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Abstract
In this paper, we prove interior Hessian estimates for shrinkers, expanders, translators, and
rotators of the Lagrangian mean curvature flow under the assumption that the Lagrangian
phase is hypercritical. We further extend our results to a broader class of Lagrangian mean
curvature type equations.
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1 Introduction

A family of Lagrangian submanifolds X(x, t) : Rn ×R → C
n evolves by Lagrangian mean

curvature flow if it solves

(Xt )
⊥ = �g X = �H , (1.1)

where �H denotes the mean curvature vector of the Lagrangian submanifold. Themean curva-
ture vector of the Lagrangian submanifold (x, Du(x)) ⊂ C

n is determined by the Lagrangian
angle or phase �, by Harvey-Lawson [1, Proposition 2.17]. The Lagrangian angle is given
by

� =
n∑

i=1

arctan λi , (1.2)

where λi are the eigenvalues of the Hessian D2u. This angle acts as the potential of the mean
curvature vector

�H = J∇g�, (1.3)

where g = In + (D2u)2 is the induced metric on (x, Du(x)), and J is the almost complex
structure on C

n . Thus, Eq. (1.2) is the potential equation for prescribed Lagrangian mean
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curvature. When the Lagrangian phase � is constant, u solves the special Lagrangian equa-
tion of Harvey-Lawson [1]. In this case, H = 0, and (x, Du(x)) is a volume-minimizing
Lagrangian submanifold.

After a change of coordinates, one can locally write X(x, t) = (x, Du(x, t)), such that
�g X = (J ∇̄�(x, t))⊥, where ∇̄ = (∂x , ∂y) is the ambient gradient. This means a local
potential u(x, t) evolves by the parabolic equation

ut =
n∑

i=1

arctan λi ,

u(x, 0) := u(x).

(1.4)

Symmetry reductions of (1.1) reduce (1.4) to an elliptic equation for u(x). This is illus-
trated, for instance, in the work of Chau-Chen-He [2]. These solutions model singularities
of the mean curvature flow.

If u(x) solves

n∑

i=1

arctan λi = s1 + s2(x · Du(x) − 2u(x)), (1.5)

then X(x, t) = √
1 − 2s2t (x, Du(x)) is a shrinker or expander solution of (1.1), if s2 > 0

or s2 < 0, respectively. The mean curvature of the initial submanifold (x, Du(x)) is given
by H = −s2X⊥. Entire smooth solutions to (1.5) for s2 > 0 are quadratic polynomials,
by Chau-Chen-Yuan [3]; see also Huang-Wang [4] for the smooth convex case. The circle
x2 + u′(x)2 = 1 is a closed example of a shrinker s2 = 1, s1 = 0 in one dimension. We refer
the reader to the work of Joyce-Lee-Tsui [5], for other non-graphical examples.

If u(x) solves

n∑

i=1

arctan λi = t1 + t2 · x + t3 · Du(x), (1.6)

then X(x, t) = (x, Du(x)) + t(−t3, t2) is a translator solution of (1.1), with constant
mean curvature H = (−t3, t2)⊥. For example, in one dimension, the grim reaper curve
(x, u′(x)) = (x,− ln cos(x)), for t2 = 1, t3 = t1 = 0. Entire solutions to (1.6) with Hessian
bounds are quadratic polynomials, byChau-Chen-He [2]; see alsoNgyuen-Yuan [6] for entire
ancient solutions to (1.6) with Hessian conditions.

The Hamiltonian vector field A · z = J ∇̄� has a real potential given by �(x, y) =
1
2i 〈z, A · z〉Cn if A ∈ SU (n) is skew-adjoint. Since exp(t A) ∈ U (n) preserves the symplectic
form dz ∧ dz̄ = ∑

dzi ∧ dz̄i , the Hamiltonian flow X(x, t) = exp(t A)(x, Du(x)) is a
Lagrangian immersion with Xt = AX = J ∇̄�. For A = r2 J and �(x, y) = r1 + r2

2 |z|2, if
u(x) solves

n∑

i=1

arctan λi = r1 + r2
2

(|x |2 + |Du(x)|2), (1.7)

then X(x, t) = exp(r2t J )(x, Du(x)) is a rotator solution of (1.1), with mean curvature
H = r2(J X)⊥. The Yin-Yang curve of Altschuler [7] is one such example in one dimension.
We also refer the reader to the notes of Yuan [8, p. 3].
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A broader class of equations of interest that generalize Eqs. (1.5), (1.6), (1.7), among
others, are the Lagrangian mean curvature type equations

n∑

i=1

arctan λi = �(x, u(x), Du(x)). (1.8)

The study of Lagrangian mean curvature-type equations is driven by a geometric interest,
particularly because of the notable special cases illustrated above; see [9, 10] for a detailed
discussion.

In this paper, we prove interior Hessian estimates for shrinkers, expanders, translators, and
rotators of the Lagrangian mean curvature flow and further extend these results to the broader
class of Lagrangian mean curvature-type equations. We assume the Lagrangian phase to be
hypercritical, i.e. |�| ≥ (n − 1) π

2 . This results in the convexity of the potential of the initial
Lagrangian submanifold. For certain � = �(x), smooth convex solutions were constructed
byWang-Huang-Bao [11] satisfying Du(�1) = �2 for prescribed uniformly convex smooth
domains �i , following Brendle-Warren [12] for the constant� case; see also Huang [13] for
a construction using Lagrangian mean curvature flow.
Notations. Before we present our main results, we clarify some terminology.

I. By BR we denote a ball of radius R centered at the origin.
II. We denote the oscillation of u in BR by oscBR (u).
III. Let �R = BR × u(BR) × Du(BR) ⊂ BR × R × R

n . Let ν1, ν2 be constants such that
for �(x, z, p), we have the following structure conditions

|�x |, |�z |, |�p| ≤ ν1, (1.9)

|�xx |, |�xz |, |�xp|, |�zz |, |�zp| ≤ ν2

for all (x, z, p) ∈ �R . In the above partial derivatives, the variables x, z, p are treated as
independent of each other. Observe that this indicates that the above partial derivatives
do not have any D2u or D3u terms.

Our main results are the following:

Theorem 1.1 If u is a C4 solution of any of these Eqs.: (1.5), (1.6), and (1.7) on BR(0) ⊂ R
n

where |�| ≥ (n − 1) π
2 , then we have

|D2u(0)| ≤ C1 exp[C2(oscBR (u)/R2)4n−2]
where C1 and C2 are positive constants depending on n and the following:

(1) s2 for (1.5)
(2) t2, t3 for (1.6)
(3) r2 for (1.7).

Remark 1.1 In the case of Eq. (1.6), since there is no gradient dependence in the derivative
of the phase, the precise estimate obtained is

|D2u(0)| ≤ C1 exp[C2(oscBR (u)/R2)3n−2].
Theorem 1.2 Suppose that u is a C4 solution of (1.8) on BR(0) ⊂ R

n, where |�| ≥ (n −
1) π

2 , �(x, z, p) ∈ C2(�R) is partially convex in the p variable, and satisfies the structure
conditions given by (1.9). Then we have

|D2u(0)| ≤ C1 exp[C2(oscBR (u)/R2)4n−2]
where C1 and C2 are positive constants depending on n, ν1, ν2.
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Remark 1.2 From the singular solutions constructed in [10, (1.13)], it is evident that the
Hessian estimates in Theorem 1.2 will not hold without partial convexity of� in the gradient
variable Du.

One application of the above results is that C0 viscosity solutions to (1.5),(1.6), and
(1.7) with |�| ≥ (n − 1) π

2 are analytic inside the domain of the solution, as explained in
Remark 5.1.

The concavity of the arctangent operator in (1.2) is closely associated with the range of
the Lagrangian phase. The phase (n − 2) π

2 is called critical because the level set {λ ∈ R
n |λ

satisfying (1.2}) is convex only when |�| ≥ (n − 2) π
2 [14, Lemma 2.2]. The arctangent

operator is concave if u is convex. The concavity of the level set is evident for |�| ≥ (n−1) π
2

since that impliesλ > 0,making F concave. The phase |�| ≥ (n−1) π
2 is called hypercritical.

The phase |�| ≥ (n − 2) π
2 + δ is called supercritical. The phase |�| ≥ (n − 2) π

2 is called
critical and supercritical. For solutions of the special Lagrangian equation with critical and
supercritical phase |�| ≥ (n − 2) π

2 , Hessian estimates have been obtained by Warren-
Yuan [15, 16], Wang-Yuan [17]; see also Li [18] for a compactness approach and Zhou [19]
for estimates requiring Hessian constraints which generalize criticality. The singular C1,α

solutions to (1.2) constructed by Nadirashvili-Vlăduţ [20] and Wang-Yuan [21] show that
interior regularity is not possible for subcritical phases |�| < (n−2) π

2 , without an additional
convexity condition, as in Bao-Chen [22], Chen-Warren-Yuan [23], and Chen-Shankar-Yuan
[24], and that the Dirichlet problem is not classically solvable for arbitrary smooth boundary
data. In [25], viscosity solutions to (1.2) that are Lipschitz but not C1 were constructed.

If the Lagrangian phase varies � = �(x), then there is less clarity. Hessian estimates for
convex smooth solutions with C1,1 phase � = �(x) were obtained by Warren in [26, Theo-
rem 8]. ForC1,1 supercritical phase, interior Hessian and gradient estimates were established
by Bhattacharya in [27]. For C1,1 critical and supercritical phase, interior Hessian and gradi-
ent estimates were established by Bhattacharya [27, 28] and Bhattacharya-Mooney-Shankar
[29] (for C2 phase) respectively. See also Lu [30]. Recently in [31], Zhou established inte-
rior Hessian estimates for supercritical C0,1 phase. For convex viscosity solutions, interior
regularity was established for C2 phase by Bhattacharya-Shankar in [10, 32]. If � is merely
in Cα and supercritical, counterexamples to Hessian estimates exist as shown in [33].

While our knowledge is still limited when it comes to the variable Lagrangian phase�(x),
it narrows even further when the Lagrangian phase is dependent on both the potential and
the gradient of the potential of the Lagrangian submanifold, i.e., �(x, u, Du). Applying the
integral method of [27] to the current problem poses numerous challenges. For instance,
establishing the Jacobi-type inequality becomes significantly more intricate due to the pres-
ence of the gradient term Du in�. Consequently, it is by no means a straightforward process
to combine the derivatives of � into a single constant term as in [27]. Next, due to the
presence of the gradient term in the phase, the Michael-Simon Sobolev inequality cannot be
used to estimate the integral of the volume form by a weighted volume of the non-minimal
Lagrangian graph. We circumvent this issue by using the Lewy-Yuan rotation [14, p. 122],
which is reminiscent of the technique used in [23]. This rotation results in a uniformly elliptic
Jacobi inequality on the rotated Lagrangian graph, which allows the use of a local maximum
principle [34, Theorem 9.20]. However, the constants appearing in our Jacobi inequality are
dependent on the oscillation of the potential. Therefore we need an explicit dependence of
the constants arising in the local maximum principle on osc(u). To address this, we state and
prove a version of the local maximum principle [34, Theorem 9.20] applied to our specific
equation (see Appendix). Next, rotating back to the original coordinates and keeping track
of the constants appearing at each step, we bound the slope of the gradient graph (x, Du(x))
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at the origin by an exponential function of the oscillation of u. Note that since the Michael-
Simon mean value [35, Theorem 3.4] and Sobolev inequalities [35, Theorem 2.1] are not
employed, there is no explicit dependence on the mean curvature bound in our final estimate.

The critical and supercritical phase case |�| ≥ (n − 2) π
2 introduces new challenges

requiring new techniques, which we present along with the supercritical phase case |�| ≥
(n − 2) π

2 + δ in forthcoming work [36].

2 Preliminaries

For the convenience of the readers,we recall somepreliminary results.Wefirst introduce some
notations that will be used in this paper. The induced Riemannian metric on the Lagrangian
submanifold X = (x, Du(x)) ⊂ R

n × R
n is given by

g = In + (D2u)2.

We denote

∂i = ∂

∂xi
, ∂i j = ∂2

∂xi∂x j
, ui = ∂i u , ui j = ∂i j u.

Note that for the functions defined below, the subscripts on the left do not represent partial
derivatives

hi jk =
√
gii

√
g j j

√
gkkui jk, gii = 1

1 + λ2i
.

Here (gi j ) is the inverse of the matrix g and hi jk denotes the second fundamental form when
the Hessian of u is diagonalized. The volume form, gradient, and inner product with respect
to the metric g are given by

dvg = √
det gdx = Vdx , ∇gv = gi jvi X j ,

〈∇gv,∇gw〉g = gi jviw j , |∇gv|2 = 〈∇gv,∇gv〉g.
Next, we derive the Laplace-Beltrami operator on the non-minimal submanifold

(x, Du(x)). Taking variations of the energy functional
∫ |∇gv|2dvg with respect to v, one

gets the Laplace-Beltrami operator of the metric g:

�g = 1√
g
∂i (

√
ggi j∂ j ) = gi j∂i j + 1√

g
∂i (

√
ggi j )∂ j (2.1)

= gi j∂i j − g jpu pq(∂q�)∂ j .

The last equation follows from the following computation:

1√
g
∂i (

√
ggi j ) = 1√

g
∂i (

√
g)gi j + ∂i g

i j

= 1

2
(∂i ln g)g

i j + ∂kg
k j

= 1

2
gkl∂i gkl g

i j − gkl∂kglbg
bj

= −g jpgabuabqu pq = −g jpu pq∂q� (2.2)
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where the last equation follows from (2.3) and (2.4) below. The first derivative of the metric
g is given by

∂i gab = ∂i (δab + uakukb) = uaikukb + ubikuka
at x0= uabi (λa + λb), (2.3)

assuming the Hessian of u is diagonalized at x0. On taking the gradient of both sides of the
Lagrangian mean curvature type Eq. (1.8), we get

n∑

a,b=1

gabu jab = ∂ j�(x, u(x), Du(x)). (2.4)

For the general phase �(x, u(x), Du(x)), assuming the Hessian D2u is diagonalized at
x0, we get

∂i�(x, u(x), Du(x)) = �xi + �uui +
n∑

k=1

�uk uki (2.5)

x0= �xi + �uui + �ui λi . (2.6)

So from (2.6) and (1.3), we get, at the point x0 ∈ BR ,

| �H |2g = gii (∂i�)2 = gii
(

�2
xi + �2

uu
2
i + �2

ui λ
2
i + 2�xi �uui + 2�xi �ui λi + 2�u�ui uiλi

)

≤ 3gii
(

�2
xi + �2

uu
2
i + �2

ui λ
2
i

)

≤ C(ν1, n, oscBR+1(u)).

Taking the j-th partial derivative of (2.5), we get

∂i j�(x, u(x), Du(x)) = �xi x j + �xi uu j +
n∑

r=1

�xi ur ur j

+
(

�ux j + �uuu j +
n∑

s=1

�uus us j

)
ui + �uui j

+
n∑

k=1

(
�uk x j + �ukuu j +

n∑

�=1

�uku�
u� j

)
uki +

n∑

k=1

�uk uki j

x0= �xi x j + �xi uu j + �xi u j λ j (2.7)

+ (
�ux j + �uuu j + �uu j λ j

)
ui + �uλiδi j

+ (
�ui x j + �ui uu j + �ui u j λ j

)
λi +

n∑

k=1

�uk uki j .

Observe that when � is constant, one can choose harmonic co-ordinates �gx = 0, which
reduces the Laplace-Beltrami operator on the minimal submanifold {(x, Du(x))|x ∈ BR(0)}
to the linearized operator of (1.2) at u.
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3 The slope as a subsolution to a fully nonlinear PDE

In this section, we prove a Jacobi-type inequality for the slope of the gradient graph
(x, Du(x)), i.e., we show that a certain function of the slope of the gradient graph (x, Du(x))
is almost strongly subharmonic.

Proposition 3.1 Let u be a C4 convex solution of (1.8) in Rn. Suppose that the Hessian D2u
is diagonalized at point x0. Then we have the following at x0

1

n
|∇g log

√
det g|2g ≤

n∑

i=1

λ2i h
2
i i i +

∑

i �= j

λ2j h
2
j j i

and

�g log
√
det g

x0=
n∑

i=1

(1 + λ2i )h
2
i i i +

∑

j �=i

(3 + λ2j + 2λiλ j )h
2
j j i

+ 2
∑

i< j<k

(3 + λiλ j + λ jλk + λkλi )h
2
i jk

+
n∑

i=1

giiλi∂i i� −
n∑

i=1

giiλi (∂i�)∂i log
√
det g.

Proof We compute some derivatives of the metric g. We have

∂ j gab =
n∑

k=1

(uak j ukb + uakukbj )

x0= uabj (λa + λb) (3.1)

and

∂i g
ab = −gak∂i gkl g

lb

x0= −gaa∂i gabg
bb

x0= −gaagbbuabi (λa + λb). (3.2)

Hence

∂i j gab =
n∑

k=1

(uak ji ukb + uak j ukbi + uaki ukbj + uakukbi j )

x0= uabji (λa + λb) +
n∑

k=1

(uak j ukbi + uaki ukbj ).

In order to substitute the 4th order derivatives, we take the partial derivative of (2.4) and
get

n∑

i, j=1

gi j ui jk� = ∂k�� −
n∑

i, j=1

∂�g
i j ui jk

x0= ∂k�� +
n∑

i, j=1

gii g j j ui j�ui jk(λi + λ j ).
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Thus, we have
n∑

i, j=1

gi j∂i j gab
x0= (λa + λb)∂ab� + ∑n

i, j=1 g
ii g j j ui jaui jb(λi + λ j )(λa + λb)

+ ∑n
i,k=1 2g

ii uaki ubki . (3.3)

Next, we compute the norm of the gradient:

1

n
|∇g log

√
det g|2g x0=

n∑

i=1

1

n
gii

(
∂i log

√
det g

)2

x0=
n∑

i=1

1

n
gii

⎛

⎝
n∑

a,b=1

1

2
gab∂i gab

⎞

⎠
2

x0=
n∑

i=1

1

n
gii

⎛

⎝
n∑

a,b=1

1

2
gabuabi (λa + λb)

⎞

⎠
2

from (3.1)

x0=
n∑

i=1

1

n
gii

(
n∑

a=1

gaauaaiλa

)2

(3.4)

≤
n∑

i,a=1

gii (gaa)2u2aaiλ
2
a

x0=
n∑

i,a=1

h2aaiλ
2
a

x0=
n∑

i=1

λ2i h
2
i i i +

∑

i �= j

λ2j h
2
j j i .

From here, we need to calculate �g log
√
det g, where again, the Laplace-Beltrami operator

takes the form of (2.1). From the above calculations, we observe that

n∑

i, j=1

gi j∂i j log
√
det g =

n∑

i, j=1

gi j∂ j

(
1√
det g

1

2
√
det g

∂i det g

)

=
n∑

i, j,a,b=1

gi j∂ j

(
1

2 det g
det g gab∂i gab

)

=
n∑

i, j,a,b=1

gi j
1

2
∂ j

(
gab∂i gab

)

=
n∑

i, j,a,b=1

gi j
1

2

(
(∂ j g

ab)∂i gab + gab∂i j gab
)

. (3.5)

Using (3.1) and (3.2), we see that the first term of (3.5) becomes

n∑

i, j,a,b=1

1

2
gi j (∂ j g

ab)∂i gab
x0= −1

2

n∑

i,a,b=1

gii gaagbbu2abi (λa + λb)
2. (3.6)
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Using (3.3), the second term of (3.5) becomes

n∑

i, j,a,b=1

1

2
gi j gab∂i j gab

x0=
n∑

a=1

gaaλa∂aa� +
n∑

i, j,a=1

gaagii g j j u2i ja(λi + λ j )λa

+
n∑

i,k,a=1

gaagii u2aki . (3.7)

Combining (3.6) and (3.7), we get

n∑

i, j=1

gi j ∂i j log
√
det g

x0=
n∑

a=1

gaaλa∂aa� +
n∑

i, j ,a=1

gaagii g j j u2i ja(λi + λ j )λa

+
n∑

i,k,a=1

gaagii u2aki − 1

2

n∑

i,a,b=1

gii gaagbbu2abi (λa + λb)
2

x0=
n∑

a=1

gaaλa∂aa� +
n∑

a,b,c=1

gaagbbgccu2abc(λb + λc)λa

+
n∑

a,b,c=1

gaagbbgccu2abc(1 + λ2c ) − 1

2

n∑

a,b,c=1

gaagbbgccu2abc(λa + λb)
2

x0=
n∑

a=1

gaaλa∂aa� +
n∑

a,b,c=1

h2abc(1 + λbλc)

x0=
n∑

i=1

giiλi ∂i i� +
n∑

i=1

(1 + λ2i )h
2
i i i +

∑

j �=i

(3 + λ2j + 2λiλ j )h
2
j j i

+ 2
∑

i< j<k

(3 + λiλ j + λ jλk + λkλi )h
2
i jk .

Altogether, we get

�g log
√
det g

x0=
n∑

i=1

(1 + λ2i )h
2
i i i +

∑

j �=i

(3 + λ2j + 2λiλ j )h
2
j j i

+ 2
∑

i< j<k

(3 + λiλ j + λ jλk + λkλi )h
2
i jk

+
n∑

i=1

giiλi∂i i� −
n∑

i=1

giiλi (∂i�)∂i log
√
det g.

��

Lemma 3.1 Let u be aC4 convex solution of (1.8) in B2(0) ⊂ R
n where�(x, z, p) ∈ C2(�2)

is partially convex in the p variable and satisfies (1.9). Suppose that the Hessian D2u is
diagonalized at x0 ∈ B1(0). Then at x0, the function log

√
det g satisfies

�g log
√
det g ≥ c(n)|∇g log

√
det g|2 − C (3.8)

where C = C(n, ν1, ν2)(1 + (oscB2(u))2).
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Proof Step 1. From Proposition 3.1, we get, at x0 ∈ B1(0),

�g log
√
det g − 1

n
|∇g log

√
det g|2g ≥

n∑

i=1

(1 + λ2i )h
2
i i i +

∑

j �=i

(3 + λ2j + 2λiλ j )h
2
j j i

+ 2
∑

i< j<k

(3 + λiλ j + λ jλk + λkλi )h
2
i jk

−
n∑

i=1

λ2i h
2
i i i −

∑

i �= j

λ2j h
2
j j i

+
n∑

i=1

giiλi∂i i� −
n∑

i=1

giiλi (∂i�)∂i log
√
det g

=
n∑

i=1

h2i i i +
∑

j �=i

(3 + 2λiλ j )h
2
j j i

+ 2
∑

i< j<k

(3 + λiλ j + λ jλk + λkλi )h
2
i jk

+
n∑

i=1

giiλi∂i i� −
n∑

i=1

giiλi (∂i�)∂i log
√
det g

≥
n∑

i=1

giiλi∂i i� −
n∑

i=1

giiλi (∂i�)∂i log
√
det g

(3.9)

where the last inequality follows from the convexity of u.
From here, we use (2.7) to get

n∑

a=1

gaaλa∂aa�
x0=

n∑

a=1

λa

1 + λ2a

[
�xa xa + �xauua + �xauaλa

+ (
�uxa + �uuua + �uuaλa

)
ua + �uλa

+ (
�uaxa + �uauua + �uauaλa

)
λa

+
n∑

k=1

�uk ukaa

]

x0=
n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa (3.10)

+ �uλa + �uuu
2
a + �uauaλ

2
a +

n∑

k=1

�uk ukaa

]

x0=
n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa (3.11)

+ �uλa + �uuu
2
a + �uauaλ

2
a

]
+

n∑

k=1

�uk ∂k log
√
det g using (3.4).
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Similarly, using (2.6), we get

n∑

i=1

giiλi (∂i�)∂i log
√
det g

x0=
n∑

i=1

λi

1 + λ2i

(
�xi + �uui + �ui λi

)
∂i log

√
det g.

(3.12)

Hence, (3.9) becomes

n∑

a=1

gaaλa∂aa� −
n∑

i=1

giiλi (∂i�)∂i log
√
det g

x0=
n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa + �uλa + �uuu

2
a + �uauaλ2a

]

+
n∑

k=1

�uk ∂k log
√
det g −

n∑

k=1

λk

1 + λ2k

(
�xk + �uuk + �uk λk

)
∂k log

√
det g

x0=
n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa + �uλa + �uuu

2
a + �uauaλ2a

]

(3.13)

+
n∑

k=1

1

1 + λ2k

(
�uk − �xk λk − �uukλk

)
∂k log

√
det g. (3.14)

Step 2.1. Using Young’s inequality, (3.14) can be bounded below by

n∑

k=1

1

1 + λ2k

(
�uk − �xkλk − �uukλk

)
∂k log

√
det g

≥ −
n∑

k=1

1

1 + λ2k

(|�uk | + |�xk |λk + |�uuk |λk
) |∂k log

√
det g|

≥ − 1

2ε

n∑

k=1

1

1 + λ2k

(
�2

uk + �2
xkλ

2
k + �2

uu
2
kλ

2
k

) − ε

2
|∇g log

√
det g|2g. (3.15)

Altogether, from (3.9), (3.13), and (3.15), we have

�g log
√
det g −

(
1

n
− ε

2

)
|∇g log

√
det g|2g

≥
n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa + �uλa + �uuu

2
a + �uauaλ2a

]

− 1

2ε

n∑

k=1

1

1 + λ2k

(
�2
uk + �2

xk λ
2
k + �2

uu
2
kλ

2
k

)
.

Let ε = 1
n , so that we achieve

�g log
√
det g − 1

2n
|∇g log

√
det g|2g

≥
n∑

a=1

λa

1 + λ2a
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[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa + �uλa + �uuu

2
a + �uauaλ

2
a

]

(3.16)

− n

2

n∑

k=1

1

1 + λ2k

(
�2
uk + �2

xkλ
2
k + �2

uu
2
kλ

2
k

)
. (3.17)

Step 2.2 Here, we use the assumption that�(x, z, p) is partially convex in the p variable.
That is, �uaua ≥ 0. This comes from the fact that D2

Du� is a symmetric positive definite
matrix. Combined with the fact that u is a convex function, we get

λ3a

1 + λ2a
�uaua ≥ 0.

Thus, (3.16) becomes

n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa + �uλa + �uuu

2
a + �uauaλ2a

]

≥
n∑

a=1

λa

1 + λ2a

[
�xa xa + 2�xauua + 2�xauaλa + 2�uua uaλa + �uλa + �uuu

2
a

]

≥ −
n∑

a=1

λa

1 + λ2a

[
|�xa xa | + 2|�xauua | + 2|�xaua |λa + 2|�uua ua |λa + |�u |λa + |�uu |u2a

]
.

(3.18)

Now, for all λa ∈ [0,∞], we have that

0 ≤ λa

1 + λ2a
≤ 1 and 0 ≤ λ2a

1 + λ2a
≤ 1.

Hence, (3.17) and (3.18) yield

�g log
√
det g − 1

2n
|∇g log

√
det g|2g

≥ −
n∑

a=1

[
|�xa xa | + 2|�xauua | + 2|�xaua | + 2|�uua ua | + |�u | + |�uu |u2a

]

(3.19)

− n

2

n∑

a=1

(
�2

ua + �2
xa + �2

uu
2
a

)
.

We observe that (3.19) is bounded by

n∑

a=1

[
|�xa xa | + 2|�xauua | + 2|�xaua | + 2|�uua ua | + |�u | + |�uu |u2a

]

+ n

2

n∑

a=1

(
�2

ua + �2
xa + �2

uu
2
a

)

≤ C(n, ν1, ν2)

(
1 +

n∑

a=1

(|ua | + u2a)

)

≤ C(n, ν1, ν2)(1 + |Du(x0)| + |Du(x0)|2)
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≤ C(n, ν1, ν2)(1 + ||Du||L∞(B1) + ||Du||2L∞(B1))

≤ C(n, ν1, ν2)(1 + (oscB2(u))2)

where the last inequality comes from the convexity of u and Young’s inequality.
Therefore,

�g log
√
det g − 1

2n
|∇g log

√
det g|2g ≥ −C(n, ν1, ν2)(1 + (oscB2(u))2)

as desired.
��

Corollary 3.1 Let u be a C4 convex solution to (1.5) in B2(0) ⊂ R
n. Assuming the Hessian

D2u is diagonalized at x0 ∈ B1(0), (3.8) holds with C = C(n, s2)(1 + (oscB2(u))2).

Proof Let x0 ∈ B1. As �(x, u(x), Du(x)) = s1 + s2(x · Du(x) − 2u(x)), we get that

�xi = s2ui �xi x j = 0 �xi u = 0 �xi u j = s2δi j
�u = −2s2 �ux j = 0 �uu = 0 �uu j = 0
�ui = s2xi �ui x j = s2δi j �ui u = 0 �ui u j = 0.

Hence (3.13) becomes zero and (3.14) becomes

n∑

k=1

s2
1 + λ2k

(xk + ukλk) ∂k log
√
det g.

Applying Young’s inequality and simplifying, we get

�g log
√
det g − 1

2n
|∇g log

√
det g|2g ≥ −ns22

2

(|x0|2 + |Du(x0)|2
) ≥ −C .

��
Corollary 3.2 Let u be a C4 convex solution to (1.6) in B2(0) ⊂ R

n. Assuming the Hessian
D2u is diagonalized at x0 ∈ B1(0), (3.8) holds with C = C(n, t2, t3).

Proof As �(x, u(x), Du(x)) = t1 + t2 · x + t3 · Du(x), we get

�xi = t2,i and �ui = t3,i

where all the remaining derivatives are zero. Hence (3.13) is zero and (3.14) becomes

n∑

k=1

1

1 + λ2k

(
t3,k + t2,kλk

)
∂k log

√
det g.

Applying Young’s inequality and simplifying, we get

�g log
√
det g − 1

2n
|∇g log

√
det g|2g ≥ −n

2

(|t2|2 + |t3|2
) = −C .

��
Corollary 3.3 Let u be a C4 convex solution to (1.7) in B2(0) ⊂ R

n. Assuming the Hessian
D2u is diagonalized at x0 ∈ B1(0), (3.8) holds with C = C(n, r2)(1 + (oscB2(u))2).
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Proof Let x0 ∈ B1. As �(x, u(x), Du(x)) = r1 + r2
2 (|x |2 + |Du(x)|2), we get

�xi = r2xi �xi x j = r2δi j �xi u j = 0
�ui = r2ui �ui x j = 0 �ui u j = r2δi j .

Then (3.13) and (3.14) are bounded below by

n∑

a=1

λa

1 + λ2a

[
r2 + r2λ

2
a

]
+

n∑

k=1

r2
1 + λ2k

(uk − xkλk) ∂k log
√
det g

≥
n∑

k=1

r2
1 + λ2k

(uk − xkλk) ∂k log
√
det g

since r2 ≥ 0 and λa ≥ 0 for all 1 ≤ a ≤ n. Thus, using Young’s inequality and simplifying,
we get

�g log
√
det g − 1

2n
|∇g log

√
det g|2g ≥ −nr22

2

(|x0|2 + |Du(x0)|2
) ≥ −C .

��
Lemma 3.2 Let u be a C4 convex solution of (1.5),(1.6),(1.7),(1.8) on B2(0) ⊂ R

n. Let

b = log V = log
√
det g.

Then b is C2, and hence, for all nonnegative φ ∈ C∞
0 (B1), b satisfies the integral Jacobi

inequality, each with their respective constant C:
∫

B1
−〈∇gφ,∇gb〉gdvg ≥ c(n)

∫

B1
φ|∇gb|2dvg −

∫

B1
Cφ dvg.

Consequently, we have
∫

Br
|∇gb|2dvg ≤ C(n)

(
1

1 − r
+ C

) ∫

B1
dvg

for 0 < r < 1.

Proof Since u is C4, it follows that g = I + (D2u)2 is C2. Note that det g is C2 since
the determinant is a smooth function, and furthermore, at each point, we have det g(x) =∏n

i (1 + λ2i (x)) ≥ 1. From this, it follows that log
√
det g is well defined and C2 as a

composition of smooth and C2 functions. It immediately follows, using (3.8) and integration
by parts,

∫

B1
−〈∇gφ,∇gb〉gdvg =

∫

B1
φ�gb dvg ≥ c(n)

∫

B1
φ|∇gb|2dvg −

∫

B1
Cφ dvg.

Rearranging, we see that for any cutoff φ ∈ C∞
0 (B1),

∫

B1
φ2|∇gb|2 dvg ≤ 1

c(n)

∫

B1
φ2�gb dvg + 1

c(n)

∫

B1
φ2C dvg

= − 1

c(n)

∫

B1
〈2φ∇gφ,∇gb〉gdvg + 1

c(n)

∫

B1
φ2C dvg

≤ 1

2

∫

B1
φ2|∇gb|2dvg + 2

c(n)2

∫

B1
|∇gφ|2dvg + 1

c(n)

∫

B1
φ2C dvg.
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Let 0 < r < 1. Choose 0 ≤ φ ≤ 1 with φ = 1 on Br and |Dφ| ≤ 2
1−r in B1 to get

∫

Br
|∇gb|2dvg ≤

∫

B1
φ2|∇gb|2dvg

≤ 4

c(n)2

∫

B1
|∇gφ|2dvg + 2

c(n)

∫

B1
φ2C dvg

≤ C(n)

(
1

1 − r
+ C

) ∫

B1
dvg.

��

4 Sobolev inequalities and the Lewy–Yuan rotation

We first recall the Lewy-Yuan rotation developed in [14, p. 122] for the convex potential u of
the Lagrangian graph X = (x, Du(x)): We rotate it to X = (x̄, Dū(x̄)) in a new co-ordinate
system of Rn × R

n ∼= C
n via z̄ = e−i π

4 z, where z = x + iy and z̄ = x̄ + i ȳ. That is,
{
x̄ =

√
2
2 x +

√
2
2 Du(x)

ȳ = Dū = −
√
2
2 x +

√
2
2 Du(x).

(4.1)

We state the following proposition from [23, Prop 3.1] and [14, p. 122].

Proposition 4.1 Let u be aC4 convex function on BR(0) ⊂ R
n. Then theLagrangian subman-

ifold X = (x, Du(x)) ⊂ R
n × R

n can be represented as a gradient graph X = (x̄, Dū(x̄))
of the new potential ū in a domain containing a ball of radius

R̄ ≥
√
2

2
R (4.2)

such that in these coordinates the new Hessian satisfies

− I ≤ D2ū ≤ I . (4.3)

We define

�̄r = x̄(Br (0)).

From (4.1), for x̄ ∈ �̄r , we have that

|x̄ | ≤ r

√
2

2
+ ||Du||L∞(Br )

√
2

2
:= ρ(r), (4.4)

and from (4.2), we have

dist(�̄1, ∂�̄2n) ≥ 2n − 1√
2

≥ 3√
2

> 2.

From (4.3), it follows that the induced metric on X = (x̄, Dū(x̄)) in x̄−coordinates is
bounded by

dx̄2 ≤ g(x̄) ≤ 2dx̄2. (4.5)

Next, we state the following Sobolev inequality, which is a generalization of Proposition 3.2
from [23]. For the sake of completeness, we add a proof below.
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  201 Page 16 of 24 A. Bhattacharya, J. Wall

Proposition 4.2 Let u be a C4 convex function on BR′(0) ⊂ R
n. Let f be a C2 positive

function on the Lagrangian surface X = (x, Du(x)). Let 0 < r < R < R′ be such that
R − r > 2

√
2ε. Then

[∫

Br
|( f − f̃ )+| n

n−1 dvg

] n−1
n ≤ C(n)

(
ρ2

rε

)(n−1) ∫

BR

|∇g( f − f̃ )+|dvg

where ρ = ρ(R′) is as defined in (4.4), and

f̃ = 2

|Br |
∫

BR(0)
f dx .

We first state and prove a generalization of Lemma 3.2 from [23].

Lemma 4.1 Let �1 ⊂ �2 ⊂ Bρ ⊂ R
n and ε > 0. Suppose that dist(�1, ∂�2) ≥ 2ε; A and

Ac are disjoint measurable sets such that A ∪ Ac = �2. Then

min{|A ∩ �1|, |Ac ∩ �1|} ≤ C(n)
ρn

εn
|∂A ∩ ∂Ac| n

n−1 .

Proof Define the following continuous function on �1:

ξ(x) = |A ∩ Bε(x)|
|Bε | .

Case 1. ξ(x0) = 1
2 for some x0 ∈ �1.We then have that Bε(x0) ⊂ �2 by dist(�1, ∂�2) ≥ 2ε.

From the classical relative isoperimetric inequality for balls [37, Theorem 5.3.2], we have

|Bε |
2

= |A ∩ Bε(x0)|
≤ C(n)|∂(A ∩ Bε(x0)) ∩ ∂(Ac ∩ Bε(x0))| n

n−1

≤ C(n)|∂A ∩ ∂Ac| n
n−1 .

Hence,

min{|A ∩ �1|, |Ac ∩ �1|} ≤ |�1| ≤ |Bρ | = ρn

εn
|Bε | ≤ C(n)

ρn

εn
|∂A ∩ ∂Ac| n

n−1 .

Case 2. ξ(x) > 1
2 for all x ∈ �1. Cover �1 by N ≤ C(n)

ρn

εn
balls of radius epsilon Bε(xi )

for some uniform constant C(n) since �1 is bounded. Note that all of these balls are in �2

since dist(�1, ∂�2) ≥ 2ε. Thus,

|Ac ∩ Bε(xi )| = min{|A ∩ Bε(xi )|, |Ac ∩ Bε(xi )|} ≤ C(n)|∂A ∩ ∂Ac| n
n−1 .

Summing over the cover, we get

|Ac ∩ �1| ≤
N∑

i=1

|Ac ∩ Bε(xi )| ≤ C(n)
ρn

εn
|∂A ∩ ∂Ac| n

n−1 .

Case 3. ξ(x) < 1
2 for all x ∈ �1. Repeating the same proof in Case 2, but with A instead of

Ac, yields the same result. ��
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Proof of Proposition 4.2 Let M = || f ||L∞(Br ). If M ≤ f̃ , then ( f − f̃ )+ = 0 on Br , and
hence, the left hand side is zero, from which the result follows immediately. We assume
f̃ < M . By the Morse-Sard Lemma [38, Lemma 13.15], [39], {x | f (x) = t} is C1 for almost
all t ∈ ( f̃ , M). We first show that for such t ,

|{x | f (x) > t} ∩ Br |g ≤ C(n)
ρ2n

rnεn
|{x | f (x) = t} ∩ BR |

n
n−1
g . (4.6)

Note | · |g is the metric with respect to g, and | · | is the Euclidean metric.
Let t > f̃ . It must be that

|Br |
2

> |{x | f (x) > t} ∩ Br |

since otherwise

M = 2

|Br |
∫ M

0

|Br |
2

dt ≤ 2

|Br |
∫ M

0
|{x | f (x) > t} ∩ Br |dt ≤ 2

|Br |
∫

BR

f dx = f̃ < M .

From this, it follows

|{x | f (x) ≤ t} ∩ Br | >
|Br |
2

. (4.7)

Let At = {x̄ | f (x̄) > t} ∩ �̄R . From Lemma 4.1, we have that

min{|At ∩ �̄r |, |Ac
t ∩ �̄r |} ≤ C(n)

ρn

εn
|∂At ∩ ∂Ac

t |
n

n−1 .

If |At ∩ �̄r | ≤ |Ac
t ∩ �̄r |, then

|At ∩ �̄r |g(x̄) ≤ 2
n
2 |At ∩ �̄r |

≤ C(n)
ρn

εn
|∂At ∩ ∂Ac

t |
n

n−1
g(x̄).

On the other hand, if |At ∩ �̄r | > |Ac
t ∩ �̄r |, from (4.7), we have

|Ac
t ∩ �̄r | >

|Br |
2n+1 ,

and so

|At ∩ �̄r | ≤ ρn

rn
|Br | ≤ 2n+1 ρn

rn
|Ac

t ∩ �̄r |.

Therefore

|At ∩ �̄r |g(x̄) ≤ C(n)
ρn

rn
|Ac

t ∩ �̄r | ≤ C(n)
ρ2n

rnεn
|∂At ∩ ∂Ac

t |
n

n−1
g(x̄).

In either case, we have

|At ∩ �̄r |g(x̄) ≤ C(n)
ρ2n

rnεn
|∂At ∩ ∂Ac

t |
n

n−1
g(x̄),

which in our original coordinates is (4.6).
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We get

[ ∫

Br
|( f − f̃ )+| n

n−1 dvg

] n−1
n

=
[∫ M− f̃

0
|{x | f (x) − f̃ > t} ∩ Br |gdt n

n−1

] n−1
n

via Layer cake [38, Ex 1.13]

≤
∫ M− f̃

0
|{x | f (x) − f̃ > t} ∩ Br |

n−1
n

g dt via the H-L-P inequality [37, (5.3.3)]

≤ C(n)

(
ρ2

rε

)n−1 ∫ M

f̃
|{x | f (x) = t} ∩ BR |gdt via (4.6)

≤ C(n)

(
ρ2

rε

)n−1 ∫

BR

|∇g( f − f̃ )+|dvg via the co-area formula [37, Thm 4.2.1]

which completes the proof. ��

5 Proof of themain theorems

We now prove Theorem 1.2 from which Theorem 1.1 follows.

Proof of Theorem 1.2 For simplifying notation in the remaining proof, we assume R = 2n+2

and u is a solution on B2n+2 ⊂ R
n . Then by scaling v(x) = u( R

2n+2 x)

( R
2n+2 )2

, we get the estimate

in Theorem 1.2. The proof follows in the spirit of [23, Section 3]. Under our assumption
|�| ≥ (n− 1) π

2 , we have that u is convex. Note C = C(n, ν1, ν2)(1+ (oscB2n+2(u))2) is the
positive constant from (3.8).

Step 1.Weuse the rotatedLagrangian graph X = (x̄, Dū(x̄)) via the Lewy-Yuan rotation,
as illuatrated in Sect. 4. Consider b = log V on the manifold X = (x, Du(x)), where
V is the volume element in the original coordinates. In the rotated coordinates b(x̄) =
log V (x̄) satisfies

(
gi j (x̄)

∂2

∂ x̄i∂ x̄ j
− g jp(x̄)

∂�(x(x̄), u(x(x̄)),
√
2
2 x̄ +

√
2
2 Dū(x̄))

∂ x̄q

∂2ū(x̄)

∂ x̄q∂ x̄ p

∂

∂ x̄ j

)
b(x̄)

= �g(x̄)b(x̄) ≥ −C . (5.1)

The nondivergence and divergence elliptic operator are both uniformly elliptic due to
(4.3).
From (4.1), we have

{
x(x̄) =

√
2
2 x̄ −

√
2
2 Dū(x̄)

Du(x(x̄)) =
√
2
2 x̄ +

√
2
2 Dū(x̄)

from which it follows that
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∂�(x(x̄), u(x(x̄)),
√
2
2 x̄ +

√
2
2 Dū(x̄))

∂ x̄q

=
n∑

j=1

�x j
∂x j
∂ x̄q

+ �u

n∑

j=1

u j
∂x j
∂ x̄q

+
n∑

j=1

�u j

∂

∂ x̄q

(√
2

2
x̄ j +

√
2

2
ū j

)

=
√
2

2
(�xq + �uuq)(1 − λ̄q) +

√
2

2
�uq (1 + λ̄q)

≤ √
2ν1(1 + oscB2n+2(u)). (5.2)

Denote

b̃ = 2

|B1(0)|
∫

B2n(0)
log Vdx .

Via the local mean value property of nonhomogeneous subsolutions [34, Theorem 9.20]
(see Appendix Theorem 6.1), we get the following, from (5.1) and (5.2):

(b − b̃)+(0) = (b − b̃)+(0̄)

≤ C(n)

⎡

⎣C̃ n−1

(∫

B1/
√
2(0̄)

|(b − b̃)+(x̄)| n
n−1 dx̄

) n−1
n

+ C

(∫

B1/
√
2(0̄)

dx̄

) 1
n
⎤

⎦

≤ C(n)

⎡

⎣C̃ n−1

(∫

B1/
√
2(0̄)

|(b − b̃)+(x̄)| n
n−1 dvg(x̄)

) n−1
n

+ C

(∫

B1/
√
2(0̄)

dvg(x̄)

) 1
n
⎤

⎦

≤ C(n)

[
C̃ n−1

(∫

B1(0)
|(b − b̃)+(x)| n

n−1 dvg(x)

) n−1
n + C

(∫

B1(0)
dvg

) 1
n
]

where C̃ = (1 + ν1 + ν1oscB2n+2(u)) and C = C(n, ν1, ν2)(1 + (oscB2n+2(u))2) is the
positive constant from (3.8).
The above mean value inequality can also be derived using the De Giorgi-Moser iteration
[34, Theorem 8.16].
Step 2. By Proposition 4.2 with ρ = ρ(2n + 1) and Lemma 3.2, we have

b(0) ≤ C(n)C̃ n−1ρ2(n−1)
∫

B2n
|∇g(b − b̃)+|dvg + CC(n)

(∫

B2n
V dx

) 1
n

+ C(n)

∫

B2n
log Vdx

≤ C(n)C̃ n−1ρ2(n−1)
(∫

B2n
|∇gb|2dvg

) 1
2
(∫

B2n
V dx

) 1
2

+ CC(n)

(∫

B2n
V dx

) 1
n + C(n)

∫

B2n
V dx

≤ C(n)(1 + C̃ n−1(1 + C)
1
2 )ρ2(n−1)

∫

B2n+1

Vdx + CC(n)

(∫

B2n+1

Vdx

) 1
n

.

(5.3)
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Step 3.We bound the volume element using the rotated coordinates. From (4.5), we have

Vdx = V̄ d x̄ ≤ 2
n
2 dx̄ .

Since �̄2n+1 = x̄(B2n+1(0)), we get
∫

B2n+1

Vdx =
∫

�̄2n+1

V̄ d x̄ ≤ 2
n
2

∫

�̄2n+1

dx̄ ≤ C(n)ρn .

Hence, from (5.3), we get

b(0) ≤ C(n)(1 + C̃ n−1(1 + C)
1
2 )ρ3n−2 + CC(n)ρ ≤ C(n)(1 + C̃ n−1(1 + C)

1
2 + C)ρ3n−2.

(5.4)

By plugging in (4.4), C̃ , and C , and using

(a + b)p ≤ 2p(a p + bp), for a, b ≥ 0, p > 0,

as well as Young’s inequality, we have

C(n)(1 + C̃ n−1(1 + C)
1
2 + C)ρ3n−2

≤ C(n, ν1, ν2)(1 + (oscB2n+2(u))n−1 + (oscB2n+2(u))n

+ (oscB2n+2(u))2)(1 + (oscB2n+2(u))3n−2)

≤ C(n, ν1, ν2)(1 + (oscB2n+2(u))4n−2). (5.5)

By combining (5.4) and (5.5) and exponentiating, we get

|D2u(0)| ≤ C1 exp[C2(oscB2n+2(u))4n−2]
where C1 and C2 are positive constants depending on ν1, ν2, and n.

��
Proof of Theorem 1.1 Repeating the above proof, but with the constant C for Eqs. (1.5) and
(1.7) from Corollaries 3.1 and 3.3 respectively, we get the desired estimate. Note, in the case
of (1.6), we get C = C̃ = C(n, t2, t3), and so (5.4) becomes

b(0) ≤ C(n, t2, t3)ρ
3n−2

resulting in the estimate

|D2u(0)| ≤ C1 exp[C2(oscB2n+2(u))3n−2]
where C1 and C2 depend on n, t2, t3. ��
Remark 5.1 We prove analyticity of a C0 viscosity solution within its domain by outlining a
modification of the approach in [23, Section 4]. Note, we obtain smooth approximations via
[40, Theorem 4], [41]. Let

F(x, u, Du, D2u) = G(D2u) − �(x, u, Du) =
n∑

j=1

arctan λ j − �(x, u, Du).

We wish to apply Evans-Krylov-Safonov theory ([34, Theorem 17.15]) which requires
F(x, z, p, r) to be concave in z, p, r and the following structure conditions to hold
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0 < �|ξ |2 ≤ Fi j (x, z, p, r)ξi ξ j ≤ �|ξ |2,
|Fp|, |Fz |, |Frx |, |Fpx |, |Fzx | ≤ μ�,

|Fx |, |Fxx | ≤ μ�(1 + |p| + |r |),
for all nonzero ξ ∈ R

n , where � is a nonincreasing function of |z|, and � and μ are
nondecreasing functions of |z|. Note, for our operator F defined above, Frx = 0.

We have that G(D2u) is concave, and by our assumption, �(x, z, p) is partially convex
in p. By additionally assuming partial convexity of� in z, we get that F is concave in z, p, r
as desired. Note, for equations (1.5),(1.6),(1.7), this condition is naturally satisfied.

Theorems 1.1 and 1.2 give us that

0 <
1

1 + [C(oscBR (u))]2 |ξ |2 ≤ Fi j (x, z, p, r)ξi ξ j ≤ |ξ |2.

Taking � = 1
1+C2 and μ = ν1+ν2

�
, we see that the other conditions are satisfied. Hence, we

achieve a C2,α bound. By applying classical elliptic theory [34, Lemma 17.16] and [42, p.
202], to solutions of (1.5),(1.6),(1.7) we get the analyticity of u.

6 Appendix

Our proof requires an explicit dependence of the constants appearing in Theorem 9.20 of [34]
on the oscillation of the potential, when applied to (5.1). We state and prove an adaptation of
[34, Theorem 9.20] to our specific case.

First, we clarify some notations and terminology. We have

L = ai j (x̄)
∂

∂ x̄i∂ x̄ j
+ b j (x̄)

∂

∂ x̄ j

= gi j (x̄)
∂

∂ x̄i∂ x̄ j
− g jp(x̄)

∂�(x(x̄), u(x(x̄)),
√
2
2 x̄ +

√
2
2 Dū(x̄))

∂ x̄q

∂2ū(x̄)

∂ x̄q∂ x̄ p

∂

∂ x̄ j
.

From this and (4.3), it follows that 1
2 |ξ |2 ≤ ai j (x̄)ξiξ j ≤ |ξ |2, and we have from (5.2):

|b| ≤ √
2nν1(1 + oscB2n+2(u)).

By �, we denote a C1,1 domain in R
n .

Theorem 6.1 Let u ∈ C2(�)∩W 2,n(�) and suppose that Lu ≥ f , where f ∈ Ln(�). Then
for any ball B = B2R(y) ⊂ �, we have

sup
BR(y)

u ≤ C(n)
{
(RC)n−1||u+||

L
n

n−1 (B)
+ R|| f ||Ln(B)

}

where C = (1 + ν1 + ν1oscB2n+2(u)).

Proof Without loss of generality, we assume that B = B1(0), the general case is recovered
via x → (x − y)/2R. For β = 2(n − 1), we define the cutoff function η by

η(x)(1 − |x |2)β .

Differentiating, we get
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Diη = −2βxi (1 − |x |2)β−1,

Di jη − 2βδi j (1 − |x |2)β−1 + 4β(β − 1)xi x j (1 − |x |2)β−2.

Set v = ηu. We have

ai j Di jv = ηai j Di j u + 2ai j DiηDju + uai j Di jη

≥ η( f − bi Diu) + 2ai j DiηDju + uai j Di jη.

Denote �+ to be the upper contact set of v in B. We have that u > 0 on �+, and using the
concavity of v on �+, we estimate

|Du| = 1

η
|Dv − uDη|

≤ 1

η
(|Dv| + u|Dη|)

≤ 1

η

(
v

1 − |x | + u|Dη|
)

≤ 2(1 + β)η−1/βu.

Thus, on �+, we have

−ai j Di jv ≤ [(16β2 + 2ηβ)η−2/β + 2β|b|η−1/β ]v + η f

≤ Cη−2/βv + f ,

where C = C(n)(1 + ν1 + ν1oscB2n+2(u)). Applying [34, Lemma 9.3], we get

sup
B

v ≤ C(n)

∣∣∣∣∣

∣∣∣∣∣
ai j Di jv

1/2

∣∣∣∣∣

∣∣∣∣∣
Ln(�+)

≤ C(n)
{
C ||η−2/βv+||Ln(B) + || f ||Ln(B)

}

≤ C(n)

{
C(sup

B
v+)1−2/β ||(u+)2/β ||Ln(B) + || f ||Ln(B)

}
. (6.1)

Let q = β/2, and so p = 1/(1−2/β). Using Young’s inequality and recalling β = 2(n−1),
we get that

(sup
B

v+)1−2/β ||(u+)2/β ||Ln(B) ≤ ε(sup
B

v+)p(1−2/β) + ε−q/p||(u+)2/β ||β/2
Ln(B)

= ε sup
B

v+ + ε2−n ||u+||
L

n
n−1 (B)

.

Plugging this into (6.1), we get

(1 − C(n)Cε) sup
B

v ≤ C(n)
{
Cε2−n ||u+||

L
n

n−1 (B)
+ || f ||Ln(B)

}
.

Let ε = 1
2C(n)C . We get

sup
B

v ≤ C(n)
{
C(n)C n−1||u+||

L
n

n−1 (B)
+ || f ||Ln(B)

}
,

from which our desired estimate follows. ��
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