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Abstract
We study the effective geometricmotions of an anisotropic Ginzburg–Landau equationwith a
small parameter ε > 0which characterizes thewidth of the transition layer. Forwell-prepared
initial datum, we show that as ε tends to zero the solutions will develop a sharp interface limit
which evolves under mean curvature flow. The bulk limits of the solutions correspond to a
vector field u(x, t)which is of unit length on one side of the interface, and is zero on the other
side. The proof combines the modulated energy method and weak convergence methods. In
particular, by a (boundary) blow-up argument we show that u must be tangent to the sharp
interface. Moreover, it solves a geometric evolution equation for the Oseen–Frank model in
liquid crystals.
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1 Introduction

In the study of liquid crystals one often encounters elastic energies with anisotropy, i.e.
energies with distinct coefficients multiplying the square of the divergence and the curl of
the order parameters. Typical examples involve the Oseen–Frank model [30], Ericksen’s
model [43, 44] and the Landau–De Gennes model [5]. From a microscopic point of view,
the anisotropy of these models can be interpreted as excluded volume potential of molecular
interaction, cf. [29]. Anisotropic models also arise in the theory of superconductivity, cf. [10].
The anisotropy brings various new challenges to the studies of both variational problems and
their gradient flows of the aforementioned models. In contrast to the convergence analysis of
isotropic models, i.e. the (scalar) Allen–Cahn equations (cf. [6, 19, 34, 47, 48, 50, 53, 54]),
the powerful analytic tools such as maximum principle and monotonicity formula are not
readily established for anisotropic ones.

The attempt of this work is to study an anisotropic system modeling the isotropic-nematic
phase transition of a liquid crystal droplet. Let d ∈ {2, 3} be the dimension of the physical
domain�withC3 boundary ∂�. We consider the anisotropic Ginzburg–Landau type energy

Aε(u) =
∫

�

(
ε

2
μ| div u|2 + ε

2
|∇u|2 + 1

ε
F(u)

)
dx . (1.1)

Here u = (u1, u2, u3) : � ⊂ R
d �→ R

3 is the order parameter describing the state of
the system. The function F(u) is a double equal-well potential which permits the isotropic-
nematic phase transition. More precisely, it attains its global minimum value 0 at {0}∪S

2. An
example of F is the Chern–Simons–Higgs model F(u) = |u|2(1 − |u|2)2. See for instance
[31, 36] for the physics and [9, 27, 28] for the mathematical analysis of related variational
problems. The parameter ε > 0 denotes the relative intensity of elastic and bulk energy,
which is usually quite small. The parameter μ > 0 is material dependent which measures
the degree of anisotropy.

The energy (1.1) is a simplified case of the full Landau–De Gennes energy (cf. [35, 45]).
The variational investigations of the isotropic-nematic phase transition involving (1.1) were
first done by Golovaty, Novack, Sternberg and Venkatraman [27, 28] in the static case in 2D.
The present paper is concerned with the L2-gradient flow of (1.1), i.e. the following system.

∂tuε − μ∇(div uε) = �uε − 1

ε2
DF(uε) in � × (0, T ), (1.2a)

uε(x, 0) = uinε (x) in �, (1.2b)

uε(x, t) = 0 on ∂� × (0, T ), (1.2c)

where DF(u) is the gradient of F(u)with respect tou.We shall study the small ε-asymptotics
of this system with well-prepared initial datum uinε that undergoes a sharp transition across
a co-dimensional one interface I0 ⊂ R

d . We shall show that the energy density ε
2 |∇uε|2 +

1
ε
F(uε) will be concentrated on a mean curvature flow I :=⋃t�0 It × {t} starting from I0,

namely

lim
ε→0

∫
�

(
ε

2
|∇uε|2 + 1

ε
F(uε)

)
dx = σHd−1(It ), (1.3)

where Hd−1 is the (d − 1) dimensional Hausdorff measure, and σ is a positive constant
depending on F . Moreover, we shall derive bulk limit u := limε→0 uε away from It and its
boundary condition on It .
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Fig. 1 It is the interface, �
+
t is the nematic phase and �−

t is the isotropic phase

System (1.2a) is a vectorial and anisotropic generalization of the scalar parabolic Allen–
Cahn equation. In the scalar case, there have been many developments on its co-dimensional
one limit to the (two-phase)mean curvature flowduring the last twodecades.Herewemention
two classes of results and postpone the discussions of some others in the sequel. One is the
convergence to a Brakke’s flow by Ilmanen [34] using a version of Huisken’s monotonicity
formula [32] and tools fromgeometricmeasure theory. See also [11, 33, 47, 48, 50, 54] and the
references therein for further renovations. Despite of its energetic nature, a major difficulty of
such an approach is the control of the so-called discrepancy measure, and almost all existing
literatures using this approach rely crucially on a version of Modica’s maximum principle
[46].However, it is not clearwhetherModica’smaximumprinciple holds for elliptic/parabolic
systems. Another approach, which relies more on parabolic comparison principle, is the
global in time convergence towards the viscosity solution built by Chen–Giga–Goto [13] and
independently by Evans–Spruck [20]. Such an approach has been implemented by Evans–
Soner–Souganidis [19]. One can also refer to [6, 53] and the references therein for further
discussions. These two approaches both give global in time (weak) convergences to weakly
defined solutions of the mean curvature flow (up to their extinction times). However, as their
technics involve parabolic maximum principle in one way or another, it is not clear how
to use them to attack vectorial models in general. It is worth mentioning that for radially
symmetric initial datum, Bronsard–Stoth [8] have obtained global in time convergence to the
mean curvature flow of planar circles.

To the best of our knowledge, there are mainly two approaches to rigorously justify the
convergence of the vectorial Allen–Cahn equations, both assuming that the limiting interface
motion has a (local in time) classical solution. Compared with the aforementioned methods,
which lead to global in time (weak) convergence, they have quite different natures. The first
approach is the asymptotic expansion technics developed byDeMottoni–Schatzman [15] and
by Alikakos–Bates–Chen [1]. It has been used recently by Fei–Wang–Zhang–Zhang [22] to
study the isotropic-nematic phase transition in liquid crystals, and by Fei–Lin–Wang–Zhang
[21] to study matrix-valued Allen–Cahn equations.

The second approach, which also assumes a classical solution of the limiting interface
motion (but not the limiting flows in the bulk regions), is the modulated energy method
developed by Fischer–Laux–Simon [24]. Such a method is motivated by Jerrard–Smets [37]
and Fischer–Hensel [23], and has been generalized to a matrix–valued model by Laux–Liu
[40].
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In the present work, we shall use the methods employed in [24, 40] to derive the energy
convergence (1.3) and the bulk limit u = limεk→0 uεk by establishing two modulated energy
inequalities. Moreover, the derivation of the anchoring boundary condition of u (see (1.18c)
below) uses a blow-up argument, which is inspired by a recent work of Lin–Wang [43]. There
the authors have studied isotropic-nematic phase transitions in the static case based on an
anisotropic Ericksen’s model.

To state the main result, we assume that

I =
⋃

t∈[0,T ]
It × {t} is a smoothly evolving

(d − 1)-dimensional submanifold in �,

(1.4)

starting from a (d −1)-dimensional submanifold I0 ⊂ �. Here a (d −1)-submanifold refers
to an embedded closed smooth surface when d = 3 and curve when d = 2.

Let �+
t be the domain enclosed by It , and dI (x, t) be the signed-distance from x to It

which takes negative values in �−
t , and positive values in �+

t = �\�−
t . Equivalently,

�±
t := {x ∈ � | dI (x, t) ≷ 0}. (1.5)

For δ > 0, the (open) δ-neighborhood of It is denoted by

Bδ(It ) := {x ∈ � | |dI (x, t)| < δ}. (1.6)

Let δ0 ∈ (0, 1) be a sufficiently small number so that the nearest point projection

PI (·, t) : B4δ0(It ) → It

is smooth for any t ∈ [0, T ], and that the interface (1.4) stays at least 4δ0 distant away from
the physical boundary ∂�. A further description of the geometry can be found in Sect. 2.2
or in [12].

The first step to study the singular limit of (1.2) is to construct a modulated energy which
encodes a distance between the energy in (1.1) and an energy corresponding to the moving
interface It in (1.4). Following [23, 24, 37], we define an extension of the inward normal
vector n(·, t) of It by

ξ(x, t) := φ

(
dI (x, t)

δ0

)
∇dI (x, t) for x ∈ �,

where φ ∈ C2
c (R; [0, 1]) is an appropriate cut-off function (see (2.11) below for its precise

definition). Now we introduce

Eε[uε|I ](t) :=
∫

�

ε

2
μ| div uε(·, t)|2 dx

+
∫

�

(
ε

2
|∇uε(·, t)|2 + 1

ε
F(uε(·, t)) − ξ · ∇ψε(·, t)

)
dx, (1.7)

where ψε is defined by

ψε(x, t) :=
∫ |uε(x,t)|

0
g(s) ds. (1.8)

We shall work with a class of potentials F(u) under standard assumptions (see e.g. [11, 34]).
That is,

F(u) = f (|u|) = g2(|u|)/2, (1.9)
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where f is a double equal-well potential, namely,

f ∈ C∞(R�0), f (s) > 0 for s ∈ R�0\{0, 1}, (1.10a)

g � 0 and is locally Lipschitz continuous, g(0) = g(1) = 0. (1.10b)

Moreover, the following structural assumptions on f are made:

∃s0 ∈ (0, 1) s.t. f ′(s) > 0 on (0, s0) and f ′(s) < 0 on (s0, 1); (1.11a)

f ′(0) = f ′(1) = 0, f ′′(0), f ′′(1) > 0; (1.11b)

∃c0 ∈ (0, 1) s.t. 2c20s
2 � f (s) � 2c−2

0 s2 for any s � 100. (1.11c)

After an appropriate modification for large |s|, the function g(s) = |s||s2 − 1|, which corre-
sponds to the Chern–Simons–Higgs potential, satisfies (1.11).

To control the bulk errors, we need another modulated energy:

B[uε|I ](t) :=
∫

�

(
σχ − σ + 2(ψε − σ)−

)
η ◦ dI dx +

∫
�

(ψε − σ)+ |η ◦ dI | dx .(1.12)

Here χ(·, t) := 1�+
t
−1�−

t
, h± denote the positive/negative parts of a function h respectively,

and η is a truncation of the identity function defined by

η(z) :=
⎧⎨
⎩

z when z ∈ [−δ0, δ0],
δ0 when z � δ0,

−δ0 when z � −δ0.

(1.13)

Note that (η ◦ dI ) χ � 0 in � due to our convention on the signed-distance function, and
thus the two integrands in (1.12) are both non-negative. We refer the readers to the proof of
Theorem 4.1 below for more details on the positivity of (1.12).

Now we state the main result of this work:

Theorem 1.1 Let d ∈ {2, 3}, and the assumptions (1.10) and (1.11) be in place. Assume that
the moving interface I in (1.4) evolves under mean curvature flow, and the initial datum of
(1.2) satisfies the following conditions:

uinε ∈ W 1,2
0 (�), (1.14a)

Aε(uinε ) � c1, (1.14b)

Eε[uinε |I0] + B[uinε |I0] � c1ε, (1.14c)

where c1 > 0 is independent of ε. Then there exists C1 > 0 independent of ε such that

sup
t∈[0,T ]

Eε[uε|I ](t) + sup
t∈[0,T ]

B[uε|I ](t) � C1ε, (1.15)

sup
t∈[0,T ]

∫
�

|ψε − σ1�+
t
| dx � C1ε

1/4. (1.16)

Moreover, up to extraction of a subsequence εk ↓ 0,

uεk

k→∞−−−→ 1�+
t
u in C([0, T ]; L2

loc(�\It )), (1.17)

where u satisfies the following properties:

u ∈ L∞(0, T ;W 1,6/5(�+
t ;S2)), ∂tu ∈ L2(0, T ; L6/5(�+

t )), (1.18a)

u(x, t) = 0 for every t ∈ [0, T ] and for a.e. x ∈ �−
t , (1.18b)

(u · n)(x, t) = 0 for a.e. t ∈ [0, T ] and for Hd−1-a.e. x ∈ It . (1.18c)
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Among the conditions in (1.14), the crucial one is (1.14c), which is used to obtain the
inequalities in Theorem3.1 and in Theorem4.1 below. To construct an initial datum satisfying
(1.14), we need the following result.

Proposition 1.1 Let I0 ⊂ � be a (d − 1)-dimensional submanifold. For any vector field

uin ∈ W 1,2(�;S2) with uin |I0 · nI0 = 0 a.e. on I0, (1.19)

there exists uinε ∈ W 1,2
0 (�) ∩ L∞(�) such that

{
uinε = uin in �+

0 \B2δ0(I0),

uinε = 0 in �−
0 \B2δ0(I0),

(1.20)

and (1.14) holds for a constant c1 > 0 which only depends on I0 and ‖uin‖W 1,2(�).

We comment on the conditions in (1.19). When d = 3, I0 is a smooth closed surface in
�. Due to topological obstructions, a vector field satisfying (1.19) is usually not smooth.
For instance, when I0 is diffeomorphic to a 2-sphere, due to the hairy ball theorem, uin |I0
must have (at least) one pole. One example of such a pole, which is often encountered in
the theory of liquid crystal, is given by the hedgehog profile. Locally the tangent vector field
near such a pole is C1-equivalent to the mapping h(x) = x/|x | : B1 ∩ R

2 → S
1. Note that

h ∈ W
1
2 ,2(B1 ∩ R

2) but h /∈ W 1,2(B1 ∩ R
2). When d = 2, there are fewer constraints to

arrange a vector field f : I0 �→ S
2 ⊂ R

3 that is orthogonal to the planar curve I0 ⊂ R
2 ×{0}.

In general, using the extension lemma of Hardt–Lin (cf. [42, Lemma 2.2.10]), any tangent

vector field f ∈ W
1
2 ,2(I0;S2) has an extension uin satisfying (1.19).

An immediate consequence of Theorem 1.1 is the convergence in (1.3). Indeed, it follows

from (1.15) and (2.26b) below that
∫
�

ε
2μ| div u|2 dx ε→0−−→ 0, and thus such an energy does

not contribute to the surface energy in the limit. However, it forces u to satisfy the boundary
condition (1.18c). Now applying integration by parts to the last term of (1.7), and then using
(1.16) and ξ |∂� = 0, we find

lim
ε→0

∫
�

(
ε

2
|∇uε|2 + 1

ε
F(uε)

)
dx

= lim
ε→0

−
∫

�

(div ξ)ψε dx = −σ

∫
�+
t

(div ξ) dx = σHd−1(It ). (1.21)

Note that the last step is due to the Green’s formula.
Under additional assumptions, we can show that the limit u in (1.17) solves a geometric

evolution equation in the bulk region �+ :=⋃t∈[0,T ] �
+
t × {t}.

Theorem 1.2 Let d = 2 and the assumptions of Theorem 1.1 be in place. Assume further
that

f (s) = s2 for s � 1/4; f (s) = (s − 1)2 for s � 3/4;
f (s) � 1/16 for s ∈ [1/4, 3/4];

sup
s∈[1/4,3/4]

| f ′(s)| � 4.
(1.22)
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Then there exists a sufficiently small μ > 0 (independent of ε) such that the vector field u in
(1.17) satisfies

∫
�

∂tu ∧ u · � dx +
∫

�

(∇u ∧ u) · ∇� dx

= μ

∫
�

(div u)
(
(rot�) · u − (rot u) · �

)
dx (1.23)

for almost every t ∈ (0, T ) and for every � ∈ C1
c (�

+
t ;R3).

In the above equation ∧ is the wedge product in R3 and rot is the curl operator. The equation
(1.23) is the weak formulation of an Oseen–Frank flow, written as

∂tu = �u + μ(I3 − u ⊗ u)∇(div u) + |∇u|2u, for t ∈ (0, T ], x ∈ �+
t . (1.24)

It can be verified that when u is sufficiently regular, then (1.23) implies (1.24). It is worth
mentioning that equation of the form (1.24) is the L2-gradient flow of the variational problem

inf
∫
U

(
μ| div u|2 + |∇u|2) dx, (1.25)

where the infimum is taken among mappings u ∈ W 1,2(U ;S2) fulfilling certain boundary
conditions on ∂U . Note that (1.25) is a special case of the full Oseen–Frank model (cf. [30]).

This work will be organized as follows: In Sect. 2, we shall adapt the modulated energy
method of [24] to the vectorial and anisotropic system (1.2), and then derive a differential
inequality, i.e. Proposition 2.1. Such an inequality was previously derived in [40] for amatrix-
valued equation. When applied to (1.2), it includes a term which does not have an obvious
sign due to the additional div term. This problem will be solved in Sect. 3 during the proof
of the inequality in Theorem 3.1. This theorem, which leads to the first part of Theorem
1.1, is a major novelty of the present work, and will be employed in Sect. 4 (see Theorem
4.1) to derive the L1-estimate of ψε in (1.16). Such an estimate will be used in Lemma
4.3 to identify appropriate level sets of ψε which converge to It in certain sense. With this
key lemma, we derive in Sect. 5 the anchoring boundary condition (1.18c), and thus finish
the proof of Theorem 1.1. Section6 is devoted to the proof of Theorem 1.2. The proof of
Proposition 1.1 is quite similar to the construction given in [40]. We present a proof in
Appendix A for the convenience of the readers.

2 Preliminaries

2.1 Notation and conventions

We shall adopt the following conventions throughout the paper. Unless specified otherwise,
C > 0 is a generic constant whose value might change from line to line, and will depend
on the geometry of the interface (1.4) but not on ε or t ∈ [0, T ]. For two square matrices
A and B, their Frobenius inner product is defined by A : B := tr ATB, which induces the
norm |A| := √

tr ATA. We shall also use the following notation for a vector-valued function

123
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u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) where

x =
{

(x1, x2, x3) when d = 3,

(x1, x2, 0) when d = 2.
(2.1)

∂0 = ∂t , ∂i = ∂xi 1 � i � 3,

∇u1 = (∂1u1, ∂2u1, ∂3u1), div u =
3∑

i=1

∂i ui ,

rot u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1).

(2.2)

To ease computations when d = 2,∇uwill be understood as the matrix

⎛
⎝∂1u1 ∂2u1 0

∂1u2 ∂2u2 0
∂1u3 ∂2u3 0

⎞
⎠,

and

any planar vector field is understood as a

3D vector field with vanishing 3rd component.
(2.3)

In particular, the latter applies to the normal and the mean curvature vector fields (cf. (2.9)
and (2.13) respectively below). For a function of u, like F(u), its gradient will be denoted
by

DF = (∂u1F, ∂u2F, ∂u3F).

We end this section by the following assumptions regarding various constants. Theorem
1.1 will be proved for any fixed constant μ > 0, while Theorem 1.2 is valid for a sufficiently
small (fixed) μ. To simplify the presentation, we shall assume without loss of generality that

μ ∈ (0, 1) is a fixed constant. (2.4)

Finally we can normalize g (cf. (1.9)) to have

σ :=
∫ 1

0
g(s) ds = 1. (2.5)

As the L2-gradient flow of (1.1), the system (1.2) enjoys the following energy dissipation
law:

Aε(uε(·, T̂ )) +
∫ T̂

0

∫
�

ε|∂tuε|2 dxdt = Aε(uinε (·)) (2.6)

for arbitrarily large time T̂ . Combining this with the theory of gradient flow and the regularity
theory for elliptic system (cf. [4, 45]), one can construct a unique solution to system (1.2)
that satisfies

uε ∈ L2(0, T̂ ;W 2,2(�) ∩ W 1,2
0 (�)) and ∂tuε ∈ L2(� × (0, T̂ )).

So for almost every t̂ ∈ (0, T̂ ), we have

uε(·, t̂) ∈ W 2,2(�) ↪→ W 1,6(�) ↪→ C0,1/2(�).

Under the assumption (1.11c), the nonlinearity of (1.2a) has a linear growth. So considering
the system with initial datum uε(·, t̂), and using the Hölder estimates for parabolic system
(cf. [51]), we deduce that

uε is a classical solution of (1.2a) in � × (0, T̂ ]. (2.7)

123
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For initial datum undergoing phase transitions near the initial interface I0, formal asymp-
totic analysis suggests that ∇uε will be singular near It . However, the global dissipation law
(2.6) is not sufficient to yield the (strong) convergence of uε , not even in the domain away
from It . Following a recent work of Fisher et al. [24], we shall establish in this section a
differential inequality which modulates the concentration and leads to the compactness of
solutions in Sobolev spaces.

2.2 Themodulated energy

We first set up the geometry of the moving interface I defined in (1.4). Under a local
parametrization ϕt (s) : U ⊂ R

d−1 → It , the mean curvature flow reads

∂tϕt (s) = κn (2.8)

where κ = κ(ϕt (s), t) is the mean curvature and n = n(·, t) : It �→ S
d−1 is the inward

normal vector. For any t ∈ [0, T ] we assume that the nearest-point projection PI (·, t) :
B4δ0(It ) �→ It is smooth for some sufficiently small δ0 ∈ (0, 1) which only depends on the
geometry of I . Analytically we have PI (x, t) = x − ∇dI (x, t)dI (x, t). So for each fixed
t ∈ [0, T ], any point x ∈ B4δ0(It ) corresponds to a unique pair (r , s) with r = dI (x, t) and
s ∈ U , and the identity

dI
(
ϕt (s) + rn(ϕt (s), t), t

)
= r

holds with independent variables (r , s, t). Differentiating this identity with respect to r and
t leads to the following identities:

∇dI (x, t) = n(PI (x, t), t),

−∂t dI (x, t) = ∂tϕt (s) · n(ϕt (s), t) =: V (s, t).
(2.9)

The significance of these equations is that they extend the normal vector and the normal
velocity from It to a neighborhood of it. So we shall also use n to denote ∇dI when the latter
is smooth. We shall extend n to the whole computational domain � by defining

ξ(x, t) := φ

(
dI (x, t)

δ0

)
∇dI (x, t) (2.10)

where φ : R �→ R+ is an even, smooth function that decreases on [0, 1], and satisfies
⎧⎪⎨
⎪⎩

φ(z) > 0 for |z| < 1,

φ(z) = 0 for |z| � 1,

1 − 4z2 � φ(z) � 1 − 1
2 z

2 for |z| � 1/2.

(2.11)

To fulfill these requirements, we can simply choose

φ(z) =
{
e

1
z2−1

+1
for |z| < 1,

0 for |z| � 1.
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We proceed with the extension of the mean curvature. Choosing a cut-off function η0(x, t)
such that

η0(·, t) ∈ C∞
c (B2δ0(It ); [0, 1]) and η0 ≡ 1 in Bδ0(It ), (2.12)

we constantly extend the inward mean curvature vector by defining

H(x, t) := κ∇dI (x, t) with κ(x, t) = −�dI (PI (x, t))η0(x, t). (2.13)

These combined with (2.10) imply that

(n · ∇)H = 0 in Bδ0(It ), (2.14a)

(ξ · ∇)H = 0 in �, (2.14b)

ξ = 0 and H = 0 on ∂�. (2.14c)

Lemma 2.1 There exists a constant C > 0 depending only on the geometry of the interface
(1.4) such that the following properties hold for every t ∈ [0, T ]:

|∇ · ξ + H · ξ | � C |dI | in Bδ0(It ), (2.15a)

∂t dI + (H · ∇)dI = 0 in Bδ0(It ), (2.15b)

∂tξ + (H · ∇) ξ + (∇H)T ξ = 0 in Bδ0(It ), (2.15c)

where ∇H := {∂ j Hi }1�i, j�3 is a matrix with i being the row index.
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Proof By introducing φ0(τ ) := φ( τ
δ0

), we can rewrite (2.10) as ξ = φ0 (dI )∇dI . Since φ is
even, we have φ′

0(0) = 0. This combined with Taylor’s expansion in dI implies that

∇ · ξ = |∇dI |2φ′
0(dI ) + φ0(dI )�dI (x, t)

= O(dI ) + φ0(dI )�dI (PI (x, t), t).

This and (2.13) lead to (2.15a). Using (2.9) and (2.13), we can write (2.8) as the transport
equation (2.15b), which leads to the following identities in Bδ0(It ):

∂t∇dI + (H · ∇)∇dI + (∇H)T∇dI = 0,

∂tφ0(dI ) + (H · ∇)φ0(dI ) = 0.

These two equations together imply (2.15c). ��
It will be convenient to introduce

ψε = dF ◦ uε where dF (v) :=
∫ |v|

0
g(s) ds. (2.16)

It can be verified using (1.10b) that

dF (v) ∈ C1(R3), and DdF (v) = 0 iff v ∈ {0,S2}. (2.17)

By (1.9) we have

|DdF (v)| = √2F(v), ∀v ∈ R
3. (2.18)

Recalling (2.7), we have

∂iψε(x, t) = ∂iuε(x, t) · DdF (uε(x, t)) for any (x, t) ∈ � × (0, T ], (2.19a)

∇ψε(x, t) = ∇|uε(x, t)| g(|uε(x, t)|) if uε(x, t) �= 0. (2.19b)

Now we define the phase-field analogues of the normal vector and the mean curvature vector
respectively by

nε(x, t) :=
{ ∇ψε

|∇ψε | (x, t) if ∇ψε(x, t) �= 0,

0 otherwise.
(2.20a)

Hε(x, t) :=
{

− (ε�uε − 1
ε
DF(uε)

) · ∇uε|∇uε | if ∇uε �= 0,

0 otherwise.
(2.20b)

Note that in (2.20b), the inner product is made with the column vectors of ∇uε =
(∂1uε, ∂2uε, ∂3uε). We deduce from (2.20a) that

∇ψε = |∇ψε|nε for any (x, t). (2.21)

Define also the orthogonal projection �uε by

�uε ∂iuε :=
{(

∂iuε · uε|uε |
)

uε|uε | if uε �= 0,

0, otherwise.
(2.22)

Lemma 2.2 The following equations hold:

|∇ψε| = |�uε∇uε||DdF (uε)| for any (x, t), (2.23a)

�uε∇uε = |∇ψε|
|DdF (uε)|2 DdF (uε) ⊗ nε on {x | |uε| /∈ {0, 1}}. (2.23b)
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Proof Concerning (2.23a), it suffices to work with the set {x | |uε| /∈ {0, 1}}where g(|uε|) >

0 (cf. (1.10)), for otherwise the equation will follow from (2.17) and (2.19a). On this set we
deduce from (2.17) that DdF (uε) = uε|uε |g(|uε|) �= 0, and we can rewrite (2.19a) as

∂iψε = ∂iuε · DdF (uε)

|DdF (uε)| |DdF (uε)| = ∂iuε · uε

|uε| |DdF (uε)|. (2.24)

This combined with (2.22) implies (2.23a).
Now we turn to the proof of (2.23b). On the set {x | |uε| /∈ {0, 1}}, we have

|∇ψε|
|DdF (uε)|2 DdF (uε) ⊗ nε

(2.21)= DdF (uε)

|DdF (uε)|2 ⊗ ∇ψε
(2.19b)= uε

|uε| ⊗ ∇|uε|, (2.25)

and this implies (2.23b) in view of (2.22). ��
The following lemma establishes coercivity properties of the modulated energy (1.7).

Lemma 2.3 The following estimates hold for every t ∈ [0, T ]:
∫

�

(
ε

2
|∇uε|2 + 1

ε
F(uε) − |∇ψε|

)
dx � Eε[uε|I ], (2.26a)

ε

∫
�

(
μ| div uε|2 + ∣∣∇uε − �uε∇uε

∣∣2) dx � 2Eε[uε|I ], (2.26b)

∫
�

(√
ε
∣∣�uε∇uε

∣∣− 1√
ε

∣∣∣DdF (uε)

∣∣∣
)2

dx � 2Eε[uε|I ], (2.26c)

∫
�

(
ε

2
|∇uε|2 + 1

ε
F(uε) + |∇ψε|

)
(1 − ξ · nε) dx � 4Eε[uε|I ], (2.26d)

∫
�

(
ε

2
|∇uε|2 + 1

ε
F(uε) + |∇ψε|

)
min
(
d2I , 1
)
dx � CEε[uε|I ] (2.26e)

where C = C(δ0, φ).

Proof The case when μ = 0 has been done in [40], and the proof carries over to the present
case. First, it follows from (2.22) that

∣∣∇uε − �uε∇uε

∣∣2 + ∣∣�uε∇uε

∣∣2 = |∇uε|2 . (2.27)

Combining this with (2.21), we can write

ε

2
|∇uε|2 + 1

ε
F(uε) − ξ · ∇ψε

= ε

2
|∇uε|2 + 1

ε
F(uε) − |∇ψε| + |∇ψε|(1 − ξ · nε)

= ε

2

∣∣∇uε − �uε∇uε

∣∣2 +
(

ε

2

∣∣�uε∇uε

∣∣2 + 1

ε
F(uε) − |∇ψε|

)

+ |∇ψε|(1 − ξ · nε). (2.28)

By (2.18) and (2.23a), the second term in the last display is non-negative. Since |ξ | � 1, we
also have (2.26a), (2.26b), (2.26c) and

Eε[uε|I ] �
∫

�

(1 − ξ · nε) |∇ψε| dx . (2.29)

123



Phase transition of an anisotropic Ginzburg–Landau equation Page 13 of 46   171 

Combining (2.29) with (2.26a) and the inequality 1− ξ · nε � 2, we obtain (2.26d). Finally,
by (2.11) and δ0 ∈ (0, 1) we have

1 − ξ · nε � 1 − φ

(
dI
δ0

)
� min

(
d2I
2δ20

, 1 − φ( 12 )

)
� C min(d2I , 1). (2.30)

This together with (2.26d) implies (2.26e). ��
The following result was first proved in [24] for the scalar Allen-Cahn equation, and was

generalized to the vectorial case in [40].

Proposition 2.1 There exists a generic constant C > 0 depending only on the geometry of
the interface (1.4) such that

d

dt
Eε[uε|I ] + 1

2ε

∫
�

(
ε2 |∂tuε|2 − |Hε|2

)
dx + 1

2ε

∫
�

∣∣∣ε∂tuε − (∇ · ξ)DdF (uε)

∣∣∣2 dx
+ 1

2ε

∫
�

∣∣∣Hε − ε|∇uε|H
∣∣∣2 dx � CEε[uε|I ] for t ∈ (0, T ]. (2.31)

We present a proof of (2.31) in Appendix B for the convenience of the readers.

3 Uniform estimates of solutions

Observe that the second term on the left-hand side of (2.31) does not have an obvious sign.
However, we have the following theorem.

Theorem 3.1 Under the assumptions of Theorem 1.1, there exists a constant C0 > 0, which
depends only on the geometry of the interface (1.4) and c1 (cf. (1.14c)), such that

sup
t∈[0,T ]

1

ε
Eε[uε|I ]+

∫ T

0

∫
�

(∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 +
∣∣∣∂tuε − �uε ∂tuε

∣∣∣2
)

dxdt � C0.

(3.1)

It is worth mentioning that C0 is independent of μ. The proof of (3.1) relies on the following
lemma.

Lemma 3.2 For any function η1 with η1(·, t) ∈ Cc(B4δ0(It );R�0), there exists a universal
constant C > 0 which is independent of t and ε such that∫

�

η1

∣∣∣∇uε (I3 − n ⊗ n)

∣∣∣2 dx � Cε−1Eε[uε|I ](t) ∀t ∈ [0, T ]. (3.2)

Proof On the set {x | g(|uε|) > 0} = {x | |uε| /∈ {0, 1}} we can use (2.23b) and (2.23a) to
estimate ∣∣∣�uε∇uε(I3 − nε ⊗ ξ)

∣∣∣2

=
∣∣∣∣ |∇ψε|
|DdF (uε)|2 DdF (uε) ⊗ (nε − ξ)

∣∣∣∣
2

� |nε − ξ |2 ∣∣�uε∇uε

∣∣2
� 2(1 − ξ · nε) |∇uε|2 .
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On the set {x | |uε| = 0} we have �uε∇uε = 0 by the second case in (2.22). On the open
set {x | |uε| > 0} ⊃ {x | |uε| = 1} we can write �uε∇uε = ∇|uε| ⊗ uε|uε | by the first
case in (2.22). This combined with [18, Theorem 4.4] implies that �uε∇uε = 0 for a.e.
x ∈ {x | |uε| = 1}. Altogether we have shown that

∣∣∣�uε∇uε(I3 − nε ⊗ ξ)

∣∣∣2 � 2(1 − ξ · nε) |∇uε|2 a.e. in �. (3.3)

This together with (2.26d) implies
∫

�

∣∣∣�uε∇uε(I3 − nε ⊗ ξ)

∣∣∣2 dx � Cε−1Eε[uε|I ]. (3.4)

In B4δ0(It ) where n = ∇dI , we have the decomposition

I3 − nε ⊗ n = I3 − nε ⊗ ξ + nε ⊗ (ξ − n). (3.5)

Using (2.10) and (2.11), we can estimate the last term by

|ξ − n|2 = |nε ⊗ (ξ − n)|2

� 2|ξ − n| = 2
(
1 − φ( dI

δ0
)
)

� C min
(
d2I , 1
)
. (3.6)

These inequalities and (2.26e) lead to
∫

�

η1

∣∣∣�uε∇uε(I3 − nε ⊗ n)

∣∣∣2 dx � Cε−1Eε[uε|I ]. (3.7)

Now using (3.6), (2.26d) and (2.26e) we find
∫

�

η1|∇uε|2
(
|nε − ξ |2 + |ξ − n|2

)
dx � Cε−1Eε[uε|I ].

The above two estimates together with the formula

(I3 − n ⊗ n) − (I3 − nε ⊗ n) = (nε − ξ) ⊗ n + (ξ − n) ⊗ n

yield (3.2). ��
To proceed we need an L3-estimate of uε.

Lemma 3.3 Under the assumption (1.14b), there exists a constant C = C(c1) > 0 such that

sup
t∈[0,T ]

Aε(uε(·, t)) + sup
t∈[0,T ]

‖∇ψε(·, t)‖L1(�) � C, (3.8a)

sup
t∈[0,T ]

‖uε(·, t)‖L3(�) � C . (3.8b)

Proof It follows from (2.18), (2.23a) and the Cauchy–Schwarz inequality that

Aε(uε) �
∫

�

(
ε

2
|�uε∇uε|2 + 1

2ε
|DdF (uε)|2

)
dx �

∫
�

|∇ψε| dx .

This and (2.6) lead to (3.8a). To prove (3.8b), we first note that if |uε| > 2, then

ψε =
∫ 2

0
g(z) dz +

∫ |uε |

2
g(z) dz

(1.11c)
� c0(|uε|2 − 4).
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This combined with Sobolev’s embedding and ψε|∂� = 0 (cf. (1.2c)) leads to
∫

�

|uε|3 dx � C +
∫

{x∈�||uε |>2}
|uε|3 dx

� C
(
1 + ‖ψε‖3/2L3/2(�)

)

� C
(
1 + ‖∇ψε‖3/2L1(�)

)
.

��

Proof of Theorem 3.1 We shall only present the proof in 3D because the 2D case is analogous
under the conventions made in Sect. 2.1. We shall employ Einstein summation notation by
summing over repeated Latin indices.

We first use (2.31) to get

2

ε

d

dt
Eε[uε|I ] + 1

ε2

∫
�

[(
ε2 |∂tuε|2 − |Hε|2

)
+
∣∣∣Hε − ε|∇uε|H

∣∣∣2
]
dx

+ 1

ε2

∫
�

∣∣∣ε∂tuε − DdF (uε)(∇ · ξ)

∣∣∣2 dx � C

ε
Eε[uε|I ]. (3.9)

Observe that the orthogonal projection (2.22) is parallel to DdF (uε)when it does not vanish.
So we can write

∣∣∣ε∂tuε − DdF (uε)(∇ · ξ)

∣∣∣2

= ∣∣ε∂tuε − ε�uε ∂tuε

∣∣2 +
∣∣∣ε�uε ∂tuε − DdF (uε)(∇ · ξ)

∣∣∣2 .

Substituting this identity into (3.9) we find

2

ε

d

dt
Eε[uε|I ] + 1

ε2

∫
�

[(
ε2 |∂tuε|2 − |Hε|2

)
+
∣∣∣Hε − ε|∇uε|H

∣∣∣2
]
dx

+
∫

�

∣∣∂tuε − �uε ∂tuε

∣∣2 dx � C

ε
Eε[uε|I ]. (3.10)

To estimate the second term on the left-hand side, we use (1.2a) and (2.20b) to write

Hε = −ε
(
∂tuε − μ∇ div uε

)
· ∇uε

|∇uε| if ∇uε �= 0. (3.11)

Note that the inner product is made with the column vectors of ∇uε = (∂1uε, ∂2uε, ∂3uε).
Using the above formula, we expand the integrands of (3.10) and find

ε2 |∂tuε|2 − |Hε|2 +
∣∣∣Hε − ε|∇uε|H

∣∣∣2

= ε2 |∂tuε|2 + ε2|H|2|∇uε|2 + 2ε2∂tuε · (H · ∇)uε

− 2ε2μ ∇(div uε) · (H · ∇)uε

= ε2|∂tuε + (H · ∇)uε|2 + ε2
(|H|2|∇uε|2 − |(H · ∇)uε|2

)
− 2ε2μ ∇(div uε) · (H · ∇)uε.
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Note that the second term in the last display is non-negative due toCauchy-Schwarz’s inequal-
ity, and this implies that

∫
�

|∂tuε + (H · ∇)uε|2 dx

� 1

ε2

∫
�

[(
ε2 |∂tuε|2 − |Hε|2

)
+
∣∣∣Hε − ε|∇uε|H

∣∣∣2
]
dx

+ 2μ
∫

�

∇(div uε) · (H · ∇)uε dx .

Adding the above inequality to (3.10) leads to

2ε−1 d

dt
Eε[uε|I ] +

∫
�

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 dx +
∫

�

∣∣∣∂tuε − �uε ∂tuε

∣∣∣2 dx
� Cε−1Eε[uε|I ] + 2μ

∫
�

∇(div uε) · (H · ∇)uε dx . (3.12)

To estimate the last term, we write uε = (uε
i )1�i�3 and H = (Hi )1�i�3. Using integration

by parts and (2.14c), we obtain

∫
�

∇(div uε) · (H · ∇)uε dx

= −
∫

�

(div uε)(H · ∇) div uε dx −
∫

�

(div uε)(∂ jH · ∇)uε
j dx

= 1

2

∫
�

(divH)(div uε)
2 dx −

∫
�

(div uε)∂k Hj∂ku
ε
j dx

−
∫

�

(div uε)(∂ j Hk − ∂k Hj )∂ku
ε
j dx .

(3.13)

In view of (2.26b), the first integral in the last display of (3.13) is bounded by

μ−1ε−1‖ divH‖L∞
t,x
Eε[uε|I ].

The second integral can be estimated by decomposing ∇uε
j and by using (2.14a):

−
∫

�

(div uε)∇Hj · ∇uε
j dx

= −
∫

�

(div uε)∇Hj ·
(
(I3 − n ⊗ n)∇uε

j

)
dx −
∫

�

(div uε) (n · ∇Hj )
(
n · ∇uε

j

)
dx

�
∫

�

| div uε|2 dx +
∫

�

|∇H|2
∣∣∣(I3 − n ⊗ n)∇uε

∣∣∣2 dx
+ C
∫

�

|∇uε|2 min
(
d2I , 1
)
dx . (3.14)

By (2.13) and (2.12), the second integral in the last display can be estimated using (3.2)
with η1 := |∇H|2. The other two terms can be controlled by (μ−1 + 1)Cε−1Eε[uε|I ] using
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(2.26b) and (2.26e) respectively. To summarize we deduce from (3.13) and (3.14) that

∫
�

∇(div uε) · (H · ∇)uε dx

� μ−1ε−1‖ divH‖L∞
t,x
Eε[uε|I ] + (μ−1 + 1)Cε−1Eε[uε|I ]

−
∫

�

(div uε)(∂ j Hk − ∂k Hj )∂ku
ε
j dx .

Combining this with (3.12), we find

2ε−1 d

dt
Eε[uε|I ] +

∫
�

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 dx +
∫

�

∣∣∣∂tuε − �uε ∂tuε

∣∣∣2 dx
� Cε−1Eε[uε|I ] − 2μ

∫
�

(div uε)(∂ j Hk − ∂k Hj )∂ku
ε
j dx . (3.15)

Note that due to (2.4) the constant C above can be made independent of μ. It remains to
estimate the last integral in (3.15). By orthogonal decompositions1,

(∂ j Hk − ∂k Hj )∂ku
ε
j = −(rot uε) · (rotH).

We also need the following identity which follows by taking the wedge product of (1.2a)
with uε.

μ(∇ div uε) ∧ uε = (∂tuε − �uε) ∧ uε.

Using the above two identities, we integrate by parts to obtain

− μ

∫
�

(div uε)(∂ j Hk − ∂k Hj )∂ku
ε
j dx

= μ

∫
�

(div uε)(rot uε) · (rotH) dx

= μ

∫
�

(div uε)uε · (rot rotH) dx −
∫

�

μ(∇ div uε) ∧ uε · (rotH) dx

= μ

∫
�

(div uε)uε · (rot rotH) dx −
∫

�

(∂tuε − �uε) ∧ uε · (rotH) dx

= μ

∫
�

(div uε)uε · (rot rotH) dx −
∫

�

(
∂tuε + (H · ∇)uε

)
∧ uε · (rotH) dx

+
∫

�

(H · ∇)uε ∧ uε · (rotH) dx +
∫

�

�uε ∧ uε · (rotH) dx .

1 For a square matrix A, the decomposition A = A+AT
2 + A−AT

2 is orthogonal under the Frobenius inner

product A : B � tr(ATB).
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Inserting this identity into (3.15), and using the Cauchy–Schwarz inequality, (3.8b) and
(2.26b), we find

2ε−1 d

dt
Eε[uε|I ] + 1

2

∫
�

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 dx +
∫

�

∣∣∣∂tuε − �uε ∂tuε

∣∣∣2 dx
� C
(
1 + ε−1Eε[uε|I ]

)
+ 2
∫

�

(H · ∇)uε ∧ uε · (rotH) dx + 2
∫

�

�uε ∧ uε · (rotH) dx

= C
(
1 + ε−1Eε[uε|I ]

)
+ 2
∫

�

Hk

(
∂kuε − �uε ∂kuε

)
∧ uε · (rotH) dx

− 2
∫

�

(
∂kuε − �uε ∂kuε

)
∧ uε ·

(
∂k rotH

)
dx . (3.16)

Note that in the last step we used integration by parts, the identity

(�uε ∂kuε) ∧ uε = 0 (3.17)

which follows from (2.22), and the identities (∂kuε)∧(∂kuε) = 0 for each fixed k ∈ {1, 2, 3}.
Finally, applying the Cauchy–Schwarz inequality and then (2.26b) and (3.8b) in the last two
integrals of (3.16), we find

2ε−1 d

dt
Eε[uε|I ] + 1

2

∫
�

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 dx +
∫

�

∣∣∣∂tuε − �uε ∂tuε

∣∣∣2 dx
� C
(
1 + ε−1Eε[uε|I ]

)
. (3.18)

This combined with (1.14c) and Grönwall’s inequality leads to (3.1). ��

Using (2.26e) and (3.1), we readily obtain the following corollary.

Corollary 3.4 Under the assumptions of Theorem 1.1, there exists a constant C > 0, which
depends only on the geometry of the interface (1.4) and c1, such that

sup
t∈[0,T ]

∫
�±
t \Bδ(It )

(
|∇uε|2 + 1

ε2
F(uε) + 1

ε
|∇ψε|

)
dx � Cδ−2, (3.19a)

∫ T

0

∫
�±
t \Bδ(It )

|∂tuε|2 dxdt � Cδ−2, (3.19b)

hold for each fixed δ ∈ (0, δ0).

Indeed, (3.19b) follows from (3.19a) and the inequality

∫ T

0

∫
�

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 dxdt � C, (3.20)

which is a consequence of (3.1). Another consequence of (3.1) is the following lemma
concerning

ûε :=
{

uε|uε | if uε �= 0,

0 otherwise.
(3.21)
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Lemma 3.5 Under the assumptions of Theorem 1.1, there exists a constant C > 0, which
depends only on the geometry of the interface (1.4) and c1, such that

sup
t∈[0,T ]

∫
�

|uε|2 |∇ûε|2 dx + sup
t∈[0,T ]

∫
�

∣∣∣̂uε · ∇|uε|
∣∣∣2 dx � (1 + μ−1)C, (3.22a)

sup
t∈[0,T ]

∫
�

(̂uε · nε)
2 |∇ψε| dx � (1 + μ−1)(1 +√μ + 1)Cε. (3.22b)

Proof We first deduce from (3.1) and (2.26b) that

sup
t∈[0,T ]

∫
�

(
μ| div uε|2 + ∣∣∇uε − �uε∇uε

∣∣2 ) dx � C . (3.23)

By (3.21) we have the identity uε = |uε |̂uε. Using this and (2.22), we can write

∇uε − �uε∇uε = |uε|∇ûε if uε �= 0. (3.24)

Substituting this formula into (3.23), we obtain the estimate of the first integral on the left-
hand side of (3.22a). To control the second one, we use the following formula which follows
from (2.22):

tr∇uε − tr
(
�uε∇uε

) = div uε − ûε · ∇|uε| if uε �= 0. (3.25)

Note that on the set {x | |uε| = 0}, we have ∇|uε| = 0 a.e., and thus the above formula is
still valid. This and (3.23) yield the estimate of ûε · ∇|uε| and (3.22a) is proved.

Regarding (3.22b), it suffices to estimate over the set

{x | ∇ψε �= 0} =: Uε

because the integral over its complement vanishes. By (2.17) and (2.19a), we haveUε ⊂ {x |
|uε| /∈ {0, 1}} where g(|uε|) = |DdF |(uε) > 0. This combined with (2.19b) and (2.20a)
implies that

nε = ∇ψε

|∇ψε| = ∇|uε|
|∇|uε|| on Uε.

On the other hand, by the polar decomposition uε = |uε |̂uε and orthogonality ûε ⊥ ∂x j ûε,
we have

|∇uε|2 = |∇|uε||2 + |uε|2|∇ûε|2 � |∇|uε||2 on Uε. (3.26)

Setting ûε · nε =: cos θε , we have

μ

∫
Uε

cos2 θε

∣∣∇|uε|
∣∣2 dx = μ

∫
Uε

|̂uε · nε|2
∣∣∇|uε|

∣∣2 dx (3.22a)
� (1 + μ)C . (3.27)

This inequality, (2.26a) and (3.26) together imply that

(1 + μ)C �
∫
Uε

μ

2
cos2 θε

∣∣∇|uε|
∣∣2 dx +

∫
Uε

(
1

2

∣∣∣∇|uε|
∣∣∣2 + 1

ε2
F(uε) − 1

ε
|∇ψε|

)
dx

� 1

ε

∫
Uε

(√
μ cos2 θε + 1

∣∣∣∇|uε|
∣∣∣√2F(uε) − |∇ψε|

)
dx

= 1

ε

∫
Uε

(√
μ cos2 θε + 1 − 1

)
|∇ψε| dx .

Note that in the last step we have used the identity
∣∣∇|uε|

∣∣√2F(uε) = |∇ψε|, which holds
on Uε. So (3.22b) follows from conjugation. ��
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4 Estimates of level sets

Recalling (2.5), the main result of this section is the following L1-estimate of ψε .

Theorem 4.1 Under the assumptions of Theorem 1.1, there exists C > 0 independent of ε

such that

sup
t∈[0,T ]

B[uε|I ](t) � Cε, (4.1)

sup
t∈[0,T ]

∫
�

|ψε − 1�+
t
| dx � Cε1/4. (4.2)

Proof We shall denote the positive and negative parts of a function h by h+ and h− respec-
tively. For simplicity we shall suppress dx in a volume integral. By [18, pp. 153], for any
h ∈ W 1,1(�), we have

∂i (h(x))+ = (∂i h(x))1{x |h(x)>0}(x) for a.e. x ∈ �. (4.3)

Our goal is to estimate 2ψε − 1 − χ where χ(x, t) = ±1 in �±
t . Using the formula

h = h+ − h−, we can write

2ψε − 1 = 2(ψε − 1)+ + (1 − 2(ψε − 1)−
)
, (4.4)

and we shall estimate its difference with χ . This will be done by establishing differential
inequalities for the following energies which add up to (1.12):

gε(t) :=
∫

�

(ψε − 1)+ζ ◦ dI , (4.5a)

hε(t) :=
∫

�

(
χ − [1 − 2(ψε − 1)−]

)
η ◦ dI , (4.5b)

where η(z) is defined by (1.13) and |η|(z) =: ζ(z). It is obvious that the integrand of (4.5a)
is non-negative. Sinceψε � 0, we have (ψε −1)− ∈ [0, 1] and thus [1−2(ψε −1)−] ranges
in [−1, 1]. Using the identity (η ◦ dI ) χ = |η ◦ dI |, we deduce that the integrand of (4.5b)
is also non-negative and

hε(t) =
∫

�

∣∣∣1 − 2(ψε − 1)− − χ

∣∣∣ ζ ◦ dI . (4.6)

Finally, we deduce from (1.14c) that

gε(0) + hε(0) � c1ε. (4.7)

Step 1: estimates of weighted errors. Using (1.8) and (1.9), we have

∂tψε =
(
∂tuε + (H · ∇)uε

)
· uε

|uε|
√
2F(uε) − H · ∇ψε. (4.8)
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Using this and (4.3) we can calculate

g′
ε(t) =

∫
{ψε>1}

(∂tuε + (H · ∇)uε) · uε

|uε|
√
2F(uε) ζ ◦ dI

−
∫

{ψε>1}
H · ∇ψε ζ ◦ dI +

∫
�

(ψε − 1)+∂t (ζ ◦ dI )

=
∫

{ψε>1}
(∂tuε + (H · ∇)uε) · uε

|uε|
√
2F(uε) ζ ◦ dI

−
∫

�

H · ∇(ψε − 1)+ ζ ◦ dI −
∫

�

(ψε − 1)+H · ∇(ζ ◦ dI )

+
∫

�

(
∂t (ζ ◦ dI ) + H · ∇(ζ ◦ dI )

)
(ψε − 1)+.

By (2.15b), the integrand of the last integral vanishes on Bδ0(It ). Moreover, we can combine
the second and the third integrals in the last display using integration by parts. Using also
that ‖ divH‖L∞

x,t
� C and (2.26e), we find

g′
ε(t) �

∫
{ψε>1}

(∂tuε + (H · ∇)uε) · uε

|uε|
√
2F(uε) ζ ◦ dI

+
∫

�

(divH)(ψε − 1)+ ζ ◦ dI + C
∫

�\Bδ0 (It )
(ψε − 1)+

�
∫

�

ε

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2 +
(∫

�

1

ε
F(uε)ζ

2 ◦ dI

)
+ Cgε

�CEε[uε|I ] + Cgε +
∫

�

ε

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2. (4.9)

Now using (4.7), (3.20) and (3.1), we can apply the Grönwall lemma and obtain
supt∈[0,T ] gε(t) � Cε for some C which is independent of ε. Concerning hε , for simplicity
we introduce wε := χ − [1− 2(ψε − 1)−]. Using the identity (∂iχ) η ◦ dI ≡ 0 (in the sense
of distribution), we find

(∂iwε) η ◦ dI = (2∂iψε) 1{ψε<1} η ◦ dI . (4.10)

So by the same calculation for gε we obtain

h′
ε(t) =

∫
{ψε<1}

2(∂tuε + (H · ∇)uε) · uε

|uε|
√
2F(uε) η ◦ dI

+
∫

�

(divH)wε η ◦ dI +
∫

�

(
∂t (η ◦ dI ) + (H · ∇)η ◦ dI

)
wε

�CEε[uε|I ] + Chε(t) +
∫

�

ε

∣∣∣∂tuε + (H · ∇)uε

∣∣∣2.
Using (4.7) and (3.20), we can apply the Grönwall lemma and obtain supt∈[0,T ] hε(t) � Cε.
Finally, by (4.4) and (4.6), we find∫

�

|2ψε − 1 − χ |ζ ◦ dI

�
∫

�

2(ψε − 1)+ζ ◦ dI +
∫

�

∣∣∣1 − 2(ψε − 1)− − χ

∣∣∣ζ ◦ dI

= 2gε(t) + hε(t) � Cε for all t ∈ [0, T ], (4.11)
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and this proves (4.1).
Step 2: remove the weight. First note that (4.11) implies (4.2) with � replaced by

�\Bδ0(It ). Sowe shall focus on the estimate on Bδ0(It ).We setχε := 2ψε −1 and abbreviate
δ0 by δ. For fixed t ∈ [0, T ] and p ∈ It with normal vector n = n(p), applying Hölder’s
inequality and Lemma 4.2 below with f (r , p, t) = |χ (p + rn, t) − χε(p + rn, t)|, we find

(∫
Bδ(It )

|χ(x, t) − χε(x, t)| dx
)4/3

=
(∫

It

∫ δ

−δ

f (r , p, t) dr dHd−1(p)

)4/3

� C
∫
It

(∫ δ

−δ

f (r , p, t) dr

)4/3
dHd−1(p)

(4.12)
� C

∫
It

‖ f (·, p, t)‖L3/2(−δ,δ)

(∫ δ

−δ

f (r , p, t)|r | dr
)1/3

dHd−1(p)

= C‖ f (·, t)‖L3/2(Bδ(It ))

(∫
It

∫ δ

−δ

f (r , p, t)|r | dr dHd−1(p))

)1/3
.

In viewof (1.8) and (1.2c),wehaveψε = 0 on ∂�. So bySobolev’s embeddingW 1,1 ↪→ L3/2

we obtain
(∫

Bδ(It )
|χ(x, t) − χε(x, t)| dx

)4

� C
(
‖χ‖3L3/2(�)

+ ‖χε‖3L3/2(�)

) ∫
�

ζ ◦ dI |χε − χ | dx

� C(1 + ‖∇ψε‖3L1(�)
)

∫
�

ζ ◦ dI |χε − χ | dx � Cε.

Note that in the last step we employed (3.8a) and (4.11). This gives the desired estimate in
Bδ0(It ) and thus the proof of (4.2) is finished. ��
Lemma 4.2 For any integrable function f : [−δ, δ] → R�0, we have

(∫ δ

−δ

f (r) dr

)4
� 6‖ f ‖3L3/2(−δ,δ)

∫ δ

−δ

|r | f (r) dr . (4.12)

Proof We write x = (x1, x2, x3), y = (y1, y2, y3) and F(x) = f (x1) f (x2) f (x3). By sym-
metry and the Hölder inequality, we find

‖ f ‖6L1(0,δ) =
∫

[0,δ]6
F(x)F(y) dxdy

= 2
∫

[0,δ]6∩{(x,y) |x1+x2+x3�y1+y2+y3}
F(x)F(y) dxdy

= 2
∫

[0,δ]3

(∫
[0,δ]3∩{x |x1+x2+x3�y1+y2+y3}

1 · F(x) dx

)
F(y) dy

� 2
∫

[0,δ]3
(y1 + y2 + y3)

(∫
[0,δ]3

F3/2(x) dx

)2/3
F(y) dy
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= 6‖ f ‖3L3/2(0,δ)‖ f ‖2L1(0,δ)

∫ δ

0
r f (r) dr .

��
Now we turn to the study of the level sets of ψε . The main tool is the following estimate,
which is a consequence of (2.20a), (2.26d) and (3.1).

sup
t∈[0,T ]

∫
U

(
|∇ψε| − ξ · ∇ψε

)
dx

= sup
t∈[0,T ]

∫
U

(
|∇ψε| − ξ · nε|∇ψε|

)
dx � Cε, ∀U measurable in �. (4.13)

Lemma 4.3 For each t ∈ [0, T ] there exists a null setN ε
t ⊂ (0, 1/8) such that the following

holds: for every α ∈ (0, 1/8)\N ε
t , there exist

bε,α(t) ∈ [1/2 − α, 1/2 + α] and qε,α(t) ∈ [2 − α, 2 + α] (4.14)

such that the sets

{x | ψε(x, t) > bε,α(t)} and {x | ψε(x, t) < qε,α(t)} (4.15)

are of finite perimeter and∣∣∣Hd−1({x | ψε(x, t) = bε,α(t)}) − Hd−1(It )
∣∣∣ � Cε1/4α−1, (4.16a)

Hd−1({x | ψε(x, t) = qε,α(t)}) � Cε1/4α−1, (4.16b)

where C > 0 is independent of t, ε and α.

Proof To prove (4.16a), we consider the set

Sε,α
t = {x ∈ � | |2ψε(x, t) − 1| � 2α}, ∀α ∈ (0, 1/8). (4.17)

It follows from the co-area formula of BV function [18, section 5.5] that Sε,α
t has finite

perimeter for every α ∈ (0, 1/8)\Ñ ε
t for some null set Ñ ε

t ⊂ (0, 1/8). Moreover, by (4.13),
we have for every α ∈ (0, 1/8)\Ñ ε

t that

Cε �
∫
Sε,α
t

(
|∇ψε| − ξ · ∇ψε

)
dx

=
∫ 1

2+α

1
2−α

Hd−1 ({x | ψε = s}) ds −
∫

∂Sε,α
t

ξ · νψε dHd−1 +
∫
Sε,α
t

(div ξ)ψε dx,

(4.18)

where ν is the outward normal of the set Sε,α
t , defined on its (measure-theoretic) boundary.

Since |ξ | � 1 on � and ψε � 1 on Sε,α
t , we have∣∣∣∣∣

∫
Sε,α
t

(div ξ)ψε dx

∣∣∣∣∣ � C |Sε,α
t |,

where |A| = Ld(A) is the d-Lebesgue measure of a set A. Combining this with (4.18), we
find ∣∣∣∣∣

∫ 1
2+α

1
2−α

Hd−1 ({x | ψε = s}) ds −
∫

∂Sε,α
t

ξ · νψε dHd−1

∣∣∣∣∣ � C(ε + |Sε,α
t |). (4.19)
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By the divergence theorem, we have
∫

∂Sε,α
t

ξ · νψε dHd−1= − ( 12 − α
) ∫

{x |ψε<
1
2−α}

(div ξ) dx − ( 12 + α
) ∫

{x |ψε>
1
2+α}

(div ξ) dx,

−2αHd−1(It )
(2.10)= ( 1

2 − α
) ∫

�−
t

(div ξ) dx + ( 12 + α
) ∫

�+
t

(div ξ) dx .

Inserting these two equations into (4.19), we find
∣∣∣∣∣
∫ 1

2+α

1
2−α

Hd−1 ({x | ψε = s}) ds − 2αHd−1(It )

∣∣∣∣∣
� C
(
ε + |Sε,α

t | +
∣∣∣�−

t �{x | ψε < 1
2 − α}

∣∣∣+
∣∣∣�+

t �{x | ψε > 1
2 + α}

∣∣∣
)

, (4.20)

where A�B := (A − B) ∪ (B − A) is the symmetric difference of two sets A and B. We

first estimate r+
ε :=

∣∣∣�+
t �{x | ψε > 1

2 + α}
∣∣∣.

r+
ε =
∣∣∣�+

t − {x | ψε > 1
2 + α}

∣∣∣+
∣∣∣{x | ψε > 1

2 + α} − �+
t

∣∣∣
=
∣∣∣ (�+

t − {x ∈ �+
t | ψε > 1

2 + α})− {x ∈ �−
t | ψε > 1

2 + α}
∣∣∣

+
∣∣∣{x ∈ �−

t | ψε > 1
2 + α}

∣∣∣
�
∣∣∣{x ∈ �+

t | ψε � 1
2 + α}

∣∣∣+
∣∣∣{x ∈ �−

t | ψε > 1
2 + α}

∣∣∣.
Now using Chebyshev’s inequality and (4.2), we find r+

ε � Cε1/4. Similar estimates apply
to |Sε,α

t | and r−
ε := |�−

t �{x | ψε < 1
2 − α}|. Substituting these estimates into (4.20), we

find ∣∣∣∣∣
1

2α

∫ 1
2+α

1
2−α

(
Hd−1 ({x | ψε = s}) − Hd−1(It )

)
ds

∣∣∣∣∣ � Cε1/4α−1. (4.21)

So (4.16a) follows from Fubini’s theorem.
To prove (4.16b), we consider the set

Qε,α
t = {x ∈ � | |ψε(x, t) − 2| � α}, ∀α ∈ (0, 1/8), (4.22)

Using (4.13) and the co-area formula, we have for every α ∈ (0, 1/8)\N ε
t that

Cε �
∫
Qε,α
t

(|∇ψε| − ξ · ∇ψε) dx

=
∫ 2+α

2−α

Hd−1 ({x | ψε = s}) ds −
∫

∂Qε,α
t

ξ · νψε dHd−1 +
∫
Qε,α
t

(div ξ)ψε dx,

whereN ε
t ⊃ Ñ ε

t is a null set in (0, 1/8) and ν is the outward normal of ∂Qε,α
t . Sinceψε � 3

on Qε,α
t , we have

∣∣∣∫Qε,α
t

(div ξ)ψε dx
∣∣∣ � C |Qε,α

t |, and thus

∫ 2+α

2−α

Hd−1 ({x | ψε = s}) ds �
∣∣∣∣∣
∫

∂Qε,α
t

ξ · νψε dHd−1

∣∣∣∣∣+ Cε + C |Qε,α
t |. (4.23)
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Using (2.14c), we have
∫
�
(div ξ) dx = 0, and thus

∫
∂Qε,α

t

ξ · νψε dHd−1

= (2 − α)

∫
{x |ψε�2−α}

(div ξ) dx + (2 + α)

∫
{x |ψε�2+α}

(div ξ) dx

= (2 − α)

∫
{x :ψε�2−α}

(div ξ) dx − (2 + α)

∫
{x |ψε>2+α}

(div ξ) dx .

This combined with Chebyshev’s inequality and (4.2) implies that

|Qε,α
t | +

∣∣∣∣∣
∫

∂Qε,α
t

ξ · νψε dHd−1

∣∣∣∣∣ � Cε1/4.

Substituting this in (4.23) leads to

1

2α

∫ 2+α

2−α

Hd−1 ({x | ψε = s}) ds � Cε1/4α−1. (4.24)

So (4.16b) follows from Fubini’s theorem. ��
We end this section with the following result concerning the convergence of uε.

Proposition 4.1 For every sequence εk ↓ 0 there exists a subsequence, which we will not
relabel, such that uk := uεk satisfies

∂tuk ∧ uk
k→∞−−−→ ∂tu ∧ u weakly in L2(0, T ; L6/5(�)), (4.25a)

∂iuk ∧ uk
k→∞−−−→ ∂iu ∧ u weakly-star in L∞(0, T ; L6/5(�)), 1 � i � 3, (4.25b)

where u = u(x, t) satisfies

u ∈ L∞(0, T ;W 1,2
loc ∩ W 1,6/5(�+

t ;S2)), (4.26a)

∂tu ∈ L2(0, T ; L2
loc ∩ L6/5(�+

t )), (4.26b)

u(x, t) = 0 for every t ∈ [0, T ] and for a.e. x ∈ �−
t . (4.26c)

Furthermore,

∂tuk
k→∞−−−→ ∂tu weakly in L2(0, T ; L2

loc(�
±
t )), (4.27a)

∇uk
k→∞−−−→ ∇u weakly-star in L∞(0, T ; L2

loc(�
±
t )), (4.27b)

uk
k→∞−−−→ u strongly in C([0, T ]; L2

loc(�
±
t )). (4.27c)

Before proving this result, we state the Aubin–Lions–Simon lemma. See [41, Theorem 8.62,
Exercise 8.63] or [52, Corollary 8] for the proof.

Lemma 4.4 Let I ⊂ R be an open bounded interval, let
(
Y0, ‖ · ‖Y0

)
,
(
Y1, ‖ · ‖Y1

)
, and(

Y2, ‖ · ‖Y2
)
be Banach spaces with Y0 ↪→ Y1 ↪→ Y2. Assume that the embedding Y0 ↪→ Y1

is compact. Let V be the Banach space of all functions u ∈ L∞ (I ; Y0) whose distributional
derivative ∂t u belongs to L2 (I ; Y2) endowed with the norm

‖u‖V := ‖u‖L∞(I ;Y0) + ‖∂t u‖L2(I ;Y2).

Then the embedding V ↪→ C
(
Ī ; Y1
)
is compact.
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Proof of Proposition 4.1 Define �± := ⋃t∈(0,T ] �
±
t × {t}. We first deduce from (3.1) and

(2.26b) that

‖∂tuε − �uε ∂tuε‖L2(0,T ;L2(�)) + ‖∇uε − �uε∇uε‖L∞(0,T ;L2(�)) � C (4.28)

for some C independent of ε. On the other hand, by (2.22) we find

�uε ∂iuε(x, t) ∧ uε(x, t) = 0 ∀(x, t) ∈ � × (0, T ) (4.29)

for 0 � i � 3 where ∂0 := ∂t . Combining (4.29) and (4.28) with (3.8b), we deduce that

‖∂tuε ∧ uε‖L2(0,T ;L6/5(�)) + ‖∇uε ∧ uε‖L∞(0,T ;L6/5(�))

= ‖(∂tuε − �uε ∂tuε) ∧ uε‖L2(0,T ;L6/5(�))

+ ‖(∇uε − �uε∇uε) ∧ uε‖L∞(0,T ;L6/5(�)) � C . (4.30)

So it follows from the Banach–Alaoglu theorem (cf. [41, A.5.]) that

∂tuk ∧ uk
k→∞−−−→ g0 weakly in L2(0, T ; L6/5(�)),

∂iuk ∧ uk
k→∞−−−→ gi weakly-star in L∞(0, T ; L6/5(�))

(4.31)

where

g0 ∈ L2(0, T ; L6/5(�)) and {gi }1�i�3 ⊂ L∞(0, T ; L6/5(�)). (4.32)

It follows from (3.8b), (3.19a) and (3.19b) that, for any fixed δ ∈ (0, δ0), up to extraction of

subsequences there exists εk = εk(δ)
k→∞−−−→ 0 such that

uεk

k→∞−−−→ u weakly-star in L∞(0, T ; L3(�)), (4.33a)

uεk

k→∞−−−→ ūδ weakly-star in L∞(0, T ; L3(�±
t \Bδ(It ))), (4.33b)

∂tuεk

k→∞−−−→ ∂t ūδ weakly in L2
(
0, T ; L2(�±

t \Bδ(It ))
)
, (4.33c)

∇uεk

k→∞−−−→ ∇ūδ weakly-star in L∞(0, T ; L2(�±
t \Bδ(It ))

)
. (4.33d)

By (4.33a) and (4.33b), we have u = ūδ a.e. in U±(δ) := ∪t∈[0,T ]
(
�±

t \Bδ(It )
)× {t}. This

combined with (4.33c) and (4.33d) leads to

u ∈ L∞(0, T ;W 1,2
loc (�±

t )) with ∂tu ∈ L2(0, T ; L2
loc(�

±
t )). (4.34)

Furthermore, employing (4.33b)–(4.33d) and Lemma 4.4, we obtain

uεk

k→∞−−−→ ūδ = u strongly in C([0, T ]; L2(�±
t \Bδ(It ))). (4.35)

By passing to a sequential limit δ = δ�
�→0−−→ 0 and by a diagonal argument we obtain (4.27)

up to extraction of subsequences.
Now we turn to the proof of (4.26). Using (3.19a), (4.35) and Fatou’s lemma, we deduce

that

f (|u|) = F(u) = F(ūδ) = 0 a.e. in U±(δ)

for any fixed δ ∈ (0, δ0). This together with (1.10) implies that u ranges in {0} ∪ S
2 a.e. in

� × (0, T ). This combined with (4.2) and (4.34) yields (4.26c) and

u ∈ L∞(0, T ;W 1,2
loc (�+

t ;S2)) with ∂tu ∈ L2(0, T ; L2
loc(�

+
t )). (4.36)
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Nowwe show the integrability of∇x,tu up to the boundary. To this aim, we choose a sequence
of functions

{ηk(·, t)}k�1 ⊂ C∞
c (�+

t ) with ηk(·, t) k→∞−−−→ 1�+
t
in L∞(�). (4.37)

By (4.31) and (4.27), we deduce that for 0 � i � 3,

ηkgi = ηk∂iu ∧ u a.e. in � × (0, T ). (4.38)

By (4.32) and the dominated convergence theorem, we can take k → ∞ and get

gi = ∂iu ∧ u a.e. in � × (0, T ), 0 � i � 3. (4.39)

This and (4.31) lead to (4.25a) and (4.25b). Since u maps �+ into S
2, we have

|∂iu|2 = |∂iu ∧ u|2 = |gi |2 a.e. in �+, 0 � i � 3. (4.40)

This and (4.32) improve (4.36) and yield (4.26a) and (4.26b). ��

5 Proof of Theorem 1.1: anchoring boundary condition

The inequalities (1.15) and (1.16) have been proved in Theorem 3.1 and in Theorem 4.1.
The assertions (1.17), (1.18a) and (1.18b) have been proved in Proposition 4.1 (cf. (4.27c)
and (4.26)). It remains to verify (1.18c), and this will be done by applying Lemma 4.3 for
every t ∈ [0, T ] and by choosing an appropriate α outside the null set N εk

t ⊂ (0, 1/8). For
simplicity we shall abbreviate ψεk and uεk by ψk and uk respectively. For any k � 1 we can

choose βk ∈ [1/2, 1] such that α = αk := βkε
1/8
k /∈ N εk

t . Then by Lemma 4.3 there exist

bεk ,αk (t) =: bk ∈ [ 12 − αk,
1
2 + αk], qεk ,αk (t) =: qk ∈ [2 − αk, 2 + αk] (5.1)

such that

(bk, qk)
k→∞−−−→ ( 12 , 2), (5.2)

and such that the set

�k
t := {x ∈ � | bk < ψk(x, t) < qk} has finite perimeter. (5.3)

Moreover, there exists C > 0 which is independent of t and the particular choice of the
subsequence εk such that

Hd−1({x | ψk(x, t) = qk}) � Cε
1/8
k , (5.4a)∣∣∣Hd−1(∂�k

t ) − Hd−1(It )
∣∣∣ � 2Cε

1/8
k . (5.4b)

Using these level sets, we can prove the following proposition which improves (4.27) to
the convergence of uk up to the boundary It .

Proposition 5.1 Let u be the limit vector field in Proposition 4.1. For a.e. t ∈ [0, T ], up to
extraction of subsequences which we will not relabel, we have

1�̄k
t
ûk

k→∞−−−→ 1�+
t
u weakly-star in BV (�), (5.5a)

1�̄k
t
∇ûk

k→∞−−−→ 1�+
t
∇u weakly in L1(�), (5.5b)

1�̄k
t
ûk

k→∞−−−→ 1�+
t
u strongly in L p(�), for any fixed p ∈ [1,∞), (5.5c)

123



  171 Page 28 of 46 Y. Liu

where ûk = ûεk is defined in (3.21).

Proof We first claim that there exists a positive constant C3 depending only on f (cf. (1.11))
such that the following statement holds for any δ ∈ (0, 1/8):

|uε(x, t)| � C3δ ∀x ∈ {x : ψε � δ}. (5.6)

Indeed, by (1.11a), f (and also g) is increasing on (0, s0). If |uε| � s0, we are done.
Otherwise,

δ � ψε =
∫ |uε |

0
g(s) ds � |uε|g(s0),

which implies (5.6). This combined with (3.22a) and (5.3) implies

sup
t∈[0,T ]

∫
�k
t

|∇ûk |2 dx � C (5.7)

for k sufficiently large. This and (5.3) imply that the distributional derivatives of vk(·, t) :=
1�̄k

t
ûk(·, t) have no Cantor parts, and the absolute continuous parts {1�̄k

t
∇ûk}k�1 is bounded

in L2(�). Moreover, their jump parts enjoy the estimate
∫

∂�k
t

|vk(·, t) − 0|2 dHd−1
(5.4b).
� C,

and {vk(·, t)}k�1 is bounded in L∞(�). With these properties, it follows from [2] (or [3,
Section 4.1]) that {vk(·, t)}k�1 is compact in SBV (�), the class of special functions of
bounded variation on �. More precisely, there exists v(·, t) ∈ SBV (�) s.t. vk → v weakly-
star in BV (�) as k → ∞, and the absolute continuous part of the gradient ∇avk = 1�̄k

t
∇ûk

converges weakly in L1(�) to ∇av. To identify v, we use (4.2) to deduce that 1�̄k
t

→ 1�+
t

in L1(�) as k → ∞. This and (4.27c) yield v(·, t) = 1�+
t
u(·, t) a.e. in �, and thus (5.5a)

and (5.5b) are proved. Finally by (5.5a), the compact embedding of BV functions and the
L∞ bound we get (5.5c). ��
To proceed we define the following measures for Borel sets A ⊂ �:

θ(A) = Hd−1(A ∩ It ), (5.8a)

θk(A) =
∫
A∩�k

t

|∇ψk | dx . (5.8b)

Lemma 5.1 For a.e. t ∈ [0, T ],

θk
k→∞−−−→ 1

2
θ weakly-star as Radon measures. (5.9)

Proof We define truncation functions

Tk(s) =
⎧⎨
⎩

0 when s � bk,
s − bk when bk � s � qk,
qk − bk when s � qk,

(5.10)

T (s) =
⎧⎨
⎩

0 when s � 1/2,
s − 1/2 when 1/2 � s � 2,

3/2 when s � 2.
(5.11)
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By (5.2), we have Tk
k→∞−−−→ T uniformly on R. Moreover,

∇(Tk ◦ ψk) = ∇ψk 1�k
t

a.e. in �, (5.12a)

Tk ◦ ψk
k→∞−−−→ 1

21�+
t
strongly in L p(�) for any fixed p ∈ [1,∞). (5.12b)

Indeed, by (2.7) and (2.17) we know that ψk(·, t) ∈ C1(�). Also by (5.3) we have T ′
k ◦ψk =

1�k
t
for a.e. x ∈ �. Therefore, (5.12a) follows from the chain rule (cf. [26, Proposition 3.24]),

while (5.12b) follows from (4.2) and the dominated convergence theorem. By (4.13) we have
for any g ∈ C1

c (�) that
∫

�

g dθk
(5.8b)=
∫

�k
t

g|∇ψk | dx (4.13)= O(εk) +
∫

�k
t

g ξ · ∇ψk dx

(5.12a)= O(εk) +
∫

�

g ξ · ∇(Tk ◦ ψk) dx

= O(εk) −
∫

�

div(gξ) Tk ◦ ψk dx .

Recalling that ξ is the inward normal of It , we use (5.12b) to pass to the limit in the above
equations and obtain

lim
k→∞

∫
�

g dθk
(5.12b)= −1

2

∫
�+
t

div(gξ) dx = 1

2

∫
It
g dHd−1 (5.8a)= 1

2

∫
�

g dθ,

for any g ∈ C1
c (�). By approximation, one can pass from C1

c (�) to C0
c (�), and this proves

(5.9). ��
Now we finish the proof of Theorem 1.1 by verifying (1.18c). The proof here is inspired by
the blow-up argument in [43]. See also [25] for the applications of such a method in the study
of quasi-convex functionals.
Proof of (1.18c) For any x0 ∈ It and any R > 0, it follows from (5.5c), (5.12b) and the
dominated convergence theorem that

lim
k→∞

∫
BR(x0)

1
�̂k
t
ûk · x − x0

|x − x0|Tk ◦ ψk dx = 1

2

∫
BR(x0)

1�+
t
u · x − x0

|x − x0| dx .

We can use spherical coordinate to rewrite the above two integrals in the form of∫ R
0

∫
∂Br (x0)

(·) dHd−1dr , and then apply Fubini’s theorem. Therefore, there exists r j ↓ 0
such that for each j we have

lim
k→∞

∫
∂Br j (x0)∩�k

t

ûk · ν Tk ◦ ψk dHd−1 = 1

2

∫
∂Br j (x0)∩�+

t

u · ν dHd−1 (5.13)

where ν is the outward normal of ∂Br j (x0). Moreover, we can arrange r j such that
θ(∂Br j (x0)) = 0. This combined with (5.9) implies that

lim
k→∞ θk(Br j (x0)) = 1

2
θ(Br j (x0)). (5.14)

To proceed, we use convexity to write, for some am, cm ∈ R, that

s2 = sup
m∈N+

(ams + cm), ∀s ∈ R. (5.15)
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(cf. [3, Proposition 2.31]). For θ − a.e. x0 ∈ supp(θ) = It , we have for each m � 1 that

0
(3.22b)= lim

k→∞

∫
Br j (x0)

(̂uk · nk)2 dθk

(5.15)
� lim

k→∞

∫
Br j (x0)

(am ûk · nk + cm) dθk

(2.20a)= lim
k→∞ am

∫
Br j (x0)

1�k
t
ûk · ∇ψk dx + cmθk(Br j (x0))

(5.12a)= am lim
k→∞

∫
Br j (x0)∩�k

t

ûk · ∇(Tk ◦ ψk) dx + θ
(
Br j (x0)

) cm
2

. (5.16)

Note that in the last step we also used (5.14). It remains to compute the integral in the last
display of (5.16) under the limit k → ∞ for fixed j,m. To this aim, we use (5.12a) and
integration by parts to find

∫
Br j (x0)∩�k

t

ûk · ∇(Tk ◦ ψk) dx

=
∫

∂
(
Br j (x0)∩�k

t

)(̂uk · ν) Tk ◦ ψk dHd−1 −
∫
Br j (x0)

1�̄k
t
(div ûk) Tk ◦ ψk dx

=: Ak − Bk . (5.17)

Note that the integrand of Ak is uniformly bounded in L∞. To compute the limit of Ak , we
first deduce from (5.10) that Tk ◦ψk = 0 on the set {x ∈ � | ψk(x, t) = bk} which has finite
perimeter (cf. (5.4b)). So we employ (5.3) to find

Ak =
∫

∂Br j (x0)∩�k
t

(̂uk · ν) Tk ◦ ψk dHd−1 +
∫
Br j (x0)∩{x |ψk=qk }

(̂uk · ν) Tk ◦ ψk dHd−1.

(5.18)

The limit of the first integral is given in (5.13), and that of the second vanishes in the limit
k → ∞ by (5.4a). So we conclude that

lim
k→∞ Ak = 1

2

∫
∂Br j (x0)∩�+

t

u · ν dHd−1. (5.19)

Concerning the integral Bk , by (5.5b) the sequence {1�̄k
t
div ûk}k�1 converges weakly in

L1(�). Moreover, {Tk ◦ ψk}k�1 is uniformly bounded in L∞, and converges a.e. in � to
1
21�+

t
, due to (5.12b). Therefore, applying the Product Limit Theorem (cf. [16] or [49, pp.

169]), we obtain

lim
k→∞ Bk = 1

2

∫
Br j (x0)∩�+

t

(div u) dx . (5.20)
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Using (5.19) and (5.20), we can compute the limit in (5.17) and find

lim
k→∞

∫
Br j (x0)∩�k

t

ûk · ∇(Tk ◦ ψk) dx

=1

2

∫
∂Br j (x0)∩�+

t

u · ν dHd−1 − 1

2

∫
∂
(
Br j (x0)∩�+

t

) u · ν dHd−1

=1

2

∫
Br j (x0)∩∂�+

t

u · ξ dHd−1 (5.21)

where in the last step we used ξ = −ν on ∂�+
t . Note that ξ is the inward normal of It

according to (2.10), and�+
t is the region enclosed by It with outward normal ν. Substituting

(5.21) into (5.16) and then dividing the resulting inequality by θ
(
Br j (x0)

)
and taking j → ∞,

we find

0 � lim
j→∞

am
θ
(
Br j (x0)

) 1
2

∫
Br j (x0)∩It

u · ξ dHd−1 + cm
2

(5.8a)= am
2

(u · ξ)(x0) + cm
2

, ∀m ∈ N
+. (5.22)

This together with (5.15) implies that (u · ξ)2(x0) = 0 for Hd−1-a.e. x0 ∈ It . ��

6 Proof of Theorem 1.2: Oseen–Frank limit in the bulk

The method here is inspired by [17, 38], which has a 2D nature. We set τ ε := ∂tuε and write
(1.2a) as

τ ε = μ∇(div uε) + �uε − ε−2DF(uε) in � × (0, T ). (6.1)

By Corollary 3.4 and Proposition 4.1 (cf. (4.27c)), for a.e. t0 ∈ (0, T ) and for any compact
set K ⊂⊂ �+

t0 , we have∫
K

|τ ε|2 dx+
∫
K

(
1

2
|∇uε|2 + 1

ε2
F(uε)

)
dx � ĉ2 at t = t0, (6.2a)

uεk (·, t0) k→∞−−−→ u(·, t0) strongly in L2(K ), (6.2b)

where ĉ = ĉ(K , t0) > 1 is independent of μ and ε.

Proposition 6.1 Let K be a compact set of�+
t0 and assume that (6.2a) and (6.2b) hold. There

exists an absolute constant � ∈ (0, 1) with the following property: under the assumptions

ε̂ < �/ĉ2 and μ < �, (6.3a)

B2r (x0) ⊂ K with r < 1 and (6.3b)∫
B2r (x0)

(
1

2
|∇uε|2 + 1

ε2
F(uε)

)
dx � ε̂2 at t = t0, (6.3c)

there exists a subsequence εk ↓ 0, which we will not relabel, such that

∇uεk (·, t0) k→∞−−−→ ∇u(·, t0) strongly in L2(Br/2(x0)). (6.4)
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We shall need the following inequality due to the special choice of f in (1.22):

| f ′(s)|2 � C4 f (s), ∀s � 0, (6.5)

for some C4 > 1. In the sequel C4 > 1 will also be used as a generic constant that might
change from line to line due to the use of the Sobolev embeddings and elliptic estimates.
Note that C4 is independent of μ and r .

Lemma 6.1 Under the assumptions (6.2a) and (6.3b) with a sufficiently small ε̂ (defined in
(6.11) below), we have

3/4 � |uε(·, t0)| � 5/4 on Br (x0) for ε � r/4. (6.6)

Proof Without loss of generality, we assume x0 = 0. For brevity we write Br (0) as Br . Since
all arguments are made at t = t0, we shall suppress the time dependence of uε.

Step 1. There exists Ĉ > 1 depending on ĉ such that for any x1 ∈ Br we have

|uε(x) − uε(y)| � Ĉ

√ |x − y|
ε

, ∀x, y ∈ Bε(x1). (6.7)

To prove (6.7), let ûε(z) = uε(x1 + εz) : B2 → R
3. Then we can write (6.1) as

μ∇ div ûε(z) + �ûε(z) = ε2τ ε(x1 + εz) + DF(ûε(z)), z ∈ B2. (6.8)

It follows from (6.2a) and a change of variable that {ε2τ ε(x1 + ε·)}ε>0 is uniformly bounded
in L2(B2). Using (6.5), we can estimate

∥∥DF(ûε)
∥∥2
L2(B2)

(1.9)= ε−2
∥∥ f ′(|uε|)

∥∥2
L2(B2ε(x1))

� ε−2C4

∫
B2ε(x1)

F(uε) dx
(6.2a)
� ĉ2C4.

(6.9)

Altogether, we prove that the terms on the right-hand side of (6.8) is bounded in L2(B2).
Invoking the interior estimate for elliptic system (cf. [26, Theorem 4.9]), we obtain

‖ûε‖W 2,2(B1) � C4(ĉ + ‖ûε‖L2(B2)). (6.10)

Note that C4 is independent of μ. Now we estimate the last term by

‖ûε‖2L2(B2)
� C4

(
1 + ε−2

∫
B2ε(x1)∩{x ||uε(x)|�2}

(|uε| − 1)2
)

(1.22)
� C4

(
1 + ε−2

∫
B2ε(x1)

f (|uε|)
)

(6.2a)
� (1 + ĉ2)C4.

Substituting this estimate in (6.10) and using Morrey’s embeddingW 2,2 ↪→ C1/2, we obtain
‖ûε‖C1/2(B̄1) � C4ĉ. Rescaling back, we find (6.7) with

Ĉ := C4ĉ.

Step 2:We claim that with the choice

ε̂ < 16−8C−2
4 ĉ−2 = 16−8Ĉ−2, (6.11)

we have either (6.6) or

|uε| � 1/4 on Br for ε � r/4. (6.12)
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Indeed, if neither of them were valid, then

∃ ε ∈ (0, r/4) and x1 ∈ Br s.t. |uε(x1)| ∈ (1/4, 3/4) ∪ (5/4,+∞). (6.13)

Since 16ε̂ < 1, it follows from (6.7) that

|uε(x1) − uε(x)| < 4−7 for x ∈ B16ε̂ε(x1). (6.14)

Using this and (1.22), we deduce one of the following two cases for x ∈ B16ε̂ε(x1):
a) If |uε(x1)| > 3, then |uε(x)| > 2 and thus f (|uε(x)|) � 1.
b) If |uε(x1)| ∈ (1/4, 3/4) ∪ (5/4, 3], then f (|uε(x1)|) � 1/16. By the third condition in

(1.22) and (6.14), we have f (|uε(x)|) > 1/32.
To summarize, we have the following inequality:

F(uε(x)) = f (|uε(x)|) > 1/32 ∀x ∈ B16ε̂ε(x1). (6.15)

Integrating this inequality over B16ε̂ε(x1) and using the assumption ε < r/4, we find

ε−2
∫
B16ε̂ε(x1)

F(uε(x)) dx > 8πε̂2.

However, this would contradict (6.3b) since B16ε̂ε(x1) ⊂ B2r (x0). So (6.13) is not valid and
the claim is proved.

Step 3:We shall rule out (6.12).
Assuming (6.12), we deduce from (1.22) that F(uε) = |uε|2. By (6.1) we have

μ∇(div uε) + �uε − 2ε−2uε = τ ε in Br . (6.16)

For z ∈ B1, we introduce ũε(z) := uε(r z) and τ̃ ε(z) := τ ε(r z). Then

μ∇(div ũε) + �ũε − 2r2ε−2ũε = r2τ̃ ε in B1. (6.17)

By the interior estimate for elliptic system, we have

‖̃uε‖W 2,2(B1/2) + r2ε−2‖̃uε‖L2(B1/2) � C4
(‖τ̃ ε‖L2(B1) + ‖̃uε‖L2(B1)

)
. (6.18)

Indeed, one can adapt the proof of [26, Theorem 4.9] to gain the term r2ε−2‖̃uε‖L2(B1/2). By
(6.18), (6.2a) and the conclusion in step 2, we find

r2ε−2‖uε‖L2(Br/2) � C4
(‖τ ε‖L2(Br ) + ‖uε‖L2(Br )

)
� C4(ĉ + 1).

This implies that uε → 0 strongly in L2(Br/2), which contradicts (4.2) since Br/2 ⊂ K ⊂⊂
�+

t . Therefore, we rule out (6.12) and obtain (6.6). ��
By (6.6), we have polar decomposition uε = ρεvε where

ρε = |uε|, vε = uε/|uε| in Br (x0). (6.19)

We set

wε := (vε, ρε), (6.20)

and define the projection

a‖ := (I3 − vε ⊗ vε)a (6.21)

for a vector field a.
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Lemma 6.2 Under the assumptions ε � r/4, (6.2a) and (6.3b) for ε̂ defined in (6.11), ρε

satisfies the following equation in Br (x0).

�ρε − ε−2 f ′(ρε) + μ∇2ρε : (vε ⊗ vε) + μρε(vε · ∇) div vε

= τ ε · vε + N1,ε(∇wε,∇wε), (6.22)

where N1,ε(·, ·) : R4×3 × R
4×3 �→ R is bilinear with uniformly bounded coefficients. Also,

vε satisfies the following equation in Br (x0).

ρε�vε + μ ((∇2ρε)vε)‖ + μρε (∇(div vε))‖
= (τ ε)‖ + N2,ε(∇wε,∇wε), (6.23)

where N2,ε(·, ·) : R4×3 × R
4×3 �→ R

3 is bilinear with uniformly bounded coefficients.

Proof To simplify the presentation we will suppress the subscript ε. By (6.19) we have
|v|2 ≡ 1 and thus

�v · v = −|∇v|2. (6.24)

Substituting (6.19) into (6.1), we find

τ = (�ρ)v + 2(∇ρ · ∇)v + ρ�v − ε−2 f ′(ρ)v

+ μ (∇2ρ)v + μρ∇(div v) + μ (∇ρ · ∂iv)1�i�3 + μ∇ρ(div v). (6.25)

Testing (6.25) with v and using (6.24), we obtain

− �ρ + ε−2 f ′(ρ)

= −τ · v + μ∇2ρ : (v ⊗ v) + μρ(v · ∇) div v

+ μ(∇ρ · ∂iv)vi + μ(v · ∇ρ) div v − ρ|∇v|2. (6.26)

The terms in the last line are bilinear with respect to ∇w = (∇v,∇ρ), and we denote their
sum by −N1,ε(∇w,∇w). By (6.6), it has bounded coefficients and thus (6.22) is proved.

To derive (6.23), we shall use the following identities.

v‖ = 0 and (∂iv)‖ = ∂iv. (6.27)

These combined with (6.24) lead to

(�v)‖ = �v + |∇v|2v. (6.28)

Now applying (·)‖ to the equation in (6.25), and using (6.27) and (6.28), we obtain

τ ‖ = ρ�v + μ ((∇2ρ)v)‖ + μρ (∇(div v))‖
+ 2((∇ρ · ∇)v)‖ + ρv|∇v|2 + μ

(
(∇ρ · ∂iv)1�i�3

)
‖ + μ(∇ρ)‖(div v). (6.29)

The terms in the second line of the above equation are bilinear with respect to ∇w, and we
denote their sum by −N2,ε(∇w,∇w). By (6.6), it has bounded coefficients, and thus (6.23)
is proved. ��
Proof of Proposition 6.1 We first show that, by choosing ε̂ and μ sufficiently small, we have

‖∇2(vε, ρε)‖L4/3(Br/2(x0)) � 2C4r
−2. (6.30)
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Recalling (6.20), we deduce from (6.3b) and (6.6) that

‖∇wε‖L2(Br (x0)) � 4ε̂ on Br (x0) for ε � r/4. (6.31)

Recalling that r < 1, let χ be a C2 cut-off function such that

χ ≡
{
1 in Br/2(x0)

0 in B1(x0)\Br (x0) and |∇�χ | � 8r−� in B1(x0) for � ∈ {1, 2}. (6.32)

and let w̄ε := (v̄ε, ρ̄ε) with

ρ̄ε = χ(ρε − 1) and v̄ε = χvε. (6.33)

Multiplying (6.23) by χ and using the linearity of a‖ about a (cf. (6.21)), we find

ρε�v̄ε+ρε[χ,�]vε + μ
(
[χ,∇2](ρε − 1)vε

)
‖ + μ
(
∇2ρ̄εvε

)
‖

+ μρε

(
[χ,∇ div]vε

)
‖ + μρε

(
∇(div v̄ε)

)
‖

= (τ ε)‖χ + N2,ε(χ∇wε,∇wε) in B1(x0), (6.34)

and v̄ε|∂B1(x0) = 0. For brevity we denote L p(B1(x0)) by L p . Note that the commutators in
(6.34) involve at most first order derivatives of wε = (vε, ρε), which satisfies (6.31). Now
applying the L p-estimate for elliptic equation [39, pp. 109] (componentwise) in (6.34), and
invoking (6.31) and (6.6), we have

‖∇2v̄ε‖L4/3 � C4

(
r−2 + r−1 + μ‖∇2w̄ε‖L4/3 + ∥∥N2,ε(χ∇wε,∇wε)

∥∥
L4/3

)
. (6.35)

Note that the prefactors r−1 and r−2 are due to the differentiation of χ (cf. (6.32)), and that
C4 is independent of r . To estimate the last term, we employ the bi-linearity of N2,ε, (6.31)
and (6.6): ∥∥N2,ε(χ∇wε,∇wε)

∥∥
L4/3

�
∥∥N2,ε(∇w̄ε,∇wε)

∥∥
L4/3 + ∥∥N2,ε(∇χ ⊗ wε,∇wε)

∥∥
L4/3 + C4r

−1

� C4
(‖∇w̄ε‖L4‖∇wε‖L2 + r−1)

� C4
(‖∇2w̄ε‖L4/3‖∇wε‖L2 + r−1) .

(6.36)

Note that in the last stepweused theSobolev’s embeddingW 1,4/3(B1) ⊂ L4(B1). Combining
(6.36) with (6.35), we obtain

‖∇2v̄ε‖L4/3 � C4
(
r−2 + μ‖∇2(v̄ε, ρ̄ε)‖L4/3 + ‖∇2w̄ε‖L4/3‖∇wε‖L2

)
. (6.37)

Now we turn to the estimate of ρε . Using (6.6) and (1.22), we have f ′(ρε) = 2(ρε − 1) in
Br (x0). Now multiplying (6.22) by χ and using the linearity of (6.21), we find

− 2ε−2ρ̄ε + �ρ̄ε + [χ,�](ρε − 1) + μ(vε ⊗ vε) : ∇2ρ̄ε

+ μ(vε ⊗ vε) : [χ,∇2](ρε − 1) + μρεvε · (∇ div v̄ε) + μρεvε · ([χ,∇ div]vε)

= χτ ε · vε + N1,ε(χ∇wε,∇wε).

In the same way as we did for (6.37), we find

‖∇2ρ̄ε‖L4/3 � C4
(
r−2 + μ‖∇2(v̄ε, ρ̄ε)‖L4/3 + ∥∥N1,ε(χ∇wε,∇wε)

∥∥
L4/3

)
� C4

(
r−2 + μ‖∇2(v̄ε, ρ̄ε)‖L4/3 + ‖∇2w̄ε‖L4/3‖∇wε‖L2

)
.
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Combining this with (6.37) and (6.31) we discover

‖∇2(v̄ε, ρ̄ε)‖L4/3(Br (x0)) � C4
(
r−2 + max{ε̂, μ}‖∇2(v̄ε, ρ̄ε)‖L4/3(Br (x0))

)
. (6.38)

Note that before Lemma 6.1, we have assumed thatC4 > 1 and ĉ > 1. Recall also the choice
of ε̂ in (6.11). By choosing

� = 16−8C−2
4 in(6.3a),

we find C4 max{ε̂, μ} < 1/2. This combined with (6.38) yields

‖∇2(v̄ε, ρ̄ε)‖L4/3(Br (x0)) � 2C4r
−2.

In view of (6.32) and (6.33), this implies (6.30).

Now using (6.2b), we have ρεk (·, t0) k→∞−−−→ |u|(·, t0) = 1 strongly in L2(Br (x0)). Thus,
using (6.6) we find

‖vεk − u‖2L2(Br (x0))
� 2‖uεk − uρεk‖2L2(Br (x0))

k→∞−−−→ 0.

These together with (6.30) and the Gagliardo-Nirenberg interpolation inequality yield

(
vεk , ρεk

) k→∞−−−→ (u, 1) strongly in W 1,2(Br/2(x0)). (6.39)

Finally, using (6.6) and (6.39) we find

∇uεk = ρεk∇vεk + vεk∇ρεk

k→∞−−−→ ∇u strongly in L2(Br/2(x0)),

and finish the proof of (6.4). ��
Proof of Theorem 1.2 We employ the covering argument in [14]. For any test function � ∈
C1
c (�

+
t ;R3), we choose K = supp(�) ⊂⊂ �+

t , and we define the singular set at time
t ∈ (0, T ] by

�t :=
⋂

0<r<1

{
x ∈ K | B2r (x) ⊂ K , lim

k→∞

∫
B2r (x)

(
1

2

∣∣∇uεk

∣∣2 + F(uεk )

ε2k

)
dx >

ε̂2

2

}
.

(6.40)

We claim that�t is discrete. Indeed, choose an arbitrary finite set {y j }Jj=1 ⊂ �t withmutually

disjoint balls {B2r j (y j )}Jj=1 inside K with r j < 1/2. Since J is finite, there exists kJ > 0
such that for any k � kJ we have

∫
B2r j (y j )

(
1

2

∣∣∇uεk

∣∣2 + F(uεk )

ε2k

)
dx >

ε̂2

4
for all j ∈ {1, · · · , J }. (6.41)

Combined with (6.2a), this implies

ĉ2 �
∫
⊔J

j=1 B2r j (y j )

(
1

2

∣∣∇uεk

∣∣2 + F(uεk )

ε2k

)
dx >

ε̂2

4
J . (6.42)

As a result, J � 4ĉ2ε̂−2 and thus �t is discrete. Therefore w.l.o.g. we can assume that
�t = {x0} and B2r (x0) ⊂ K . Let η ∈ C1

c (B2(0)) be a cut-off function which ≡ 1 in B1(0).
Then

�δ(x) := �(x)
(
1 − η( x−x0

δ
)
) δ→0−−→ �(x) for any x �= x0. (6.43)
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It is obvious that �δ = 0 in Bδ(x0). By (6.40) and Proposition 6.1, we have

∇uεk

k→∞−−−→ ∇u strongly in L2(K\Bδ(x0)). (6.44)

Using these properties, we can apply ∧uεk ·�δ to both sides of (1.2a), integrate by parts and
then send k → ∞:∫

�

∂tu ∧ u · �δ dx + μ

∫
�

(div u) (rot u) · �δ dx

+
∫

�

(∇u ∧ u) · ∇�δ dx − μ

∫
�

(div u) (rot�δ) · u dx = 0. (6.45)

Note that we have also used ∂tuεk ∧uεk

k→∞−−−→ ∂tu∧u weakly in L2(0, T ; L6/5(�)), which
is due to Proposition 4.1. By (6.43) and the regularity of u (cf. (4.26a) and (4.26b)), we can
send δ → 0 in the first and the second integrals in (6.45) using the dominated convergence
theorem. Concerning the third one, we have∫

�

(∇u ∧ u) · ∇�δ dx =
∫

�

(
1 − η( x−x0

δ
)
)
(∇u ∧ u) · ∇� dx

−
3∑

i=1

∫
B2δ(x0)

1

δ
(∂iη)( x−x0

δ
) ∂iu ∧ u · � dx .

(6.46)

We claim that the second integral on the right-hand side vanishes as δ → 0. Indeed, by the
Cauchy–Schwarz inequality we have

∣∣∣∣∣
3∑

i=1

∫
B2δ(x0)

1

δ
(∂iη)( x−x0

δ
) ∂iu ∧ u · � dx

∣∣∣∣∣
� C‖�‖L∞‖∇η‖L2(B2)‖∇u‖L2(B2δ(x0))

δ→0−−→ 0. (6.47)

Now using limδ→0 η( x−x0
δ

) = 0 for any x �= x0, we can send δ → 0 in (6.46) and obtain
∫

�

(∇u ∧ u) · ∇�δ dx
δ→0−−→
∫

�

(∇u ∧ u) · ∇� dx .

By the same argument we can compute the fourth integral in (6.45) and find∫
�

(div u) (rot�δ) · u dx δ→0−−→
∫

�

(div u) (rot�) · u dx . (6.48)

Using the above two formulas, we can send δ → 0 in (6.45) and obtain (1.23). ��

Appendix A: Proof of Proposition 1.1

Proof of Proposition 1.1 We first recall that σ = 1 (cf. (2.5)), I0 ⊂ � is the initial interface
and η0 is the cut-off function in (2.12). Then we define

sε(x) := η0 (x) θ

(
dI0(x)

ε

)
+
(
1 − η0 (x)

)
1�+

0
, (A.1)
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where θ(z) is the solution of the ODE

−θ ′′(z) + f ′(θ) = 0, θ(−∞) = 0, θ(+∞) = 1. (A.2)

We note that dI0 is Lipschitz continuous in �, and thus by Rademacher’s theorem we have
|∇dI0 | � 1 a.e. in �. Recalling (1.19), we define

uinε (x) := sε(x)uin(x). (A.3)

One can verify that uinε ∈ W 1,2
0 (�) ∩ L∞(�), ‖uinε ‖L∞(�) � 1, and

uinε =

⎧⎪⎨
⎪⎩
uin if x ∈ �+

0 \B2δ0(I0),

θ
(
dI0
ε

)
uin if x ∈ Bδ0(I0),

0 if x ∈ �−
0 \B2δ0(I0).

(A.4)

So the condition (1.14a) is verified. To verify the others, we first compute the modulated
energy in (1.7) for the initial datum uinε . We write (A.1) as

sε(x) = θ

(
dI0(x)

ε

)
+ ŝε(x), (A.5)

where ŝε(x) := (1 − η0 (x))
(
1�+

0
− θ
(
dI0 (x)

ε

))
. Invoking (2.12) and the exponential con-

vergence of θ(z) as z → ±∞ (cf. (A.2)), we deduce that

‖ŝε‖L∞(�) + ‖∇ ŝε‖L∞(�) � Ce− C
ε , (A.6)

for some constant C > 0 that only depends on I0. By a Taylor’s expansion, we find

F(uinε ) = f (θ + ŝε) = f (θ) + O(e−C/ε).

Combining (A.3), (A.5) with (A.6), we obtain

|∇uinε |2 = ε−2θ ′2 + θ2|∇uin |2 + O(e−C/ε)(|∇uin |2 + 1).

Note that we have also employed the identities ∂xiu
in ·uin = 0 a.e. in �. Recalling (1.8), we

have

ψε

∣∣∣
t=0

=
∫ θ+ŝε

0

√
2 f (s) ds : � �→ [0, 1]. (A.7)

So we can compute

ε

2

∣∣∣∇uinε
∣∣∣2 + 1

ε
F(uinε ) − ξ · ∇ψε

∣∣∣
t=0

= 1

2ε
θ ′2 + 1

ε
f (θ) − ε−1ξ · nI0θ

′√2 f (θ) + ε

2
θ2|∇uin |2 + O(e−C/ε)(|∇uin |2 + 1).

(A.8)

It follows from (2.10) that 1 − ξ · nI0 = O(d2I ). So we have

ε−1ξ · nI0θ
′√2 f (θ) = ε−1θ ′√2 f (θ) + O(e−C/ε) + ε−1O(d2I0)θ

′√2 f (θ).

Note that the last term can be written as

ε−1O(d2I0)θ
′√2 f (θ) = O(ε)z2θ ′(z)

√
2 f (θ(z))

∣∣
z= dI0

(x)

ε

.
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Substituting the above two equations into (A.8), we find
∫

�

(
ε

2

∣∣∣∇uinε
∣∣∣2 + 1

ε
F(uinε ) − ξ · ∇ψε

)
dx

=
∫

�

(
1

2ε
θ ′2 + 1

ε
f (θ) − 1

ε
θ ′√2 f (θ)

)
︸ ︷︷ ︸

=0

dx

+
∫

�

ε

2
θ2|∇uin |2 dx + O(e−C/ε)

∫
�

(|∇uin |2 + 1) dx + O(ε) at t = 0. (A.9)

Note that the integrand of the first integral on the right-hand side of (A.9) vanishes due to
the identity θ ′2(z) = 2 f (θ(z)), which follows from (A.2). Now we turn to the first term in
(1.7). Using (A.6) we can estimate

| div uinε |2 � 2|∇θ · uin |2 + 2θ2| div uin |2 + O(e−C/ε)(1 + | div uin |2). (A.10)

By the exponential decay of θ ′(z) as z → ±∞, we deduce that

|∇θ · uin | =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣ dI0ε θ ′
(
dI0
ε

)
uin ·nI0
dI0

∣∣∣ � C
∣∣∣uin ·nI0dI0

∣∣∣ in Bδ0(I0)\I0,
∣∣∣ 1ε θ ′
(
dI0
ε

)
uin · nI0

∣∣∣ � e− C
ε in �\Bδ0(I0).

(A.11)

Using this, (1.19) and Hardy’s inequality (cf. [7]), we find
∫

�

|∇θ · uin |2 dx � C
∫
I0

∫ δ0

−δ0

∣∣∣u
in · nI0

dI0

∣∣∣2 dr dHd−1 + C

� C

(∫
�

|∇uin |2 dx + 1

)
. (A.12)

Combining this with (A.10) and (A.9) we derive Eε[uinε |I0] � Cε. Recalling (1.21), we have
also obtained (1.14b). To verify (1.14c), we shall compute (1.12) at t = 0. By (A.7), we see
that

B[uinε |I0] = 2
∫

�

(
χ+1
2 − ψε

)
η ◦ dI dx .

We shall only give the estimate in Bδ0(I0) ∩ �+
0 because the one in Bδ0(I0) ∩ �−

0 follows in
the same way, and the one in �\Bδ0(I0) is due to (A.6) and the exponential convergence of
θ(z) at ±∞.∫

Bδ0 (I0)∩�+
0

|ψε − 1|dI (x) dx
∣∣∣
t=0

(A.7)=
∫
Bδ0 (I0)∩�+

0

(∫ 1

sε(x)

√
2 f (s) ds

)
dI (x) dx

∣∣∣
t=0

(A.6)= ε

∫
Bδ0 (I0)∩�+

0

(∫ 1

θ(
dI (x)

ε
)

√
2 f (s) ds

)
dI (x)

ε
dx
∣∣∣
t=0

+ O(e−C/ε) � Cε2, (A.13)

where the last step is due to the exponential decay of Q(z) := z
∫ 1
θ(z)

√
2 f (s) ds as z ↑ ∞.

��
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Appendix B: Proof of Proposition 2.1

Lemma B.1 The following identity holds:

∫
∇H : (ξ ⊗ nε) |∇ψε| dx −

∫
(∇ · H) ξ · ∇ψε dx

=
∫

∇H : (ξ − nε) ⊗ nε |∇ψε| dx +
∫

Hε · H|∇uε| dx

+
∫

∇ · H
(

ε

2
|∇uε|2 + 1

ε
F(uε) − |∇ψε|

)
dx +
∫

∇ · H(|∇ψε| − ξ · ∇ψε) dx

−
∫

(∇H)i j ε
(
∂iuε · ∂ juε

)
dx +
∫

∇H : (nε ⊗ nε) |∇ψε| dx . (B.1)

Proof We introduce the stress tensor (Tε)i j := ( ε2 |∇uε|2 + 1
ε
F(uε)
)
δi j − ε∂iuε · ∂ juε. By

(2.20b), we have the identity ∇ · Tε = Hε|∇uε|. Testing this identity with H, integrating by
parts and using (2.14c), we obtain

∫
Hε · H|∇uε| dx = −

∫
∇H : Tε dx

= −
∫

∇ · H
(

ε

2
|∇uε|2 + 1

ε
F(uε)

)
dx +
∫

(∇H)i j ε
(
∂iuε · ∂ juε

)
dx .

So adding zero leads to

∫
∇H : nε ⊗ nε |∇ψε| dx

=
∫

Hε · H|∇uε| dx +
∫

∇ · H
(

ε

2
|∇uε|2 + 1

ε
F(uε) − |∇ψε|

)
dx +
∫

∇ · H|∇ψε| dx

−
∫

(∇H)i j ε
(
∂iuε · ∂ juε

)
dx +
∫

(∇H) : (nε ⊗ nε) |∇ψε| dx,

which yields (B.1). ��

Lemma B.2 Under the assumptions of Theorem 1.1, the following identity holds:

d

dt
E [uε|I ] + 1

2ε

∫ (
ε2 |∂tuε|2 − |Hε|2

)
dx

+ 1

2ε

∫ ∣∣∣ε∂tuε − (∇ · ξ)DdF (uε)

∣∣∣2dx + 1

2ε

∫ ∣∣∣Hε − ε|∇uε|H
∣∣∣2 dx

= 1

2ε

∫ ∣∣∣(∇ · ξ)|DdF (uε)|nε + ε|�uε∇uε|H
∣∣∣2 dx (B.2a)

+ ε

2

∫
|H|2 (|∇uε|2 − |�uε∇uε|2

)
dx −
∫

∇H · (ξ − nε)
⊗2 |∇ψε| dx (B.2b)

+
∫

(∇ · H)

(
ε

2
|∇uε|2 + 1

ε
F(uε) − |∇ψε|

)
dx (B.2c)

+
∫

(∇ · H) (1 − ξ · nε) |∇ψε| dx +
∫

(J 1ε + J 2ε ) dx, (B.2d)
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where

J 1ε := ∇H : nε ⊗ nε

(|∇ψε| − ε|∇uε|2
)

+ ε∇H : (nε ⊗ nε)
(|∇uε|2 − |�uε∇uε|2

)
−
∑
i j

ε(∇H)i j

(
(∂iuε − �uε ∂iuε) · (∂ juε − �uε ∂ juε)

)
, (B.3)

J 2ε := −
(
∂tξ + (H · ∇) ξ + (∇H)T ξ

)
· ∇ψε. (B.4)

Proof We shall employ the Einstein summation convention by summing over repeated
indices. Using the energy dissipation law in (2.6) and adding zero, we find

d

dt
Eε[uε|I ] + ε

∫
|∂tuε|2 dx −

∫
(∇ · ξ)DdF (uε) · ∂tuε dx

=
∫

(H · ∇) ξ · ∇ψε dx +
∫

(∇H)T ξ · ∇ψε dx +
∫

J 2ε dx . (B.5)

By the symmetry of ∇2ψε and the boundary conditions in (2.14c), we have∫
∇ · (ξ ⊗ H) · ∇ψε dx =

∫
∇ · (H ⊗ ξ) · ∇ψε dx .

Hence, the first integral on the right-hand side of (B.5) can be rewritten as∫
(H · ∇) ξ · ∇ψε dx

=
∫

∇ · (ξ ⊗ H) · ∇ψε dx −
∫

(∇ · H) ξ · ∇ψε dx

=
∫

(∇ · ξ)H · ∇ψε dx +
∫

(ξ · ∇)H · ∇ψε dx −
∫

(∇ · H) ξ · ∇ψε dx .

Therefore,

d

dt
Eε[uε|I ] + ε

∫
|∂tuε|2 dx −

∫
(∇ · ξ)DdF (uε) · ∂tuε dx

=
∫

(∇ · ξ)H · ∇ψεdx +
∫

(ξ · ∇)H · ∇ψε dx −
∫

(∇ · H) ξ · ∇ψε dx

+
∫

∇H : (ξ ⊗ nε) |∇ψε| dx +
∫

J 2ε dx .

Now using (B.1) to replace the third and the fourth integrals on the right-hand side of the
above equation, we find

d

dt
Eε[uε|I ] + ε

∫
|∂tuε|2 dx −

∫
(∇ · ξ)DdF (uε) · ∂tuε dx

=
∫

(∇ · ξ)H · ∇ψε dx +
∫

(ξ · ∇)H · ∇ψε dx +
∫

∇H : (ξ − nε) ⊗ nε |∇ψε| dx

+
∫

Hε · H|∇uε| dx +
∫

∇ · H
(

ε

2
|∇uε|2 + 1

ε
F(uε) − |∇ψε|

)
dx

+
∫

∇ · H (|∇ψε| − ξ · ∇ψε) dx −
∫

(∇H)i j ε
(
∂iuε · ∂ juε

)
dx

+
∫

∇H : nε ⊗ nε |∇ψε| dx +
∫

J 2ε dx . (B.6)
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We shall show that J 1ε arises from the second and the third to last integrals by proving the
following identity:

�uε ∂iuε · �uε ∂ juε = niεn
j
ε |�uε∇uε|2 a.e. in �, (B.7)

where (n�
ε)1���3 = nε. Such an identity holds obviously on the set {x | uε = 0} by (2.22).

It also holds on {x | g(|uε|) > 0} due to the following identity which follows from (2.22)
and (2.23a):

�uε ∂iuε · �uε ∂ juε|DdF (uε)|2 = ∂iψε ∂ jψε = niε n
j
ε |�uε∇uε|2|DdF (uε)|2.

On the open set {x | |uε| > 0} which includes {x | |uε| = 1}, we deduce from (2.22)
and (2.19a) that �uε ∂ juε = (∂ j |uε|) uε. By [18, Theorem 4.4] we have ∂ j |uε| = 0 a.e. on
{x | |uε| = 1}. We thus complete the proof of (B.7).

Now by (B.7) and adding zero, we find

∇H : nε ⊗ nε |∇ψε| − (∇H)i j ε
(
∂iuε · ∂ juε

)
(2.22)= ∇H : nε ⊗ nε |∇ψε| − ε(∇H)i j (�uε ∂iuε · �uε ∂ juε)

− (∇H)i j ε
(
(∂iuε − �uε ∂iuε) · (∂ juε − �uε ∂ juε)

)
(B.3)= J 1ε a.e. in �.

Using the identities ∇ψε = nε|∇ψε| and ∇H : (ξ ⊗ ξ) = 0 (due to (2.14b)), we merge the
second and the third integrals on the right-hand side of (B.6):

d

dt
Eε[uε|I ] = −ε

∫
|∂tuε|2 dx +

∫
(∇ · ξ)DdF (uε) · ∂tuε dx

+
∫

(∇ · ξ)H · ∇ψε dx +
∫

Hε · H|∇uε| dx −
∫

∇H : (ξ − nε)
⊗2 |∇ψε| dx

+
∫

(∇ · H)
( ε
2
|∇uε|2 + 1

ε
F(uε) − |∇ψε|

)
dx

+
∫

(∇ · H) (1 − ξ · nε) |∇ψε| dx +
∫

(J 1ε + J 2ε ) dx . (B.8)

Now we complete squares for the first four terms on the right-hand side of (B.8). Reordering
terms, we have

−ε|∂tuε|2 + (∇ · ξ)DdF (uε) · ∂tuε + (∇ · ξ)H · ∇ψε + Hε · H|∇uε|
= − 1

2ε

(
|ε∂tuε|2 − 2(∇ · ξ)DdF (uε) · ε∂tuε + (∇ · ξ)2|DdF (uε)|2

)

− 1

2ε
|ε∂tuε|2 + 1

2ε
(∇ · ξ)2|DdF (uε)|2 + (∇ · ξ)H · ∇ψε

− 1

2ε

(
|Hε|2 − 2ε|∇uε|Hε · H + ε2|∇uε|2|H|2

)
+ 1

2ε

(
|Hε|2 + ε2|∇uε|2|H|2

)

= − 1

2ε

∣∣∣ε∂tuε − (∇ · ξ)DdF (uε)

∣∣∣2 − 1

2ε

∣∣∣Hε − ε|∇uε|H
∣∣∣2 − 1

2ε
|ε∂tuε|2 + 1

2ε
|Hε|2

+ 1

2ε

(
(∇ · ξ)2|DdF (uε)|2 + 2ε(∇ · ξ)∇ψε · H + |ε�uε∇uε|2|H|2

)

+ ε

2

(|∇uε|2 − |�uε∇uε|2
) |H|2.

Substituting this identity into (B.8), we arrive at (B.2). ��
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Proof of Proposition 2.1 The proof here is the same as the case μ = 0, done in [40, Lemma
4.4]. This is because the form of the energy dissipation law (2.6) remains unchanged in the
presence of the divergence term in (1.2a).

Wefirst estimate the right-hand side of (B.2) by Eε[uε|I ] up to a constant that only depends
on It . Concerning (B.2a), it follows from the triangle inequality that

∫ ∣∣∣∣ 1√ε
(∇ · ξ)|DdF (uε)|nε + √

ε|�uε∇uε|H
∣∣∣∣
2

dx

�
∫ ∣∣∣∣(∇ · ξ)

(
1√
ε
|DdF (uε)| − √

ε|�uε∇uε|
)
nε

∣∣∣∣
2

dx

+
∫ ∣∣∣(∇ · ξ)

√
ε|�uε∇uε|(nε − ξ)

∣∣∣2 dx
+
∫ ∣∣((∇ · ξ)ξ + H

)√
ε|�uε∇uε|

∣∣2 dx .

The first integral on the right-hand side of the above inequality is controlled using (2.26c).
Due to the elementary inequality |ξ − nε|2 � 2(1− nε · ξ), the second integral is controlled
by (2.26d). The third integral can be treated using the relation H = (H · ξ)ξ + O(dI (x, t))
and (2.15a). So it can be controlled by (2.26e).

The integrals in (B.2b) can be controlled using (2.26c) and (2.26d). The one in (B.2c) is
controlled by (2.26a). The first term in (B.2d) can be controlled using (2.26d). It remains to
estimate (B.3) and (B.4). The integrals of the last two terms defining J 1ε can be controlled
by (2.26b). Therefore,

∫
J 1ε dx

(2.26b)
�
∫

∇H : (nε ⊗ (nε − ξ))
(|∇ψε| − ε|∇uε|2

)
dx

+
∫

(ξ · ∇)H · nε

(|∇ψε| − ε|∇uε|2
)
dx + CEε[uε|I ]

(2.14b)
� C
( ∫

|nε − ξ |
(
ε|∇uε|2 − ε|�uε∇uε|2

)
dx

+
∫

|nε − ξ | ∣∣ε|�uε∇uε|2 − |∇ψε|
∣∣ dx

+
∫

min
(
d2I , 1
) (|∇ψε| + ε|∇uε|2

)
dx + Eε[uε|I ]

)
.

The first and the third integrals in the last display can be estimated using (2.26b) and (2.26e)
respectively. Then we employ (2.23a) to find
∫

J 1ε dx �C
( ∫

|nε − ξ | ∣∣ε|�uε∇uε|2 − |∇ψε|
∣∣ dx + Eε[uε|I ]

)

(2.23a)= C
( ∫

|nε − ξ |√ε|�uε∇uε|
∣∣∣∣
√

ε|�uε∇uε| − 1√
ε
|DdF (uε)|

∣∣∣∣ dx + Eε[uε|I ]
)
.

Finally applying the Cauchy-Schwarz inequality and then (2.26c) and (2.26d), we obtain∫
J 1ε dx � CEε[uε|I ]. As for J 2ε (B.4), we employ (2.15c) and (2.26e) to obtain

∫
J 2ε dx �

CEε[uε|I ].All in all, we have proved that the right-hand side of (B.2) is bounded by Eε[uε|I ]
up to a multiplicative constant which only depends on It . ��
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