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Abstract
A level orbit of a mechanical Hamiltonian system is a solution of Newton equation that is
contained in a level set of the potential energy. In 2003,Mark Levi asked for a characterization
of the smooth potential energy functions on the plane with the property that any point on the
plane lies on a level orbit; we call such functions Levi potentials. The basic examples are the
radial monotone increasing smooth functions. In this paper we show that any Levi potential
that is analytic or has totally path-disconnected critical set must be radial. Nevertheless, we
show that every compact convex subset of the plane is the critical set of a Levi potential. A
crucial observation for these theorems is that, outside the critical set, the family of level sets
of a Levi potential forms a solution of the inverse curvature flow.
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1 Introduction

LetU : R2 → R be a smooth (meaningC∞) function, which will play the role of a potential
energy, and consider a solution q : I → R of the Newton equation q̈ = −∇U (q) defined
on a maximal time interval I ⊂ R. Such a solution is called a level orbit when the function
s �→ U (q(s)) is constant on I . In 2003, Mark Levi [13] asked for a characterization of the
smooth potentials U : R2 → R with the property that any point of R2 lies on a level orbit.
We refer to the functionsU satisfying this property as to Levi potentials. The basic examples
are the radial functions U : R2 → R, U (q) = u(‖q − q0‖2), where u : [0,+∞) → R is
a monotone increasing smooth function. Indeed, any point q1 ∈ R2 lies on the level orbit
q(t) = eωt J (q1−q0)+q0, whereω2 = 2u̇(‖q−q0‖2) and J : R2 → R2, J (x, y) = (−y, x)
is the complex structure ofR2.

Clearly, one can easily construct a non-radial Levi potential V by patching together radial
ones: given a constant c ∈ R, a finite family of pairwise disjoint open balls Bi = B2(qi , ri ) ⊂
R2, and monotone increasing smooth functions ui : [0,+∞) → R such that ui |[ri ,+∞) ≡ c,
a Levi potential is given by

V (q) =
{
ui (‖q − qi‖2), q ∈ Bi ,

c, q /∈ ⋃
i Bi .

Notice that the critical set of V contains the boundaries of all the balls Bi , and in particular
is not totally path-disconnected. Our first theorem asserts that this is indeed necessary for an
exotic (meaning non-radial) Levi potential.

Theorem A Any Levi potential U : R2 → R whose critical set crit(U ) is totally path-
disconnected has a unique critical point and is radial.

In the real analytic category, the situation is completely rigid, as asserted by our second
theorem.

Theorem B Any analytic Levi potential is radial.

Nevertheless, more exotic (non-analytic) Levi potentials, not obtained by just patching
radial ones together, do exist.

Theorem C For any non-empty compact convex subset C ⊂ R2 there exist a Levi potential
U : R2 → R with critical set crit(U ) = C.

The crucial observation behind the proofs of these theorems is the link between Levi
potentials and the solutions of the inverse curvature flow in the Euclidean plane, which is the
geometric evolution PDE ∂tγt (s) = Kγt (s)

−1Nγt (s). Here γt is a family of smooth curves
on the plane with negative normal vector field Nγt and signed geodesic curvature Kγt . As it
turns out, outside the critical set of a Levi potential U , the family of level curves U−1(c),
c ∈ R, can be parametrized into a solution of the inverse curvature flow (Proposition 3.3).

There is a large literature on geometric flows for families of curves evolving according to a
function f of the curvature, such as the curve shortening flow [6, 7, 10] for f = id, and flows

123



On potentials whose level sets are orbits Page 3 of 22 187

allowing general monotone decreasing f [4]. Generalization of the inverse curvature flow in
higher dimension has also been widely studied in the literature since the work of Gerhardt
[8], Urbas [16], and Huisken-Ilmanen [11, 12]. For the proofs of Theorems A and B, we
will need a recent result of Risa and Sinestrari [14], which in low dimension asserts that the
unique curves admitting solutions of the inverse curvature flow for all negative times are the
round circles (Proposition 2.3). We will also need a result on the non-existence of solutions
of the inverse curvature flow starting on properly embedded open curves (Proposition 2.4).

While the present work focuses on mechanical Hamiltonian systems on the plane, one
could generalize the notion of Levi potential to higher dimensions in several possible ways.
Such generalizations, and rigidity/flexibility results in the spirit of Theorems A, B, and C,
are the subject of ongoing investigation.

1.1 Organization of the paper

In Sect. 2, we recall some known features of the inverse curvature flow, and establish a few
new ones. In particular, we provide a short proof of the low dimensional version of Risa
and Sinestrari’s theorem (Proposition 2.3), the proof of the non-existence of solutions of
the inverse curvature flow starting on properly embedded open curves (Proposition 2.4), and
the proof of the existence of solutions starting on curves that are the boundary of a given
convex compact set (Lemmas 2.8 and 2.9). In Sect. 3, we establish several properties of Levi
potentials, in particular drawing the connection with the inverse curvature flow, and prove
Theorems A, B, and C.

2 The inverse curvature flow

2.1 The PDE

Let J : R2 → R2, J (x, y) = (−y, x) be the complex structure of R2. For a smooth
immersed curve γ : R � R2, we denote by Tγ : R → R2 its positive unit tangent vector
field, by Nγ : R → R2 its negative normal vector field, and by Kγ : R → R2 its signed
geodesic curvature, i.e.

Tγ (s) = γ̇ (s)

‖γ̇ (s)‖ , Nγ (s) = −JTγ (s), Kγ (s) = −〈Ṫγ (s), Nγ (s)〉
‖γ̇ (s)‖ .

We consider the PDE

∂tγt = Nγt

Kγt

, (2.1)

where each γt is a smooth immersed curve as above with nowhere-vanishing geodesic curva-
ture. If (2.1) admits a family of solutions γt for t ∈ (t0, t1), we say that such family evolves
according to the inverse curvature flow.

Example 2.1 The simplest example of solution of the inverse curvature flow is the circular
one, given by

γt (s) := q0 + et evs J q1, ∀t, s ∈ R,

whereq0 ∈ R2,q1 ∈ R2\{0}, and v ∈ R\{0}. Everyγt is a 2π |v|−1-periodic parametrization
of a circle of radius et‖q1‖ centered at q0.
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Notice that the PDE (2.1) is geometric: if γt (s) is a solution defined for all t ∈ (t0, t1)
and s ∈ (s0, s1), the composition of the family of curves γt with a diffeomorphism of the
form (s′

0, s
′
1) → (s0, s1) is still a solution. The following lemma describes the evolution of

the speed of the solutions.

Lemma 2.2 Let γt be a solution of (2.1). Then ‖γ̇t1(s)‖ = et1−t0‖γ̇t0(s)‖ for all s, t0, t1 for
which both sides are defined.

Proof Since Ṅγt = Kγt γ̇t , we have

∂t (‖γ̇t (s)‖2) = 2〈γ̇t (s), ∂t γ̇t (s)〉 = 2

〈
γ̇t (s), ∂s

(
Nγt (s)
Kγt (s)

)〉

= 2
〈
γ̇t (s),

Ṅγt (s)
Kγt (s)

〉
= 2‖γ̇t (s)‖2.

Therefore, for any fixed s, the function t �→ ‖γ̇t (s)‖2 is a solution of the ODE ∂t (‖γ̇t (s)‖2) =
2‖γ̇t (s)‖2, and our claim follows. ��

Lemma 2.2 implies that each curve γt in a family evolving under the inverse curvature flow
is parametrized with constant speed provided the same is true for one value of t . Therefore,
from now on, we will always assume that ∂s‖γ̇t (s)‖ ≡ 0. Notice that, if γ0 is a periodic curve,
all the γt are periodic curves of the same period; up to a time-reparametrization independent
of t , all such curves γt can be defined on the circle S1 = R/2πZ.

The following statement, due to Risa-Sinestrari [14], is one of the ingredients for Theorem
A and B. Actually, their result holds in arbitrary dimension for certain hypersurfaces evolving
with the inverse mean-curvature flow. For the reader convenience, we shall provide a simple
proof of the stated low dimensional result in Sect. 2.3.

Proposition 2.3 The only periodic solutions γt : S1 → R2 of the inverse curvature flow
defined for all t ≤ 0 are the circular ones (Example 2.1).

We will also need the following non-existence result, proved in Sect. 2.3. The statement
also follows from [2, Theorem 1.3].

Proposition 2.4 There is no solution of the inverse curvature flow γt , defined for t ∈ [0, ε]
with ε > 0, such that γ0 : R ↪→ R2 is a proper embedding.

Proposition 2.4 does not hold in higher dimension: Daskalopoulos and Huisken [5] proved
a global existence result for the inverse mean curvature flow in Rn+1, with n ≥ 2, starting
from a strictly mean convex starshaped entire graph with superlinear growth at infinity.

2.2 Rescaled solutions

Let γt be a solution of the inverse curvature flow defined for all t in some interval containing
0. We assume without loss of generality that each γt is parametrized with constant speed.
Clearly, the image of γt under a homothety is still a solution of the inverse curvature flow.
Therefore, up to rescaling γ0 by scalar multiplication with ‖γ̇0‖−1, we can assume without
loss of generality that ‖γ̇0‖ ≡ 1, and Lemma 2.2 implies ‖γ̇t‖ ≡ et . We define the rescaled
curves σt := e−tγt , which are parametrized with unit speed ‖σ̇t‖ ≡ 1.
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Lemma 2.5 The curves σt satisfy the PDE

∂tσt = −σt + Nσt

Kσt

.

The associated functions at (s) := Kσt (s)
−1 satisfy the PDE

∂t at = a2t ät .

Proof Notice that σ̇t = Tγt , Nσt = Nγt , and Kσt = et Kγt . This, together with the usual
relations σ̈t = −Kσt Nσt and Ṅσt = Kσt σ̇t , implies

∂tσt = −e−tγt + Nγt

et Kγt

= −σt + Nσt

Kσt

.

We compute

∂2s ∂tσt = ∂2s

(
− σt + Nσt

Kσt

)
= ∂s

(
−σ̇t + Ṅσt

Kσt︸ ︷︷ ︸
=0

+ȧt Nσt

)

= ät Nσt + ȧt Ṅσt = ät Nσt + ȧt
at

σ̇t .

Switching the order of the derivatives on the left-hand side, we obtain

∂t σ̈t = −∂t (Kσt Nσt ) = −(∂t Kσt )Nσt − Kσt (∂t Nσt )

= ∂t at
a2t

Nσt − Kσt (∂t Nσt ).

Notice that 〈∂t Nσt , Nσt 〉 = 1
2∂t‖Nσt ‖2 = 0. Therefore,

ät = 〈∂2s ∂tσt , Nσt 〉 = 〈∂t σ̈t , Nσt 〉 = ∂t at
a2t

.

��
Lemma 2.6 If γt is periodic, then it is a circular solution of the inverse curvature flow
(Example 2.1) if and only if ȧt ≡ 0 for all values of t .

Proof If γt is a circular solution of the inverse curvature flow, for each value of t the curvature
Kγt is constant, and therefore ȧt ≡ 0. Conversely, if ȧt ≡ 0 for all values of t for which γt is
defined, then each γt is a curve of constant curvature. Namely, each γt is a 2π |v|−1-periodic
parametrization with constant speed of a round circle of radius etr > 0, and therefore has
the form

γt (s) = qt + et evs J p,

for some qt ∈ R2, p ∈ R2 with ‖p‖ = r > 0, and v ∈ R \ {0}. The inverse curvature flow
PDE (2.1) can be rewritten as

∂t qt + et evs J p = et evs J p,

which implies ∂t qt ≡ 0. Therefore qt = q0 for all t , and γt is a circular solution of the inverse
curvature flow. ��
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2.3 Proofs of the propositions

In this subsection we carry out the proofs of the statements given in Sect. 2.1.

Proof of Proposition 2.3 Let γt : S1 � R2 be a periodic solution of the inverse curvature flow
defined for all t ≤ 0. Up to rescaling and reparametrization, we can assume that Kγ0 > 0 and
‖γ̇0‖ ≡ 1, so that we are in the setting of Sect. 2.2. We wish to prove that that γt is a circular
solution of the inverse curvature flow, or equivalently that the function at : S1 → (0,+∞)

is constant for all t ≤ 0 (Lemma 2.6). We proceed by contradiction, assuming that

ȧ0 �≡ 0. (2.2)

Since

d

dt

∫
S1

1

at (s)
ds = −

∫
S1

∂t at (s)

at (s)2
ds = −

∫
S1

ät (s) ds = 0,

we have a constant value

c0 :=
∫
S1

1

at (s)
ds ≤ 2π

min
s∈S1

at (s)
, ∀t ≤ 0.

In particular

c1 := sup
t≤0

min
s∈S1

at (s) < +∞. (2.3)

We define the smooth function

b : (−∞, 0] → R, b(t) :=
∫
S1

ln(at (s)) ds.

Its derivative is non-positive, for

ḃ(t) =
∫
S1

∂t at (s)

at (s)
ds =

∫
S1

at (s) ät (s) ds = −
∫
S1

ȧt (s)
2ds ≤ 0.

By (2.2), we have ḃ(0) < 0. Moreover

b̈(t) = −
∫
S1

2 ȧt (s) ∂t ȧt (s) ds = −
∫
S1

2 ȧt (s) ∂s
(
at (s)

2ät (s)
)
ds

=
∫
S1

2 ät (s)
2at (s)

2 ds ≥ 0.

Therefore b is a convex function with negative derivative at the origin, and therefore

lim
t→−∞ b(t) = +∞. (2.4)

The inequality

b(t) ≤ 2π ln
(
max
s∈S1

at (s)
)
,

together with (2.3), implies that

max
s∈S1

at (s) − min
s∈S1

at (s) ≥ eb(t)/2π − c1.
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By (2.4), there exists t0 < 0 such that

max
s∈S1

at (s) − min
s∈S1

at (s) ≥ eb(t)/2π

2
, ∀t ≤ t0.

This, together with the opposite estimate

max
s∈S1

at (s) − min
s∈S1

at (s) ≤
∫
S1

|ȧt (s)| ds ≤ √
2π

(∫
S1

ȧt (s)
2 ds

)1/2

=
√

−2π ḃ(t),

implies that

ḃ(t) ≤ −eb(t)/π

8π
, ∀t ≤ t0.

This differential inequality cannot be satisfied for large negative values of t . Indeed, the
positive function f (t) := e−b(t)/π has derivative

ḟ (t) = −e−b(t)/π ḃ(t)

π
≥ 1

8π2 , ∀t ≤ t0.

But this implies that f (t) < 0 for large negative values of t , which gives a contradiction. ��
The proof of Proposition 2.4 requires the following elementary property of embedded

open curves in the plane.

Lemma 2.7 Let γ : R ↪→ R2 be an embedding parametrized with unit speed ‖γ̇ ‖ ≡ 1 and
with positive curvature Kγ > 0, and consider the integral curvature

	γ :=
∫ +∞

−∞
Kγ (s) ds.

Then one of the following two points holds.

(i) 	γ ≤ π , and the embedding γ : R ↪→ R2 is proper.
(ii) 	γ = +∞, and at least one of the half curves γ |(−∞,0] or γ |[0,+∞) is bounded.

Proof We identify R2 with the complex plane C, and write the velocity vectors as γ̇ (s) =
eiθ(s) for some smooth functions θ : R → R, so that Kγ (s) = θ̇ (s). Since Kγ is positive,
we have limits

θ± := lim
s→±∞ θ(s),

and 	γ = θ+ − θ−. If θ+ is finite, we have

lim
s→+∞

‖γ (s) − seiθ+‖
s

= 0,

and in particular ‖γ (s)‖ diverges as s → +∞. Analogously, if θ− is finite, then ‖γ (s)‖
diverges as s → −∞. If	γ ≤ π , then both θ+ and θ− are finite, and therefore γ : R ↪→ R2

is proper.
Assume now that 	γ > π , so that we can find s1 < s2 such that θ(s2)− θ(s1) ∈ (π, 2π).

The lines �1 := γ (s1) + Rγ̇ (s1) and �2 := γ (s2) + Rγ̇ (s2) are not parallel, and therefore
intersect. Consider the compact set C ⊂ R2 bounded by γ ([s1, s2]) together with portions
of the lines �1 and �2 (Fig. 1a). If γ ((−∞, s1]) ⊂ C then θ− = −∞; if instead γ ((−∞, s1])
exits C , the positivity of the curvature Kγ > 0 implies that there exists s0 < s1 such that
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Fig. 1 The curve γ in the proof of Lemma 2.7

γ ([s0, s1]) ⊂ C and γ (s0) ∈ �2 (Fig. 1b). Analogous properties hold for the other end of the
curve: if γ ([s2,+∞)) ⊂ C then θ+ = +∞; if instead γ ([s2,+∞)) exitsC , then there exists
s3 > s2 such that γ ([s2, s3]) ⊂ C and γ (s3) ∈ �1. This readily implies that γ ((−∞, s1])
and γ ([s2,+∞)) cannot both exit C , for otherwise γ would have a self-intersection. Hence
at least one of the inclusions γ ((−∞, s1]) ⊂ C and γ ([s2,+∞)) ⊂ C must hold, and
	γ = +∞. ��

Proof of Proposition 2.4 Assume by contradiction that there exists a family of curves γt , for
t ∈ [0, ε], evolving according to the inverse curvature flow, such that γ0 : R ↪→ R2 is a
proper embedding. Up to rescaling and reparametrization, we can assume that each γt has
positive curvature Kγt > 0 and that γ0 has unit speed ‖γ̇0‖ ≡ 1, so that once again we are
in the setting of Sect. 2.2. Notice that the associated curves σt = e−tγt have also positive
curvature Kσt > 0. By Lemma 2.7, we have∫ +∞

−∞
Kσ0(s) ≤ π. (2.5)

In order to derive a contradiction, let us consider the inverse curvature function at (s) =
Kσt (s)

−1, as in Sect. 2.2, and define, for T ∈ [0, ε],

AT (s) :=
∫ T

0
at (s) dt .

Let us compute the derivative

ȦT (S) = ȦT (0) +
∫ S

0
ÄT (s) ds = ȦT (0) +

∫ S

0

∫ T

0
ät (s) dt ds

= ȦT (0) +
∫ S

0

∫ T

0

∂t at (s)

at (s)2
dt ds = ȦT (0) −

∫ S

0

∫ T

0
∂t (at (s)

−1) dt ds

= ȦT (0) −
∫ S

0

(
aT (s)−1 − a0(s)

−1) ds
= ȦT (0) +

∫ S

0
Kσ0(s) ds −

∫ S

0
KσT (s) ds. (2.6)

Hence

ȦT (S) − ȦT (−S) =
∫ S

−S
Kσ0(s) ds −

∫ S

−S
KσT (s) ds.
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We infer

lim inf
S→+∞

∫ S

−S
KσT (s) ds = lim inf

S→+∞

( ∫ S

−S
Kσ0(s) ds + ȦT (−S) − ȦT (S)

)
≤ π.

The latter inequality is a consequence of (2.5) and of the fact that, by the positivity of the
map S �→ AT (S) + AT (−S), lim inf S→+∞ − ȦT (S) + ȦT (−S) ≤ 0. Hence∫ +∞

−∞
KσT (s) ds ≤ π, ∀T ∈ [0, ε]. (2.7)

We claim that 1/Aε is an L1-function, i.e.∫ +∞

−∞
1

Aε(s)
ds < +∞. (2.8)

Indeed, we have

ε =
∫ ε

0

√
at (s)√
at (s)

dt ≤
( ∫ ε

0
at (s) dt

)1/2( ∫ ε

0

1

at (s)
dt

)1/2

= √
Aε(s)

( ∫ ε

0

1

at (s)
dt

)1/2

,

and therefore, by (2.7),∫ +∞

−∞
1

Aε(s)
ds ≤ 1

ε2

∫ ε

0

∫ +∞

−∞
1

at (s)
ds dt ≤ π

ε
.

Now (2.6) together with (2.7) and the fact that KσT (s) > 0, implies that

sup
s∈R

| Ȧε(s)| ≤ | Ȧε(0)| + π.

Therefore, we have a linear bound

Aε(s) ≤ Aε(0) + (| Ȧε(0)| + π)|s|, ∀s ∈ R,

which contradicts the integrability (2.8). ��

2.4 Evolution of the support functions

Let γ : S1 ↪→ R2 be an embedded smooth curve with positive curvature, which parametrizes
the smooth boundary of a convex compact subset Cγ ⊂ R2. Let us recall the classical notion
of support function of a convex body: for Cγ ⊂ R2, it is the smooth function

hγ : S1 → R, hγ (s) = max
q∈Cγ

〈q, u(s)〉,

where u(s) = (cos(s), sin(s)), and it satisfies hγ + ḧγ > 0. Conversely, any smooth function
h : S1 → R such that h + ḧ > 0 is the support function h = hγ of a unique (up to
reparametrization) embedded smooth curve γ : S1 ↪→ R2 with positive curvature, given by

γ (s) = hγ (s)u(s) + ḣγ (s)Ju(s).

The velocity vector of γ can be expressed as

γ̇ = ḣγ u + hγ Ju + ḧγ Ju + ḣγ J Ju = (hγ + ḧγ )Ju,
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and its curvature as

Kγ (s) = 〈γ̇ , Ṅγ 〉
‖γ̇ ‖2 = 1

‖γ̇ ‖ = 1

hγ + ḧγ

. (2.9)

The family of support functions of periodic curves evolving with the inverse curvature
flow is described by the following well known statement, which is a particular case of a result
of Tso [4, 15, 16]. We provide the short proof here for the reader’s convenience.

Lemma 2.8 Let I be an interval with non-empty interior. A smooth family of functions ht :
S1 → R2, t ∈ I , satisfies

∂t ht = ht + ḧt > 0 (2.10)

if and only if ht = hγt for a suitably parametrized smooth family of embedded periodic
curves with positive curvature γt : S1 ↪→ R2 that satisfies the inverse curvature PDE (2.1).

Proof Let γt : S1 ↪→ R2, t ∈ I , be a family of smooth embedded periodic curves of positive
curvature evolving with the inverse curvature flow (2.1). There is a unique smooth family of
diffeomorphisms θt : S1 → S1 such that the reparametrized curves ζt := γt ◦θt have negative
normal vector field Nζt (s) = u(s), and thus velocity vector ζ̇t = ‖ζ̇t‖Ju. The associated
support functions ht : S1 → R, given by ht (s) = 〈u(s), ζt (s)〉, allow to write the curves as
ζt = htu + ḣt Ju. Since the family of curves ζt : S1 ↪→ R2 satisfies (2.1), by (2.9) we infer

∂t ht = 〈u, ∂tζt 〉 = 1

Kζt

= ‖ζ̇t‖ = ht + ḧt ,

and the last equality also implies that these terms are positive.
Conversely, assume that ht : S1 → R, t ∈ I , satisfies (2.10). Since ḧt + ht > 0, the

associated family of curves ζt : S1 ↪→ R2, ζt (s) = ht (s)u(s) + ḣt (s)Ju(s) has positive
curvature Kζt = (ḧt + ht )−1 = ‖ζ̇t‖−1, and we have

∂tζt = ∂t ht u + ∂t ḣt Ju = (ḧt + ht )Nζt + ∂t 〈Ju, ζt 〉Ju = Nζt

Kζt

+ 〈Ju, ∂tζt 〉︸ ︷︷ ︸
=: ft

Tζt .

Let θt : S1 → S1 be the smooth family of diffeomorphisms defined by θt0 = id for an
arbitrarily chosen t0 ∈ I , and satisfying the ODE

∂tθt (s) = −Kζt (θt (s)) ft (θt (s)).

The smooth family of reparametrized curves γt := ζt ◦ θt satisfies

∂tγt = Nγt

Kγt

+ ( ft ◦ θt )Tγt + (ζ̇t ◦ θt ) ∂tθt

= Nγt

Kγt

+
(
ft ◦ θt + ∂tθt

Kγt

)
Tζt = Nγt

Kγt

.

��
In Theorem C, we will need to deal with a given general convex compact set C ⊂ R2,

which potentially may have empty interior or non-smooth boundary. Its associated support
function

h : S1 → R, h(s) = max
q∈C 〈q, u(s)〉
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is continuous, andwhile it is not necessarily smooth, nevertheless it still satisfies the inequality
h + ḧ ≥ 0 in the sense of distributions. Conversely, any continuous function h : S1 → R

satisfying the latter inequality in the sense of distributions is the support function of a unique
convex compact subset C ⊂ R2. The evolution of any such support function by means of
the PDE (2.10) has good regularizing properties, as asserted by the following lemma. The
existence part of the statement was also proved in [3].

Lemma 2.9 For each continuous function h0 : S1 → R as initial condition, the PDE (2.10)
admits a unique continuous solution in the sense of distributions h : [0,+∞) × S1 → R,
h(t, s) = ht (s), which is smooth on (0,+∞) × S1 and has the form

ht (s) = et z + b(t, s), (2.11)

where b : [0,+∞) × S1 → R is uniformly bounded. Moreover, if h0 + ḧ0 �= 0 and
h0 + ḧ0 ≥ 0 in the sense of distributions, then

ht + ḧt > 0, ∀t > 0.

Proof For each continuous function h0 : S1 → R as initial condition, the family ht , t ≥ 0,
is a solution of (2.10) in the sense of distributions if and only if the family gt := e−t ht is a
solution of the heat equation ∂t gt = g̈t in the sense of distributions. It is well known that the
heat equation has the unique solution g : [0,+∞) × S1 → R, g(t, s) = gt (s), given by

gt (s) = h0 ∗ kt (s) =
∫ +∞

−∞
g0(s − r) kt (r) dr ,

where kt : R → R is the heat kernel kt (r) = (4π t)−1/2 exp(−r2/4t). Therefore g and
likewise h are everywhere continuous and smooth on (0,+∞) × S1. If we express h0 in
Fourier series expansion as

h0(s) = z0 +
∑
j≥1

〈z j , u( js)〉,

where z0 ∈ R and z j ∈ R2 are the Fourier coefficients, we readily obtain that gt has the
Fourier expansion

gt (s) = z0 +
∑
j≥1

e− j2t 〈z j , u( js)〉.

This, together with the relation ht = et gt , shows that ht has the desired form (2.11).
For t > 0, we have ht = et h0 ∗ kt . Hence

(ht + ḧt )(s) = et [(h0 + ḧ0) ∗ kt ](s) = et 〈h0 + ḧ0, kt (s − ·)〉 ,

where h0+ḧ0 ∈ S ′(R) is seen as a 2π -periodic tempered distribution (note that each function
kt (s−·) belongs to the Schwartz space S(R)). Now assume that h0+ ḧ0 �= 0 and h0+ ḧ0 ≥ 0
in the sense of distributions. Since kt > 0, we conclude that (ht + ḧt )(s) > 0 for all s ∈ S1.

��
Remark 2.10 The proof of Lemma 2.9 actually shows that the support functions ht have the
form

ht (s) = et z0 + 〈z1, u(s)〉 + e−3t c(t, s),
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where c : [0,+∞) × S1 → R is a continuous function whose restriction to any subset of
the form [t0,∞) × S1, with t0 > 0, is smooth and has bounded Ck norm for every k ≥ 0.
For t > 0, the associated smooth solution γt : S1 ↪→ R2 of the inverse curvature PDE (2.1)
has the form

γt (s) = ht (s)u(s) + ḣt (s)u̇(s) = z1 + et z0u(s) + e−3t f (t, s),

where f := c u + ∂sc u̇. In particular, this shows that γt is asymptotic to a circle of center z1
and radius |et z0| as t → ∞.

3 Levi potentials

3.1 Level orbits

Let us investigate the elementary properties of level orbits. Consider a smooth potential
U : R2 → R, the associated Newton equation q̈ = −∇U (q), and a level orbit q . We recall
that q is a solution of Hamilton equation defined on a maximal time interval and contained
in some level set U−1(c).

Lemma 3.1 Every level orbit q(s) is defined for all s ∈ R and has constant speed,
i.e. d

ds ‖q̇(s)‖ ≡ 0.

Proof The conservation of energy for the solutions of Hamilton equation implies that
1
2‖q̇(s)‖2 + U (q(s)) is independent of s, and therefore the speed v := ‖q̇(s)‖ ≥ 0 is
independent of s as well. This readily implies that the maximal domain of definition of the
level orbit q is the whole real line. ��

From now on, we assume thatU is a Levi potential, and denote by reg(U ) := R2 \crit(U )

the open subset of its regular points. For each x ∈ reg(U ), we denote by

�x := U−1(U (x)) ∩ reg(U )

the regular part of the level set of U containing x . We define the vector field

N : reg(U ) → R2, N (x) = ∇U (x)

‖∇U (x)‖ .

Notice that N (x) is a unit normal to �x pointing in the increasing direction of U . We orient
each �x so that J N (x) ∈ Tx�x is a positive tangent vector, where J : R2 → R2, J (x1, x2) =
(−x2, x1) is the complex structure ofR2.We say that a parametrized smooth immersed curve
contained in some �x is direct if its orientation agrees with the orientation of �x . Notice that
Hamilton equation is reversible: if q(t) is a solution, the backward curve t �→ q(−t) is a
solution as well. We define the smooth function

K : reg(U ) → R

such that K (x) is the signed geodesic curvature of the oriented level set �x with respect to
the normal N (x). Namely, if q is a direct level orbit such that q(0) = x , then

K (x) = −〈N (q(0)), q̈(0)〉
‖q̇(0)‖2 .
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Lemma 3.2 Any level orbit q with q(0) ∈ reg(U ) has constant speed

‖q̇(s)‖2 = ‖q̇(0)‖2 = ‖∇U (q(0))‖
K (q(0))

, ∀s ∈ R.

In particular, the curvature function K is everywhere positive.

Proof Clearly, it is enough to argue for a direct level orbit q with q(0) ∈ reg(U ). Plugging
Newton equation q̈ = −∇U (q) and the definition of N into the expression of the curvature
function K , we infer

K (q(0)) = −〈N (q(0)), q̈(0)〉
‖q̇(0)‖2 = ‖∇U (q(0))‖

‖q̇(0)‖2 .

This, together with the fact that the speed ‖q̇‖ is constant (Lemma 3.1), implies the lemma.
��

We introduce the smooth function

v : reg(U ) → (0,+∞), v(x) =
√

‖∇U (x)‖
K (x)

,

and the vector field

V : reg(U ) → R2, V (x) = v(x)J N (x).

Notice that the integral curves of V are precisely the portions of direct level orbits q in reg(U ),
and the function v gives their speed, i.e.

q̇(s) = V (q(s)), ‖q̇(s)‖ ≡ v(q(s)).

In particular, the function v is constant on every path-connected component of any level set
U−1(c) ∩ reg(U ). Later on, in Lemma 3.5, we will show that the flow of V is complete, that
is, level orbits that intersect reg(U ) are entirely contained in reg(U ).

3.2 Relations with the inverse curvature flow

We define the vector field

W : reg(U ) → R2, W (x) = N (x)

K (x)
,

and denote by φt its flow.

Proposition 3.3 Consider a smooth immersed curve γ0 ⊂ reg(U ) contained in a level set of
a Levi potential U. Then γt := φt (γ0) is also contained in a level set of U for all t ∈ R for
which it is well defined. In particular, if we fix a direct parametrization γ0 : (a, b) � reg(U )

and the corresponding parametrizations γt := φt ◦γ0 : (a, b) � reg(U ), then γt is a solution
of the inverse curvature flow.

Proof For each x ∈ reg(U ) and t ∈ R such that φt (x) is defined, we have

d
dt U (φt (x)) = 〈∇U (φt (x)), N (φt (x))〉

K (φt (x))
= ‖∇U (φt (x))‖

K (φt (x))
= v(φt (x))

2. (3.1)

Since the function v is constant on the path-connected components of every level setU−1(c)∩
reg(U ), by the implicit function theorem there exists an open neighborhood Z of any given
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point of reg(U ) and a smooth function f :U (Z) → R such that f (U (y)) = v(y)2 for all
y ∈ Z . This, together with (3.1), implies that, for all t ∈ R such that φt (x) ∈ Z , the function
t �→ U (φt (x)) is a solution of the ODE ż(t) = f (z(t)), and therefore is uniquely determined
by the initial value U (φ0(x)) = U (x). Since the curve γ0 is connected, this proves that
U (φt (x)) = U (φt (y)) for all x, y ∈ γ0.

Finally, fix a direct parametrization γ0 : (a, b) � reg(U ), and the corresponding
parametrizations γt := φt ◦ γ0. Since every γt is contained in a level set of U , the vec-
tor N (γt (s)) is normal to γ̇t (s), and the value K (γt (s)) is the curvature of γt at γt (s) with
respect to the orientations introduced in Sect. 3.1. Therefore, with the notation of Sect. 2.1,
the vector field W ◦ γt coincides with Nγt /Kγt , and we conclude that γt satisfies the inverse
curvature flow PDE

∂tγt = Nγt

Kγt

.

��
Corollary 3.4 Let q0 be a level orbit of a Levi potential U with q0(0) ∈ reg(U ). We set
vt := v(φt (q0(0))) for all t ∈ R for which the right-hand side is defined. Then, on their
maximal interval of definition containing 0, the curves qt given by

qt (s) := φt (q0(e
−tv−1

0 vt s))

are also portions of level orbits.

Proof We set γt (s) := φt (q0(s)), where s varies in a maximal interval containing 0 for
which the right-hand side is defined. Proposition 3.3 implies that γt is a solution of the
inverse curvature flow, and each γt is contained in a level set of U . Lemma 2.2 implies that
‖γ̇t‖ ≡ et‖γ̇0‖ ≡ etv0. The reparametrized curve qt (s) := γt (e−tv−1

0 vt s) is an immersed
curve contained in the level set of U and has speed ‖q̇t‖ ≡ ‖γ̇t‖e−tv−1

0 vt ≡ vt . Therefore,
it is a portion of a level orbit. ��

3.3 Level sets of a Levi potential

As anticipated, we can now establish the completeness of the vector field V .

Lemma 3.5 If a level orbit q of a Levi potentialU satisfies q(0) ∈ reg(U ), then q(s) ∈ reg(U )

for all s ∈ R.

Proof We denote by ψs the Hamiltonian (local) flow on T ∗R2 = R2 × R2 associated with
the potential U . Namely, if q is a solution of Hamilton equation defined on some maximal
neighborhood of 0, we have (q(s), q̇(s)) = ψs(q(0), q̇(0)). We denote by π : T ∗R2 → R2

the base projection of the cotangent bundle, and we define the family of maps

σs : reg(U ) → R2, σs(x) = π ◦ ψs(x, V (x)).

Notice that these maps are indeed well defined for all s ∈ R. Indeed, q(s) := σs(x) is the
direct level orbit starting at q(0) = x , and Lemma 3.1 guarantees that q(s) is well defined
for all s ∈ R.

Assume by contradiction that q is a level orbit of the Levi potential U such that q(0) ∈
reg(U ) and q(s0) ∈ crit(U ) for some s0 ∈ R\{0}. Without loss of generality, we assume that
q is a direct level orbit, and we consider the case s0 > 0, the other case being analogous. By
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Proposition 3.3, the family of curves γt (s) := φt (q(s)) is a solution of the inverse curvature
flow on their maximal domain of definition. Moreover, if we setwt := etv(γ0(0))v(γt (0))−1

and qt (s) := γt (s/wt ), Corollary 3.4 implies that every qt is a portion of a level orbit. For
t ∈ R sufficiently close to 0, let st ∈ (0,+∞] be the largest positive value such that γt |[0,st )
is contained in reg(U ). Therefore

γt (s) = σwt s(γt (0)), ∀s ∈ [0, st ). (3.2)

Since reg(U ) is an open subset ofR2,wehave that t �→ st is lower semicontinuous.Therefore,
for each s ∈ [0, s0), we can differentiate the identity (3.2) with respect to t at t = 0, and after
taking the inner product with N (q(s)), we infer

1

K (q(s))
= 〈dσwt s(q(0))N (q(0)), N (q(s))〉

K (q(0))
+ 〈V (q(s)), N (q(s))〉︸ ︷︷ ︸

=0

d
dt wt s

≤ ‖dσwt s(q(0))‖
K (q(0))

.

(3.3)

Since

K (q(s)) = −〈N (q(s)), q̈(s)〉
‖q̇(s)‖2 = ‖∇U (q(s))‖

‖q̇(0)‖2
and ∇U (q(s0)) = 0, we infer that K (q(s)) → 0 as s → s0. But this contradicts the uniform
upper bound for K (q(s))−1 given in (3.3). ��

We say that a level orbit q of the Levi potentialU is regular when it intersects reg(U ), or
equivalently when it is fully contained in reg(U ) (Lemma 3.5).

Lemma 3.6 Let q be a regular level orbit of a Levi potential U such that φt (q(0)) is well
defined for all t ∈ [a, b], with a < 0 < b. Then φt (q(s)) is well defined for all t ∈ [a, b] and
s ∈ R.

Proof Assume without loss of generality that the regular level orbit q is direct. For each
t ∈ (a, b), since φt (q(0)) ∈ reg(U ), Lemmas 3.1 and 3.5 imply that the regular direct
level orbit qt such that qt (0) = φt (q(0)) is a curve of the form qt : R → reg(U ). We set
wt := etv(q(0))v(qt (0))−1. Corollary 3.4 implies that φt (q(s)) = qt (wt s) for all s in a
maximal neighborhood of 0 such that the left-hand side is defined.

Since φt (q(0)) is in the open set reg(U ) for all t ∈ [a, b], there exists a maximal interval
(s0, s1) ⊂ R such that φt (q(s)) is a well defined point of reg(U ) for all t ∈ [a, b] and
s ∈ (s0, s1). We claim that (s0, s1) = R. Indeed assume by contradiction that s1 < +∞.
The curve t �→ φt (q(s1)) is defined on a neighborhood of 0 but not on the whole [a, b],
and therefore exits every compact subset of reg(U ). We readily obtain a contradiction: since
φt (q(s)) = qt (wt s) for all s ∈ [0, s1) and t ∈ [a, b], the curve t �→ φt (q(s1)) is contained
in the compact subset {

qt (wt s)
∣∣ t ∈ [a, b], s ∈ [0, s1]

} ⊂ reg(U ).

This proves that s1 = +∞. Analogously, we have s0 = −∞. ��

Proposition 3.7 Any regular level orbit q of a Levi potential U is periodic, i.e. q = q(σ + ·)
for some σ > 0.

123



187 Page 16 of 22 P. Bolle et al.

Proof For each c ∈ R, the intersectionU−1(c)∩reg(U ) is a (possibly empty or disconnected)
1-dimensional properly embedded submanifold of reg(U ), since it is a level set of the sub-
mersion U |reg(U ). If q is a parametrization of a connected component of U−1(c) ∩ reg(U )

with constant speed ‖q̇‖ ≡ v(q(0)), then q is a level orbit, and therefore q(s) is defined and
contained in reg(U ) for all s ∈ R (Lemma 3.5). This shows that the regular level orbits are
parametrizations of the connected components ofU−1(c)∩reg(U ). Assume by contradiction
that there exists a regular level orbit q that is not periodic.

Since q is a 1-dimensional properly embedded submanifold in reg(U ) and is not a circle,
as a map it is a proper embedding q : R ↪→ reg(U ). We claim that q is also proper as a
map q : R ↪→ R2. If this is not true, then by Lemma 2.7 at least one of the half orbits
q((−∞, 0]) or q([0,+∞)) is contained in a compact subset C ⊂ R2. Consider the case
q([0,+∞)) ⊂ C , the other one being analogous. Since q : [0,+∞) ↪→ reg(U ) is proper,
its ω-limit is contained in the compact subset C ∩ crit(U ). Therefore

εs : = sup
r≥s

‖q̈(r)‖ = sup
r≥s

‖∇U (q(r))‖ −−→s→+∞ 0.

This implies, for each s > 0 and r := s + v(q(0))
2εs

,

‖q(r) − q(s)‖ =
∥∥∥∥(r − s)q̇(s) +

∫ r

s

(
q̇(u) − q̇(s)

)
du

∥∥∥∥
≥ (r − s)v(q(0)) −

∫ r

s
(u − s)εs du

≥ v(q(0))2

4εs
−−→s→+∞ +∞,

contradicting the fact that q|[0,+∞) is contained in the compact set C .
We showed that q : R ↪→ R2 is a proper embedding. Let τ > 0 be small enough so that

φt (q(0)) is well defined for all t ∈ [0, τ ]. Lemma 3.6 implies that γt (s) := φt (q(s)) is well
defined for all t ∈ [0, τ ] and s ∈ R. Corollary 3.4 implies that each γt is a reparametrization
of a regular level orbit. But Proposition 3.3 implies that γt is a solution of the inverse curvature
flow defined for t ∈ [0, τ ], which violates Proposition 2.4. ��
Proof of Theorem A Let U be a smooth Levi potential whose set of critical points crit(U )

is totally path-disconnected, and q a regular direct level orbit. By Proposition 3.7, q is σ -
periodic for some σ > 0. Therefore, q is an embedding of the form q : R/σZ ↪→ reg(U )

with positive curvature. We denote by τ ∈ [−∞, 0) the infimum of the values t < 0
such that φt (q(0)) is a well defined point of reg(U ). Lemma 3.6 implies that the curves
γt := φt ◦ q : R/σZ ↪→ reg(U ) are well defined for all t ∈ (τ, 0]. Proposition 3.3 implies
that the family γt is a solution of the inverse curvature flow, and Corollary 3.4 implies that
each γt is a reparametrization of a regular level orbit, and actually a direct one (since γ0 = q is
direct). In particular each γt has positive curvature, and therefore it bounds a convex compact
subset Ct ⊂ Rn . The inverse curvature PDE (2.1) readily implies that Ct1 ⊂ int(Ct2) for all
t1, t2 ∈ (τ, 0] with t1 < t2.

We claim that τ = −∞. Indeed, let us assume by contradiction that τ is finite. This
implies that, for every s ∈ R/σZ, the curve (τ, 0] � t �→ γt (s) exits any compact subset of
C0 ∩ reg(U ). Therefore, the non-empty convex compact set

C :=
⋂

t∈(−τ,0]
Ct
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has boundary contained in crit(U ). Since ∂C is path-connected (being the boundary of a
convex compact set) while crit(U ) is totally path-disconnected, ∂C must be a singleton.
However, this implies that

�t := length(γt ) −−→t→τ+ 0. (3.4)

Since the regular level orbit q is parametrized with constant speed ‖q̇‖ ≡ v(q(0)), each
γt is parametrized with constant speed ‖γ̇t‖ ≡ etv(q(0)) (Lemma 2.2), and therefore �t =
etv(q(0))σ → eτ v(q(0))σ as t → τ+, which contradicts (3.4).

We proved that the family of smooth periodic curves γt : R/σZ ↪→ reg(U ), for t ∈
(−∞, 0], is a solution of the inverse curvature flow. Proposition 2.3 implies that γt is a
circular solution (Example 2.1). Let τ > 0 be the supremum of the time values t > 0 such
that φt (q(0)) is well defined. Using Lemma 3.6, Proposition 3.3, and Corollary 3.4 as before,
we can extend the family of curves γt := φt ◦ q : R/σZ ↪→ reg(U ) for all t ∈ (−∞, τ ),
such a family is a solution of the inverse curvature flow, and each γt is a reparametrization of
a regular level orbit. Therefore, the first part of the proof implies that γt is a circular solution
of the inverse curvature flow, i.e.

γt (s) := x0 + et e2πs/σ J x1, ∀t ∈ (−∞, τ ), s ∈ R/σZ,

where x0 ∈ R2, x1 ∈ R2 \ {0}. We claim that τ = +∞. Indeed, if τ < +∞, then for each
s ∈ R/σZ the curve [0, τ ) � t �→ γt (s) exits any compact subset of reg(U ); therefore the
curves γt would converge as t → τ− to an embedded circle in crit(U ), contradicting the fact
that crit(U ) is totally path-disconnected.

Summing up, we proved that every round circle centered at x0 ∈ R2 is a regular level set of
U . ThereforeU has a unique critical point at x0, and can be written asU (x) = f (‖x − x0‖2)
for some smooth function f : [0,+∞) → R. ��

3.4 Analytic Levi potential

In order to prove Theorem B, we first need some preliminaries on analytic functions. We
begin by recalling the real version of the classical Puiseux theorem from, e.g., [9, page104],
and some of its consequences.

Theorem 3.8 (Puiseux) Let U : R2 → R, (x, y) �→ U (x, y) be a non-constant analytic
function that vanishes at the origin and is not divisible by x (which can always be achieved
by means of an analytic change of variables). Then, in a neighborhood of the origin, the level
set U−1(0) is either equal to the origin, or is the union of a finite number of arcs of the form

γi : [−εi , εi ] → R2, γi (t) = ((−1)ki tmi , fi (t)),

for some positive integers ki ∈ {0, 1} and mi ≥ 1, and for some analytic functions fi such
that fi (0) = 0. The arcs γi are injective, and their images only intersect at the origin.

Corollary 3.9 For each analytic function U : R2 → R, the set of critical points crit(U ) is
locally path connected.

Proof The function V := ‖∇U‖2 is also analytic, and crit(U ) = V−1(0). The level set
V−1(0) is locally path connected according to Theorem 3.8. ��

We recall that a planar graph is a graph topologically embedded in R2. Here, the graph
is endowed with the usual topology that makes it a CW complex, with the vertices being the
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0-cells and the edges being the 1-cells. The degree of a vertex v of a graph is the number of
edges incident to v, where an edge incident to v at both ends is counted twice.

Corollary 3.10 Let U : R2 → R be an analytic function. Each compact connected compo-
nent of a level set U−1(c) is a planar graph (possibly empty or with no edges)whose vertices
have even degrees.

Proof Let us assume that U−1(c) is not empty, and � ⊂ U−1(c) is a compact connected
component that is not a singleton. By Theorem 3.8, each point q ∈ � has a bounded open
neighborhood Bq ⊂ R2 such thatU−1(c)∩Bq is the union of finitelymany arcsγq,1, ..., γq,nq
with endpoints in ∂Bq , where each arc is without self-intersections and distinct arcs intersect
only at q . Since� is compact, there exist finitelymany points q1, ..., qk such that Bq1∪...∪Bqk
contains �. We can now endow � with a planar graph structure, whose vertices are q1, ..., qk ,
and whose edges are the finitely many connected components of � \ {q1, ..., qk}. Notice
that every arc γqi , j intersects precisely two edges incident to the vertex qi , or a single edge
incident to the vertex qi at both ends. This, together with the fact that γqi , j ∩ γqi ,h = {qi } for
all j �= h, readily implies that the degree of each vertex qi is even. ��
Corollary 3.11 Let U : R2 → R be an analytic function such that the complement of a level
setR2 \U−1(c) has a non-empty bounded connected component. Then U has a strict local
maximum or a strict local minimum.

Proof We assume by contradiction that U does not have a strict local maximum nor a strict
localminimum.By assumption,R2\U−1(c) has a non-empty bounded connected component
V . The complement R2 \ V has a unique unbounded connected component W . We define
A1 := R2 \ W , which is a bounded connected open set containing V . We recall that a
connected open subset ofR2 is simply connected if and only if its complement has no bounded
connected component (see, e.g., [1, Corollaries 1-2]). Therefore A1 is simply connected.
Moreover the boundary of A1 is contained in U−1(c). Let us assume that U |V < c, the case
in whichU |V > c being analogous. We set a1 := minU |A1 . The intersectionU

−1(a1) ∩ A1

is compact, and thus it is a union of finitely many connected components of the level set
U−1(a1). Notice thatU−1(a1) does not contain isolated points, for otherwise any such point
would be a strict local minimum of U . Corollary 3.10 implies that U−1(a1) ∩ A1 is a planar
graph whose vertices have non-zero even degrees. In particular, U−1(a1) ∩ A1 contains a
loop that bounds a simply connected component B1 of A1 \U−1(a1).

We set b1 := maxU |B1 . Arguing as in the previous paragraph, the intersectionU−1(b1)∩
B1 is a compact planar graph, and contains a loop that bounds a simply connected component
A2 of B1 \ U−1(b1). Next we define a2 := minU |A2 , and continue the process iteratively.
Overall, we obtained a sequence of simply connected non-empty open sets Ai , Bi ⊂ R2

such that

Bi ⊂ Ai , Ai+1 ⊂ Bi , ∂Bi ⊂ crit(U ) ∩U−1(ai ), ∂Ai+1 ⊂ crit(U ) ∩U−1(bi ),

where ai < bi . By Sard theorem, the interval (ai , bi ) contains a full measure subset of regular
values of U . Therefore, the boundaries ∂Bi and ∂Ai+1 belong to distinct path-connected
components of crit(U ). This further implies that, for each i < j , the boundaries ∂Bi and
∂Bj belong to distinct path-connected components of crit(U ), since they belong to distinct
path-connected components of the complement of ∂Ai+1. Consider an arbitrary sequence
qi ∈ ∂Bi , which is contained in the bounded set B1. Up to extracting a subsequence, we
have qi → q ∈ crit(U ) as i → ∞. Since all the points qi belong to pairwise distinct path-
connected components of crit(U ), we infer that crit(U ) is not locally path-connected at q .
This contradicts Corollary 3.9. ��
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Proof of Theorem B LetU : R2 → Rbe an analyticLevi potential. IfU is a constant function,
it is also trivially radial. Assume now thatU is not constant, and let c ∈ R be a regular value
of U such that U−1(c) is not empty. By Proposition 3.7, the connected components of the
level set U−1(c) are circles. Therefore, R2 \ U−1(c) has a bounded connected component,
and Corollary 3.11 implies that U has a strict local minimum or a strict local maximum.

We claim that U cannot have a strict local maximum. Indeed, assume that q ∈ R2 is
a strict local maximum of U , and set c := U (q). Let W ⊂ R2 be a sufficiently small
compact neighborhood of q such that U |W\{q} < c. By Corollary 3.9, crit(U ) is locally
path-connected, and therefore crit(U ) ∩ W = {q} provided W is chosen small enough. For
each ε > 0 small enough, the level set U−1(c − ε) has a connected component γ contained
in W . Since c − ε is a regular value of U |W , γ is an embedded circle in W . Notice that γ

bounds a disk B that must contain a local maximum or a local minimum ofU . Since the only
critical point ofU |W is q , we infer that crit(U )∩ B = {q}. Since q is a local maximum ofU ,
we infer that, for each q ′ ∈ γ , the gradient ∇U (q ′) points inside B. Lemma 3.2 implies that
the curvature of γ with respect to the normal vector field ∇U/‖∇U‖ is everywhere positive,
but this is impossible, as it would prevent γ to encircle q .

SinceU cannot have strict local maxima, it must have a strict local minimum q0. Without
loss of generality, let us assume that q0 = 0 andU (q0) = 0. With the same argument already
employed in the last paragraph, There exists ε > 0 such that, for each c ∈ (0, ε], the level
set U−1(c) has a connected component that is a circle, does not contain critical points of U ,
and encircles the origin. Let γ0 ⊂ U−1(0, ε] be any such circle. Since U is a Levi potential,
γ0 must be a regular level orbit. We now proceed as in the proof of Theorem A: we apply to
γ0 the inverse curvature flow (2.1) in negative time, and obtain family of curves γt defined
for t in some neighborhood of 0 in (−∞, 0]. Proposition 3.3 implies that each γt is a regular
level orbit for the Levi potential, and Lemma 3.1 implies γt is the boundary of a convex
open subset Bt containing the origin. Arguing as in the proof of Theorem A, we infer that
γt is defined for all t ≤ 0. Proposition 2.3 implies that γt , for t ≤ 0, is a circular solution
of the inverse curvature flow. This proves that U is radial in B0. The radial condition can
be expressed by saying that the function V (q) := dU (q)Jq vanishes on B0. However, V is
analytic, and since it vanishes in the open set B0 it must vanish identically on the wholeR2.
This proves that U is a radial function. ��

3.5 Levi potentials with prescribed critical set

The proof of TheoremC is a consequence of Lemmas 2.8, 2.9, and of the following statement.

Lemma 3.12 Let f : Rn → [0,+∞) be a proper continuous function such that min f = 0
and whose restriction to f −1(0,+∞) is smooth and has no critical points. There exists a
smooth function g : Rn → [0,+∞)with critical set crit(g) = g−1(0) = f −1(0) and having
the same level sets as f , i.e. f (x) = f (y) if and only if g(x) = g(y) for all x, y ∈ Rn.

Proof Letψ : [0,+∞) → [0,+∞) be a smooth function such thatψ |[0,1] ≡ 0, ψ̇ |(1,2] > 0,
and ψ̇ |[2,+∞) ≡ 1. For each integer k ≥ 1, we define

fk : Rn → [0,+∞), fk(x) = ψ(k f (x)).

We introduce the compact subsets

Wk := f −1[0, 1
k ].
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Notice that f is smooth outside f −1(0), and fk |Wk ≡ 0. Therefore fk is everywhere smooth.
We set ck := 1 + ‖ fk |W1‖Ck , and define the function

g : Rn → [0,+∞), g(x) =
∑
k≥1

fk(x)

ekck
.

Since f is smooth away from f −1(0), on every compact subset V ⊂ Rn \ f −1(0) and for
every integer p ≥ 1, we have ∥∥ fk |V

∥∥
C p ≤ b k p,

where b = b(ψ, f , p, V ) > 0 is independent of the integer k. This estimate implies that g|V
is smooth. Moreover,∥∥ fk |W1

∥∥
C p ≤ max

{∥∥ f1|W1

∥∥
C p ,

∥∥ f2|W1

∥∥
C p , ...,

∥∥ f p|W1

∥∥
C p , ck

}
.

This shows that g|W1 is smooth as well, and therefore g is everywhere smooth. Notice that
g−1(0) = f −1(0). Moreover, for each x ∈ Rn \ f −1(0), we have d f (x) �= 0, and therefore

dg(x) =
∑
k≥1

k ψ̇(k f (x))

ekck︸ ︷︷ ︸
>0

d f (x) �= 0.

This implies that crit(g) = g−1(0) = f −1(0). Finally, since g is of the form h ◦ f for a
strictly monotone increasing function h : [0,+∞) → [0,+∞), we conclude that f and g
have the same level sets. ��
Proof of Theorem C Let C be a non-empty compact convex subset of R2. If C = {q0}, then
U (q) = ‖q − q0‖2 is a Levi potential with critical set crit(U ) = {q0}. Assume now that C
is not a singleton, so that its support function

h0 : S1 → R, h0(s) = max
q∈C 〈q, u(s)〉,

satisfies h0 + ḧ0 ≥ 0 and h0 + ḧ0 �= 0 in the sense of distributions. Here, as in Sect. 2.4,
u(s) = (cos(s), sin(s)). By Lemma 2.9, using the support function h0 as initial condition,
there exists a unique continuous solution h : [0,+∞) × S1 → R2, h(t, s) = ht (s) of the
PDE ∂t ht = ht + ḧt , such that:

(i) h is smooth and satisfies ht + ḧt > 0 on (0,+∞) × S1,
(ii) h has the form ht (s) = et z + b(t, s), where b : [0,+∞) × S1 → R2 is uniformly

bounded.

Point (i) implies that, for each t > 0, ht is the support function of a compact convex subset
Ct ⊂ R2 with smooth positively-curved boundary. Moreover, since ∂t ht > 0 for all t > 0,
we have Ct1 ⊂ int(Ct2) for all t1 < t2. Since limt→0+ ht (s) = h0(s) for all s ∈ S1, we have

C0 =
⋂
t>0

Ct .

Point (ii) implies that min ht → +∞ as t → +∞, and therefore the family Ct , t > 0, is an
exhaustion by compact sets ofR2, i.e. ⋃

t>0

Ct = R2.
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By Lemma 2.8, there exists a family of smooth periodic curves γt : S1 → R2, t > 0,
that evolve according to the inverse curvature flow, and each γt is a parametrization of the
boundary of Ct . Without loss of generality, we can assume that each γt is parametrized with
constant speed ‖γ̇t‖. Notice that this family, seen as a map

γ : (0,+∞) × S1 → R2 \ C0, γ (t, s) = γt (s),

is a diffeomorphism. We define the continuous function τ : R2 → [0,+∞) by τ |C0 ≡ 0
and x ∈ γτ(x)(S

1) for all x ∈ R2\C0. Notice that τ is proper. Moreover, the restriction
τ |R2\C0

is smooth, strictly positive, and has no critical points. By Lemma 3.12, there exists
a smooth function U : R2 → [0,+∞) with critical set crit(U ) = U−1(0) = τ−1(0) = C0

and having the same level sets as τ . Namely, the level sets ofU are C0 and the curves γt . We
set w(t) := U (γt (s)), and stress that w(t) is independent of s ∈ S1 and smooth for all t > 0.
Moreover, since ∇U (γt (s)) is positively proportional to the normal vector Nγt (s), we have

ẇ(t) = 〈∇U (γt (s)), ∂tγt (s)〉 = ‖∇U (γt (s))‖
Kγt (s)

> 0.

The family of reparametrized curves

qt (s) := γt

(√
ẇ(t)

‖γ̇t‖ s
)

are level orbits of U . Indeed, for r =
√

ẇ(t)
‖γ̇t‖ s, we have

q̈t (s) = ẇ(t)
‖γ̇t‖2 γ̈t (r) = − ẇ(t)

‖γ̇t‖2 ‖γ̇t‖
2Kγt (r)Nγt (r)

= −‖∇U (qt (s))‖Nqt (s) = −∇U (qt (s)).

This shows that the collection of all level orbits qt , for t > 0, fills the regular set reg(U ). All
the points of critical set crit(U ) are trivially level orbits. Therefore, U is a Levi potential. ��
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