r
ε

)
cos(jπ5) +O(δ), j = 1, 2, 3, . . .

λ̄1 = − 4ε2

3πσ̂0

d2

dξ2KΩδ
(ξ) +O(ε2δ4) (1.25)

= −4ε2δ3

3πσ̂0

d2

dξ̂2
KΩδ

(ξ̂)
∣∣∣
ξ̂=δξ

+O(ε2δ4).

Here|Γ | is the length of the interface and5 is a scaled arclength parameter
of Γ , scaled so that it varies in[0, 1]; σ̂0 is defined in Remark 2.4.

By examining the proof of Theorem 1.3 one sees that the result is mean-
ingful for themore general class ofu’s characterized by the following struc-
ture:

u(x) = U
(r
ε

)
+ εU I

1

(r
ε

)
+ εUB

1

(
r

ε
,
h

ε

)
+O(ε2)

whereU is as in (1.14), andU I
1 , U

B
1 satisfy:∫

R
f ′′(U(R))U̇2(R)U I

1 (R)dR = 0, (1.26)
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∫∫
D
f ′′(U(R))U̇2(R)UB

1 (R,H)dRdH

=
K∂Ωδ

(p±)
2

∫
R
U̇2(R)dR (1.27)

wherep+ andp− are the intersections ofΓ with ∂Ωδ. Notice thatUB
1 is the

first term in the boundary layer expansion ofu, and is significant near the
pointsp±. Conditions (1.26) and (1.27) are consequences of the solvability
conditions (1.16), (1.19) for the interior and boundary layer expansions.

The reader should recall that thespectrumofL̂φ = φ′′−f ′(U)φ inL2(R)
lies in [0,∞), with zero as a simple eigenvalue and with the continuous
spectrum filling the entire interval[min(f ′(±1)),∞). A finite number of
eigenvalues below the bottom of the continuous spectrum is a possibility
[53,68].

A general perturbation can be split into two parts. The one part is geo-
metrical and is relevant to interface instabilities. The other part comes from
the profile of the solution across level sets and relates to the tendency of the
solution to stay layered (cf. (1.27) below).

The geometric perturbations are of special interest. Their corresponding
eigenvaluesλn(ε) are calledcritical 4 and are characterized by the fact that
λn(ε) → 0 asε → 0 for fixed n, see [9]. In contrast the eigenvalues cor-
responding to the perturbations of the profile are associated to eigenvalues
bounded away from zero uniformly inε. We remark that the critical eigen-
values ofL are coming from the zero eigenvalue ofL̂ above, and that they
are of magnitudeO(ε2). At first sight this may look peculiar sinceu is an
ε-perturbation (and not anε2-perturbation) ofU . The explanation lies with
the conditions (1.26, 1.27) which have a cancellation effect on theε-order
term in the expansion ofu (c.f.[9]).

Critical eigenfunctions capture motion relative to the moving interface.
It is useful to think of these eigenfunctions in terms of amoving frame and in
terms of relative speeds. It turns out that a perturbation of the interface away
from∂Ω evolves atO(ε2) speed, while angle adjustment near the boundary
is faster and occurs at anO(ε) speed. This fact allows us to disregard the
motion of the interface in the determination of the boundary conditions that
the eigenfunctions satisfy.

The critical eigenfunctions are studied via thedecomposition(c.f. [9],
[26],[10])

φ = φ0Θ(5) + ψ, ‖φ‖L2(Ω) = 1 (1.28)

4 Nishiura and Fujii [72], and Angenent, Mallet-Paret and Peletier [73] were among the
first to identify critical eigenvalues in this sense, for related problems in one space dimension.
There the interface is a point, there is no change of perimeter, and the relevant perturbations
are translations.
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whereφ0 = U̇( r
ε) + O(ε) with theO(ε) order term so thatφ is anε2-

approximate eigenfunction.
First, we ignore theψ term, obtaining, for the unconstrained case the

following geometric eigenvalue problemfor Θ = Θ(5):{−(b1Θ′)′ + b2Θ = µω2Θ, 5 ∈ (0, 1),

−b1(0)Θ′(0) + b+Θ(0) = 0, b2(1)Θ′(1) + b−Θ(1) = 0
(1.29)

whereb1, b2, b+, b− are independent ofΘ1 andΘ2 and satisfy the estimates

b± = −|Γ |KΩδ
(p±) +O(ε), b1(5) = 1 +O(ε), ω2 = 1 +O(ε),
b2(5) = 3

4(|Γ |K)2 + 1
4(|Γ |σ̂)2 +O(ε)

whereK is the curvature of the interfaceΓ (a function of5) and σ̂ is a
constant depending onσ.

We comment that for the standard Allen-Cahn equation (for which the
corresponding geometric problem is evolution by mean curvature) we need
to chooseU I

1 = 0, δ = 0. TheΘ-equation (1.29) in the limit as,ε → 0,
takes the form ([10])

−Θ′′ − 3
4
K2Θ = µΘ.

Notice that the coefficient is34K2, as opposed toK2 that is obtained by
linearizing directly the mean curvature operator ([68,36,35]). We refer to
[10] for an explanation.

Theorem 1.3, and more generally Theorem 3.10 in Sect. 3, state that in
the limit asε → 0, the critical eigenfunctions separate intoU̇

(
r
ε

)
Θ(5), and

provide a one–dimensional eigenvalue problem determiningΘ. The proof
is based on the decomposition of the operator−ε2∆+ f ′(u)I into

Lr := − ε2

1 +K(s)∂r

( ∂r

1 +K(s)
)
+ f ′(u)I,

Ls := − ε2

1 +K(s) ∂s

( ∂s

1 +K(s)
)
. (1.30)

We remark that theΘ-equation (1.29a) is anO(ε2) fact and so requires
knowledge of theε2 terms in the expansion ofu. On the other hand the
boundary conditions (1.29b) result from anε-order matching and so do
not require any knowledge beyond theε-level. The two derivations can in
principle be decoupled.

A major stability issue for the droplet is persistence of its nearly circular
shape. It is intuitive that unless the droplet is sufficiently small in relation to
thecurvatureof theboundary, its circular shapeshouldnot bepreserved.This
intuition is confirmed by the following facts. First we note that the critical
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Fig. 4. The energy of theuniform state, the spike, and thedroplet. The horizontal axis
represents the phase space. The parameter is the mass and is proportional toδ2. ε̂ is fixed
and small. Forδ large (in relation always tôε) the droplet is the global minimizer. Notice
that the uniform state is always a local minimizer. The spike is unstable (see [12] and [69] in
related context). Atδ = δ∗ the uniform state and the droplet have equal energy. Atδ = δ∗∗

droplet and spike coalesce. Finally forδ < δ∗∗ there is no droplet or spike, and the uniform
state is the only critical point.δ is roughly the radius of the droplet

eigenvalues̄λj , j = 1, 2, · · · scale likeCj(j2 − 1)ε2δ−2, and therefore
perturbations away from the circular shape decay faster asδ → 0. The
behavior of the principal eigenvalue becomes more subtle because of the
strong dependence, ofC1 onδ. To argue this we first note that the principle
eigenfunction isaperturbation related to the “shrinking”of thedrop.Nextwe
observe that, due to conservation, shrinking is possible only if the curvature
of the boundary increases. On the other hand reducingδ is equivalent to
flattening the boundary and therefore it antagonizes shrinking. Therefore on
the basis of this understanding we expectC1 to diminish asδ → 0, while
we expect the rest of theCj , j = 2, 3, . . . to remain largely unaffected.5 As
a result agapappears between the principal eigenvalue, and the rest of the
critical spectrum, whenδ → 0, expressing the increasing stability of the
droplet. However this argument focuses on the interface and disregards the
part of the energy not due to the interface, which is related to the tendency
of the profile to stay layered and which happens to become critical when
δ2 ∼ ε; this causes an extra complication in this work and forces us to
establish several extra terms in the asymptotic expansion.

A first indication that the layered shapemay be destabilized ifδ2 < C∗ε
can be seen by comparing the energyJε of the droplet with the energy of
the uniform state. In the appendix and in Remark 2.4 we analyse the energy

5 This makes the calculation ofλ1 especially delicate. Its different nature is suggested by
the formula (1.24), which vanishes to principal order forj = 1. The calculation ofλ1 is
based on detailed knowledge of the speedc. Notice that (1.25) holds everywhere, including
the equilibrium points.
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near the criticalδ where a bifurcation occurs. We compare the energies of
the three state: The “drop”, the “spiky” solution, and the uniform state, see
Fig. 4. All this can be reconfirmed with a careful analysis of the spectrum.

We note thatuξ can be shown to be close to the principle eigenfunction
and so as a consequence of Theorem 1.3, we have the following result for
the setM:

Theorem 1.4 (Spectral Gap)Letu be any point inM, and assume that

0 < ε < ε0, δ2
0 > δ2 > C∗ε, δ0, C

∗, ε0 constants.

Then for anyv ∈ H1(Ωδ) satisfying∫
Ωδ

vdx = 0,
∫
Ωδ

v uξdx = 0
(
uξ :=

∂u

∂ξ

)

we have ∫
Ωδ

(
ε2

2
|∇v|2 + f ′(u)v2

)
dx ≥ 2ε2π2

|Γ |2
∫
Ωδ

v2dx,

for ε < ε0. (1.31)

Finally, we come to the dynamics of (1.8), which is done in detail in
Sect. 4. For any solutionuε(x, t) of (1.8) whose initial data are close toM,
we decompose

uε(·, t) = u(·, ξ(t), ε) + v(·, t)
whereu(·, ξ(t), ε) is a certain projection ofuε onM. The proof of Theorem
1.2 is based on this decomposition.v(·, t) is controlled by the estimate (1.31)
which allows the construction of an invariant tube aroundM. Themain term
in (1.6) is obtained from the construction ofu (cf. equation (1.10), (1.11)),
and supplemented near the equilibria by linear analysis, (1.25).

For previous work related to the main theme of this paper, see Alikakos
and Fusco [4]. For work on the stage of evolution described in this paper
(see Fig. 1) for the related sharp interfacemodels see Alikakos, Bates, Chen,
and Fusco [3], and Bellettini and Fusco [14], and the references therein.

2 Approximate solutions to the manifold equation

2.1 Preliminaries

In this section, we carry out the four steps mentioned in Sect. 1 for the
approximate solution of (1.10). First we introduce the coordinate systems
we are going to use in the interior and boundary layer expansions (see Fig. 5
for a summary).
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Fig. 5.

Representation of∂Ωδ

In the sequel, we shall identify points inIR2, or vectors, with complex
numbers.

Weuseacomplex valued functionz = z(ξ̂) to parametrize∂Ωwhereξ̂ is
an arc length parameter oriented counter clockwise.Wedenote the curvature
of ∂Ω atz(ξ̂) byKΩ(ξ̂). Notice that if we writez′(ξ̂) = eiϕ(ξ̂) whereϕ(ξ̂)
is a real valued function representing the angle between∂Ω and thex–axis,
thenK(ξ̂) = ϕ′(ξ̂).

We use

zδ = zδ(ξ) := 1
δ z(ξ̂)

∣∣∣
ξ̂=δξ

(2.1)

to parametrizeΩδ = 1
δΩ. Clearly, ξ is an arc length parameter forΩδ.

We useτ(ξ), n(ξ) andKΩδ
(ξ) to denote the unit tangent, normal, and the

curvature of∂Ωδ atzδ(ξ). Then, identifying vectors with complex numbers,
one can derive

τ(ξ) = zδ
ξ (ξ) := eiϕδ(ξ) n(ξ) = −ieiϕδ(ξ), KΩδ

(ξ) = ϕδ
ξ(ξ)

whereϕδ(ξ) = ϕ(δξ). Assume thatΩ is smooth. Then for any integerK,

ϕδ(ξ + ς) = ϕδ(ξ) +ΣK
j=1ϕ

δ
j(ξ)

δjςj

j!
+O(δK+1ςK+1), (2.2)

where

ϕδ
j(ξ) = δ−j dj

dξj
ϕδ(ξ) = δ−j dj−1

dξj−1KΩδ
(ξ) =

dj−1

dξ̂j−1
K(ξ̂)

∣∣∣
ξ̂=δξ

=
dj

dξ̂j
ϕ(ξ̂)
∣∣∣
ξ̂=δξ

, j = 1, 2, · · · . (2.3)
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We useh(x) to denote the distance ofx ∈ Ω̄δ from ∂Ωδ. Then the
change of coordinates from(h, ς) to x is given by

x = XB(h, ς) := zδ(ς)− hn(ς), (2.4)

and is a differomorphism from[0, h0] × (IR1/|∂Ωδ|) to {x ∈ Ω̄δ;h(x) ≤
h0}. Hereh0 is a fixed positive constant and∂Ωδ is the length of∂Ωδ. We
shall useh = h(x) and ς = ς(x) to denote the inverse of the change of
variablesx = XB(h, ς) given by (2.4). One can verify

∇xh = n(ς(x)), ∇ς(x) = (1− hKΩ(ς))
−1τ(ς)

∣∣∣
ς=ς(x)

. (2.5)

Representation of interfaceΓ .
Weuse a functionw(·, ξ, ε) = w1(·, ξ, ε)+iw2(·, ξ, ε)) to describeΓ (ξ, ε):

Γ (ξ, ε) = {w(s, ξ, ε) : 0 ≤ s ≤ |Γ |(ξ, ε)} (2.6)

wheres is the counterclockwise arc length parameter,|Γ | = |Γ |(ξ, ε) is
the total length ofΓ (ξ, ε) in Ωδ, andw(0, ξ, ε) andw(L(ξ, ε), ξ, ε) are
the intersection ofΓ with ∂Ωδ. We assume thatw is well–defined and
smooth in(−h0, L(ξ, ε) + h0) for some positive constanth0. We denote
by T = T(s, ξ, ε), N = N(s, ξ, ε) andK = K(s, ξ, ε) the unit tangent
vector, unit normal vector, and curvature ofΓ atw(s, ξ, ε). Then there is a
real valued functionψ(s, ξ, ε) such that

T = ws := ei[ψ(s,ξ,ε)+ϕδ(ξ)+π/2], N = −iT, K = ψs(s, ξ, ε). (2.7)

We assume thatΓ is smooth, so that there exists a fixed constantm0 > 0
such that the transformation from(r, s) to x defined by

x = XI(r, s) := w(s, ξ, ε) + rN(s, ξ, ε) (2.8)

is a differomorphism fromD(m0) := {(r, s) : |r| < m0,−h0 < s <
|Γ | + h0} to its image. We user = r(x, ξ, ε) ands = s(x, ξ, ε) to denote
the inverse of the transformationx → (r, s). Direct calculation shows that

∇xr = N, ∇xs = (1 + rK)−1T, ∆r = K(1 + rK)−1,

∆s = −rKs(1 + rK)−3.

In addition, differentiating both sides of (2.8) with respect toξ (considered
x as independent ofξ), we obtain

0 = (1 + rK)Tsξ + rξN + wξ + rNξ(s, ξ, ε).
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It then follows that

rξ(x, ξ, ε) = −wξ · N = w2
ξw

1
s − w1

ξw
2
s (2.9)

sξ(x, ξ, ε) = −(1 + rK)−1(wξ +Nξ) · T
= −(1 + rK)−1(w1

ξw
1
s + w2

ξw
2
s + w2

sξw
1
s − w1

sξw
2
s).
(2.10)

Hereweobserve that in(r, s) coordinates,rξ and(1+rK)sξ are independent
of r.

For the interior expansion, we shall use the stretched variableR = ε−1r;
more precisely, we use the change of variablesx → (R, s) defined by

x = w(s, ξ, ε) + εRN(s, ξ, ε). (2.11)

Under this change of variables, we can calculate

ε2∆x = ∂RR + εK(1 + εRK)−1∂R + ε2(1 + εRK)−2∂ss

−ε3RK(1 + εRK)−3∂s.

Corners – intersections of boundary and Interface
We denote byp± = p±(ξ, ε) the intersections ofΓ with ∂Ωδ. To relate
Γ (ξ, ε) with Zδ(ξ), we assume that, for some functiong = g(ξ, ε),

p± = w(L±, ξ, ε) = zδ(ξ ± g(ξ, ε)),(
L+ := 0, L− := |Γ |(ξ, ε)

)
∀ξ ∈ IR1. (2.12)

Also we useΩ−
δ = Ω−

δ (ξ, ε) to represent the region bounded byΓ and
{zδ(ς); ξ − g(ξ, ε) < ς < ξ + g(ξ, ε)} and denote byΩ+

δ = Ω+
δ (ξ, ε) the

compliment ofΩ−
δ ∪ Γ in Ωδ.

In a small neighborhood of the “corner”p±, we use the change coordi-
nates {

r = r(r, h, ξ, ε),
h = h(x) ⇐⇒ x = XC(r, h, ξ, ε). (2.13)

Hereh(x) andx(x, ξ, ε) are the signed distance fromx to ∂Ωδ and toΓ
respectively. It should be noticed that is is not trivial to write down the
functionXc(r, h) explicitly.

For the boundary expansion, we shall use the stretched variables(R,H)
defined by

R = εr(x, ξ, ε), H = εh(x). (2.14)
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Under this change of variables, we have

ε2∆ = ∂RR + ∂HH + 2N · n∂RH + εK(1 + εRK)−1∂R

+εKΩδ
(1 + εHKΩδ

)∂H .

HereN = N(s(x, ξ, ε))|x=XC(εR,εH,ξ,ε), n = n(ς(x))|x=XC(εR,εH,ξ,ε).

2.2 The interior expansion

For the interior expansion, we seek solutions of the form

uI(x, ξ, ε) = U(R) + εΣj≥0ε
juI

j(R, s, ξ) (2.15)

whereR = r
ε , x → (r, s) is defined in (2.8), andU(·) is unique solution of

(1.14) introduced in Sect. 1.
Under the new variables(R, s), the differential equation foruI becomes

−uI
RR + f(uI) + ε

[
σ + crξuI

R − K(1 + εRK)−1uI
R

]
+ε2
[
csξuI

s + cuI
ξ − (1 + εRK)−2uI

ss

]
+ε3Ks(1 + εRKK)−3uI

s = 0. (2.16)

HereuI
ξ represents the partial derivative when we consideruI as a function

of the variablesR, s, ξ, ε, so that

d

dξ
= ε−1rξ∂R + sξ∂s + ∂ξ.

To expand (2.16) as asymptotic power series ofεj , we assume that
w(s, ξ, ε), σ(ξ, ε) andc(ε) has the following expansions

w(s, ξ, ε) = Σj≥0ε
jwj(s, ξ), σ(ξ, ε) = Σj≥0ε

jσj(ξ),

c(ξ, ε) = Σj≥0ε
jcj(ξ). (2.17)

Clearly, we can use (2.7), (2.9), (2.10), and (2.17) to expandK, rξ, andsξ as

K(s, ξ, ε) = Σj≥0ε
jKj(s, ξ), (2.18)

rξ(x, ξ, ε) = Σj≥0ε
jrξj(s, ξ), (2.19)

sξ(x, ξ, ε) = Σj≥0ε
jsξj(R, s, ξ),

whereKj , r
ξ
j , ands

ξ
j depend only onw0, · · · , wj .
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Expressingequation (2.16) in termsof apower series inε, we thenobtain,
for each coefficient ofεj+1 , j = 0, 1, · · · , the following equation, foruI

j :

( d2

d2R
− f ′(U)

)
uI

j =
{
U ′(R)[Kj − (crξ)j ]− σj

}
+qj−1(R, r, ξ),

uI(0, s, ξ) = 0, supR∈IR |uI
j(R, s, ξ)| < ∞

(2.20)

whereq−1 = 0 andqj−1 depends only on expansions of order no bigger than
j − 1. Here we used the notation(ab)j = Σj

i=0aibj−i if a = Σi≥0aiε
i and

b = Σi≥0biε
i. Wewrite∂RR as d2

dR2 since we considers andξ as parameters
when we solve foruI

j . Notice that the conditionuI
j(0, s, ξ) = 0 reflects

the definition ofΓ , being theU(0) level set ofuI.
Recall that for givenboundedq(R), theequationφ′′(R)−f ′(U(R))φ(R)

= q(R), φ(0) = 0 has a unique bounded solution if and only if
∫∞
−∞ U ′(R)q

(R)dR = 0. Hence to solve (2.20) uniquely, it is necessary and sufficient to
have the following solvability condition:

(crξ)j(s, ξ)− Kj(s, ξ) + a0σj(s, ξ) = Aj−1(s, ξ) (2.21)

where

a0 := 2
/∫

IR(U
′(R))2dR (2.22)

andA−1 = 0 andAj−1 depends only on the terms of order less thanj − 1.
Onecaneasily verify (seeAppendix in [10]) that if for alli = 0, · · · , j−1,

(wi, σi, ci, u
I
i) are known and smooth and satisfy

|Dm
RDn

sD
l
ξu

I
j(z)| ≤ O(1)e−ν|R| as |R| → ∞ (2.23)

for all non–negative integersm,n, l satisfyingm+ n+ l ≥ 1, then (2.20)
has a unique solutionuI

j if and only if wj satisfies (2.21). In addition,
if uI

j exists, it satisfies (2.23) also. Hereν is any fixed positive number
< min{f ′(1), f ′(−1)}.

In conclusion, in order to haveaunique solutionuI of the form (2.15), it is
necessary and sufficient for(wj , cj , σj) to satisfy (2.21) forj = 0, 1, 2, · · ·.

For easy reference, we provide some lower order solutions to the inner
expansion:
First denote byU1, U21, U22 the solutions to the following problems:

U ′′
1 − f ′(U)U1 = 1− a0U

′, a0 =
(1, U ′)L2

(U ′, U ′)L2
, (2.24)

U ′′
21 − f ′(U)U21 =

f ′′(U)
2

U2
1 − a0, U

′
1 − a1U

′,
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a1 =

(−f ′′(U)
2 U2

1 + a0U
2
1 , U

′
)

L2

(U ′, U ′)L2
(2.25)

U ′′
22 − f ′(U)U22 = RU ′

So forj = 0, 1 we have

c0r0 − K0 + a0σ0 = 0, uI
0 = σ0(ξ)U1(R),

c0r0 + c1r0 − K1 + a0σ1 = a1σ
2
0,

uI
1 = σ(ξ)U1(R) + σ2

0(ξ)U21(R) +K2
0U22(R).

Note that all the geometric equations (2.21) forj = 0, 1, · · · can be
combined in to the following single equation:

crξ − K + a0σ = a1σ
2
0ε+Σj≥2ε

j{· · ·}. (2.26)

Here and in the sequel, all the terms depending only on expansions of order
≤ j − 1 will be denoted by “· · ·”.

Since later on we need explicit expansions up to orderε2, it is convenient
to introduce a new constantσ̂ defined by

σ̂(ξ, ε) = a0σ(ξ, ε)− a1εσ
2(ξ, ε). (2.27)

Clearly, findingσ is equivalent to findinĝσ. With this new constant, we can
write (2.26) as

crξ − K + σ̂ = Σj≥2ε
j{· · ·}. (2.28)

2.3 The boundary layer expansion

For the boundary layer expansion, we shall use the stretched variableR and
H defined in (2.14). In the new coordinates(R,H), the differential equation
for uB becomes(

− ∂RR − ∂HH + f ′(U(R))
)
uB = (f ′(U)− f ′(uI))uB −N(uI, uB)

+2N · nuB
RH

+εK(1 + εRK)−1uB
R + εKΩδ

(1 + εHKΩδ
)−1uB

H

−εc[uB
Rrξ + εuB

ξ], on IR × IR+. (2.29)

HereuB
ξ on the right–hand is the partial derivative with respect toξ while

keepingR andH fixed. Also,s in uI(R, s, ξ, ε), N(s, ξ, ε), andK(s, ξ, ε)
is evaluated ats = s(x, ξ, ε)|x=XC(εR,εH,ξ,ε) whereasς in n(ς) andKΩδ

(ς)
is evaluated atς = ς(x)|x=XC(εR,εH,ξ,ε).
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The boundary condition becomes

uB
H(R, 0, ξ, ε) = −N · nuB

R

−
{
N · nuI

R + εT · nuI
s

}∣∣∣
s=s(XC(εR,0,ξ,ε))

,

on IR1 × {0}. (2.30)

In the sequel, we use the superscript− or+ to denote the neighborhood
nearp− andp+ respectively. We assume the following expansions, nearp±:

uB±
(R,H, ξ, ε) = Σj≥1ε

juB±
j (R,H, ξ),

uB±
0 (R,H, ξ) := 0, (2.31)

g(ξ, ε) = Σj≥0ε
jgj(ξ), (2.32)

L+(ξ, ε) := 0 = Σ≥0ε
jL+

j (ξ), , (2.33)

L−(ξ, ε) := |Γ |(ξ, ε) = Σj≥0ε
jLj(ξ), (2.34)

N · n|x=p± := N(L±) · n(ξ ± g(ξ)) = Σj≥1ε
jα±

j (ξ),

α±
0 := 0. (2.35)

In what follows, we shall call{wj , u
I
j , u

B±
j , α

±
j , gj , Sj , σj , cj} thejth

order expansion and we use· · · to denote various functions and/or constants
that depend only on expansions of order≤ j − 1.

To express (2.29) and (2.30) in power ofε, we need to write the coeffi-
cients in the equations as power series ofε.

Sinceα±
0 = 0,T · n|x=p± = ±1 +Σj≥2ε

j(· · ·)(ξ), it then follows that

s(x, ξ, ε)|x=XC(εR,εH,ξ,ε) := S±(R,H, ξ, ε)

= Σj≥0ε
jL±

j ∓ εH +Σj≥2ε
j(· · ·)(R,H, ξ),

ς(x)|x=XC(εR,εH,ξ,ε) = ±Σj≥0ε
jgj(ξ)± εR

+Σj≥2(· · ·)(R,H, ξ)

N · n|x=XC(εR,εH,ξ,ε) = Σj≥1ε
jα±

j − εHK0(L±
0 )

+εRKΩδ
(ξ ± g0) +Σj≥2ε

j(· · ·)(R,H, ξ)

K = Σj≥0ε
jKj(L±

0 (ξ)) +Σj≥1ε
j(· · ·)(H, ξ),

KΩδ
= KΩδ

(ξ ± g0) +Σj≥1ε
j{±K′

Ωδ
(ξ ± g0)gj

+(· · ·)(R, ξ)}.

Substituting these expansions into the (2.29) and (2.30), we then obtain for,
eachj = 1, 2, · · ·, the equations
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


[−∂RR − ∂HH + f ′(U(R))]uB±
j = B±

j−1(R,H, ξ),
in IR × (0,∞),

uB±
1,H = −U ′(R)[α±

1 +RKΩδ
(g±

0 )], if j = 1,

uB±
j,H = −U ′(R)α±

j (ξ) + Cj−1, if j ≥ 2.

(2.36)

whereB±
−1(R,H, ξ) ≡ 0 andB±

j−1,Cj−1 depend only on the expansion of
order≤ j − 1.

To solve foruB±
, we need the following lemma:

Lemma 2.1 Let U be defined as in (1.14). Consider the following linear
problem{(

∂RR + ∂HH − f ′(U(R))
)
φ = G, R ∈ IR1, H > 0,

φH(R, 0) = g(R), R ∈ IR1.
(2.37)

Assume that as|R|+H → ∞, |G| = O(e−ν(|R|+H)) and|g| = O(e−ν|R|).
Then (2.37) has a bounded solution if and only∫ ∞

0

∫
IR1

G(R,H)U ′(R)dRdH +
∫
IR1

g(R)U ′(R)dR = 0. (2.38)

In addition, bounded solutions are unique and satisfy|φ| = O(e−ν(|R|+H)).

Proof. Under the hypothesesg ∈ L2(IR), G ∈ L2(D),
∫∞
H G ∈ L1(D),

D = R × R+, we will show the following:
i) there exist at most one solutionφ ∈ H1(D),
ii) There exist aφ ∈ H1(D) if and only if∫∫

D
GU ′dRdH +

∫
R
gU ′dR = 0.

iii) Let ν2 be the second eigenvalue of− d2

dR2 + f ′(U)I. Then for anyν ∈
(0, ν2), for any integerk ≥ 0 if f, g andG satisfy (2.38) and

Di
Rg(R) = O(e−ν|R|), j = 0, ..., k,

Dα1
R Dα2

H G(R,H) = O(e−ν|R|−νH), α1 ≥ 0, α2 ≥ 0, α1 + α2 ≤ k

we then have

Dα1
R Dα2

H φ(R,H) = O(e−ν|R|−νH), α1 ≥ 0, α2 ≥ 0, α1 + α2 ≤ k + 2.

We give a sketch of argument:
i) If V = V 1 − V 2, then‖VH‖2

L2 =
∫∞
0

{∫
IR(V

2
R + f(U)V 2)

} ≤ 0,
henceV = 0.
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ii) Multiplying (1.13) by U ′ and integrating overD, utilizing U ′′′ −
f ′(U)U ′ = 0, establishes the necessity of (1.14).

For the sufficiency consider the ”equivalent problem”:
FindV ∈ H1(D) such that

J(V ) = inf
Ṽ ∈H1(D)

J(Ṽ ),

where

J(Ṽ ) =
∫∫

D
(|∇Ṽ |2 + f ′(U)Ṽ 2 + 2GṼ )dRdH

−
∫
IR

Ṽ (R, 0)g(R)dR.

If (1.14) holds, then it can be shown that

inf
Ṽ ∈H1

J(Ṽ ) > −∞

andV exists.
iii) If G = G̃(H)U ′(R), g =

(∫∞
0 G̃(H)dH

)
U ′(R) then

V = U ′(R)
∫ ∞

H

∫ ∞

H
G̃(Ĥ)dĤdH̃.

If G(·, H) ⊥ U ′, g ⊥ U ′ (inL2) thenconsiderw(H) = ‖V (·, H)‖L2(IR).
A calculation shows{

− d2w
dH2 + λ2w ≤ ‖G(·, H)‖L2(IR), H ∈ (0,∞)

w(∞) = 0, w(0) < ∞ .

From this it follows thatw = o(e−νH).
Finally elliptic estimates yieldDαφ = O(e−νH) for |α| ≤ k + 2. Also

utilizing thatf ′(U(±∞)) = f ′(±1) ≥ ν2 we have

DαV = O(e−νH)O(e−νR).

Note that the conditionφ ∈ H1(D) excludes solutions of the form
(a + bH)U ′(R) with a2 + b2 > 0. If one allows solutions of the form
HU ′(R), then (1.14) can be removed.

Hence, (2.36) has a unique bounded solution that decaysO(e−ν|R|−νH)
if and only if the following compatibility conditions are satisfied:{

α±
1 (ξ) = −KΩδ

(g±
0 )
∫
IR(R(U

′)2
/∫

IR(U
′)2 = 0,

α±
j = · · · (2.39)
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Remark 2.2
1. The preceding compatibility conditions show thatα±

j are uniquely deter-

mined by lower order expansions, and so isuB±
j−1. That is to say,(α

±
j , uB±

j )
are decoupled from otherjth order expansion unknowns. They are readily
available as soon as all expansions up toj − 1th order are available.

2. Sinceα±
1 (ξ) = 0, we then know that at the intersection ofΓ and∂Ωδ,

the contact angle isπ2 +O(ε2). We shall be utilizing this fact later on in the
eigenvalue analysis.

3. SinceKΩδ
= O(δ), one sees that

uB
j = O(δe−ν(|R|+H)), j = 1, 2,

2.4 Extension to the whole domain (exterior expansion)

One may notice that the coordinates(r, s) and(r, h) are local. Hence, we
need extensions ofuI anduB to the whole domainΩδ.

Easymathematical inductiongives thatuI
j(R, s, ξ) = u±

j (ξ)+O(e−ν|R|)
asR → ±∞, whereu±

j (ξ) is independent ofs and if we writeu
±(ξ, ε) :=

±1 + εΣj≥0ε
ju±

j , then

f(u±) + εσ + ε2cu±
ξ = 0. (2.40)

Therefore,

u±
ε (ξ) = ±1− ε σ(ξ,ε)

f ′(±1) + εΣj≥1ε
j(· · ·)(ξ). (2.41)

We define

uI(x, ξ, ε) = (1− ζ+ − ζ−)(U(R) + εΣj≥0ε
juI

j)
+ζ+u+(ξ) + ζ−u−(ξ) (2.42)

where
ζ± = ζ

(
± r(x,ξ,ε)

ε ln2 ε
− 1
)

andζ ∈ C∞ is a fixed function satisfying

ζ(s) = 1 if s > 1, ζ(s) = 0 if s < 0, sζ ′(s) ≥ 0 on IR.

Similarly, since for anyj, uB
j = O(e−ν|R|−ν|H|), as|R| + |H| → ∞,

hence we can extenduB±
j toΩ by a smooth extension by zero in a way we

have done foruI.
Now defineu = uI + uB, we see that (1.10a) and (1.10b) are satisfied

asymptotically.
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Remark 2.3The expansion foru±(x, ξ, ε) := u±
ε (ξ) is called theouter

expansionand usually depends on the space variablex (cf. [2]). In the
current situation, it is independent of the space variablex, so that we do not
need the complicated interior/exterior matched asymptotics introduced in
[33] or in [2].

2.5 Area constraint condition

Next we solve the problem (PA).
Denote byΩ−

δ the part ofΩδ enclosed byΓ ; we can calculate∫∫
Ωδ

(uI + uB) = u+(ξ, ε)(|Ωδ| − |Ω−
δ |) + u−(ξ, ε)|Ω−

δ | (2.43)

+
∫∫

Ω+
δ

(uI − u+) +
∫∫

Ω−
δ

(uI − u−)

+
∫∫

Ωδ

uB. (2.44)

First of all, since ∂x
∂(R,H) = ε2

∣∣∣n · T
∣∣∣ = ε2

√
1− (N · n)2 = ε2(1 +

Σj≥2(· · ·)) and sinceuB
j decays exponentially to zero as|R|+H → ∞,∫∫

Ω
uB =

(∫
IR

dR

∫ ∞

0
dHε2Σj≥1ε

j(uB
j + · · ·)

)
+e− c

ε = εΣj≥2ε
j(· · ·) + e− c

ε ,

for somec > 0. The exponential term can be safely discarded.
Similarly, since ∂x

∂(R,s) = ε(1 + εRK),
∫∫

Ω+
δ

(uI+ − u+) +
∫∫

Ω−
δ

(uI − u−)

= ε

∫ ∞

0
dR

∫ S+(R,ξ,ε)

S−(R,ξ,ε)
(1 + εRK)(uI − u+)ds

+ε

∫ 0

−∞
dR

∫ S+(R,ξ,ε)

S−(R,ξ,ε)
(1 + εRK)(uI − u−)ds.

= Σj≥1ε
j{· · ·}.

Therefore, equation (1.20) becomes

|Ωδ| − π = |Ωδ|u+ + |Ω−
δ |(u− − u+) +Σj≥1ε

j(· · ·).
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Using the expansion ofu± in (2.41), we then obtain

|Ω−
δ (ξ, ε)| =

π

2
− −(ε|Ωδ|)

2f ′(1)

{
σ(ξ, ε) +Σj≥1ε

j [· · ·]
}

+Σj≥1ε
j(· · ·) (2.45)

where· · · depends only on expansions of order≤ j − 1 and is independent
of |Ωδ|. Sinceε|Ωδ| = εδ−2|Ω| andδ is small, here and in the sequel, we
need the explicit dependence onε|Ωδ|.

To consider the case where bothε andδ are small, we introduce

ε∗ = εδ−2. (2.46)

In the sequel, we shall always assume thatε∗ ∈ (0, 1]. Under such an
assumption, and thinking ofε∗ as a new parameter, we can write (2.45) as

|Ω−
δ (ξ, ε)| =

{π
2

− a2ε
∗σ̂
}
+Σj≥1ε

j{· · ·} (2.47)

whereσ̂ = σ̂(ξ, ε) is as in (2.27) and

a2 =
|Ω|

2f ′(1)a0
=

|Ω|
4f ′(1)

∫
IR
(U̇(R))2dR. (2.48)

In summary, problem(PA) is equivalent to solving (2.47).

2.6 The asymptotic expansion of the solution to the geometric problem

A. The geometric problem
We first summarize all the conditions imposed on(Γ (ξ, ε), σ(ξ, ε), c(ξ, ε)).

1. The intersection condition
The intersections ofΓ withΩδ arez(ξ−g(ξ, ε)) andz(ξ+g(ξ, ε)). Hence,
from the equationws = ei[ψ+ϕδ+π/2] (cf (2.7)), it is convenient to take
w(s, ξ, ε) in the form

w(s, ξ, ε) = zδ(ξ + g(ξ, ε)) +
∫ s

0
exp
(
i[ψ(s̃, ξ, ε)

+ϕδ(ξ) + π/2]
)
ds̃ (2.49)

whereψ(s, ξ, ε) is a real valued function to be determined. With such a
choice ofw, the intersection conditionw(0, ξ, ε) = zδ(ξ − g(ξ, ε)) is au-
tomatically satisfied. The other intersection conditionzδ(ξ − g(ξ, ε)) =
w(|Γ |(ξ, ε), ξ, ε) can be written as∫ |Γ |(ξ,ε)

0
eiψ(s̃,ξ,ε)ds̃ = i

∫ g(ξ,ε)

−g(ξ,ε)
ei[ϕ

δ(ξ+ς)−ϕδ(ξ)] dς. (2.50)
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2. The contact angle condition

The representation ofw(s, ξ, ε) in (2.49) impliesT = ei[ψ(s,ξ,ε)+ϕδ(ξ)+π/2],
N = −iT = ei[ψ(s,ξ,ε)+ϕδ(ξ)], so that

N · n
∣∣∣
x=p+

= sin
(
ψ(0, ξ, ε) + ϕδ(ξ)− ϕδ(ξ + g)

)
,

N · n
∣∣∣
x=p−

= sin
(
ψ(|Γ |, ξ, ε) + ϕδ(ξ)− ϕδ(ξ − g)

)
.

It then follows from (2.39) and the definition ofα±
j in (2.35) that the contact

angle condition is equivalent to


ψ(0, ξ, ε) = ϕδ(ξ + g(ξ, ε))− ϕδ(ξ) +Σj≥2ε
j{· · ·},

ψ(|Γ |(ξ, ε), ξ, ε) = π + [ϕδ(ξ − g(ξ, ε))− ϕδ(ξ)]
+Σj≥2ε

j{· · ·}.
(2.51)

Here and in the sequel, “· · ·” denotes terms depending only on expansions
of order no greater thanj − 1; namely, one can assume that they are known
constants or functions.

3. The equation of motion
With ψ given as in (2.49),

K = ψs,

rξ = −wξ · N = −(1 + gξ) cos{ϕδ(ξ + g)− ϕδ(ξ)− ψ}+
+
∫ s

0

{
ψξ(s̃, ·) + ϕδ

ξ(ξ)
}
cos
{
ψ(s̃, ·)− ψ(s, ·)

}
ds̃.

Hence, the equation of motion (2.28) can be written as

ψs(s, ξ, ε) = σ̂ − c(1 + gξ) cos{ϕδ(ξ + g)− ϕδ(ξ)− ψ}
+c

∫ s

0

[
ψξ(s̃, ·)) + ϕδ

ξ(ξ)
]
cos
{
ψ(s̃, ·)− ψ(s, ·)

}
ds̃

+Σj≥2ε
j{· · ·}. (2.52)

4. The area constraint condition
Using “Im” to denote the imaginary part of a complex variable, we can
calculate

|Ω−(ξ, ε)| = 1
2

∫
∂Ω−

(xdy − ydx)

= −1
2
Im
∫
∂Ω−

(x + iy − z(ξ + g))d(x− iy)

= −1
2
Im
{∫ ξ+g

ξ−g
[z(ξ̃)− z(ξ + g)]z′(ξ̃)dξ̃
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+
∫ |Γ |

0
[w(s̃, ·)− w(0, ·)]ws(s̃, ·)ds̃

}

= −1
2

{∫ ξ+g

ξ−g

∫ ξ̃

ξ+g
sin
(
ϕδ(ξ̂)− ϕδ(ξ̃)

)
dξ̂dξ̃

+
∫ |Γ |

0

∫ s

0
sin
(
ψ(ŝ, ·)− ψ(s̃, ·)

)
dŝds̃
}
.

Therefore, the area constraint condition (2.47) can be written as∫ ξ+g

ξ−g

∫ ξ̃

ξ+g
sin
(
ϕδ(ξ̃)− ϕδ(ξ̂)

)
dξ̂dξ̃

+
∫ |Γ |

0

∫ s

0
sin
(
ψ(s̃, ·)− ψ(ŝ, ·)

)
dŝds̃

= [π − a2ε
∗σ̂] +Σj≥1ε

j{· · ·}. (2.53)

Definition of the geometric problem: Find (ψ(s, ξ, ε), g(ξ, ε), |Γ |(ξ, ε),
σ(ξ, ε), c(ξ, ε)), whereξ ∈ IR/|∂Ωδ| andε is a small parameter, such that
the equations (2.50), (2.51), (2.52), and (2.53) are satisfied.

B. The formal expansion set up

Since we are only interested in smallδ, we can expand every coefficient
in theε power expansions inδ power expansions. This will lead to double
series expansions. Because here we consider the caseεm < δ <

√
ε where

m > 0 is fixed, to save calculation, we shall expand functions in a single
series expansion; namely, we expand all unknowns in aδ power series. To
compensate for theε expansion, we introduce the parameterε∗ defined in
(2.46). By consideringε∗ ∈ (0, 1] as a fixed parameter, we replaceε byε∗δ2

and seek expansions of the form

ψ(s, ξ, ε) = Σj≥0 δjψj(s, ξ),

g(ξ, ε) = Σj≥0 δjgj(ξ),

|Γ |(ξ, ε) = Σj≥0δ
j |Γj |(ξ),

σ(ξ, ε) = Σj≥0 δjσj(ξ),

c(ξ, ε) = Σj≥0 δjcj(ξ).

The modification for the expansion foru(x, ξ, ε) is as follows:

u(x, ξ, ε) = uI(R, s, ξ, ε)
∣∣∣
R= r(x,ξ,ε)

ε
,s=s(x,ξ,ε)

+uB(R,H, ξ, ε)
∣∣∣
R= r(x,ξ,ε)

ε
,H=h(x)

ε

,
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uI(R, s, ξ, ε) = U(R) + δ2Σj≥0 δjuI
j(R, s, ξ),

uB(R,H, ξ, ε) = Σj≥2δ
juB

j(R,H, ξ).

wherer(x, ξ, ε) ands(x, ξ, ε) can be expressed as power expansion ofδ via
theδ power expansion ofψ(s, ξ, ε). To obtain the expansion foruI

j , one first
makes the change of variablex → (R, s), obtaining the differential equation
for uI(R, s, ξ, ε). Then one replacesε by ε∗δ2, and expresses every function
in power series ofδ with coefficients of functions of the variablesR, s and
ξ. Collecting terms of the same power ofδ one obtains, for each order of
δj , a set of equations, with sufficient and necessary solvability conditions
contributing to the geometric problem. Similarly, one can perform this pro-
cedure foruB. After redoing all these expansions, one obtains the same
geometric problem (2.50), (2.51), (2.52), (2.53), with the only difference
being thatΣj≥2ε

j(· · ·) is replaced byΣj≥4δ
j(· · ·).

C. The asymptotic expansions

Since, as it turns out,

c0(ξ) = c1(ξ) = σ̂0,ξ(ξ) ≡ 0, σ̂0g0 = 1,

σξ = O(δ2), gξ = O(δ2), (2.54)

for the sake of simplicity, we assume this form from the beginning.
As c is the velocity of the droplet (cf.(1.11), we need the first nontrivial

term. It turns out thatc2 is non trivial. Also, since we are particularly in-
terested the stability of in equilibria, we needc3 also. Hence, we carry out
most of our calculation explicitly all the way up to the third order. (This is
the reason we introducêσ in (2.27)).

In what follows, we shall need the expansion (2.2) forϕδ.
Solving theordinary differential equation (2.52)with the initial condition

(2.51a), we obtain

ψ(s, ξ, ε) = ϕδ(ξ + g)− ϕδ(ξ) + σ̂s+O(δ2)
= ϕδ(ξ + g)− ϕδ(ξ) + σ̂s

+c
{

− sin(σ̂s)
σ̂

+ δϕ1
1− cos(σ̂s)

σ̂2

}
+Σj≥4δ

j{· · ·}. (2.55)

where in the first equation, we have used the fact thatc = O(δ2) and in the
second equation, we have used the fact thatgξ = O(δ2), andψξ + ϕδ

ξ =
ϕδ

ξ(ξ + g)(1 + gξ) +O(δ2) = δϕ1 +O(δ2).
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Thus, to fulfill equation (2.51b), we need only to have

σ̂|Γ | = π + [ϕδ(ξ − g)− ϕδ(ξ + g)] + c[−σ̂−1 sin(σ̂|Γ |)
+δϕ1σ̂

−2(1− cos(σ̂|Γ |))] +Σj≥4δ
j(· · ·)

= π + [ϕδ(ξ − g)− ϕδ(ξ + g)] +Σj≥4δ
j(· · ·)

= π − 2ϕ1gδ − 1
3ϕ3g

3δ3 +Σj≥4δ
j(· · ·) (2.56)

where in the second equation, we used the fact thatσ̂|Γ | = π − 2ϕ1gδ +
O(δ2) (from the first equation) so that−σ̂−1 sin(σ̂|Γ |) + δϕ1σ̂

−2(1 −
cos(σ̂|Γ |)) = −2ϕ1gσ̂

−1δ + 2δϕ1 + O(δ2) = 2δϕ1σ̂
−2(−σ̂g + 1) +

O(δ2) = O(δ2) sinceσ̂g = 1 + O(δ). Hence, we obtain the following set
of equations, for each order of expansion:


σ̂0|Γ |0 = π,
(σ̂|Γ |)1 = −2g0ϕ1,
(σ̂|Γ |)j = · · · , j ≥ 2

(2.57)

where(σ̂|Γ |)j := Σj
i=0σ̂i|Γ |j , cf. (2.34). and “· · ·” represents known terms

(i.e., lower order expansion terms).
We continue with the solution of (2.50). First, we calculate the integral

on the right–hand side. Using Taylor expansion, we can calculate∫ g

−g
ei[ϕ

δ(ξ+ς)−ϕδ(ξ)]dς

=
∫ g

−g

{
1 +Σ∞

k=1
1
k!

(
iΣl≥1(δς)lϕl/l!

)k}
dς

= 2g + 1
3 [iϕ2 − ϕ2

1]g
3δ2 +Σj≥4δ

j{· · ·}.
Using the expression ofψ in (2.55), we can calculate∫ |Γ |

0
eiψds = ei[ϕ

δ(ξ+g)−ϕδ(ξ)]
∫ |Γ |

0
eiσ̂s

×
{
1 + ic

[
− sin(σ̂s)

σ̂
+ ϕ1δ

1− cos(σ̂s)
σ̂2

]

+Σj≥4δ
j(. . .)

}
ds

= ei[ϕ
δ(ξ+g)−ϕδ(ξ)]

{
eiσ̂|Γ | − 1

iσ̂
+ ic
[(e2iσ̂|Γ | − 1

4σ̂2 − i|Γ |
2σ̂

)

+ϕ1δ
( 2i
σ̂3 − |Γ |

2σ̂2

)]
+Σj≥4δ

j(. . .)
}

=
i
σ̂

{
2 + (iϕ2 − ϕ2

1)g
2δ2 + c

[
− i|Γ |

2
+

iϕ1δ

σ̂2

]
+Σj≥4δ

j(. . .)
}
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by using (2.56) and the assumptionσ̂g = 1+O(δ). Hence, equation (2.50)
becomes

2σ̂g = 2 + [iϕ2 − ϕ2
1][1− 1

3 σ̂g]g
2δ2 + ic[−|Γ |/2 + ϕ1δ/σ̂

2]

+Σj≥4δ
j(· · ·).

Equating the real and imaginary parts, we then obtain

σ̂g = 1− 1
3ϕ

2
1g

2δ2 +Σj≥4δ
j(· · ·), (2.58)

c = 2
3

ϕ2g
2δ2

|Γ |/2− ϕ1δ/σ̂2 +Σj≥4δ
j(· · ·) = − 4

3π
ϕ2gδ

2

+
16
3π2ϕ1ϕ2g

2δ3 +Σj≥4δ
j(· · ·) (2.59)

where in calculatingc, we have used the previous result:σ̂g = 1 +O(δ2),
σ̂|Γ | = π − 2ϕ1gδ+O(δ2). In terms of the series expansion, we can write
(2.58) and (2.59) as


σ̂0g0 = 1, c0 = 0,
(σ̂g)1 = 0, c1 = 0,
a0(σg)j = · · · , cj = · · · , j ≥ 2

(2.60)

We remark that here we obtainc0 = c1 = 0 andσ̂g = 1+O(δ), part of the
assumptions we assumed at the beginning in (2.54).

Finally, we solve the area constraint condition (2.53). We can compute,
using Taylor expansion,

∫ ξ+g

ξ−g

∫ ξ̃

ξ+g
sin
(
ϕδ(ξ̃)− ϕδ(ξ̂)

)
dξ̂dξ̃

=
∫ g

−g

∫ ς

g
sin
(
ϕδ(ξ + ς)− ϕδ(ξ + ς̂)

)
dς̂dς

=
∫ g

−g

∫ ς

g

[
δϕ1(ς − ς̂) + 1

2δ
2ϕ2(ς2 − ς̂2)

+1
6δ

3ϕ3(ς3 − ϕ̂3)− 1
6δ

3ϕ3
1(ς − ς̂)3 +O(δ4)

]
= 4

3ϕ1g
3δ + [ 1

20ϕ3 − 4
15ϕ

3
1]g

5δ3 +Σj≥4δ
j(· · ·).

Similarly, we have∫ |Γ |

0

∫ s

0
sin
(
ψ(s, ·)− ψ(ŝ, ·)

)
dŝds (2.61)

=
∫ |Γ |

0

∫ s

0
sin
{
σ̂(s − ŝ)− c

(
[sin(σ̂s)− sin(σ̂ŝ)]σ̂−1
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+ϕ1δ[cos(σ̂s)− cos(σ̂ŝ)]σ̂−2
)}

dŝds+Σj≥4δ
j(· · ·)

=
∫ |Γ |

0

∫ s

0
sin(σ̂(s − ŝ))dŝds − c

σ̂

∫ |Γ |

0

∫ s

0

× cos(σ̂(s − ŝ))[sin(σ̂s)− sin(σ̂ŝ)]dŝds

−cϕ1δ

σ̂2

∫ T

0

∫ s

0
cos(σ̂(s − ŝ))[cos(σ̂s)

− cos(σ̂ŝ)]dŝds+Σj≥4δ
j(· · ·)

=
σ̂|Γ | − sin(σ̂|Γ |)

σ2 +Σj≥4δ
j(· · ·) (2.62)

=
π − 4ϕ1gδ

σ̂2 +Σj≥3δ
j(· · ·).

Here, in the last step,wehave substituted from (2.56) and in obtaining (2.62),
we used the fact that∫ |Γ |

0

∫ s

0
cos(σ̂(s − ŝ))[sin(σ̂s)− sin(σ̂ŝ)]dŝds

=
∫ |Γ |

0
ds

∫ s

0
cos(σ̂(s − ŝ)) sin(σ̂s)dŝ

−
∫ |Γ |

0
dŝ

∫ |Γ |

ŝ
cos(σ̂(s − ŝ) sin(σ̂ŝ)ds

=
1
σ̂

∫ |Γ |

0
sin(σ̂s)[sin(σ̂s)− sin(σ̂|Γ | − σ̂s)] ds = O(δ)

by usingσ̂|Γ | = π+O(δ), and similarly,
∫ |Γ |
0

∫ s
0 cos(σ̂(s− ŝ))[cos(σ̂s)−

cos(σ̂ŝ)] = O(δ).
Now the equation (2.53) becomes

σ̂2(π − a2ε
∗σ̂) = π − 4ϕ1gδ +Σj≥2δ

j(· · ·). (2.63)

Namely, 


σ̂2
0[π − a2σ̂0ε

∗] = π,(
σ̂2[π − a2σ̂ε

∗]
)

1
= 1

3φ1gδ,(
σ̂2[π − a2σ̂ε

∗]
)

j
= · · · , j ≥ 2.

(2.64)

We can now solve our geometric problem as follows: First, solveσ̂0
from (2.64) (See Remark to follow). Then, we solve forg0, c0, L0 from
(2.60) and (2.57) respectively. One observes that we havec0 = 0, σ0,ξ =
g0,ξ = 0, σ̂0g0 = 1, σ̂0L0 = π. Then consecutively for each integerj ≥ 1,
we can repeat the same process and solve first forσ̂j from (2.64), and then
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for gj , cj from (2.60) and for finallyLj from (2.57). Here we remark that
whenj = 1, one obtainŝσ1,ξ = O(δ), c1 = 0, andg1,ξ = O(δ) so that
σ̂ξ = O(δ2) andgξ = O(δ2). This is what we have assumed at the very
beginning. If we do not make such an assumption, we can still carry out our
calculation (but with much longer expressions) and at the end, obtain all the
equalities in (2.54).

Remark 2.4
1.Sinceσ0|Γ |0 = π, wehaveσ0 > 0. Hence, to ensure that the first equation
in (2.64) has (at least) one solution we have to assume thatε̂∗ ≤ 2π

3
√

3a2
. As

ε∗ = εδ−2, this translates to

ε̂δ−3 = εδ−2 < C∗
1 =

2π
3
√
3a2

=
4πa0f

′(1)
3
√
3|Ω|

=
8πf ′(1)

3
√
6|Ω| ∫ 1

−1

√
W (s)ds

. (2.65)

Also, to make sure that there are solutions forσ̂j for j ≥ 0, we need that
the derivative ofx2(π − a2ε

∗x) atx = σ̂0 does not vanish. Hence, to make
sure the expansions are bounded we needε < (C∗

1 − η)δ2 for any fixedη
independent ofδ andε.

2. Assume (2.65) holds. Then (2.64) has exactly two positive solutions.
Consequently, ifε∗ := εδ−2 is not too small (say,ε∗ >

√
δ) we have

two legitimate asymptotic expansions. Asσ̂|Γ |0 = π, the expansion with
smaller̂σ0 has larger radius of interface than that of the expansionwith larger
σ̂0. In particular, ifε∗ = o(1) then the expansion produced by the smaller
solution of (2.64) satisfies|Γ |0 = π + o(1) and the expansion produced by
the larger solution of (2.64) satisfies|Γ |0 = 2a0ε∗+o(ε∗)

π . We call the former
a ”droplet” solution and the latter a ”spike” solution.

3. As we shall see from the eigenvalue analysis (cf. Remark 3.9), the
spike solution is unstable. We include in the appendix a calculation (for
the case of radial symetry) of the energy of three states: the ”droplet”, the
”spike”, and the ”constant”. We shall show that if (2.65) holds, there is a
droplet and a spike solution. The spike solution always has higher energy
than that of the constant state. The droplet solution has lower energy than
that of constant state ifε∗ ∈ (C∗∗, C∗

1 ), whereC
∗∗ < C∗

1 is a number which
can be calculated. Our eigenvalue analysis shows that the droplet is stable
if ε∗ < C∗∗∗ for someC∗∗∗ < C∗∗. That we did not obtain the best value
of C∗∗∗ is purely due to technical reasons.

4. For spike solutions we refer to Bates and Fife [12], Bates and Fusco
[71], and Ward [70] for bistable nonlinearities, and to Ni and Takagi [69],
Ward [70] and Kowalczyk [74] for one sided nonlinearities.
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In the rest of this paper, we shall be interested only in the droplet solution;
and we takêσ0 to be the smaller positive solution of (2.64).

2.7 Conclusion

1. Existence of the approximate manifold
Assume that for someη ∈ (0, C∗

1 ) independent ofδ andε, we haveε ≤
(C∗

1 − η)δ2. Then takinĝσ0 as the smaller solution of (2.65), we can obtain
an asymptotic solution to the equation of manifold (1.10). In the rest of this
paper, we will always refer to this solution.

By truncating the expansion at finite order, sayO(δK), we then obtain
that(u, σ, c) satisfies all the equations (1.10) up to orderO(δK). In addition,
we can make the following refinement:

1) adding a constant term of orderO(δK) so that the area constraint is
exactly satisfied;

2) adding a function of orderδK such that the boundary condition is
satisfied exactly;

3) addinganO(δK) term toσ so thatεσ =
∫∫−Ωδ

f(u)sinceby integrating
overΩ the differential equation foru, one finds thatεσ(ξ, ε) =

∫∫−f(u) +
O(εK). In summary, we have proved the following:

Theorem 2.5 Assume thatδ andεare small parameters satisfying, for some
m ≥ 2,

δm ≤ ε ≤ 1
2C

∗
1δ

2 (2.66)

whereC∗
1 is defined in (2.65). Then for any integerK, if ε is sufficiently

small, there existu = u(x, ξ, ε), σ = σ(ξ, ε), c = c(ξ, ε) such that


Lε(u) := ε2∆u − f(u)
+εσ = ε2cuξ +O(εK) in Ωδ,

∂nu = 0 on ∂Ωδ,∫
Ωδ

u = |Ωδ| − π,

εσ =
∫∫−Ωδ

f(u).

(2.67)

In addition,(u, σ, c) has the asymptotic expansion (up to toO(εK)) detailed
in the previous subsections. In particular, the following expansion holds:

K2(s, ξ, ε) = ψ2
s = σ̂2 + 2cδ2[− cos(σ̂s)

+δϕ1g sin(σ̂s)] +O(δ4), (2.68)

c = − 4δ2

3πσ̂0
K′(ξ̂)

∣∣∣
ξ̂=δξ

+O(δ3). (2.69)

whereσ̂ = a0σ − a1εσ
2 = σ̂0 +O(δ), g = g0 +O(δ), g0 = 1/σ̂0, andσ̂0

is the smaller solution of (2.65).
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2. Stability

This subsection, strictly speaking, belongs to the next section on the eigen-
value analysis. However, the principal eigenvalue is special since it can be
obtained accurately only through the speedc. It is therefore appriopriate to
present it here as a Corollary to Theorem 2.5. We define5 = s/|Γ |. Then
by utilizing Theorem 2.5 and (2.31), (2.33) we obtain

q(5) := |Γ |2
(

3
4K2 + 1

4 σ̂
2
)

(2.70)

= (σ̂|Γ |)2 + 3(σ̂|Γ |)2cg
2σ̂g

[
− cos(σ̂|Γ |5)

+ϕ1gδ sin(σ̂|Γ |5)
]
+O(δ4) (2.71)

= q1 + δ2q2(5), (2.72)

q1 :=
[
π2 − 4πϕ1gδ + 4ϕ2

1g
2δ2 − 2π

3 ϕ3g
3δ3
]

(2.73)

q2(5) := 2πϕ2g
2
[
− cos(π5) + ϕ1g(1− 25)δ sin(π5)

]
+O(δ2), 5 ∈ (0, 1). (2.74)

We remark thatq1 is a constant, and ifϕ2 = 0, thenq2 = O(δ4). Also,
one notices that2g is the arc length of the segment ofΩδ between the two
intersections withΓ .

Consider the following eigenvalue problem: Find(µ,Θ(5)) such that for
someµ̂ = µ̂(µ),


−Θ′′(5)− q(5)Θ(5) = µΘ(5) + µ̂, 5 ∈ (0, 1),
Θ′(0) = −K1Θ(0),
Θ′(1) = K2Θ(1),∫ 1
0 Θ(5)d5 = 0,

(2.75)

whereK1 = |Γ |δϕ1(ξ + g) andK2 = |Γ |δϕ1(ξ − g) are (|Γ | multiples)
the curvature of∂Ωδ at the intersections withΓ . Using Taylor expansion,
we have

Ki =
σ|Γ |
σg

g
[
δϕ1 + (−1)i+1|Γ |δ2gϕ2 + 1

2Lϕ3g
2δ3 +O(δ4)

]
= πϕ1gδ + (−1)i+1πϕ2g

2δ2 − 2ϕ2
1g

2δ2

+(−1)i2ϕ1ϕ2g
3δ3 + 1

3πϕ
3
1g

3δ3 + 1
2πϕ3g

3δ3.

Corollary 2.6 Let (µ1, Θ1) be the principal eigenvalue and eigenfunction
of problem (2.75). Then,

µ1 = −4π
3
ϕ3g

3δ3 +O(δ4) = − 4π
3σ̂3 δ

3K(ξ̂)
∣∣∣
ξ̂=δξ
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+O(δ4), (2.76)

Θ1(5) = cos(π5) +O(δ) 5 ∈ (0, 1) (2.77)

Observe that we have used the relationσ̂g = 1+O(δ2) and the definition
of ϕ3 in the second equation of (2.76).

Proof. First we consider the case whenq = q1 is a constant. In this case,
if we denote by(µ∗, Θ∗) the principal eigenvalue and eigenfunction, then
they are given by

Θ∗ = b1 + sin
{
b1 + [π + 2b3](5 − 1

2)
}
, µ∗ = [π + 2b3]2 − q1

whereb1, b2, b3 are given by

b1 = 2 sin b2 cos b3(π + 2b3)−1,

b2 = ϕ2g
2δ2[1 + 2ϕ1gδ/π] +O(δ4),

b3 = −ϕ1gδ − 1
2ϕ3g

3δ3 +O(δ4).

That is,

µ∗ = [π + 2b3]2 − q1 = −4π
3
ϕ3g

3δ3 +O(δ4). (2.78)

Next we consider whenq = q1+δ2q2.Astandard perturbation argument
shows that

µ = µ∗ − δ2

∫ 1
0 q2Θ

∗2∫ 1
0 Θ∗2

+O(δ4) = µ∗ +O(δ4) = −4π
3
ϕ3g

3δ3 +O(δ4).

This completes the proof.��
Remark 2.7Corollary 2.6 is valid everywhere including the equilibrium
point. In particular, ifξ0 is a point of strict maximum curvature, thenϕ3(ξ0),
the second derivative of the curvature function, is negative. It then follows
that the principal eigenvalue is positive, and this establishes stability.

3 Eigenvalue analysis

Letu = u(x, ξ, ε) be the approximationwe obtained in the previous section;
namely, the solution to


Lε(u) := ε2∆u − f(u) + εσ

= ε2cuξ +O(εK) in Ωδ,
∂nu = 0 on ∂Ωδ,∫
Ωδ

u = |Ωδ| − π,

(3.1)
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whereK is an integer as large as it is needed. In this section, we shall study
the eigenvalue problems (1.21) and (1.22).

One sees that both eigenvalue problems are related to the bilinear form
〈Lφ, ψ〉 defined by

〈Lφ, ψ〉 =
∫∫

Ωδ

[
ε2∇φ∇ψ + f ′(u)φψ

]
dx,

φ, ψ ∈ H1(Ωδ). (3.2)

In fact, (λ, φ) is an eigenvalue/eigenfunction to (1.22) if and only ifφ ∈
H1(Ωδ) and

〈Lφ, ψ〉 = λ(φ, ψ) ∀ψ ∈ H1(Ω) (3.3)

and(λ̄, φ̄) is an eigenvalue/eigenfunction of (1.21) if and only ifφ̄ ∈ H̄1(Ω)
and

〈Lφ̄, ψ〉 = λ̄(φ̄, ψ) ∀ψ ∈ H̄1(Ω). (3.4)

Here and in the sequel,(·, ·) stands for theL2(Ωδ) inner product,‖ · ‖ the
L2(Ωδ) norm, and

H̄1(Ωδ) := {φ ∈ H1(Ωδ) ;
∫∫

Ωδ
φ = 0}.

The idea of our analysis is a separation of variables technique, [8,9,
26,10]. Observe that the principal eigenvalue of (1.21) (or (1.22)) is the
infinimum of 〈Lφ, φ〉 in H̄1(Ωδ) (orH1(Ωδ)) subject to‖φ‖ = 1. Since
away from the interfaceΓ , f ′(u) is uniformly positive, it is reasonable to
believe that the mass of the corresponding eigenfunction is concentrated
nearΓ . That is, one needs only to study the behavior ofL nearΓ where the
local coordinate(r, s) is well–defined. As mentioned in the introduction, in
the thin neighborhood ofΓ , L can be decomposed asL = Lr + Ls where

Lr :=
ε2

1 + rK(s)
∂

∂r

( 1
1 + rK(s)

∂

∂r

)
+ f ′(u)I ,

Ls := − ε2

1 + rK(s)
∂

∂s

( 1
1 + rK(s)

∂

∂s

)
. (3.5)

To leading order, one can ignore therK(s) term and replaceu byU( r
ε).

In such a case,Lr becomesL0
r := −ε2∂2

rr + f ′(U( r
ε)) andLs becomes

L0
s := −ε2∂2

ss. If one regards the domain for(r, s) as a rectangle, then all
the eigenfunctions ofL0 := L0

r + L0
s have the formA(r)B(s) whereA(r)

is the eigenfunction ofL0
r with eigenvalueλ

r andB is the eigenfunction of
L0

s with eigenvalueλ
s. The corresponding eigenvalue forL0 is λr + λs. If

the boundary condition forB is Neumann and the interval fors is [0, L],
then the eigenfunctions and eigenvalues ofL0

s are given by

Bj = cos( (j−1)π
L s), λs

j = ε2(j − 1)2, j = 1, 2, · · · .
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On the other hand, the principal eigenvalue ofL0
r := −ε2∂2

rr + f ′(U( r
ε))

is zero with (unnormalized) eigenfunctionA0(r) = U̇( r
ε). This eigenvalue

relates to the shrinking or expansion of the interface. The next eigenvalue of
L0 is≥ ν0 for some positive constantν0 independent ofε. This corresponds
to the fact that in the cross section of the interface, the solutionumust stay
close to the profileU( r

ε). All this indicates that for small eigenvalues ofL
the eigenfunction has the form, to leading order,A0(r)Bj(s), and the corre-
sponding eigenvalue should beλj = λ0

r + λj
s, for any finite integerj. From

the graph ofA0(r)B(s), one sees that these eigenfunctions corresponds to
the change of shape of the interface.

One may notice that the eigenvalue ofLs is of orderε2 whereas the pre-
ceeding argument is based on a leading order approximation. Nevertheless,
decomposing the bilinear form〈Lφ, φ〉 into (Lrφ, φ) + (Lsφ, φ), one still
sees that the eigenfunction has the decompositionA(r)B(s) up toO(ε2).
It is well known that, the principal eigenvalue ofLr vanishes not only to
the leading order, but also vanishes toO(ε) order (assuming that the depths
of the double well potentialF (u) =

∫
f(u)du is equal). This phenomenon

relates to the following identity for theO(ε) order expansion of the solution
u (cf. (1.26):∫

R
f ′′(U(R))U̇2(R)uI

1(R, s)dR = 0 ∀s ∈ [0, L]. (3.6)

Therefore, at least formally, one can calculate the eigenvalue up to order
O(ε2) by assuming that the eigenfunction has the formφ = A(r)B(s). To
make the calculation rigorous, one can use the decomposition

φ = U ′( r
ε)Θ(s) + ψ(r, s),

(∫
ψ(r, s)Θ̇( r

ε)dr = 0 ∀s
)
. (3.7)

We remark thaṫU( r
ε) is only the leading order approximation to the principal

eigenfunction ofLr. This is sufficient for capturing the leading order eigen-
values (of orderO(ε2)) of L since the next eigenvalue ofLr is uniformly
(in ε) positive andψ(·, s) has a large portion on the subspace orthogonal to
the principal eigenfunction ofLr.

One may find that to evaluate〈Lφ, φ〉 with φ = U̇( r
ε)B(s) up toO(ε

2)
order, one needs the explicit expansion of the solution up toO(ε2), and the
calculation may not be straightforward since there are many places con-
tributing to theO(ε2) order expansion. Such a calculation was performed
in [68] (see [10] and also [26]). The conclusion is that the eigenvalue is
proportional (with known proportional constant) to the eigenvalue of the
eigenvalue problem, for(Θ,µ), −Θ′′(s) +K(s)Θ(s) = µ

ε2Θ(s), s ∈ S1,
whereS1 is the unit circle andK(s) is a known function depending the ge-
ometry of the interfaceΓ . Here the calculation is based on the Allen–Cahn
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equation:ut − ε2∆u+ f(u) = 0 with the interface strictly contained in the
thin domain.

In the current situation, as we shall see later, the first several eigenvalues
of (1.21) have the expansion( επ

L )2(j2 − 1)+ o(ε2), j = 1, 2, · · ·. Thus, the
principal eigenvalue (corresponding toj = 1) is close to zero, and theO(ε2)
order expansiongivesno information for the signof theprincipal eigenvalue.
Hence, to find the sign of the principal eigenvalue, which is important to the
stability issue,expansionsoforderhigher thanO(ε2)maybeneeded. Indeed,
the principle eigenvalue is of orderO(ε2δ3). This suggests (forε ∼ δ2), an
O(ε4) order expansion or anO(δ7) expansion. Unlike the expansion that
we displayed in the previous section, where we only needed the existence
of the solution, here we need a more explicit form the principal eigenvalue
and determine its sign. One may also notice that the first order boundary
layer expansionuB

1 has no closed form. This poses an extra difficulty in
performing the calculation.

Another point that one needs to handle is the boundary condition for
Θ(s) since in the current situationΓ intersects the boundary and therefore,
the domain fors is an interval, instead of a circle with no boundary.

Due to all these considerations, we seek a better approximation ofA(r),
the principle eigenfunction ofLr, which, hopefully, will automatically take
care of all the lower order contributions, aswell as the boundary conditions.6

We find that the following function meets the requirement (see also (11.3)
in [9] for a related point):

φ0(x) =
√
εe−crrξ/2ur =

√
εe−crrξ∇r · ∇u. (3.8)

As we shall see later, such chosenφ0 will automatically take care of the
cancellation of lower order expansions, due to the fact thatu satisfies the
differential equation (3.1) and the boundary condition.

The structure of this section is as follows:
In Sect. 3.1, we study a few properties ofφ0 defined in (3.8), by utilizing

the equation (3.1).
In Sect. 3.2, we introduce a global coordinate systemon a band enclosing

the interface, and utilizing it we decompose the spaceH1(Ωδ) intoX 0 ⊕L2

X 0⊥ by settingφ = Θ(s)φ0 + ψ(r, s).
In Sect. 3.3 we study the quadratic form〈Lφ, φ〉 onX 0 and the corre-

spondingeigenvalueproblem:Findφ ∈ X 0 andλ ∈ IR such that〈Lφ, ψ〉 =
λ(φ, ψ) for all ψ ∈ X 0.

InSect. 3.4,we study〈Lφ, φ〉onX 0⊥ and thenonH1(Ωδ) = X 0⊕X 0⊥

in Sect. 3.5, and finally on̄H1(Ωδ) in Sect. 3.6.

6 In particular the boundary analog of identity (3.6) is satisfied (cf. (1.27)).
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In Sect. 3.7, we give an abstract perturbation result that quantifies and
refines the following idea:〈Lφ, φ〉 � 1 ⇒ φhasasignificantχ0 component
and soψ is small (cf. [9,26]).

Finally, in Sect. 3.8, we provide our main result concerning the principal
and the second eigenvalue/eigenfunction of the eigenvalue problems (1.21)
and (1.22).

3.1 Approximation of the principal eigenfunction forLr

In the rest of this section, we shall suppress the variable(ξ, ε) for functions
such asr(x, ξ, ε), s(x, ξ, ε), w(s, ξ, ε), andx(r, s, ξ, ε). Also, we introduce

Iε := (−mε,mε) where mε := ε| ln ε|2,
Ω1

δ := {x ∈ Ωδ : dist(x, Γ ) ≤ Iε}
= {x(r, s) : |r| < mε, S

+(r) < s < S−(r)},
Ω2

δ := Ωδ \ Ω
1
δ .

Wedenote byw = w(s), s ∈ [0, L] the representation of the interfacewhere
L is the length of the interface. We denote byp± the intersections ofΓ with
∂Ωδ. Since∂Ωδ intersectsΓ almost orthogonally (up to an error ofO(ε2)),
nearp±, we can represent∂Ωδ by s = S±(r)wheres = s(x) andr = r(x)
is the local coordinates ofΩ1

δ . We set

Σ := ∂Ω1
δ ∩ ∂Ωδ = Σ+ ∪ Σ−

whereΣ± := {x(r, s) : r ∈ Iε, s = S±(r)}.
Note that

L = S−(0)− S+(0), S+(r) = O(ε2 + r2),
S−(r) = L+O(r2 + ε2), S±

r (r) = O(ε+ |r|). (3.9)

Certain properties ofφ0 are shown in the following lemma.

Lemma 3.1 Letφ0 be defined as in (3.8). Then

ε2∆φ0 − f ′(u)φ0 = ε2
3
4K2 + 1

4 σ̂
2

(1 + rK)2 φ0

+
2ε5/2K

(1 + rK)3u
B

ss +O(ε5/2δ2), (3.10)

∂nφ
0
∣∣∣
Σi

= KΩδ
(ζ)φ0 +O(ε

1
2 δ2), (3.11)∫

Σ±
φ0∂nφ

0 = KΩδ
(p±)

∫
Σ±

φ02 +O(εδ2). (3.12)
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Proof. In the (r, s) coordinates,ddξ = rξ∂r + sξ∂s + ∂ξ. Differentiating
equation (3.1) with respect tor yields (recalling thatrξ is independent ofr)

ε2∆ur − f ′(u)ur =
ε2K2

(1 + rK)2ur +
2ε2K

(1 + rK)3uss

+
ε2Ks(1− 2rK)
(1 + rK)4 us

+ε2crξurr + ε2c(sξusr + sξrus + urξ)

+O(εK−1)

=
ε2K2

(1 + rK)2ur +
2ε2K

(1 + rK)3u
B
ss + ε2crξurr

+O(ε2δ2),

where in the second equality, the following estimates have been used:uss =
uI

ss + uB
ss = O(ε) + uB

ss, Ks = O(δ2), us = O(1), c = O(δ2),
usr = O(1) + uB

sr = 1
εO(e

−(h+|r|)/ε) +O(1), sξ = O(ε+ h+ |r|), and
urξ = O(1). By introducing the multipliere−crrξ/2 we can absorb the term
ε2crξurr and write the equation in the form

ε2∆(e−crrξ/2ur)− f ′(u)e−crrξ/2ur = ε2e−crrξur
K2 − 1

2crξK + 1
4(crξ)

2

(1 + rK)2

+
2ε2K

(1 + rK)3u
B

ss +O(ε2δ2)

Herer has been rescaled byε everywhere it occurs sincerur = O(1) and
rusr = O(1). Recall thatcrξ − K = σ̂ + O(ε2). It follows thatK2 −
1
2crξK+ 1

4(crξ)
2 = 3

4K2 + 1
4 σ̂

2 +O(ε2). The equation (3.10) thus follows
from the definition ofφ0.

We proceed to prove (3.11) and (3.12). For this purpose, we use the local
coordinates(h, ς). Differentiating the relation

x = z(ς)− hn(ς) = w(s) + rN(s)

gives

dx = (1− hKΩ(ς))τ(ς)dς − n(ς)dh = (1 + rK(s))T(s)ds+N(s)dr.

That is,(
∂ς
∂s

∂ς
∂r

∂h
∂s

∂h
∂r

)

=


 1+rK(s)

1−hKΩ(ς)
τ(ς) · T(s) 1

1−hKΩ(ς)
τ(ς) · N(s)

−(1 + rK(s))n(ς) · T(s) −n(ς) · N(s)


 , (3.13)
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(
∂s
∂ς

∂s
∂h

∂r
∂ς

∂r
∂h

)

=


 1−hKΩ(ς)

1+rK(s) τ(ς) · T(s) − 1
1+rK(s)n(ς) · T(s)

(1− hKΩ(ς))τ(ς) · N(s) −n(ς) · N(s)


 . (3.14)

In the(h, ς) coordinates,∂n = − ∂
∂h , anduh = uhς = uςh = 0 on∂Ωδ.

Hence we obtain

∂nur

∣∣∣
Σi

=
∂

∂h

(∂u
∂h

∂h

∂r
+

∂u

∂ς

∂ς

∂r

)
=

∂2u

∂h2
∂h

∂r
+

∂u

∂ς

∂

∂h

(∂ς
∂r

)
=

∂h

∂r

{
urr

(∂r
∂h

)2
+ 2urs

∂r

∂h

∂s

∂h
+ uss

( ∂s
∂h

)2

+us
∂2s

∂h2 + ur
∂2r

∂h2

}
+

∂

∂h

(∂ς
∂r

){
ur

∂r

∂ς
+ us

∂s

∂ς

}
.

= ur

{∂h
∂r

∂2r

∂h2 +
∂r

∂ς

∂

∂h

(∂ς
∂r

)}
+
1
ε
uB

1,HH
∂h

∂r
+O(ε).

Here, in the second equality, the change of coordinates from(h, ς) back to
(r, s) was used and in the third equality, the following estimates were used:
onΣ, ∂h

∂r = ∂r
∂h = O(ε + |r|), urr = O( 1

ε2 e
−|r|/ε), urs = O(1

εe
−|r|/ε),

us = O(e−|r|/ε), uss = O(1) + 1
εu

B
1,HH , ∂s

∂ς = O(ε + |r|), and( ∂s
∂h)

2 =
1 +O(ε+ |r|).

FromuB
1,HH = O(δ), and onΣ± (denotingς± = ξ ± g(ξ)),

∂h

∂r
= −n(ς) · N(s) = [−n(ς±) +O(KΩ(ς±)r)] · [N(S±) +O(r2)]

= O(ε2 + δ|r|+ r2),

we obtain1
εu

B
1,HH

∂h
∂r = O(δ2). Also, direct calculation shows that

∂h

∂r

∂2r

∂h2 +
∂r

∂ς

∂

∂h

(∂ς
∂r

)
= KΩ(ς)

(
τ(ς) · N(s)

)2

= KΩ(ς)

(
1 +O(ε2 + |r|2)

)
.

Hence,

∂nur

∣∣∣
Σi

= KΩ(ς)ur +O(δ2). (3.15)
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Observe thatcrrξ = O(δ2|r|) and∂n(crrξ) = O(δ2(ε+ |r|)). Equation
(3.11) thus follows from (3.15) and the definition ofφ0.

Finally, utilizing the expansion

KΩ(ς) = KΩ(ς±) +
∂KΩ

∂ς
(ς±)

∂ς

∂r
(p±)r +O(|r|2 + ε2)

and the fact that
∫
Σ± rφ02 = ε

∫
IR R(U̇(R))2dR+O(ε2) = O(ε2), we then

obtain from (3.11) equation (3.12). This completes the proof of the lemma.
��

3.2 The decomposition

Nowwe define precisely the separation of variables in the limit asε → 0 for
the eigenfunctions. We would like to decompose everyH1 function into the
form φ0Θ(s) + ψ where(r, s) is the coordinate system near the interface
Γ ,Θ is anH1 function on the interval(0, L), andψ ⊥L2 φ0Θ(s). Later on,
we shall show that for small eigenvalues, theψ part of the eigenfunction is
small and can be neglected.

Sinceur decays exponentially fast away from the interfaceΓ , in the rest
of this section, without loss of generality, we shall assume thatφ0 = 0 in
Ω2

δ .
As thecoordinatesystem(r, s)doesnotworkverywell near theboundary

∂Ωδ, we introduce a new coordinate system(r, 5) wherer = r(x, ξ, ε) is
as before and5 = 5(x, ξ, ε) is defined by

5 =
s − S+(r)

S−(r)− S+(r)
, or

s = s(r, 5) := S+(r) + 5(S−(r)− S+(r)). (3.16)

Note that under the coordinates(r, 5), the domainΩ1
δ becomesIε × (0, 1).

Using (3.9) andK(s) = σ̂ +O(δ2), we calculate:

J(r, 5) :=
∂x

∂(r, 5)
= [1 + rK(s(r, 5))][S−(r)− S+(r)]

= [1 + rσ̂]|Γ |+O(δ2|r|+ |r2|), (3.17)

|∇x5|2 = |5s|2|∇xs|2 + |5r|2|∇xr|2

=
1

|Γ |2(1 + rσ̂)2
+O(δ2|r|+ r2 + ε2). (3.18)

In what follows we denoteφ0(x(r, 5)) by φ0(r, 5).
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We define function spacesX 0 andX 0⊥ by

X 0 := {φ ∈ H1(Ωδ) : φ = 0 in Ω2
δ , φ = Θ(5)φ0(r, 5) in Ω1

δ},
(3.19)

X 0⊥ := {ψ ∈ H1(Ωδ) : (φ, ψ) = 0 for all φ ∈ X 0}. (3.20)

Similarly, we define

X̄ 0 := X 0 ∩ H̄(Ωδ),

X̄ 0⊥ := {ψ ∈ H̄1(Ωδ) ; (ψ, φ) = 0 ∀φ ∈ X̄ 0}. (3.21)

We remark that in the(r, 5) coordinates, for everyφ = Θ(5)φ0 ∈ X 0 and
φ̃ = Θ̃(5)φ0 ∈ X 0,∫∫

Ωδ

φdx =
∫ 1

0
Θ(5)ω1(5) d5, (3.22)

∫∫
Ωδ

φφ̃ =
∫ 1

0
ω2(5)Θ(5)Θ̃(5) d5, (3.23)

where

ωi(5) :=
∫

Iε
J(r, 5)φ0i(r, 5) dr, i = 1, 2. (3.24)

Therefore,ψ ∈ X 0⊥ (or X̄ 0) if and only ifψ ∈ H1(Ωδ) (or H̄1(Ωδ)) and∫
Iε
J(r, 5)φ0(r, 5)ψ(r, 5)dr = 0 ∀ 5 ∈ [0, 1]. (3.25)

In addition,H1(Ωδ) = X 0 ⊕L2 X 0⊥ since for everyφ ∈ H1(Ωδ),

φ = Θ(5)φ0 + ψ ∈ X 0 ⊕L2(Ωδ) X 0⊥
,

Θ(5) :=
1

ω2(5)

∫
Iε
J(r, 5)φ0(r, 5)φ(r, 5)dr.

Next, we characterizēX 0 and show that̄H1(Ωδ) = X̄ 0 ⊕L2 X̄ 0⊥
.

From (3.22),φ ∈ X̄ 0 = X 0 ∩ H̄1(Ωδ) if and only if φ = Θ(5)φ0 for
someΘ ∈ H1((0, 1)) satisfying

∫ 1
0 ω1(5)Θ(5) d5 = 0.

To characterizeX̄ 0⊥
, we introduce a functionω3(5) defined by

ω3(5) :=
ω1(5)
ω2(5)

. (3.26)

We claim that

X̄ 0⊥ = {ψ̄ ∈ H̄1(Ωδ) : ψ̄ = mω3φ
0 +ψ, m ∈ IR1, ψ ∈ X 0⊥}. (3.27)
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In fact, if ψ̄ := mω3φ
0 + ψ ∈ H̄1(Ωδ) whereψ ∈ X 0⊥, then for any

φ = Θφ0 ∈ X̄ 0, (ψ̄, φ) = m(ω3φ
0, Θφ0) = m

∫ 1
0 ω3ω2Θ d5 =

∫ 1
0 ω1Θ =

0. That is,ψ̄ ∈ X̄ 0⊥
. On the other hand, for everyφ ∈ H̄1(Ωδ), writing

φ = Θφ0 + ψ ∈ X 0 + X 0⊥ and definingm =
∫ 1
0 Θω1

/∫ 1
0 ω1ω3, then

φ = [mω3φ
0 + ψ] + [(Θ − mω3)φ0], and (Θ − mω3)φ0 ∈ X̄ 0 since∫ 1

0 ω1(Θ − mω3) = 0. Thus (3.27) holds. In addition,̄H1(Ωδ) = X̄ 0 ⊕L2

X̄ 0⊥
.

Finally, we establish a few properties needed later for the functionsωi,
i = 1, 2, 3.

Note thatcrrξ = O(δ2|r|), J(r, 5) = |Γ |+ |Γ |rK +O(ε2 + r2), and

ε

∫
Iε
ru2

r(r, 5) dr = ε

∫
IR

RU̇(R)2dr +O(ε2) = O(ε2). (3.28)

Hence,

ω2(5) = ε|Γ |
∫

Iε
u2

r(r, 5) dr +O(εδ2)

=
∫

Iε

{1
ε

(
U̇( r

ε)
)2

+ U̇( r
ε)(u

I
0,R + uB

1,R)
}
dr

+O(εδ2). (3.29)

From the expansion ofuI
0, one can show thatuI

0(R, s) is independent ofs,
up toO(δ2) order, sinceσ andK are so. Also, fromuB

1 = O(KΩδ
) = O(δ),

it follows from the last equation that

ω2(5) = ω2(1
2)[1 +O(εδ2) +O(εδe−h/ε)] ∀ 5 ∈ [0, 1]. (3.30)

In a similar manner, we have,

1√
ε
ω1(5) =

∫
Iε
ur(r, 5) d5+O(εδ2)

=
∫

Iε
ur(r, s) dr

∣∣∣
s fixed

+O(εδ2) = u+ − u− +O(εδ2)

=
1√
ε
ω1(1

2)[1 +O(εδ2)] ∀ 5 ∈ [0, 1].

The definition ofω3 then implies that

ω3(5) = ω3(1
2)[1 +O(εδ2) +O(εδe−h/ε)] ∀ 5 ∈ [0, 1]. (3.31)
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Finally, from

ε
∂

∂5

∫
Iε
u2

r(r, 5)dr = 2ε
∫

Iε
ururs

∂s(r, 5)
∂5

dr

= 2
∫

Iε

(
U̇( r

ε) +O(ε)
)(1

ε
uB

1,RH +O(e−|r|/ε)
)
dr

= O(ε)

it follows thatω′
2(5) = O(ε). Similarly, one can show thatω′

1(5) = ω1(1
2)O

(ε), so that
ω′

3(5) = ω3(1
2)O(ε) ∀ 5 ∈ [0, 1]. (3.32)

3.3 The restriction of〈L·, ·〉 onX 0 andX̄ 0

In this subsection, we study the restriction of〈Lφ, ψ〉 on the spacesX 0 and
X̄ 0 defined in (3.19) and (3.21) respectively. In fact, we study the following
eigenvalue problems:

(a) Find(λ0, φ0) such thatφ ∈ X 0 and

〈Lφ0, φ〉 = λ0(φ0, φ) ∀φ ∈ X 0; (3.33)

(b) Find(λ̄, φ̄) such that̄φ ∈ X̄ 0 and

〈Lφ̄0, φ〉 = λ̄0(φ̄0, φ) ∀φ ∈ X̄ 0. (3.34)

Later we shall show that the small eigenvalues to the original eigenvalue
problems (1.21) and (1.22) are accurately approximated by (a) and (b),
respectively.

First, we characterize the bilinear form〈L·, ·〉 restricted to the Hilbert
spaceX 0.

Lemma 3.2 For everyφ1 = Θ1(5)φ0 andφ2 = Θ2(5)φ0 in X 0,

|Γ |2
ε2ω2(1

2)
〈Lφ1, φ2〉 = b+Θ1(0)Θ2(0) + b−Θ1(1)Θ2(1)

+
∫ 1

0

{
b1Θ

′
1Θ

′
2 + b2Θ1Θ2

}
d5 (3.35)

whereb1, b2, b+, b− are independent ofΘ1 andΘ2 and satisfy


b± = −|Γ |KΩδ
(p±) +O(εδ2),

b1(5) = 1 +O(εδ2) +O(εδe−h/ε), 5 ∈ [0, 1],

b2(5) = 3
4(|Γ |K(|Γ |5))2 + 1

4(|Γ |σ̂)2
+O(εδ2) +O(εδe−h/ε), 5 ∈ [0, 1].

(3.36)
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Proof. Integration by parts for the integral in〈Lφ1, φ2〉 gives

ε−2〈Lφ1, φ2〉 =
∫
Σ
Θ1Θ2φ

0∂nφ
0 +
∫∫

Ω1
δ

{
Θ′

1Θ
′
2|∇5|2φ02

+[−∆φ0 + ε−2f ′(u)φ0]φ0Θ1Θ2

}
= b̄+Θ1(0)Θ2(0) + b̄−Θ(1)Θ1(1)

+
∫ 1

0

{
b̄1(5)Θ′

1(5)Θ
′
2(5) + b̄2(5)Θ1(5)Θ2(5)

}
d5

where

b̄± =
∫
Σ±

φ0∂nφ
0,

b̄1(5) =
∫

Iε
J(r, 5)|∇x5|2φ02(r, 5) d5,

b̄2(5) =
∫

Iε
J(r, 5)[−∆φ0 + ε−2f ′(u)φ0]φ0(r, 5) d5.

BecauseΣ± is parameterized byx = w(s) + rN(s)|s=S±(r), the ar-
clength element ofΣ± is√

1 + [(1 + rK(S±(r))S±
r (r)]2dr = (1 +O(r2 + ε2))dr.

It then follows from (3.12) that

b̄± = KΩδ
(p±)

∫
Iε
φ02(r, 5±) dr +O(εδ2) (5+ := 0, 5− := 1).

Consequently, it follows from (3.30), (3.28), andKΩδ
= O(δ), that

b̄± = |Γ |−2ω2(1
2){|Γ |KΩδ

(p±) +O(εδ2)} =: |Γ |−2ω2(1
2)b

±.

Similarly, from (3.17), (3.18), (3.28), and (3.30), we have

b̄1(5) = |Γ |−2ω2(1
2)[1 +O(εδ2) +O(εδe−h/ε)] =: |Γ |−2ω2(1

2)b1(5).

Finally, we estimatēb2(5). Using (3.10) and noting that
∫
Iε |φ0| =

O(
√
ε), we have

b̄2(5) = |Γ |
∫

Iε

3
4K2 + 1

4 σ̂
2

1 + rσ̂
φ02(r, 5) dr

+|Γ |
∫

Iε

2ε
1
2K

L(1 + rσ̂)2
uB

ssφ
0ds+O(εδ2).
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The first term on the right–hand side can be written as, in view of (3.28)
and (3.30),ω2(1

2){3
4K2 + 1

4 σ̂
2} + O(εδ2) + O(εδe−h/ε). Sinceur =

ε−1U̇( r
ε) + O(1) anduB

ss = ε−1uB
1,HH + O(δe−h/ε)), the second term

can be estimated by

O(εδe−|h|/ε) + C
∣∣∣ ∫

IR
U̇(R)uB

1,HH(R,H) dR
∣∣∣.

Using the equation foruB
1 : uB

1,RR + uB
1,HH − f ′(U)uB

1 = 0, we have
that ∫

IR
uB

1,HH(R,H)U ′(R)dR =
∫
IR
[f ′(U)uB

1 − uB
1,RR]U ′

=
∫
IR
[U ′′ − f(U)]′uB

1 = 0

Therefore,

b̄2(5) = |Γ |−2ω2(1
2){

3
4
(|Γ |K)2 + 1

4
(|Γ |σ̂)2 +O(εδ2) +O(εδe−h/ε)}

=: |Γ |−2ω2(1
2)b2(5) .

This completes the proof of the lemma.��
Now we study the eigenvalue problem (3.33) and (3.34). Observe that

the bilinear form〈L·, ·〉 in the Hilbert spaceY := H1(Ωδ) is (i) bounded
(i.e., 〈Lφ, ψ〉 ≤ C‖φ‖Y ‖ψ‖Y ), (ii) symmetric (i.e.,〈Lφ, ψ〉 = 〈Lψ, φ〉
for all φ, ψ ∈ Y ), and (iii) coercive on the Hilbert spaceX := L2(Ωδ)
(i.e., 〈Lφ, φ〉 ≥ 1

C ‖φ‖2
Y − C‖φ‖2

X for anyφ ∈ Y ). Also, we know that
Y is a compact subspace ofX (i.e., any sequence bounded inY has a
subsequence convergent inX). Hence, by the Lax–Milgram theorem, for
any closed subspaceZ ⊂ Y , the restriction of〈L·, ·〉 onZ has a complete
eigen–family{λZ

j , φ
Z
j }∞

i=1 (assume that the dimension ofZ is infinite) in
the sense that{φZ

j }∞
j=1 is anX-orthonormal basis forZ, and

〈LφZ
j , φ〉 = λZ

j (φ
Z
j , φ)X ∀φ ∈ Z.

Furthermore,λZ
1 ≤ λZ

2 ≤ λZ
3 ≤ · · · andlimj→∞ λZ

j = ∞.
Clearly, the eigenvalue problems (3.33) and (3.34) correspond to the

following two situations respectively:
(a)Y = H1(Ωδ) andZ = X 0. We shall denote(λZ

j , φ
Z
j ) by (λ

0
j , φ

0
j ) in

this case.
(b)Y = H̄1(Ωδ) andZ = X̄ 0 := X 0 ∩H̄1(Ωδ). In this case, we denote

(λZ
j , φ

Z
j ) by (λ̄

0
j , φ̄

0
j ).

The original eigenvalue problems (3.3) and (3.4) correspond to the fol-
lowing situations, respectively:
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(c) Y = Z = H1(Ω). In this case we denote(λZ
j , φ

Z
j ) by (λj , φj).

(d) Y = Z = H̄1(Ω). We denote(λZ
j , φ

Z
j ) by (λ̄j , φ̄j).

Now we characterize({λ0
j , φ

0
j )}∞

j=1 and {(λ̄0
j , φ̄

0
j )}∞

j=1. Later in this
section we shall use a perturbation argument to show that they approximate
{(λjφj)} and{(λ̄j , φ̄j)} respectively.
Lemma 3.3 (1) (λ, φ) solves the eigenvalue problem (3.3) if and only if
(µ,Θ), whereλ = ε2|Γ |−2µ andφ = Θ(5)φ0, solves the following eigen-
value problem:


−(b1Θ′)′ + b2Θ = µ ω2(:)

ω2( 1
2 )
Θ, 5 ∈ (0, 1),

−b1(0)Θ′(0) + b+Θ(0) = 0, b1(1)Θ′(1) + b−Θ(1) = 0,
(3.37)

whereb1, b2, b3, b4 are as in Lemma 3.6 andωi(·) (i = 1, 2) as in (3.24);
(2) (λ̄, φ̄) solves the eigenvalue problem (3.4) if and only if(µ,Θ), where

λ̄ = ε2|Γ |−2µ andφ̄ = Θ(5)φ0, solves the following eigenvalue problem:


−(b1Θ′)′ + b2Θ = µ ω2(:)

ω2( 1
2 )
Θ − µ̂(µ) ω1(:)

ω1( 1
2 )
, 5 ∈ (0, 1),

−b1(0)Θ′(0) + b+Θ(0) = 0, b1(1)Θ′(1) + b−Θ(1) = 0,∫ 1
0 Θ(5)ω1(5) d5 = 0.

(3.38)

Proof. The assertion follows from the characterization of〈L·, ·〉 onX 0

in (3.35) and a standard variational principle argument. We leave the details
to the reader. ��

Using the estimate ofb1, b2, b±, we can now prove the following:

Theorem 3.4 Let {λ0
j , φ

0
j )}∞

j=1 and {(λ̄0
j , φ̄

0
j )}∞

j=1 be the complete solu-
tions of (3.3) and (3.4) respectively. Then, the following hold:

λ0
j = ε2|Γ |−2

{
[(j − 1)2 − 1]π2 +O(j2δ)

}
,

φ0
j =

√
2

ω2(1
2)

φ0 cos((j − 1)π5) +O(j2δ), j = 1, 2, · · · , (3.39)

λ̄0
j = ε2|Γ |−2

{
[j2 − 1]π2 +O(j2δ)

}
,

φ̄0
j =

√
2

ω2(1
2)

φ0 cos(jπ5) +O(j2δ), j = 1, 2, · · · , (3.40)

λ̄0
1 = − 4ε2

3πσ̂0

d2

dς2KΩδ
(ς)
∣∣∣
ς=ξ

+O(δ4)

φ0
1 =

√
2

ω2(1
2)

φ0 +O(δ). (3.41)
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Proof. Since from the last section,|Γ |K = Lσ̂ + O(δ2) = π + O(δ), we
haveb2 = π2+O(δ). Hence, replacingb± by0, b1 by1, b2 byπ2, and ωi(:)

ωi(
1
2 )

by1 and using a perturbation argument, we obtain from the previous lemma
the assertion (3.39) and (3.40). Note that whenj = 1, the estimate (3.40)
yields no information about the sign of the eigenvalue. Hence, we need to
refine the estimate.

Recall the following estimates:

bi = KΩδ
(pi) +O(εδ2), i = 1, 2,

ω1(5)
ω1(1

2)
= 1 +O(εδ2),

‖b3 − 1‖Lp((0,1)) +
∥∥∥b4 − [34(LK)2 + 1

4(Lσ̂)
2]
∥∥∥
Lp((0,1))

+
∥∥∥ ω2(·)
ω2(1

2)
− 1
∥∥∥
Lp((0,1))

≤ Cεδ[δ + ε1/p],

for all p ∈ [1,∞)∪ {∞}. Hence, comparing (3.38) to (2.75), and using the
fact that the normalized (inL2) eigenfunction for both problemsare bounded
in C2((0, 1)) with a bound independent ofε andδ, we conclude that the
correspondingprincipal eigenvaluesof both problemsdiffer byO(εδ2) (here
we can take anyp ∈ [1, 2]). Hence,

λ = ε2|Γ |−2
(
µ1 +O(εδ2)

)
= −4ε2π

3
g3σ̂3

0

|Γ |2σ̂3
0

d2KΩδ

dς2 (ξ) +O(ε2δ4)

= − 4ε2

3πσ̂0

d2KΩδ

dς2 (ξ) +O(δ4). (3.42)

This completes the proof of the theorem.��
The following corollary will be used later.

Corollary 3.5 (a) There exists a positive constantC such that for every
φ = Θ(5)φ0 ∈ X 0,

‖Θ‖2
C0([0,1]) + ‖Θ‖2

H1((0,1)) ≤ Cε−2〈Lφ, φ〉+ C2‖φ‖2. (3.43)

(b) There exists a positive constantC such that for everyφ = Θφ0 ∈ X̄ 0,

|Θ(0) +Θ(1)|2 ≤ Cδ2‖φ‖2 + Cε−2〈Lφ, φ〉. (3.44)

Proof. (a) The first assertion follows directly from the characterization of
〈L·, ·〉 onX 0 stated in Lemma 3.2, and the details are omitted.

(b) To prove the second assertion, we writeφ as φ = αφ̄0
1 + φ̂ =

αΘ̄0
1φ

0 + Θ̂φ0 whereα ∈ IR, φ̄0
1 = Θ0

1(5)φ
0 is the principal eigenfunction

of (3.4) andφ̂ = Θ̂φ0 ⊥L2(Ωδ) φ̄
0
1. Then,

〈Lφ̂, φ̂〉 ≥ λ̄0
2‖φ̂‖2 ≥ 2L−2π2ε2‖φ̂‖2.
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It then follows from (a) that

‖Θ̂‖2
C0([0,1]) ≤ C̃ε−2〈Lφ̂, φ̂〉 = C̃ε−2

{
〈Lφ, φ〉 − λ̄0

1‖αφ̄0
1‖2
}

≤ C̃ε−2〈Lφ, φ〉+ Cδ3‖φ‖2.

Here in the last inequality, we have used the fact thatλ̄0
1 = O(ε2δ3) and

‖αφ̄0
1‖2 ≤ ‖φ‖2.

Finally, observe that̄Θ0
1(5) =

√
2

ω2( 1
2 )
cos(π5) +O(δ), so that

|Θ̄(1) + Θ̄0
1(1)| ≤ Cδ‖Θ̄0

1‖L2((0,1).

Therefore,

|Θ(0) +Θ(1)|2 ≤ 2
|Θ̄0

1(0) + Θ̄0
1(1)|2

‖Θ0
1‖2

L2((0,1))
‖αΘ̄0

1‖2 + 4‖Θ̂‖2
C0([0,1])

≤ Cδ2‖φ‖2 + Cε−2〈Lφ, φ〉+ Cδ3‖φ‖2.

The second assertion of the corollary thus follows.��

In the rest of this section, we shall show that the projection of the eigen-
functions of (1.21) and (1.22) onX 0⊥ is insignificant for small eigenvalues,
so that for every fixed positive integerj, λj andλ̄j are well approximated
by λ0

j andλ̄
0
j as given in Theorem 3.4.

3.4 The restriction of〈L·, ·〉 onX 0⊥

Lemma 3.6 There exists a constantν0 independent ofξ andε such that for
everyψ ∈ X 0⊥,

〈Lψ, ψ〉 ≥ ν0

∫∫
Ω1

δ

[ε2|∇ψ|2 + ψ2]. (3.45)

Proof. We divide the integral in the definition of〈Lψ, ψ〉 into integrals on
Ω2

δ andΩ
1
δ respectively.

InΩ2
δ , f

′(u) is uniformly positive, so that for some positiveν2 indepen-
dent ofε andψ,∫∫

Ω2
δ

[ε2|∇ψ|2 + f ′(u)ψ2] ≥ ν2

∫∫
Ω2

δ

[ε2|∇ψ|2 + ψ2]. (3.46)
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In Ω1
δ , we use the coordinates(r, 5), obtaining

∫∫
Ω1

δ

[ε2|∇ψ|2 − f ′(u)ψ2]

≥ L−1
∫ 1

0
d5

∫
Iε
[ε2ψ2

r (r, 5)− f ′(U(r/ε))ψ2(r, 5)]dr

−
∫∫

Ω1
δ

[C(ε+ |r|)ε2|∇ψ|2 + C(|r|+ ε)ψ2]. (3.47)

Sinceψ ∈ X 0⊥, (3.25) implies that for any5,
∫
Iε U

′(r/ε)ψ(r, 5)dr =
O(ε)‖ψ(·, 5)‖2,Iε . It then follows that

∫
Iε [ε

2ψ2
r (r, 5)−f ′(U(r/ε))ψ2(r, 5)]dr

≥ ν3
∫
Iε ψ

2(r, 5)dr for some positiveν3 independent ofε (cf. [33,26]).
Therefore, it follows from (3.47) that

∫∫
Ω1

δ

[ε2|∇ψ|2 − f ′(u)ψ2] ≥ ν3

C

∫∫
Ω1

δ

ψ2 −Cmε

∫∫
Ω1

δ

[ε2|∇ψ|2 +ψ2].

Consequently, taking a small positiveη, we have

∫∫
Ωδ

1I

[ε2|∇ψ|2 + ψ2]

≥ (1− η)
{ν3

C

∫∫
Ω1

δ

ψ2 − Cmε

∫∫
Ω1

δ

[ε2|∇ψ|2 + ψ2]
}

+η

∫∫
Ω1

δ

I[ε2|∇ψ|2 − ‖f ′(u)‖∞ψ2]

≥ ν4

∫∫
Ω1

δ

[ε2|∇ψ|2 + ψ2].

Combining this with (3.46), we obtain the assertion of the lemma.��

Lemma 3.6 shows that all the eigenvalues of the bilinear form〈L·, ·〉
restricted to the closed subspaceX 0⊥ of

H1(Ωδ) have a positive lower boundν0. To show that small eigenvalues
of (1.21) (or (1.22)) are characterized by the restriction of〈L·, ·〉 on X 0

(or X̄ 0), we need to show thatX 0 is almost invariant for the operatorL. It
suffices to study the behavior of〈Lφ, ψ〉 for φ ∈ X 0 andψ ∈ X 0⊥, as we
shall do in the next two subsections.
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3.5 Properties of〈L·, ·〉 onH1(Ωδ)

Lemma 3.7 There exist positive constantsC1 andC2 such that for every
φ ∈ X 0 andψ ∈ X 0⊥,

|〈Lφ, ψ〉| ≤ C1ε
2〈Lφ, φ〉+ 1

4
〈Lψ, ψ〉+ C2ε

4‖φ‖2
2,Ω, (3.48)

〈L(φ+ ψ), (φ+ ψ)〉 ≥ (1− C1ε
2)〈Lφ, φ〉

+ν0
2 ‖ψ‖2 − C2ε

4‖φ‖2
2,Ω. (3.49)

Proof. We need only prove the first inequality since the second is a direct
consequence of the first, (3.45), and the linearity and symmetry of〈L·, ·〉.

Writing φ = Θφ0, and integrating by parts twice for the integral in
〈Lφ, ψ〉, we obtain

〈Lφ, ψ〉 =
∫∫

Ω1
δ

(−ε2∆φ0 + f ′(u)φ0)Θψ + ε2
∫
Σ
Θψ∂nφ

0

+ε2
∫∫

Ω1
δ

∇Θ(φ0∇ψ − ψ∇φ0) =: I + II + III.

Estimation of I:From (3.10), we see that

sup
:∈(0,1)

∫
Iε

∣∣∣∆φ0 − ε−2f ′(u)φ0
∣∣∣2(r, 5)dr ≤ C.

It then follows that

|I| ≤ Cε2‖Θ‖2,(0,1)‖ψ‖2,Ω ≤ Cε4‖φ‖2 + C−1‖ψ‖2.

Here we used the fact that‖φ‖ and‖Θ‖2,(0,1) are equivalent.

Estimation of II:Weneedonly consider the integral onΣ+. SinceΘ = Θ(0)
onΣ+, we need only consider the integral of

∫
Σ+ ψ∂nφ

0dSΣ+ . Recall that
on Σ+, ∂nφ

0 = [KΩδ
(p+) + O(|r|δ2)]φ0(r, 0) + O(

√
εδ2), and the arc

length element isdSΣ+ = (1 +O(ε2 + r2))dr. It then follows that∫
Σ+

ψ∂φ0 = L−1KΩδ

∫
Iε
J(r, 0)ψ(r, 0))φ0(r, 0)dr

∣∣∣
:=0

+O(ε)‖ψ‖2,Σ+ = O(ε)‖ψ‖2,Σ+

since by the orthogonality criterion (3.25), the integral on the right–hand
side vanishes. Thus,

|II| ≤ Cε3‖ψ‖2,Σ

[
|Θ(0)|+ |Θ(1)|

]
≤ Cε5[Θ2(0) +Θ2(1)] + C−2ε‖ψ‖2

2,Σ

≤ Cε5[Θ2(0) +Θ2(1)] + C

∫∫
Ωδ

[ε2|∇ψ|2 + ψ2]
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by the Sobolev imbedding
∫
Σ± ψ2 ≤ 2

∫∫
B(p,2mε)∩Ω[ε|∇ψ|2 + ε−1ψ2].

Estimation of III:. In the(r, 5) coordinates, we can write

III = ε2
∫ 1

0
Θ′(5)

∫
Iε
J(r, 5)|∇x5|2(φ0ψ: − φ0

:ψ)drd5

=: ε2
∫ 1

0
Θ′(5)W (5)d5.

Differentiating (3.25) with respect to5 we have∫
Iε
J(r, 5)φ0ψ: = −

∫
Iε
Jφ0

:ψ −
∫

Iε
J:φ

0ψ.

It then follows that

W (5) =
∫

Iε
J
[
|∇x5|2 − |Γ |−2

]
φ0ψ:dr

−
∫

Iε

[
|Γ |−2Jφ0

: + |Γ |−2J:φ
0 + J |∇x5|2φ0

:

]
ψdr.

Observe thatL2|∇x5|2 − 1 = O(|r|+ |S±
r (r)|) = O(ε+ |r|). Then we can

invoke the property that

sup
:∈(0,1)

∫
Iε

{
(1 + |r/ε|)2φ02(r, 5) + φ02

: (r, 5)
}
dr ≤ C

to conclude that

|W (5)| ≤ C
[
ε‖∇ψ(·, 5)‖2,Iε + ‖ψ(·, 5)‖2,Iε

]
.

Therefore,

|III| ≤ ε2
∫ 1

0
|Θ′|[ε‖∇xψ(·, 5)‖2,Iε + ‖ψ(·, 5)‖2,Iε ]d5

≤ Cε4
∫ 1

0
Θ′2d5+

1
C

∫∫
Ω
(ε2|∇ψ|2 + ψ2).

In summary, we have

|〈Lφ, ψ〉| ≤ Cε4
∫ 1

0
[Θ′2 +Θ2]d5+

1
C

∫∫
Ω
[ε2|∇ψ|2 + ψ2]

≤ Cε4
∫ 1

0
[Θ′2 +Θ2] + 1

4〈Lψ, ψ〉 (3.50)

by takingC large and utilizing (3.45). Finally, via Corollary 3.5 (a), we
obtain the assertion of the lemma.��

As we shall see later, estimate (3.49) is sufficient for concluding that all
“small” eigenvalues of (1.22) are close to the “small” eigenvalues of (3.33).
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3.6 Properties of〈L·, ·〉 on H̄1(Ωδ)

Lemma 3.8 There exist constantsC3 andC4 which are independent ofε

andδ such that for anyφ ∈ X̄ 0 andφ⊥ ∈ X̄ 0⊥
,

〈L(φ+ φ⊥), (φ+ φ⊥)〉 ≥
{
1− C3ε

}
〈Lφ, φ〉 − C4ε

3δ2‖φ‖2 (3.51)

+
{

a0ν0ε
2|Ωδ | − (C4ε

4 + π2ε2|Γ |−2)
}
‖φ⊥‖2.

wherea0 is as in (2.22).

Remark Observe that ifδ is too small, thena0ν0ε
2|Ωδ | will not be larger than

C4ε
4+π2ε2|Γ |−2, so the coefficient in front of‖φ⊥‖2 in (3.51) is negative,

andwecannot show thepositivity of theprincipal eigenvalueand thestability
of the droplet. Similarly, for the spiky solution obtained in Sect. 2 (see
Remark 2.4).

Proof. By the characterization of̄X 0 andX̄ 0⊥
, we can writeφ = Θφ0 and

φ⊥ = φ̂ + ψ whereψ ∈ X 0⊥ andφ̂ = mω3φ
0,m ∈ IR1. Setϕ = φ + φ̂.

Thenφ+ φ⊥ = ϕ+ ψ ∈ X 0 + X 0⊥. Applying (3.49) we obtain

〈L(φ+ φ⊥), (φ+ φ⊥)〉 = 〈L(ϕ+ ψ), (ϕ+ ψ)〉
≥ (1− C1ε

2)〈Lϕ, ϕ〉 − C2ε
4‖ϕ‖2 + ν0

2 ‖ψ‖2

= (1− C1ε
2)
{
〈Lφ, φ〉+ 2〈Lφ, φ̂〉+ 〈Lφ̂, φ̂〉

}
−C2ε

4‖φ‖2 +
{

ν0
2 ‖ψ‖2 − C2ε

4‖φ̂‖2} (3.52)

where in the second equation, we have used identity‖ϕ‖2 = ‖φ‖2 + ‖φ̂‖2.
We shall now estimate each term on the right–hand side.

First of all, sinceφ̂ ∈ X 0, we have, by Theorem 3.4

〈Lφ̂, φ̂〉 ≥ λ0
1‖φ̂‖2 ≥ −2ε2π2|Γ |−2‖φ̂‖2. (3.53)

Next, we can use Lemma 3.2 to write

|Γ |2
ε2ω2(1

2)
〈Lφ, φ̂〉 = mω3(1

2)
{
b+Θ(0)

ω3(0)
ω3(1

2)
+ b+Θ(1)

ω3(1)
ω3(1

2)

+
∫ 1

0

[
b1Θ

′ ω′
3

ω3(1
2)

+ b2Θ
ω3

ω3(1
2)

]
d5
}
.

Sinceb± = O(δ), |b+ − b−| = O(δ2), and| ω3(:)

ω3( 1
2 )

− 1| = O(εδ), we

have that∣∣∣b1Θ(0)ω3(0)
ω3(1

2)
+ b2Θ(1)

ω3(1)
ω3(1

2)

∣∣∣
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≤ |b1Θ(0)ω3(0)− b2Θ(1)ω3(1)|
ω3(1

2)
|Θ(1)| |b1Θ(0)ω3(0)|

ω3(1
2)

|Θ(0) +Θ(1)|

≤ Cδ2|Θ(1)|+ Cδ|Θ(0) +Θ(1)|.

Recall thatφ ∈ X̄ 0 implies that
∫ 1
0 Θω1 = 0, so we can estimate

∣∣∣ ∫ 1

0
Θb3

ω3

ω3(1
2)

∣∣∣ = ∣∣∣ ∫ 1

0
Θ
[b2(1

2)ω1(5)
ω1(1

2)
− b2(5)ω3(5)

ω3(1
2)

]
d5
∣∣∣

≤ Cδ2
∫ 1

0
|Θ|. (3.54)

Here we used the fact thatK = σ̂ +O(δ2) so thatb2(5) = b2(1
2) +O(δ2).

Using (3.32), we have

∣∣∣ ∫ 1

0
b1Θ

′ω′
3

∣∣∣ ≤ Cε

∫ 1

0
|Θ′|.

In summary, we have the estimate

∣∣∣〈Lφ, φ̂〉∣∣∣ ≤ Cε2|mω3(1
2)|
{
ε

∫ 1

0
|Θ′|

+δ2
∫ 1

0
|Θ|+ δ2|Θ(1)|+ δ|Θ(0) +Θ(1)|

}
≤ ε

C|Ωδ|‖φ̂‖
2 + Cε3|Ωδ|

{
ε2‖Θ‖2

H1((0,1))

+δ4‖Θ‖2
C0([0,1]) + δ2|Θ(0) +Θ(1)|2

}
where in the second inequality we use the fact that‖φ̂‖ = ‖mω3φ

0‖ is
equivalent to the value|mω3(1

2)|. Using Corollary 3.5 we then obtain∣∣∣〈Lφ, φ̂〉∣∣∣ ≤ ε

C|Ωδ|‖φ̂‖
2

+Cε3|Ωδ|
{
(ε2 + δ4 + δ2)ε−2〈Lφ, φ〉+ δ4‖φ‖2

}
≤ ε

C1|Ωδ|‖φ̂‖
2 + Cε|Ωδ|δ2〈Lφ, φ〉

+Cε3|Ωδ|δ4‖φ‖2. (3.55)

Substituting the estimates in (3.55) and (3.53) into (3.52) then yields

〈L(φ+ φ⊥), φ+ φ⊥〉 ≥
(
1− Cε2 − Cεδ2|Ωδ|

)
〈Lφ, φ〉

−C(ε4 + ε3δ4|Ωδ|)‖φ‖2 (3.56)
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+
{

ν0
2 ‖ψ‖2 − (Cε4 + ε2π2|Γ |−2

+
ε

C1|Ωδ|)‖φ̂‖
2
}
. (3.57)

Finally, we convert‖ψ‖ and ‖φ̂‖ into ‖φ⊥‖. Sinceφ⊥ = φ̂ + ψ ∈
H̄1(Ωδ),

0 =
∫∫

Ωδ

φ⊥ =
∫∫

Ωδ

φ̂+
∫∫

Ωδ

ψ.

It then follows that

‖φ̂‖2 =
‖φ̂‖2

|∫∫ Ωδ
φ̂|2
∣∣∣∫∫

Ωδ

φ̂
∣∣∣2 =

∫ 1
0 ω2ω

2
3d5

| ∫ 1
0 ω1ω3|2

∣∣∣∫∫
Ωδ

ψ
∣∣∣2

≤
∫
IR(U̇(R))

2 + o(1)
4ε+ o(ε)

|Ωδ|‖ψ‖2 ≤ 2|Ωδ|
3a0ε

‖ψ2‖2.

wherea0 is defined as in (2.22). Therefore,

‖ψ‖2 = ‖ψ‖2 ‖φ⊥‖2

‖φ̂‖2 + ‖ψ‖2
≥ a0ε

|Ωδ|2 ‖φ
⊥‖2.

It then follows from (3.57) (replacing‖φ̂‖ by ‖φ⊥‖) that

〈L(φ+ φ⊥), φ+ φ⊥〉 ≥
(
1− Cε2 − Cεδ2|Ωδ|

)
〈Lφ, φ〉

−C(ε4 + ε3δ4|Ωδ|)‖φ‖2

+
{ν0a0ε

|Ωδ| −
(
Cε4 + ε2π2|Γ |−2

+
ε

C1|Ωδ|
)}

‖φ⊥‖2.

TakingC1 small enough we then obtain the assertion of the lemma.��
With the estimate for〈Lφ, ψ〉, φ ∈ X̄ 0 andψ ∈ X̄ 0⊥

(this corresponds
to the off diagonal entries of amatrix), we can now establish the relationship
between the eigenvalue problems (3.3), (3.4) and (3.33), (3.34). To make
the presentation clearer, we shall first establish a general perturbation result.

3.7 A perturbation result

Lemma 3.9 LetX andY be twoHilbert spaces andY be compactly imbed-
ded inX. Assume that〈Ly, z〉 is a bounded bilinear form defined onY such
that it is symmetric and coercive (with respect toX). LetZ andZ⊥ be closed
subspaces ofY such thatY = Z + Z⊥ andZ ⊥X Z⊥. Assume that for
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some positive constantsη1 ∈ (0, 1), η2 > 0, andν > 0, we have for all
z ∈ Z, z⊥ ∈ Z⊥,

〈L(z + z⊥), (z + z⊥)〉 ≥ (1− η1)〈Lz, z〉+ ν‖z⊥‖2 − η2‖z‖2 (3.58)

where‖ · ‖ = ‖ · ‖X . Then, for any positive integerj, if λY
j < ν, we have

λZ
j − (η2 + η1λ

Z
j ) ≤ λY

j ≤ λZ
j . (3.59)

In addition, if λY
j > λY

j−1 (λY
0 := −∞) and λZ

j+1 > λZ
j , then either

‖yj − zj‖2 or ‖yj + zj‖2 is bounded by

3(η2 + η1λ
Z
j )

min{λY
j − λY

j−1, (1− η1)(λZ
j+1 − λZ

j ), ν + η2 − (1− η1)λZ
j } . (3.60)

Proof.Recall that for any positive integeri, λY
i andλZ

i can be obtained by
the Min–Max characterization,

λY
i = min

Mi⊂Y
max

x∈Mi,‖x‖=1
〈Lx, x〉, λZ

i = min
Mi⊂Z

max
x∈Mi,‖x‖=1

〈Lx, x〉,

whereMi denotes a generici dimensional subspace ofY . SinceZ ⊂ Y ,
we immediately conclude thatλY

i ≤ λZ
i for any positive integeri.

Now assume thatλZ
j < ν. We shall establish the lower bound forλY

j .
For eachi ≤ j, wewriteyi = ŷi+ŷ⊥

i ∈ Z+Z⊥.Weclaim that̂y1 · · · , ŷj

are linearly independent. In fact, if it were not true, thenΣj
i=1ciŷi = 0 for

some non–zero vector(c1, · · · , cj). It then follows thaty := Σj
i=1ciyi ∈

Z⊥. But this is impossible since on the one hand we have〈Ly, y〉 =
ΣλY

i c2i ≤ λY
j ‖y‖2 < ν‖y‖2 and on the other hand by takingz = 0

andz⊥ = y in (3.58) we obtain〈Ly, y〉 ≥ ν‖y‖. Hence, the dimension
of M := span{ŷ1, · · · , ŷj} is j. Consequently, there exists a non-trivial
z = Σj

i=1αiŷi ∈ M such thatz ⊥ zi for all i ≤ j − 1.
Definey = Σj

i=1αiyi = z + ŷ⊥ whereŷ⊥ = Σj
i=1αiŷ

⊥
i ∈ Z⊥. We

write y = αyj + y⊥
j andz = βzj + z⊥

j whereα = αj , y⊥
j = Σj−1

i=1 αiyi,
z⊥
j ⊥ zi for all i = 1, · · · , j. Sinceŷ is non–trivial, we can assume that
1 = ‖y‖2 = α2 + ‖y⊥

j ‖2 = β2 + ‖z⊥
j ‖2 + ‖ŷ⊥‖2.

Note that, by definition of(λY
i , yi),

〈Ly, y〉 ≥ λY
j α2 + λY

j−1‖y⊥
j ‖2 = λY

j − (λY
j − λY

j−1)‖y⊥
j ‖2. (3.61)

Note also that, sincey = ŷ + ŷ⊥ ∈ Z + Z⊥, we have from (3.58),

〈Ly, y〉 ≥ (1− η1)〈Lŷ, ŷ〉+ ν‖ŷ⊥‖2 − η2‖ŷ‖2
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≥ (1− η1)
(
λZ

j β
2 + λZ

j+1‖z⊥
j ‖2
)
+ ν‖ŷ⊥‖2 − η2‖ŷ‖2

= (1− η1)λZ
j − η2 + (1− η1)(λZ

j+1 − λZ
j )‖z⊥

j ‖2

+[ν + η2 − (1− η1)λZ
j ]‖ŷ⊥‖2

by using the identityβ2 = 1−‖z⊥
j ‖2 −‖ŷ⊥‖2 and‖ŷ‖2 = 1−‖ŷ⊥‖2. The

last inequality, together with (3.61), implies that

λY
j − λZ

j + η1λ
Z
j + η2

≥ (λY
j − λY

j−1)‖y⊥
j ‖2 + (1− η1)(λZ

j+1 − λZ
j )‖z⊥

j ‖2

+(ν + η2 + (1− η1)λ
j
Z)‖ŷ⊥‖2.

Since the right–hand side is non–negative (λZ
j < ν implies thatν + η2 −

(1− η1)λY
j > 0), we immediately obtain (3.59).

Set& = min{λY
j −λY

j−1, (1−η1)(λZ
j+1 −λZ

j ), ν+η2 − (1−η1)λ
j
Z)}.

Then from the last estimate, we obtain,

‖ŷ⊥‖2 + ‖z⊥
j ‖2 + ‖y⊥

j ‖2 ≤ [η2 + η1λ
Z
j ]/&. (3.62)

Now if the right–hand side is≥ 2/3, there is nothing to prove since the right–
hand side in (3.60) is≥ 2 ≥ min{‖yj − zj‖2, ‖yj + zj‖2}. Otherwise, we
haveα2 = 1− ‖y⊥

j ‖2 ≥ 1/3 andβ2 = 1− ‖ŷ⊥‖2 − ‖z⊥
j ‖2 ≥ 1/3. Now,

assuming, without loss of generality thatα andβ are positive (otherwise,
changezj to−zj and/oryj to−yj),we thenhaveβ+α ≥ 2/

√
3 > 1. Finally,

multiplying the relation0 = y−y = [αyj+y⊥
j ]−[βzj+z⊥

j +ŷ⊥] byyj−zj
we obtain(α+β)‖yj −zj‖2+(yj −zj , y

⊥
j −z⊥

j − ŷ⊥) = 0, which implies
that‖yj − zj‖2 ≤ (‖y⊥

j ‖+ ‖z⊥
j ‖+ ‖ŷ⊥‖)2 ≤ 3(‖y⊥

j ‖2 + ‖zj‖2 + ‖ŷ⊥‖2).
Using (3.62), we then obtain (3.60), thereby completing the proof of the
lemma. ��

3.8 Conclusion

With the previous preparation, we can now establish the main results of this
section.

First using estimate (3.49) and applying Lemma 3.9 withY = H1(Ωδ),
X = L2(Ωδ), Z = X 0, η1 = C1ε

2, η2 = C2ε
4, andν = ν0/2, we

immediately obtain the following estimates:

Theorem 3.10 Let {(µj , Θj)}∞
j=1 be the solutions of (3.37) whereΘj is

normalized so that
‖Θjφ

0‖ = 1. Let {(λj , φj)}∞
j=1 be the solution of (1.22). Then for any

integerj, if µj < |Γ |2ν0
2ε2 we have

ε2|Γ |−2µj ≥ λj ≥ ε2|Γ |−2µj − (C2 + C1|Γ |−2µj)ε4 (3.63)
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whereν0, C1, C2 are the positive constants in (3.49). If in addition, we
assume thatλj−1 < λj andµj+1 > µj , then

‖φj − Θjφ
0‖2 ≤ (3.64)

3ε4(C2+C1|Γ |−2µj)

min{λj−λj−1,ε2|Γ |2(µj+1−µj),
ν0
2 +C2ε4+(1−C1ε2)ε2|Γ |−2µj} .

In particular, for any fixed positive integerJ independent ofε andδ, we
have

λj =
ε2π2

|Γ |2
{
(j − 1)2 − 1 +O(δ)

}
, (3.65)

φj =

√
2

εΩ2(1
2)

U̇( r
ε) cos

(
(j − 1)π5

)
+O(δ) ∀ j = 1, · · · , J

Proof. Utilizingestimate (3.26)andapplyingLemma3.9withY = H1(Ωδ),
X = L2(Ωδ), Z = X 0, η1 = C1ε

2, η2 = C2ε
4, andv = v0/2, we imme-

diately obtain the first assertion of the theorem.
Utilizing Theorem 3.4 and the fact thatφ0 =

√
εU̇( r

ε) +O(δ), we also
obtain the second assertion.��

Similarly, applying Lemma (3.9) withY = H̄(Ωδ) andZ = X̄ 0, and
utilizing Lemma 3.2 and Theorem 3.4, we obtain the following.

Theorem 3.11 (The Principal Eigenvalue )Let u = u(x, ξ, ε) be con-
structed as in the previous section. Assume that for some large constant
C∗,

δ2 > C∗ε. (3.66)

Let {(µ̄j , Θ̄j)}∞
j=1 be the solutions of (3.37) wherēΘj is normalized so

that‖Θ̄jφ
0‖ = 1. Let{(λ̄j , φ̄j)}∞

j=1 be the solution of (1.21). Then for any

integerj, if µ̄j < εδ2

2C4
we have

ε2|Γ |−2µ̄j ≥ λ̄j ≥ ε2|Γ |−2µ̄j − C5(ε2δ4 + ε3µ̄j) (3.67)

whereC5 is a positive constant independent ofδ andε. If in addition, we
assume that̄λj−1 < λ̄j andµ̄j+1 > µ̄j , then we have

‖φ̄j − Θ̄jφ
0‖2 ≤ C5[ε2δ4 + ε3µ̄j ]

min{λ̄j − λ̄j−1, ε2|Γ |−2(µ̄j+1 − µ̄j), ε
C5|Ωδ |}

. (3.68)

In particular the following hold:

φ̄j =

√
2

εΩ2(1
2)

φ0U̇( r
ε) cos(jπ5) +O(δ), j = 1, 2 (3.69)
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λ̄1 = − 4ε2

3πσ̂0

d2KΩδ

dξ2 (ξ) +O(ε2δ4). (3.70)

λ̄2 =
3ε2π2

|Γ |2 +O(ε2δ). (3.71)

Recall from the expansion thatrξ(s, ξ, ε) = − cos(πs/|Γ |) +O(δ) and
that

uξ = rξ(s, ξ, ε)ur(r, s, ξ, ε) + sξus + uξ(r, s, ξ, ε)

= −1
ε

{
cos(πs/|Γ |)U ′(r/ε) +O(ε)

}
which is close to the principal eigenfunction. Hence we have the following:

Theorem 3.12 (Spectral Gap)Let u = u(x, ξ, ε) be constructed as in
the previous section. Assume that (3.66) holds. Then, for anyv ∈ H1(Ωδ)
satisfying ∫∫

Ωδ

v = 0,
∫∫

Ωδ

vuξ = 0, (3.72)

we have

〈Lv, v〉 :=
∫∫

Ωδ

{
ε2|∇v|2 + f ′(u)v2

}
dx ≥ 2ε2π2

|Γ |2
∫∫

Ωδ

v2. (3.73)

4 Dynamics

In Sect. 2, we constructed a functionu(x, ξ, ε) and a scalar fieldc(ξ, ε) such
that


Lε(u) := ε2∆u − f(u) +
∫∫−f(u) = ε2cuξ +O(εK) in Ωδ,

∂nu = 0 on ∂Ωδ,∫
Ωδ

u = |Ωδ| − π.
(4.1)

In this section, we shall study the dynamics of (1.8) in a small neighbor-
hood of a manifoldM defined by

M := {u(·, ξ, ε); ξ ∈ ∂Ωδ}. (4.2)

4.1 The tubular coordinate system

For any positive constantη, we define

N η
L2 := {ϕ ∈ L2(Ωδ); dL2(ϕ,M) ≤ η},

NH1
ε
:= {ϕ ∈ H1(Ωδ); dH1

ε
(ϕ,M) ≤ η} (4.3)
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wheredL2 anddH1
ε
represent, respectively, the distance in theL2(Ωδ) norm

and inH1
ε norm defined by

‖ϕ‖2
H1

ε
:= ε2‖∇ϕ‖L2(Ωδ) + ‖ϕ‖2

L2(Ωδ).

The following result concerning theL2(Ωδ) projection of a neighbor-
hood ofM onM is proved in [6, Lemma 2.5]. We state it without proof.

Lemma 4.1 Assume thata is a sufficiently small number. Then for each

w ∈ N a
√

ε
L2 , there is a uniqueξw ∈ ∂Ωδ such that

‖w − u(·, ξw, ε)‖L2 = dL2(w,M) := inf
ξ∈∂Ωδ

‖w − u(·, ξ, ε)‖L2(Ωδ).

In addition,ξ is a smooth function ofw and(
w − u(·, ξw, ε), uξ(·, ξw, ε)

)
L2

= 0.

Furthermore, ifw ∈ N a
√

ε
H1

ε
andu(·, ξw, ε) is theL2 projection ofw onM

as stated above, then

‖w − u(·, ξw, ε)‖H1
ε
≤ CdH1

ε
(w,M)

whereC is a constant independent ofw, ε andξ.

One observes thatw → (ξw, v := w − u(·, ξw, ε)) is a smooth change

of coordinates inN a
√

ε
L2 , as well as inN a

√
ε

H1
ε
.

4.2 Stability of the manifold

It is convenient to write (1.8) as an abstract evolution equation

wt = Lε(w), w(0) = w0 (4.4)

where

Lε(w) := ε2∆w − f(w) +
∫∫−Ωδ

f(w) in Ωδ, ∂nw = 0 on ∂Ωδ.

Theorem 4.2 Assume thatk in (4.1) is≥ 5. Then there exists a small
positive butε–independent constantη > 0 such that the neighborhood

N ηεk−2

L2 is positively invariant under the flow (4.4); namely,

w(0) ∈ N ηεk−2

L2 =⇒ w(t) ∈ N ηεk−2

L2 ∀ t ≥ 0. (4.5)

In addition, the neighborhoodN ηε3

H1
ε
is stable in the sense that

w(0) ∈ N ηεk−2

H1
ε

=⇒ w(t) ∈ NCηεk−2

H1
ε

∀ t ≥ 0 (4.6)

whereC is a positive constant independent ofw(0) andε.
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Proof. By continuous dependence,u(t) stays inN 2ηεk−2

L2 for t ∈ [0, τ) for
someτ > 0. For any sucht, we can write, by Lemma 4.1,

w(t) = u(·, ξ(t), ε) + v(t), v(t) ⊥L2 uξ(·, ξ(t), ε).
Abbreviatingu(·, ξ(t), ε) asu, (4.4) can be written as

uξ ξ̇(t) + vt = Lε(u) + Lv +N(u, v) (4.7)

whereL is the linearization ofLε at u andN(u, v) is the remaining part
which is at least quadratic inv. Taking theL2 inner product of (4.7) withv
and using the condition thatv ⊥L2 uξ and that∂nu = ∂nv = 0 on∂Ωδ, we
then obtain

1
2(v, v)t = (Lε(u), v) + 〈Lv, v〉+ (N(u, v), v). (4.8)

Using the equation foru, we have

(Lε(u), v) ≤ Cεk‖v‖L1(Ωδ) ≤ Cεk
(
‖v‖L2(Ω2

δ ) + Cm1/2
ε ‖v‖L2(Ω1

δ )

)
.

Sincev ⊥L2 uξ, by the eigenvalue analysis in Sect. 4, we have
1
2〈Lv, v〉 ≥ C−1ε2‖v‖2

H1
ε
+ C−1‖v‖2

2,Ω1
δ
≥ C−1ε‖v‖2,Ω2

δ
‖v‖H1

ε
.

Assume thatf ′′(s) > 0 when|s| ≥ C0. ThenN(u, v)v ≥ −C|v|3 (see
[2, Lemma 2.2]), it then follows that

−(N(u, v), v) ≤ C‖v‖3
3,Ωδ

≤ CC‖v‖2
2,Ωδ

‖v‖H1(Ωδ)

≤ C2ε−1‖v‖2
2,Ωδ

‖v‖H1
ε
≤ 2ηεk−3C2‖v‖2,Ωδ

‖v‖H1
ε

where in the second inequality we have used the Nirenberg–Gagliardo
inequality, and in the last inequality, we have used the assumption that

w(t) ∈ N 2ηεk−2

L2 .
Inserting all these estimates into (4.8), we then obtain

1
2
d

dt
‖v‖2

L2(Ωδ) ≤ ‖v‖2,Ω2
δ

[
Cεk − C−1ε‖v‖H1

ε

]
+‖v‖2,Ωδ

[
Cεkm1/2

ε + (2C2ηεk−3 − C−1ε2)‖v‖H1
ε

]
.

Sincek ≥ 5, we can takeη small (and independent ofε) such that2C2ηεk−3

≤ 1
2C

−1ε2. Hence, if‖v‖2,Ωδ
> ηεk−2, then so does‖v‖H1

ε
, and therefore,

1
2
d

dt
‖v‖2

2,Ωδ
≤ ‖v‖2,Ω2

δ

[
Cεk − C−1ηεk−1

]
+‖v‖2,Ωδ

[
Cεk+1/2| ln ε| − 1

2C
−1ηεk

]
< 0.

This implies that‖v‖2,Ωδ
can never exceedηεk−2, thereby proving (4.5).

Using local regularity theory for parabolic equations and for the function
W (y) := w(x)|x=εy, onecaneasily establish (4.6). This completes theproof
of the lemma. ��
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4.3 Motion on the manifoldM

Theorem 4.3 Assume thatk in (4.1) is≥ 5andw(0) ∈ N ηεk−2

H1
ε

. Letw(t) =
u(·, ξ(t), ε) + v(t) be the decomposition given by Lemma 4.1. Then

ξ̇(t) = ε2c(ξ(t), ε)+O(εk−1/2δ2) =
4
3π

g2
0K′

Ωδ
(ξ)ε2δ[1+O(δ)]+O(δ4ε2)

(4.9)
whereg0 = 1 if ε = O(δ3).

Proof. Taking theL2 inner product of (4.7) withuξ we have

ξ̇(t)‖uξ‖2
2,Ωδ

+ (vt, uξ) = (Lεu, uξ) + 〈Lv, uξ〉+ (N(u, v), uξ). (4.10)

Differentiating the identity(v, uξ) = 0 with respect tot we have∣∣∣(vt, uξ)
∣∣∣ = ∣∣∣(v, uξξ)ξ̇

∣∣∣ ≤ |ξ̇| ‖v‖2,Ωδ
‖uξξ‖2,Ωδ

≤ C|ξ̇|Cηεk−2ε−3/2 ≤ C2ξ̇εk−5/2‖uξ‖2
2,Ωδ

since‖uξ‖2,Ωδ
≥ C−1ε−1/2 and‖uξξ‖2,Ωδ

≤ Cε−3/2.
Assuming thatf(s)growsatmostwithapowerof three, then|N(u, v)| ≤

Cv2(1 + |v|) so that∣∣∣(N(u, v), uξ)
∣∣∣ ≤ C

[
‖v‖2

4,Ωδ
+ ‖v‖3

6,Ωδ

]
‖uξ‖2,Ωδ

≤ C2
[
(ε−1‖v‖H1

ε
‖v‖2,Ωδ

+(ε−1‖v‖H1
ε
)2‖v‖2,Ωδ

]
‖uξ‖2,Ωδ

≤ Cε2k−5ε1/2‖uξ‖2
2,Ωδ

.

Also, from the equation foru, we have

(Lε(u), uξ) = ε2c (uξ, uξ) + (O(εk), uξ) =
(
ε2c+O(εk+1)

)
‖uξ‖2

2,Ωδ

since‖uξ‖L1 = O(1).
Utilizing all these estimates in (4.10), we then obtain

ξ̇
(
1 +O(εk−5/2)

)
‖uξ‖2 =

(
ε2c+O(ε2k−9/2) +O(εk+1)

)
‖uξ‖2

2,Ωδ
.

That is

ξ̇ =
[
ε2c+O(ε2k−9/2) +O(εk+1)

][
1 +O(εk−5/2)

]
= ε2c+O(εk−1/2δ2)

sincek ≥ 5. This completes the proof of the Lemma.��



298 N.D. Alikakos et al.

4.4 Equilibria and their stability

Theorem 4.4 Let z(ξ0) be a point on∂Ωδ such that the curvature of∂Ωδ

experiences a strict extreme; namely,

ϕ2 := δ−2K′
Ωδ
(ξ0) = 0, ϕ3 := δ−3K′′

Ωδ
(ξ0) 
= 0.

Then in a small neighborhoodofu(·, ξ0, 0), there exists a uniqueequilibrium
of (1.8). In addition, ifϕ3 > 0, i.e., the curvature experiences a local
minimum, then the equilibrium is unstable with an one dimensional unstable
manifold. Ifϕ3 < 0, then the equilibrium is exponentially stable.

Proof. 1. Existence.For anyξ̃ ∈ IR1, letw(t, ξ̃) be solution of the flow of
(4.4) with initial dataw(0) = u(·, ξ̃, ε). If we denote byξ(ξ̃, t) as the point
such that theL2 projection ofw(t, ξ̃) is u(·, ξ(ξ̃, t), ε), then from Theorem
4.3, we know that

ξ̇(t, ξ̃) = ε2
[
c(ξ(t, ξ̃), ε) +O(ε7/2)

]
, ξ(ξ̃, 0) = ξ̃. (4.11)

Let ξ1, ξ2 be any two fixed points such that

ξ1 < ξ0 < ξ2, δ3/2 ≤ |ξ1 − ξ0|, |ξ2 − ξ0| ≤ δ−1/2.

Then since|K′′
Ωδ
(ξ0)| = δ3|ϕ3| > 0 andϕ3 is independent ofδ, we see that

[c(ξ1, ε) +O(ε7/2)][c(ξ2, ε) +O(ε7/2)] < 0. (4.12)

Now defineAi as the set consisting of all thosẽξ ∈ (ξ1, ξ2) such that
there exists a timeT (ξ̃) > 0 satisfyingξ(T (ξ̃), ξ̃) = ξi. By continuous
dependence of initial data of the flow (4.4), bothA1 andA2 are open. In
addition, from (4.11)and (4.12),wesee thatA1∩A2 = ∅.Hence, thereexists
ξ∗ ∈ (ξ1, ξ2) such thatξ 
∈ A1∪A2; namely,ξ(t, ξ∗) ∈ (ξ1, ξ2) for all t ≥ 0.
Furthermore, since|c(ξ)+O(ε7/2)| 
= 0 as long asδ−1/2 ≥ |ξ−ξ0| ≥ δ3/2,
we see that fort large enough,

ξ(t, ξ∗) ∈ (ξ0 − δ3/2, ξ0 + δ3/2) for all t ≥ T ∗. (4.13)

Recalling that (4.4) is a gradient flow, we know thatω–limit set of any
trajectory is non–empty and consisting of equilibria. In particular, theω–
limit set ofw(t, ξ∗) is non–empty and consists of equilibria of (4.4). From
(4.13), we then conclude that there exists at least one equilibrium of (4.4)
nearu(·, ξ0, ε). This proves the existence.
2. Uniqueness and StabilityObserve that the principal eigenvalue ofL at
u = u(·, ξ, ε) is ε2[K′′

Ωδ
+ O(δ4)]. Also if we replaceu by u + v, then for

anyφ ∈ H1(Ωδ),∫
Ωδ

|(f ′(u)− f ′(u+ v))|φ2 ≤ Cε−1‖v‖2,Ωδ
‖φ‖H1

ε
‖φ‖2,Ωδ

.
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We then conclude that if we replaceu by u+ v with ‖v‖2,Ωδ
≤ ε3δ4, then

the principal eigenvalue ofL will change at most byCε2δ4.
Now from the eigenvalue analysis in Sect. 3, we see that for anyw ∈

{w;w = u(·, ξ, ε) + v, ξ ∈ [ξ0 − δ−1/2, ξ0 + δ−1/2], ‖v‖2,Ωδ
≤ ε3δ4},

the second eigenvalue ofL at w is ε2[3L−2
0 + O(δ)], uniformly for ξ ∈

[ξ0−δ−1/2, ξ0+δ−1/2], while the principal eigenvalue is−4π
3L2

0
ε2δ3[ϕ3(ξ0)+

O(δ1/2)], which is uniformly bounded away from zero. From this, and stan-
dard linearization theory we obtain both the uniqueness of the equilibrium
and its exponential stability/instability. ��

Remark 4.5As far as we know, the existence of unstable equilibria stated
in Theorem 4.4 has not been rigorously verified before in the literature, in
the case of bistable nonlinearities in higher space dimensions. In the case of
one-sided nonlinearities, Ni and Takagi [[69]] have established existence of
unstable equilibria near critical points of the curvature of∂Ω. The existence
of stable equilibria near strict local maxima of the curvature has been proved
in several places; see, for example, [31,51].

5 Appendix: Energy comparison

In this appendix, we shall compare the energies of the constant solution (i.e.,
homogeneous state) with those of single interface layered solutions. More
precisely, we calculate the energy

E(u) :=
∫ 1

0
rN−1

( ε̂2

2
u2

r +W (u)
)
dr, W (u) :=

∫ u

−1
f(s)ds

for u = u(r), which, together with a constantσ, solves




ε2urr + ε̂2 N−1
r ur = f(u) + σ, r ∈ (0, 1),

ur(0) = ur(1) = 0,
∫ 1
0 rN−1u(r) dr = 1

N m,
m := 1− 2δN .

(A.1)

If (u, σ) is a constant solution, then it is uniquely given byu = m and
σ = −f(m), and its corresponding energy is

E(m) = 1
N W (m).

Now letu be a singled layered (“bubble”) solution of (A.1) in the sense
thatu(r) is monotonic. Letρ be the “radius”; namelyu(ρ) = 0. We assume
thatρ ∈ [2ε̂| ln ε̂|2, 1/2] and want to calculate the energy associated with it.
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From the differential equation (A.1), one can show thatσ + f(u(1)) =
O(e−ν(1−ρ)/ε̂), whereν can be any positive constant< f ′(u(1)). Also,
definew(z) = u(ρ+ ε̂z). Then

w′′ − f(w) = σ −
{

(N−1)ε̂
ρ +O( ε̂2| ln ε̂|2

ρ2 )
}
w′, z ∈ [−| ln ε̂|2, | ln ε̂|2].

A phase plane analysis then yields (sinceu is single layered),

w(z) = U(z) + σU1(z) +O( ε̂2| ln ε̂|2
ρ2 )

)
,
(
U1 is as in (2.24)

)
σ =

(N − 1)ε̂
a0ρ

+O
(

ε̂2| ln ε̂|2
ρ2 )

)
,
(
a0 is as in (2.22)

)
(A.2)∫ 1

0
rNur = ρN (2 + o(1)),∫ 1

0
rN−1u2

r = ρN−1
(

2
a0

+ o(1)
)
.

From the area constraintm = N
∫ 1
0 rN−1u = u(1)− ∫ 1

0 rNur, one derives

u(1) = m+
∫ 1

0
rNur = 1− 2δN + ρN (2 + o(1)).

Therefore,

σ = −f(u(1)) +O(e−ν(1−ρ)/ε̂) = −f ′(1)(u(1)− 1) +O(|u(1)− 1|2)
= f ′(1)[2δN − 2ρN + o(ρN + δN )].

This relation, together with (A.2), then implies thatρmust satisfy the alge-
braic equation

ε̂ = G(ρ) + o(δN+1 + ρN+1), G(ρ) :=
2f ′(1)a0

N − 1
ρ(δN − ρN ). (A.3)

Clearly, this equation has a solution if and only if

ε̂ < c∗
NδN+1,

c∗
n :=

2f ′(1)a0N

(N2 − 1)(1 +N)1/N

=
4Nf ′(1)

(N2 − 1)(1 +N)1/N
√
2
∫ 1
−1

√
W (s)ds

. (A.4)
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Assume that the above relation holds. We now calculate the energy ofu:

NE(u) = N

∫ 1

0
rN−1

(
W (u) + σu − ε̂2

2 u2
r

)

+Nε̂2
∫ 1

0
rN−1u2

r − σN

∫ 1

0
rN−1u

= rN [W (u) + σu − ε̂2

2 u2
r ]
∣∣∣r=1

r=0

+
∫ 1

0

{
rNur[urr − f(u)− σ] +NrN−1ε̂2u2

r

}
− σm

= W (u(1)) + σ[u(1)− m]

+ε̂2
∫ 1

0
rN−1u2

r

(
by (A.1)

)
= W (m) + (f(u(1) + σ)(u(1)− m)− 1

2f
′(ξ)[u(1)− m]2

+ε̂2
∫ 1

0
rN−1u2

r

(
ξ ∈ [m,u(1)]

)

= W (m)− 1
2f

′(1)[2δN − 2ρN ]2[1 + o(1)] +
2ε̂ρN−1

a0

= NE(m)− 1
2f

′(1)[2δN − 2ρN ]2[1 + o(1)]

+4f ′(1)ρN [δN − ρN ](1 + o(1))
= NE(m)− 2f ′(1)[δN − ρN + o(ρN )][δN − 3ρN + o(ρN )]

Hence,

E(u) < E(m) ⇐⇒ ρ > 3−1/Nδ.

From the equation forρ in (A.3), to haveρ > 3−1/Nδ, it is necessary
and sufficient to haveG(3−1/Nδ) > ε̂; namely, it is sufficient and necessary
to have

ε̂δ−(N+1) <
4f ′(1)a0

331/N =
8f ′(1)

331/N
√
2
∫ 1
−1

√
W (s)ds

=: C∗
N . (A.5)

One observes that whenN = 2, C∗
N = c∗

N = C∗
1 whereC∗

1 is defined in
(2.65).

In conclusion, for the bubble to be the global minimum energy, one
needs condition (A.5). In terms ofε = ε̂/δ, condition (A.5) is equivalent to
ε ≤ C∗

NδN , whereN is the space dimension.
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