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Abstract. We give a description of the ultimate dynamics for the simplest
evolution equation compatible with the Van der Waals Free Energy. We
establish existence of stable sets of solutions corresponding to the physical
motion of a small, almost semicircular interface (droplet) intersecting the
boundary of the domain and moving towards a point where the curvature
has a local maximum. Our results represent a particular extension of the
Equilibrium theory of Modica and Sternberg to the next dynamic level in
the Morse decomposition of the flow.

Mathematics Subject Classifications (199B5A35, 35C20, 35K55, 35B25.

1 Introduction

In this paper we study the functional

Je(u) = /Q (’°;2|vu|2 +W(u)> dz,

u € {veHl(Q) : |!12|/deac:m} (1.1)
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Fig. 1.(a). GeneralW (u), (b). NormalizedW (u)

and its associated gradient flow i} (£2). Herem is a constant antV is a
double-well potential. By adding a linear functionwto W if necessary,
we can normalizéV without affecting the dynamics so as to have wells of
equal depth. We take the global minimuml&fto be0 and attained only at
u = +1 (Fig. 1(a), (b)).

In the 70’s, DeGiorgi et al. [66,67] introduced the family of functionals
{%Jé(u)}éw as a means of approximating the perimeter functional

Po(E) =|0E|, EcC . (1.2)

Independently Cahn and his collaborators [5,19,20] introduced (1.1) for
describing the evolution of the concentratiofior a binary alloy. Some of
these ideas had been introduced before by Van Der Waals [63].

The W term favors functions that take values close to its minima. We
call such functions layered. We catiterfacesthe zero level sets of such
a function, and we calitates the values close ta-1 that« takes almost
uniformly away from the interface. Note that the zero level set could be
replaced by any other level set strictly betweehand1. Notice also that
the mass constraiﬁl}ﬂ Joudz =m,m e (—1,1), forces separation, that is
both states have to be taken. In contrast, the gradient term favors the uniform
unlayered state and penalizes interfaces by registering their perimeter. The
result of this competition is the formation of layered functions with interfaces
moving so as to reduce the total perimeter [41,42, 64]. Surface tension energy
is proportional to the perimeter and is a second order effect in relation to the
bulk energy, and séis naturally small.

In the present paper we study the motion and stability properties of such
interfaces for smalf. We restrict ourselves to a single connected interface
intersecting the boundary. We also limit ourselves to two space dimensions
and therefore to interfaces that are curves. The discussion above suggests
that most of the energy of a layered state is concentrated on and near the
interface. This in turn suggests that perhaps for st#tle study of (1.1)
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can be reduced to a purely geometric problem associated to the perimeter
functional. This intuition is generally false because the remaining part of
the energy which is diffused through out can make a difference. This fact
distinguishes diffuse from sharp interface models and makes the former
much more interesting from the dynamic point of view. In the present paper
size is an important parameter. After stimulating work of Carr, Gurtin and
Slemrod [21] in one space dimension, Modica [55], improving on Modica
and Mortola [67], and independently Sternberg [61] (see also Owen and
Sternberg [57]) established a general relationship between (1.1) and (1.2),
asé tends to zero, for global minimizers. In two space dimensi@igen and
Kowalczyk [31] described the structure of local minimizers of (1.1) of small
mass by showing that (in the limit) the interface is a circular arc intersecting
the boundary orthogonally, and enclosing a point on the boundary where the
curvature has a local maximufriThe constraint in (1.1) at the geometric
level (1.2) is translated into fixed enclosed area.. Itis clear at the level of (1.2)
that one can construct a circular arc intersecting the boundary orthogonally
and enclosing a fixed area only at very special locations which are related to
the critical points of the curvature of the boundary. It is also intuitive that the
interface will be minimal when the curvature of the boundary is maximal.
This intuition is behind the Chen-Kowalczyk result.

By the heuristic reasoning above one expects circular interfaces enclos-
ing a point of local minimum of the curvature to correspond to unstable
critical points of the functional (1.1). Moreover one expects this unstable
equilibriato have unstable manifolds of dimension equal to that of the bound-
ary 0f2. A rigorous statement to this effect is stated in Theorem 1.1 below.

In this paper we study dynamics. We consider the simplest dynamical
system associated to the constrained functional (1.1), which results after
taking the gradient i.? of the functional on the Hilbert manifold made up
of L? functions with fixed average [40, 65]. This produces the so called mass
conserving Allen-Cahn equation studied by Rubinstein and Sternberg[59]

¢ (y, 1) = E24y0°(y, 1) — f(6°(y,1)) + [f o f (6° (-, 1)),
yeNt>0

Ond(y,t) =0, y€oN,t>0,
¢ (y,0) = 5(y), ye N

1 We have not attempted higher space dimensions because of the complexity of the asymp-
totic expansion, in particular the difficulty of the geometric problem (see Sect. 2.6). Naturally
several ingredients of our analysis extend effortlessly to higher dimensions.

2 Ni and his collaborators (see [69] where also further references can be found) have for
some time now identified the critical points of the (mean) curvatui®ts possible loca-
tions for the peaks of certain equilibrium solutions which they call spikes. The nonlinearities
as well as the equilibrium they study are fundamentally different from these in the present
paper. Nevertheless there are relationships (see Remark 4.5, and also the Appendix).

(1.3)
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Fig. 2. Four key stages in the evolution for an elliptical dom&inStage 1V is the object of
study in the present paper. We allow general two-dimensional domains

where(? is a fixed bounded domain with smooth boundary, 9, is the
exterior normal derivative t012, A, represents the Laplacian with respect
toy, and f[f, = ﬁffn represents the average ov@r Here f is the

derivative ofT/’. We assume the following conditions fere C>(IR'):

S s
f(E) =0, f/(&£1)>0, / f :/ f>0 forall se (—1,1).
' ' (1.4)

For this dynamical system we construct a seL(2) which captures
all the unstable equilibria alluded to above, together with their unstable
manifolds. We do this in appropriate coordinates so that the reduced flow
on the one dimensional unstable manifolds corresponds in an unambiguous
way to the motion of a (roughly) semicircular interface on the boundary
moving towards the increasingly curved region, see Fig. 2.

If the interface happens to be close to a small semicircular shape (that
we call droplet) one expects (on the basis of isoperimetric reasoning for
example) that it will stay semicircular for economizing the perimeter and
therefore that its evolution could be described in terms of the motion of one
point on the boundary of the domain, which can be thought as the barycenter
of the droplet.

Expressing our work in this paper in the language of dynamical systems
we would say that we are describing a piece of the attractor of (1.3) for
smallé. This piece is lying in a sublevel set of energy very close to that of
the global minimizer. It is also a very stable and attracting set, and therefore
our result renders precise information on the ultimate dynamics of a typical
solution to (1.3) see Fig. 3.

We consider the sublevel set. = {¢/J.(¢) < ¢} and look for the
maximal compact invariant sek§. of (1.3) contained irf... It is known that
for gradient systems these sets are made up of unstable equilibria and their
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KO.

Fig. 3.

unstable manifolds [49]. We expect from bifurcation theory that there must
be critical values] < ¢5 < ... < ¢, < ... atwhich the maximal invariant

set will change dimensiorgg < ¢f < ... < ¢, < ..., dimK, = 1,

c; < c < cj,.Figure 3 describes pictorially the first few invariant sets for
an elliptical domairr2. In the picture, which lives in the infinite dimensional
phase space, we have indicated the equilibria, their unstable manifolds, and
the sense of the flow. In this paper we study.

This procedure of slicing the attractor in terms of the energy and iden-
tifying the maximal compact invariant sets contained therein, is known as
the Morse Decomposition of the flow (Hale [49]). This approach was de-
scribed for one-dimensional bistable gradient systems in Mischaikow [75]
and implemented for the viscous Cahn-Hilliard equation in Grinfeld and
Novick-Cohen [76]. We note that for the problem at hand, the limit of the
whole attractor, as goes to zero, does not exist in any sense while the limits
of these invariant sets are meaningful. Such geometrical ideas and methods
were introduced in Fusco and Hale [45], Fusco [44], and in Carr and Pego
[22,23] for the 1-dimensional Allen-Cahn equation. For related more recent
work we refer to [1,13,7,8] and to the references therein.

We now state (informally) two of the main results in this paper. We use
z = z(€) to parametrizé(? where is the arc-length parameter. We denote

~ N

by K (§) the curvature obs? atz(¢).

Theorem 1.1 (Equilibria/Stability) 3 Assume that

w62

e §<1, 0<é< 4 (1.5)

m=1

% See Theorems 4.3, 4.4 for precise statements.
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Let z(£,) be a point ondf2 such that the curvature @if2 experiences a
strict extreme; namely,

Kio(€) =0, KH(&) #0.

Then there exists a unique equilibriufty) of (1.3) such that the zero level
set of¢(y) is close to the circle centered a(ég) with radiusd. In addition,

if K%() > 0, i.e., the curvatureéCy(-) experiences a local minimum
at &, then the equilibrium is unstable with an one dimensional unstable
manifold. If K%, (&) < 0, i.e, the curvature functioiCy,(-) experiences a
local maximum at, then the equilibrium is exponentially stable.

Theorem 1.2 (Motion) Assume (1.5) and thaf(y) is a “layered” initial

data whose interface is close to a semicircle centeredé) with radiuss.
Then the solution of (1.3) is also layered with interface close to a semicircle
with radius d centered atz(£(t)). In addition, £(¢) is determined by the
following O.D.E.

d . 4625, -
60 = S—Ko(E(®) + 0, te (0,00),

£(0) = &

(1.6)

whereO(£62) is bounded byC'2252 with some positive€> independent of
t € (0,00).

We now proceed to explain some of the ideas. The success of the method
employed depends on our ability to construct a good approximation to the
invariant set. Our approach is based on perturbation theory. Our reference
problem is (1.3) on the upper half plane or better yet, on a large circular
disc.

This problem clearly possesses a one-dimensional manifold of equilibria
(whose interfaces are semicircles centered on the real line with régius
and provides the first approximation to the manifold. The key idea is that
shrinking the droplet is equivalent to flattening the boundary so size is the
extra parameter.

A main obstruction however comes later after realizing that we can not
shrink the droplet arbitrarily and therefore improve the approximation at

will; Thereisacritical sizeg(é) belowwhichthe dropletshape itselfbecomes
unstable; it “melts down”, and the uniform state becomes energetically more
efficient (see Appendix). We are therefore forced to refine the approxima-
tion provided by the reference problem above by some other means that
does not involve further shrinking of the droplet. We do this by the method
of matched asymptotic expansions appliethmequation of the manifold
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(see (1.10)). This involves inner/outer expansions, boundary layer expan-
sions, and the solution of a geometric problem for interfaces intersecting
the boundary and enclosing a fixed area. We need several terms in the ex-
pansion: Seven terms for Theorem 1.1 and five terms for Theorem 1.2. In
this way by truncating the expansion we construct a certain mani¥eé|d
which in general is not invariant. Next we linearize the operator about a
generic point onM and show that the spectrum splits into two parts: an
O(£?) order eigenvalue (corresponding to the motion on the manifold), and
the rest, which is bounded away from zero by a gap of the qi)éys?,
whereé can be thought as the “radius” of the droplet. The restriction on the
radius not being too small (and also not too large) enters in establishing the
gap. The conclusion we draw out of this spectral information concerns the
stability of the setM, in other words, the stability of the droplet shape. We
also construct a thin invariant tube Ir?, about the set. By introducing
coordinates aboutt we describe the solutions in the tube in terms of their
projection onM. The manifold M is a very good approximation to the
maximal compact invariant set (manifold) contained in the tube.

What we have presented above is a synthesis of certain results for de-
scribing the motion of interfaces intersecting the boundary.

We now give a more detailed description of this work. We begin by de-
scribing the contents of Sect. 2. We find it convenient throughout to introduce
a change of variables that fixes the size of the droplet. Let

y:(SIE, 5255) us(xvt) :¢é(y7t)7
Q5 =610 := {x;6x € 2}, 1.7)

We can write (1.3) as

uf(x,t) = 52Au8(xat) - f(uE(CL‘,t)) + ffﬂgf(ug('vt))a

x € (25,t>0 (1.8)
Opuf(z,t) =0, x € 0f25,t >0, '
us(z,0) = uf(x), x € (25

where A is the Laplacian with respect tg 0,, is the normal derivative to
0125 with respect to.

Similarly, we parameteriz812; by 2°(¢) where¢ is the arc—length pa-
rameter ofd(2s; that is, we use the transformation

1 /& 1
_ Srey = _
E=eo 20 =52(€) = 52(%) (1.9)
Wherez(é) is the arc—length parameterizationd®.

We are seeking an invariant manifold consisting of functions(-, &, ),
parametrized in terms of the scafaiThe invariance of this manifold under



240 N.D. Alikakos et al.

(1.8) is a purely geometric condition stating the tangency of the vector field
to the manifold, can be written analytically in the form:
—e?Au+ f(u) + e2cug + g0 =0,
x € s5,t>0,6 e R,

Opu(x,€,6) =0, x€d2s¢e R,
I g,u- & e) = 92| — .

Hereo = o(£,¢) andce = ¢(&, ¢) are constants im. The scalings?c,

eo can be guessed. Observe that if we defifer, t) = u(x, =, <) where
Z = Z(t,¢) solves the ODE

(1.10)

E(t,e) = 2¢(5, ¢), t e R (1.112)

thenu®(x,t) is a solution to (1.8). Equation (1.11) represents the reduced
flow on the manifold. We calt thespeedof the droplet. Ifc(&y, €) = 0 then
u(z, &, €) is an equilibrium solution.
We shall find &pproximate) solutions to thévlanifold Equation (1.10)
(cf. [8ii]) We decompose: asu = u' + «® and solve for(u', u®, o, c) in
the following four steps.

Step 1. First, we consider the differential equation (1.10a), neglecting
the boundary condition (1.10b) and the area constraint (1.10c). Namely, for
given parametergs, c), we find a solution:' solving the followinginterior
problem:

(Py) —2Aul + f(ul) + 52cu15 +e0 =0, z € 25,6 e R
(1.12)

Though there are infinitely many solutions, we are only interested in solu-
tions having a certain special profile and whose interfa¢g ¢) defined
by

(€ e):={x e 2;ul(z,&¢) =0} (1.13)
is a smooth (in space, § and ing), simple curve intersectingy(?; at exactly
two points. Letr (distance) and (arc length) be the canonical coordinates
of 2 with respect to the interface ad = ~ be the stretched variable. We
seeku’ inthe formu’ (x,&,e) = U(R) + Y50 e/uf (R, s,€) whereU is
the heteroclinic solution to

U — f(U) =0, Ultoo)=+1, U(0)=0, / RU2(R)AR = 0,
R

(1.14)
The basic linear problem underlying the constructiomj’qu =0,1,2,
-, is
{qb”(R) - f(UR)$(R) =q(R), REeR, (1.15)
¢(0)=0,  ¢€L*(R).
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We remark here that (1.15) has a unique solution if and onjysiitisfies
the following compatibility (or solvability) condition

/ q(R)U(R)dR =0 (1.16)
R

Consider the following question: Given a family of cun@(¢, €) } e jp1
and constants(&, €) andc(&, €), what is the necessary and sufficient condi-
tion for the existence of a unique solutiohof (P;) having!l” as its interface?

In step 1, we shall use asymptotic expansions to derive such a necessary and
sufficient condition which can be expressed in terms of a set of differen-
tial equations governing'. We shall refer to these governing equations as
the interfaceequation. They are derived from the compatibility condition
(1.16).

Step 2. Withu! obtained in Step 1, we seek a functi@f such that if we
defineu = u!'+uPB, thenu satisfies both the differential equation (1.10a) and
the boundary condition (1.10b). Namely, we se&kto solve the following
boundary layeproblem

{€2A — f’(ul)}uB = 2cuB¢ + N(ul, uB),
T € Qg,f S Bl,
(Ps) OpuB = —0pu’, x €082, & € R, (1.17)

uB = O(exp(—gdist(x,aﬁg))).

Here and in the sequéX(a, b) := f(a +b) — f(a) — f'(a)b.

Denoting byh(x) the distance fronx to 925 and by H the stretched
variable’, we seek.” in the formu® (R, H,&,e) = Y., e/uP (R, H, €).
The basic underlying linear problem here is,

{d’RR—i-d)HH—f'(U)gb:G, onD:=Rx Rt

(1.18)
ou(R,0) =g(R)on IR, ¢(0,0)=0.

We have the following fact (Lemma 2.1): Problem (1.18) has a unique
bounded solution if and only if

/ / G(R,H)U(R)dRdH + / g(R)U(R) = 0. (1.19)
RxIR* R

Since we ask for.® to decay exponentially fast faraway from the boundary
0125, it turns out that for suchP to exist, it is necessary and sufficient
that the angles at the intersectionsad®s with I" have to satisfy certain
relations which we caltontact angleconditions. They are derived from the
compatibility condition (1.19).
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Step 3. We find conditions om andc such that: = u' + P satisfies
the area constraint condition (1.10c); namely,

(Pa) / / ()60 = |25 (1.20)

Step 4. We solve the followingeometricproblem: Find (', o, ¢) such
that the interface equation from Step 1, the contact angle conditions from
Step 2, and area constraint condition from Step 3 are all satisfied.

We remark that our geometric problem is different from a free boundary
problem, which is frequently obtained after formal asymptotic expansions,
and needs only to be solved fok [0, c0). In the current situation, if one
considerst as time, then we are looking for a solution which is periodic
with period equal to the arc length of the boundétys. Here, we are not
going to establish an existence theorem (since what we want is more infor-
mation about the solution) but instead, we shall again use formal asymptotic
expansions to find an approximate solution.

In summary, we construct approximate solutions to (1.10) as follows.

Step 1: Assumé’. is known, solve for!. The solvability condition for
ue yields the governing equation fat..

Step 2: Solve forZ which satisfies,? = O (e=I#I=7H) The solution
for u? yields the contact angle df. with 912, § + O(e2$).

Step 3: Solve Py4). This yields the area constant 6h (£).

Step 4: Find(I;,0(&,¢),c(€,¢)) such that the required condition in
Steps 1-3 are fulfilled.

Finally, we have to emphasize that our solutions of (1.10) are only asymp-
totic solutions, in the sense that they can be accura@(td‘) for any a
priori fixed integerK. This is a very brief description of the construction of
the approximate manifoldA, which approximates the evolution stage we
are describing in this paper.

The stability is done in Sect. 3 which we now describe. We remark that
most of the spectral theory results are quite general and can be adapted
to different situations by trivial modifications. Some, as in Lemma 3.9 for
example, already read in generality. This section could have been written
as a separate paper. For stability, one needs to study, for anyM, the
following eigenvalue problem:

Lp:=—e2Ad+ f'(u)p = Ap— A in £

99 -0 ondsns (1.21)
an odx = 0,

where(), ) is the unknown eigenvalue/eigenfunction anet —ff% 1 (u)
odzx.
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A related more familiar eigenvalue problem is

{ —2A¢ + f'(u)p = Ao in 02

(1.22)
9 —0 ondns
and corresponds to the standard Allen-Cahn equation. We study both eigen-
value problems although we need only the former for carrying out the proofs
of our main results in the present paper.
We prove the following result.

Theorem 1.3 (Small Eigenvalues).et v be any point inM and let

{65, A}520 and {(¢;, A j)}52, be the complete solution of the eigenvalue
problems (1.22) and (1.21) where the eigenvalues are ordered from small to
large. Assume that for some large enough 62 > C*c. Then

2.2

X =T {( 1) 1+O(5)}, (1.23)
;= 5—1/2U(g) cos ((j - mz) +0(5)
j=1,2,3,..
827T2 K 2 .
% = (=140}, j=23,.. (1.24)
$i = 5*1/2U(t) cos(jml) + O(), j=1,2,3,...
- 452 d2 2 ¢4
pu— 1-2
M = g Ko, (6) + O (1.25)
16253 @2 . -
= 37T0A_0d7€2 25 (§) éims +0(e%0%)

Here|I'| is the length of the interface arfds a scaled arclength parameter
of I', scaled so that it varies if0, 1]; 6 is defined in Remark 2.4.

By examining the proof of Theorem 1.3 one sees that the result is mean-
ingful for the more general class 0% characterized by the following struc-
ture:

_ h 2
u(z) —U< ) +eUf ( ) +eUP (5’5) + O(e?)
whereU is as in (1.14), and’{, UP satisfy:

/ U (RYUL(R)AR = 0, (1.26)
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/ / f"(U(R)U*(R)UB(R, H)dRdH
D

:Kaﬁg(pi) /R UX(R)dR (1.27)

wherept andp~ are the intersections df with 912;. Notice that/? is the

first term in the boundary layer expansiomgfand is significant near the
pointsp®. Conditions (1.26) and (1.27) are consequences of the solvability
conditions (1.16), (1.19) for the interior and boundary layer expansions.

The reader should recall that the spectruthof= ¢ — f/(U)pin L2(R)
lies in [0, c0), with zero as a simple eigenvalue and with the continuous
spectrum filling the entire intervdiin(f/(£1)), c0). A finite number of
eigenvalues below the bottom of the continuous spectrum is a possibility
[53,68].

A general perturbation can be split into two parts. The one part is geo-
metrical and is relevant to interface instabilities. The other part comes from
the profile of the solution across level sets and relates to the tendency of the
solution to stay layered (cf. (1.27) below).

The geometric perturbations are of special interest. Their corresponding
eigenvalues\, (¢) are callectritical * and are characterized by the fact that
An(e) = 0 ase — 0 for fixed n, see [9]. In contrast the eigenvalues cor-
responding to the perturbations of the profile are associated to eigenvalues
bounded away from zero uniformly in We remark that the critical eigen-
values ofL are coming from the zero eigenvaluelofibove, and that they
are of magnitude(?). At first sight this may look peculiar sinagis an
e-perturbation (and not ast-perturbation) of/. The explanation lies with
the conditions (1.26, 1.27) which have a cancellation effect on-thweler
term in the expansion af (c.f.[9]).

Critical eigenfunctions capture motion relative to the moving interface.
Itis useful to think of these eigenfunctions in terms of a moving frame and in
terms of relative speeds. It turns out that a perturbation of the interface away
from 912 evolves a(£?) speed, while angle adjustment near the boundary
is faster and occurs at an(s) speed. This fact allows us to disregard the
motion of the interface in the determination of the boundary conditions that
the eigenfunctions satisfy.

The critical eigenfunctions are studied via tiecomposition(c.f. [9],
[26],[10])

¢ =¢"0(0) + v, B2 =1 (1.28)

4 Nishiura and Fuijii [72], and Angenent, Mallet-Paret and Peletier [73] were among the
firstto identify critical eigenvalues in this sense, for related problems in one space dimension.
There the interface is a point, there is no change of perimeter, and the relevant perturbations
are translations.
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whereg® = U(%) + O(e) with the O(¢) order term so thap is ane-
approximate eigenfunction.

First, we ignore the) term, obtaining, for the unconstrained case the
following geometric eigenvalue problenfor © = ©(¢):

{ —(blgl)/ + 02O = pw-0, L € (0, 1),

(1.29)
—b1(0)0'(0) + b*O(0) =0, by(1)O'(1) + b-O(1) = 0

whereby, be, b, b~ are independent @d; and®, and satisfy the estimates

b= = —|IKo;(p=) + O(e), bi(f) =14 0(e), wa=140(e),
ba() = 2(IT|K)? + ;(II'6)2 + O(e)

where K is the curvature of the interfacE (a function of¢) andg is a
constant depending an

We comment that for the standard Allen-Cahn equation (for which the
corresponding geometric problem is evolution by mean curvature) we need
to choosel/{ = 0, 6 = 0. The @-equation (1.29) in the limit ag, — 0,
takes the form ([10])

N z/@@ = uo.

Notice that the coefficient i%l@, as opposed td&C? that is obtained by
linearizing directly the mean curvature operator ([68, 36, 35]). We refer to
[10] for an explanation.

Theorem 1.3, and more generally Theorem 3.10 in Sect. 3, state that in
the limitass — 0, the critical eigenfunctions separate ifqZ) ©(¢), and
provide a one—dimensional eigenvalue problem determiéinghe proof
is based on the decomposition of the operatet A + f/(u)I into

2 Or y
L=t (T k) H/@r

2 as
L= _1+€IC(5) 88(1+/C(s))'

(1.30)

We remark that the9-equation (1.29a) is af)(s?) fact and so requires
knowledge of the=2 terms in the expansion af. On the other hand the
boundary conditions (1.29b) result from arorder matching and so do
not require any knowledge beyond thdevel. The two derivations can in
principle be decoupled.

A major stability issue for the droplet is persistence of its nearly circular
shape. Itis intuitive that unless the droplet is sufficiently small in relation to
the curvature of the boundary, its circular shape should not be preserved. This
intuition is confirmed by the following facts. First we note that the critical
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Fig. 4. The energy of thainiform state the spike and thedroplet The horizontal axis
represents the phase space. The parameter is the mass and is proportidnalisdixed

and small. Fow large (in relation always té) the droplet is the global minimizer. Notice
that the uniform state is always a local minimizer. The spike is unstable (see [12] and [69] in
related context). Af = ¢* the uniform state and the droplet have equal energy. Até**
droplet and spike coalesce. Finally bk §** there is no droplet or spike, and the uniform
state is the only critical poiné is roughly the radius of the droplet

eigenvalues\;, j = 1,2,--- scale likeC;(j* — 1)e26~2, and therefore
perturbations away from the circular shape decay faster as 0. The
behavior of the principal eigenvalue becomes more subtle because of the
strong dependence, 6f ond. To argue this we first note that the principle
eigenfunctionis a perturbation related to the “shrinking” of the drop. Nextwe
observe that, due to conservation, shrinking is possible only if the curvature
of the boundary increases. On the other hand redugiisgequivalent to
flattening the boundary and therefore it antagonizes shrinking. Therefore on
the basis of this understanding we exp€gtto diminish as — 0, while
we expect the rest of th@;, j = 2, 3, ... to remain largely unaffectetiAs
a result agap appears between the principal eigenvalue, and the rest of the
critical spectrum, whew — 0, expressing the increasing stability of the
droplet. However this argument focuses on the interface and disregards the
part of the energy not due to the interface, which is related to the tendency
of the profile to stay layered and which happens to become critical when
52 ~ ¢; this causes an extra complication in this work and forces us to
establish several extra terms in the asymptotic expansion.

Afirstindication that the layered shape may be destabilizéd & C*c
can be seen by comparing the energyof the droplet with the energy of
the uniform state. In the appendix and in Remark 2.4 we analyse the energy

5 This makes the calculation &f especially delicate. Its different nature is suggested by
the formula (1.24), which vanishes to principal order joe= 1. The calculation of\; is
based on detailed knowledge of the speelotice that (1.25) holds everywhere, including
the equilibrium points.
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near the criticab where a bifurcation occurs. We compare the energies of
the three state: The “drop”, the “spiky” solution, and the uniform state, see
Fig. 4. All this can be reconfirmed with a careful analysis of the spectrum.

We note that:: can be shown to be close to the principle eigenfunction
and so as a consequence of Theorem 1.3, we have the following result for
the setM:

Theorem 1.4 (Spectral Gap)lLetwu be any point inM, and assume that
0<e< e, 62 > 62 > C*e, 60, C*, g9 constants.

Then for anyw € H'(£2s) satisfying

ou
vdx = 0, / vuedr =0 (u = )
/(25 2 ¢ SRS

g2 26272
— Vo] + f uv2>d3:2/ vide,
/96<2' 470 P o,
for e < &p. (1.32)

we have

Finally, we come to the dynamics of (1.8), which is done in detail in
Sect. 4. For any solutionf (z, t) of (1.8) whose initial data are close.td,
we decompose

ut (1) = u(-&(t), ) +o(- 1)
whereu(-, £(t), €) is a certain projection ai® on. M. The proof of Theorem
1.2 is based on this decompositiof., ) is controlled by the estimate (1.31)
which allows the construction of an invariant tube aro#ridThe main term
in (1.6) is obtained from the construction@fcf. equation (1.10), (1.11)),
and supplemented near the equilibria by linear analysis, (1.25).

For previous work related to the main theme of this paper, see Alikakos
and Fusco [4]. For work on the stage of evolution described in this paper
(see Fig. 1) for the related sharp interface models see Alikakos, Bates, Chen,
and Fusco [3], and Bellettini and Fusco [14], and the references therein.

2 Approximate solutions to the manifold equation

2.1 Preliminaries

In this section, we carry out the four steps mentioned in Sect. 1 for the
approximate solution of (1.10). First we introduce the coordinate systems
we are going to use in the interior and boundary layer expansions (see Fig. 5
for a summary).
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Fig. 5.

Representation a¥{2s

In the sequel, we shall identify points i®?, or vectors, with complex
numbers. X R

We use a complex valued functien= z () to parametrizé (2 whereg is
an arc length parameter oriented counter clockwise. We denote the curvature
of 012 at 2(£) by Ko (€). Notice that if we write’ (§) = €#(©) wherey ()
is a real valued function representing the angle betvggeand ther—axis,
thenk'(€) = ¢/(€).

We use

2() (2.1)

) _
£ =) =320 _,

MH

to parametrizef)s = 5(2 Clearly, £ is an arc length parameter fds.
We user(£),n(§) andq, (§) to denote the unit tangent, normal, and the
curvature ob(2s at2° (¢). Then, identifying vectors with complex numbers,
one can derive

() = 2(©) =70 n(©) =i O, Kq,(6) = 9l
where? (¢) = ¢(8¢). Assume that? is smooth. Then for any integé¢,

5

P (E+9) =) + X1 O+ O(8FH1HH), (2.2)
where
Sron ;dj P dj—l di—! R
A16) =7 G (€) = 07 G K (€) = 25 K
dJ A
() j:1’2"' (23)
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We useh(r) to denote the distance of € 25 from 9£2s. Then the
change of coordinates frof, ) to z is given by

z=XB(h,¢):=2(c) — hn(s), (2.4)

and is a differomorphism frorf0), ho] x (IR'/|0625]) to {x € 25;h(x) <
ho}. Herehy is a fixed positive constant ard?; is the length ob{2s. We
shall useh = h(z) ands = ¢(x) to denote the inverse of the change of
variablest = X2 (h, <) given by (2.4). One can verify

V.h =n(s(z)), Ve(z)=(1-— hICQ(g))_lT(g) o) (2.5)

Representation of interfack.
We use a functiom (-, £, ¢) = w!(-, &, e) +iw?(-, &, ¢)) to describe (€, ¢):

I'¢,e) ={w(s,&e) : 0<s<|I'(&e)} (2.6)

wheres is the counterclockwise arc length parametét, = |I°|(§,¢) is
the total length ofl"(¢,¢) in 25, andw(0,&,e) andw(L(&,¢),&,€) are
the intersection ofl” with 9(25. We assume thab is well-defined and
smooth in(—hg, L(§,€) + ho) for some positive constarit,. We denote
by T = T(s,£,e), N = N(s,§,¢) andK = K(s,&,¢) the unit tangent
vector, unit normal vector, and curvaturelofatw(s, £, ). Then there is a
real valued function) (s, £, ¢) such that

T = w, = WEEHOF/2 N = T K = ahy(s,€,2). (2.7)

We assume thdf is smooth, so that there exists a fixed constant> 0
such that the transformation frofn, s) to = defined by

r=X"(r,;s) :=w(s, &) +7N(s,&,¢) (2.8)
is a differomorphism fromD(mg) := {(r,s) : |r| < mg,—ho < s <
|| + ho} to its image. We use = r(z, &, ¢) ands = s(z, &, <) to denote

the inverse of the transformatian— (r, s). Direct calculation shows that

Ver=N, Vis=(1+ T’C)_IT, Ar=K(1+ T}C)_l,
As = —rKs(1+ 'rIC)_3.

In addition, differentiating both sides of (2.8) with respect {@onsidered
x as independent &), we obtain

0= (1+7K)Ts¢ +1eN + we + rNe(s, &, €).
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It then follows that

re(x,€,6) = —wg - N = wgw; - w%wg (2.9)
se(w,6,6) = —(1+7K) " (we + Ne) - T
=—(1+ TIC)_l(w%w; + wgwg + wzgw; - wigwg).
(2.10)

Here we observe that i, s) coordinates;: and(1+rKC)s, are independent
of r.

For the interior expansion, we shall use the stretched varfabie="1r;
more precisely, we use the change of variables (R, s) defined by

r=w(s, & e)+eRN(s,€,¢). (2.11)
Under this change of variables, we can calculate

e2A, = Opr + ek(1+ eRIC)*lﬁR + 82(1 + SRIC)*Q&SS
—e3RK(1 4 eRK) 30;.

Corners — intersections of boundary and Interface
We denote byp™ = pt(&, ) the intersections of " with 9¢2;. To relate
(¢, ) with Z°(¢), we assume that, for some functign= g(¢, €),

Pt =w(LF € e) = (£ (6 9)),
(L+ = 0,1 = \I’\(g,g)) Ve € R (2.12)

Also we usef?; = 25 (&, ¢) to represent the region bounded byand
{2°(¢); € = g(&,6) << < &+ g(& )} and denote by2” = 2F (¢, ) the
compliment of@2; U I"in §25.

In a small neighborhood of the “cornep®, we use the change coordi-
nates

{221;1(&;1,576), — z=X%rhn¢e). (2.13)

Hereh(z) andx(z, &, €) are the signed distance fromto 925 and toI”
respectively. It should be noticed that is is not trivial to write down the
function X“(r, h) explicitly.

For the boundary expansion, we shall use the stretched vari@hlég)
defined by

R =cer(z,§,e), H=ch(x). (2.14)
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Under this change of variables, we have

e2A = Orp + O + 2N - ndry + eK(1 + eRK)10r
+elos (1 +eHKg,)0H.

HereN = N(s(z,¢,€))ls=xC(cremee) M = N(S(T))a=xC(cRer ,0)-

2.2 The interior expansion

For the interior expansion, we seek solutions of the form
ul(z,€,¢) = U(R) + 6Zj206ju1j(R, s5,€) (2.15)

whereR = L,z — (r, s) is defined in (2.8), and’(-) is unique solution of
(1.14) introduced in Sect. 1.
Under the new variablegsR, s), the differential equation for' becomes
—u'rr + f(ul) + ¢ {a + ergu'p — K(1 + ERIC)’luIR}
+e [beu +cu'e — (14 eRK)2u 55}
+€3le( + ERICK) uly = 0. (2.16)

Hereul, represents the partial derivative when we consides a function
of the variablesRk, s, £, ¢, so that

d

- = 5_11"581% + 5565 + 85.
de

To expand (2.16) as asymptotic power serieslofwe assume that
w(s,§,¢e),0(&, ) ande(e) has the following expansions

w(s,§,€) = ]>0€]w3(3 ), o6 e)= ]>OEJUJ(£)
c(&,e) = 06l ¢ (€). (2.17)

Clearly, we can use (2.7), (2.9), (2.10), and (2.17) to exgand, ands, as

K(s,€,¢) = Xi>06"Kj(s,£), (2.18)
re(w,&,2) = Zjzo0e’15(s,€), (2.19)
(.’L’,f,&) ]>05J (R,S,f),

wherelC;, r], ands§ depend only onwy, - - -, w;.
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Expressing equation (2.16) interms of a power seriesre then obtain,
for each coefficient of/ 1, j = 0, 1, - - -, the following equation, for!;:

d2
(o7 — @)y = {URIK; = (ere)s) — o3

I i +Qj—1 (R7 r, 5)7 (220)
ul(0,5,6) =0, suppep [u'j(R,s,€)] < oo

whereg_; = 0 andg;_; depends only on expansions of order no bigger than
j — 1. Here we used the notatignb); = X7_ a;b;—; if a = Yi>oa;e’ and
b= X;>obie’. We writedgr as% since we considerand¢ as parameters
when we solve for!;. Notice that the condition!;(0, s, &) = 0 reflects
the definition ofl", being thel/ (0) level set ofu'.

Recall that for given bounded R), the equatio” (R)— f'(U(R))#(R)
= q(R), #(0) = 0 has a unique bounded solution if and onlf ¥ _U’(R)q
(R)dR = 0. Hence to solve (2.20) uniquely, it is necessary and sufficient to
have the following solvability condition:

(cre)j(s,€) — Kj(s,€) +aooj(s, &) = Aj-1(s,§) (2.21)

where
ag = 2/ Jp(U'(R))2dR (2.22)

andA_; = 0 andA;_; depends only on the terms of order less thanl.
One can easily verify (see Appendixin [10]) thatif fora# 0, - - -, j—1,
(w;, 07, ¢;, u';) are known and smooth and satisfy

|DEDIDiu'y(2)] < O(1)e Bl as|R| — oo (2.23)

for all non—negative integers, n, [ satisfyingm + n + 1 > 1, then (2.20)
has a unique solution!; if and only if w; satisfies (2.21). In addition,
if ul; exists, it satisfies (2.23) also. Hereis any fixed positive number
<min{ (1), f/(-1)}.

In conclusion, in order to have a unique solutidf the form (2.15), itis
necessary and sufficient fow;, c;, o;) to satisfy (2.21) foj = 0,1,2, - - -.

For easy reference, we provide some lower order solutions to the inner
expansion:
First denote by/1, Us1, Uso the solutions to the following problems:

1 U/) 2
U//_/UUzl_ U/ :(7 L
1 = f(U)0 aU' a0 = g
_ ")
2

(2.24)

Uy, — f/(U)Un UZ —ag, U] —a U,
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(*f;(U) U12 + aOU127 U/>L
(U/7 U/)L2
Ul — f'(U)Uss = RU

2
al =

(2.25)

So forj = 0,1 we have

coro — Ko + agog = 0, ul = oo(6)U1(R),

coro + c1ro — K1 + ago1 = ay0g,
ui = o(&)UL(R) + 05 (§)Ua1(R) + KiUa(R).

Note that all the geometric equations (2.21) jo= 0,1,--- can be
combined in to the following single equation:

Cre — K+ ago = aldg€+2j225j{--'}. (226)

Here and in the sequel, all the terms depending only on expansions of order
< j — 1 will be denoted by *- -".

Since later on we need explicit expansions up to ordgt is convenient
to introduce a new constaétdefined by

6(€,€) = ago(€,¢) — area?(€,e). (2.27)

Clearly, findingo is equivalent to finding . With this new constant, we can
write (2.26) as '
Cre - K+0o= EJZQSJ{---}. (2.28)

2.3 The boundary layer expansion

For the boundary layer expansion, we shall use the stretched vaRaivid
H definedin (2.14). In the new coordinaigs, H ), the differential equation
for u® becomes

(= 0rr = Onn + FUR) )u® = (F(U) = f/(u)uP = N u?)
+2N . TL’LLBRH
+eK(1+eRK) P g + ek, (1 + eHK o) 'uPy
—ecuP gre + euBy], on Rx IR". (2.29)
HereuBg on the right—hand is the partial derivative with respect while
keepingR and H fixed. Also,s in u'(R, s, &, ), N(s,&,¢), andK(s, &, ¢)

is evaluated at = s(z,§, €)[,—x ¢ (crcH,¢,c) Whereas in n(c) andKo, (<)
is evaluated &t = ¢(z)|,—xC(cRem )
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The boundary condition becomes

BH(R7 07678) =-N- nuBR
—{N . nuIR +eT - nuIS}

s=s(XC(eR0.6,¢))
on R! x {0}. (2.30)

In the sequel, we use the superscripdr + to denote the neighborhood
nearp~ andp™ respectively. We assume the following expansions, péar

u (R,H,§e) = Xz’ B (R H¢),
uBy (R, H,€) =0, (2.31)
g(&,€) = Zjz0'g;(8), (2.32)
L*(&,e) == 0= 50! L (€),, (2.33)
L™(&e) == |T|(€,€) = X208 L (), (2.34)
N - nfyept = N(LF) - n(§ £ g(8)) = Tzl ai (€),
aF :=0. (2.35)

In what follows, we shall cal{w;, u';, qui, a;,gj, 55,05, ci} the ™
order expansion and we use to denote various functions and/or constants
that depend only on expansions of order — 1.

To express (2.29) and (2.30) in powerspfwe need to write the coeffi-
cients in the equations as power series.of

Sinceay = 0, T nf,—ps = £1+ K087 (---)(€), it then follows that

$(2,8,€)la=xC(cReH g c) = S*(R,H,¢,¢)
= Yjs08' Ly FeH + Ljzoe’ () (R, H, €),
$(2)|poxCeremee) = £Xj2087g;(§) £ eR
+Xj>2(- ) (R, H,§)
N - nlyoxc(eremes = Sjziela; —eHKo(Ly)
+eRK 0, (€ + go) + Zjae’ (--)(R, H, €)
K = 252067 K (L (§)) + Szl (- )(H, €),
Ka; = Ko (€ £ g0) + Zjz18” (£, (€ + g0)g;
+(- )R, €}

Substituting these expansions into the (2.29) and (2.30), we then obtain for,
eachj = 1,2, -- -, the equations
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+
[—Orr — Oum + f'(U(R))uP; = Bj-t_l(R, H,¢),
in IR x (0, 00),
+ o
uBTy = —U'(R)[af + RKo,(95)], if j=1, (2.36)
“BfH = -U'(R)a; (&) +Cj, if j>2.
whereB*| (R, H,¢) = 0 andB} |,
order<j —1.
To solve foruB=, we need the following lemma:

C';—1 depend only on the expansion of

Lemma 2.1 Let U be defined as in (1.14). Consider the following linear
problem

(2.37)

(0rR + 0 = F(UR))6 =G, ReR,H>0,
¢u(R,0) = g(R), Rc R

Assume that ask| + H — oo, |G| = O(e *EI+H)) and|g| = O(e~¥I#).
Then (2.37) has a bounded solution if and only

/ G(R, H)U'(R)dRdH + / g(RU'(R)AR =0.  (2.38)
0 JIRr! R
In addition, bounded solutions are unique and satigfy= O (e~ (El+H)),

Proof. Under the hypotheses € L*(IR),G € L*(D), [ G € LY(D),
D =R x R, we will show the following:

i) there exist at most one solutiegne H'(D),

i) There exist ap € H'(D) if and only if

/ / GU'dRAH + / gU'dR = 0.
D R

iii) Let v5 be the second eigenvalue efl% + f/(U)I. Then for anyw €
(0,1), for any integetk > 0 if f, g andG satisfy (2.38) and

Lg(R) = O(e VIl j=0,.. k,
DR Dy G(R,H) = O(e7VIBI="Hy ") > 0,00 > 0,00 + g < k
we then have
DF' DY o(R,H) = O(e ™ HI=VHY ") > 0,00 > 0,00 4+ ag < k + 2.
We give a sketch of argument:

N IfV =VE—V2 then|Vy|2, = [[°{[r(VA+ F(U)V} <0,
henceV = 0.
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ii) Multiplying (1.13) by U’ and integrating oveiD, utilizing U"" —
F(U)U" = 0, establishes the necessity of (1.14).

For the sufficiency consider the "equivalent problem”:
FindV € H'(D) such that

J(V)= inf J(V),

VeH! (D)

where

= // (IVV* + f(U)V? 4+ 2GV)dRdH
D

— / V(R,0)g(R)dR.
R
If (1.14) holds, then it can be shown that

inf J(V) > —oc0
VeH!

andV exists.
iii) If G = G(H)U'(R), g = ([0 )U'(R) then

V =U(R / / G(H)dHdH.

IfG(-,H) LU',g L U'(in L?)thenconsidew(H) = ||V (-, H)| 12(m)
A calculation shows

dH2 + Xow < ||G(-, H) || L2(w), H € (0,00) .
w(oo) =0, w(0) < co

From this it follows thaty = o(e="*).
Finally elliptic estimates yield“¢ = O(e~") for |a| < k + 2. Also
utilizing that /" (U (£o00)) = f/(£1) > v, we have

DV = O(e "M O(e7"R).

Note that the conditionp € H'(D) excludes solutions of the form
(a + bH)U'(R) with a® + b* > 0. If one allows solutions of the form
HU'(R), then (1.14) can be removed.

Hence, (2.36) has a unique bounded solution that de@éys>!1—)
if and only if the following compatibility conditions are satisfied:

{af(é) = —Ka,(95) [p(RW'? | [p(U")? =0, (2.39)
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Remark 2.2
1. The preceding compatibility conditions show tb%t are uniquely deter-
mined by lower order expansions, and sol?gi,l. Thatisto say(af, uB;‘L)

are decoupled from othgt" order expansion unknowns. They are readily
available as soon as all expansions up to 1*" order are available.

2. Sinceni (€) = 0, we then know that at the intersection/ofindd (2,
the contact angle i§ + O(e?). We shall be utilizing this fact later on in the
eigenvalue analysis.

3. SinceK g, = O(9), one sees that

uPy = O(se IFIFM) - j—1,2,

2.4 Extension to the whole domain (exterior expansion)

One may notice that the coordinatess) and(r, h) are local. Hence, we
need extensions af and«? to the whole domair;.

Easy mathematicalinduction gives that(R, s, ¢) = u; (§)+0(e "IAl)
asR — =+oo, whereujt(f) is independent of and if we writeu™ (¢, ) :=
+1+ Ezjzogjuji, then

f(w™) +e0 +%cug =0. (2.40)
Therefore,
uf () = £1 — e &k +e8imel (-)(9). (2.41)
We define

ul(z,€,6) = (1= ¢F = (T)(U(R) + eXjzoe’ul)
+Cut(€) + CTum(6) (2.42)

where

¢F=¢( 52 1)

eln’e

and¢ € C* is a fixed function satisfying
C(s)=1ifs>1, ((s)=0if s<0, s(s)>00n R.

Similarly, since for anyj, u?; = O(e IFI=VIHl) as|R| + |H| — oo,
hence we can extem::B;-IE to 2 by a smooth extension by zero in a way we

have done for!.
Now defineu = u! + u?, we see that (1.10a) and (1.10b) are satisfied
asymptotically.
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Remark 2.3The expansion fou®(z, &, ¢) := uX(¢) is called theouter
expansionand usually depends on the space variablEf. [2]). In the
current situation, it is independent of the space variabl® that we do not
need the complicated interior/exterior matched asymptotics introduced in
[33] orin [2].

2.5 Area constraint condition

Next we solve the problenP(,).
Denote bys2; the part off25 enclosed by'; we can calculate

//Q (u +uP) = ut (6,) (18] — 125]) +u(€.)25 | (2.43)

ff e ot
+//%UB. (2.44)

First of all, since% = 52‘71 : T‘ =e2\/1—(N-n)2 = 2(1 +

Yji>2(--+)) and sinceu®; decays exponentially to zero B3| + H — oo,

//QuB = (/JRdR/OOO dHe* L5167 (uP; +.--)>

teTE = eXmael(- ) FeE,

for somec > 0. The exponential term can be safely discarded.
Similarly, since% = e(1+4 eRK),

[ [0

SH(R,&e)
:6/ dR/ (1+eRK)(u! — uT)ds

(R,&,¢)
SH(REe)
—i—a/ dR/ (1+eRK)(u! — u™)ds.
(R,&,)
jZlgj{"'}'

Therefore, equation (1.20) becomes

125 — 7 = |2s]u + |25 [(u™ — ub) + Tjs1e/ (- ).
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Using the expansion af* in (2.41), we then obtain

125 6.2 = 5 - S {ol6.9) + Tzl 1}
el () (2.45)

where- - - depends only on expansions of ordey — 1 and is independent
of [£25]. Sincee|$25| = ¢672|12| andé is small, here and in the sequel, we
need the explicit dependence gldi2; .

To consider the case where bathndd are small, we introduce

e =ed 2 (2.46)

In the sequel, we shall always assume tifate (0,1]. Under such an
assumption, and thinking ef as a new parameter, we can write (2.45) as

125 (£,¢)| = {g - ags*a} + Dy} (2.47)
wheres = 6(&,¢) isasin (2.27) and
_ e e T2
as = (a0~ (D) /]R(U(R)) dR. (2.48)

In summary, probleniP,) is equivalent to solving (2.47).

2.6 The asymptotic expansion of the solution to the geometric problem

A. The geometric problem
We first summarize all the conditions imposed@i{¢, c), o (£, €), c(&, €)).

1. The intersection condition
The intersections af with (25 arez({ —g(&,¢)) andz (£ +g(&, €)). Hence,

from the equationv, = ¥+’ +7/2 (cf (2.7)), it is convenient to take
w(s, &, e) in the form

ws.gie) = (et a6e) + [ e (il0(s.6)

+¢°(€) + 7/2)) d (2.49)

where (s, £, ¢) is a real valued function to be determined. With such a
choice ofw, the intersection conditiow(0, £, <) = 2°(¢€ — g(&,¢)) is au-
tomatically satisfied. The other intersection conditigié — ¢g(&,¢)) =
w(|(&,¢€),&, €) can be written as

F s I
/ T s - ; / "9 et -6l g (2.50)
0 7g(£7€)
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2. The contact angle condition
The representation f (s, £, ) in (2.49) impliesT = ¢il¥/(s.6.2)+¢° (©)+/2]
N = —iT = ei[’lﬁ(s,g,&)-‘r@&(f)}, SO that

=i (80,60 +£€) ~ P+ a).
Non| =sin (w(1],69) + 6O - (€ 9).

It then follows from (2.39) and the definition ag.t in (2.35) that the contact
angle condition is equivalent to

{¢(0»§:€) = ()06(5 + 9(678)) - 906(5) + 2j22€j{' ’ ‘}7

N -n

(1€, €),6, ) =7+ [° (€ — g(&,€)) — (&) (2.51)
+Xj>2e?{-- - }.

Here and in the sequel; " denotes terms depending only on expansions
of order no greater thah— 1; namely, one can assume that they are known
constants or functions.

3. The equation of motion
With ¢ given as in (2.49),

K :d}s»
re = —we - N = —(1 + g¢) cos{’ (£ + g) — ¢° (&) — ¥} +

+ [ {e )+ O fos {065 = (s} s
Hence, the equation of motion (2.28) can be written as
Vs(s,€,6) = & — c(1+ ge) cos{ (€ + g) — ¥°(€) — ¥}
’ S . 6 S . J— . <
v [ [oel.) + (O] cos {0t~ wis. ) ds
+ X508 {- -} (2.52)

4. The area constraint condition

Using “Im” to denote the imaginary part of a complex variable, we can
calculate

(D=3 | (ady—yao

1 . .
= —;Im /m(x +iy —2(§ +g))d(x — iy)

1 &+ =
= ——Im 7z(&) — 2z 7/ (€)d
s [ O e+ )@
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+/|F| [w(3,-) — w(0, )]ws (5, -)d§}

=_Z /:+9 /gi; sin (gp‘s(é) - cpé(g))dédg
" /0 " s (065, - 065, )asas).

Therefore, the area constraint condition (2.47) can be written as
t+g € - . .~
L) s so5<5>—s05<§>)d5d5
§—g J&+g
||
/ / sin w(,é,-))dédé

[ — age*d] + Zj>167{- -} (2.53)

Definition of the geometric problent Find (¢ (s, &, €), g(&,¢), |T'|(, €),
a(§,¢€), c(&,€)), where€ € IR/|02s| ande is a small parameter, such that
the equations (2.50), (2.51), (2.52), and (2.53) are satisfied.

B. The formal expansion set up

Since we are only interested in smallwe can expand every coefficient
in thee power expansions it power expansions. This will lead to double
series expansions. Because here we consider the'tase) < /= where

m > 0 is fixed, to save calculation, we shall expand functions in a single
series expansion; namely, we expand all unknownsdpawer series. To
compensate for the expansion, we introduce the parametedefined in
(2.46). By considering* < (0, 1] as a fixed parameter, we repladey * 52

and seek expansions of the form

W(s,6,8) = Tjz0 (s, €),
9(&,e) = Zjzo ¥g;(8),

7](€:€) = T8 | 15(6),
o(§e) =20 ¢ UJ( ),
c(§,e) = Yj>o 53'0]( £).

The modification for the expansion fofz, £, ) is as follows:
I
68) = (R, 5,6,9)
u(z,€,e) =u (R, s,&¢) RetEfe) (e

B
u <R7 Ha 57 E)’Rr(w’f’e) ,H:¥,
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u'(R,s5,&,¢) =U(R) +8*° %50 &u'j(R,s,€),
uP(R, H,¢,e) = £j>208'uP (R, H, €).

wherer(z, £, ) ands(x, £, ) can be expressed as power expansionoé

thes power expansion af(s, £, ). To obtain the expansion faf ;, one first
makes the change of variable— (R, s), obtaining the differential equation
forul(R, s, &, ). Then one replacesby £*§2, and expresses every function

in power series of with coefficients of functions of the variablég s and

. Collecting terms of the same power ®bne obtains, for each order of
87, a set of equations, with sufficient and necessary solvability conditions
contributing to the geometric problem. Similarly, one can perform this pro-
cedure foruP. After redoing all these expansions, one obtains the same
geometric problem (2.50), (2.51), (2.52), (2.53), with the only difference
being that¥; >’ (- - -) is replaced by, 467 (- - -).

C. The asymptotic expansions

Since, as it turns out,

co(§) = c1(§) = 60¢(§) =0, Gogo =1,
oe = 0(6%), ge = 0(5?), (2.54)

~—

for the sake of simplicity, we assume this form from the beginning.

As cis the velocity of the droplet (cf.(1.11), we need the first nontrivial
term. It turns out thats is non trivial. Also, since we are particularly in-
terested the stability of in equilibria, we neegalso. Hence, we carry out
most of our calculation explicitly all the way up to the third order. (This is
the reason we introducein (2.27)).

In what follows, we shall need the expansion (2.2)#6r

Solving the ordinary differential equation (2.52) with the initial condition
(2.51a), we obtain

P(s,&,6) = (E+g) — (&) + 65+ O(5?)
=’ (E+9) — () + 65

sin(s 1 — cos(6s
+el - f, )”*”1&2()}

where in the first equation, we have used the fact¢hatO(62) and in the
second equation, we have used the fact that O(5%), andy, + gog =

P&+ 9)(1+ ge) + O(8%) = dip1 + O(6?).
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Thus, to fulfill equation (2.51b), we need only to have
61T =7+ (€~ 9) — (€ + 9)] + c[-67 " sin(5|T'])
+0¢1672(1 — cos(6|T)))] + Zj>ad” (- - )

=1+ [P (€—9) =" (E+ ) + Zjzad ()

=7 — 20190 — %@39353 + Y5407 () (2.56)
where in the second equation, we used the factdhBt = © — 29199 +
O(8%) (from the first equation) so thats—!sin(6|I'|) + 616~ 2(1 —
cos(6|I])) = —2¢196710 + 251 + O(6?) = 25167 2(—69 + 1) +
0(8?) = O(6?) sincesg = 1 + O(6). Hence, we obtain the following set
of equations, for each order of expansion:

5’0|F|0 =T,
(6]')1 = —2g0¢1, (2.57)
@)=, j=2

where(s|I'); = 2 0<71|F|], cf. (2.34). and *- -” represents known terms
(i.e., lower order expansion terms).

We continue with the solution of (2.50). First, we calculate the integral
on the right—hand side. Using Taylor expansion, we can calculate

/ 7 il (E+0) 0 (€] g
-9
g o 1. k
= 29 + lipa — 7]g°0% + Tjsad’{-- -},
Using the expression af in (2.55), we can calculate

il . oo i
/ s — (Al (ER) ()] / (s
0 0

sin(6s 1 —cos(os
X{” R R
Ljzad(.. )}d

; 1U|F| e2i€r|1"| -1 1|F|
= il { [( 52 2&)

o (4 L] )}+2>45J( )

3 262 J

i . 2\ 22 il ipid

= {2+ G~ D0 4| - 750 + 7]

5400 (.. .)}
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by using (2.56) and the assumptién = 1 + O(4d). Hence, equation (2.50)
becomes

269 =2+ [ips — 3]l — 169]g°0% + ic[—|T"|/2 + 16/567]
+Ej245j(. . )

Equating the real and imaginary parts, we then obtain

69g=1-101g°6% + X487 (-++), (2.58)
252
2 ©29°0 ; 4 9
—2 o8 = ——
= ST ooz T 2 () = —5oeeg0
16 4
+3591929°0" + Tjzad () (2.59)

where in calculating, we have used the previous resdlti = 1 + O(52),
61| = m— 2196 + O(62). In terms of the series expansion, we can write
(2.58) and (2.59) as

oogo = 1, co =0,
Gg)1 =0, c1 =0, (2.60)

We remark that here we obtaig = ¢; = 0 andég = 1+ O(4), part of the
assumptions we assumed at the beginning in (2.54).

Finally, we solve the area constraint condition (2.53). We can compute,
using Taylor expansion,

/jﬂ /;g sin (@5(5) — ¢5(5))dédé
:/ /Sin( (E+¢) - 6(§+€))dédg
/ / dpr(s = <) + 50%pa(* = &%)

0% (< —@) L3 — )+ 0(6")]
‘701935"1'[20903 }553+EJ>45J( ).

Similarly, we have

/Fl /Ssm W(s,-) — (3, -)>d§ds (2.61)

/FI/ sin{ (s — 8) — ¢([sin(5s) — sin(55))6 ™"
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+¢16[cos(ds) — cos(8)]6™ )}dsds + X4l (--)

/F'/ sin(6(s - 5) dsds—/m/

x cos(d(s — §8))[sin(ds) — sin(o5)]dsds

CSOI(;/ /cos s — §))[cos(ds)

— cos(68)]déds + X487 (- - )

I'l—s r

_olr| 01211(0’\ ) 4 S () (2.62)
—doras .

- Eg—jjzglf%-2%235](“)

52

Here, inthe last step, we have substituted from (2.56) and in obtaining (2.62),
we used the fact that

/IFI/ cos(G(s — §))[sin(6s) — sin(68)]dsds

7|
/ ds/ cos(0(s — §))sin(ds)ds
|| |7
/ ds/ cos(a (s — §)sin(s)ds

1N
_ 1 /O sin(5)[sin(6s) — sin(6] ] — ¢5)] ds = O(5)

N

g

by usings|I'| = 7+ O(§), and S|m|Iarny|F| s cos(6(s — 8))[cos(ds) —
cos(08)] = O(9).
Now the equation (2.53) becomes

(32(71' —axe*d) =7 —4p196 + ijgéj(- ). (2.63)
Namely,
63[m — axéoe*] = m,
(62[7r - a265*])1 = %(blgé, (2.64)
(5’2[71' - a265*]) =, j>2

J

We can now solve our geometric problem as follows: First, sélye
from (2.64) (See Remark to follow). Then, we solve 9 cq, Ly from
(2.60) and (2.57) respectively. One observes that we have 0,00 ¢ =
go,e = 0,6090 = 1, 60Lo = 7. Then consecutively for each integep 1,
we can repeat the same process and solve firgt,ftnom (2.64), and then
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for g;, c; from (2.60) and for finallyL; from (2.57). Here we remark that
whenj = 1, one obtainsy; ¢ = O(6), ¢c; = 0, andg; ¢ = O() so that

6¢ = O(6?) andge = O(4?). This is what we have assumed at the very
beginning. If we do not make such an assumption, we can still carry out our
calculation (but with much longer expressions) and at the end, obtain all the
equalities in (2.54).

Remark 2.4
1. Sincery|I"|p = 7, we haver, > 0. Hence, to ensure that the first equation
in (2.64) has (at least) one solution we have to assumethat-—22—. As

3v/3as "
e* = 572, this translates to

2 dmag f'(1)
3v/3as 3\/§|(2|
I 0

36| 2] f_11 \/WdS‘

Also, to make sure that there are solutionsdgrfor j > 0, we need that
the derivative oft? (7 — ase*x) atx = & does not vanish. Hence, to make
sure the expansions are bounded we need(C; — 1)d? for any fixedn
independent of ande.

2. Assume (2.65) holds. Then (2.64) has exactly two positive solutions.
Consequently, it* := £6~2 is not too small (says* > +/9) we have
two legitimate asymptotic expansions. A5 |y = 7, the expansion with
smallers( has larger radius of interface than that of the expansion with larger
do. In particular, ife* = o(1) then the expansion produced by the smaller
solution of (2.64) satisfied"|o = m + o(1) and the expansion produced by

the larger solution of (2.64) satisfigS|, = 2%%*0(5) We call the former
a "droplet” solution and the latter a "spike” solution.

3. As we shall see from the eigenvalue analysis (cf. Remark 3.9), the
spike solution is unstable. We include in the appendix a calculation (for
the case of radial symetry) of the energy of three states: the "droplet”, the
"spike”, and the "constant”. We shall show that if (2.65) holds, there is a
droplet and a spike solution. The spike solution always has higher energy
than that of the constant state. The droplet solution has lower energy than
that of constant statedf ¢ (C**, C}), whereC** < C7 is a number which
can be calculated. Our eigenvalue analysis shows that the droplet is stable
if e* < C*** for someC*** < C**. That we did not obtain the best value
of C*** is purely due to technical reasons.

4. For spike solutions we refer to Bates and Fife [12], Bates and Fusco
[71], and Ward [70] for bistable nonlinearities, and to Ni and Takagi [69],
Ward [70] and Kowalczyk [74] for one sided nonlinearities.

63 =62 <Cf =

(2.65)
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In the rest of this paper, we shall be interested only in the droplet solution;
and we takey, to be the smaller positive solution of (2.64).

2.7 Conclusion

1. Existence of the approximate manifold

Assume that for somg € (0, CY) independent o ande, we haves <
(Cy —n)d2. Then takings, as the smaller solution of (2.65), we can obtain
an asymptotic solution to the equation of manifold (1.10). In the rest of this
paper, we will always refer to this solution.

By truncating the expansion at finite order, €a’), we then obtain
that(u, o, c) satisfies all the equations (1.10) up to or@&é6%). In addition,
we can make the following refinement:

1) adding a constant term of ordé6) so that the area constraint is
exactly satisfied;

2) adding a function of ordef” such that the boundary condition is
satisfied exactly;

3)addingar©O (5% ) termtoo sothato = f;,ﬁnéf(u) since by integrating
over {2 the differential equation foe, one finds thato (¢,¢) = fF f(u) +
O(£%). In summary, we have proved the following:

Theorem 2.5 Assume that ande are small parameters satisfying, for some
m > 2,

M <e < 3CT8° (2.66)
whereC7 is defined in (2.65). Then for any integ#f, if ¢ is sufficiently
small, there exist. = u(z,&,¢), 0 = o(§,¢), c = ¢(&, €) such that

Lf(u) := 2 Au — f(u)
+eo = EQCug + O(EK) in (25,
dpu =0 on 942, (2.67)
f_Q& u = |Q5| -,
€0 = ffgéf(u)

In addition, (u, o, c) has the asymptotic expansion (up tax:*)) detailed
in the previous subsections. In particular, the following expansion holds:

K2(s,€,€) = 2 = 6% + 2¢6%[— cos(65)

+8p1gsin(6s)] + O(64), (2.68)
_ 452 17 & 3
c= —BW&OIC (€) icse T O(6%). (2.69)

wheres = ago — a1e0? = 69 + O(8), g = go + O(6), go = 1/60, andéy
is the smaller solution of (2.65).
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2. Stability

This subsection, strictly speaking, belongs to the next section on the eigen-
value analysis. However, the principal eigenvalue is special since it can be
obtained accurately only through the speell is therefore appriopriate to
present it here as a Corollary to Theorem 2.5. We defires/|I"|. Then

by utilizing Theorem 2.5 and (2.31), (2.33) we obtain

g(f) == |f|2(g/c2 + i#) (2.70)
X 3(6]I)%cq .
_ 2 _
= (117 + =75 | = cos(&|I]¢)
+p1g0 sin(&ww)] +0(5% (2.71)
= q1 + *q(0), (2.72)
q1 = |:7T2 — 4190 + 4@%9252 — 2{@39353} (2.73)

q2(0) := 2mpag? { —cos(ml) + p19(1 — 20)8 sin(wﬁ)}
+0(6%), £€(0,1). (2.74)

We remark thaty; is a constant, and ip, = 0, thengs = O(6*). Also,
one notices thalg is the arc length of the segment 9f between the two
intersections with'.

Consider the following eigenvalue problem: Fipd ©(¢)) such that for
somej: = i(j),

_9”(6) ( ) (5) lu’@(g) + ﬂ» te (Oa 1)7
S

Jyewde=o,

whereK; = |I'|dp1(€ + g) and Ky = |I'|dp1(€ — g) are (I'| multiples)
the curvature ob(2; at the intersections witlh’. Using Taylor expansion,
we have

olI'| [

Ki =7 g|d1 + (—1) T8 gp0 + §Lipsg®s* + O(8")|

1) mpag®8? — 20196
353 + %7“,0?9353

= 7196 + (—

+(_1)i2901%029 + %W@gg?’é?’.
Corollary 2.6 Let(u1,©1) be the principal eigenvalue and eigenfunction
of problem (2.75). Then,

_Am 343 4y _ AT 3

=
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+0(6%), (2.76)
O1(f) = cos(nl) + O(6) L€ (0,1) (2.77)

Observe that we have used the relatign= 1+ O(§2) and the definition
of y3 in the second equation of (2.76).

Proof. First we consider the case when= ¢; is a constant. In this case,
if we denote by(u*, ©*) the principal eigenvalue and eigenfunction, then
they are given by

@*:b1+sin{b1+[7r+2b3](€—%)}, p,*:[ﬂ'—i—ngF—ql
whereb, by, b3 are given by

by = 2sin by cos bs(m + 2b3) !,
by = @29252[1 + 2190 /7| + 0(54),
by = —p190 — %(pgg353 + 0(54).

That is,

4
W=l 20 - @ =~ g™ + O, (2.78)
Next we consider wheip = ¢; +62¢». A standard perturbation argument
shows that

This completes the proof.O

Remark 2.7Corollary 2.6 is valid everywhere including the equilibrium
point. In particular, i is a point of strict maximum curvature, theg (&),

the second derivative of the curvature function, is negative. It then follows
that the principal eigenvalue is positive, and this establishes stability.

3 Eigenvalue analysis

Letu = u(z, &, ) be the approximation we obtained in the previous section;
namely, the solution to

L8 (u) := 2 Au — f(u) + eo

= 2cug + O(eX) in £,
Opu =20 on 0425,
Ja, u =125 =,

(3.1)
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whereK is an integer as large as it is needed. In this section, we shall study
the eigenvalue problems (1.21) and (1.22).

One sees that both eigenvalue problems are related to the bilinear form
(Lo, 1) defined by

= 2 "(u dx
o) = [[ | [#90v6+ for]an
b, € HY(0s). (3.2)

In fact, (A, ¢) is an eigenvalue/eigenfunction to (1.22) if and onlyife
H'(£25) and

(Lo, ¥) = N, ¥) Vo € H'(R2) (3:3)
and(), ¢) is an eigenvalue/eigenfunction of (1.21) ifand only i€ ' (2)
and

(Lo, v) = X, ¥) Vo € H'(12). (3.4)
Here and in the sequd],, -) stands for the.2((2;) inner product]| - || the
L?(£25) norm, and

H'(£25) = {¢ € H'(2) 5 [[,¢ =0}

The idea of our analysis is a separation of variables technique, [8,9,
26,10]. Observe that the principal eigenvalue of (1.21) (or (1.22)) is the
infinimum of (Lo, ¢) in H'(£25) (or H'(£2s)) subject to||¢|| = 1. Since
away from the interfacé’, f’(u) is uniformly positive, it is reasonable to
believe that the mass of the corresponding eigenfunction is concentrated
near/". That is, one needs only to study the behaviak. ofear!” where the
local coordinatér, s) is well-defined. As mentioned in the introduction, in
the thin neighborhood af’, L. can be decomposed hs= L, + L; where

g2 0 1 0 y
Ly = 1+m(s)5<1+m(s)5) AL

2

€ 0 1 0
Ls = C1+7K(s) %(1 + rK(s) %) (3.5)

To leading order, one can ignore the€(s) term and replace by U ().
In such a casel, becomesl? := —¢292. + f'(U(%)) and L, becomes
LY := —£202.. If one regards the domain fdr, s) as a rectangle, then all
the eigenfunctions di’ := LY 4 L? have the formA(r)B(s) whereA(r)
is the eigenfunction of.! with eigenvalue\” and B is the eigenfunction of
LY with eigenvalue\®. The corresponding eigenvalue fof is A™ + \°. If
the boundary condition foB is Neumann and the interval faris [0, L],
then the eigenfunctions and eigenvalueg.pfare given by

By =cos(U7 M), X =i —1)% j=1,2---.
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On the other hand, the principal eigenvaluelfif:= —£292, + f/(U(%))

is zero with (unnormalized) eigenfunctioty(r) = U(g). This eigenvalue
relates to the shrinking or expansion of the interface. The next eigenvalue of
LY is > v, for some positive constang independent of. This corresponds

to the fact that in the cross section of the interface, the solutionst stay
close to the profild/(Z). All this indicates that for small eigenvalueslof

the eigenfunction has the form, to leading ord&y(r) B;(s), and the corre-
sponding eigenvalue should he = X2 + X/, for any finite integeyj. From

the graph ofd,(r)B(s), one sees that these eigenfunctions corresponds to
the change of shape of the interface.

One may notice that the eigenvaluelqfis of orders? whereas the pre-
ceeding argument is based on a leading order approximation. Nevertheless,
decomposing the bilinear forf.¢, ¢) into (L,¢, ¢) + (Ls¢, ¢), one still
sees that the eigenfunction has the decomposition) B(s) up to O(e?).

It is well known that, the principal eigenvalue éf vanishes not only to
the leading order, but also vanishesit(r) order (assuming that the depths
of the double well potentiaf’(u) = [ f(u)du is equal). This phenomenon
relates to the following |dent|ty for th@ (e ) order expansion of the solution
u (cf. (1.26):

/ FUR)TAR)L (R, s)dR =0 Vse[0,I].  (3.6)
R

Therefore, at least formally, one can calculate the eigenvalue up to order
O(£?) by assuming that the eigenfunction has the form A(r)B(s). To
make the calculation rigorous, one can use the decomposition

qb:U'() (s) +(r, s), /wrs Bdr =0 Vs) (3.7)

We remarkthaU(g) is only the leading order approximation to the principal
eigenfunction ofL,.. This is sufficient for capturing the leading order eigen-
values (of ordeO(c?)) of L since the next eigenvalue @f. is uniformly

(in €) positive andy) (-, s) has a large portion on the subspace orthogonal to
the principal eigenfunction of,..

One may find that to evaluat&¢, ¢) with ¢ = U(Z)B(s) up toO(c?)
order, one needs the explicit expansion of the solution up(td), and the
calculation may not be straightforward since there are many places con-
tributing to theO(£?) order expansion. Such a calculation was performed
in [68] (see [10] and also [26]). The conclusion is that the eigenvalue is
proportional (with known proportional constant) to the eigenvalue of the
eigenvalue problem, fof©, 11), —0"(s) + K (s)O(s) = 0(s), s € S,
whereS! is the unit circle ands () is a known function depending the ge-
ometry of the interfacé’. Here the calculation is based on the Allen—Cahn
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equationu; — 2 Au + f(u) = 0 with the interface strictly contained in the
thin domain.

In the current situation, as we shall see later, the first several eigenvalues
of (1.21) have the expansigi®)?(j? — 1) + o(¢?), j = 1,2, - - -. Thus, the
principal eigenvalue (correspondingjte= 1) is close to zero, and th@(s?)
order expansion gives no information for the sign of the principal eigenvalue.
Hence, to find the sign of the principal eigenvalue, which is important to the
stability issue, expansions of order higher tii¥a?) may be needed. Indeed,
the principle eigenvalue is of ordéx(s263). This suggests (for ~ 62), an
O(e*) order expansion or a®@(§") expansion. Unlike the expansion that
we displayed in the previous section, where we only needed the existence
of the solution, here we need a more explicit form the principal eigenvalue
and determine its sign. One may also notice that the first order boundary
layer expansion:” has no closed form. This poses an extra difficulty in
performing the calculation.

Another point that one needs to handle is the boundary condition for
O(s) since in the current situatiaf intersects the boundary and therefore,
the domain fors is an interval, instead of a circle with no boundary.

Due to all these considerations, we seek a better approximatid(vof
the principle eigenfunction of ., which, hopefully, will automatically take
care of all the lower order contributions, as well as the boundary condRions.
We find that the following function meets the requirement (see also (11.3)
in [9] for a related point):

() = \Jee T/ 2y, = \Jee CEVr - V. (3.8)

As we shall see later, such chosghwill automatically take care of the
cancellation of lower order expansions, due to the fact thsatisfies the
differential equation (3.1) and the boundary condition.

The structure of this section is as follows:

In Sect. 3.1, we study a few propertiesdfdefined in (3.8), by utilizing
the equation (3.1).

In Sect. 3.2, we introduce a global coordinate system on a band enclosing
the interface, and utilizing it we decompose the sp¢éf2;) into X° @ -
X0 by settingg = O(s)¢° + ¥(r, s).

In Sect. 3.3 we study the quadratic fofthe, ¢) on X° and the corre-
sponding eigenvalue problem: Find= X% and\ € IRsuchthatL¢, ) =
Ao, ) forall o € &0,

In Sect. 3.4, we stud§L.¢, ¢) on X" and then ol (£25) = A°H 0"
in Sect. 3.5, and finally o/ (£25) in Sect. 3.6.

8 In particular the boundary analog of identity (3.6) is satisfied (cf. (1.27)).
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In Sect. 3.7, we give an abstract perturbation result that quantifies and
refines the following idedL¢, ¢) < 1 = ¢ has asignificant” component
and soy is small (cf. [9, 26]).

Finally, in Sect. 3.8, we provide our main result concerning the principal
and the second eigenvalue/eigenfunction of the eigenvalue problems (1.21)
and (1.22).

3.1 Approximation of the principal eigenfunction by

In the rest of this section, we shall suppress the varigple) for functions
such as(z,€&,¢),s(z, &, ¢€), w(s, &, ¢), andx(r, s, &, €). Also, we introduce
I. ;= (—me,m.) where m, :=¢|lne|?,
2= {z € 25 dist(z, ") < 1.}
= {x(r,s) : |r] <m.,ST(r) <s< S (r)},
—1
2% = 05\ 025.
We denote by = w(s), s € [0, L] the representation of the interface where
L is the length of the interface. We denotejBythe intersections aof with
0125. Sinceds2; intersectd” almost orthogonally (up to an error 6f(s?)),
nearp™, we can represeit(2; by s = S*(r) wheres = s(z) andr = r(x)
is the local coordinates a®}. We set
Yi=00noNs =T u N
where X% := {x(r,s) : r €15 =5%(r)}.
Note that
L=257(0)—S%(0), S*(r)=0(*+r?),
S™(r)=L4+0@?+¢e?), S(r)=0(c+|r|). (3.9)
Certain properties af® are shown in the following lemma.
Lemma 3.1 Let¢° be defined as in (3.8). Then
L3R+ 107
(14 7K)?

2e5/2KC
+(1 +rk)3

1 2
0u8"| =Ky ()8 + 0(=267), (3.11)

/ $°9,0° = Ko, (pT) / ¢ + O(262). (3.12)
pE= >+

AP ~ f(u)d = &

uB,s + 0(%/25%),  (3.10)
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Proof. In the (r, s) coordinates,dié = 1¢0r + 5¢0s + 0. Differentiating
equation (3.1) with respect toyields (recalling that, is independent of)
e2KC? N 22K
Uy Uss
(1+7K)? (1+7rK)3
2Ks(1 — 2rK)

2 Au, — f'(u)u, =

—i—s2cr§urr + 52c(s§usr + Sertls + Upg)
+0(eKh
e2Kc? 282K 5 o
B (1+ T/C)zur - (1+ T/C)3uss et
+0(e26%),

where in the second equality, the following estimates have beenwuged:
ulss + uBss = O(e) + uByy, Ky = 0(0%), us = O(1), ¢ = O(6?),
tsr = O(1) + Py = 10(e= /%) 1-0(1), 5¢ = O(e + b + |r]), and
ure = O(1). By introducing the multipliee=¢""¢/2 we can absorb the term
€2cr§um~ and write the equation in the form

K2 — %crglC + %(cr5)2

€2A(€_CTT€/QUT) o f/(u)e—crrg/Qur _ 626—crr§uT (1 " T]C)Q

2e2KC
+mUBss + 0(6252)

Herer has been rescaled byeverywhere it occurs sinee:, = O(1) and
rusg = O(1). Recall thatere — K = & + O(e?). It follows that K? —
TereK + X(cre)? = 3K% + 262 + O(<?). The equation (3.10) thus follows
from the definition ofp".

We proceed to prove (3.11) and (3.12). For this purpose, we use the local
coordinategh, <). Differentiating the relation

x=2z(s) — hn(s) = w(s) + rN(s)
gives
dz = (1 — hKg))7(c)ds — n(s)dh = (1 + 7K(s))T(s)ds + N(s)dr.
That is,

9 O¢
Js or
Oh  Oh
Js or

_ (WT(C)-T(S) %T(g)'N(S)) , (3.13)
—(1 4 rK(s))n(s) - T(s) —n(s) - N(s)
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9s  Os
s Oh
or  Or
s oh

1-hK o
_ RGO TE) @) TE) )
(1 = hg))7(s) - N(s) —n(s) - N(s)
In the (h, <) coordinatesy,, = 8h' anduy, = upc = ugp, = 0 0N 0L,

Hence we obtain

7&(@@4_81&%) 7@@4_871 0 <8<>
i Oh\OhOr Ocor)  On2or ¢ Oh \Or

= ol (gr) + 2 v ()

L o8
“on? T on?

v () g + o)

Oh &*r  Or & ;/0¢
Aaron oo (a0)}
1 g Oh
+gu 17HHE + 0(8)
Here, in the second equality, the change of coordinates ffor) back to
(r, s) was used and in the third equality, the following estimates were used:
on X, g}; = % = O(e + |r|), urr = 0(6%647"'/5), Ups = O(%e*"”‘/s),
us = O(e” ‘T‘/‘e), uss = O(1) + %UBLHH, %2 = 0(e +|r]), and(%)Q =
14+ O(e +r|).
FromuB, gy = O(5), and onX* (denotings™ = ¢ + g(¢)),

Ony

+u

oh

5y = <) N(s) = [—n(cF) + O(Ka(s®)r)] - [N(SF) + O(r?)]
= O(2 +0|r| +12),

we obtaln u 1HH§Q O(6?). Also, direct calculation shows that

OO 9 (25) = Kato (r16) NG9

= Ko (1+0@E+rP)).

Hence,
= Koyur + O(6). (3.15)

OnUy

Ei
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Observe thatrre = O(62|r|) andd,, (crre) = O(62(e+|r|)). Equation
(3.11) thus follows from (3.15) and the definition¢f.
Finally, utilizing the expansion

oK g

Kaw) = Ko(s®) + ?(gi)a@i)r +O(|r]* + &)

and the fact thaf,.. re?® =¢ [r RU(R))2dR+0(e?) = O(?), we then
obtain from (3.11) equation (3.12). This completes the proof of the lemma.
0

3.2 The decomposition

Now we define precisely the separation of variables in the limit-as0 for
the eigenfunctions. We would like to decompose evéhyfunction into the
form ¢°O(s) + 1 where(r, s) is the coordinate system near the interface
I',©is anH! function on the interval0, L), andy 12 ¢°O(s). Later on,
we shall show that for small eigenvalues, theart of the eigenfunction is
small and can be neglected.

Sinceu,. decays exponentially fast away from the interféaGen the rest
of this section, without loss of generality, we shall assume ¢Hat 0 in
22,

’ Asthe coordinate systefn, s) does notwork very well near the boundary
0(2s, we introduce a new coordinate syst¢m() wherer = r(z,§,¢) is
as before and = ¢(x, &, ) is defined by

5= ST(r)
Ty s
s=s(r,0) = ST(r)+4(S~(r) — ST(r)). (3.16)

Note that under the coordinatés ¢), the domain2} becomed. x (0, 1).
Using (3.9) andC(s) = 6 + O(42), we calculate:

d
J(r.0) = (:” g = L+ KGOS~ (r) = ST ()]
= [1 + 78]l + O(8%r| + |r?]), (3.17)
|vx€‘2 = |€s|2|VzS|2 + |€T|2’V:Jc7“|2
= M+O(52‘T|+T2+E2). (3.18)

In what follows we denote® (z(r, £)) by ¢%(r, £).
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We define function spacek’ and X% by
X0 ={pe H'(2s) : ¢=0in125,¢=0(0)d"(r,0) in 05},
(3.19)
X0 = (e HY(2s) : (¢,9) =0forall ¢ € X} (3.20)
Similarly, we define
X0 .= XN H (1),
X0 = {p e H'(%); (¥,0) =0Vp e X0} (3.21)

We remark that in thér, ¢) coordinates, for every = ©(¢)¢° € X and
¢ =0’ € X9,

1
/ ddr = / Ol)w, (0) de, (3.22)

2s 0

1
/ / b = / wa(00(0B(0) d, (3.23)

2s 0

where '
wi(l) :== / J(r, 0% (r,0) dr, i=1,2. (3.24)
IE

Thereforey € X0 (or X0) if and only if1» € H'(£25) (or H(£25)) and
/ J(r, 0)¢°(r, O)ap(r, )dr =0 VL € [0,1]. (3.25)

L

In addition, H(£25) = X @2 X°" since for everys € H (1),
6 =0(0)¢" +v € X B2, X7,

1 0
ws (1) /1 J(r, 0)¢" (1, £)p(r, £)dr.

Next, we characteriz&® and show thaf7*(£2s) = X0 &2 X0,

From (3.22),¢ € X0 = X% N H'(£2s) if and only if p = ©(¢)¢° for
some® € H'((0,1)) satisfying [} wi (£)O(¢£) d¢ = 0.

To characterize\?ol, we introduce a functiows(¢) defined by

ws(l) == :;Eg

o) =

(3.26)

We claim that

XL = (e B'(2) : b =mwse” +v, me R,y e X0} (3.27)
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In fact, if ¢ = mws¢” + ¢ € H'(25) wherey € X% then for any
¢ =0¢" € X0, (1, ¢) = m(wsg?, O6°) = m [ wawsO dl = [ 1O =
0. That is,y) € X0%. On the other hand, for every € H'(25), writing
¢ = 60¢° + 1 € X0+ X" and definingn = jol le/jol wiws, then
¢ = [mw3g® + Y] + [(O — mw3)8’], and (O — mw3)@’ € 25(1 since
[ wi(6 — mws) = 0. Thus (3.27) holds. In additior/ ' (25) = X0 &
X0,

Finally, we establish a few properties needed later for the functipns
i=1,2,3.

Note thaterre = O(62|r|), J(r,€) = || + |T|rK + O(? + r?), and

6/ ru2(r, 0) dr = 5/ RU(R)?dr + O(£%) = O(£?). (3.28)
I R
Hence,
wa(f) = gm/ W2(r, 0) dr + O(e5?)
I

- [ {2(0e) + 0@ ar+ P far

9
+0(£6?). (3.29)
From the expansion afly, one can show that! (R, s) is independent of,

up toO(62) order, sincer andk are so. Also, from®; = O(Kg,) = O(6),
it follows from the last equation that

wa(l) = wa(L)[1 4+ O(e6?) + O(ede™#)] vee[0,1].  (3.30)

In a similar manner, we have,

i () = / uy(r, €) dl + O(£5)

L

B

_ 2y _ - 2
_/Ieur(r,s)dr‘sﬁxed—i-O(s&) ut —um + 0(e8?)

_ kwl(;)u +0(@6%)] Vee o]

The definition ofws then implies that

w3(l) = w3(L)[1 + O(e6?) + O(ede™#)] vee(o,1].  (3.31)
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Finally, from

0
a, 2 TS
o0 /1 ¢ /1
) / (1)
Ie

= O(e)

)+ O(e ) (iuBLRH + O(e_lr‘/5)>dr

(¢)
it follows thatw} (¢) = O(e). Similarly, one can show that; (¢) = wi ()0
(), so that
wi(0) = w3(2)0(e) VLe[0,1]. (3.32)

3.3 The restriction ofL-, -) on X° and X°°

In this subsection, we study the restriction/&f, 1) on the space& and
X0 defined in (3.19) and (3.21) respectively. In fact, we study the following
eigenvalue problems:

(@) Find(\°, ¢Y) such thatp € x° and

(Le°, ¢) = X(¢°,¢) Vo€ XY, (3.33)
(b) Find (X, ¢) such that € X° and
(L°, ¢) = X(¢°,¢) V¢ € X0, (3.34)

Later we shall show that the small eigenvalues to the original eigenvalue
problems (1.21) and (1.22) are accurately approximated by (a) and (b),
respectively.

First, we characterize the bilinear forti-, -) restricted to the Hilbert
spacet?.

Lemma 3.2 For everyg; = 01(£)¢° andgs = O2(£)¢° in X9,
”?

3 T <L¢1, ¢2> = b+@1<0)@2(0) + 67@1(1)@2<1)
3 WQ(ﬁ)

1
+/ {61(9’1 ’2+b2@1(92}d£ (3.35)
0

whereby, be, b™, b~ are independent b, and ©, and satisfy
== —|Ka, (™) + O(e6?),
bi(f) = 14+ O(6?) + O(ede /%), 1 €]0,1],

ba(€) = F(ITIK(IT10) + 3 (I1']6)?
0(552) +O(ese %), L e]0,1].

)= (3.36)
) =
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Proof. Integration by parts for the integral {iL¢1, ¢2) gives
-2 _ 0 0 I o 2,02
(won o0 = [ @r0ond + [f {otevers
=2 + 72 f (u)6"]6°0102 |
=b701(0)02(0) +b6(1)01(1)
1
+ [ {Bwerwesn + hoevexo
0
where
l_):t = ¢Oan¢07
»+

bi(t) = / J(r, OV ol 6% (r ) dt,

£

ba(€) = | J(r,0)[=A¢" + 72 f"(u)¢°]¢°(r, €) de

Ie

BecauseX* is parameterized by = w(s) + TN(s)[s=s%(r), the ar-
clength element oE* is

V1+ 11+ rK (S () SEE)2dr = (1+ 02 + £2))dr.

It then follows from (3.12) that
b = Ko, (pi)/ (/502(7“, (Y)dr 4+ 0(e6?) ((F =0, 17 :=1).
I

Consequently, it follows from (3.30), (3.28), afi, = O(9), that
= |7 w2 (T K (07) + O(e6%)} = [I'|wa(3)b™.
Similarly, from (3.17), (3.18), (3.28), and (3.30), we have
bi(6) = || Pwa(3)[1 + O(e8%) + Ofede™"/*)] =t || 2wa(3)b1 (0).

Finally, we estimateby(¢). Using (3.10) and noting thafIE |#°| =
O(y/¢), we have

3IC2 1+2
\F|/ AT 0 0

| / Ty e s + 0,
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The first term on the right—-hand side can be written as, in view of (3.28)
and (3.30),wa(1){3K2% + 162} + O(e6?) + O(ede"/¢). Sinceu, =
e7U(L) + O(1) andu®Bys = e 1By gy + O(3e"/%)), the second term
can be estimated by

0(5(56_}”/8)—1—0‘/ U(R)uP| g (R, H)dR)|.
R

Using the equation fou®; : u®; rg + uB1 yy — f/(U)uP1 = 0, we have
that

/ WPy (R, H)U'(R)AR = / /(U By =B U
R R

= [0 - sty o
R
Therefore,
7 3 1
ba(0) = LI Pwa (S (ITIK)? + £ (I716)° + O(e6%) + O(ede™"/%)}
=: || ?wa(3)ba(0) -
This completes the proof of the lemmaO

Now we study the eigenvalue problem (3.33) and (3.34). Observe that
the bilinear form(L-, -) in the Hilbert spac&” := H!(§2;) is (i) bounded
for all ¢, € Y), and (iii) coercive on the Hilbert spacé := L2(2)
(ie., (Lo, ¢) > &|¢l3 — Cll¢||% for any ¢ € Y). Also, we know that
Y is a compact subspace o&f (i.e., any sequence bounded ¥hhas a
subsequence convergentX). Hence, by the Lax—Milgram theorem, for
any closed subspaceé C Y, the restriction of L-, -) on Z has a complete
eigen—family{\7, ¢7}>° (assume that the dimension &fis infinite) in
the sense tha{tquz};‘;l is an X -orthonormal basis foZ, and

(LoZ, ¢) = N (97, ¢)x Vo€ Z.

Furthermore)? < A7 < A\ < ... andlim;_ AjZ = 0.

Clearly, the eigenvalue problems (3.33) and (3.34) correspond to the
following two situations respectively:

(@)Y = H'(£25) andZ = X°. We shall denoté\?, ¢7) by (A9, ¢9) in
this case. -

(b)Y = H'(2s)andZ = X0 := X°N H' (). Inthis case, we denote
(A7, ¢7) by (X2, 69).

The original eigenvalue problems (3.3) and (3.4) correspond to the fol-
lowing situations, respectively:
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(€)Y = Z = H'(2). In this case we denote\?, ¢7) by (A}, ¢;).

(d)Y = Z = H'(£2). We denotg 7, ¢7) by (;, ¢;).

Now we characterizé{}, ¢7)}32, and {(A}, 67)}3<,. Later in this
section we shall use a perturbation argument to show that they approximate
{(A\j¢;)} and{(\;, ¢;)} respectively.

Lemma 3.3 (1) (), ¢) solves the eigenvalue problem (3.3) if and only if
(i, ©), whereh = ¢2|I'| 2 and ¢ = O(¢)¢°, solves the following eigen-
value problem:

(010 + b0 =20 1e(0,1),

w2(3) (3.37)

—b1(0)0'(0) +btO(0) =0, b (1)O'(1) +b-O(1) =0,
whereby, bo, b3, by are as in Lemma 3.6 and;(-) (i = 1,2) as in (3.24);
~ (2) (A, ¢) solves the eigenvalue problem (3.4) if and onlyif©), where
A =¢2|lN2pandé = O(¢)¢°, solves the following eigenvalue problem:

~(010) + 520 = 20 — () UL e e (0,1),
W2(2) (2)

—b1(0 )@'( ) +5+O(0) =0, b (1)O(1)+b-O(1) =0, (3.38)
fie 0)dt = 0.

Proof. The assertion follows from the characterization bf, -) on X°
in (3.35) and a standard variational principle argument. We leave the details
to the reader. O

Using the estimate dfy, by, b*, we can now prove the following:

Theorem 3.4 Let {\9, ¢9)}32, and {(A\, #9)}52, be the complete solu-
tions of (3 3) and (3. 4) respectively. Then, the following hold:

=2 2{1( - 1)? - 1]x% + 0(%) },

1)¢OCOS ]_1 7T£) 0(325)7 j: ) 7"'7 (339)
V 2

= 1) 2{ 2 — 172+ 0(j 6)}

#° cos(jml) + O(526), 1,2,---, (3.40)

l
(3)

4¢?
37r00 dg ( )‘ 0(54)

1/ ; b0 + O(8 (3.41)
2
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Proof. Since from the last sectioh]’|K = L& + O(6%) = m + O(5), we
haveby = 72 +O(6). Hence, replacing™ by 0, by by 1, by by 72, and%

by 1 and using a perturbation argument, we obtain from the previous2 lemma
the assertion (3.39) and (3.40). Note that whiea 1, the estimate (3.40)
yields no information about the sign of the eigenvalue. Hence, we need to
refine the estimate.

Recall the following estimates:

b = Koy () + %), i=12 Y 1 0
Wl(i)
o — _ I3 2 107 5)\2
s = Wlzogony + [[bs = B + 3oy,
—i—H WQ(i) - < Ced[d + £Y7),
wa(3) LP((0,1))

forallp € [1,00) U {oc}. Hence, comparing (3.38) to (2.75), and using the
fact that the normalized (ih?) eigenfunction for both problems are bounded
in C?((0,1)) with a bound independent efand§, we conclude that the
corresponding principal eigenvalues of both problems diffepbyd?) (here

we can take any < [1, 2]). Hence,

4e’r g368 d*Kg;
3 |63 ds?

A=172 (u + 0(e0?) ) = (€) + 0(25%)

B 4e2 dQICQ(S
3rég  dg?
This completes the proof of the theoremO

(&) + O(6%). (3.42)

The following corollary will be used later.

Corollary 3.5 (a) There exists a positive constafitsuch that for every
¢ =0’ € X9,

18112001 + 1€NFr1(0,1)) < C*(Lb, 6) + C?l9]%. (3.43)
(b) There exists a positive constaiisuch that for every = ©¢° € X0,
0(0) + O(1)|* < C8*||¢|* + Ce (Lo, ). (3.44)

Proof. (a) The first assertion follows directly from the characterization of
(L-, -y on XY stated in Lemma 3.2, and the details are omitted.

(b) To prove the second assertion, we wiiteas ¢ = a¢ + ¢ =
094" + 6¢° wherea € IR, 9 = 69(¢)¢" is the principal eigenfunction
of (3.4) andp = B¢ L2 (g, Y. Then,

(Lo, §) = M|IJII* = 2L 2x%|g]1%.
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It then follows from (@) that

1012001 < C=%(L6, §) = Ce*{ (Lo, 6) — Nllad]*}
< Ce™(Lo, ¢) + CO° |||
Here in the last inequality, we have used the fact tffat= O(£252) and

lad}|1* < [l
Finally, observe tha®{(¢) = 2 cos(l) + O(6), so that

w2(gy

6(1) + 67 (1)] < C8167 | £2((0,1)-
Therefore,

169(0) + 69(1))?
1691132 (0.1))
< C&|¢|* + Ce (Lo, ¢) + C5°||¢|*.

0(0) + O(1)2 < 2 1B 1* + 4[1011Z0 0,1

The second assertion of the corollary thus follows1

In the rest of this section, we shall show that the projection of the eigen-
functions of (1.21) and (1.22) ok is insignificant for small eigenvalues,
so that for every fixed positive integgr \; and\; are well approximated
by \Y and)\ as given in Theorem 3.4.

3.4 The restriction of -, -) on X0

Lemma 3.6 There exists a constang independent of ande such that for
everyy € X0,

w0z [[ 0P 402 (3.45)

Proof. We divide the integral in the definition éf.¢, ) into integrals on
2% and 2} respectively.

In Qg, f/(u) is uniformly positive, so that for some positive indepen-
dent ofe and,

// 2V + ' (u >// VP Y. (3.46)
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In £2}, we use the coordinatés, ¢), obtaining

[ e - e
1
1 2,2 — Uy 2(, ,
) / a /Ig[w,.mf) UG/, 0))d
// Cle + 2|V + C(lr| + e)v?). (3.47)

Sincey € X0+, (3.25) implies that for any, fI U'(r/e)(r, £)dr =

O(E)W(',E)HQ,IE.Itthenfollowsthag[l (€242 (r, £)— f'(U (v /))p> (v, £)]dr
> 13 [ Y?(r, £)dr for some positivers independent of (cf. [33,26]).

Therefore, it follows from (3.47) that

J] et -rwen =[] vt-om [[ewor e

Consequently, taking a small positiyewe have

J] v
> % /%w - cma//% IVl + v}

2 2 2
+77//ng[6 VU — 1 (w)ot?

o [[EAVOE+ v

Combining this with (3.46), we obtain the assertion of the lemma.

Lemma 3.6 shows that all the eigenvalues of the bilinear foEm -)
restricted to the closed subspal’,‘%L of

H'(£25) have a positive lower boung). To show that small eigenvalues
of (1.21) (or (1.22)) are characterized by the restrictior{fof -) on x°
(or X9), we need to show that? is almost invariant for the operatdr. It
suffices to study the behavior GE¢, ) for ¢ € X0 andy) € X0, as we
shall do in the next two subsections.
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3.5 Properties of L-, -) on H*({2)
Lemma 3.7 There exist positive constant§ and Cs such that for every
¢ € X0 andy € A0,
1
(Lo, ¥} < Cre* (Lo, 6) + 1(Leh, ) + Coz' [ @llz0, (3.48)

(L(®+1), (0 +1)) = (1 - C1e?)(Lg, ¢)
+E[[YI* = Cac 16113, 0- (3.49)
Proof. We need only prove the first inequality since the second is a direct
consequence of the first, (3.45), and the linearity and symmeti-of).

Writing ¢ = ©¢°, and integrating by parts twice for the integral in
(Lo, 1), we obtain

wo.v)= [[ (=ead+ rweer 2 [ 0vo,0

+32// VO (V) — V') =: T+ IT + II1.
Qs
Estimation of I:From (3.10), we see that
2

sup / ’A(bo — e 2f"(u)¢°| (r,0)dr < C.

£e(0,1) J1,
It then follows that

1] < C2Oll2,01 ¥ ]l2,0 < Cell0]* + C7H %,

Here we used the fact thip|| and||©||, (o,1) are equivalent.

Estimation of 11:We need only consider the integral &t . Since® = ©(0)
on X, we need only consider the integral fif, 1/9,,¢°dSx+. Recall that
on X+, 9,0° = [Ka;(pT) + O(|r|62)]¢°(r,0) + O(+/€6?), and the arc
length element igS s+ = (1 + O(e% + 72))dr. It then follows that

/ b8 = L Ko, / J(r, 0)(r, 0))6°(r, 0)dr
>+ V4

I =0
FO@)[[Yll2, 2+ = O@)[[¥ll2, o+

since by the orthogonality criterion (3.25), the integral on the right—hand
side vanishes. Thus,

11| < C¥[la, 5 [|0(0)] + [O(1)]]
< C=0%(0) + O%(1)] + O %26}

< CEY[O%(0) + ©*(1)] + c//ﬂ €%V + 9]
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by the Sobolev imbeddingis... ¥ < 2[[ 5, 5, )nnlel VU +e7197%].

Estimation of llI. In the(r, ¢) coordinates, we can write
1
1 =2 [ o) [ 1001V -
0

I
1
=: g2 / o' (W (£)de.
0
Differentiating (3.25) with respect tbwe have
[ 3008w =— [ 36— [ g,

Le

It then follows that

Wty = [ I[1Vatf |2

= [ (1717200 712000 + 190800 .

1

Observe that.?|V > — 1 = O(|r| + |SE(r)|) = O(e + |r|). Then we can
invoke the property that

sup / {0+ 1r/el 26 (r,0) + 6% (r,0) f ar < ©
2e(0,1) J1.
to conclude that

W (O] < C[el V(.0

ot 60Ol

Therefore,

1
11| < & / O NENVatb (- 021, + 110, 0) o ]de

1
gc&/ @’2d£+é// 2V + 1),
0 (7

In summary, we have
! 1
(o, vl < cet [ 107 +ear+ & [[ [vik+ o

1
< cet / 02 + 6% + YLy, ¥) (3.50)
0
by taking C' large and utilizing (3.45). Finally, via Corollary 3.5 (a), we
obtain the assertion of the lemma.

As we shall see later, estimate (3.49) is sufficient for concluding that all
“small” eigenvalues of (1.22) are close to the “small” eigenvalues of (3.33).



288 N.D. Alikakos et al.

3.6 Properties of L-, -) on H*({2)

Lemma 3.8 There exist constant§s and C; which are independent af
andd such that for anys € X0 and¢- € X0,

(Lo +6Y), (6+01) = {1 Coe H(Lo, 6) — Cus3|6l*  (352)
+{gs — (Cuet + 217 Hiot

whereqy is as in (2.22).

Remark Observe that ip is too small, ther% will not be larger than
Cye* 4+ 722|172, so the coefficient in front df¢ |2 in (3.51) is negative,
and we cannot show the positivity of the principal eigenvalue and the stability
of the droplet. Similarly, for the spiky solution obtained in Sect. 2 (see

Remark 2.4).

Proof. By the characterization 6F0 and. X", we can writep — O¢° and
i <2>+ 1) wherey € X0+ andq3 = mw3¢?, m € R'. Setp = ¢ + <2>
Theno + ¢+ = o+ € X0 + X0, Applying (3.49) we obtain

(Lg+¢7), (0 + 7)) = (Llp+9), (0 +))
> (1 - Cie?){Ly, v) — Coc?floll* + v

= (1= C1e){(L6, ) + 2(Lo, ) + (LS, §)}
~Cotlg)2 + {1012 - Cot 617} (352)

where in the second equation, we have used idefiti? = ||¢||2 + [|¢]|2.
We shall now estimate each term on the right-hand side.
First of all, sincep € X°, we have, by Theorem 3.4

(Lo, o) > N|o|> > —2¢272| 1|2 §||°. (3.53)
Next, we can use Lemma 3.2 to write
I'? ) 1 ot w3(0) 4 w3 (1)
L¢, ¢) = mws3(5)307O(0 +b67O(1
Fp(ly 10 9 = mesD{Fr OO+ O
1 wh w3
+/ b0 —3— + b0 ——|dl}.
0 [ WS(%) Wd(%)} }
Sinceb® = 0(6), [b™ — b~ | = O(8?), and|%@) — 1| = O(6), we
w35
have that ?
016(0) 2 | 1)) |

ws(3) ws(3)
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< [10(0)ws(0) —lb29(1)“’3(1)|\@(1)|
WB(Q)

< C6%|6(1)] + C816(0) + O(1)].

w3(3)

Recall thatp € X0 implies thatfo1 Ow; = 0, so we can estimate

1 w w
‘/0 Obs— % ‘_ ‘/ b2w1 1 bgfi(f)(f)}dﬁ)

gccs?/o o). (3.54)

Here we used the fact thit = 6 + O(6%) so thathy (¢) = ba(3) + O(6?).
Using (3.32), we have
<c: [

‘/ b10'w,
(26, &) < cmasi{e [ 10/

In summary, we have the estimate

o / 01+ 8216(1)| + 016(0) + (1)}

< i |u¢u?+cfs3|rzar{ 2101131 (0.1

+3416120 0,1 + 0%10(0) + O(1)[* |

where in the second inequality we use the fact fhalt = ||mws¢|| is
equivalent to the valugnws(3)|. Using Corollary 3.5 we then obtain

(26, 8)] < G190
+053|951{(e2 + 61+ %) (Lo, 6) + o4l }
2 2
< Gt 1917 + Cel0* Lo, o)

+Ce| 258" || 11 (3.55)
Substituting the estimates in (3.55) and (3.53) into (3.52) then yields

(Lo +%), 6+ 64 > (1-C® = Cet®|24)) (L, 9)
—C(e" + %020 11" (3.56)
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+{m||w||2 — (Ce* + 27|
)12} (357)

CIQI

Finally, we convert||y|| and ||$| into [|¢]||. Since¢t = ¢ + ¢ €

H'(025), )
o= /)=l Q;”// o

It then follows that
e[ ol
|f wiws|? 25

T
o - /4
2|9<5|

JrU(R))? +o(1)
- 4e + o(e)

12sl1911* < S 1v°I1"

whereqy is defined as in (2.22). Therefore,

lo | ape
1Bl12 + lll1> Sk
It then follows from (3.57) (replacingi¢|| by || ¢ ) that

(L(G+¢%), 6+ 0 > (1 - Ce® — C=0%]) (Lo, )
—C(e + 3| 23)) |
+{V|(j((;0|€ _ (Cs4+52w2lf\_2

a1

TakingC; small enough we then obtain the assertion of the lemma.

With the estimate fotL¢, 1), ¢ € X0 andy € X0+ (this corresponds
to the off diagonal entries of a matrix), we can now establish the relationship
between the eigenvalue problems (3.3), (3.4) and (3.33), (3.34). To make
the presentation clearer, we shall first establish a general perturbation result.

ll? = Nl llg™ 12

3.7 A perturbation result

Lemma 3.9 LetX andY be two Hilbert spaces and be compactly imbed-
dedinX.Assume thatLy, z) is a bounded bilinear form defined dhsuch
thatitis symmetric and coercive (with respecify. LetZ andZ - be closed
subspaces of such thaty = Z + Z+ andZ Lx Z*. Assume that for
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some positive constants € (0,1), n2 > 0, andv > 0, we have for all
2€ 2,2 ezt

(L(z+25), (24 20)) 2 (L= m){Lz, 2) +v]=" > = mal|z]* (3.58)

where|| - || = || - || x. Then, for any positive integer if )\}/ < v, we have
N = (e +mA) <A < A7 (3.59)
In addition, if \Y' > A, (\j := —oc) and A7, > A7, then either

ly; — 2;|? or |ly; + 2;]|? is bounded by

3(m2 + mA?)

min{AY — A (1= nm)(A2, — A2), v+ — (1—m)AZ}

(3.60)

Proof. Recall that for any positive integér\Y andA\Z can be obtained by
the Min—Max characterization,

)\Y

; = min max (Lz, z), AZ = min max  (Lx, x),

M;CY  zeM,;,||z||=1 M;CZ zeM;,||z||=1
where M; denotes a genericdimensional subspace &f. SinceZ C Y,
we immediately conclude thaf” < \Z for any positive integei.

Now assume thaX]Z < v. We shall establish the lower bound ﬁqf

Foreach < j,wewritey; = §;+9;- € Z+Z+. We claimthat - - -,
are linearly independent. In fact, if it were not true, theh , ¢;g; = 0 for
some non-zero vectde, - - -, ¢;). It then follows thaty := Eleciyi €
Z1. But this is impossible since on the one hand we héabg, y) =
EX et < Mlyl* < vly|* and on the other hand by taking = 0
andz- = y in (3.58) we obtain/Ly, y) > v||y|. Hence, the dimension
of M := sparf{yi,---,y;} is j. Consequently, there exists a non-trivial
2= o € M suchthat L z foralli <j—1.

Definey = X7 cuyi = = + 4~ wheregt = X7_ ;- € Z+. We
write y = ay; + yJL andz = z; + zJL wherea = «;, ij = Ef;llaiyi,
zjl 1Lz foralli = 1,---,4. Sincey is hon—trivial, we can assume that
L= lyl? = o+ lly; |I> = 82 + [l 1 + 91>

Note that, by definition of A}, v;),

)

(Ly, y) = A o+ Xy IP =X = (A = A Dllyr 2. (3.61)

Note also that, sincg = ¢ + ¢~ € Z + Z*, we have from (3.58),

(Ly, y) = (L=m){Lg, §) + |91 — 02191
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> (1 =) (M8 + Ml 1) + vl = el
= (1 =)A= m+ (1 =)Wy = A1 |2
Hy e = (L= )X

by using the identity> = 1 — |[2;-[|* - [|§ || and||§[|* = 1 — [|§~[|*. The
last inequality, together with (3.61), implies that
AV =\ +771)\-Z + 12
> (A] = AN P+ (1= n0) A = 2D =5 112
H e+ (L= n)A)l5 1%

Since the right—hand side is non—negati)xé (< v implies thaty + 1o —
(1—m)A} > 0), we immediately obtain (3.59).

SetA = min{/\}/ - )\}/_1, (1 —nl)()\jZH )\J-Z), v+ma—(1—m)X,)}
Then from the last estimate, we obtain,

1 + N5 12+ g 1 < [ +mAT]/ A (3.62)

Now if the right-hand side i 2/3, there is nothing to prove since the right—
hand side in (3.60) i& 2 > min{|jy; — z;||2, [ly; + z;||*}. Otherwise, we
havea® = 1 — [ly;-||* > 1/3andf® = 1 — HyH]Q Iz > 1/3. Now,
assuming, without loss of generality thatand 3 are positive (otherwise,
change; to —z; and/ory; to —y;), we then havé-+a > 2//3 > 1. Finally,
multiplying the relatiord = y—y = [ay; +yj] —[Bzj+z +4 ] byy;— 2
we obtain(a+ 3)ly; — 211> + (y; — 2, y7 — 2 —§~) = 0, which implies
thatl|y; — 211 < (ly [ + 12571+ 15102 < 3wz 12 + 125012 + 17]1%)-
Using (3.62), we then obtaln (3.60), thereby completing the proof of the
lemma. O

3.8 Conclusion

With the previous preparation, we can now establish the main results of this
section.

First using estimate (3.49) and applying Lemma 3.9 With- H'(2;),
X = L%(0), Z = X% 1 = C1e%, my = Cyet, andv = /2, we
immediately obtain the following estimates:

Theorem 3.10 Let {(x;, ©;)}32, be the solutions of (3.37) where; is
normalized so that
10;¢°] = 1. Let{()\;, ¢;)}52, be the solution of (1.22). Then for any

\F\ Vo

integery, if p1; < we have

¥WHMZM2¥W*M4@+QW*W& (3.63)
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whereyy, C1, Cy are the positive constants in (3.49). If in addition, we
assume thak;_; < A\j andpji1 > puj, then

0112
65 — ©;0°|° < (3.64)
3¢t (Ca+C1 |0~ 20y)
min{X;—Aj_1,62| P2 (pjp1—pg), g +Coed+(1-C1e2)e2| 1|~ 2p 1}

In particular, for any fixed positive integefindependent of andé, we
have

271'2
j=ﬁ{(j—1)2—1+0(5)}7 (3.65)
¢ = 8922(1)U(;)cos((j—1)7r€>+O(5) Vi=1,---,J
2

Proof. Utilizing estimate (3.26) and applying Lemma 3.9 with= H(2;),
X = L2(025), Z = X%, 1 = C1€2, ny = Cye?, andv = vy/2, we imme-
diately obtain the first assertion of the theorem.

Utilizing Theorem 3.4 and the fact thaf = ﬁU(g) + 0(9), we also
obtain the second assertion.O

Similarly, applying Lemma (3.9) with” = H(2s) andZ = X°, and
utilizing Lemma 3.2 and Theorem 3.4, we obtain the following.

Theorem 3.11 (The Principal Eigenvalue Letu = u(x,§,¢) be con-
structed as in the previous section. Assume that for some large constant
c,

62 > C*e. (3.66)
Let {(j;,0,)}32, be the solutions of (3.37) whet; is normalized so
that [|©;¢°|| = 1. Let{(};, ¢,)}32, be the solution of (1.21). Then for any

integery, if i; < % we have
021y > Aj = 2|07 — Cs(e26" + £%j1;) (3.67)

whereCs is a positive constant independentéo@nde. If in addition, we
assume thak; 1 < Aj andjij;1 > ji;, then we have

Cs [82(54 + €3ﬂj]

[N L pu— - (569
i min{A; — Aj1, €212 (Bj41 — ), oyt

In particular the following hold:

- 2 . . .
b; = M(ﬁOU(z)COS(ﬁrﬁ) +0(0), j=12 (3.69)
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= 452 dQICQ6 24

= (&) + O(25%). (3.70)
- 3e272

A = O 25). (3.71)

Recall from the expansion thad(s, £, ) = — cos(ws/|I']) + O(d) and
that

ue = 1¢(8,&,6)ur(r, 5,8, €) + seus + ug(r, s, €)
1
—~{ cos(rs/ITU(r/2) + O(e) |
g
which is close to the principal eigenfunction. Hence we have the following:

Theorem 3.12 (Spectral Gap)Let u = u(z,&,e) be constructed as in
the previous section. Assume that (3.66) holds. Then, fovanyd ' (£2s)

satisfying
/ / =0 / /%W:o, (3.72)

we have
(Lv, v) = //06{52\Vv]2+f’(u) 2‘5;‘7;2// W2, (3.73)

4 Dynamics

In Sect. 2, we constructed a functiof, £, ) and a scalar field(, £) such
that

L5(u) = 2Au— f(u) + [ff(u) = e2cug + O(eX)  in (2,
{ Op =0 on 942,
fQ(; u = |02 — .
4.1)
In this section, we shall study the dynamics of (1.8) in a small neighbor-
hood of a manifoldM defined by

M= {u(-, & e);€ € 0825} 4.2)

4.1 The tubular coordinate system

For any positive constant, we define

N7, = {p € L*(£2s); dpz2(0, M) <},
Ny = { € H'(25); dpga (p, M) <} (4.3)
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whered» andd represent, respectively, the distance inERéNs) norm
and in H! norm defined by

leliz = IV ella(ay) + lelizay:-

The following result concerning the?((2;) projection of a neighbor-
hood of M on M is proved in [6, Lemma 2.5]. We state it without proof.

Lemma 4 1 Assume that is a sufficiently small number. Then for each
w e /\/ ¢, there is a uniqué,, € 925 such that

Hw - u('7§w7€>HL2 = dLQ(va) = élgf H’U) - u( 78>HL2(Q§)'

In addition, ¢ is a smooth function ab and
('LU - U(', g’wa 8)7 UE(, ng €)>L2 = 0
Furthermore, ifw € N “andu(-, &, €) is the L? projection ofw on M
as stated above, then
[w—u(, &w, e)lm < Cdpa(w, M)
where(' is a constant independent of ¢ and§.

One observes thaA'z = (wyv = w — u(-, &w,€)) Is a smooth change
of coordinates m/\/ , as well as m/\f

4.2 Stability of the manifold

It is convenient to write (1.8) as an abstract evolution equation
we = L5(w), w(0) =wp (4.4)
where
L8 (w) =2 Aw — f(w +ff9 Yin 25, Opw = 0o0n 9.

Theorem 4.2 Assume that in (4.1) is > 5. Then there exists a small
positive bute—independent constamt > 0 such that the neighborhood

ch—2 .. . .
N£’2 is positively invariant under the flow (4.4); namely,
w(0) e NE T = wt) e NET Vi o. (4.5)

In addition, the neighborhooﬁlf”g1 is stable in the sense that

k—2

w0) NG = w(t) eNGFT T V>0 (4.6)

whereC'is a positive constant independentaf0) ande.
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Proof. By continuous dependence(t) stays |r1/\/2776 fort € [0, 7) for
somer > 0. For any such, we can write, by Lemma 4.1,

w(t) =u(-,§(t),e) +o(t), v(t) Lr2 ug(-,€(t),€).
Abbreviatingu(-, £(t), €) asu, (4.4) can be written as
ue€(t) + vy = L5(u) + Lv + N(u,v) (4.7)

where L is the linearization ofZ¢ atw and N (u, v) is the remaining part
which is at least quadratic in Taking theL? inner product of (4.7) with
and using the condition that L ;> u¢ and tha®,,u = J,v = 0 ondf2s5, we
then obtain

L(v,0) = (£5(w),v) + (Lv, v) + (N(u, ), v). (4.8)
Using the equation fot, we have
(£5(w),0) < CeFllollaay) < CF (vl 2oz + CmY2 ol 2ap))-
Sincev L2 ug, by the eigenvalue analysis in Sect. 4, we have
3{Lv, v) > 7' ullin + C7Hvll3 g > O ellully, gz vl
Assume thaff”(s) > 0 when|s| > Cy. ThenN (u,v)v > —C|v|® (See
[2, Lemma 2.2]), it then follows that
—(N(u,v),0) < Cl|v]|3 0, < CCllv[I3 0, 0]l m1(25)
< C?eMol3 g, llvllr < 202 CPlol2,05 0] 2
where in the second inequality we have used the Nirenberg—Gagliardo
inequality, and in the last inequality, we have used the assumption that
( ) N27]€
Insertlng all these estimates into (4.8), we then obtain

1d _
5 01320 < lolly 02 |CF = O eloll ]
Hlolla,, [CeFml? + (2023 = C71e2) o] 1 |

Sincek > 5, we can take) small (and independent of such thaRC?net—3
< %0*152. Hence, if|[v]|2,0; > 72, then so doegu|| 1, and therefore,

@ o1, < ol 02 [CEF — 0 1net1]

+|v]l2,05 {C’EkH/Q\ Ine| — %C‘lnak} < 0.

2dt

This implies that|v||2 o, can never exceegt*~2, thereby proving (4.5).

Using local regularity theory for parabolic equations and for the function
W (y) := w(x)|s=<y, ONe can easily establish (4.6). This completes the proof
of the lemma. O
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4.3 Motion on the manifolg\1

Theorem 4.3 Assume that in (4.1) is> 5 andw(0) € Nfﬁkiz. Letw(t) =
u(+,&(t),€) + v(t) be the decomposition given by Lemma 4.1. Then

4 5

£(t) = %c(&(t),e)+O("71/267) = 3,90

0 (£)e28[1+0(0)]+0(5%€?)
(4.9)
wheregg = 1if e = O(8?).

Proof. Taking theL? inner product of (4.7) withie we have
g@)”“ﬁ ‘%795 + (Utv uf) - (Eguv ’U,g) + <L’U, u§> + (N(U, U):“’f)' (410)
Differentiating the identity(v, u¢) = 0 with respect ta we have
(w0, ug)| = (0, uee)é| < 1€ o]
< ClE|Cne" 2732 < CPEeh 52 ug]

2,025 l|ueell2,025

2
2,025

sincel|ugl2,0; > C~'e~1/2 and||uge[|a,0; < C==%/2.
Assuming thaf (s) grows at most with a power of three, thé¥i(u, v)| <
Cv%(1 + |v]) so that

(N(u,0),ug)| < C|10]3 0, + 0] g, | I l2.0,

< 2| ol oz,

e Mol Pl | e 2.0,

< CEQk*E)El/QHUd

2
2,(25‘
Also, from the equation fox, we have
(£° (), ue) = £ (ug, ug) + (O(9), ug) = (=% + O(FH)) Jug 3 0,

sinceljug| L1 = O(1).
Utilizing all these estimates in (4.10), we then obtain

E(1+0E2) Juel? = (% + O™ ) + O+ g

That is

2
2795.

= {520—1— 0(52"‘_9/2) n O(€k+1)} {1 i O(gk—5/2)}
= 2+ O(eF1/242)

sincek > 5. This completes the proof of the Lemmal
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4.4 Equilibria and their stability

Theorem 4.4 Let z(&p) be a point ord(2s such that the curvature @f(2;
experiences a strict extreme; namely,

P2 := 077K, (€0) =0, 3 :=6KCH, (&) #0.

Thenin asmall neighborhood of-, &, 0), there exists a unique equilibrium

of (1.8). In addition, ifps > 0, i.e., the curvature experiences a local
minimum, then the equilibrium is unstable with an one dimensional unstable
manifold. If o3 < 0, then the equilibrium is exponentially stable.

Proof. 1. ExistenceFor any¢ € IR', letw(t, ) be solution of the flow of
(4.4) with initial dataw(0) = u(-, , ). If we denote by (¢, t) as the point
such that the.? projection ofw(t, £) is u(-, £(&,t), €), then from Theorem
4.3, we know that

§.8) = [e(6(t. 8.0 +OE™Y)|. €€ =& (@1
Let &y, & be any two fixed points such that
G <& <&, &7 <|E—Cl 6 —&l <A
Then sincéKY, (£o)| = 6°|w3| > 0 andy; is independent of, we see that

[c(&1,€) + O] [e(é2,€) + O(7/?)] < 0. (4.12)

Now defineA; as the set consisting of all thosee (&1, &2) such that
there exists a t|m€(§) > 0 satisfying&(T (f) g) = &;. By continuous
dependence of initial data of the flow (4.4), both and.A, are open. In
addition, from (4.11) and (4.12), we see tHatn.A; = (). Hence, there exists
&* € (&,&)suchthat & A, UAy; namely£(t, &%) € (&1,&) forallt > 0.
Furthermore, since(£) +O0(e7/2?)| # 0aslongag—1/2 > |6 —&| > §°/2,
we see that fot large enough,

E(t, &%) € (& — 6%/2,69 4 0%/%) forall t > T (4.13)

Recalling that (4.4) is a gradient flow, we know thatlimit set of any
trajectory is non—empty and consisting of equilibria. In particular,uthe
limit set of w(t, £*) is non—empty and consists of equilibria of (4.4). From
(4.13), we then conclude that there exists at least one equilibrium of (4.4)
nearu(-, o, €). This proves the existence.

2. Unigueness and StabilitPbserve that the principal eigenvalue lofat
u=u(-¢& ) ise’[Kf, + O(5%)]. Also if we replaceu by u + v, then for
any¢ € H'(s),

I( "(u) = f'(u+v))|¢? < Ce™ollz,, 6]l 1 ¢ll2,0,-
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We then conclude that if we replaeeby u + v with [[v]|2 o, < €364, then
the principal eigenvalue df will change at most by’'s25%.

Now from the eigenvalue analysis in Sect. 3, we see that foramy
{w;w = u(-,{,s) + U,{ € [50 - 571/27&0 + 571/2]7 H’UHQ,QJ < 5354}7

the second eigenvalue d@f at w is 2[3L,% + O(4)], uniformly for ¢ €
[€0—671/2, &+071/2], while the principal eigenvalue is'T =26 [105 (&) +
0

O(5'/?)], which is uniformly bounded away from zero. From this, and stan-
dard linearization theory we obtain both the uniqueness of the equilibrium
and its exponential stability/instability. O

Remark 4.5As far as we know, the existence of unstable equilibria stated
in Theorem 4.4 has not been rigorously verified before in the literature, in
the case of bistable nonlinearities in higher space dimensions. In the case of
one-sided nonlinearities, Ni and Takagi [[69]] have established existence of
unstable equilibria near critical points of the curvaturé6f The existence

of stable equilibria near strict local maxima of the curvature has been proved
in several places; see, for example, [31,51].

5 Appendix: Energy comparison

In this appendix, we shall compare the energies of the constant solution (i.e.,
homogeneous state) with those of single interface layered solutions. More
precisely, we calculate the energy

N

E(u) = /01 TN_I(E;u% + W(u)) dr, W(u):= /_ul f(s)ds

for u = w(r), which, together with a constaat solves

ey + éZNT_lur = f(u)+o, re(0,1),
u(0) = up(1) =0, [y rNTu(r)dr = %m, (A.1)
m:=1-—26V.

If (u,o) is a constant solution, then it is uniquely givendy= m and
o = —f(m), and its corresponding energy is

E(m) = x W (m).

Now letu be a singled layered (“bubble”) solution of (A.1) in the sense
thatu(r) is monotonic. Lep be the “radius”; namely.(p) = 0. We assume
thatp € [2¢|Iné|?,1/2] and want to calculate the energy associated with it.
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From the differential equation (A.1), one can show that f(u(1)) =
O(ev(1=P)/%) wherev can be any positive constart f'(u(1)). Also,
definew(z) = u(p + £z). Then

w' = f(w) =0 - { O+ o(FE L) b, 2 € [~ me?, e,

A phase plane analysis then yields (sincis single layered),

w(z) =U(z) +oUi(z) + O( 2“’“8'2)), (U1 isasin (2.24)

o= (Na;pl)é + 0(52‘;736‘2)), (ao is as in (2.22) (A.2)

[ =@ o),
0

1
/ PN 7ly2 = pN—1 (a% + 0(1)).
0

From the area constraint = N [ #N~'u = u(1) — [ *Nu,, one derives

1
u(l):m+/ rNuT:1—25N+,0N(2+0(1)).
0

Therefore,

o= —f(u(1)) +O0(e =P/ = — f'(1)(u(1) — 1) + O(Ju(1) — 1]?)
= f(D[26Y = 2™ + o(p" + 6V)].

This relation, together with (A.2), then implies thamust satisfy the alge-
braic equation

E= Glp) + o™ 4 9V, Glp) = 2L, V) (a)

Clearly, this equation has a solution if and only if

£ < eyoN T
& 2f"(1)agN
" (N2 —1)(1+ N)UN
- ANFQ) . (A.4)
(N2 = 1)(1+ N)UNV2 [ /W (s)ds
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Assume that the above relation holds. We now calculate the energy of

N/ Nl —i—au—;u%)
_i_NéQ/ Nl?_o,N/ Nl

=W () + ou = S]]

r=0

+ {rNu,.[uM — f(u) — o]+ NrN_léQU,%} —om

=W (m) — £ (1)[26Y — 2oV 21 + o(1)] +
NE

(m) — 5/ (1)[26Y = 2p"*[1 + 0(1)]
+4f ()N [N = pN](1 + o(1))
= NE(m) —2f' (V[ = p™ + o(p™)][6" = 3p" + 0(p™)]

Hence,
E(w) < E(m) < p>37YNg.

From the equation fop in (A.3), to havep > 371/N§, it is necessary
and sufficient to havé?(S—l/Né) > £; namely, it is sufficient and necessary
to have

g _ A (ag _ 87'(1) Lo as)

BBUN T 33UNa (L W (syds

One observes that whel = 2, C}; = ¢ = C7 whereC7 is defined in
(2.65).

In conclusion, for the bubble to be the global minimum energy, one
needs condition (A.5). In terms ef= £/4, condition (A.5) is equivalent to
e < C;{,(SN, whereN is the space dimension.
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