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Abstract
We study the behaviour of global minimizers of a continuum Landau–de Gennes energy
functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeo-
morphic to a ball (a nematic droplet) and in a restricted class of S

1-equivariant configurations.
It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024)
that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically
relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations
are either of torus or of split type. Here, starting from a nematic droplet with the homeotropic
boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or
even both) for the Euler–Lagrange equations do appear as energy minimizers by suitably
deforming either the domain or the boundary data. As a consequence, we derive symmetry
breaking results for the minimization among all competitors.
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1 Introduction

The present article is the third of a series in a project on the analysis of the Landau–de Gennes
(LdG) model for nematic liquid crystal. Relying on our previous results [11, 12] (see [36] for
a short overview), we pursue our investigations on the qualitative properties of minimizers
of the Landau–de Gennes functional restricted to a class of axially symmetric configurations
with pointwise unit norm (the Lyuksyutov constraint). We refer to [11, 12] and the references
therein for an extensive discussion on this model and its physical background. For the sake
of concision, we shall simply recall the main elements and basic features of the model.

As customary in LdG Q-tensor theory (see, e.g., [34, 41]), we consider M3×3(R) the
vector space made of 3 × 3-matrices with real entries and its 5-dimensional subspace of
admissible matrices

S0 :=
{
Q = (Qi j ) ∈ M3×3(R) : Q = Qt , tr(Q) = 0

}
.

Here Qt denotes the transpose of Q, tr(Q) the trace of Q. The space S0 is endowed with the
usual (Frobenius) inner product. As in [11, 12], the indicator function of physical interest is
provided by the signed biaxiality parameter

β̃(Q) := √
6
tr(Q3)

|Q|3 ∈ [−1, 1] , Q �= 0 . (1.1)

For a matrix Q satisfying |Q| = 1, the extremal values β̃(Q) = ±1 occur iff the mini-
mal/maximal eigenvalue of Q is double which corresponds to the purely positive/negative
uniaxial phase in the language of liquid crystals. In turn, the case −1 < β̃(Q) < 1 corre-
sponds to the biaxial phase, and it is maximal for β̃(Q) = 0 (i.e., maximal gap between the
distinct eigenvalues).

Following [11, 12], (rescaled) liquid crystal configurations occupying a given bounded
domain � ⊆ R

3 (with C1-smooth boundary at least) are described through Sobolev maps
Q ∈ W 1,2(�;S

4). The choice of the target S
4 ⊆ S0, the unit sphere of S0, encodes the

Lyuksyutov constraint typical of soft biaxial nematics [32] (see also [35]). As first suggested
in [11], the qualitative properties of a smooth (or merely Sobolev) configuration Q : � → S

4
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can be described by means of the signed biaxiality function β̃ ◦ Q, through the biaxiality
regions, i.e.,
{
β � t

} := {x ∈ � : β̃ ◦ Q(x) � t
}
,
{
β � t

} := {x ∈ � : β̃ ◦ Q(x) � t
}
, t ∈ [−1, 1],

(1.2)

and the corresponding biaxial surfaces
{
β = t

} := {x ∈ � : β̃ ◦ Q(x) = t
}
. Among these

sets, a crucial role is played by
{
β = −1

}
, which should correspond to the experimentally

observed disclination lines, where eigenvalues exchange occurs (see, e.g., [27, 28]).
After rescaling and under the Lyuksyutov constraint, the reduced LdG energy functional

obtained in [11] takes the form

Eλ(Q) :=
∫

�

1

2
|∇Q|2 + λW (Q) dx, (1.3)

for a material-dependent constant λ > 0. It reduces to the Dirichlet integral E0 for maps
into S

4 when λ = 0. The parameter λ−1/2 is known as the biaxial coherence length. The
functional Eλ formally corresponds to a LdG energy with quartic potential in the 1-constant
approximation for the elastic energy and in the regime of zero uniaxial correlation length
reflecting the norm constraint (see the discussion in [11, Section 1]). The reduced potential
W : S0 → R, when restricted to unit norm matrices, is given by

W (Q) = 1

3
√
6

(
1 − β̃(Q)

)
∀Q ∈ S

4. (1.4)

Hence W is nonnegative on S
4. Its set of minima is called the vacuum manifold Qmin :=

{W = 0} ∩S
4, and ∇tanW (Q) = 0 for any Q ∈ Qmin. The minimum ofW is achieved when

the signed biaxiality is maximal, so that W (Q) = 0 iff Q ∈ Qmin = RP2 ⊆ S
4, where we

regard the projective plane RP2 ⊆ S
4 embedded as the set of positive uniaxial matrices

Qmin =
{
Q ∈ S

4 : Q =
√
3

2

(
n ⊗ n − 1

3
Id

)
, n ∈ S

2

}
. (1.5)

Since Qmin = RP2, it has nontrivial topology, and both homotopy groups π2(Qmin) = Z

and π1(Qmin) = Z2 play a role in the presence of defects, especially in the restricted class
of axisymmetric configurations. A critical point Qλ ∈ W 1,2(�;S

4) of Eλ among S
4-valued

maps satisfies in the weak sense the Euler–Lagrange equations

�Qλ + |∇Qλ|2Qλ = λ∇tanW (Qλ) , (1.6)

where the tangential gradient of W at Q ∈ S
4 ⊆ S0 is given by

∇tanW (Q) = −
(
Q2 − 1

3
Id − tr(Q3)Q

)
.

The left-hand side in (1.6) is the tension field of the S
4-valued map Qλ as in the theory of

harmonic maps, see e.g. [30].
Symmetry ansätze have been considered in several recent articles dedicated to Landau–de

Gennes models in dimension two or three, see e.g. [1, 2, 4, 22–24, 40, 42]. In the present
paper,we consider theLdG functional Eλ restricted to a class ofS1-equivariant configurations,
continuing the analysis initiated in [12]. As reviewed in Sect. 2, we identify the group S

1 with
the subgroup of SO(3)made of rotations around the vertical axis of R

3, and we consider the
induced action on S0 given by S0 � A → RARt ∈ S0. Assuming that the open set � ⊆ R

3
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is bounded, smooth, and S
1-invariant, i.e., R · � = � for any R ∈ S

1, we restrict ourselves
to maps Q : � → S0 which are S

1-equivariant, i.e.,

Q(Rx) = RQ(x)Rt for a.e. x ∈ �, ∀R ∈ S
1 , (1.7)

with the obvious analogue definition for maps defined on the boundary. Following our nota-
tions from [11, 12], given an S

1-equivariant Dirichlet boundary data Qb : ∂� → S
4, we

set

AQb(�) :=
{
Q ∈ W 1,2(�;S

4) : Q = Qb on ∂�
}
,

and

Asym
Qb

(�) :=
{
Q ∈ AQb(�) : Q is S

1-equivariant
}

� AQb(�) . (1.8)

We are then interested in minimizers Qλ of Eλ over the restricted classAsym
Qb

(�). As already
discussed in [12, Theorem 1.1] (and reviewed in the next sections), if ∂� and Qb are smooth
enough, then minimizers always exist and they are smooth up to a singular set, denoted by
sing(Qλ), made of (atmost) finitelymany interior point singularities located on the symmetry
axis. When present, these singular points are due either to a topological obstruction related
to the equivariance constraint or to an energy efficiency mechanism.

The main purpose of this article is to shed some light on the delicate interplay between
the geometry of the boundary and the properties of the Dirichlet boundary condition in
determining the qualitative properties of the corresponding minimizers. As initiated in [12],
we investigate nonexistence vs existence of singularities for maps minimizing Eλ over the
symmetric class Asym

Qb
(�) for a boundary data Qb exploiting the topology of the vacuum

manifold Qmin = RP2. The topology of minimizers will be either of what we called torus
type, or split type in [12]. Here, a torus type minimizer Qλ refers to a smooth minimizer (i.e.,
sing(Qλ) = ∅), while a split type minimizer Qλ is a singular minimizer (i.e., sing(Qλ) �= ∅).
This terminology, adopted in [12, Section 7], has been chosen according to our qualitative
description of the biaxiality regions and surfaces, i.e., the sublevel and level sets of the
composite function β̃ ◦ Qλ, see [12, Theorems 1.4 & 1.5]. In few words, the torus type
refers to the fact that a biaxial surface of Qλ must have a connected component of genus one
enclosing at least a circle of negative uniaxiality, i.e., a (invariant) disclination ring. In turn,
the split type indicates that singularities come in pairs with a biaxiality assuming the value
−1 in between (i.e., there are disclination segments on the vertical axis), and biaxial surfaces
contain spheres with poles at the singular points. For the sake of concision, we refer to [12]
for a more detailed description and the precise results.

For simplicity, we restrict ourselves to axisymmetric cylinder-type domains diffeomorphic
to a ball (see Definition 2.3), or to the model case of a nematic droplet, i.e., the unit ball
� = B1 ⊆ R

3. Concerning the boundary data, a natural choice is to take it smooth (at least
of class C1) and valued in the vacuum manifold, i.e., Qb ∈ C1(∂�;RP2). Since ∂� � S

2,
every such map can be written in the form

Qb(x) =
√
3

2

(
v(x) ⊗ v(x) − 1

3
Id

)
for all x ∈ ∂� , v ∈ C1(∂�;S

2) . (1.9)

Since � is axisymmetric, such map Qb is S
1-equivariant if and only if its lift v is itself

S
1-equivariant (with respect to the obvious action of S

1 on S
2 ⊆ R

3 by rotation). Then,
the topological nontriviality of Qb introduced in [12] and required here amounts to the
assumption that the topological degree deg v ∈ Z of the lift is odd (this assumption only
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depends on Qb and not on a particular choice of the lift v). For instance, if ∂� is of class C2

and v in (1.9) is the outer unit normal field on ∂� (i.e., v(x) = →
n (x)), then we obtain the

so-called homeotropic boundary condition (see (2.4)) which is S
1-equivariant and its lift v

satisfies deg v = 1, i.e., it satisfies our topological requirement. A main example entering in
our discussion below is the case a nematic droplet� = B1 with homeotropic boundary data.

Then
→
n (x) = x

|x | and Qb(x) = H(x) where H is the unit-norm hedgehog

H(x) =
√
3

2

(
x

|x | ⊗ x

|x | − 1

3
Id

)
for all x ∈ ∂B1 , (1.10)

which is actually equivariant in the sense of (1.7) with respect to the full orthogonal group
O(3).

Besides RP2-valued maps, we shall also consider more general S
4-valued boundary

data. According to [11, 12], we shall always assume that � and Qb are smooth enough,
axisymmetric, and satisfying the conditions:

(HP1) β̄ := minx∈∂� β̃ ◦ Qb(x) > −1;
(HP2) � is diffeomorphic (equivariantly and up to the boundary) to a ball;
(HP3) deg(v, ∂�) is odd;

where (HP3) has to be understood in the following way. In view of (HP1), the maximal
eigenvalue λmax(x) of Qb(x) is simple and the function λmax : ∂� → R is smooth, hence
there is a well defined and smooth eigenspace map Vmax : ∂� → RP2 (which inherits
equivariance). Since ∂� � S

2 by (HP2), the mapping Vmax has a (nonunique) smooth lifting
v : ∂� → S

2, which is required to satisfy (HP3). In the case � = B1, besides the radial
hedgehog H , the main examples of boundary data satisfying our general assumptions are the
S
1-equivariant harmonic spheres ωμ1,μ2 : S

2 → S
4, for positive parameters μ1 and μ2 (see

the full classification [12, Proposition 3.8 and proof of Theorem 1.3]).

In [12, Theorem 1.4 & 1.5], we have shown that under assumptions (HP1)-(HP3), mini-
mizers of Eλ over the classAsym

Qb
(�)must be either of torus type (when smooth) or of split type

(when singular), in agreement with some physical expectations based on numerical simula-
tions (e.g., [10, 14, 21, 27, 28]). To complement this result, [12, Theorem 1.2 & 1.3] provide
in the case � = B1 two explicit continuous deformations1 	 : [0, 1] → C2,α

sym(∂B1;S
4)

of the hedgehog map H along which (HP1)-(HP3) are preserved and such that minimizers
corresponding to the final map Qb = 	(1) are either all of torus type or all of split type
respectively (see also Remark 3.16). Our first main result actually shows that both type of
minimizers coexist for the same boundary data when suitably chosen at some intermediate
stage of one of these deformations.

Theorem 1.1 Let α ∈ (0, 1), λ � 0, and 	 : [0, 1] → C2,α
sym(∂B1;S

4) a continuous curve
along which (H P1)-(H P3) are satisfied. Assume that for Qb = 	(0) and Qb = 	(1), the
minimizers of Eλ over Asym

Qb
(B1) are all of torus type and all of split type, respectively. Then

there exist 0 < t1 � t2 < 1 such that

(i) for every 0 � t < t1 and Qb = 	(t), any minimizer of Eλ over Asym
Qb

(B1) is smooth
and thus of torus type;

(ii) for every t2 < t � 1 and Qb = 	(t), any minimizer of Eλ over Asym
Qb

(B1) is singular
and thus of split type;

1 C2,α
sym(∂B1;S

4) stands for the subset ofC2,α(∂B1; S
4)made of all S1-equivariant maps. More generally, we

shall use the sub/supscript sym on a functional space to indicate that the mappings involved are S
1-equivariant.
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(iii) for t ∈ {t1, t2} and Qb = 	(t), there exist a smooth and a singular minimizer of Eλ
over the class Asym

Qb
(B1), hence of torus and split type respectively.

As a consequence, there exists Qb ∈ C2,α
sym(∂B1;S

4) satisfying (H P1)–(H P3) which yields
coexistence of torus and split minimizers of Eλ over Asym

Qb
(B1).

The proof of Theorem 1.1, in Sect. 3, essentially relies on the interior and boundary
regularity theory developed in [11, 12] and suitably presented in Sect. 3.1. Along with further
refinements, it follows that both smoothness and presence of singularities persist under strong
W 1,2-convergence as the pair (Qb, λ) varies in the space of data C

2,α
sym(∂�;S

4)× [0,∞), in
analogy with [3, 18] in the case of minimizing harmonic maps into S

2. Using these properties
together with unique continuation arguments, we prove in Theorem 3.14 a decomposition of
the space of data into two open sets, for which all theminimizers are of the same type (smooth
or singular), and their common boundary, where coexistence occurs. Then Theorem 1.1
follows as a direct consequence (seeCorollary 3.15) as the two open sets are not empty by [12,
Theorem 1.2 & 1.3] and there exists an explicit continuous path connecting them (as already
mentioned). It is a natural open question to understand if for such explicit path deforming the
data used in [12, Theorem 1.2] into the one used in [12, Theorem 1.3] and passing through
the hedgehog H , the coexistence parameters given in Theorem 1.1 are precisely those of
the hedgehog, i.e., if Qb = H yields coexistence of torus and split minimizers in the class
Asym

H (B1).
Our coexistence property is somehow related to a similar result established in the recent

article [42], although the methods employed are completely different. As already commented
in more details in [12, Section 7], the analysis in [42] is performed to the case � = B1 with
boundary condition given by the unit norm hedgehog H , and the minimization is restricted
to the strictly smaller class of O(2)× Z2-equivariant configurations (the extra Z2-symmetry
corresponding to the reflection across the horizontal plane). In this restricted class, the author
performs a clever further constrained minimization which yields coexistence of minimizers
of “torus” and “split” type, although these notions are in a sense weaker than ours in [12].
However, their energy minimality in the full symmetric class Asym

H (B1) remains unclear.

The second part of the article is dedicated to minimizers of Eλ over the equivariant class
(1.8) with homeotropic boundary conditions on axisymmetric domains � ⊆ R

3 diffeo-
morphic to the unit ball. Here the goal is to show that the presence of smooth or singular
minimizers and even their coexistence depends in a subtle way on the shape of�. To capture
the essence of these phenomena, we restrict ourselves to an explicit family of axisymmetric
cylinder-type domains denoted by Ch

�,ρ and obtained as a regularization (near the angles) of
vertical cylinders of height 2h and radius �, the parameter ρ being the smoothing parameter
(see Definition 2.3). The boundary condition Qb is the homeotropic boundary data given by
(1.9) with v = −→n the outer unit normal field. Under these choices of� and Qb, assumptions
(HP1)–(HP3) above are satisfied and the results in [12] apply. Exploiting these facts, we
discuss here the nature of minimizers, i.e., smooth or singular, and thus their type, torus or
split, as the characteristic lengths h and � vary. Borrowing a terminology from physics (see,
e.g., [6], for the case of Bose-Einstein condensates in trapping potentials), we are interested
in two opposite regimes, namely: (i) the case h � � of long and thin cylinders, (the “cigar
shape”), and its opposite, i.e., (ii) the case h � � of flat and very large cylinders (the “pancake
shape”). Both cases are somehow natural, as they are a mathematical idealization of the case
in which the liquid crystals occupy a long pipe or it is arranged as a thin film respectively.

We shall see in Theorem 1.3 below that, in the asymptotic regime h � �, a 2D-reduction
phenomenon occurs and the 3D-minimizers in Ch

�,ρ tend to minimize the 2D-energy on
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most of the horizontal cross-sections of the domain. To present and describe this dimension
reduction, it is useful to anticipate and analyse the effective 2D-variational problem which
involvesmaps defined on a generic horizontal cross-sectionD� of the smoothed cylinderCh

�,ρ .
This 2D-minimization problem is of independent interest and resembles the one considered
in [22] without the norm constraint.

For simplicity, we rescale the disc D� of radius � to the unit disc D and, to distinguish the
2D from the 3D case, we shall use the notation Eλ (instead of Eλ) to refer to the LdG energy
in two dimensions. In other words, we consider for each λ � 0 the 2D-LdG energy

Eλ(Q) :=
∫

D

1

2
|∇Q|2 + λW (Q) dx, (1.11)

defined for configurations in the class W 1,2(D;S
4). Note that in the case λ = 0, the energy

E0 still reduces to the Dirichlet integral.
In the 2D-problem, we are interested in minimizers of Eλ over the S

1-equivariant class

Asym
H

(D) := {Q ∈ W 1,2
sym(D;S

4) : Q = H on ∂D
}
, (1.12)

where H : R
2\{0} → RP2 ⊆ S

4 is the radial anchoring map (or constant norm hedgehog),
i.e.,

H(x) :=
√
3

2

⎛
⎝ 1

|x |2

⎛
⎝
x1
x2
0

⎞
⎠⊗

⎛
⎝
x1
x2
0

⎞
⎠− 1

3
Id

⎞
⎠ . (1.13)

The restriction of H to ∂D� corresponds precisely to the homeotropic boundary condition
at the boundary of the cross-section ∂D� ⊆ ∂Ch

�,ρ where the outer normal is horizontal. We

observe that maps belonging to Asym
H

(D) are continuous in D (see Sect. 2), hence there is a

natural decompositionAsym
H

(D) = AN∪AS (with disjoint union) according to the respective
value at the origin Q(0) = ±e0, where e0 is the matrix given by (2.8). Indeed, ±e0 are the
only unit norm matrices invariant under the action of S

1 on S
4, so that equivariance, norm

constraint, and continuity imply this decomposition.

Our second main result discusses the nature of 2D-minimizers as the parameter λ � 0
varies, that is the belonging to the class AN or to the class AS. Note that fixing the cross-
section of the sample and varying the biaxial coherence length λ−1/2 is mathematically
equivalent, by rescaling, to fixing the material-dependent length λ−1/2 and varying the width
of the sample, which is physically more realistic.

Theorem 1.2 There exist 0 < λ0 < λ∗ < λ∗ < +∞ such that the following statements hold.

(i) The maps Q � ū with ū(z) = gH (±z) explicitly given by (4.34), are (positively)
uniaxial, they areminimizers of Eλ overAN, and localminimizers of Eλ overAsym

H
(D)

for every λ � 0. In addition, these maps are the unique absolute minimizers for
λ ∈ (λ∗,∞).

(ii) If λ ∈ [0, λ∗) then there exist minimizers Qλ of Eλ overAS. Moreover, these are local
minimizers of Eλ overAsym

H
(D), and they satisfy β̃ ◦ Qλ(D) = [−1, 1]. In addition, if

λ ∈ [0, λ∗), then minimizers overAS are the the only minimizers of Eλ overAsym
H

(D),
and uniqueness holds for λ < λ0. If λ > λ∗, then there is no minimizer of Eλ over
AS.

(iii) If λ = λ∗, then the maps Q in (i) and Qλ in (ii) are both minimizers of Eλ over
Asym

H
(D).
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The previous theorem provides a purely energetic explanation of the biaxial escape phe-
nomenon in 2D-biaxial nematics, at least under norm and axial symmetry constraints. The
escape mechanism here is explained in a completely different way compared to [9], where
complete biaxial escape in 2D is inferred in the low-temperature limit. In our case, the bound-
ary data (1.13) is trivial in π1(RP2), while in [9] its nontriviality implies that almost uniaxial
extensions cannot exist, even without the norm constraint. Indeed, according to claim (i), if
λ is very large (equivalently, when the size of the sample is large compared to the character-
istic length λ−1/2), then energy minimizers are purely positively uniaxial (and even explicit,
due to the norm constraint), because of the strong penalization of the biaxial phase induced
by the potential W . On the other hand, claim (ii) shows that reducing λ to smaller values
(equivalently, reducing the size the sample compared to λ−1/2) makes uniaxiality non nec-
essarily favorable. Indeed, for λ below the coexistence threshold λ∗, the biaxiality parameter
of minimizers attains its full range [−1, 1], and complete biaxial escape occurs.

The proof of Theorem 1.2 is presented in Sect. 4. As commented in more details there,
the cornerstone is Theorem 4.4 which gives an energy gap phenomenon between the infi-
mum of Dirichlet integral E0 over the class AN and the class AS together with a complete
classification of the corresponding optimal maps following the lines of [12]. The main
difficulties come from the conformal invariance of the Dirichlet integral in 2D and the associ-
ated concentration/compactness alternative with possible bubbling-off of harmonic spheres
along minimizing sequences (see the proof of Proposition 4.15) as the pointwise constraints
Q(0) = ±e0 are not weakly closed. This intermediate step and Theorem 1.2 can be seen as
analogues of the construction of small and large solutions for S

2-valued harmonic maps in
two dimensions, see [8, 26]. Borrowing the terminology from the S

2-valued case, the large
solutions Q in (i) escape from the (small) spherical cap of S

4 centered at −e0 containing
the image of the boundary datum H , as opposed to smalls solutions Qλ in (ii) (at least for λ
small enough) for which the escape phenomenon does not happen. In the critical case λ = λ∗,
bubbling-off of harmonic spheres cannot be excluded by a direct energetic comparison, and
existence or not of minimizers over the class AS remains to be established. Similarly, a
detailed analysis of Qλ minimizer over AS as λ increases to λ∗ has still to be performed. In
particular, it would interesting to determine whether or not the branch {Qλ} can be continued
beyond λ∗ as a branch of critical points. Since these issues do not affect our main line of
investigation, we do not pursue the analysis further, and we leave those as open questions.

In Sect. 5,we take advantage of the previous 2D result to describe the asymptotic behaviour
of minimizers in the 3D cylindrical domains Ch

�,ρ with homeotropic boundary condition in
the regime h � �. Our third main result below shows that, for such long “cigar shaped”
domains, any minimizing configuration must be singular, hence of split type in the sense of
[12].

Theorem 1.3 Let λ � 0 be a fixed number and λ0, λ∗ the values provided by Theorem 1.2.
Given 0 < 2ρ < � and a sequence hn → +∞ satisfying hn > �, set �n := C

hn
�,ρ and let

Q(n)
b be the homeotropic boundary data on ∂�n. If, for each n, Q(n) is a minimizer of Eλ

over Asym

Q(n)
b

(�n), then the following statements hold for n large enough.

(i) (Split Structure) If � <
√
λ∗/λ, then sing (Q(n)) �= ∅. As a consequence, Q(n) is of

split type and βn := β̃ ◦ Q(n) satisfies βn(�n) = [−1, 1].
(ii) (2D-reduction) If � <

√
λ0/λ and Q̂� denotes the unique minimizer of Eλ( ·;D�) over

Asym
H

(D�), then Q(n) → Q̂� strongly in W 1,2
loc (C

∞
� ) and in fact, locally smoothly in

C∞
� as n → +∞.

123



Torus-like solutions for the Landau-de Gennes mode... Page 9 of 85 136

(iii) (Singularities Ejection) If � <
√
λ0/λ, then sing (Q(n))∩ {x3 � 0} and sing (Q(n))∩

{x3 < 0} are both nonempty, each one of them contains an odd number of points,
sing (Q(n)) ⊆ {x3-axis} ∩ {hn − α � |x3| � hn − 1

α
} for some constant α � 1

independent of n, and Q(n) = −e0 on {x3-axis} ∩ {|x3| < hn − α}. In addition,
Card

(
sing (Q(n))

)
remains bounded as n → ∞.

This theorem shows that singularities occur purely for reasons of energy efficiency, in
analogywith the case ofminimizingharmonicmaps intoS

2 first described in [17].Claim (ii) in
the theorem above states that minimizers tend to become two-dimensional (i.e., independent
of x3) on each fixed bounded portion of the (smoothed) cylinder as the height goes to infinity.
For sufficiently thin cylinders (below the critical threshold

√
λ0/λ), 2D minimizers on the

cross sections assume the value−e0 at the origin by Theorem 1.2, so that negative uniaxiality
must occur on the symmetry axis for 3D minimizers. This property, in combination with
the boundary data, forces the presence of point singularities, and thus the split structure.
Finally, according to (iii), singularities have to escape to infinity along the symmetry axis
in a certain quantitative way, whereas full regularity on each fixed bounded portion of the
cylinders is inherited from the limiting map. From the presence of singularities, we derive
in Corollary 5.13 the instability of minimizers over Asym

Q(n)
b

(�n) in the full class A
Q(n)
b
(�n).

As a consequence, minimizers of Eλ over AQ(n)
b
(�n) are not symmetric and non uniqueness

holds, in analogy with our previous result [12, Corollary 7.15]. Such symmetry breaking
phenomena were already proved in [3] and [16] for minimizing harmonic maps into S

2 (i.e.,
for the Frank-Oseen model). Hence, our result is a natural counterpart for the Landau–de
Gennes model, in agreement with the numerical simulations in [10].

The proof of Theorem 1.3 relies on various energy identities leading to uniform a priori
bounds and compactness properties. But the heart of the matter is a 2D-rigidity result for
local minimizers in infinite cylinders, see Proposition 5.10. Relying on the 2D-uniqueness
property in Theorem 1.2, we obtain x3-independence by constructing comparison maps with
optimal energy growth, and to this purpose it is crucial to assume that the cylinders are
sufficiently thin. Our analysis also shows that the number of singularities is bounded and
that, near each tip of the cylinder, there must be an odd number of them. It remains an open
question whether or not there is exactly one singular point near each tip for h large enough.

The next result describes the asymptotic behaviour of minimizers over the equivariant
class in the opposite regime h � �. It shows that for such “pancake shaped” domains the
minimizing configurations must be smooth, hence of torus type in the sense of [12].

Theorem 1.4 Let λ � 0 be a fixed number. Given 0 < 2ρ < h and an increasing sequence
�n → +∞ satisfying �n >

√
2h, set�n := Ch

�n ,ρ
and let Q(n)

b be the homeotropic boundary

data on ∂�n. If, for each n, Q(n) is a minimizer of Eλ over Asym

Q(n)
b

(�n), then the following

statements hold for n large enough.

(i) (Torus Structure) We have sing (Q(n)) = ∅. As a consequence, Q(n) is of torus type,
βn := β̃ ◦ Q(n) satisfies βn(�n) = [−1, 1], and the level set {βn = −1} contains an
invariant horizontal circle mutually linked to the vertical axis.

(ii) (Asymptotic Behaviour) Q(n) → e0 strongly in W 1,2
loc (C

h∞) and in fact, locally

smoothly in Ch∞ as n → +∞.
(iii) (Biaxiality Ejection) For any t ∈ [−1, 1), there exist nt ∈ N and a value dt > 0

independent of n such that {βn � t} ∩ Ch
�n−dt

= ∅ for any n � nt .
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According to claim (ii), minimizers approach the constant map e0 on each fixed bounded
portion of the cylinder as the width increases to infinity. Indeed, the influence of the noncon-
stant part of the boundary data, which is present only on the curved part of ∂�n , fades as this
curved part is sent to infinity when �n → +∞. Then, full regularity near the symmetry axis
(and hence everywhere) is inherited from the limiting map, whence the torus type structure.
Furthermore, the local smooth convergence to a constant uniaxial map pushes the biaxial sets
to infinity, in such a way that they remain at finite distance from the lateral boundary.

The proof of Theorem 1.4 also relies on monotonicity formulae, local energy bounds and
compactness arguments. The first key estimate is a linear law for the growth of the total
energy with respect to � obtained through comparison maps. Refining it into a sublinear
estimate slightly in the interior (see Lemma 6.6) leads to the constancy of the limiting map
and to a uniform bound for the distance of the biaxial sets from the lateral boundary.

In our last main result, we discuss how the nature of minimizers of Eλ over the symmet-
ric class changes under deformations of the domain, in analogy with and complementing
Theorem 1.1 when varying the boundary data. Theorem 1.5 below refines the conclusions in
Theorems 1.3 and 1.4, and it shows how the transition from the “cigar shape” to the “pancake
shape” naturally leads to coexistence of torus and split minimizers under homeotropic bound-
ary data for domains of suitable limiting size. More precisely, starting from a cigar shape
domain provided by Theorem 1.3 where any minimizer is of split type, and then enlarging it
sufficiently we arrive at a pancake shape where any minimizer is of torus type by Theorem
1.4. Then Theorem 1.5 shows that split and torus minimizers must coexist in some domains
of intermediate size.The proof is similar in spirit to the one for Theorem 1.1 and it is still
based on persistence of smoothness and persistence of singularities.

Theorem 1.5 Letλ � 0 and h, �0, ρ > 0 be fixed numbers such that 2ρ < �0/6 and �0 < 3 h.
For � � �0, set �� := Ch

�,ρ and let Q(�)
b be the homeotropic boundary data on ∂��. Assume

that every minimizer of Eλ over Asym

Q
(�0)
b

(��0) is of split type (i.e., it has a non empty singular

set). Then there exist numbers �2 � �1 > �0 such that

(i) for every �0 � � < �1, every minimizer of Eλ over Asym

Q(�)
b

(��) is of split type (i.e.,

singular);
(ii) for every � > �2, every minimizer of Eλ overAsym

Q(�)
b

(��) is of torus type (i.e., smooth);

(iii) for � ∈ {�1, �2}, Eλ admits both a split and a torus minimizer over Asym

Q(�)
b

(��).

In the previous statement, we emphasize that the existence of �0 is not conditional thanks
to Theorem 1.3 and a simple rescaling of variables. Indeed, fixing a height h > 0, setting
ρ = �ρ̄ with ρ̄ > 0 small enough, and rescaling variables with respect to the width � > 0,
one obtains Eλ(·,Ch

�,ρ) = � E�2λ(·,Ch/�
1,ρ̄ ). Then, applying (i) in Theorem 1.3 to E�2λ(·,Ch/�

1,ρ̄ )

as � → 0 shows that for � > 0 sufficiently small, any minimizer of Eλ over Asym

Q(�)
b

(��)

must be singular. Concerning the values �1 and �2, we actually expect that �1 = �2, i.e.,
only one critical size of the domain provides the coexistence property, but it seems to be
a quite difficult problem. Existence of a singular minimizer in the symmetric class at the
intermediate sizes � = �1 and � = �2 indicates once again that a symmetry breaking occurs
for global minimizers of Eλ over the global classAQ(�)

b
(��). We shall prove in Corollary 6.12

that symmetry breaking still occurs in a neighborhood of � = �1 and � = �2, even for � > �2
when all minimizers in the symmetric class are smooth. This fact enlightens the difficulty of
proving or disproving axial symmetry of minimizers over the full class. For instance, it would
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be already very interesting to determine whether or not minimizers of Eλ overAQ(�)
b
(��) are

actually S
1-equivariant for � � �2 large enough.

To conclude, we would like to mention that all the results presented here should have an
analogue when the Lyuksyutov constraint is replaced by the Lyuksyutov (asymptotic) regime
as in [11, Section 4], and isotropic points playing the role of singular points. This will be the
object of future investigations.

2 Axisymmetric domains, symmetric criticality, and Euler–Lagrange
equations

2.1 Axially symmetric domains

In this preliminary subsection, we define the relevant class of cylindrical domains of interest
in the present paper. For geometric and topological properties of arbitrary axisymmetric
domains � ⊆ R

3, we refer to [12, Section 2].

First, we recall that the unit circle S
1 is identified with the subgroup of SO(3)made of all

rotations around the vertical x3-axis (see (2.1)), so that a matrix R ∈ M3×3(R) represents a
rotation of angle θ around the vertical axis iff it writes

R =
(
R̃ 0
0 1

)
with R̃ :=

(
cos θ − sin θ
sin θ cos θ

)
. (2.1)

Axisymmetry is defined accordingly.

Definition 2.1 A set � ⊆ R
3 is said to be axisymmetric (or S

1-invariant, or rotationally
symmetric) if it is invariant under the action of S

1, i.e., R · � = � for every R ∈ S
1.

Equivalently, � is axisymmetric if

� =
⋃

R∈S1
R · D� where D� := � ∩ {x2 = 0}.

For such domains, it is also useful to consider the (relatively) open subsets

D+
� := D� ∩ {x1 > 0} and D−

� := D� ∩ {x1 < 0} (2.2)

of the vertical plane {x2 = 0}, so that RπD±
� = D∓

� . Indeed, if I = � ∩ {x3-axis} then the
following obvious identities hold:

� \ I = S
1 · D+

� , ∂� ∪ I = S
1 · ∂D+

� , � = S
1 · D+

� , (2.3)

with ∂D+
� ⊆ D+

� ⊆ {x2 = 0}. Note that if � ⊆ R
3 is a bounded and smooth open set then

D� (orD±
�) is a bounded and smooth (resp. piecewise smooth and Lipschitz) relatively open

subset of the plane {x2 = 0}.
Remark 2.2 (homeotropic boundary data) We observe that if � is axisymmetric and C3-
smooth (resp. Ck,α-smooth with k � 3), then the same property holds for the function given
by the signed distance to the boundary. Hence its gradient is an S

1-equivariant map, and in
particular the outer normal field −→n (x) along ∂� is C2-smooth (resp. Ck−1,α-smooth) and
equivariant. As a consequence, the corresponding homeotropic boundary data given by

Qb(x) :=
(
−→n (x) ⊗ −→n (x) − 1

3
Id

)
(2.4)

123



136 Page 12 of 85 F. L. Dipasquale et al.

is C2-smooth (resp. Ck−1,α-smooth) and equivariant.

We shall be mainly concerned with axisymmetric domains � ⊆ R
3 which are home-

omorphic to a cylinder. To define properly those domains, let us first set some useful
notations.
Notation (rectangles & cylinders). Let h, � ∈ (0,∞] and y ∈ R

3.

(i) The rectangleRh
� centered at the origin and the rectangleR

h
� (y) centered at y ∈ {x2 =

0} are the sets
Rh

� := (−�, �) × {0} × (−h, h) and Rh
� (y) := y + Rh

� . (2.5)

(ii) The cylinder Ch
� centered at the origin and the cylinder Ch

� (y) centered at y ∈ R
3 are

the sets

Ch
� := {x21 + x22 < �2

}× {|x3| < h} , Ch
� (y) := y + Ch

� . (2.6)

We shall refer to h as the height and � as the thickness (or radius) of a cylinder.
In order to apply our boundary regularity theory in [12] for energy minimizers under S

1-
symmetry constraint, we need to consider some regularized version of the cylinders in (2.6).
To define those, we first recall that for p ∈ (1,∞), a p-disc centered at y = (y1, 0, y3) and
radius ρ > 0 included in the vertical plane {x2 = 0} is a set of the form

D(p)
ρ (y) := {x = (x1, 0, x3) ∈ R

3 : (|x1 − y1|p + |x3 − y3|p
)1/p

< ρ
}
.

We shall use p-discs with p = 4 to obtain inner C3-regularizations of rectangles and cylin-
ders. The scale of regularizationρ > 0will usually be a fixed number to be explicitly specified
in terms of h and � in the calculations.

Definition 2.3 (smoothed rectangles & cylinders) Let h, � > 0 and 0 < 2ρ < min{h, �}.
(i) For vertical rectangles Rh

� (resp. Rh
� (y)) as in (2.5), the corresponding smoothed ρ-

rectangle Rh
�,ρ (resp. Rh

�,ρ(y)) is the union of all 4-discs D(4)
ρ (z), z = (z1, z3) ∈

{x2 = 0}, contained in Rh
� (resp. Rh

� (y)).
(ii) For vertical cylindersCh

� andC
h
� (y) as in (2.6), the corresponding smoothed ρ-cylinder

Ch
�,ρ and Ch

�,ρ(y), y ∈ R
3, are defined as

Ch
�,ρ :=

⋃

R∈S1
R · Rh

�,ρ , Ch
�,ρ(y) := y + Ch

�,ρ .

The radius ρ is called smoothing scale ofRh
� and C

h
� . When it is not relevant, we shall simply

speak of smoothed rectangles and smoothed cylinders.

In view of the previous definition, Ch
�,ρ is axially symmetric and the same holds for Ch

�,ρ(y)

if and only if y belongs to the vertical axis, i.e., y = (0, 0, y3), y3 ∈ R. Moreover, Ch
�,ρ(y)∩

{x2 = 0} = Rh
�,ρ(y) whenever y ∈ {x2 = 0}.

Remark 2.4 The boundary of a smooth rectangle is of class C3,1 by our choice of D(p)
ρ (y)

with p = 4 (more generally, it is of classC p−1,1 for each integer p � 2). The radius ρ > 0 of
the approximating discs gives the size of the region near the angles on which smoothing takes
place. In addition, it is straightforward to check thatRh

�,ρ ↑ Rh
� and C

h
�,ρ ↑ Ch

� (and similarly
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for their translated counterparts) in the Hausdorff distance as ρ ↓ 0 as a consequence of the
elementary inclusions (recall that 0 < 2ρ < min{h, �})

Rh
�−ρ ∪ R

h−ρ
� ⊆ Rh

�,ρ ⊆ Rh
� , Ch

�−ρ ∪ C
h−ρ
� ⊆ Ch

�,ρ ⊆ Ch
� , (2.7)

and the obvious analogues for their translated counterparts.

2.2 Decomposition ofS0 into invariant subspaces

In order to give an efficient description of S
1-equivariant configurations, we will use the

following decomposition results from [12, Section 2] for the space S0 of admissible tensors.

Lemma 2.5 ([12, Lemmas 2.1 & 2.2, and Remark 2.3]) There is a distinguished orthonormal
basis

{
e0, e

(1)
1 , e(1)2 , e(2)1 , e(2)2

}
of S0 given by

e0 := 1√
6

⎛
⎝

−1 0 0
0 −1 0
0 0 2

⎞
⎠ , e(1)1 := 1√

2

⎛
⎝
0 0 1
0 0 0
1 0 0

⎞
⎠ , e(1)2 := 1√

2

⎛
⎝
0 0 0
0 0 1
0 1 0

⎞
⎠ ,

e(2)1 := 1√
2

⎛
⎝
1 0 0
0 −1 0
0 0 0

⎞
⎠ , e(2)2 := 1√

2

⎛
⎝
0 1 0
1 0 0
0 0 0

⎞
⎠ , (2.8)

such that the subspaces

L0 := Re0, L1 := Re(1)1 ⊕ Re(1)2 , L2 := Re(2)1 ⊕ Re(2)2 ,

are invariant under the induced action of S
1 on S0, namely, S0 � A → RARt ∈ S0, and

S0 = L0 ⊕ L1 ⊕ L2 � R ⊕ C ⊕ C. (2.9)

Moreover, the S
1-action on S0 corresponds to an S

1-action on each Lk by rotations of degree
k, in the sense that the induced S

1-action on R ⊕ C ⊕ C is given by

Rα · (t, ζ1, ζ2) = (t, eiαζ1, e
2iαζ2) ∀Rα ∈ S

1. (2.10)

As a straightforward consequence of the decomposition (2.9) in the orthonormal basis
(2.8), we derive the following explicit formulas for a tensor Q and its determinant.

Lemma 2.6 Elements Q ∈ S0 are in one-to-one (linear) correspondence with elements u =
(u0, u1, u2) ∈ R ⊕ C ⊕ C. This correspondence, denoted as Q � u, is given by

Q = 1√
2

⎛
⎜⎝

− u0√
3
+ Re(u2) Im(u2) Re(u1)

Im(u2) − u0√
3
− Re(u2) Im(u1)

Re(u1) Im(u1)
2u0√
3

⎞
⎟⎠ . (2.11)

In addition, it is isometric, i.e., |Q|2 = Tr(Q2) = |u|2 = u20 + |u1|2 + |u2|2, and

det Q = 1

2
√
2

[
2u0√
3

(
u20
3

+ 1

2
|u1|2 − |u2|2

)
+ Re(u21u2)

]
. (2.12)

The previous lemmas yield in the obvious way a (linear, isometric) correspondence
between Q-tensor fields on � and maps from � into R ⊕ C ⊕ C. The following corol-
lary is a direct consequence of (2.8), (2.9), and (2.11). The proof is elementary and left to
the reader.
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Corollary 2.7 Let � be an open subset of R
d . Elements Q ∈ W 1,2(�;S0) are in one-to-

one (linear) correspondence with elements u = (u0, u1, u2) ∈ W 1,2(�;R ⊕ C ⊕ C). This
correspondence, still denoted as Q � u, is given by relation (2.11) holding a.e. in �.
In addition, if Q � u, then |Q|2 = |u|2 and |∇Q|2 = |∇u|2 a.e. in �. In particular,
Q ∈ W 1,2(�;S

4) if and only if u ∈ W 1,2(�;S
4).

2.3 S
1-equivariantQ-tensor fields

We now specialize our previous discussion to S
1-equivariant Q-tensor fields on rotationally

invariant bounded open sets. It is natural to describe such sets and Q-tensor fields in terms
of cylindrical coordinates (r , x3, φ) (which of course reduce to polar coordinates (r , φ)
in the case of horizontal discs). This description yields the following refinement of the
decomposition in Corollary 2.7.

Lemma 2.8 Let� ⊆ R
3 be a bounded and axisymmetric open set andD+

� its vertical section

given by (2.2). If Q ∈ W 1,2
sym(�;S0) and Q � u = (u0, u1, u2) ∈ W 1,2(�;R⊕C⊕C) is the

corresponding map in the sense of Corollary 2.7, then u is S
1-equivariant with respect to the

action (2.10) on R⊕C⊕C. As a consequence, for each k ∈ {0, 1, 2}, uk can be decomposed
as

uk(x) = fk(r , x3)e
ikφ,

for functions fk ∈ W 1,2(D+
�, rdrdx3) which are C-valued for k = 1, 2, and R-valued for

k = 0. Thus,

|∇Q|2 = |∇ f0|2 + |∇ f1|2 + |∇ f2|2 + | f1|2 + 4 | f2|2
r2

a.e. in �, (2.13)

where |∇ fk |2 := |∂r fk |2 + ∣∣∂x3 fk
∣∣2. In particular, |∇Q|2 does not depend on φ, and

E0(Q) = π

∫

D+
�

(
|∇ f0|2 + |∇ f1|2 + |∇ f2|2 + | f1|2 + 4 | f2|2

r2

)
r drdx3 < ∞.

(2.14)

Proof In view of (2.10), the S
1-equivariance of Q translates into the identities

u0(Rαx) = u0(x), u1(Rαx) = eiαu1(x), u2(Rαx) = e2iαu2(x),

which hold for every Rα ∈ S
1 and a.e. x ∈ �. In terms of cylindrical coordinates, those

identities imply

u0(x) = f0(r , x3), u1(x) = f1(r , x3)e
iφ, u2(x) = f2(r , x3)e

2iφ, (2.15)

a.e. in �. Hence fk ∈ W 1,2(D+
�, rdrdx3) since uk ∈ W 1,2(�) for each k ∈ {0, 1, 2}.

Moreover, Corollary 2.7 yields

|∇Q|2 =
2∑

k=0

|∇uk |2 =
2∑

k=0

|∇ fk |2 + k2 | fk |2
r2

a.e. in �,

which proves (2.13). Finally, since the right hand side above only depends on (r , x3), applying
Fubini’s theorem leads to

∫

�

|∇uk |2 dx = 2π
∫

D+
�

|∇ fk |2 + k2 | fk |2
r2

r drdx3 < +∞.
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Then (2.14) follows summing this equality over k = 0, 1, 2. ��
Remark 2.9 It is straightforward to check that the previous lemma also holds in two dimen-
sions, i.e., if � = Dρ ⊆ R

2 is a disc of radius ρ > 0 centered at the origin. In this case, if
Q ∈ W 1,2

sym(Dρ;S0) and Q � u = (u0, u1, u2), then

uk(x) = fk(r)e
ikφ (2.16)

where (r , φ) are the polar coordinates, and each fk belongs toW 1,2((0, ρ), rdr). In addition,
(2.13) and (2.14) still holds under the forms

|∇Q|2 = |∇u|2 = ∣∣ f ′
0

∣∣2 + ∣∣ f ′
1

∣∣2 + ∣∣ f ′
2

∣∣2 + | f1|2 + 4 | f2|2
r2

a.e. in Dρ, (2.17)

and

1

2

∫

Dρ

|∇Q|2 dx = π

∫ ρ

0

(∣∣ f ′
0

∣∣2 + ∣∣ f ′
1

∣∣2 + ∣∣ f ′
2

∣∣2 + | f1|2 + 4 | f2|2
r2

)
r dr < ∞,

(2.18)

respectively.

The next result describes a fine property of the space W 1,2
sym(Dρ;S

4) in the 2D-case Dρ ⊆
R
2. Symmetry and norm constraints yield the inclusion W 1,2

sym(Dρ;S
4) ⊆ C0(Dρ;S

4), a
property which will be of crucial importance for the 2D-minimization problems discussed
in Sect. 4. Up to a rescaling, we may assume without loss of generality in the following
statement that ρ = 1.

Lemma 2.10 Let D ⊆ R
2 be the unit disc. If Q ∈ W 1,2

sym(D;S
4), then

(i) Q ∈ C0(D;S
4) and either Q(0) = e0 or Q(0) = −e0.

Moreover, for {Qn} ⊆ W 1,2
sym(D;S

4) and Q∗ ∈ W 1,2(D;S0), the following statements hold.

(ii) If Qn⇀Q∗ weakly in W 1,2(D), then Q∗ ∈ W 1,2
sym(D;S

4) and Qn → Q∗ in
C0
loc(D\{0}). In particular, Q∗|∂D → Qn |∂D uniformly on ∂D.

(iii) If Qn → Q∗ strongly in W 1,2(D) then Q∗ ∈ W 1,2
sym(D;S

4), Q∗(0) ≡ Qn(0) for n
large enough, and Qn → Q∗ uniformly on D.

Claims (i), (i i ), and (ii i ) still hold replacing Q, Qn, and Q∗ with the corresponding maps
with values into “the unit sphere” of R ⊕ C ⊕ C.

Proof (i) According to Corollary 2.7, we write Q � u = (u0, u1, u2) with uk ∈ W 1,2(D),
k = 0, 1, 2. By Remark 2.9 above, each function fk in (2.16) belongs to W 1,2((0, 1), rdr).

Then the 1D-Sobolev embedding implies that fk ∈ C
0, 12
loc ((0, 1]), and in turn Q ∈

C
0, 12
loc (D\{0}) ⊆ C0(D\{0}) by S

1-equivariance. Then it only remains to prove continuity
at the origin. To this purpose, we fix 0 < ρ′ < ρ < 1. Combining Young’s inequality with
(2.18) and Remark 2.9, we compute
∣∣∣| f1(ρ)|2 − ∣∣ f1(ρ′)

∣∣2
∣∣∣+
∣∣∣| f2(ρ)|2 − ∣∣ f2(ρ′)

∣∣2
∣∣∣ =

∣∣∣∣
∫ ρ

ρ′
∂r | f1|2 dr

∣∣∣∣+
∣∣∣∣
∫ ρ

ρ′
∂r | f2|2 dr

∣∣∣∣

�
∫ ρ

ρ′

(∣∣ f ′
1

∣∣2 + | f1|2
r2

)
r dr +

∫ ρ

ρ′

(∣∣ f ′
2

∣∣2 + | f2|2
r2

)
r dr
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�
∫ ρ

ρ′

(∣∣ f ′
0

∣∣2 + ∣∣ f ′
1

∣∣2 + ∣∣ f ′
2

∣∣2 + | f1|2 + 4 | f2|2
r2

)
r dr

� 1

2π

∫

Dρ

|∇Q|2 dx . (2.19)

Since Q belongs to W 1,2(D), we have
∫
Dρ

|∇Q|2 dx → 0 as ρ → 0. Hence both �1 :=
limr→0 | f1(r)| and �2 := limr→0 | f2(r)| exist. On the other hand, it follows from (2.18) that
�1 = �2 = 0. Thus, both f1 and f2 extend by continuity to elements of C0([0, 1];C) with
f1(0) = f2(0) = 0. In turn, (2.16) yields uk ∈ C0(D;C) with uk(0) = 0 for k = 1, 2.
Finally, combining Corollary 2.7 with (2.16) leads to |Q(reiφ)|2 = | f0(r)|2 + | f1(r)|2 +

| f2(r)|2 ≡ 1. Since f1(0) = f2(0) = 0, we have | f0(r)| → 1 as r → 0. Moreover,
either f0(r) → 1 or f0(r) → −1 as r → 0. Indeed, if the limit does not exist, then
lim infr→0 f0(r) = −1 < 1 = lim supr→0 f0(r). By continuity, it would imply the existence
of rn ↓ 0 such that f0(rn) ≡ 0, and leading to the identity 1 ≡ | f0(rn)|2 + | f1(rn)|2 +
| f2(rn)|2 → 0 as n → ∞, a contradiction. Thus, f0 extends by continuity to a function in
C0([0, 1];R) with f0(0) = ±1, and in turn u ∈ C0(D;S

4) with u(0) = (±1, 0, 0). As a
consequence, Q � u is continuous on D, and Q(0) = ±e0 which proves (i).

(i i) In view of (i) all the maps involved are continuous. Moreover, S1-equivariance allows

us to use the continuous embedding W 1,2((0, 1), rdr) ↪→ C
0, 12
loc ((0, 1]) and the compact

embedding C
0, 12
loc ((0, 1]) ↪→ C0

loc((0, 1]) to deduce that Qn → Q∗ locally uniformly on
D\{0}. As the convergence is also pointwise onD\{0}, both equivariance and normconstraints
persist, and we have Q∗ ∈ W 1,2

sym(D;S
4)∩C0(D). Moreover Qn |∂D → Q∗|∂D uniformly on

∂D.

(i i i) Assume now Qn → Q∗ strongly in W 1,2(D). By (i i), it only remains to prove
uniform convergence in a (small) disc centered at the origin. To achieve this, it suffices to
show that Qn(0) ≡ Q∗(0) for n large enough and that the sequence {Qn} is equicontinuous
at the origin. To check these properties, we first notice that (2.19) holds for each Qn . By (i),
we can choose ρ′ = 0 and any fixed ρ ∈ (0, 1) to obtain from (2.19),

∣∣∣ f (n)1 (ρ)

∣∣∣
2 +

∣∣∣ f (n)2 (ρ)

∣∣∣
2

� 1

2π

∫

Dρ

|∇Qn |2 dx . (2.20)

Letting n → ∞ above, the same inequality holds for the components f ∗
k , k = 1, 2, of Q∗.

By the Vitali–Hahn–Saks theorem (see e.g. [5, Theorem 1.30]), the strong W 1,2-
convergence of the sequence {Qn} implies that {|∇Qn |2} is equiintegrable. Combining this
fact with (2.20), it follows that { f (n)1 } and { f (n)2 } are equicontinuous at the origin. Moreover,
there exists ρ̄ > 0 such that

∫

Dρ̄

|∇Qn |2 dx +
∫

Dρ̄

|∇Q∗|2 dx � 3π

2
for n large enough.

Hence
∣∣ f (n)1

∣∣2+∣∣ f (n)2

∣∣2 � 3
4 in [0, ρ̄] for n large enough,which in turn implies that

∣∣ f (n)0

∣∣ � 1
2

in [0, ρ̄] for n large enough. By continuity, it follows that each f (n)0 has constant sign in [0, ρ̄]
for n large enough. The same property holds for f ∗

0 , and the sign of f (n)0 must be the same
of f ∗

0 for n large enough because of the pointwise convergence in Dρ̄ \ {0}. This proves that
Qn(0) ≡ Q∗(0) for n large enough.
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Finally, combining the pointwise inequalities on f (n)0 , the norm constraint, and (2.20), we
have for every 0 < ρ � ρ̄,

∣∣∣ f (n)0 (ρ) − f (n)0 (0)
∣∣∣ =

1 −
∣∣∣ f (n)0 (ρ)

∣∣∣
2

∣∣∣ f (n)0 (ρ) + f (n)0 (0)
∣∣∣

�
∣∣∣ f (n)1 (ρ)

∣∣∣
2 +

∣∣∣ f (n)2 (ρ)

∣∣∣
2

� 1

2π

∫

Dρ

|∇Qn |2 dx .

Hence the sequence { f (n)0 } is also equicontinuous at the origin by the Vitali–Hahn–Saks
theorem.Goingback to (2.16),wededuce that themaps {u(n)} are equicontinuous at the origin,
and thus the same holds for {Qn} which completes the proof of the uniform convergence.

The final claim concerning the corresponding maps into R ⊕ C ⊕ C follows taking scalar
products with the orthonormal basis in (2.8). ��

With Lemma 2.10 in hands, we can easily prove that W 1,2-tensor fields on a 3D-
axisymmetric domain � have a well-defined trace on the vertical axis.

Corollary 2.11 Let � ⊆ R
3 be a bounded and axisymmetric open set with Lipschitz bound-

ary, and set I := � ∩ {x3-axis}. There is a (strongly) continuous trace operator Tr :
W 1,2

sym(�;S
4) → L1(I ; {±e0}) satisfying Tr Q = Q|I whenever Q ∈ W 1,2

sym(�;S
4)∩C0(�).

Proof We first notice that for � > 0 small enough and h > 0 large enough, the set � ∩ Ch
�

is (equivariantly) biLipschitz homeomorphic to a finite union of disjoint S
1-invariant closed

cylinders, the homeomorphismbeing the identity on the vertical axis. Hence, up to a change of
variables, it is enough to construct the trace operator when the domain is an arbitrary cylinder
to have a well defined induced operator Tr : W 1,2

sym(� ∩ Ch
� ;S

4) → L1(I ; {±e0}). In turn,
the conclusion follows by composition with the continuous restriction operator W 1,2(�) →
W 1,2(� ∩ Ch

� ).
Assuming now that � = Ch

� = D� × (−h, h) = D� × I , then we have

W 1,2
sym(C

h
� ;S

4) ⊆ L2(I ;W 1,2
sym(D�;S

4)
) ⊆ L1(I ;W 1,2

sym(D�;S
4)
)

with continuous inclusions. In view of Lemma 2.10 the mapping W 1,2
sym(D�;S

4) � Q →
Q(0) ∈ {±e0} is well defined and (strongly) continuous. Hence, by composition of this
map with the inclusion maps above, we have a well defined and (strongly) continuous map
Tr : W 1,2

sym(C
h
� ;S

4) → L1(I ; {±e0}) with all the desired properties. ��

2.4 Existence of minimizers and Euler–Lagrange equations

We recall from [12] the following results about “symmetric criticality” and existence of
minimizers over the class Asym

Qb
(�). Even if the results were stated in case of 3D domain,

their proofs hold with obvious modifications in the planar case, i.e., when� is disc a centered
at the origin.

Proposition 2.12 ([12, Proposition 6.1 and 6.2]) Let� ⊆ R
3 be a bounded and axisymmetric

open set.

(i) If Qλ ∈ W 1,2
sym(�;S

4) is a critical point of Eλ over W 1,2
sym(�;S

4), then Qλ is a critical
point of Eλ among all maps W 1,2(�;S

4).
(ii) If ∂� is Lipschitz regular and Qb ∈ Lip(∂�;S

4) is S
1-equivariant, then Asym

Qb
(�) is

not empty and there exists at least one minimizer of Eλ over Asym
Qb

(�).
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In other words, critical points of Eλ among equivariant compactly supported perturbations
preserving the S

4-constraint are critical points with respect to every compactly supported
perturbation still preserving the S

4-constraint (i.e., even with respect to those which are not
equivariant). In other words, they are weak solutions to (1.6).

Remark 2.13 For a map Q ∈ W 1,2
sym(�;S

4), the energy functional (1.3) can be rewritten in
terms the correspondence Q � u = ( f0, f1eiφ, f2ei2φ) in Lemma 2.8. By (2.12), we have

β̃( f ) := β̃(Q) = 3
√
6 det Q = f0

(
f 20 + 3

2
| f1|2 − 3 | f2|2

)
+ 3

√
3

2
Re( f 21 f2),

(2.21)

where f := ( f0, f1, f2). Combining identity (1.4) with (2.14) yields

Eλ(Q) = π

∫

D+
�

(
|∇ f |2 + | f1|2 + 4 | f2|2

r2
+ 2λ

1 − β̃( f )

3
√
6

)
rdrdx3 . (2.22)

If Q is a critical point of Eλ among equivariant compactly supported perturbations (preserv-
ing the S

4-constraint), then Q weakly solves (1.6) from the proposition above. To rephrase
the equations in terms of f , we may project (1.6) onto the orthonormal frame (2.8) or, equiv-
alently, take variations in the energy functional (2.22). The criticality condition (1.6) then
translates into the followingnonlinear system for f = ( f0, f1, f2) ∈ W 1,2(D+

�;S
4, rdrdx3),

namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2r f0 + 1

r
∂r f0 + ∂2x3 f0 = − |∇Q|2 f0 + λ√

6

(
| f2|2 − f 20 − 1

2
| f1|2 + β̃( f ) f0

)
,

∂2r f1 + 1

r
∂r f1 + ∂2x3 f1 = − |∇Q|2 f1 − 1

r2
f1 + λ√

6

(
−√

3 f2 f1 − f0 f1 + β̃( f ) f1
)
,

∂2r f2 + 1

r
∂r f2 + ∂2x3 f2 = − |∇Q|2 f2 − 4

r2
f2 + λ√

6

(
−

√
3

2
f 21 + 2 f0 f2 + β̃( f ) f2

)
,

(2.23)

with β̃( f ) as in (2.21) and |∇Q|2 as in (2.13), both depending only on f = ( f0, f1, f2).

Remark 2.14 (2D-case) In Sect. 4 (mostly), we shall consider the two dimensional case
� = Dρ ⊆ R

2. To differentiate the 2D from the 3D case, we shall use the notation
Eλ(Q,Dρ) (instead of Eλ) for the 2D-energy of a configuration Q ∈ W 1,2

sym(Dρ;S
4). In

view of Remark 2.9, and as in (2.22), the energy of Q � u = ( f0, f1eiφ, f2ei2φ) can be
written in terms of f , leading to

Eλ(Q,Dρ) = π

∫ ρ

0

(∣∣ f ′∣∣2 + | f1|2 + 4 | f2|2
r2

+ 2λ
1 − β̃( f )

3
√
6

)
rdr .

Then the criticality condition (in terms of f ) for the functional Eλ is almost identical to
(2.23). It is obtained from it simply neglecting in each equation the terms ∂2x3 and ∂x3 in the
left hand side and the right hand side respectively.
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3 Coexistence of smooth and singular minimizers

3.1 Regularity theory

The purpose of this subsection is to gather (and slightly refine) the main regularity results
and tools obtained in [11, 12] to have them at disposal in the most convenient formwhen they
will be repeatedly used in the next subsections. To this end, let us recall the usual definition
of singular set for a map Q defined on an open set �. It is then defined as

sing(Q) := � \ {x ∈ � : Q is continuous in a neighborhood ofx
}
.

The following interior regularity theorem, even if not explicitly stated in [12], is a direct
consequence of the discussion in [12, Section 6]. In particular, formula (3.2) below is a
combination of the strong W 1,2-convergence of the rescaled maps Qx̄,ρ

λ together with the
explicit form (3.1) of all possible blow-up limits at a singular point. In our statement below,
we require Lipschitz regularity of the boundary only to ensure that the W 1,2-trace operator
on ∂� is well defined.

Theorem 3.1 ([12], interior regularity) Let� ⊆ R
3 be a bounded and axisymmetric open set

with Lipschitz boundary, and Qλ ∈ W 1,2
sym(�;S

4)minimizing Eλ among all Q ∈ W 1,2
sym(�;S

4)

satisfying Q = Qλ on ∂�. Then Qλ ∈ Cω(�\sing(Qλ)) and sing(Qλ) ⊆ {x3-axis} ∩ � is
locally finite in �. In addition, for every x̄ ∈ sing(Qλ), there exist a rotation Rα ∈ S

1 and
Q∗ ∈ {±Q(α)} such that

(i) Qx̄,ρ
λ → Q∗ strongly in W 1,2

loc (R
3) as ρ → 0;

(ii) ‖Qx̄,ρ
λ − Q∗‖C2(B2\B1) = O(ρν) as ρ → 0 for some ν > 0;

where Qx̄,ρ
λ (x) := Qλ(x̄ + ρx) and

Q(α)(x) := Rα · 1√
6

1

|x |

⎛
⎝

−x3 0
√
3x1

0 −x3
√
3x2√

3x1
√
3x2 2x3

⎞
⎠ . (3.1)

In particular,

lim
ρ→0

1

ρ

∫

Bρ(x̄)

1

2
|∇Qλ|2 dx = lim

ρ→0

1

ρ
Eλ
(
Qλ, Bρ(x̄)

) = 4π for every x̄ ∈ sing(Qλ).

(3.2)

Regularity at the boundary holds whenever the boundary of � and the boundary data are
smooth enough. In this case, the singular set is made of finitelymany points inside the domain
�.

Theorem 3.2 ([12], regularity up to the boundary) Let� ⊆ R
3 be a bounded and axisymmet-

ric open set with boundary of class C3, and let Qb ∈ C1,1(∂�;S
4) be an S

1-equivariant map.
If Qλ is a minimizer of Eλ overAsym

Qb
(�), then Qλ ∈ Cω(�\sing(Qλ))∩C1,α(�\sing(Qλ))

for every α ∈ (0, 1) and sing(Qλ) is a finite subset of � ∩ {x3-axis}. Moreover,

(i) if Qb ∈ C2,α(∂�), then Qλ ∈ C2,α(�\sing(Qλ));
(ii) if ∂� is of class Ck,α and Qb ∈ Ck,α(∂�)with k � 3, then Qλ ∈ Ck,α(�\sing(Qλ));
(iii) if ∂� is analytic and Qb ∈ Cω(∂�), then Qλ ∈ Cω(�\sing(Qλ)).
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Those two theorems rest on analytical tools that we shall repeatedly use. The first one is
a monotonicity formula for the energy on balls, and we have to distinguish between balls
inside the domain and balls centered at the boundary. Our statement below about the interior
monotonicity formula is slightly different from the one in [12, Proposition 6.6] (in the sense
that we do not impose here a smooth boundary data), but a quick inspection of the proof
(which is based on [11, Proposition 2.4]) reveals that smoothness at the boundary is only
used to establish the boundary monotonicity formula. Concerning the boundary case, the
formula in [12, Proposition 6.6] involve constants depending only on λ, the domain �, and
the boundary data. We provide in Proposition 3.4 below a statement with a control on those
constant which is transparent from the proof of [12, Proposition 6.6].

Proposition 3.3 ([11, 12], interior monotonicity formula) Let � ⊆ R
3 be a bounded and

axisymmetric open set with Lipschitz boundary, and Qλ ∈ W 1,2
sym(�;S

4) minimizing Eλ
among all Q ∈ W 1,2

sym(�;S
4) satisfying Q = Qλ on ∂�. Then,

1

ρ
Eλ
(
Qλ, Bρ(x̄)

)− 1

σ
Eλ
(
Qλ, Bσ (x̄)

)

=
∫

Bρ(x̄)\Bσ (x̄)
1

|x − x̄ |
∣∣∣∣

∂Qλ

∂|x − x̄ |
∣∣∣∣
2

dx + 2λ
∫ ρ

σ

(
1

t2

∫

Bt (x̄)
W (Qλ) dx

)
dt

for every x̄ ∈ � and 0 < σ < ρ < dist(x̄, ∂�).

Proposition 3.4 ([11, 12], boundary monotonicity formula) Let �, L > 0 and � ⊆ R
3 a

bounded and axisymmetric open set with boundary of class C3. Let Qb ∈ C1,1(∂�;S
4) be

an S
1-equivariant map satisfying ‖Qb‖C1(∂�) � L. If λ ∈ [0,�] and Qλ is a minimizer of

Eλ over Asym
Qb

(�), then

1

ρ
Eλ
(
Qλ, Bρ(x̄) ∩ �

)− 1

σ
Eλ
(
Qλ, Bσ (x̄) ∩ �

)
� −K∗(ρ − σ)

+
∫
(
Bρ(x̄)\Bσ (x̄)

)
∩�

1

|x − x̄ |
∣∣∣∣

∂Qλ

∂|x − x̄ |
∣∣∣∣
2

dx + 2λ
∫ ρ

σ

(
1

t2

∫

Bt (x̄)∩�
W (Qλ) dx

)
dt

for every x̄ ∈ ∂� and every 0 < σ < ρ < r∗, where the radius r∗ > 0 only depends on �,
and K∗ > 0 is a constant depending only on �, L, and �.

The second main ingredient we need to emphasize is an epsilon-regularity result, con-
sequence of a more general regularity theorem in [11, Theorem 2.12 & Proposition 2.18].
Here again, we have to distinguish the interior and the boundary case, and our statements
below provide a better control on the involved constants inherited from their proofs (see [12,
Section 6] and [11, Section 2]).

Proposition 3.5 ([11, 12], interior ε-regularity) Let � > 0 and � ⊆ R
3 be a bounded

and axisymmetric open set with Lipschitz boundary. Let λ ∈ [0,�] and Qλ ∈ W 1,2
sym(�;S

4)

minimizingEλ among all Q ∈ W 1,2
sym(�;S

4) satisfying Q = Qλ on ∂�. There exist a universal
constant εin > 0 such that for every ball Br (x0) ⊆ � with r small enough (depending only
on �), the condition

1

r

∫

Br (x0)
|∇Qλ|2 dx � εin

4

implies Qλ ∈ Cω(Br/8(x0)), and ‖∇k Qλ‖L∞(Br/16(x0)) � Ckr−k for each k ∈ N and a
constant Ck depending only on k.
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Sketch of the proof We consider the universal constant εin > 0 provided by [11, Corollary
2.19]. By Proposition 3.3, Qλ satisfies the interior monotonicity formula which allows us to
argue as in [11, proof of Lemma 2.6] and obtain

sup
Bρ(x̄)⊆Br/2(x0)

1

ρ

∫

Bρ(x̄)

1

2
|∇Qλ|2 dx � sup

Bρ(x̄)⊆Br/2(x0)

1

ρ
Eλ
(
Qλ, Bρ(x̄)

)

� 2

r
Eλ
(
Qλ, Br (x0)

)
� 1

r

∫

Br (x0)
|∇Qλ|2 dx + εin

4
� εin

2

for r small enough (depending only on �). By Proposition 2.12, Qλ is a weak solution of
(1.6) in �. Hence [11, Corollary 2.19] applies, and we conclude that Qλ ∈ Cω(Br/8(x0))
with the announced estimates. ��

Compared to [11, 12], we provide below a localized version (in terms of the data) of
the boundary epsilon-regularity. This statement will be of first importance when varying
the domain �. The arguments remain essentially the same so that we only sketch the main
changes. The first version we state here holds under uniform smallness of the scaled Dirichlet
integral.

Proposition 3.6 ([11, 12], boundary ε-regularity 1) Let �, L > 0 and � ⊆ R
3 a bounded

and axisymmetric open set with boundary of class C3. Let Qb ∈ C1,1(∂�;S
4) be an S

1-
equivariant map. Let λ ∈ [0,�] and Qλ be a minimizer of Eλ over Asym

Qb
(�). Let x∗ ∈ ∂�

and r∗ > 0 be such that ‖Qb‖C1,1(∂�∩Br∗ (x∗)) � L. There exist ε̄bd > 0 and κ̄ ∈ (0, 1)
depending only on ∂� ∩ Br∗(x∗) such that for every x0 ∈ ∂� ∩ Br∗/4(x∗) and every radius
r ∈ (0, r∗/4) small enough (depending only on ∂� ∩ Br∗(x∗), �, and L), the condition

sup
Bρ(x̄)⊆Br (x0)

1

ρ

∫

Bρ(x̄)∩�
|∇Qλ|2 dx � ε̄bd

implies Qλ ∈ Cω(Bκ̄r (x0)∩�)∩C1,α(Bκ̄r (x0)∩�) for every α ∈ (0, 1) with the estimate
‖∇Qλ‖L∞(Bκ̄r (x0)∩�) � Cr−1 and a constant C > 0 depending only on ∂� ∩ Br∗(x∗) and
L. In addition, if ∂�∩ Br∗(x∗) is of class Ck,α (of class C3 for k = 2) and Qb ∈ Ck,α(∂�∩
Br∗(x∗)) with k � 2, then Qλ ∈ Ck,α(Bκ̄r/2(x0) ∩ �) and ‖Qλ‖Ck,α(Bκ̄r/2(x0)∩�) � Ck,α,r

for a constant Ck,α,r > 0 depending only on r, ∂� ∩ Br∗(x∗), and ‖Qb‖Ck,α(∂�∩Br∗ (x∗)).

Sketch of the proof Since ∂� is of class C3, we can find δ > 0 such that the nearest point
projection π� on ∂� is well defined and of class C2 in the 2δ-tubular neighborhood of
∂� ∩ Br∗/2(x∗). Then we argue as in [11, Section 2.2], and we consider the reflection of
Qλ across ∂� given by [11, (2.22)] and denoted by Q̂λ. Then we choose r ∈ (0, δ/2) small
enough in such a way that π�(Br (y)) ⊆ ∂� ∩ B2r (y) and σ�(Br (y)) ⊆ B2r (y) for every
y ∈ ∂� ∩ Br∗/2(x∗), where σ� := 2π� − id is the geodesic reflection across ∂�.

Arguing as in the proof of [11, Lemma 2.10], there exists a constant κ ∈ (0, 1) depending
only on ∂� ∩ Br∗(x∗) such that

sup
Bσ (z)⊆Bκr (x0)

1

σ

∫

Bσ (z)
|∇ Q̂λ|2 dx � sup

Bρ(x̄)⊆Br (x0)

C1

ρ

∫

Bρ(x̄)∩�
|∇Qλ|2 dx + C2r � C1ε̄bd + C2r ,

for a constant C1 > 0 depending only on ∂� ∩ Br∗(x∗), and a constant C2 > 0 depending
only on ∂�∩Br∗(x∗) and L . Thenwe choose ε̄bd and r in such away thatC1ε̄bd+C2r � εbd,
where εbd > 0 is the constant provided by [11, Corollary 2.17] (note that εbd only depends
on ∂� ∩ Br∗(x∗)). By Proposition 2.12, Qλ is a weak solution of (1.6) in �. By our choice
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of εbd > 0, the proofs of [11, Corollary 2.17 and Corollary 2.20] apply and lead to the main
conclusions with κ̄ := κ/4. Once the gradient estimate is obtained, higher order estimates
follow from standard elliptic theory (see e.g. [15]). ��

Combining Proposition 3.6 with the boundary monotonicity formula in Proposition 3.4,
we recover the following (more usual) epsilon-regularity at the boundary, which holds under
smallness of the Dirichlet integral in a neighborhood of a single point.

Corollary 3.7 ([11, 12], boundary ε-regularity 2) Let �, L > 0 and � ⊆ R
3 a bounded

and axisymmetric open set with boundary of class C3. Let Qb ∈ C1,1(∂�;S
4) be an S

1-
equivariant map such that ‖Qb‖C1,1(∂�) � L. Let λ ∈ [0,�] and Qλ a minimizer of Eλ
over Asym

Qb
(�). There exist ε̄′

bd > 0 and κ̄ ′ ∈ (0, 1) depending only on � such that for
every x0 ∈ ∂� and every radius r > 0 small enough (depending only on �, �, and L), the
condition

1

r

∫

Br (x0)∩�
|∇Qλ|2 dx � ε̄′

bd

implies Qλ ∈ Cω(Bκ̄ ′r (x0)∩�)∩C1,α(Bκ̄ ′r (x0)∩�) for every α ∈ (0, 1) with the estimate
‖∇Qλ‖L∞(Bκ̄ ′r (x0)∩�) � Cr−1 and a constant C > 0 depending only on � and L. In
addition, if ∂� is of class Ck,α (of class C3 for k = 2) and Qb ∈ Ck,α(∂�) with k � 2,
then Qλ ∈ Ck,α(Bκ̄ ′r/2(x0)∩�) and ‖Qλ‖Ck,α(Bκ̄ ′r/2(x0)∩�) � Ck,α for a constant Ck,α > 0

depending only on �, and ‖Qb‖Ck,α(∂�).

Proof Using the boundary monotonicity formula in Proposition 3.4, we can argue as [11,
Proof of Lemma 2.6, Step 2] to show that

sup
Bρ(x̄)⊆Br/6(x0)

1

ρ
Eλ(Qλ, Bρ(x̄) ∩ �) � 4

r
Eλ(Qλ, Br (x0) ∩ �) + C1r ,

for a constant C1 > 0 depending only on �, L , and �. Hence,

sup
Bρ(x̄)⊆Br/6(x0)

1

ρ

∫

Bρ(x̄)∩�
|∇Qλ|2 dx � 4

r

∫

Br (x0)∩�
|∇Qλ|2 dx + C2r ,

for r > 0 small and a further constant C2 > 0 depending only on �, L , and �.
Next we set r∗ := 4, and we consider a finite covering of ∂� by balls B1(xk∗), k =

1, . . . , K . We denoted by ε̄kbd and κ̄k the constants provided by Proposition 3.6 with x∗ = xk∗ .
Choosing ε̄′

bd := 1
8 mink ε̄kbd, κ̄ ′ := 1

6 mink κ̄k , and then r > 0 small enough such that
C2r � ε̄′

bd (depending only on �, �, and L), we obtain that Qλ satisfies

sup
Bρ(x̄)⊆Br/6(x0)

1

ρ

∫

Bρ(x̄)∩�
|∇Qλ|2 dx � ε̄kbd,

for an index k such that x0 ∈ ∂�∩B1(xk∗). Then the conclusion follows from Proposition 3.6.
��

Remark 3.8 (Locally flat geometry) In the following sections, we shall consider the situation
where, for some x∗ ∈ {x3-axis} and r∗ > 0, � ∩ B2r∗(x∗) = x∗ + {±x3 > 0} ∩ B2r∗(0) and
Qb = e0 on ∂� ∩ B2r∗(x∗) = x∗ + {x3 = 0} ∩ B2r∗(0). According to [11, Remark 2.5] (see
the proof of [12, Proposition 6.6]), if Qλ is as in Proposition 3.6, then

1

ρ
Eλ
(
Qλ, Bρ(x̄) ∩ �

)− 1

σ
Eλ
(
Qλ, Bσ (x̄) ∩ �

)
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=
∫
(
Bρ(x̄)\Bσ (x̄)

)
∩�

1

|x − x̄ |
∣∣∣∣

∂Qλ

∂|x − x̄ |
∣∣∣∣
2

dx + 2λ
∫ ρ

σ

(
1

t2

∫

Bt (x̄)∩�
W (Qλ) dx

)
dt

(3.3)

for every x̄ ∈ ∂� ∩ B2r∗(x∗) and 0 < ρ < σ < 2r∗ − |x∗ − x̄ |. As in [11, Remark 2.7], it
implies that

sup
Bρ(x̄)⊆Br/6(x0)

1

ρ
Eλ(Qλ, Bρ(x̄) ∩ �) � 4

r
Eλ(Qλ, Br (x0) ∩ �)

for every x0 ∈ ∂� ∩ Br∗(x∗) and 0 < r < r∗. Repeating the proof of Corollary 3.7, we can
apply Proposition 3.6 to obtain the existence of universal constants ε

�
bd > 0 and κ� ∈ (0, 1),

such that for every x0 ∈ ∂�∩ Br∗/4(x∗) and r ∈ (0, r∗/4) small enough (depending only on
�), the condition

1

r

∫

Br (x0)∩�
|∇Qλ|2 dx � ε

�
bd

implies the same conclusions as in Proposition 3.6 in Bκ�r (x0) ∩ �.

3.2 Persistence of smoothness

We now apply the regularity theory of the previous subsection to show that absence of
singularities in energy minimizing configurations (within the equivariant class) is a strongly
W 1,2-open/closed property.

Lemma 3.9 Let (Q∗, λ∗) and a sequence {(Qn, λn)} in W 1,2
sym(Br ;S

4)× [0,∞) be such that
Qn → Q∗ strongly in W 1,2(Br ) and λn → λ∗ as n → ∞. Assume that Q∗ is minimizing
Eλ∗ among all Q ∈ W 1,2

sym(Br ;S
4) satisfying Q = Q∗ on ∂Br , and that Qn is minimizing Eλn

among all Q ∈ W 1,2
sym(Br ;S

4) satisfying Q = Qn on ∂Br .

(i) If sing(Q∗) ∩ Br = ∅, then for every 0 < ρ < r , there exists an integer nρ such that
sing(Qn) ∩ Bρ = ∅ whenever n � nρ .

(ii) If sing(Qn) ∩ Br = ∅ for every n, then sing(Q∗) ∩ Br = ∅.
Proof We start proving claim (i). Fix a radius 0 < ρ < r , and assume by contradiction that
there exists a (not relabeled) subsequence such that sing(Qn)∩ Bρ �= ∅ for every n. Then we
choose for each n a point xn ∈ sing(Qn)∩ Bρ . Extracting a further subsequence if necessary,
we may assume that xn → x∗ ∈ Bρ . On the other hand, since Q∗ is smooth in Br , we can
find a small enough radius 0 < σ < r − ρ such that

1

σ

∫

Bσ (x∗)
|∇Q∗|2 dx � εin

8
,

where the universal constant εin > 0 is given by Proposition 3.5. From the strong convergence
of Qn toward Q∗, we deduce that

1

σ

∫

Bσ (x∗)
|∇Qn |2 dx � εin

4

for n large enough. By Proposition 3.5, it implies that Qn is smooth in Bσ/8(x∗). Since
xn → x∗, we have xn ∈ Bσ/8(x∗) for n large enough, contradicting the fact that Qn is
singular at xn .
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We now prove claim (ii). To this purpose, it is enough to show that sing(Q∗) ∩ Bρ = ∅
for every 0 < ρ < r . Hence we fix an arbitrary radius 0 < ρ < r , and we assume by
contradiction that sing(Q∗) ∩ Bρ �= ∅. By Theorem 3.1, sing(Q∗) ∩ Bρ ⊆ {x3-axis} is
finite, and setting Iρ := Bρ ∩ {x3-axis}, the trace of Q∗ on Iρ (see Corollary 2.11) is a
non trivial piecewise constant function with values in {±e0} (since we are assuming that
sing(Q∗) ∩ Bρ �= ∅). On the other hand, Qn is smooth in Bρ , so that either Qn ≡ e0 or
Qn ≡ −e0 on Iρ . Extracting a subsequence if necessary, we may assume for instance that
Qn |Iρ ≡ e0 for every n. By the strongW 1,2-convergence of Qn and the continuity of the trace

operator established in Corollary 2.11, we infer that Qn |Iρ → Q∗|Iρ in L1(Iρ) as n → ∞.
Hence Q∗|Iρ ≡ e0 contradicting its non triviality. ��

Corollary 3.10 Let � ⊆ R
3 be a bounded and axisymmetric open set with boundary of

class C3. Let (Q∗
b, λ∗) and a sequence {(Q(n)

b , λn)} in C2
sym(∂�;S

4) × [0,∞) be such that

Q(n)
b → Q∗

b in C2(∂�), and λn → λ∗ as n → ∞. For each n ∈ N, let Qn be a minimizer
of Eλn over Asym

Q(n)
b

(�), Q∗ a minimizer of Eλ∗ over Asym
Q∗
b
(�), and assume that Qn → Q∗

strongly in W 1,2(�).

(i) If sing(Q∗) = ∅, then there exists an integer n∗ such that sing(Qn) = ∅ whenever
n � n∗.

(ii) If sing(Qn) = ∅ for every n, then sing(Q∗) = ∅.

Proof We start proving claim (i). To prove it, it is enough to show that there exists δ > 0
independent of n such that the C1-norms of Qn are uniformly bounded in a δ-neighborhood
of ∂� (recall that sing(Qn) coincideswith the discontinuity points of Qn). Indeed, in this case
we have sing(Qn) ⊆ �∩{dist(·, ∂�) � δ} for every n. Recalling that sing(Qn) ⊆ {x3-axis}
by Theorem 3.1, we choose a finite covering of � ∩ {dist(·, ∂�) � δ} ∩ {x3-axis} by open
balls Bδ/2(x1), . . . , Bδ/2(xK ). We apply Lemma 3.9 in each Bδ(x j ) to find an integer n∗ such
that sing(Qn) ∩ Bδ/2(x j ) = ∅ for each j and every n � n∗. Hence sing(Qn) = ∅ for every
n � n∗.

To show that the C1-norm of Qn remains bounded in a δ-neighborhood of ∂�, we shall
make use of the regularity estimates from Sect. 3.1. By Theorem 3.2, Q∗ is of class C1,α for
every α ∈ (0, 1) in a neighborhood of ∂�. Hence, for a radius η > 0 to be chosen small
enough, we have

1

η

∫

Bη(y)∩�
|∇Q∗|2 dx � ε̄′

bd

2
for every y ∈ ∂�,

where the constant ε̄′
bd > 0 (depending only on �) is provided by Corollary 3.7. Next we

set � := supn λn < ∞, and L := supn ‖Q(n)
b ‖C1,1(∂�) < ∞. We now choose η > 0 small

enough (depending only on �, L , and �) such that the conclusion of Corollary 3.7 holds.
We also set r∗ := κ̄ ′η with constant κ̄ ′ ∈ (0, 1) still given by Corollary 3.7 (depending only
on �), and we consider a finite covering Br∗(y1), . . . , Br∗(yJ ) of ∂� with y j ∈ ∂�. Since
Qn → Q∗ strongly in W 1,2(�), we can find an integer n∗ such that

1

η

∫

Bη(y j )∩�
|∇Qn |2 dx � ε̄′

bd for each j = 1, . . . , J and every n � n∗.

Applying Corollary 3.7, we infer that Qn ∈ C1,α(Br∗(y j ) ∩ �) for every α ∈ (0, 1) and
each j with the estimate ‖∇Qn‖L∞(Br∗ (y j )∩�) � Cr−1∗ and a constant C independent of n.
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Since the balls Br∗(y1), . . . , Br∗(yJ ) cover ∂�, the C1-norm of Qn remains bounded in a
δ-neighborhood of ∂� for some δ ∈ (0, r∗).

We now prove claim (ii). Assume by contradiction that sing(Q∗) �= ∅, i.e., Q∗ has at least
one singular point x∗ ∈ �, which must belong to the {x3-axis} by Theorem 3.1. Choose a
radius r > 0 such that Br (x∗) ⊆ �. Since Qn → Q∗ strongly in W 1,2(�), we can apply
Lemma 3.9 in the ball Br (x∗) to infer that Q∗ is smooth in Br (x∗), a contradiction. ��

3.3 Persistence of singularities

By analogy with the previous subsection, we now study the behavior of the singular set
along strongly W 1,2-convergent sequences of minimizers, proving that singular points con-
verge to singular points. The following result is the counterpart in the present context of [3,
Theorem 1.8] (see also [18]).

Proposition 3.11 Let (Q∗, λ∗) and a sequence {(Qn, λn)} in W 1,2
sym(Br ;S

4)×[0,∞) be such
that Qn → Q∗ strongly in W 1,2(Br ) and λn → λ∗ as n → ∞. Assume that Q∗ is minimizing
Eλ∗ among all Q ∈ W 1,2

sym(Br ;S
4) satisfying Q = Q∗ on ∂Br , and that Qn is minimizing Eλn

among all Q ∈ W 1,2
sym(Br ;S

4) satisfying Q = Qn on ∂Br . Then, for every radius ρ ∈ (0, r)
such that sing(Q∗) ∩ ∂Bρ = ∅ and sing(Q∗) ∩ Bρ = {a∗

1 , . . . , a
∗
K }, there exists an integer

nρ such that for every n � nρ , sing(Qn)∩ ∂Bρ = ∅ and sing(Qn)∩ Bρ = {an1 , . . . , anK } for
some distinct points an1 , . . . , a

n
K ∈ Bρ satisfying |anj −a∗

j | → 0 as n → ∞ for j = 1, . . . , K.

Proof By Theorem 3.1, sing(Q∗) and sing(Qn) are made of locally finitely many points
in Br ∩ {x3-axis}. If sing(Q∗) ∩ ∂Bρ = ∅, then Q∗ is smooth in a neighborhood of ∂Bρ .
Applying Lemma 3.9 at the north and south pole of ∂Bρ , we infer that there exists an integer
n̄ρ such that Qn is smooth in a uniform neighborhood of ∂Bρ for every n � n̄ρ . Then we set
�

ρ∗ := sing(Q∗)∩ Bρ and�ρ
n := sing(Qn)∩ Bρ . We claim that�ρ

n → �
ρ∗ in the Hausdorff

distance. To prove this claim, let us first consider a∗ ∈ �
ρ∗ , and prove that there exists

an ∈ �
ρ
n such that an → a∗. By contradiction, assume that�ρ

n remains at a positive distance
from a∗ for n large. Then we can find η > 0 such that Bη(a∗)∩�

ρ
n = ∅ for n large enough.

Applying Lemma 3.9 in Bη(a∗), we deduce that Bη(a∗)∩�
ρ∗ = ∅, a contradiction. The other

way around, let an ∈ �
ρ
n be a sequence converging to some point a∗. Since �ρ

n remains at
a positive distance from ∂Bρ , we have a∗ ∈ Bρ , and let us show that a∗ ∈ �

ρ∗ . Again by
contradiction, assume that a∗ /∈ �

ρ∗ . Then we can find η > 0 such that B2η(a∗) ∩ �
ρ∗ = ∅.

Applying Lemma 3.9 in B2η(a∗), we infer that Bη(a∗) ∩�
ρ
n = ∅ for n large enough, which

contradicts the fact that an → a∗. Hence �ρ
n → �

ρ∗ in the Hausdorff distance.
To complete the proof of Proposition 3.11, we shall make use of the following key lemma,

giving a lower bound on the mutual distance between singularities for minimizers, in the
spirit of [3, Theorem 2.1] for minimizing harmonic maps into S

2.

Lemma 3.12 Let M,� > 0 and λ ∈ [0,�]. Assume that Qλ ∈ W 1,2
sym(B1;S

4) is minimiz-

ing Eλ(·, B1) among all maps Q ∈ W 1,2
sym(B1;S

4) satisfying Q = Qλ on ∂B1, and that
Eλ(Qλ, B1) � M. Then there exists a constant κ = κ(M,�) > 0 depending only on M and
� such that

|a − b| � κ for every a, b ∈ sing(Qλ) ∩ B1/2, a �= b.

Proof We argue by contradiction assuming that there exists a sequence {Qn} inW 1,2
sym(B1;S

4)

and λn ∈ [0,�] such that Qn is minimizing Eλn (·, B1) among all maps Q ∈ W 1,2
sym(B1;S

4)
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satisfying Q = Qn on ∂B1, and Eλn (Qn, B1) � M , and such that there exists two distinct
points an, bn ∈ sing(Qλ)∩B1/2 satisfying rn := |an−bn | → 0 as n → ∞. Extracting a sub-
sequence if necessary, we may assume that λn → λ∗ ∈ [0,�], limn→∞ an = limn→∞ bn =
c∗ ∈ B1/2. By the compactness theorem in [12, Theorem 5.1], we can find a (not relabeled)
subsequence such that Qn → Q∗ strongly in W 1,2

loc (B1) for a map Q∗ ∈ W 1,2
sym(B1;S

4)

which is minimizing Eλ∗(·, B1) among all maps Q ∈ W 1,2
sym(B1;S

4) satisfying Q = Q∗
on ∂B1. Arguing as in the proof of Proposition 3.11, we infer that c∗ ∈ sing(Q∗). Setting
cn := (an + bn)/2, we have cn → c∗, and we define for x ∈ B2 and n large enough,

Q̄n(x) := Qn(cn + rnx).

Since an, bn ∈ {x3-axis}, we have cn ∈ {x3-axis}, and thus Q̄n ∈ W 1,2
sym(B2;S

4). From
the minimality of Qn and a change of variables, we infer that Q̄n minimizes Er2nλn (·, B2)

among all maps Q ∈ W 1,2
sym(B2;S

4) such that Q = Q̄n on ∂B2. Extracting a subsequence if
necessary, we may assume that p1 := (an − cn)/rn = (0, 0, 1/2) and p2 := (bn − cn)/rn =
(0, 0,−1/2). Then, by construction, p1, p2 ∈ sing(Q̄n).

By the interior monotonicity formula in Proposition 3.3, we have for every x0 ∈ B2, every
t ∈ (0, dist(x0, ∂B2)] and r ∈ (0, 1),

1

t
Er2nλn

(
Q̄n, Bt (x0)

) = 1

rnt
Eλn
(
Qn, Brnt (cn + rnx0))

)

� 1

r − |cn + rnx0 − c∗|Eλn
(
Qn, Br−|cn+rn x0−c∗|(cn + rnx0)

)

� 1

r − |cn + rnx0 − c∗|Eλn
(
Qn, Br+|cn+rn x0−c∗|(c∗)

)
(3.4)

whenever n is large enough. Since Qn → Q∗ strongly in W 1,2
loc (B1) and λn → λ∗, we have

lim
n→∞

1

r − |cn + rnx0 − c∗|Eλn
(
Qn, Br+|cn+rn x0−c∗|(c∗)

) = 1

r
Eλ∗
(
Q∗, Br (c∗)

)
. (3.5)

In view of (3.4)–(3.5) with x0 = 0 and t = 2, we first deduce that supn Er2nλn (Q̄n, B2) < ∞.
By the compactness result in [12, Theorem 5.1], we can find a (not relabeled) subsequence
such that Q̄n → Q̄∗ strongly inW 1,2

loc (B2) for amap Q̄∗ ∈ W 1,2
sym(B2;S

4)which isminimizing

E0(·, B2) among all maps Q ∈ W 1,2
sym(B2;S

4) satisfying Q = Q̄∗ on ∂B2.
Letting n → ∞ in (3.4), we infer from (3.5) that for every x0 ∈ B2, every t ∈

(0, dist(x0, ∂B2)), and r ∈ (0, 1/2) small enough,

1

t
E0
(
Q̄∗, Bt (x0)

)
� 1

r
Eλ∗
(
Q∗, Br (c∗)

)
. (3.6)

On the other hand, since c∗ ∈ sing(Q∗), Theorem 3.1 tells us that

lim
r→0

1

r

∫

Br (c∗)

1

2
|∇Q∗|2 dx = 4π.

Letting now r → 0 in (3.6) yields

1

t
E0
(
Q̄∗, Bt (x0)

)
� 4π for every x0 ∈ B2 and t ∈ (0, dist(x0, ∂B2)). (3.7)

On the other hand, p1 and p2 are singular points of Q̄n for each n, and thus p1, p2 ∈ sing(Q̄∗)
by Lemma 3.9. As a consequence, Theorem 3.1 and the interior monotonicity formula in
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Proposition 3.3 imply that for j = 1, 2,

1

t
E0
(
Q̄∗, Bt (p j )

)
� 4π ∀t ∈ (0, 1). (3.8)

Setting yt := (0, 0, t − 1/2) for t ∈ (0, 1), since Bt (p1) ∪ B1−t (p2) ⊆ B1(yt ), we gather
(3.7) and (3.8) to derive

4π � E0
(
Q̄∗, B1(yt )

)

� E0
(
Q̄∗, Bt (p1)

)+ E0
(
Q̄∗, B1−t (p2)

)
� 4π t + 4π(1 − t) = 4π ∀t ∈ (0, 1).

Therefore |∇ Q̄∗|2 ≡ 0 a.e. in B1(yt ) \ (Bt (p1) ∪ B1−t (p2)
)
for every t ∈ (0, 1). Since

B1 ∩
⋃

0<t<1

(
B1(yt ) \ (Bt (p1) ∪ B1−t (p2)

)) = B1 \ [p1, p2],

we conclude that |∇ Q̄∗|2 ≡ 0 a.e. in B1. Thus Q̄∗ is constant in B1, which contradicts the
fact that Q̄∗ is singular at p1, p2 ∈ B1. ��
Proof of Proposition 3.11 Completed. To complete the proof, it remains to show that there
exists an integer nρ � n̄ρ such that Card�ρ

n = Card�ρ∗ for n � nρ . Once again we argue
by contradiction assuming that for some (not relabeled) subsequence, we have Card�ρ

n �=
Card�ρ∗ . In view of the previous discussion, Card�ρ

n > Card�ρ∗ for n large enough.
As a consequence, there exist at least two points an, bn ∈ �

ρ
n such that an �= bn and

limn an = limn bn = c∗ for a point c∗ ∈ �
ρ∗ . In particular, |an − bn | → 0. Then we choose

a radius η > 0 such that Bη(c∗) ⊆ Br . For n large enough, we have an, bn ∈ Bη/2(c∗).
Rescaling variables, we can apply Lemma 3.12 in Bη(c∗) to deduce that |an − bn | � κη for
some constant κ > 0 depending only on supn

1
η
Eλn
(
Qn, Bη(c∗)

)
< ∞ and supn η

2λn < ∞,
which contradicts the fact that |an − bn | → 0. ��

The following result is the global counterpart of Proposition 3.11.

Corollary 3.13 Let � ⊆ R
3 be a bounded and axisymmetric open set with boundary of

class C3. Let (Q∗
b, λ∗) and a sequence {(Q(n)

b , λn)} in C2
sym(∂�;S

4) × [0,∞) be such that

Q(n)
b → Q∗

b in C2(∂�), and λn → λ∗ as n → ∞. For each n ∈ N, let Qn be a minimizer
of Eλn over Asym

Q(n)
b

(�), Q∗ a minimizer of Eλ∗ in Asym
Q∗
b
(�), and assume that Qn → Q∗

strongly in W 1,2(�). If sing(Q∗) = {a∗
1 , . . . , a

∗
K }, then there exists an integer n∗ such that

for every n � n∗, sing(Qn) = {an1 , . . . , anK } for some distinct points an1 , . . . , anK satisfying
|anj − a∗

j | → 0 as n → ∞.

Proof By Theorem 3.2, Q∗ is smooth in �\sing(Q∗) and sing(Q∗) is a finite subset of
� ∩ {x3-axis}, i.e., sing(Q∗) = {a∗

1 , . . . , a
∗
K } ⊆ � ∩ {x3-axis}. Let us fix δ > 0 such

that B3δ(a∗
i ) ∩ B3δ(a∗

j ) = ∅ if i �= j , and dist(a∗
j , ∂�) � 3δ. We set Kδ := {x ∈ � :

dist(x, ∂�) � δ}\∪ j Bδ(a∗
j ), andwe claim that Qn → Q∗ inC2(Kδ). Indeed, by smoothness

of Q∗ away from sing(Q∗), we can find a radius r ∈ (0, δ/2) such that

1

r

∫

Br (x0)
|∇Q∗|2 dx � εin

8
for every x0 ∈ Kδ,

where the universal constant εin > 0 is provided by Proposition 3.5. Choosing r
smaller if necessary (depending only on � := supn λn < ∞), we may assume that
the conclusion of Proposition 3.5 holds for every λn . Then we consider a finite covering
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Br/16(y1), . . . , Br/16(yJ ) of Kδ . Since Qn → Q∗ strongly in W 1,2(�), we have for n large
enough,

1

r

∫

Br (y j )
|∇Qn |2 dx � εin

4
for every j = 1, . . . , J .

By Proposition 3.5, for n large enough, Qn is smooth in each Br/16(y j ) and
‖Qn‖C3(Br/16(y j )) � Cr for some constantCr > 0. Therefore Qn remains bounded inC3(Kδ)

for n large enough. From the W 1,2-convergence of Qn towards Q∗ and the Arzelà-Ascoli
Theorem, we deduce that Qn → Q∗ in C2(Kδ).

Now we set �δ := � \ ∪ j B2δ(a∗
j ) which is a bounded and axisymmetric open set with

boundary of class C3. By our discussion above and the assumption on Q(n)
b , the restriction

of Qn to ∂�δ converges in the C2-topology to the restriction of Q∗ to ∂�δ . Applying
Corollary 3.10 in �δ , we infer that sing(Qn) ∩ �δ = ∅ for n large enough. Then we can
apply Proposition 3.11 in each ball B3δ(a∗

j ) with ρ = 2δ. It shows that for n large enough,

sing(Qn) ∩ B2δ(a∗
j ) = {anj } for some point anj → a∗

j as n → ∞. ��

3.4 Coexistence results in a ball

In this subsection, we take advantage of the results above to study the space
(boundary condition) × (λ-parameter). We are interested in the nature of the sets of data
leading to smooth or/and singular solutions. To motivate this question, we recall the results
in [12] showing the existence for λ � 0 arbitrary of boundary conditions Qsmooth

b and Qsing
b

in C∞
sym(∂B1;S

4) such that any minimizer of Eλ overAsym
Qsmooth
b

(B1), resp. overAsym

Qsing
b

(B1), is

smooth, resp. singular. To apply the results of the previous subsection, the topology for the
space of boundary conditionswe shall workingwith is theC2,α-topology for someα ∈ (0, 1).

Given α ∈ (0, 1), we consider the sets

BDsmooth
α :=

{
(Qb, λ) ∈ C2,α

sym(∂B1; S
4) × [0,∞) : sing(Qλ) = ∅ for every Qλ ∈ argmin

Asym
Qb

(B1)

Eλ
}
,

BD
sing
α :=

{
(Qb, λ) ∈ C2,α

sym(∂B1; S
4) × [0,∞) : sing(Qλ) �= ∅ for every Qλ ∈ argmin

Asym
Qb

(B1)

Eλ
}
,

and

BDcoexist
α :=

(
C2,α
sym(∂B1;S

4) × [0,∞)
)

\
(
BDsmooth

α ∪ BDsing
α

)
.

As already mentioned, BDsmooth
α �= ∅ and BDsing

α �= ∅ by [12, Theorem 1.2 & Theorem
1.3], and more precisely,

BDsmooth
α ∩ (C2,α

sym(∂B1; S
4) × {λ}) �= ∅ and BD

sing
α ∩ (C2,α

sym(∂B1;S
4) × {λ}) �= ∅ for every λ � 0.

The main result of this subsection is the following theorem whose proof is postponed to
the end of the subsection.

Theorem 3.14 Let α ∈ (0, 1). The (disjoint) sets BDsmooth
α and BDsing

α are open in
C2,α
sym(∂B1;S

4) × [0,∞), and BDcoexist
α coincides with their common boundary, i.e.,

∂BDsmooth
α = BDcoexist

α = ∂BDsing
α .
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As a direct consequence of Theorem 3.14, we obtain the following corollary proving
immediately claims (i), (ii), and (iii) of Theorem 1.1. With the aid of Remark 3.16 below,
also the last claim of Theorem 1.1, and hence its full proof, follows at once from the corollary.

Corollary 3.15 Let α ∈ (0, 1), λ > 0, and 	 : [0, 1] → C2,α
sym(∂B1;S

4) a continuous curve

such that (	(0), λ) ∈ BDsing
α and (	(1), λ) ∈ BDsmooth

α . There exist 0 < t1 � t2 < 1 such
that

(i) (	(t), λ) ∈ BDsing
α for every 0 � t < t1;

(ii) (	(t), λ) ∈ BDsmooth
α for every t2 < t � 1;

(iii) (	(t1), λ), (	(t2), λ) ∈ BDcoexist
α .

Proof Consider the continuous curve 	̂ : [0, 1] → C2,α
sym(∂B1;S

4)×[0,∞) given by 	̂(t) :=
(	(t), λ). Then 	̂(0) ∈ BDsing

α and 	̂(1) ∈ BDsmooth
α . Consider

t1 := sup
{
t ∈ [0, 1] : 	̂(s) ∈ BDsing

α for every 0 � s � t}.
By Theorem 3.14 and the continuity of 	̂, we have t1 ∈ (0, 1) and 	̂(t1) ∈ ∂BDsing

α =
BDcoexist

α , so that (i) holds.
Then we consider

t2 := inf
{
t ∈ [0, 1] : 	̂(s) ∈ BDsmooth

α for every t � s � 1}.
Clearly t1 � t2, and as above, Theorem 3.14 and the continuity of 	̂ imply t2 < 1 and
	̂(t2) ∈ ∂BDsmooth

α = BDcoexist
α proving (ii), and completing the proof. ��

Remark 3.16 As already alluded in the Introduction, there exists at least one curve 	 with the
properties required by Corollary 3.15. This is obtained by concatenating the curves built in
(the proofs of) [12, Theorem 1.2 and Theorem 1.3]. Thus, the corollary shows in particular
that BDcoexist

α is not empty, clearly implying the last claim of Theorem 1.1, and concluding
its proof.

The proof of Theorem 3.14 rests on our regularity results together with the unique
continuation property for real analytic maps. This tool leads to the following uniqueness
statement.

Lemma 3.17 Let Qλ ∈ W 1,2
sym(B1;S

4) be a minimizer of Eλ(·, B1) among all Q ∈
W 1,2

sym(B1;S
4) satisfying Q = Qλ on ∂B1. For every radius ρ ∈ (0, 1) such that

sing(Qλ) ∩ ∂Bρ = ∅, the restriction of Qλ to Bρ is the unique minimizer of Eλ over the
class Asym

Qλ
(Bρ).

Proof ByTheorem3.1 and since sing(Qλ)∩∂Bρ = ∅, Qλ is (real) analytic in a neighborhood
of ∂Bρ . We fix a further radius ρ′ ∈ (ρ, 1) such that Qλ is analytic in the open annulus
A := Bρ′ \Bρ . Now, let Qρ be a minimizer of Eλ over the class Asym

Qλ
(Bρ). We consider the

comparison map

Q̄λ(x) :=
{
Qρ(x) if x ∈ Bρ

Qλ(x) if x ∈ B1 \ Bρ,

which belongs to W 1,2
sym(B1;S

4) and agrees with Qλ on ∂B1. Hence,

Eλ(Qρ, Bρ) + Eλ(Qλ, B1 \ Bρ) � Eλ(Qλ, Bρ) + Eλ(Qλ, B1 \ Bρ)
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= Eλ(Qλ, B1) � Eλ(Q̄λ, B1) = Eλ(Qρ, Bρ) + Eλ(Qλ, B1 \ Bρ).

Thus Eλ(Qλ, B1) = Eλ(Q̄λ, B1) which in turn implies that Q̄λ minimizes Eλ(·, B1) among
all Q ∈ W 1,2

sym(B1;S
4) satisfying Q = Qλ on ∂B1. Once again, by Theorem 3.1, Q̄λ is real

analytic in B1\sing(Q̄λ) with sing(Q̄λ) a locally finite subset in B1. As a consequence, the
map Q̄λ−Qλ is analytic in the open set B1\� containing A, where� = sing(Qλ)∪sing(Q̄λ)

is a locally finite set in B1, and Q̄λ − Qλ ≡ 0 in A. Thus, by unique continuation for real
analytic maps, Q̄λ = Qλ in B1\�, which shows that Qρ = Qλ in Bρ . ��

In order to apply the results of the previous subsections, we establish now the following
strong W 1,2-compactness property of minimizers.

Lemma 3.18 Let α ∈ (0, 1) and {(Q(n)
b , λn)} be a converging sequence in C2,α

sym(∂B1;S
4)×

[0,∞), and denote by (Q∗
b, λ∗) its limit. Every sequence {Qn} such that Qn minimizes

Eλn over Asym

Q(n)
b

(B1) admits a subsequence strongly converging in W 1,2(B1) to some Q∗
minimizing Eλ∗ over Asym

Q∗
b
(B1).

Proof We consider the comparison map Q̄n defined by Q̄n(x) := Q(n)
b (x/|x |). A direct

computation shows that supn Eλn (Q̄n, B1) < ∞ since Q(n)
b is bounded in the C2,α-topology.

By minimality of Qn , we have Eλn (Qn, B1) � Eλn (Q̄n, B1) � C for a constant C indepen-
dent of n. Applying [12, Theorem 5.1], we deduce that for a (not relabeled) subsequence,
Qn⇀Q∗ weakly inW 1,2(B1) and Qn → Q∗ strongly inW 1,2

loc (B1) for some Q∗ minimizing
Eλ∗ over Asym

Q∗
b
(B1). Hence it remains to prove that Qn → Q∗ strongly in W 1,2(B1).

First we notice that Qn → Q∗ strongly in L4(B1) by the compact Sobolev embedding
W 1,2(B1) ↪→ L4(B1). Therefore,

λn

∫

�

W (Qn) dx → λ∗
∫

�

W (Q∗) dx . (3.9)

Now we fix an arbitrary small δ ∈ (0, 1), and we define for x ∈ B1,

Q̃n(x) :=

⎧
⎪⎪⎨
⎪⎪⎩

Q∗
(

x

1 − δ

)
if x ∈ B1−δ,(

1 − 1 − |x |
δ

)
Qn

b

(
x

|x |
)

+ 1 − |x |
δ

Q∗
b

(
x

|x |
)

if x ∈ B1 \ B1−δ.

Then Q̃n ∈ W 1,2
sym(B1;S0) satisfies Q̃n = Q(n)

b on ∂B1. Since Q(n)
b → Q∗

b in C2,α(∂B1),
Q̃n converges to the mapping x → Q∗

b(x/|x |) in C2,α(B1\B1−δ). In particular, |Q̃n | � 1/2
for n large enough which allows us to define

Q̂n := Q̃n

|Q̃n |
∈ Asym

Qn
b
(B1).

By minimality of Qn , we have Eλn (Qn, B1) � Eλn (Q̂n, B1). Since Q̂n also converges to
x → Q∗

b(x/|x |) in C2,α(B1 \ B1−δ), we have

lim sup
n→∞

Eλn (Qn, B1) � lim
n→∞ Eλn (Q̂n, B1−δ) + lim

n→∞ Eλn (Q̂n, B1 \ B1−δ)

= (1 − δ)E(1−δ)2λ∗(Q∗, B1) + Eλ∗
(
Q∗

b(x/ |x |), B1 \ B1−δ

)
,
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Now letting δ → 0, we deduce that

lim sup
n→∞

Eλn (Qn, B1) � Eλ∗(Q∗, B1).

In view of (3.9), we thus have lim supn
∫
B1

|∇Qn |2 dx �
∫
B1

|∇Q∗|2 dx . On the other hand,
lim infn

∫
B1

|∇Qn |2 dx �
∫
B1

|∇Q∗|2 dx by lower semicontinuity of the Dirichlet energy.

Hence limn
∫
B1

|∇Qn |2 dx = ∫B1 |∇Q∗|2 dx , and the conclusion classically follows. ��

Proof Step 1. We first prove that BDsmooth
α is open. Let {(Q(n)

b , λn)} be a sequence in

C2,α(∂B1;S
4) × [0,∞) such that λn → λ∗ and Q(n)

b → Q∗
b in C2,α(∂B1) for some

(Q∗
b, λ∗) ∈ BDsmooth

α . We aim to prove that (Q(n)
b , λn) ∈ BDsmooth

α for n large enough.

By contradiction, assume that (Q(n)
b , λn) /∈ BDsmooth

α for some (not relabeled) subsequence.
Then, for each n we can find a minimizer Qn of Eλn overAsym

Q(n)
b

(B1) such that sing(Qn) �= ∅.
By Lemma 3.18, we can extract a further subsequence such that Qn → Q∗ strongly in
W 1,2(B1) for somemap Q∗ minimizing Eλ∗ overAsym

Q∗
b
(B1). Since (Q∗

b, λ∗) ∈ BDsmooth
α , we

have sing(Q∗) = ∅, and we infer from Corollary 3.10 that sing(Qn) = ∅ for n large enough,
a contradiction.
Step 2.Wenowprove that BDsing

α is open following the same argument as above. Assume that
{(Q(n)

b , λn)} is a sequence inC2,α(∂B1;S
4)×[0,∞) converging to some (Q∗

b, λ∗) ∈ BDsing
α .

Assume also by contradiction that (Q(n)
b , λn) /∈ BDsing

α . Then we can find minimizers Qn

of Eλn over Asym

Q(n)
b

(B1) such that sing(Qn) = ∅. Then Qn → Q∗ strongly in W 1,2(B1) for

some Q∗ minimizing Eλ∗ over Asym
Q∗
b
(B1) (up to a subsequence). Since (Q∗

b, λ∗) ∈ BDsing
α ,

we have sing(Q∗) �= ∅ which is in contradiction with sing(Qn) = ∅ and Corollary 3.10.
Step 3. To conclude the proof, it remains to prove that BDcoexist

α is the common boundary

of BDsmooth
α and BDsing

α . Let (Q∗
b, λ∗) ∈ BDcoexist

α , and Qt∗ and Qs∗ be two minimizers of
Eλ∗ over Asym

Q∗
b
(B1) such that sing(Qt∗) = ∅ and sing(Qs∗) �= ∅. By Theorem 3.2, we have

Qt∗ ∈ C2,α(B1) and we can find a radius ρ∗ ∈ (0, 1) such that Qs∗ ∈ C2,α(B1\Bρ∗) (i.e.,
sing(Qs∗) ⊆ Bρ∗ ). We fix an arbitrary sequence {ρn} ⊆ (ρ∗, 1) such that ρn → 1 as n → ∞,
and we set for x ∈ ∂B1,

Qt,n
b (x) := Qt∗(ρnx) and Qs,n

b (x) := Qs∗(ρnx).

Then (Qt,n
b , ρ2

nλ∗) → (Q∗
b, λ∗) and (Qs,n

b , ρ2
nλ∗) → (Q∗

b, λ∗) inC2,α(∂B1)×[0,∞). On the
other hand, rescaling variables we infer from Lemma 3.17 that the maps Qt

n : x → Qt∗(ρnx)
and Qs

n : x → Qs∗(ρnx) are the unique minimizers of Eρ2nλ∗ over Asym

Qt,n
b
(B1) and Asym

Qs,n
b
(B1)

respectively. Since sing(Qt
n) = ∅ and sing(Qs

n) �= ∅, it shows that (Qt,n
b , ρ2

nλ∗) ∈ BDsmooth
α

and (Qs,n
b , ρ2

nλ∗) ∈ BDsing
α for n large enough. Hence (Q∗

b, λ∗) ∈ ∂BDsmooth
α ∩ ∂BDsing

α ,

thus BDcoexist
α ⊆ ∂BDsmooth

α ∩ ∂BDsing
α . Now, to reach the claimed conclusion, it is enough

to prove that BDcoexists
α ⊇ ∂BDsmooth

α ∪ ∂BDsing. Indeed, this and the previous inclusion
together imply as announced BDcoexists

α = ∂BDsmooth
α = ∂BDsmooth

α . To this end, notice that

C2,α(∂B1;S
4) × [0,∞) is the union of the disjoint sets BDsmooth

α , BDsing
α , and BDcoexist

α .

Since the first two sets are open, BDsmooth
α ∪ BDcoexist

α and BDsing
α ∪ BDcoexist

α are closed,

hence theymust contain the closures of BDsmooth
α and BDsing

α , respectively. In turn, thismeans

that BDcoexist
α contains both ∂BDsmooth

α and ∂BDsing
α (indeed, BDsmooth

α and BDsing
α , being
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open, are disjoint from their boundaries). Therefore, ∂BDsmooth
α ∪∂BDsing

α ⊆ BDcoexist
α , and

the conclusion follows. ��

4 Landau–de Gennesminimizers in 2D

In this section, we examine a two dimensional minimization problem whose importance
(beyond its own interest) will be revealed mostly in Sect. 5. We consider the minimization of
the LdG energy among equivariant unit norm configurations defined on a two dimensional
disc Dρ := {z ∈ C : |z| < ρ}. We will always assume ρ = 1 (discarding the subscript for
simplicity) which can always be achieved by rescaling the domain. In view of Lemma 2.6 and
Corollary 2.7, admissible configurations can be described as maps in the spaceW 1,2

sym(D;S
4)

with the two equivalent forms: either in terms of tensors Q ∈ S
4 ⊆ S0, or in terms of

u ∈ S
4 ⊆ R ⊕ C ⊕ C. However, we shall mostly rely on the R ⊕ C ⊕ C-description as it is

more suited for our purposes.
We consider, for fixed λ � 0, the 2D-LdG energy Eλ as in (1.11) and we aim to minimize

it over the S
1-equivariant class Asym

H
(D) defined in (1.12), where H : ∂D → RP2 ⊆ S

4

denotes the radial anchoring map defined in (1.13). According to the correspondence in
Corollary 2.7, we have H � gH where gH : ∂D → S

4 ⊆ R ⊕ C ⊕ C is given by

gH (z) :=
(
−1

2
, 0,

√
3

2
z2
)
. (4.1)

Here and in the sequel, we make use of the complex variable z := x1 + i x2, identifying in
this way R

2 with the complex plane C.
As we announced in Theorem 1.2 and proved in the present section, the uniaxial or biaxial

character of anyminimizer of Eλ overAsym
H

(D) depends onλ in a crucial way.More precisely,
a sharp transition in the qualitative properties of minimizers occurs through a biaxial escape
mechanism, as the strength parameter λ of the confining potential W in (1.11) decreases.

Note that, by Lemma 2.10, we have Asym
H

(D) = AN ∪ AS with disjoint union, and

AN := {Q ∈ Asym
H

(D) : Q(0) = e0
} � {u ∈ Ãsym

gH
(D) : u(0) = (1, 0, 0)

} =: ÃN, (4.2)

and

AS :={Q ∈ Asym
H

(D) : Q(0)=−e0
}�{u ∈ Ãsym

gH
(D) : u(0)=(−1, 0, 0)

}=:ÃS . (4.3)

We aim to describe precisely to which of these two components the minimizers of Eλ over
Asym

H
(D) belong to as the parameter λ varies. To tackle this question, we rely in an essential

way on a gap phenomenon for the Dirichlet energy E0 over the two components of the class
Asym

H
(D) = AN ∪ AS which is of independent interest. This is the object of the next two

subsections. By studying the minimization problem of E0 in each class AN or AS, we shall
prove that the corresponding infima are different. Describing the set of minimizers for both
the infima, we shall also make the energy gap fully explicit.

4.1 Large equivariant harmonic maps in 2D

In this subsection, we classify all critical points of the Dirichlet energy E0 in the class
Asym

H
(D) satisfying Q(0) = e0. According to Proposition 2.12, those are critical points of
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E0 overW 1,2(D;S
4), and thus equivariant (weakly) harmonicmaps fromD into S

4 satisfying
Q = H on ∂D. In terms of the isometric correspondence Q � u from Corollary 2.7, we are
interested in equivariant (weakly) harmonic maps u into S

4 ⊆ R⊕C⊕C satisfying u = gH
on ∂D and u(0) = (1, 0, 0). As recalled in the Introduction, these harmonic maps are usually
referred to in the literature as the large solutions of the harmonic map system, see [8]. They
escape from the (small) spherical cap containing the image of the boundary data gH given
in (4.1), as opposed to the small solution discussed in Proposition 4.6, for which the escape
phenomenon does not hold.

Recall that u ∈ W 1,2(D;S
4) is a weakly harmonic map in D if u is a critical point of the

Dirichlet energy

Ẽ0(u) :=
∫

D

1

2
|∇u|2 dx (4.4)

with respect to compactly supported perturbations preserving theS
4-constraint. If, in addition,

u = gH on ∂D in the sense of traces, then u is a distributional solution of the following
boundary value problem

{
�u + |∇u|2 u = 0 in D,

u = gH on ∂D.
(4.5)

By Hélein’s theorem [19] and the general analyticity results for elliptic systems from [33,
Chapter 6], such amap u is real analytic in the interior.Under theDirichlet boundary condition
gH , the map u is actually real analytic up to the boundary by [33, 37]. Hence it is harmonic
in D in the classical sense. According to (2.16), an equivariant harmonic map u has the form

u(reiφ) = ( f0(r), f1(r)e
iφ, f2(r)e

i2φ), (4.6)

and the Euler–Lagrange equation in (4.5) rewrites into a system of ODEs for r ∈ (0, 1] (see
Remark 2.14),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ′′
0 + 1

r
f ′
0 = − |∇u|2 f0,

f ′′
1 + 1

r
f ′
1 = − |∇u|2 f1 − 1

r2
f1,

f ′′
2 + 1

r
f ′
2 = − |∇u|2 f2 − 4

r2
f2.

(4.7)

Here f (r) := ( f0(r), f1(r), f2(r)) ∈ R ⊕ C ⊕ C, and by (2.17),

|∇u|2 = |∂r u|2 + 1

r2
∣∣∂φu

∣∣2 = ∣∣ f ′∣∣2 + 1

r2
(| f1|2 + 4 | f2|2

)
. (4.8)

In order to describe the equivariant solutions to (4.5) satisfying the condition u(0) =
(1, 0, 0), we shall combine (4.7) with the classification of equivariant harmonic spheres
from [12]. Following [12], it is convenient to use complex differentiation through the usual
Wirtinger’s operators

∂z = 1

2

(
∂

∂x1
− i

∂

∂x2

)
, ∂z̄ = 1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

Since |∇u|2 = 2 |∂zu|2+2 |∂z̄u|2 and�u = 4∂z̄zu, the harmonicmap equation (4.5) rewrites
as

∂z̄zu + 1

2

( |∂zu|2 + |∂z̄u|2
)
u = 0.
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Let us now recall the classical notions of conformality and isotropy.

Definition 4.1 A smooth map u : � → S
4 ⊆ R ⊕ C ⊕ C defined on an open set � ⊆ C is

said to be

(i) conformal if

∂zu · ∂zu :=
4∑
j=0

(∂zu j )
2 = 1

4

∣∣∂x1u
∣∣2 − 1

4

∣∣∂x2u
∣∣2 − i

2
∂x1u · ∂x2u ≡ 0, (4.9)

where “ · ” denotes the Euclidean scalar product in R ⊕ C ⊕ C � R
5 extended by

bilinearity to C
5;

(ii) isotropic if

∂2z u · ∂2z u :=
4∑
j=0

(∂2z u j )
2 ≡ 0 , (4.10)

where ∂2z = 1
4 (∂

2
x1 − ∂2x2) − i

2∂x1x2 .

Here we shall not need the full definition of total isotropy from [20, Chapter 6], which is
satisfied by the harmonic spheres discussed in [12, Section 3]. Actually, under (4.9)–(4.10),
it will be automatically satisfied for the equivariant solutions to (4.5), as we are going to
show in the following lemma. This extension result is the starting point of the classification
of all large equivariant solutions to (4.5).

Lemma 4.2 If u ∈ W 1,2
sym(D;S

4) is a weak solution of (4.5), then u is real analytic and
conformal inD. Moreover, u uniquely extends to a mapU ∈ Cω(C;S

4)which is equivariant,
harmonic, conformal, and isotropic in the whole C.

Proof The map u being a weak solution to (4.5), it is real analytic up to the boundary, as we
already remarked. Being equivariant, it is of the form (4.6), where the map f = ( f0, f1, f2)
satisfies | f | ≡ 1 and solves system (4.7) for r ∈ (0, 1].

Since u belongs to W 1,2(D), we infer from (4.8) that
∫ 1

0

(
r2
∣∣ f ′∣∣2 + | f1|2 + 4 | f2|2

)dr
r

< ∞.

Hence r2j
∣∣ f ′(r j )

∣∣2+ ∣∣ f1(r j )
∣∣2+4

∣∣ f2(r j )
∣∣2 → 0 for some sequence r j ↓ 0. Since | f |2 ≡ 1,

we have f ′ · f ≡ 0. Hence, taking the scalar product of (4.7) with r2 f ′ and integrating
between r j and r leads to

r2 |∂r f (r)|2 − | f1(r)|2 − 4 | f2(r)|2
= r2j

∣∣∂r f (r j )
∣∣2 − ∣∣ f1(r j )

∣∣2 − 4
∣∣ f2(r j )

∣∣2 → 0 as j → ∞.

Thus |∂r u|2 − 1
r2

∣∣∂φu
∣∣2 = |∂r f (r)|2 − 1

r2
( | f1(r)|2 + 4 | f2(r)|2

) ≡ 0. On the other hand, it

follows from (4.6) that ∂r u · 1r ∂φu ≡ 0. Therefore u is conformal in the sense of Definition 4.1
since such property is independent of the chosen orthonormal frame.

Now we solve the Cauchy problem for (4.7) with Cauchy data ( f (1), f ′(1)) to extend f
to its maximal interval of existence (0, rmax) ⊇ (0, 1]. We denote by f̃ the maximal solution.
Then f̃ is real analytic, and therefore it satisfies

| f̃ (r)|2 = 1 and | f̃ ′|2 = 1

r2
(| f̃1|2 + 4| f̃2|2

)
for every r ∈ (0, rmax), (4.11)
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since these identities hold for every r ∈ (0, 1]. As a consequence of the uniform a priori
bounds induced by (4.11), it follows that rmax = +∞, i.e., f̃ solves (4.7) for r ∈ (0,∞).

Setting

U (reiφ) := ( f̃0(r), f̃1(r)eiφ, f̃2(r)ei2φ
)
,

it follows by construction that U is an equivariant real analytic harmonic map from C into
S
4, extending u to the whole plane. Repeating the argument above on f̃ with r ∈ (0,∞),

we infer that U is conformal in C. To complete the proof, it thus remains to show that U
is isotropic, i.e., it satisfies (4.10). To this purpose, we adapt to the equivariant setting the
strategy in [20, Proposition 6.1]. First, we notice that

∂zU ·U = 1

2
∂z |U |2 ≡ 0 ,

∂2z U ·U = ∂z(∂zU ·U ) − ∂zU · ∂zU ≡ 0 ,

and

∂2z U · ∂zU = 1

2
∂z(∂zU · ∂zU ) ≡ 0 ,

since |U |2 = 1 and U is conformal. Then we consider g := ∂2z U · ∂2z U which is a complex-
valued smooth function. Since U is a harmonic map, we have

∂z̄ g = ∂z̄(∂
2
z U · ∂2z U ) = ∂2z U · ∂z(2∂z̄zU ) = −∂2z U · ∂z

(( |∂zU |2 + |∂z̄U |2 )U)

= −(∂2z U ·U)∂z
( |∂zU |2 + |∂z̄U |2 )− (∂2z U · ∂zU

)( |∂zU |2 + |∂z̄U |2 ) ≡ 0 ,

and thus g is an entire holomorphic function. On the other hand, w.r.to the S
1-action on

R⊕C⊕C given in (2.10), the mapU satisfies the equivariance property R ·U (z) = U (Rz)
for all R = eiθ ∈ S

1 and for all z ∈ C. Long but elementary calculations now give

∂2z U (z) · ∂2z U (z) = ∂2z
(
R ·U (z)

) · ∂2z
(
R ·U (z)

)

= ∂2z
(
U (Rz)

) · ∂2z
(
U (Rz)

) = R4(∂2z U (Rz) · ∂2z U (Rz)
)
.

Hence g(eiθ z) ≡ e−4iθg(z). Since g is holomorphic, from the identity principle on the
domain C\{0}, we infer that g(z) ≡ c/z4 for some c ∈ C. Since g is smooth at the origin,
we conclude that c = 0, and thus g ≡ 0. Therefore (4.10) holds, and the proof is complete.

��
We now are ready to classify all large solutions to (4.5), i.e., solutions in the class ÃN. The

proof of this classification parallels the one for harmonic mappings ω from C ∪ {∞} � S
2

into S
4 satisfyingω(0) = e0 (which is a combination of [12, Proposition 3.6, Proposition 3.8,

Remark 3.11 and Theorem 3.19]). It shows that large solutions are precisely the restriction
to the unit disc of those entire harmonic maps satisfying the boundary condition and the
constraint at the origin.

Proposition 4.3 If u ∈ W 1,2
sym(D;S

4) is a weak solution to (4.5) satisfying u(0) = e0, then
there exists μ1 ∈ C such that

u(z) = 1

D(z)

(
1 − |μ1|2 |z|2 − 3 |z|4 + |μ1|2

3
|z|6 ,

2μ1z
(
1 − |z|4) , 2√3z2

(
1 + |μ1|2

3
|z|2
))

, (4.12)
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with

D(z) := 1 + |μ1|2 |z|2 + 3 |z|4 + |μ1|2
3

|z|6 . (4.13)

In particular,

Ẽ0(u) :=
∫

D

1

2
|∇u|2 dx = 6π.

Proof In view of Lemma 4.2, u extends to a harmonic map U ∈ Cω(C;S
4) which equiv-

ariant, conformal and isotropic in the whole C. By equivariance, it writes U (reiφ) =
( f0(r), f1(r)eiφ, f2(r)ei2φ).
Step 1. We assume in this step that U is not linearly full, and we aim to show that (4.12)–
(4.13) hold with μ1 = 0. First we notice that, in this case, f1 ≡ 0 by [12, Remark 2.4]
and the boundary condition U = gH on ∂D. Hence U takes values in the unit 2-sphere of
R ⊕ {0} ⊕ C, that we denote by S

2
2. Setting σ 2 : S

2
2 → C ∪ {∞} to be the stereographic

projection from its south pole (−1, 0, 0), we consider

η(reiφ) := σ 2 ◦U (reiφ) = f2(r)

1 + f0(r)
ei2φ .

Since U (0) = (1, 0, 0), we have U (z) �= (−1, 0, 0) for all z ∈ C by [12, Remark 3.4].
Therefore η : C → C is well defined, real analytic, and conformal since U and σ 2 are.
Then, η being conformal, it is either holomorphic or anti-holomorphic. Anti-holomorphicity
is easily excluded. Indeed, it would give η(z) = c/z̄2 by the identity principle on C \ {0}
for a suitable c ∈ C (since the two functions coincide on {|z| = 1} by equivariance). But η
is smooth near the origin, so that c = 0. In turn η ≡ 0 which is clearly impossible because
U (z) �= (1, 0, 0) for |z| = 1. Then, η being holomorphic on C, we have η(z) = cz2 for a
suitable c ∈ C\{0}, again by the identity principle and equivariance. Therefore,

U (z) = σ−1
2 ◦ η(z) =

(
1 − |c|2|z|4
1 + |c|2|z|4 , 0,

2cz2

1 + |c|2|z|4
)
.

SinceU (z) = gH (z) for |z| = 1, we obtain c = √
3which shows that (4.12)–(4.13) holdwith

μ1 = 0. As a consequence, we have f2(r) = 2
√
3r2

1+3r4
, and by conformality and equivariance

of u,

Ẽ0(u) =
∫

D

1

2
|∇u|2dx

=
∫

D

1

r2
|∂φu|2dx = 2π

∫ 1

0

4| f2(r)|2
r2

rdr = 2π
∫ 1

0

48r3

(1 + 3r4)2
dr = 6π .

Step 2. We now assume U is linearly full, and we claim that (4.12)–(4.13) hold for some
μ1 ∈ C\{0}. Following [12, Section 3.3], we set σ 4 : S

4 → C∪{∞} to be the stereographic
projection from the south pole (−1, 0, 0), and we consider

(
ξ(reiφ), η(reiφ)

) := σ 4 ◦U (reiφ) =
(

f1(r)

1 + f0(r)
eiφ,

f2(r)

1 + f0(r)
ei2φ

)
.

Once again, sinceU (0) = (1, 0, 0), we haveU (z) �= (−1, 0, 0) for all z ∈ C by [12, Remark
3.4]. Hence (ξ, η) : C → C

2 is well defined and real analytic. Notice that the conclusions of
[12, Lemma 3.12] still hold in the present case (although we don’t know yet that U extends
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to a harmonic sphere U : C ∪ {∞} � S
2 → S

4) because U is conformal and isotropic on
the whole C by Lemma 4.2.

Now we can transpose word-by-word the argument in the proof of [12, Theorem 3.19]
to show that U extends to a finite energy harmonic sphere U ∈ Cω(S2;S

4) (indeed, the
positive lift Ũ+ : C → CP3 defined there extends holomorphically to the whole CP1 �
S
2 � C ∪ {∞} and U = τ ◦ Ũ+ on S

2, where τ : CP3 → S
4 is the twistor fibration). As a

consequence (compare with [12, Proposition 3.8]), there exist μ1, μ2 ∈ C \ {0} such that

U (z) = 1

D(z)

(
1 − |μ1|2 |z|2 − |μ2|2 |z|4 + |μ1|2 |μ2|2

9
|z|6 ,

2μ1z

(
1 − |μ2|2

3
|z|4
)
, 2μ2z

2

(
1 + |μ1|2

3
|z|2
))

, (4.14)

with

D(z) := 1 + |μ1|2 |z|2 + |μ2|2 |z|4 + |μ1|2 |μ2|2
9

|z|6 . (4.15)

The constraint U = (U0,U1,U2) ≡ gH on ∂D first implies U1 ≡ 0 on ∂D, which in
turn yields |μ2| = √

3. Then U (z) = (− 1
2 , 0,

μ2
2 z2

) = gH (z) for every z ∈ ∂D, whence
μ2 = √

3. Thus, (4.14)–(4.15) hold.
To complete the proof, it remains to show that Ẽ0(u) = 6π for allμ1 ∈ C in (4.12)–(4.13).

In view of (4.8)–(4.11), the energy Ẽ0(u) just depends on |μ1|. It is continuous with respect
to μ1, and Ẽ0(u) = 6π for μ1 = 0 as already computed in the previous step. Then it is
enough to check that Ẽ0(u) is independent of |μ1| by showing that it has zero derivative for
|μ1| positive. To see this, we first notice that 〈u, ∂|μ1|u〉 ≡ 0 since |u|2 = 1, and ∂|μ1|u = 0
on ∂D since u = gH on ∂D. Differentiating under integral sign, integrating by parts and
using (4.5), we obtain

∂|μ1| Ẽ0(u) =
∫

D

∂|μ1|
(1
2

|∇u|2
)
dx =

∫

D

∇u · ∇(∂|μ1|u
)
dx

= −
∫

D

�u · ∂|μ1|u dx =
∫

D

|∇u|2 u · ∂|μ1|u dx = 0.

which concludes the proof. ��

4.2 Energy gap for the Dirichlet integral of maps into S
4

In this subsection, we compute explicitly the minimum values and describe the minimizers
of the minimization problems

min
u∈ÃN

Ẽ0(u), (4.16)

and

min
u∈ÃS

Ẽ0(u) , (4.17)

where Ẽ0 is given in (4.4), thus making explicit a corresponding gap phenomenon. The
following theorem is the main result of the subsection, and it is a direct consequence of
Propositions 4.6 and 4.7 below.
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Theorem 4.4 The following gap holds for the Dirichlet energy (4.4):

2π = min
u∈ÃS

Ẽ0(u) < min
u∈ÃN

Ẽ0(u) = 6π. (4.18)

In addition, the minimum value of Ẽ0 over ÃS is uniquely achieved by

uS(z) :=
(

|z|4 − 3

|z|4 + 3
, 0,

2
√
3z2

|z|4 + 3

)
, (4.19)

while theminimumvalue of Ẽ0 over ÃN is attained at u ∈ ÃN iff u is of the form (4.12)–(4.13).

Remark 4.5 (“Bubbling-off” of harmonic spheres) The resolution of (4.16)–(4.17) suffers
two main difficulties: (i) the conformal invariance of the functional Ẽ0 and the induced
lack of compactness of energy-bounded sequences; (ii) the fact that the classes ÃN and ÃS

are not closed under weak W 1,2-convergence. To illustrate these facts, let us consider for
μ1 ∈ C, the mapping uμ1 ∈ ÃN given by Proposition 4.3 and satisfying Ẽ0(uμ1) = 6π . As
|μ1| → ∞, we have uμ1⇀uS ∈ ÃS weakly in W 1,2(D), where uS is given by (4.19). Note
that uS solves (4.5) and satisfies Ẽ0(uS) = 2π . As the convergence is smooth away from the
origin, 1

2

∣∣∇uμ1

∣∣2 dx⇀ 1
2 |∇uS|2 dx + 4πδ0 as measures on D. Finally, if μ1/|μ1| → eiθ as

|μ1| → ∞, then uμ1(z/μ1) → ũ(z) strongly in W 1,2
loc (C;S

4), where

ũ(z) :=
(
1 − |z|2
1 + |z|2 ,

2eiθ z

1 + |z|2 , 0
)

(4.20)

is a finite energy harmonic 2-sphere (a “bubble”), ũ : C∪{∞} � S
2 → S

4 with Ẽ0(ũ;C) =
4π .

To discuss the minimization problem (4.17), we rely on existing results in the literature
[25, 39], and we actually prove that the minimality of uS holds even among non symmetric
competitors.

Proposition 4.6 The map uS given by (4.19) is the unique minimizer of Ẽ0 in W 1,2
gH

(D;S
4).

As a consequence, minu∈ÃS
Ẽ0(u) = 2π and uS is the unique minimizer of Ẽ0 over ÃS.

Proof We shall use the real coordinates u = (u0, . . . , u4) ∈ R
5 � R ⊕ C ⊕ C, and we shall

denote by S
4± = {u ∈ S

4 : u0 ≷ 0} the upper/lower open half spheres.
First, we observe that uS(D) ⊆ S

4−. Since uS is a smooth harmonic map (see Remark 4.5),

we deduce from [39, Lemma 2.1] that uS minimizes Ẽ0 over the whole W
1,2
gH

(D;S
4). Now

we claim that uS is actually the unique minimizer overW 1,2
gH

(D;S
4). Since S

4− is geodesically
convex, the uniqueness result from [25] tells us that uS is the unique (smooth) solution to (4.5)
whose range is strictly included in S

4−. Now, if u ∈ W 1,2
gH

(D;S
4) is any minimizer of Ẽ0, then

u is a harmonic map smooth up to the boundary. Hence it suffices to show that u(D) ⊆ S
4− to

conclude that u = uS. Assume by contradiction that u(z) = (u0(z), u1(z), . . . , u4(z)) satis-
fies u0(z∗) = 0 for some z∗ ∈ D. Then the competitor ũ(z) := (−|u0(z)|, u1(z), . . . , u4(z))
belongs toW 1,2

gH
(D;S

4), and Ẽ0(ũ) � Ẽ0(u). Thus, ũ is also aminimizer, whence a harmonic
map in D smooth up to the boundary. Then the function v(z) := |u0(z)| is a smooth solution
in D to −�v = |∇u|2v � 0, with v(z) = 1

2 on ∂D. By the maximum principle, we have
v � 1

2 in D, in contradiction with the assumption v(z∗) = 0. Therefore u(D) ⊆ S
4−, leading

to u = uS. Finally, since uS ∈ ÃS, it obviously follows that uS is the unique minimizer of Ẽ0
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over ÃS, and a direct computation yields Ẽ0(uS) = 2π (see the the proof of Proposition 4.3).
��

Concerning (4.16), we have the following result.

Proposition 4.7 It holds

min
u∈ÃN

Ẽ0(u) = 6π, (4.21)

and the minimum is attained at a map u if and only if u is of the form (4.12)–(4.13).

The proof of Proposition 4.7 is postponed to the end of this subsection. In contrast with the
proof of Proposition 4.6, we now have to overcome the possible lack of compactness of min-
imizing sequences and concentration of energy. To this purpose, we shall construct suitable
minimizing sequences considering a regularization of problem (4.16). This regularization is
based on the following subclasses of ÃN,

Ãρ
N := {u ∈ ÃN : u = (1, 0, 0) a.e. on Dρ

}
with 0 < ρ < 1 , Ã0

N :=
⋃

0<ρ<1

Ãρ
N .(4.22)

As opposed to ÃN, the subsets Ãρ
N are closed under weak W 1,2-convergence. The following

lemma relates those different classes and their corresponding minimization problems.

Lemma 4.8 The following properties hold.

(i) Ã0
N is a strongly dense subset of ÃN in W 1,2(D).

(ii) inf
u∈ÃN

Ẽ0(u) = inf
u∈Ã0

N

Ẽ0(u) = lim
ρ→0

inf
u∈Ãρ

N

Ẽ0(u) .

(iii) For each integer n � 1, the minimization problem

min
u∈Ã

1
n
N

Ẽ0(u) (4.23)

admits a solution. In addition, for any solution un ∈ Ã
1
n
N , we have

lim
n→∞ Ẽ0(un) = inf

u∈ÃN

Ẽ0(u). (4.24)

Proof We start proving claim (i). Let us fix u ∈ ÃN arbitrary. We aim to construct
uρ ∈ Ãρ

N such that uρ → u strongly in W 1,2(D) as ρ → 0. Writing u(reiφ) =
( f0(r), f1(r)eiφ, f2(r)ei2φ), we first set

ũρ(re
iφ) :=

⎧⎪⎪⎨
⎪⎪⎩

e0 if r ∈ [0, ρ] ,
e0 + r − ρ√

ρ − ρ

(
u(

√
ρeiφ) − e0

)
if r ∈ [ρ,√ρ] ,

u(reiφ) if r ∈ [√ρ, 1] .
Then ũρ ∈ W 1,2

sym(D;R⊕C⊕C)∩C0(D) and ũρ = gH on ∂D. Moreover, ũρ → u uniformly
in D, which implies that |ũρ | → 1 uniformly in D as ρ → 0. For ρ > 0 small enough, we
thus have |ũρ | � 1/2 in D, and we can define

uρ(z) := ũρ(z)

|ũρ(z)| .
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By construction, we have uρ ∈ Ãρ
N, and uρ → u uniformly in D as ρ → 0. In addition,

Ẽ0(uρ) = Ẽ0
(
uρ;D√

ρ \ Dρ

)+ Ẽ0(u;D \ D√
ρ),

and

Ẽ0
(
uρ;D√

ρ \ Dρ

)
� C Ẽ0

(
ũρ;D√

ρ \ Dρ

)

� C
(|1 − f0(

√
ρ)|2 + | f1(√ρ)|2 + | f2(√ρ)|2)−→

ρ→0
0.

Hence Ẽ0(uρ) → Ẽ0(u) as ρ → 0, which implies that uρ → u strongly in W 1,2(D).
Concerning (ii), the first equality is an obvious consequence of (i) since Ẽ0 is (strongly)

W 1,2-continuous. Then we observe that ρ → infÃρ
N
Ẽ0 is non decreasing. Therefore,

inf
Ã0

N

Ẽ0 = inf
0<ρ<1

inf
Ãρ

N

Ẽ0 = lim
ρ→0

inf
Ãρ

N

Ẽ0.

To prove claim (iii), we recall that Ã
1
n
N is weakly W 1,2-closed. Hence existence of solu-

tions to (4.23) follows from the direct method of calculus of variations. Finally, (4.24) is a
consequence of (ii) together with the monotonicity of ρ → infÃρ

N
Ẽ0. ��

By the previous lemma, a sequence {un} of solutions to (4.23) provides a minimizing
sequence for (4.16). In the next result, we provide the key step for the asymptotic analysis
of such a sequence.

Lemma 4.9 Let {un} ⊆ Ã0
N be such that un solves (4.23) for every n � 1. Assume that, for

some (not relabelled) subsequence, un⇀u∗ weakly in W 1,2(D). Then u∗ ∈ Ãsym
gH

(D) and

u∗ is a smooth harmonic map in D. Moreover, if u∗ ∈ ÃS, then there exists a further (not
relabelled) subsequence and rn → 0+ such that ũn(z) := un(rnz) satisfies ũn⇀ũ weakly in
W 1,2

loc (C) for some equivariant nonconstant finite energy smooth harmonic map ũ : C → S
4.

Proof Using maps of the form (4.12)–(4.13) as competitors, we infer from Lemma 4.8 that

lim
n→∞ Ẽ0(un) = inf

u∈ÃN

Ẽ0(u) � 6π. (4.25)

The class Ãsym
gH

(D) being weakly W 1,2-closed, we have u∗ ∈ Ãsym
gH

(D). By minimality, each

un is a harmonic map in D \ D1/n . Since un⇀u∗ weakly in W 1,2(D), it classically follows
that u∗ is a (weakly) harmonicmap inD\{0}, see e.g. [13, Theorem 1, p. 50].Moreover, since
u∗ belongs to W 1,2(D) and the set {0} has zero capacity, u∗ is actually a weakly harmonic
map in the whole disc D, and thus a smooth harmonic map in D by regularity theory.

We now assume that u∗ ∈ ÃS. Recalling Lemma 2.10, we write

un(re
iφ) =: ( f (n)0 (r), f (n)1 (r)eiφ, f (n)2 (r)ei2φ

)
and u∗(reiφ) =: ( f ∗

0 (r), f
∗
1 (r)e

iφ, f ∗
2 (r)e

i2φ) ,

so that
(
f (n)0 (0), f (n)1 (0), f (n)2 (0)

) = (1, 0, 0) and
(
f ∗
0 (0), f

∗
1 (0), f

∗
2 (0)

) = (−1, 0, 0) .

The functions f (n)0 and f ∗
0 are continuous in [0, 1] and taking values in [−1, 1] by the

S
4-constraint. In addition, we have f ∗

0 (r) ∈ (−1, 1) for every r ∈ (0, 1]. Indeed, assume
by contradiction that f ∗

0 (t) = ±1 for some t ∈ (0, 1). Then, u∗ = (±1, 0, 0) on ∂Dt

which implies that u∗ = (±1, 0, 0) in Dt by Lemaire’s constancy theorem [29]. Then u∗ ≡
(±1, 0, 0) in D by unique continuation, in contradiction with the boundary condition.
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By Lemma 2.10, un → u∗ locally uniformly in D \ {0}, and thus f (n)0 → f ∗
0 locally

uniformly in (0, 1]. Since f ∗
0 (0) = −1, we have

lim
n→∞ min[0,1] f

(n)
0 = −1. (4.26)

Recalling that f (n)0 (1) = − 1
2 and f (n)0 (0) = 1, each function f (n)0 must vanish on the interval

[0, 1]. We can thus define

rn := min
{
r ∈ [0, 1] : f (n)0 (r) = 0

} ∈ (0, 1),

and

rmin
n := min

{
r ∈ [0, 1] : f (n)0 (r) = min[0,1] f

(n)
0

}
∈ (0, 1).

Since un ∈ Ã
1
n
N and f ∗

0 (r) > −1 for every r > 0, we infer from (4.26) that

1

n
< rn < rmin

n −→
n→∞ 0,

whence rn → 0. Combining Cauchy-Schwarz inequality and (4.8) leads to

1 = | f (n)0 (rn) − f (n)0 (1/n)| �
∫ rn

1/n

√
r |∂r f (n)0 (r)| dr√

r
�
√
π−1 Ẽ0(un)

√
log (nrn) .

From the energy bound in (4.25), we conclude that

r∗ := lim sup
n→∞

1

nrn
< 1.

Now we set

ũn(z) := un(rnz),

so that ũn ∈ W 1,2
sym(D1/rn ;S

4), ũn = (1, 0, 0) in D1/nrn , and ũn is a harmonic map in the
annulus

�n := {1/nrn < |z| < 1/rn
}
.

Setting ũn(reiφ) =: ( f̃ (n)0 (r), f̃ (n)1 (r)eiφ, f̃ (n)2 (r)ei2φ), we also have f̃ (n)0 (1) = 0 by
construction.

In view of (4.25), we have for every r > 0,

lim sup
n→∞

Ẽ0(ũn,Dr ) � lim sup
n→∞

Ẽ0(ũn,D1/rn ) = lim sup
n→∞

Ẽ0(un,D) � 6π.

Therefore we can extract a (not relabelled) subsequence such that ũn⇀ũ in W 1,2
loc (C) for

some equivariant map ũ ∈ W 1,2
loc (C;S

4) satisfying Ẽ0(ũ;C) � 6π by lower semicontinuity
of the Dirichlet energy. By Lemma 2.10 again, ũn → ũ locally uniformly in C \ {0}, so that
f̃ (n)0 → f̃0 locally uniformly in (0,∞)where ũ(reiφ) =: ( f̃0(r), f̃1(r)eiφ, f̃2(r)e2iφ). Then
f̃0(1) = limn f̃ (n)0 (1) = 0, and | f̃0(0)| = 1 by equivariance. In particular, ũ is nonconstant.
Extracting a further subsequence if necessary, we have 1/nrn → r∗, so that

�n → �∗ := {|z| > r∗}.
Arguing as above, we infer that ũ is a weakly harmonic map in �∗, and hence a classical
(smooth) harmonic map in�∗. Next, we claim that r∗ = 0. Indeed, assume by contradiction
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that 0 < r∗ < 1. Then ũ = (1, 0, 0) in Dr∗ since ũn → ũ locally uniformly on C\{0}. For
z ∈ D1/r∗\{0}, we now consider the invertedmap v(z) := ũ(1/z̄). By conformal invariance of
Ẽ0, we have Ẽ0(v,D1/r∗) = Ẽ0(ũ,�∗) � 6π , and v is a weakly harmonic map in D1/r∗\{0}
satisfying v = (1, 0, 0) on ∂D1/r∗ . Again, since {0} has a vanishing capacity, v is actually a
weakly harmonic map in the whole disc D1/r∗ , and thus a smooth harmonic map in D1/r∗ .
Since v = (1, 0, 0) on ∂D1/r∗ , Lemaire’s theorem [29] tells us that v ≡ (1, 0, 0) in D1/r∗ .
Hence, ũ ≡ (1, 0, 0) in �∗, in contradiction with the fact that f̃0(1) = 0.

Since r∗ = 0, ũ is weakly harmonic in C \ {0}, and thus weakly harmonic in the whole
C as argued above. Hence ũ is a smooth, nonconstant, equivariant harmonic map satisfying
Ẽ0(ũ;C) � 6π . ��
Proof of Proposition 4.7 Using maps of the form (4.12)–(4.13) as competitors, we obtain

inf
u∈ÃN

Ẽ0(u) � 6π. (4.27)

We are going to show that equality actually holds, so that any map of the form (4.12)–(4.13)
is a minimizer. Moreover, since any minimizer is a solution of (4.5), it must be of the form
(4.12)–(4.13) by Proposition 4.3, so that no other minimizers exist.

Let us now consider a sequence {un} ⊆ Ã0
N such that un solves (4.23) for every n � 1. In

view of Lemma 4.8, {un} is a minimizing sequence for (4.16). To show that equality holds
in (4.27), it thus suffices to prove that limn Ẽ0(un) = 6π . By construction, {un} is bounded
in W 1,2(D), so that we can find a (not relabelled) subsequence such that un⇀u∗ weakly in
W 1,2(D). By Lemma 4.9, u∗ ∈ Ãsym

H
is a smooth harmonic map in D.

We now distinguish between two scenarios.
Case I. Compact case: u∗ ∈ ÃN. Under this assumption, we have Ẽ0(u∗) = 6π by
Proposition 4.3. In addition, by weak lower semicontinuity of the Dirichlet energy,

6π = Ẽ0(u∗) � lim
n→∞ Ẽ0(un) = inf

ÃN

Ẽ0 � 6π,

which proves (4.21).
Case II. Noncompact case: u∗ ∈ ÃS. Under this assumption, we have Ẽ0(u∗) � 2π by
Proposition 4.6. In view of Lemma 4.9, there exists a (not relabelled) subsequence and
rn → 0 such that the rescaled sequence ũn(z) := un(rnz) converges weakly in W 1,2

loc (C) to
an entire nonconstant equivariant smooth harmonic map ũ of finite Dirichlet energy. Being
of finite energy, ũ extends toC∪{∞} � S

2 to an equivariant weakly harmonic map, and thus
a smooth equivariant harmonic 2-sphere into S

4. By the classification result in [12, Section
3], we thus have Ẽ0(ũ,C) � 4π .

Setting r ′
n = √

rn → 0 and using the weak lower semicontinuity of the Dirichlet energy,
we infer that

6π � inf
ÃN

Ẽ0 = lim
n→∞ Ẽ0(un) � lim inf

n→∞ Ẽ0(un;Dr ′
n
) + lim inf

n→∞ Ẽ0(un;D \ Dr ′
n
)

� lim inf
n→∞ Ẽ0(ũn;Dr ′

n/rn ) + Ẽ0(u∗) � Ẽ0(ũ;C) + Ẽ0(u∗) � 6π ,

which again proves (4.21). ��

4.3 Uniaxiality vs Biaxiality in the 2D-LdGminimization

In the light of the previous section, we now discuss for λ > 0 the variational problems

min
Q∈AN

Eλ(Q), (4.28)
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and

min
Q∈AS

Eλ(Q), (4.29)

where Eλ is the 2D-LdG energy in (1.11), andAN,AS are the classes defined in (4.2)–(4.3).
Once again we rely in an essential way on the (isometric) identification S0 � R ⊕ C ⊕ C

and the induced correspondence Q � u between Q-tensor maps andR⊕C⊕C-valued maps
from Corollary 2.7. Recalling that tr(Q3) = 3 det Q for every Q ∈ S0, we infer from (2.12)
that

W (Q) = 1

3
√
6

(
1 − u0

(
u20 + 3

2
|u1|2 − 3|u2|2

)− 3
√
3

2
Re
(
u21u2

)) =: W̃ (u) for Q � u.

(4.30)

Setting, for u ∈ W 1,2(D;S
4),

Ẽλ(u) :=
∫

D

1

2
|∇u|2 + λW̃ (u) dx,

we obtain

Eλ(Q) = Ẽλ(u) for Q � u.

If Q � u ∈ W 1,2
sym(D;S

4) and u(reiφ) = ( f0(r), f1(r)eiφ, f2(r)ei2φ), then

Eλ(Q) = Ẽλ(u) = π

∫ 1

0

(∣∣ f ′∣∣2 + | f1|2 + 4 | f2|2
r2

+ 2λ
1 − β̃( f )

3
√
6

)
rdr , (4.31)

with f := ( f0, f1, f2) and β̃( f ) given in (2.21). Equivariant critical points Q � u of the
energy functional Eλ satisfy the following system of ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′′
0 + 1

r
f ′
0 = −|∇u|2 f0 + λ√

6

(
| f2|2 − f 20 − 1

2
| f1|2 + β̃( f ) f0

)
,

f ′′
1 + 1

r
f ′
1 = −|∇u|2 f1 − 1

r2
f1 + λ√

6

(
−√

3 f2 f1 − f0 f1 + β̃( f ) f1
)
,

f ′′
2 + 1

r
f ′
2 = −|∇u|2 f2 − 4

r2
f2 + λ√

6

(
−

√
3

2
f 21 + 2 f0 f2 + β̃( f ) f2

)
,

(4.32)

with |∇u|2 as in (4.8) depending also on f only.
In the sequel, our goal is to establish existence/nonexistence of solutions to (4.28)–(4.29)

starting from the gap phenomenon in Theorem 4.4. In turn, we shall derive qualitative proper-
ties of minimizers of Eλ inAsym

H
(D) = AS∪AN. Themain result, Theorem 1.2, is postponed

to the end of the subsection. It reveals the nature of minimizers of Eλ inAsym
H

(D) as λ varies.
In particular, we shall see that biaxial escape occurs for reasons of energy efficiency.

We start with the following proposition providing the complete description of solutions
to (4.28).

Proposition 4.10 For all λ > 0,

min
Q∈AN

Eλ(Q) = 6π, (4.33)
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and the minimum is attained at Q � u if and only if u(z) = gH (±z) with gH given by (4.34)
below.

The proof is essentially based on the following preliminary lemma of independent interest.

Lemma 4.11 Let Q ∈ AN with Q � u of the form (4.12)–(4.13). Then Q is positively
uniaxial if and only if μ1 = ±√

3, that is u(z) = gH (±z) where

gH (z) := 1

(1 + |z|2)2
(
1 − 4 |z|2 + |z|4 , 2√3z

(
1 − |z|2 ), 2√3z2

)
(4.34)

extends (4.1) to D. Moreover, if H denotes the unit norm nematic hedgehog in (1.10), then
we have gH � (H ◦ σ−1

2 ) where σ 2 : S
2 \ {(0, 0,−1)} → C is the stereographic projection

from the south pole of S
2.

Proof Let us fix Q ∈ S
4 with Q � u = (u0, u1, u2). For a given θ ∈ R, we set Q̃ � ũ :=

(u0,±|u1|eiθ , |u2|ei2θ ). From (4.30), we derive that W (Q) � W (Q̃) with equality if and
only if u21u2 � 0. Hence equality holds if and only if Re(u21u2) = |u1|2|u2| and Q = Q̃ for
some θ ∈ R. As a consequence, W (Q) = 0 if and only if

0 = 1 − u0
(
u20 + 3

2
|u1|2 − 3|u2|2

)− 3
√
3

2
|u1|2|u2|

= 1 − u0

(
3

2
− 1

2
u20 − 9

2
|u2|2

)
− 3

√
3

2

(
1 − u20 − |u2|2

)|u2|

= 3

2

(
u0 + √

3|u2| − 1
)(
u0 + √

3|u2| + 2
)
,

where we have used that |u|2 = u20 + |u1|2 + |u2|2 = 1. Hence, W (Q) = 0 if and only if
either u0 + √

3|u2| = 1, or u0 + √
3|u2| = −2.

Let us now consider Q ∈ AN with Q � u a map of the form (4.12)–(4.13), and Q � u.
If W (Q) = 0 in D, then u21u2 � 0 in D which implies that μ1 ∈ R. Since u0 + √

3|u2| = 1
on ∂D, we infer that u0 + √

3|u2| = 1 in D by continuity. Inserting (4.12)–(4.13) in this
equation leads to μ1 = ±√

3. The other way around, if μ1 = ±√
3, it is now easily seen that

W (Q) = 0 in D. ��
Proof of Proposition 4.10 Using H ◦σ−1

2 � gH as a competitor, we infer fromProposition 4.7
and Lemma 4.11 that for any Q ∈ AN with Q � u,

Eλ(H ◦ σ−1
2 ) = E0(H ◦ σ−1

2 ) = Ẽ0(gH ) = 6π � Ẽ0(u) � Ẽλ(u) = Eλ(Q) . (4.35)

Hence (4.33) holds and H is a minimizer. On the other hand, if Q ∈ AN is a minimizer, then
Eλ(Q) = 6π and all inequalities in (4.35) are equalities. HenceW (Q) ≡ 0 and Ẽ0(u) = 6π .
Finally, combining again Proposition 4.7 with Lemma 4.11, we deduce that u(z) = gH (±z).

��
Remark 4.12 In the previous proof, the characterization of uniaxialminimizers can be derived
in a differentway. Indeed, if aminimizer Q is (positively) uniaxial, then itmust be aminimizer
over the restricted class of maps Q̃ ∈ W 1,2

sym(D;RP2) with trace Q̃ = H on ∂D. Combining
with the fact that the mapping� : S

2 → RP2,

R ⊕ C ⊇ S
2 � v → �(v) =

√
3

2

(
v ⊗ v − 1

3
Id

)
∈ RP2 ⊆ S

4 ,
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is an isometric two-fold cover with the result in [7], one can lift any such Q̃ to a map ṽ ∈
W 1,2

sym(D;S
2) with trace ṽ(z) = (0, z) on ∂D (equivariance of the lift being a consequence of

its uniqueness when a lift at the boundary is chosen). Then we have E0(Q̃) = 3
2

∫
D

|∇ṽ|2 dx .
Thus, minimizing maps are of the form Q = � ◦ v with v(z) = 1

1+|z|2
(±(1 − |z|2), 2z), the

uniqueminimizing harmonicmaps in the classW 1,2
sym(D;S

2)with trace (0, z) on ∂D (compare
[22, Section 3.1, equations (3.5)–(3.6)]).

We now address problem (4.29), and we begin with the dependence on λ of the associated
value. Existence of solutions will be the object of Proposition 4.15.

Proposition 4.13 Setting

e∗λ := inf
Q∈AS

Eλ(Q) , (4.36)

then 2π � e∗λ � 10π for every λ � 0, and the function λ → e∗λ is continuous and non-

decreasing. In addition, there exists λ∗ ∈
[

48
√
2

2π−3
√
3
, 52 · 36 ·

√
6
4 π2

]
such that λ → e∗λ is

strictly increasing in [0, λ∗], e∗0 = 2π , and e∗λ = 10π for λ � λ∗.

To prove the proposition, we shall need the following technical lemma.

Lemma 4.14 (Bubble insertion) For each ρ ∈ (0, 1) there exists vρ ∈ ÃS such that vρ ≡
(1, 0, 0) for |z| � ρ, and satisfying Ẽ0(vρ) → 4π as ρ → 0. As a consequence, for each
u ∈ ÃN, there exists {wρ} ⊆ ÃS such that wρ⇀u weakly in W 1,2(D), wρ → u strongly in

W 1,2
loc (D\{0}), and Ẽ0(wρ) → Ẽ0(u) + 4π as ρ → 0.

Proof Define

v̂(z) := 1

|z|2 + 1

(|z|2 − 1, 2z, 0
)
,

so that v̂ ∈ W 1,2
loc (C;S

4), v̂ is S
1-equivariant, v̂(0) = (−1, 0, 0), and Ẽ0 (̂v,C) = 4π . We

rescale the map v̂ setting, for ρ ∈ (0, 1), v̂ρ(z) := v̂(z/ρ3). Then,

max
|z|=ρ2

|̂vρ(z) + v̂(0)| −→
ρ→0

0 and Ẽ0 (̂vρ,Dρ2)−→
ρ→0

4π.

Next we consider the linear interpolation between v̂ρ and −v̂(0),

ṽρ(re
iφ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̂ρ(reiφ) if |z| � ρ2 ,

v̂ρ(ρ
2eiφ) − |z| − ρ2

ρ − ρ2

(̂
v(0) + v̂ρ(ρ

2eiφ)
)

if |z| ∈ [ρ2, ρ] ,
−v̂(0) if |z| ∈ [ρ, 1] .

Since max|z|=ρ2 |̂vρ(z)+ v̂(0)| → 0, we have |̂vρ(z)| � 1/2 on ∂Dρ2 for ρ small enough. It
allows us to define

vρ := v̂ρ

|̂vρ | ∈ ÃS,

which satisfies vρ(z) = (1, 0, 0) for |z| � ρ. Arguing in Lemma 4.8, we obtain
Ẽ0(vρ;Dρ\Dρ2) → 0, and consequently

lim
ρ→0

Ẽ0(vρ) = lim
ρ→0

Ẽ0(vρ;Dρ) = lim
ρ→0

Ẽ0 (̂vρ;Dρ2) = 4π,
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proving the first claim.
To prove the second claim, we fix u ∈ ÃN and we apply Lemma 4.8 (i) to obtain

uρ ∈ Ãρ
N (see (4.22)) such that uρ → u strongly in W 1,2(D) as ρ → 0. Then

Ẽ0(uρ) = Ẽ0(uρ;D\Dρ) → Ẽ0(u). Finally, we set

wρ(z) :=
{
vρ(z) if |z| � ρ ,

uρ(z) if |z| ∈ [ρ, 1] ,
and it is straightforward to check that wρ ∈ ÃS has all the announced properties. ��
Proof of Proposition 4.13 First, we observe that for each Q ∈ AS, the function λ → Eλ(Q) ∈
R is affine and nondecreasing. Hence λ → e∗λ is nondecreasing and concave, therefore
continuous in (0,∞). In view of Proposition 4.6, we have e∗0 = 2π = E0(QS)with QS � uS
given by (4.19). Consequently,

2π � e∗λ � Eλ(QS) = Ẽλ(uS)−→
λ→0

Ẽ0(uS) = 2π,

so that continuity also holds at 0.
Next we consider H ◦ σ−1

2 with H ◦ σ−1
2 � gH as in (4.34), and wρ ∈ ÃS obtained by

applying Lemma 4.14 to gH . Then,
∫
D
W̃ (wρ) dx → ∫

D
W̃ (gH ) dx = 0. If Qρ � wρ , it

follows from Proposition 4.10 and Lemma 4.14 that

e∗λ � Eλ(Qρ) = Ẽ0(wρ) + λ

∫

D

W̃ (wρ) dx −→
ρ→0

Ẽ0(gH ) + 4π = 10π .

By monotonicity we deduce that 2π = e∗0 � e∗λ � 10π for every λ � 0.
An elementary calculation yields

∫

D

W̃ (uS) dx = 18√
6

∫

D

(|z|4 − 1)2

(|z|4 + 3)3
dz = 3

√
6π
∫ 1

0

(t2 − 1)2

(t2 + 3)3
dt

= −
√
6

4
π +

√
2

6
π2 . (4.37)

As a consequence, if e∗λ = 10π for some λ > 0, then

10π = e∗λ � Eλ(QS) = Ẽλ(uS) = 2π + λ

(
−

√
6

4
π +

√
2

6
π2

)
,

which implies that λ � 48
√
2

2π−3
√
3
.

To complete the proof, we are going to show that if λ > 52 ·36 ·
√
6
4 π2, then Eλ(Q) > 10π

for every Q ∈ AS. As a consequence e∗λ = 10π for λ > 52 ·36 ·
√
6
4 π2, so that the conclusion

follows by setting λ∗ := min{λ : e∗λ = 10π} and noticing that λ → e∗λ is strictly increasing
on [0, λ∗] by concavity. To derive the previous claim, we fix Q ∈ AS and we observe that
B := β̃(Q) = √

6tr(Q3) belongs to W 1,2(D) ∩ C(D) with

|∇B| � 3
√
6
(
tr(Q4)

)1/2|∇Q| = 3
√
3|∇Q| ,

where we used that tr(Q4) = 1
2 for Q ∈ S

4 ⊆ S0. From this last inequality and Young’s
inequality, we deduce that

Eλ(Q) �
∫

D

1

2 · 33 |∇B|2 + λ

3
√
6
(1 − B) dx �

√
λ

9
· 1

(24)1/4

∫

D

√
1 − B|∇B| dx .
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Since Q ∈ AS, we have B(D) = [−1, 1], so that the coarea formula yields

Eλ(Q) �
√
λ

9
· 1

(24)1/4

∫

D

√
1 − B |∇B| dx =

√
λ

9
· 1

(24)1/4

∫ 1

−1

√
1 − t dt = 4

33
·

√
λ

61/4
,

and the conclusion follows. ��

We are now ready to discuss existence of solutions for variational problem (4.29) with
λ � 0. The proof the proposition below is postponed as it requires two auxiliary results.

Proposition 4.15 Let λ∗ > 0 be the constant defined in Proposition 4.13. The following
holds.

(i) If 0 � λ < λ∗, then e∗λ < 10π and there exists Qλ ∈ AS solving (4.29). In addition,
βλ := β̃ ◦ Qλ satisfies βλ(D) = [−1, 1].

(ii) If λ > λ∗, then e∗λ = 10π and (4.29) has no solution.

To solve problem (4.29), we proceed as for (4.16) constructing an enhanced minimizing
sequence for which the eventual lack of compactness is easy to describe. It rests on the
following subclasses defined for ρ ∈ (0, 1) by

Ãρ
S := {u ∈ ÃS : u = (−1, 0, 0) a.e. in Dρ

}
, Ã0

S :=
⋃

0<ρ<1

Ãρ
S . (4.38)

Note that, as for the class Ãρ
N in (4.22), the subsets Ãρ

S are weakly W 1,2-closed for any
ρ ∈ (0, 1). The following lemma is the analogue of Lemma 4.8 for Ẽλ restricted to ÃS,
instead of Ẽ0 restricted to ÃN. The proof being completely similar, it is left to the reader.

Lemma 4.16 The following properties hold.

(i) Ã0
S is a strongly dense subset of ÃS in W 1,2(D).

(ii) inf
u∈ÃS

Ẽλ(u) = inf
u∈Ã0

S

Ẽλ(u) = lim
ρ→0

inf
u∈Ãρ

S

Ẽλ(u) .

(iii) For each integer n � 1, the minimization problem

min
u∈Ã

1
n
S

Ẽλ(u) (4.39)

admits a solution. In addition, for any solution un ∈ Ã
1
n
S , we have

lim
n→∞ Ẽλ(un) = inf

u∈ÃS

Ẽλ(u) = e∗λ. (4.40)

In the vein of Lemma 4.9, we now aim to describe the lack of compactness of the mini-
mizing sequence {un} constructed in Lemma 4.16. The proof has some similarities with the
one of Lemma 4.9, and we concentrate on the main differences.

Lemma 4.17 Let {un} ⊆ Ã0
S be such that un solves (4.39) for every n � 1. Assume that for

some (not relabelled) subsequence, un⇀u∗ weakly in W 1,2(D). Then u∗ ∈ Ãsym
gH

(D) and u∗
is a critical point of Ẽλ. Moreover, if u∗ ∈ ÃN, then there exist a further (not relabelled)
subsequence and rn → 0+ such that ũn(z) := un(rnz) satisfies ũn⇀ũ weakly in W 1,2

loc (C)

for some equivariant nonconstant finite energy smooth harmonic map ũ : C → S
4.
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Proof In view of Proposition 4.13 and Lemma 4.16 we have

lim
n→∞ Ẽλ(un) = inf

u∈ÃS

Ẽλ(u) = inf
Q∈AS

Eλ(Q) = e∗λ � 10π , (4.41)

which is the key a priori bound to obtain compactness properties.
By equivariance, un and u∗ write

un(re
iφ)=( f (n)0 (r), f (n)1 (r)eiφ, f (n)2 (r)ei2φ

)
, u∗(reiφ)=

(
f ∗
0 (r), f

∗
1 (r)e

iφ, f ∗
2 (r)e

i2φ) ,

where f (n) := ( f (n)0 , f (n)1 , f (n)2 ) and f ∗ := ( f ∗
0 , f

∗
1 , f

∗
2 ) are continuous on [0, 1] by

Lemma 2.10.
Byminimality of un , each f (n) solves (4.32) in the interval (1/n, 1). As a consequence, f ∗

solves (4.32) in (0, 1). Indeed, (4.41) implies a W 2,1
loc ((0, 1])-bound on the sequence { f (n)},

hence a W 1,∞
loc ((0, 1])-bound by Sobolev embedding. Back to the ODE (4.32), it yields a

C2
loc((0, 1]) bound on { f (n)}. This is then enough to pass to the limit n → ∞ in (4.32) for

r ∈ (0, 1). Thus, since f ∗ solves (4.32) in (0, 1), Q∗ � u∗ is a weak solution to (1.6) in
D\{0}. However, Q∗ being of finite energy and {0} of zero capacity, Q∗ weakly solves (1.6)
in the whole D, i.e., Q∗ is a critical point of Eλ or equivalently, u∗ is a critical point of Ẽλ.

We claim that f ∗
0 (r) < 1 for every r ∈ (0, 1]. To prove this claim, we argue as in the proof

of Lemma 4.2. Since Ẽ0(u∗) < ∞, we infer from (4.31) that there exists a sequence rk ↓ 0
satisfying r2k

∣∣( f ∗)′(rk)
∣∣2 + ∣∣ f ∗

1 (rk)
∣∣2 + 4

∣∣ f ∗
2 (rk)

∣∣2 → 0 as k → ∞. Then we multiply
(4.32) by r2( f ∗)′ and integrate between rk and a fixed r ∈ (0, 1). Using ( f ∗)′ · f ∗ = 0 and
letting k → ∞, we obtain

r2
∣∣( f ∗)′(r)

∣∣2 = ∣∣ f ∗
1 (r)

∣∣2 + 4
∣∣ f ∗

2 (r)
∣∣2 + 2λ

3
√
6

(
1 − β̃( f ∗(r))

)
r2 .

Now assume by contradiction that f ∗
0 (r̄) = 1 for some r̄ ∈ (0, 1). Then f ∗(r̄) = (1, 0, 0)

because | f ∗(r̄)| = 1, and the previous identity yields ( f ∗)′(r̄) = 0. By uniqueness of the
Cauchy problem for (4.32), it follows that f ∗(r) = f ∗(r̄) = (1, 0, 0) for every r ∈ (0, 1].
However, since u∗ = gH on ∂D, we have f ∗(1) = (−1/2, 0,

√
3/2), a contradiction.

Let us now assume that u∗ ∈ ÃN. Since un ∈ ÃS, we have

( f (n)0 (0), f (n)1 (0), f (n)2 (0)) = (−1, 0, 0) and ( f ∗
0 (0), f

∗
1 (0), f

∗
2 (0)) = (1, 0, 0) .

Arguing as in the proof of Lemma 4.9, f (n)0 → f ∗
0 locally uniformly in (0, 1], and

lim
n→∞max[0,1] f (n)0 = 1 .

Since f (n)0 (0) = −1, each f (n)0 must vanish on [0, 1] by continuity, at least for n large enough.
This allows us to define

rn := min
{
r ∈ [0, 1] : f (n)0 (r) = 0

} ∈ (0, 1),

and

rmax
n := min

{
r ∈ [0, 1] : f (n)0 (r) = max[0,1] f (n)0

} ∈ (0, 1) .

As in the proof of Lemma 4.9, we have 1/n < rn < rmax
n → 0 as n → ∞, and

r∗ := lim sup
n→∞

1

nrn
< 1.
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Nowwe set ũn(z) := un(rnz), so that ũn ∈ W 1,2
sym(D1/rn ;S

4), ũn(z) = −e0 for |z| � 1
nrn

, and

ũn is a critical point of Ẽλr2n
in the domain �n :=

{
1
nrn

< |z| < 1/rn
}
. In addition, setting

ũn(reiφ) =: ( f̃ (n)0 (r), f̃ (n)1 (r)eiφ, f̃ (n)2 (r)ei2φ), f̃ (n)0 satisfies f̃ (n)0 (1) = 0 by our choice of
rn .

By (4.41), we have Ẽλr2n
(ũn,D1/rn ) = Ẽλ(un) � 10π . Hence, we can find a (not rela-

belled) subsequence such that ũn⇀ũ weakly in W 1,2
loc (C) for a limiting equivariant map

ũ ∈ W 1,2
loc (C;S

4) satisfying Ẽ0(ũ;C) � 10π . Since�n → �∗ := {|z| > r∗}, we obtain that
ũ is a weakly harmonic map in�∗. Indeed, f̃n := ( f̃ (n)0 , f̃ (n)1 , f̃ (n)2 ) satisfies (4.32) with λr2n
in place of λ. Using the energy bound and the ODE as above, we derive that f̃ (n) is bounded
in C2

loc((r∗,∞)). Arguing again as above and since λr2n → 0, it implies that ũ is a critical
point of Ẽ0 in�∗, i.e., ũ is a weakly harmonic map in�∗. The rest of the proof now follows
exactly as in the proof of Lemma 4.9: ũ is nonconstant by the normalization f̃0(1) = 0,
r∗ = 0 by Lemaire’s theorem, and ũ extends to a finite energy harmonic map in the whole
C. ��
Proof of Proposition 4.15 We start proving (i), arguing as in the proof of Proposition 4.7.
We thus assume that λ < λ∗. We consider {un} ⊆ Ã0

S be such that un solves (4.39) for
every n � 1. From Proposition 4.13 and Lemma 4.16, we infer that Ẽλ(un) → e∗λ < 10π as
n → ∞. The sequence {un} ⊆ ÃS being bounded, we can find a (not relabelled) subsequence
such that un⇀u∗ weakly in W 1,2(D). By Lemma 4.17, u∗ ∈ Ãsym

gH
(D) and u∗ is a critical

point of Ẽλ.
Now we claim that u∗ ∈ ÃS. Assuming this claim holds, we have e∗λ � Ẽλ(u∗) � Ẽλ(un)

and lim infn Ẽλ(un) = e∗λ by weak lower semicontinuity. Hence equality holds, and since
u∗ ∈ ÃS, we conclude that Q∗ � u∗ is a minimizer for (4.29). In addition, β̃ ◦ Q∗(0) = −1
and β̃ ◦ Q∗ ≡ 1 on ∂D, so that β̃ ◦ Q∗(D) = [−1, 1] by continuity (and Lemma 2.10).

To show that u∗ ∈ ÃS, we argue by contradiction assuming that u∗ ∈ ÃN. According
to Lemma 4.17, there exist a further (not relabelled) subsequence and rn → 0+ such that
ũn(z) := un(rnz) satisfies ũn⇀ũ weakly inW 1,2

loc (C) for some equivariant nonconstant finite
energy smooth harmonic map ũ. Setting r ′

n = √
rn and rescaling variables, we derive by

weak lower semicontinuity that

10π > e∗λ = lim
n→∞ Ẽλ(un) � lim inf

n→∞ Ẽλ(un;Dr ′
n
) + lim inf

n→∞ Ẽλ(un;D \ Dr ′
n
)

� lim inf
n→∞ Ẽ0(ũn;Dr ′

n/rn ) + Ẽλ(u∗) � E0(ũ;C) + Ẽλ(u∗) � 10π , (4.42)

a contradiction. The last inequality above combines the inequality Ẽλ(u∗) � 6π from Propo-
sition 4.10, with E0(ũ;C) � 4π from the classification result in [12, Section 3] (ũ being of
finite energy, it extends to C ∪ {∞} � S

2 as a nonconstant equivariant harmonic 2-sphere
into S

4). Hence, u∗ ∈ ÃS as claimed.
To prove (ii), we first observe that Proposition 4.13 yields e∗λ = 10π for λ > λ∗. Next

we argue by contradiction assuming that a minimizer Qλ ∈ AS for (4.29) exists for some
λ > λ∗. Since W (Qλ(0)) = W (−e0) > 0, we have

∫
D
W (Qλ) dx > 0. Therefore,

10π = e∗λ′ � Eλ′(Qλ) < Eλ′(Qλ) + (λ − λ′)
∫

D

W (Qλ) dx = Eλ(Qλ) = e∗λ = 10π

for every λ∗ < λ′ < λ, which gives the contradiction. ��
Remark 4.18 It is an open problem whether the solution Qλ � uλ of (4.29) is unique or
not for each λ ∈ (0, λ∗). If uλ(reiφ) = ( f λ0 (r), f

λ
1 (r)e

iφ, f λ2 (r)e
i2φ), then choosing as
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competitors ( f λ0 (r),±| f λ1 (r)|eiφ, | f λ2 (r)|ei2φ) implies that f λ2 (r) � 0 (since it is positive
at the boundary), and f λ1 is real with constant sign. As a consequence, either f λ1 ≡ 0 and in
turn uλ is unique at least for λ small (see Theorem A.3, Lemma A.1 and Lemma 2.10), or
f λ1 �≡ 0 and both ± f λ1 give rise to minimizers.

Remark 4.19 The previous proof obviously breaks down in the limiting case λ = λ∗. In
this case, it is unknown if a minimizer of (4.29) exists, or if the minimizing sequence {un}
exhibits concentration of energy and bubbling-off of a harmonic sphere at the origin according
to Lemma 4.17.

We are finally in the position to discuss the global minimization of the energy Eλ in the
class (1.12). To this purpose, we define for λ � 0,

eλ := inf
Q∈Asym

H
(D)

Eλ(Q), (4.43)

and we recall that the constant λ∗ > 0 is defined in Proposition 4.13, and e∗λ is given by
(4.36).

Proposition 4.20 For every λ � 0, we have eλ = min{6π, e∗λ} with e∗λ given by (4.36),
so that λ → eλ is nondecreasing, continuous, and concave. Moreover, there exists λ∗ ∈[

24
√
2

2π−3
√
3
, 38 ·

√
6
4 π2

]
with λ∗ < λ∗, such that λ → eλ is strictly increasing in [0, λ∗], and

eλ = 6π for λ � λ∗.

Proof Recalling that Asym
H

(D) = AS ∪ AN, combining Proposition 4.7, Proposition 4.10,
and Proposition 4.13, we infer that eλ = min{6π, e∗λ} for every λ � 0. It is therefore con-
tinuous, concave, and nondecreasing. Choosing λ∗ to be the unique solution to e∗λ = 6π ,
the rest of claim follows from Proposition 4.13. By obvious modifications of the proof of
Proposition 4.13, we obtain the announced lower and upper bounds on λ∗. ��

We are finally ready to prove the main result concerning 2D-minimization, i.e., to give
the full proof of Theorem 1.2.

Proof of Theorem 1.2 To prove (i) we argue as follows. According to Proposition 4.7 and
Proposition 4.10, the maps Q are uniaxial and minimizing Eλ overAN for every λ � 0 with
Eλ(Q) = 6π . As a consequence, these maps are local minimizers of Eλ inAsym

H
(D) because

in the decomposition Asym
H

(D) = AS ∪ AN into open and closed sets (see Lemma 2.10).
Finally, combining Propositions 4.13 and 4.20 we have e∗λ > 6π and eλ = 6π for λ > λ∗,
hence these maps are the absolute minimizers of Eλ because of Proposition 4.10.

In a similar way, concerning (ii), existence of a minimizer (hence, of a local minimizer)
Qλ in the class AS follows from Proposition 4.15. Moreover, we have eλ = e∗λ < 6π for
λ < λ∗, and therefore Qλ is a minimizer over Asym

H
(D). Uniqueness for λ < λ0 and λ0 > 0

small enough is proved in Theorem A.3 in the Appendix.
Finally, concerning (iii) we have Eλ∗(uλ∗) = e∗λ∗ = 6π = eλ∗ = Eλ∗(ū) for λ = λ∗.

Hence Q and Qλ∗ are both global minimizers over the class Asym
H

(D). ��
Remark 4.21 According to Theorem 1.2, a sharp transition occurs in the qualitative properties
of energy minimizers of Eλ over Asym

H
(D) for λ close to the critical value λ∗. At λ =

λ∗, coexistence of uniaxial and biaxial minimizers occurs. For λ > λ∗, the influence of
the potential energy is so strong that it forces the uniaxial character of energy minimizers
(and the explicit form (4.34)), although a biaxial locally minimizing configuration exists.
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For λ < λ∗, uniaxiality is no longer energetically convenient as the effect of the potential
energy gets weaker, and minimizers are biaxial configurations satisfying Qλ(0) = −e0 and
β̃ ◦ Qλ(D) = [−1, 1]. In this latter case, we see that although the boundary condition is
topologically trivial in π1(RP2) and two uniaxial local minimizers exist, biaxial escape
occurs for energy minimizers. This phenomenon of purely energetic nature is of definite
interest, also in comparison with [9] where the biaxial escape mechanism is essentially
deduced from topological nontriviality of the boundary data.

5 Split minimizers in long cylinders

In this section, we return to the analysis of the LdG energy Eλ in three space dimension. We
shall discuss qualitative properties of minimizers of Eλ overAsym

Qb
(�) for specific choices of

axisymetric domains � ⊆ R
3 and boundary data Qb. Namely, we consider throughout this

section the homeotropic boundary data on ∂� as defined in (2.4) for a domain � of “cigar
shape”, i.e., � = Ch

�,ρ is the smoothed cylinder from Definition 2.3 in a regime where the
height h is large and the width � is small.

By means of an asymptotic analysis, our aim is to show that in the regime of parameters
for which the cylinders Ch

�,ρ are very long and very thin (namely, �
√
λ � 1 and h � �),

minimizers must be singular for reasons of energy efficiency. In addition, we shall see that an
energy gap occurs betweenminimizers and any smooth configuration. This singular behavior
might be surprising since the homeotropic boundary condition admits smooth S

1-equivariant
extensions, and smoothness ofminimizers can’t be ruled out by some topological obstruction.
This phenomenon is clearly reminiscent of the energy gap for harmonic maps into S

2 first
observed in [17]. By the presence of singularities, minimizers in this parameter regime are
thus of split type in the sense of [12, Section 7], and their regular biaxial sets {β = t},
t ∈ (−1, 1), contain topological spheres according to [12, Theorem 1.5].

5.1 Global energy identities for minimizers

We start with the following general lemma based on the partial regularity result from The-
orems 3.1 & 3.2. It provides a key integral identity to derive monotonicity inequalities and
rigidity results in the present and next section.

Lemma 5.1 Let � ⊆ R
3 be a bounded and axisymmetric open set with boundary of class

C3, and let Qb ∈ C1,1(∂�;S
4) be an S

1-equivariant map. Let Q be a minimizer of Eλ
over Asym

Qb
(�), and �′ ⊆ R

3 a bounded axisymmetric open set with boundary of class C1

such that ∂� and ∂�′ meet transversally and ∂�′ ∩ sing(Q) = ∅. For every vector field
V ∈ C1(R3;R

3), the following identity holds,
∫

�∩�′

[(1
2

|∇Q|2 + λW (Q)
)
div V −

∑
i, j

(∂i Q : ∂ j Q)∂ j Vi
]
dx

=
∫

∂(�∩�′)

[(1
2

|∇Q|2 + λW (Q)
)
V · −→n −

(∂Q
∂V

: ∂Q

∂
−→n
)]

dH2 , (5.1)

where −→n denotes the (H2-a.e. defined) outer unit normal along ∂(� ∩ �′).

Proof We shall derive (5.1) through the Pohozaev multiplier argument, i.e., multiplying
equation (1.6) by V · ∇Q and integrating by parts the result. However, since sing(Q) might
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not be empty, we shall first integrate on a punctured domain, removing finitely many balls
centered at singular points, and then let the radius of this balls go to zero.

Recalling that Q ∈ C∞(�\sing(Q)), the constraint |Q|2 = 1 implies that Q : (V ·∇Q) =
0 in�\sing(Q). Hence, taking the scalar product of (1.6) with V ·∇Q in�\sing(Q) yields

�Q : (V · ∇Q) = λ∇tanW (Q) : (V · ∇Q) . (5.2)

Direct computations lead to

div
(1
2

|∇Q|2 V
)

= 1

2
|∇Q|2 div V +

∑
i, j

(∂i j Q : ∂ j Q)Vi

= 1

2
|∇Q|2 div V −

∑
i, j

(∂i Q : ∂ j Q)∂ j Vi + div
(
(V · ∇Q) : ∇Q

)

−�Q : (V · ∇Q) , (5.3)

and

div
(
W (Q)V

) = W (Q) div V + ∇tanW (Q) : (V · ∇Q) . (5.4)

Combining (5.2)–(5.3)–(5.4), we obtain the following equality in � \ sing(Q),
(1
2

|∇Q|2 + λW (Q)
)
div V −

∑
i, j

∂ j Vi∂i Q : ∂ j Q

= div
[(1

2
|∇Q|2 + λW (Q)

)
V − ∂Q

∂V
: ∇Q

]
. (5.5)

If sing(Q) = ∅, then (5.1) follows as in the general case, integrating by parts the right hand
side of (5.5) over�∩�′. So wemay assume that sing(Q) �= ∅. Since sing(Q)∩∂�′ = ∅, we
can find σ0 > 0 small enough that the balls {B2σ0(p)}p∈sing(Q) are disjoint and B2σ0(p) ⊆
� ∩ �′ for each p ∈ sing(Q) ∩ �′. For 0 < σ � σ0, we consider punctured domain

�σ := (� ∩ �′) \ ∪p∈sing(Q)∩�′ Bσ (p)

which is obviously a piecewise smooth domain with ∂�σ = ∂(� ∩ �′) ∪(∪p∈sing(Q)∩�′∂Bσ (p)
)
.

By Theorem 3.2, we have Q ∈ C1(�\ ∪p∈sing(Q) Bσ (p)) and Q ∈
Cω(∪p∈sing(Q)∂Bσ (p)). Hence �Q ∈ L∞(�\ ∪p∈sing(Q) Bσ (p)) by equation (1.6). Since
∂� is of classC3 and Qb ∈ C1,1(∂�) ⊆ W 3/2,2(∂�), it follows from standard elliptic theory
that Q ∈ W 2,2(�\ ∪p∈sing(Q) Bσ (p)) (see e.g. [15, Theorem 8.12]). As a consequence, the
vector field

� :=
(1
2

|∇Q|2 + λW (Q)
)
V − ∂Q

∂V
: ∇Q

satisfies� ∈ W 1,2(�σ ;R
3)∩C(�σ ;R

3) for every 0 < σ < σ0. By the divergence theorem
(on a Lipschitz regular domain), we have

∫

�σ

div� dx =
∫

∂(�∩�′)
� · −→n dH2 −

∑
p∈sing(Q)∩�′

∫

∂Bσ (p)
� · −→n dH2, (5.6)

while (5.5) yields
∫

�∩�′

[(1
2

|∇Q|2 + λW (Q)
)
div V −

∑
i, j

∂ j Vi∂i Q : ∂ j Q
]
dx = lim

σ→0

∫

�σ

div� dx .
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Hence (5.1) follows once we prove that

lim
σ→0

∫

∂Bσ (p)

[(1
2

|∇Q|2 + λW (Q)
)
V · −→n − ∂Q

∂V
: ∂Q

∂
−→n
]
dH2 = 0 ∀p ∈ sing(Q) .

(5.7)

Let us now fix an arbitrary point p ∈ sing(Q), that we may assume without loss of generality
to be the origin, i.e., p = 0. By Theorem 3.1, there exists a 0-homogeneous harmonic
map Q∗ which is smooth away from the origin, and an exponent ν > 0 such that ‖Qρ −
Q∗‖C2(B2\B1) = O(ρν) as ρ → 0with Qρ(x) := Q(ρx). In addition, the explicit expression

in (3.1) yields |∇Q∗(x)|2 = 2|x |−2 for x �= 0. As a a consequence, we easily infer the
following expansions as x → 0,

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣ = o

(
|x |−1

)
,

∣∣∣∣
∂Q

∂V

∣∣∣∣ = O
(
|x |−1

)
, |∇Q|2 = 2|x |−2(1 + o(1)

)
, and W (Q) = O(1) .

In particular, |V − V (0)| |∇Q|2 = o
(|x |−2

)
by continuity of V . Since H2(∂Bσ ) = O(σ 2),

the previous expansions yield

lim
σ→0

∫

∂Bσ

[(1
2

|∇Q|2 + λW (Q)
)
V · −→n − ∂Q

∂V
: ∂Q

∂
−→n
]
dH2

= lim
σ→0

∫

∂Bσ

(
1

2
|∇Q|2 + λW (Q)

)
V · −→n dH2 = lim

σ→0

∫

∂Bσ

1

2
|∇Q|2 V · −→n dH2

= lim
σ→0

∫

∂Bσ

1

2
|∇Q|2 V (0) · −→n dH2 = lim

σ→0

1

σ 2

∫

∂Bσ
V (0) · −→n dH2 = 0 , (5.8)

and the last equality holds since
∫
∂Bσ

−→n dH2 = 0 for every σ > 0. ��
With suitable choices of the vector field V in the previous lemma, we obtain the following

key identities in smoothed cylinders.

Corollary 5.2 Let Ch
�,ρ be a smoothed cylinder and Qb its homeotropic boundary data given

by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then the following identities hold.

(i) (radial energy identity) For every � � r1 < r2 � h − ρ, we have

1

r1
Eλ(Q,Ch�,ρ ∩ Br1 ) +

∫

Ch
�,ρ

∩(Br2 \Br1 )
1

|x |
∣∣∣∣
∂Q

∂ |x |
∣∣∣∣
2
dx +

∫ r2

r1

1

r2

∫

Ch
�,ρ

∩Br
2λW (Q) dx dr

= 1

r2
Eλ(Q,Ch�,ρ ∩ Br2 ) + �

∫ r2

r1

1

r2

∫

∂Ch
�,ρ

∩Br

[ 1
2

|∇tanQb|2 + λW (Qb) − 1

2

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2 dr .

(5.9)

(ii) (horizontal energy identity) For any 0 � s � h − ρ such that (0, 0,±s) /∈ sing(Q)

we have

�

∫

∂Cs�∩{|x3|<s}

[1
2

|∇tanQb|2 + λW (Qb) − 1

2

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2

=
∫

Cs�

[ ∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

+ 2λW (Q)
]
dx +

∫

∂Cs�∩{|x3|=s}
(x ′ · ∇x ′Q) : ∂Q

∂
−→n dH2 ,(5.10)
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where x =: (x ′, x3) ∈ R
2 × R.

(iii) (vertical energy identity) For every t1, t2 ∈ [−h + ρ, h − ρ] such that (0, 0, ti ) /∈
sing(Q) for i = 1, 2, we have

Eλ

(
Q( · , t1),D�

)− 1

2

∫

Ch�,ρ∩{x3=t1}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2

= Eλ

(
Q( · , t2),D�

)− 1

2

∫

Ch�,ρ∩{x3=t2}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2 , (5.11)

where Eλ is the 2D-LdG energy in (1.11).

Proof Proof of (i). For all r ∈ (�, h − ρ] except finitely many if sing(Q) �= ∅,� = Ch
�,ρ and

�′ = Br satisfy the assumptions of Lemma 5.1 that we use with V (x) = x . Then V = r−→n
on Ch

�,ρ ∩ ∂Br , and V · −→n = � on ∂Ch
�,ρ ∩ Br . Noticing that

∂Q

∂V
: ∂Q

∂
−→n = �

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2

on ∂Ch
�,ρ ∩ Br ,

because
∂Q

∂x3
= 0 on ∂Ch

�,ρ ∩ Br , we infer from identity (5.1),

∫

Ch
�,ρ

∩Br

[( 1
2

|∇Q|2 + λW (Q)
)

+ 2λW (Q)
]
dx = �

∫

∂Ch
�,ρ

∩Br

[ 1
2

|∇Q|2 + λW (Q) −
∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2

+r
∫

Ch
�,ρ

∩∂Br

[ 1
2

|∇Q|2 + λW (Q) −
∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2 ,

which rewrites as

1

r

∫

Ch
�,ρ

∩∂Br

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2
dH2 + 1

r2

∫

Ch
�,ρ

∩Br
2λW (Q) dx = d

dr

{
1

r

∫

Chl,ρ∩Br

1

2
|∇Q|2 + λW (Q) dx

}

+ �

r2

∫

∂Ch
�,ρ

∩Br

[ 1
2

|∇tanQb|2 + λW (Qb) − 1

2

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2 . (5.12)

Integrating (5.12) between r1 and r2 the conclusion follows.
Proof of (ii). We apply Lemma 5.1 with � = Ch

�,ρ and �′ = Cs
2�,ρ for s < h − ρ, so that

�∩�′ = Cs
�. Choosing V (x) = (x ′, 0), we notice that V · −→n = 0 on ∂Cs

� ∩ {|x3| = s}, and
V · −→n = � on ∂Cs

� ∩ {|x3| < s}. Using that ∂Q
∂V : ∂Q

∂
−→n = �

∣∣∣ ∂Q
∂
−→n
∣∣∣
2
on ∂Cs

� ∩ {|x3| < s}, we
arrive at (5.10) directly from identity (5.1).
Proof of (iii). We assume that t1 < t2 and we apply Lemma 5.1 with the domains � = Ch

�,ρ

and�′ = C
(t2−t1)/2
2�−ρ (0, 0, (t1+ t2)/2), so that�∩�′ = Ch

�,ρ ∩{t1 < x3 < t2}. We choose the

constant vector field V (x) = (0, 0, 1)which satisfies V = −→n on Ch
�,ρ ∩{x3 = t2}, V = −−→n

on Ch
�,ρ ∩ {x3 = t1}, and V · −→n = 0 on ∂Ch

�,ρ ∩ {t1 < x3 < t2}. Using that ∂3Qb ≡ 0 on

∂Ch
�,ρ ∩ {t1 < x3 < t2}, we derive (5.11) once again directly from (5.1). ��

Remark 5.3 It is straightforward to check that identity (5.9) still holds for a ball Br (p) instead
of Br , whenever p = (0, 0, z) ∈ �, |z| < h − ρ, and � � r1 < r2 � h − ρ − |z|.
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5.2 A priori bounds and local compactness

In this subsection, we derive the necessary local boundedness and compactness properties
needed in the asymptotic analysis of minimizers for cylinders of divergent height.

The following result is the fundamental tool to obtain local uniform energy bounds for
energy minimizing configurations.

Proposition 5.4 Let Ch
�,ρ be a smoothed cylinder with h−ρ >

√
2�, and Qb its homeotropic

boundary data given by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then

(
1 − √

2�
( 1

r1
− 1

r2

)) 1

r1
Eλ
(
Q,Ch

�,ρ ∩ Br1
)+

∫

Ch�,ρ∩(Br2\Br1 )
1

|x |
∣∣∣∣
∂Q

∂ |x |
∣∣∣∣
2

dx

� 1

r2
Eλ
(
Q,Ch

�,ρ ∩ Br2
)+ 3

r1

∫

Ch�,ρ∩Br2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx (5.13)

for every
√
2� � r1 < r2 � h − ρ.

Proof For
√
2� � r1 < r � r2 � h − ρ, we set

s1 :=
√
r21 − �2 ∈ (�, h − ρ), s :=

√
r2 − �2 ∈ (�, h − ρ), s2 :=

√
r22 − �2 ∈ (�, h − ρ),

and we assume that (0, 0,±s) /∈ sing(Q). By (5.10) and Young’s inequality, we estimate

−
∫

Cs�

2λW (Q) dx + �

∫

∂Cs�∩{|x3|<s}

[1
2

|∇tanQb|2 + λW (Qb) − 1

2

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2

=
∫

Cs�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx +
∫

∂Cs�∩{x3=s}
(x ′ · ∇x ′Q) : ∂Q

∂
−→n dH2

�
∫

Cs�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx + �

∫

∂Cs�∩{|x3|=s}
1

2
|∇x ′Q|2 dH2 + �

2

∫

∂Cs�∩{|x3|=s}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2.

(5.14)

Averaging (5.11) over t2 ∈ [−s1, s1], we derive that for any t ∈ [−h + ρ, h − ρ] such that
(0, 0, t) /∈ sing(Q),

Eλ

(
Q( · , t),D�

)
� 1

2

∫

Ch�,ρ∩{x3=t}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2 + 1

2s1
Eλ(Q;Cs1

� )

� 1

2

∫

Ch�,ρ∩{x3=t}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2 + 1√
2r1

Eλ
(
Q,Ch

�,ρ ∩ Br1
)
, (5.15)

using C
s1
� ⊆ Ch

�,ρ ∩ Br1 in the last inequality. Summing now (5.15) over t ∈ {±s} yields

�

∫

Ch�,ρ∩{|x3|=s}
1

2
|∇x ′Q|2 dH2 � �

(
Eλ

(
Q( · , s),D�) + Eλ

(
Q( · ,−s),D�

))

� �

2

∫

Ch�,ρ∩{|x3|=s}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2 +
√
2�

r1
Eλ
(
Q,Ch

�,ρ ∩ Br1
)
. (5.16)
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Noticing that Ch
�,ρ ∩{|x3| = s} = ∂Cs

� ∩{|x3| = s}, we combine (5.14) with (5.16) to obtain

−
∫

Cs�

2λW (Q) dx + �

∫

∂Cs�∩{|x3|<s}

[1
2

|∇tanQb|2 + λW (Qb) − 1

2

∣∣∣∣
∂Q

∂
−→n
∣∣∣∣
2 ]

dH2

�
∫

Cs�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx + �

∫

∂Cs�∩{|x3|=s}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2 +
√
2�

r1
Eλ(Q,Ch

�,ρ ∩ Br1) . (5.17)

Next we observe that ∂Cs
� ∩ {|x3| < s} = ∂Ch

�,ρ ∩ Br and Cs
� ⊆ Ch

�,ρ ∩ Br . Then, multiplying

(5.17) by 1/r2, integrating between r1 and r2, and then adding the resulting inequality to
(5.9) (term-by-term), we obtain

(
1 − √

2�

(
1

r1
− 1

r2

))
1

r1
Eλ(Q,Ch�,ρ ∩ Br1 ) +

∫

Ch
�,ρ

∩(Br2 \Br1 )
1

|x |
∣∣∣∣
∂Q

∂ |x |
∣∣∣∣
2
dx

� 1

r2
Eλ(Q,Ch�,ρ ∩ Br2 ) +

∫ r2

r1

1

r2

(∫

C
s(r)
�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2
dx + �

∫

∂C
s(r)
�

∩{|x3|=s(r)}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2
dH2

)
dr ,

(5.18)

where we write s(r) := √
r2 − �2. Since Cs(r)

� ⊆ Ch
�,ρ ∩ Br2 for every r ∈ (r1, r2), we obtain

by a change of variable,

∫ r2

r1

1

r2

( ∫

C
s(r)
�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx + �

∫

∂C
s(r)
� ∩{|x3|=s(r)}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2
)
dr

�
( 1

r1
− 1

r2

) ∫

Ch�,ρ∩Br2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx + �

∫ s2

s1

s

(s2 + �2)3/2

( ∫

∂Cs�∩{|x3|=s}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2
)
ds

�
( 1

r1
− 1

r2

) ∫

Ch�,ρ∩Br2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx + �

s21

∫

C
s2
� \Cs1�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx

� 3

r1

∫

Ch�,ρ∩Br2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx . (5.19)

Combining (5.19) with (5.18), the conclusion follows. ��
Combining Proposition 5.4 with a comparison argument, we now derive a fundamental

energy estimate forminimizers in terms of the height h of a “cigar shaped” smoothed cylinder.

Corollary 5.5 Let Ch
�,ρ be a smoothed cylinder with h − ρ > 2

√
2�, and Qb its homeotropic

boundary data given by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then

Eλ(Q,Ch
�,ρ) � 2heλ�2 + C1,

where eλ�2 is defined by (4.43), and C1 = C1(�, ρ, λ) is a constant independent of h. In
addition,

1

r
Eλ
(
Q,Ch

�,ρ ∩ Br
)+

∫

Ch�,ρ∩Br

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx � C2 ∀r ∈ (2
√
2�, h − ρ) , (5.20)

for a constant C2 = C2(�, ρ, λ) also independent of h. Moreover, the dependence of C1 and
C2 on λ � 0 is locally uniform.
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Proof We define �±
h := (Ch

�,ρ\Ch−ρ
� ) ∩ {±x3 > 0}, so that Ch

�,ρ = C
h−ρ
� ∪ �+

h ∪ �−
h , and

∂�±
h = (D� × {±x3 = h − ρ}) ∪ (∂Ch

�,ρ ∩ {±x3 � h − ρ}).
Setting λ̃ := λ�2, we fix Qλ̃ ∈ Asym

H
(D) such that Eλ̃(Qλ̃) = ẽλ. Since Qλ̃ is mini-

mizing Eλ̃ over Asym
H

(D), Qλ̃ is smooth up to ∂D (see Sect. 4). Rescaling variables, we

have Eλ(Q̃λ;D�) = eλ�2 for Q̃λ( · ) := Qλ̃(·/� ). We define a Lipschitz map Q̃h on
∂�±

h setting Q̃h(x) := Qb(x) if x ∈ ∂Ch
�,ρ ∩ {±x3 � h − ρ}, and Q̃h(x) := Q̃λ(x ′) if

x = (x ′, x3) ∈ D�×{±x3 = h−ρ}. Considering the points p± := (0, 0,±(h−ρ/2)) ∈ �±
h ,

we extend Q̃h to the interior of �±
h by 0-homogeneity from the point p±. Then we finally

extend Q̃h to Ch
�,ρ setting Q̃h(x) = Q̃λ(x ′) if x = (x ′, x3) ∈ C

h−ρ
� . By construction, we

have Q̃h ∈ Asym
Qb

(Ch
�,ρ) ∩ Liploc(C

h
�,ρ\{p±}),

Eλ(Q̃h,C
h−ρ
� ) = 2(h − ρ)Eλ(Q̃λ,D�) = 2(h − ρ)eλ�2 ,

and

Eλ(Q̃h,�±
h ) � C(‖∇tan Q̃

h‖2
L2(∂�±

h )
+ λ) � C1, (5.21)

for a constantC1 = C1(�, ρ, λ) independent of h and continuous w.r.to λ. If Q is minimizing
Eλ over Asym

Qb
(Ch

�,ρ), then

Eλ(Q) � Eλ(Q̃h) = Eλ(Q̃h,C
h−ρ
� ) + Eλ(Q̃h,�+

h ) + Eλ(Q̃h,�−
h ) � 2(h − ρ)eλ�2 + 2C1.

(5.22)

On the other hand, by definition of eλ�2 , we have

Eλ(Q) �
∫ h−ρ

−h+ρ

Eλ

(
Q( ·, x3),D�

)
dx3 +

∫

C
h−ρ
�

1

2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx

� 2(h − ρ)eλ�2 +
∫

C
h−ρ
�

1

2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx . (5.23)

Since Ch
�,ρ ∩ Br ⊆ C

h−ρ
� , combining (5.22) and (5.23) leads to

∫
Ch�,ρ∩Br

| ∂Q
∂x3

|2 dx � 4C1

for every r � h − ρ. In view of this estimate and (5.22), we can apply Proposition 5.4 with
r2 = h − ρ and r1 = r � 2

√
2� to obtain

1

2r
Eλ
(
Q,Ch

�,ρ ∩ Br
)

� 1

h − ρ
Eλ(Q) + 3

r

∫

Ch�,ρ∩Bh−ρ

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx � 2eλ�2 + 8C1

�
,

(5.24)

which proves (5.20) once we choose C2 = 2eλ�2 + 8C1
�
. Since C2 is continuous in its

arguments, hence locally bounded w.r.to λ, the proof is complete. ��
Combining identity (5.11) with Corollary 5.5, we obtain an energy bound as in (5.20) for

arbitrary balls centered on the vertical axis.

Corollary 5.6 Let Ch
�,ρ be a smoothed cylinder with h − ρ > 2

√
2�, and Qb its homeotropic

boundary data given by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then there exists a

constant C3 = C3(�, ρ, λ) independent of h such that

1

r
Eλ
(
Q,Ch

�,ρ ∩ Br (p)
)

� C3
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for every p = (0, 0, z) ∈ Ch
�,ρ ∩ {x3-axis} and 2

√
2� < r < h − ρ − |z| − �.

Proof Integrating (5.11) with respect to t1 ∈ [z − r , z + r ] and dividing the result by 2r , we
obtain

1

2r
Eλ
(
Q,Cr�(p)

)− 1

4r

∫

Cr�(p)

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx

= Eλ

(
Q( · , t2),D�

)− 1

2

∫

Ch�,ρ∩{x3=t2}

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dH2 (5.25)

for every t2 ∈ [−h + ρ, h − ρ] such that t2 /∈ sing(Q). Then, integrating (5.25) with respect
to t2 ∈ [−r , r ], we derive that

Eλ
(
Q,Ch

�,ρ ∩ Br (p)
)

� Eλ
(
Q,Cr�(p)

)
� Eλ

(
Q,Cr�

)+ 1

2

∫

Cr�(p)

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx

� Eλ
(
Q,Ch

�,ρ ∩ Br+�

)+ 1

2

∫

Ch�,ρ∩Br+|z|+�

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx, (5.26)

sinceCh
�,ρ∩Br (p) ⊆ Cr�(p),C

r
� ⊆ Ch

�,ρ∩Br+�, andCr�(p) ⊆ Ch
�,ρ∩Br+|z|+�. The conclusion

now follows from Corollary 5.5 with C3 = 2C2(1 + 1/�) and C2 given by (5.20). ��
Using suitable competitors, we can nowdeduce from the previous corollary that the energy

of minimizers remains bounded also near the top and bottom parts of the cylinder.

Corollary 5.7 Let Ch
�,ρ be a smoothed cylinder with h − 2ρ > 4�, and Qb its homeotropic

boundary data given by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then there exists a

constant C4 = C4(�, ρ, λ) independent of h such that Eλ
(
Q,Ch

�,ρ\Ch−ρ
�

)
� C4.

Proof Applying Corollary 5.6 with r = 3� and p± := (0, 0,±t) and t := h − 2ρ − 4�, we
infer that Eλ

(
Q,C�

�(p
±)
)

� C3 since C�
�(p

±) ⊆ Ch
�,ρ ∩ Br (p±) with C3 = C3(�, ρ, λ).

By Fubini’s theorem, we can find a level t̄ ∈ (h − 2ρ − 4�, h − 2ρ − 3�) such that
Eλ

(
Q(·,±t̄),D�

)
� C3/�. We shall now construct a competitor following an argument from

the proof of Corollary 5.5. First, we consider the domains �±
h := (Ch

�,ρ\Ct̄
�) ∩ {±x3 > 0}.

We define a map Q̃ on ∂�±
h by setting Q̃ = Q on ∂�±

h ∩ {±x3 = t̄ }, and Q̃ = Qb on
∂�±

h ∩ {±x3 > t̄ }. Then we extend Q̃ to the interior of �±
h by 0-homogeneity from the

point q± := (0, 0,±(h − ρ − 2�)). As in the proof of Corollary 5.5 (see (5.21)), we have
Eλ(Q̃,�±

h ) � C for some constant C independent of h, thanks to our choice of t̄ . Now we
extend Q̃ to Ch

�,ρ setting Q̃ = Q in Ch
�,ρ\�±

h . In this this way, Q̃ ∈ Asym
Qb

(Ch
�,ρ) is a competi-

tor to test the minimality of Q which leads to Eλ(Q,�+
h ∪ �−

h ) � Eλ(Q̃,�+
h ∪�−

h ) � 2C .

Since Ch
�,ρ\Ch−ρ

� ⊆ �+
h ∪ �−

h , the conclusion follows. ��
The next result will be useful to turn the local boundedness in Corollaries 5.5 & 5.6 into

a local compactness property up to “the lateral boundary”. The arguments here are suitable
modifications of [12, Theorem 5.1 and 5.2], taking advantage of the translation invariance
of the Dirichlet boundary data. Before stating the result, let us define precisely the notion of
local minimality we shall use in the sequel.
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Definition 5.8 Let Ch
� be a cylinder with � < ∞. We call lateral boundary of the cylinder

Ch
� , the set

∂ latCh
� := ∂Ch

� ∩ {|x3| < h} = ∂D� × (−h, h). (5.27)

An equivariant map Q ∈ W 1,2
loc (C

h
� ;S

4) is said to be an equivariant local minimizer of Eλ in

Ch
� up to the lateral boundary if for every η ∈ (0, h), Q ∈ W 1,2

sym(C
η
� ;S

4) and Eλ(Q,C
η
�) �

Eλ(Q̃,C
η
�) for every Q̃ ∈ W 1,2

sym(C
η
� ;S

4) satisfying Q̃ = Q on ∂Cη
� .

Lemma 5.9 Let Ch
� be a bounded cylinder and Qb its homeotropic boundary data given

by (2.4). Let λ j → λ and {Q j } ⊆ W 1,2
sym(C

h
� ;S

4) a sequence such that each Q j is an
equivariant local minimizer of Eλ j in Ch

� up to the lateral boundary and Q j = Qb on

∂ latCh
� . If sup j Eλ j (Q j ,C

h
� ) < ∞, then there exists a (not relabeled) subsequence such that

Q j → Q∗ strongly in W 1,2(C
η
�) for every η ∈ (0, h), where Q∗ ∈ W 1,2

sym(C
h
� ;S

4) is an
equivariant local minimizer of Eλ up to the lateral boundary satisfying Q∗ = Qb on ∂ latCh

� .

Proof By the uniform energy bound, the sequence {Q j } is bounded in W 1,2(Ch
� ). Hence,

we can find a (not relabeled) subsequence such that Q j⇀Q∗ weakly in W 1,2(Ch
� ), strongly

in L2(Ch
� ), and also a.e. in Ch

� , for some Q∗ ∈ W 1,2
sym(C

h
� ;S

4). By W 1,2-weak continuity
and locality of the trace operator, Q∗ = Qb on ∂ latCh

� . In addition, [12, Theorem 5.1]

implies that Q j → Q∗ strongly in W 1,2
loc (Br (p)) for every p ∈ Ch

� ∩ {x3-axis} and r > 0
such that Br (p) ⊆ Ch

� . As a consequence, given an arbitrary δ > 0 with 2δ < min{h, �},
we have Q j → Q∗ strongly in W 1,2 in the set Dδ/2 × {h − δ < |x3| < h − δ/2}. By a
standard application of Fubini’s theorem and Fatou’s lemma, extracting a further subsequence
if necessary, we can find η ∈ (h−δ, h−δ/2) such that the restrictions Q̂±

j and Q̂±∗ of Q j and

Q∗ to Ch
� ∩ {x3 = ±η} satisfy Q̂±

j ⇀Q̂±∗ weakly in W 1,2(D�) and strongly in W 1,2(Dδ/3).

By Lemma 2.10, we conclude that Q̂±
j , Q̂

±∗ ∈ C0(D�) and Q̂±
j → Q̂±∗ uniformly in D�.

Let us now fix an arbitrary Q̃ ∈ W 1,2
sym(C

h−δ
� ;S

4) satisfying Q̃ = Q∗ on ∂Ch−δ
� . We extend

Q̃ to Cη
� setting Q̃ = Q∗ in Cη

�\Ch−δ
� , and we set σ j := ‖Q̂+

j − Q̂+∗ ‖∞ + ‖Q̂−
j − Q̂−∗ ‖∞ +

2− j → 0 as j → ∞. For j large enough we have σ j < 1, and we define v j ∈ W 1,2
sym(C

η
� ;S0)

as

v j (x
′, x3) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x3 − (1 − σ j )η

σ jη

(
Q̂+

j (x
′) − Q̂+∗ (x ′)

)+ Q̂+∗ (x ′) if (1 − σ j )η � x3 � η ,

Q̃
(
x ′, x3/(1 − σ j )

)
if |x3| < (1 − σ j )η,

−x3 + (σ j − 1)η

σ jη

(
Q̂−

j (x
′) − Q̂−∗ (x ′)

)+ Q̂−∗ (x ′) if − η � x3 � −(1 − σ j )η .

(5.28)

Since the restriction of Qb to ∂ latCh
� is independent of x3, we have v j = Qb on ∂ latC

η
� .

Hence v j = Q j on ∂C
η
� . A simple calculation yields
∫

C
(1−σ j )η

�

|∇v j |2 dx � 1

1 − σ j

∫

C
η
�

|∇ Q̃|2 dx (5.29)

and ∫

C
η
�\C

(1−σ j )η

�

|∇v j |2 dx � Cσ j

∫

D�

|∇ Q̂+
j |2 + |∇ Q̂−

j |2 + |∇ Q̂+∗ |2 + |∇ Q̂−∗ |2 dx ′
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+ C

σ j

(‖Q̂+
j − Q̂+∗ ‖2∞ + ‖Q̂−

j − Q̂−∗ ‖2∞
)

� Cσ j , (5.30)

for some constantC = C(δ, η) independent j . By construction, we have |v j | = 1 inC
(1−σ j )η

� ,

and 0 � 1 − |v j | � σ j in C
η
�\C

(1−σ j )η

� . Therefore, |v j | � 1/2 for j large enough, and we
can define the competitor

Q̃ j := v j

|v j | ∈ W 1,2
sym(C

η
� ;S

4)

which satisfies Q̃ j = Q j on ∂C
η
� . Since Q̃ j = v j in C

(1−σ j )η

� and |v j | � 1/2, we infer from
(5.29) and (5.30) that

∫

C
η
�

|∇ Q̃ j |2 dx � 1

1 − σ j

∫

C
η
�

|∇ Q̃|2 dx + Cσ j .

(5.31)

On the other hand, Q j → Q∗ and Q̃ j → Q̃ a.e. in C
η
� . Then,

lim
j→∞ λ j

∫

C
η
�

W (Q j ) dx = λ

∫

C
η
�

W (Q∗) dx and lim
j→∞ λ j

∫

C
η
�

W (Q̃ j ) dx

= λ

∫

C
η
�

W (Q̃) dx (5.32)

by dominated convergence. By minimality of Q j , (5.31)–(5.32), and weak lower semiconti-
nuity of the Dirichlet integral, we finally deduce that

Eλ(Q∗,Cη
�) � lim inf

j→∞ Eλ j (Q j ,C
η
�) � lim sup

j→∞
Eλ j (Q j ,C

η
�) � lim sup

j→∞
Eλ j (Q̃ j ,C

η
�)

= Eλ(Q̃,C
η
�) . (5.33)

Since Q̃ = Q∗ in C
η
�\Ch−δ

� , it follows that Eλ(Q∗,Ch−δ
� ) � Eλ(Q̃,Ch−δ

� ) proving the mini-
mality of Q∗ inCh−δ

� . Moreover, choosing Q̃ = Q∗ leads to lim j Eλ j (Q j ,C
η
�) = Eλ(Q∗,Cη

�)

which, in view of (5.32), implies that Q j → Q∗ strongly in W 1,2(C
η
�) (and thus strongly in

W 1,2(Ch−δ
� )). The conclusion now follows from the arbitrariness of δ. ��

5.3 Rigidity in infinite cylinders and proof of Theorem 1.3

The following rigidity result will be the key ingredient to deduce qualitative properties for
minimizers of Eλ on expanding cylinders Ch

�,ρ as h → +∞. To this purpose, we will heavily
use results from Sect. 4, to which the reader is referred also for some of the notation employed
here. We only recall from Theorem 1.2 that in the case λ�2 < λ0, the functional Eλ admits
a unique minimizer Q̂� over Asym

H
(D�), and it satisfies Q̂�(0) = −e0.

Proposition 5.10 Let � > 0 be such that λ�2 < λ0 with λ0 the constant given by Theorem 1.2.
Assume that Q ∈ W 1,2

loc (C
∞
� ;S

4) is an equivariant local minimizer of Eλ in C∞
� up to the

lateral boundary satisfying Q = Qb on ∂ latC∞
� , where Qb denotes the homeotropic boundary

data given by (2.4). If Eλ(Q,Ch
� ) = O(h) as h → ∞, then Q(x) ≡ Q̂�(x ′)where Q̂� denotes

the unique minimizer of the 2D-functional Eλ over Asym
H

(D�). In particular, Q is smooth,
independent of x3, and Q = −e0 on the x3-axis.
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Proof We first notice that
∫ 2n+1

2n

(
Eλ

(
Q( ·, t),D�

)+ Eλ(Q( ·,−t),D�

))
dt � Eλ

(
Q,C2n+1

�

)
� C2n ∀n ∈ N.

Hence, for each integer n, there exists hn ∈ (2n, 2n+1) such that Q(·,±hn) ∈ W 1,2(D�)with
Eλ

(
Q( ·,±hn),D�

) = O(1) as n → ∞.
We claim that

Eλ(Q,C
hn
� ) = 2hneλ�2 + O(1) as n → ∞. (5.34)

We argue as in Corollary 5.5 to construct competitors, and we set �±
n := (C

hn
� \Chn−1

� ) ∩
{±x3 > 0}. We define a map Q̃n in C

hn
� ∩ {|x3| � hn − 1} setting Q̃n(x) := Q̂�(x ′). For

x ∈ ∂�±
n ∩ {|x3| > hn − 1}, we set Q̃n(x) := Q(x) and we then extend Q̃n inside �±

n
by 0-homogeneity from the point p±

n = (0, 0,±(hn − 1/2)). As in the proof of Corollary
5.5 (see (5.21)), our choice of hn ensures that Eλ(Q̃n,�

±
n ) = O(1) as n → ∞. Since

Eλ(Q̃n,C
hn−1
� ) = 2(hn − 1)eλ�2 , the claim follows.

In view of (5.34), we now have

2hneλ�2 +
∫ hn

−hn

(
Eλ

(
Q( ·, x3),D�

)− eλ�2
)
dx3 +

∫

C
hn
�

1

2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx3

� Eλ(Q,C
hn
� ) = 2hneλ�2 + O(1) . (5.35)

Recalling that Eλ

(
Q( · , x3),D�

)− eλ�2 � 0, letting n → ∞ in (5.35) yields

∫ ∞

−∞

(
Eλ(Q

( ·, x3),D�

)− eλ�2
)
dx3 +

∫

C∞
�

1

2

∣∣∣∣
∂Q

∂x3

∣∣∣∣
2

dx3 < ∞ .

As a consequence, there exists h̃n ↗ +∞ such that Eλ

(
Q( · ,±h̃n),D�

)→ eλ�2 as n → ∞.
Since λ�2 < λ0, it follows from Theorem 1.2 that Q( · ,±h̃n) → Q̂� strongly in W 1,2(D�).
Indeed, by weak lower semicontinuity of Eλ, any weak limit is a minimizer of Eλ over
Asym

H
(D�) so that convergence is in fact W 1,2-strong. Convergence of the full sequence

follows from the uniqueness of the limit. In addition, Theorem1.2 also ensures that the smooth
map Q̂� satisfies Q̂�(0) = −e0. Applying Lemma 2.10, we also infer that Q( · ,±h̃n) → Q̂�

uniformly on D�.
Finally, we construct a further competitor Q̂n testing the minimality of Q following the

construction in the proof of Lemma 5.9. We first define a sequence a map vn as in (5.28) with
h̃n in place of η, Q̃ and Q̂±∗ replaced by Q̂�, and Q(·,±h̃n) instead of Q̂

±
j . Then |vn | � 1/2

for n large enough which allows us to define Q̂n := vn/|vn |. Then Q̂n ∈ W 1,2
sym(C

h̃n
� ;S

4)

satisfies Q̂n = Q on ∂Ch̃n
� . As in the proof of of Lemma 5.9, the minimality of Q implies that

Eλ(Q,C
h̃n
� ) � Eλ(Q̂n,C

h̃n
� ) = 2h̃neλ�2 + o(1) as n → ∞. Combining this upper bound with

the lower bound (5.35) with h̃n instead of hn , and letting n → ∞ we conclude that ∂Q
∂x3

≡ 0

in C∞
� and Eλ(Q( · , x3),D�) ≡ eλ�2 . By uniqueness of Q̂�, the conclusion follows. ��

Remark 5.11 It is not known whether Proposition 5.10 still holds for λ�2 � λ0, or if there
exists amap Q ∈ W 1,2

loc (C
∞
� ;S

4)which is an equivariant localminimizer of Eλ up to the lateral
boundary connecting two different minimizers Q̂±

� of Eλ overAsym
H

(D�) as x3 → ±∞. One

may expect that such local minimizer do exist for λ�2 > λ∗ with Q̂±
� (x

′) = gH (±x ′/�) and
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gH defined through (4.34). We have not pursued these issues, and these questions remain
open.

We are now in position to prove the main result of this section, that is Theorem 1.3.

Proof of Theorem 1.3 To prove claim (i), we argue by contradiction assuming that Q(n) is
smooth for some subsequence. Notice that In := �n ∩ {x3-axis} is a closed interval and that
Q(n)

b (x) = e0 for each x ∈ ∂�n ∩ {x3-axis} = ∂ In . Hence Q(n) ≡ e0 on In by continuity,
which implies that Q(n)( · /�, x3) ∈ AN whenever |x3| < h−ρ. Combining Proposition 4.10
with Theorem 1.2 yields

Eλ(Q(n), �n)�
∫ hn−ρ

−hn+ρ

Eλ

(
Q(n)( · , x3),D�

)
dx3�6π · 2(hn − ρ) = 2(hn − ρ)eλ∗ . (5.36)

On the other hand, Eλ(Q(n), �n) � 2hneλ�2 + O(1) as n → ∞ by Corollary 5.5. Since
λ�2 < λ∗, we have eλ�2 < eλ∗ by Proposition 4.20. Hence this upper bound contradicts
(5.36) for n large enough.

Therefore sing(Q(n)) �= ∅ for n large enough. According to [12, Theorem 1.1], we then
haveβn(�n) = [−1, 1] since this property holds for the tangentmap at any singular point (see
also [12, Remark 7.18]). Finally, since �n is connected, simply connected, with boundary
of class C3, and Q(n)

b is the homeotropic boundary data, assumptions (HP1)–(HP3) in [11,
12] are satisfied and each Q(n) is a split minimizer in the sense of [12, Definition 7.11].

We now prove claim (ii). According to Corollary 5.5, Q(n) satisfies the uniform bound
(5.20) whenever hn − ρ > r > 2

√
2�. On the other hand, for each η > 0 such that

C
η
� ⊆ C

hn
�,ρ ∩ Br , Q(n) is obviously an equivariant local minimizer of Eλ j in C

η
� up to the

lateral boundary, so that Lemma 5.9 applies. By a standard diagonal argument, we infer the
existence of a (not relabeled) subsequence such that Q(n) → Q∗ strongly in W 1,2(C

η
�) for

every η > 0 as n → ∞, where Q∗ ∈ W 1,2
loc (C

∞
� ;S

4) an equivariant local minimizer of Eλ in
C∞
� up to the lateral boundary agreeing with the homeotropic boundary data (2.4) on ∂C∞

� .
Then, letting n → ∞ in (5.20), we deduce that Eλ(Q∗,Ch

� ) = O(h) as h → ∞. Applying
Proposition 5.10, it follows that Q∗ = Q̂�. By uniqueness of the limit, the full sequence
actually converges to Q̂� as claimed.

To prove the locally smooth convergence, we rely on the regularity results in Sect. 3.1.

We fix an arbitrary η > 0, and we aim to prove that Q(n) is bounded in Ck(C
η
�) for every

k ∈ N, which is clearly enough for our purposes. Let us first fix an arbitrary point x∗ ∈
D� × [−η, η]. By smoothness of Q̂�, we can find δ > 0 small enough such that Bδ(x∗) ⊆
C∞
� and 1

δ
Eλ
(
Q̂�, Bδ(x∗)

)
� εin/16, where εin > 0 denotes the universal constant from

Proposition 3.5. By the strong W 1,2-convergence of Q(n), we have 1
δ
Eλ
(
Q(n), Bδ(x∗)

)
�

εin/8 for n large enough. By Proposition 3.5, it implies that Q(n) is bounded inCk(Bδ/16(x∗))
for every k ∈ N. Nextwe fix x∗ ∈ ∂D�×[−η, η] and a radius r∗ ∈ (0, �). ByS

1-equviariance,
without loss of generality we can assume that x∗ = (x∗

1 , 0, x
∗
3 ) ∈ {x2 = 0}. For n large

enough, we have �n ∩ Br∗(x
∗) = C∞

� ∩ Br∗(x
∗) and ∂�n ∩ Br∗(x

∗) = ∂C∞
� ∩ Br∗(x

∗),
so that ∂�n ∩ Br∗(x

∗) and the restriction of Q(n)
b to ∂�n ∩ Br∗(x

∗) are independent of n.
Accordingly, the constants ε̄bd > 0 and κ̄ > 0 from Proposition 3.6 only depends on �.
Arguing as in the proof of [12, Proposition 6.9], the equivariance of Q(n) implies that for
r ∈ (0, r∗/4) and every ball Bρ(x̄) ⊆ Br (x∗),

1

ρ

∫

Bρ(x̄)∩C∞
�

|∇Q(n)|2 dx � C∗
�

∫

Dr (x∗)
|∇Q(n)|2 dH2,
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where C∗ > 0 is a universal constant and Dr (x∗) := C∞
� ∩ Br (x∗) ∩ {x2 = 0}. By the

strong W 1,2-convergence of Q(n) and equivariance, the restriction of |∇Q(n)|2 to the slice
Dr∗(x

∗) is strongly converging in L1(Dr∗(x
∗)). By the Vitali–Hahn–Sacks Theorem (see e.g.

[5, Theorem 1.30]), we can find r ∈ (0, r∗/4) such that
∫
Dr (x∗) |∇Q(n)|2 dH2 � �ε̄bd/C∗

for n large enough. Hence,

sup
Bρ(x̄)⊆Br (x∗)

1

ρ

∫

Bρ(x̄)∩C∞
�

|∇Q(n)|2 dx � ε̄bd,

and we infer from Proposition 3.6 that Q(n) is bounded in Ck(Bκ̄r/2(x∗) ∩ C∞
� ) for every

k ∈ N. In view of the arbtrariness of x∗ (either in the interior or at the boundary), by a

standard covering argument we finally conclude that Q(n) is bounded in Ck(C
η
�) for every

k ∈ N.
It remains to prove claim (iii). Writing �n := sing(Q(n)) to ease the notation, we first

observe that the convergence of Q(n) towards Q̂� established in claim (ii) implies that �n ∩
{|x3| < 1} = ∅ and Q(n) = −e0 on {x3-axis} ∩ {|x3| < 1} for n large enough. Since
Q(n)(q±

n ) = e0 at q±
n := (0, 0,±hn) and Q(n)(x) ∈ {e0,−e0} for every x ∈ (�n ∩

{x3-axis})\�n , we deduce that both sets �+
n := �n ∩ {x3 � 0} and �−

n := �n ∩ {x3 < 0}
are nonempty (recall that �n is a finite subset of � ∩ {x3-axis}). In view of Theorem 3.1,
the restriction of Q(n) to (�n ∩ {x3-axis) \�n is constant on each connected component and
jumps from e0 to −e0 at each point of �n . It easily implies that both �+

n and �−
n contain an

odd number of points.
Let us nowset tmin

n := min
{|p| : p ∈ sing(Q(n))

} ∈ (0, hn).We claim thathn−tn � α for
some constant α > 0. To prove this claim, we argue by contradiction assuming that for some
(not relabeled) subsequence, we have hn − tmin

n → +∞. Next we consider a point pmin
n ∈

sing(Q(n)) such that |pmin
n | = tmin

n . Notice that claim (ii) implies that |pmin
n | = tmin

n → ∞, so
that the translated domain �̃n := �n− pmin

n satisfies �̃n → C∞
� as n → ∞. ByCorollary 5.6,

for every r > 2
√
2� we have Eλ

(
Q(n), �n ∩ Br (pmin

n )
)

� Cr for n large enough (so that
r < hn−ρ−|pmin

n |−�), where the constantC is independent of n. Considering the translated
map Q̃(n)(x) := Q(n)(x + pmin

n ), we then have Eλ
(
Q̃(n), �̃n ∩ Br

)
� Cr . Arguing as in the

proof of claim (ii), we infer from Lemma 5.9 and Proposition 5.10 that Q̃(n) → Q̂� strongly
in W 1,2(C

η
�) for every η > 0. In particular, Q̃(n) → Q̂� strongly in W 1,2(B�). Since Q̂� is

smooth, we deduce from Lemma 3.9 (applied in the ball B�) that sing(Q̃(n)) ∩ B�/2 = ∅ for
n large enough, contradicting the fact that 0 ∈ sing(Q̃(n)). Hence hn − tmin

n remains bounded
from above.

Next we consider tmax
n := max

{|p| : p ∈ sing(Q(n))
} ∈ (0, hn), and we claim that

tmax
n � hn−δ for some δ > 0 independent ofn.Without loss of generality,we can assume tmax

n
is achieved at a singular point pmax

n belonging to {x3 < 0} (the other case being analoguous).
To prove the claim, we argue by contradiction assuming that τ 2n := hn − tmax

n → 0 as
n → ∞ for some (not relabeled) subsequence. We observe that �n ∩ Bρ(q−

n ) = q−
n + B+

ρ

with B+
ρ := Bρ ∩ {x3 > 0}, and Q(n) = e0 on ∂�n ∩ Bρ(q−

n ) = q−
n + Bρ ∩ {x3 = 0}.

According to Remark 3.8, we have 1
τn
Eλ
(
Q(n), �n ∩ Bτn (q

−
n )
)

� 8
ρ
Eλ(Q(n), �n ∩ Bρ(q−

n )).

Since �n ∩ Bρ(q−
n ) ⊆ �n\Ch−ρ

� , Corollary 5.7 tells us that Eλ(Q(n), �n ∩ Bρ(q−
n )) =

O(1) as n → ∞. Therefore, Eλ
(
Q(n), �n ∩ Bτn (q

−
n )
) = O(τn) as n → ∞. Then we

consider the translated and rescaled map Q̂(n)(x) := Q(n)(τnx +q−
n )which satisfies Q̂

(n) =
e0 on Bρ ∩ {x3 = 0}. Since �n ∩ Bρ(q−

n ) ⊆ �n\Ch−ρ
� , we deduce from Corollary 5.7

that Eλτ 2n (Q̂(n), B+
1 ) = 1

τn
Eλ(Q(n), �n ∩ Bρ(q−

n )) � C for a constant C independent of
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n. According to [12, Theorem 5.5], there exists a (not relabeled) subsequence and Q̂∗ ∈
W 1,2

sym(B
+
1 ;S

4) such that Q̂(n) → Q̂∗ strongly inW 1,2(B+
r ) for every r ∈ (0, 1). By continuity

of the trace operator, we have Q̂∗ = e0 on B1∩{x3 = 0}. Rescaling variables, we realize that
Q̂(n) is a weak solution of (1.6) in B+

1 with λτ 2n → 0 in place of λ. From the locally strong
W 1,2-convergence of Q̂(n), we deduce that Q̂∗ is a weakly harmonic map into S

4 in B+
1 . Now

we observe that (after rescaling variables), Q̂(n) satisfies the interior monotonicity formula
from Proposition 3.3 in B+

1 with λτ 2n → 0 in place of λ. Once again, by the established
locally strong W 1,2-convergence, we infer that Q̂∗ satisfies the same interior monotonicity
formula with λ = 0. In view of Remark 3.8 (applied to Q(n)), the same argument shows
that Q̂∗ satisfies the boundary monotonicity formula (3.3) with λ = 0 for balls centered on
B1 ∩ {x3 = 0}. This is then enough to apply the boundary regularity theory from [38] (see
also [11, Section 2]) and conclude that Q̂∗ is smooth in a neighborhood of B1 ∩ {x3 = 0}. In
particular, we can find a radius η ∈ (0, 1) such that 1

η
E0(Q̂∗, B+

η ) � ε
�
bd/4, where ε

�
bd > 0 is

the universal constant provided by Remark 3.8. By strong W 1,2-convergence, we then have
1
η
E0(Q̂(n), B+

η ) � ε
�
bd/2 for n large enough. According to Remark 3.8, it implies that Q̂(n) is

smooth in Bκ�η∩{x3 � 0} for n large enoughwhere κ� > 0 is a further universal constant. On
the other hand, by construction Q̂(n) is singular at p̄n := (pmax

n − q−
n )/τn = (0, 0, τn) → 0

as n → ∞, a contradiction. This proves the upper bound tmax
n � hn − δ for a constant δ > 0

that we can choose to be equal to 1/α, taking the constant α larger if necessary.
It finally remains to prove that Card�n = O(1) as n → ∞. By inequality in (5.26)

(applied with r = (ρ + α + 1)/2 and z = hn − r ), we have Eλ
(
Q(n),C

hn−ρ
� ∩ {|x3| >

hn − ρ − α − 1}) = O(1), which in view of Corollary 5.7 yields Eλ
(
Q(n), �n ∩ {|x3| >

hn − ρ − α − 1}) = O(1) as n → ∞. Hence, there exists a constant M > 0 independent
of n such that Eλ

(
Q(n), B1/α(x)

)
� M for every x ∈ {x3-axis} ∩ {hn − α � |x3| �

hn − 1
α
}. In turn, applying Lemma 3.12 in such a ball B1/α(x) shows that there exists a

constant c = c(M, λ, α) > 0 (independent of n and x) such that |p − p′| � c for every
p, p′ ∈ �n ∩ B1/(2α)(x) with p �= p′. Since �n ⊆ {x3-axis} ∩ {hn − α � |x3| � hn − 1

α
},

we conclude that Card�n � α/c. Since this holds for every n large enough, the proof is
complete. ��

5.4 Instability and symmetry breaking in long cylinders

To conclude this section, we discuss two important consequences of Theorem 1.3. We first
present a general result about the instability of singular configurations minimizing Eλ among
S
1-equivariant maps. This instability is essentially issued from the instability of singular

tangent maps for the Dirichlet energy (see [30]).

Proposition 5.12 Let � ⊆ R
3 be a bounded and axisymmetric open set with boundary of

class C3, and let Qb ∈ C1,1(∂�;S
4) be an S

1-equivariant map. If Qλ is a minimizer of Eλ
in the class Asym

Qb
(�) such that sing(Qλ) �= ∅, then Qλ is an unstable critical point of Eλ

in the class AQb(�). More precisely, for every radial function η ∈ C∞
c (B1 \ {0}) satisfying∫

B1
|∇η|2 − 2

|x |2 η
2 dx < 0 and every p ∈ sing(Qλ), there exists a small r > 0 such that

for every v̄ ∈ S
4 ∩ L2, Qλ is unstable along the variations �p,r (x) := 1√

r
η
( x−p

r

)
v̄, i.e.,

E ′′
λ (�

p,r ; Qλ) < 0.

Proof According to Theorem 3.1, if p ∈ sing(Qλ), then there exist a degree-zero and equiv-
ariant homogeneous harmonic map Q∗ ∈ C∞(R3\{0};S

4) and ν > 0 such that Q∗ is taking
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values in L0 ⊕ L1, and

‖Qp,r
λ − Q∗‖C2(B2\B1) = O(rν) as r → 0, (5.37)

where Qp,r
λ (x) := Qλ(p + r x). By formula (3.1), we have |∇Q∗|2 = 2

|x |2 . In turn, (5.37)

implies that |∇Qp,r
λ |2 → 2

|x |2 locally uniformly in R
3\{0}.

Recall that the second variation of the energy at a general map� ∈ C∞
c (�;S0) is defined

as

E ′′
λ(�; Qλ) :=

[
d2

dt2
Eλ
(

Qλ + t�

|Qλ + t�|
)]

t=0
.

Using (1.6), one may proceed as for second variation formula for harmonic maps (see e.g.
[31, Chapter 1] or [11, Section 4.3]), to obtain

E ′′
λ(�; Qλ) =

∫

�

|∇�T |2 − |∇Qλ|2|�T |2 + λ(D2W (Qλ)�T ) : �T dx , (5.38)

where�T := �− (Qλ : �)Qλ denotes the tangential component of� along Qλ. Choosing
r > 0 small enough in such a way that Br (p) ⊆ � and Br (p) ∩ sing(Qλ) = {p}, we have
�p,r ∈ C∞

c (�; L2), and rescaling/translating Br (p) to the unit ball B1(0) yields

E ′′
λ(�

p,r ; Qλ) =
∫

B1
|∇�

0,1
T |2 − |∇Qp,r

λ |2|�0,1
T |2 + λr2(D2W (Qp,r

λ )�
0,1
T ) : �0,1

T dx

Since �0,1 = ηv̄ and Q∗ is taking values in L0 ⊕ L1 = L⊥
2 , we infer that �

0,1 : Qp,r
λ →

�0,1 : Q∗ = 0 in C1
loc(B1\{0}) as r → 0. Hence�0,1

T → �0,1 = ηv̄ in C1
loc(B1\{0}). Since

D2W (Qp,r
λ ) → D2W (Q∗) in C0

loc(B1\{0}) and η is compactly supported in B1 \ {0}, we
have

lim
r→0

E ′′
λ (�

p,r ; Qλ) =
∫

B1
|∇ (v̄η) |2 − |∇Q∗|2 |v̄η|2 dy = E ′′

0 (ηv̄; Q∗) =
∫

B1
|∇η|2 − 2

|x |2 η
2 dx ,

where we used the fact that |v̄| = 1 in the last equality. By the sharp Hardy inequality
in R

3 and the last equality above, there exist radial functions η ∈ C∞
c (B1\{0}) such that

E ′′
0 (ηv̄; Q∗) < 0 (see e.g. [11, proof of Proposition 4.7]). Then, for any such function, the

conclusion follows for r small enough. ��
Combining Theorem 1.3with Proposition 5.12 and the full regularity of global minimizers

(without symmetry constraint) from [11, Theorem 1.1], we readily obtain the following
consequences for minimizers of Eλ in sufficiently long cylinders.

Corollary 5.13 Assume that λ�2 < λ0. Let �n := C
hn
�,ρ for varying hn > �, hn ↗ +∞ as

in Theorem 1.3, and Q(n)
b := Qhn

b the homeotropic boundary data given by (2.4). If Q(n)
sym

and Q(n)
glob are minimizers of Eλ in the respective classesA

sym

Q(n)
b

(�n) andA
Q(n)
b
(�n), then the

following properties hold for n large enough:

(i) sing(Q(n)
sym) �= ∅ and Q(n)

sym is an unstable critical point of Eλ (under some symmetry
breaking perturbations);

(ii) sing(Q(n)
glob) = ∅ and Q(n)

glob is not S
1-equivariant. In particular, the orbit under the

S
1-action {R · Q(n)

glob(R
t·)}R∈S1 provides infinitely many Eλ-minimizers in the class

A
Q(n)
b
(�n), and nonuniqueness holds.
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6 Torusminimizers in large cylinders

We consider in this section the homeotropic boundary condition for large (smoothed) cylin-
ders, the geometry opposite to the one in the previous section. We shall prove that for
sufficiently large cylinders, any equivariant minimizers is smooth and thus of torus type,
as claimed in Theorem 1.4. This result is the counterpart of the main result of the previous
section in case of long (smoothed) cylinders but the conclusions are in the opposite direction.
In the spirit of Sect. 3, we shall exploit these two extreme cases to show that smooth and singu-
lar minimizers actually coexist for intermediate cylinders, i.e., Theorem 1.5, and deduce that
symmetry breaking occurs whenminimization is performed without the symmetry constraint
(see Corollary 6.12).

The analysis in case of large cylinders resembles the one in Sect. 5. It essentially relies
on a monotonicity formula, the construction of suitable competitors, local compactness of
minimizers, and regularity theory. In the last subsections, we obtain the coexistence result
of Theorem 1.5 applying the persistence of smoothness and the persistence of singularities
for minimizers developed in Sect. 3, and symmetry breaking follows by continuity w.r.t. the
thickness of the infimum values of the energy functional.

6.1 A priori energy bounds and local compactness

In this subsection, we establish some preliminary results starting with the following
monotonicity formula.

Lemma 6.1 Let Ch
�,ρ be a smoothed cylinder with 2ρ < h < � − ρ and Qb its homeotropic

boundary data given by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then

1

r2
Eλ(Q,Ch

�,ρ ∩ Br2) = 1

r1
Eλ(Q,Ch

�,ρ ∩ Br1) +
∫

Ch�,ρ∩(Br2\Br1 )
1

|x |
∣∣∣∣
∂Q

∂ |x |
∣∣∣∣
2

dx

+
∫ r2

r1

1

r2

(∫

Ch�,ρ∩Br
2λW (Q) dx

)
dr +

∫ r2

r1

h

r2

(∫

∂Ch�,ρ∩Br

1

2

∣∣∣∣
∂Q

∂ $n
∣∣∣∣
2

dH2

)
dr

(6.1)

for every h < r1 < r2 � � − ρ.

Proof For h < r � �−ρ, the boundaries ∂Ch
�,ρ and ∂Br are transversal and ∂Br ∩sing(Q) =

∅, henceLemma5.1 applies. Choosing the vector fieldV (x) = x in Lemma5.1, computations
analogous to those leading to (5.12) yield

d

dr

{
1

r

∫

Ch�,ρ∩Br

(
1

2
|∇Q|2 + λW (Q)

)
dx

}

= 1

r

∫

Ch�,ρ∩∂Br

∣∣∣∣
∂Q

∂ $n
∣∣∣∣
2

dH2 + 1

r2

∫

Ch�,ρ∩Br
2λW (Q) dx + h

r2

∫

∂Ch�,ρ∩Br

1

2

∣∣∣∣
∂Q

∂ $n
∣∣∣∣
2

dH2,

since Q = e0 and V · $n = h on ∂Ch
l,ρ ∩ Br . Integrating now over r ∈ (r1, r2) yields (6.1). ��

The next result provides a first a priori estimate for the energy of minimizers in large
cylinders.
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Lemma 6.2 Let Ch
�,ρ be a smoothed cylinder and Qb its homeotropic boundary data given

by (2.4). If Q is minimizing Eλ over Asym
Qb

(Ch
�,ρ), then Eλ(Q,Ch

�,ρ) � K� for a constant K
independent of �.

Proof We prove the announced energy estimate by constructing a suitable competitor Q̃.
To this purpose, we introduce the subdomains �′

� := Ch
�,ρ ∩ {∣∣x ′∣∣ < � − ρ} and �′′

� :=
Ch
�,ρ ∩ {∣∣x ′∣∣ > � − ρ}. Noticing that Qb = e0 on ∂Ch

�,ρ ∩ {|x3| = h}, we set Q̃(x) = e0 for

x ∈ �′
�. To define Q̃ in �′′

� , we consider the vertical slice D+
�′′
�

defined in (2.2). Notice that

� > 2ρ, so thatD+
�′′
�

is a translate ofD+
�′′
2ρ
.Moreover, the shape ofD+

�′′
�

is independent of �.We

set Q̃(x) = Qb(x) for x ∈ ∂�′′
� ∩ ∂Ch

�,ρ and, since Q̃(x) = e0 for x ∈ ∂�′′
� ∩ {|x ′| = �−ρ},

we have Q̃ ∈ Lip(∂�′′
� ;S

4) and the translated map ψ : (x1, 0, x3) ∈ ∂D+
�′′
2ρ

→ Q̃(x1 − �+
2ρ, 0, x3) ∈ S

4 is independent of �. Since S
4 is simply connected, ψ admits an extension

� ∈ Lip(D+
�′′
�

;S
4). Then we set Q̃(x1, 0, x3) = �(x1−�+2ρ, 0, x3) for (x1, 0, x3) ∈ D+

�′′
�

.

Finally, we extend Q̃ to�′′
� by S

1-equivariance, that is setting Q̃(Rx) = RQ̃(x)Rt for every
R ∈ S

1 and x ∈ D+
�′′
�

. By construction Q̃ ∈ Lip(Ch
�,ρ;S

4)with a Lipschitz norm independent

of �, Q̃ is S
1-equivariant, and Q̃ = Qb on ∂Ch

�,ρ . Hence, as in (2.14), we have

Eλ(Q̃,Ch
�,ρ)

= Eλ(Q̃,�′′
�) = π

∫

D�′′
�

(
|∇�|2 + |�1|2 + 4|�2|2

x21
+ 2λW (�)

)
x1 dx1dx3 � K�,

for some K= K (h, ρ) > 0 independent of �. By minimality of Q, we have Eλ(Q,Ch
�,ρ) �

Eλ(Q̃,Ch
�,ρ) and the conclusion follows. ��

Definition 6.3 Let Ch
� be a cylinder with h < ∞. We call top/bottom boundary of the

cylinder Ch
� , the set

∂=Ch
� := ∂Ch

� ∩ {|x3| = h} = D� × {−h, h}.
An equivariant map Q ∈ W 1,2

loc (C
h
� ;S

4) is said to be an equivariant local minimizer of Eλ
in Ch

� up to the top/bottom boundary if for every η ∈ (0, �), Q ∈ W 1,2
sym(C

h
η;S

4) and

Eλ(Q,Ch
η) � Eλ(Q̃,Ch

η) for every Q̃ ∈ W 1,2
sym(C

h
η;S

4) satisfying Q̃ = Q on ∂Ch
η .

Remark 6.4 According to Remark 3.8, the regularity theory from Sect. 3.1 applies to an
equivariant local minimizer Q of Eλ in Ch

� up to the top/bottom boundary satisfying Q = e0
on ∂=Ch

� . It shows that Q is smooth in the interior of Ch
� and up to ∂=Ch

� away from finitely
many points located on {x3-axis} ∩ Ch

� . As a consequence, the computations from the proof
of Lemma 5.1 can be performed, and as in Lemma 6.1, we infer that identity (6.1) holds for
h < r1 < r2 < � and Ch

� instead of Ch
�,ρ .

The following compactness lemma will be repeatedly used in the sequel.

Lemma 6.5 Let Ch
� be a bounded cylinder, and let {Q j } ⊆ W 1,2

sym(C
h
� ;S

4) be a sequence such
that each Q j is an equivariant local minimizer of Eλ in Ch

� up to the top/bottom boundary and
Q j = e0 on ∂=Ch

� . If sup j Eλ(Q j ,C
h
� ) < ∞, then there exists a (not relabeled) subsequence
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such that Q j → Q∗ strongly in W 1,2(Ch
η) for every η ∈ (0, �), where Q∗ ∈ W 1,2

sym(C
h
� ;S

4)

is an equivariant local minimizer of Eλ up to the top/bottom boundary satisfying Q∗ = e0
on ∂=Ch

� .

Proof Since the sequence {Q j } has equibounded Eλ-energy, {Q j } is bounded in W 1,2
sym(C

h
� ),

whence the existence of a (not relabeled) subsequence and Q∗ ∈ W 1,2
sym(C

h
� ;S

4) such that
Q j⇀Q∗ weakly inW 1,2(Ch

� ). In addition, Q∗ = e0 on ∂=Ch
� by locality andweak continuity

of the trace operator.
We now argue as in Lemma 5.9. Fix an arbitrary r ∈ (0, �) and δ ∈ (0, �− r). Extracting

a further subsequence if necessary, by Fatou’s lemma and Fubini’s theorem there exists
η ∈ (r , r + δ) such that

lim
j→∞

∫

	η

∣∣Q j − Q∗
∣∣2 dH2 = 0 and

∫

	η

|∇Q j |2 + |∇Q∗|2 dH2 � C,

where 	η = ∂ latCh
η (see (5.27)), and C > 0 does not depend on j . Setting γη := {(η, 0, x3) :

|x3| < h}, we observe that 	η = ⋃
R∈S1 R · γη. By S

1-equivariance, we deduce that the
restriction of Q j to γη is weakly convergent to Q∗ in W 1,2(γη). By the compact embedding
W 1,2(γη) ↪→ C0(γη), we infer that Q j → Q∗ uniformly on γη. By equivariance again,
Q j → Q∗ uniformly on 	η.

We fix an arbitrary Q̄ ∈ W 1,2
sym(C

h
r ;S

4) satisfying Q̄ = Q∗ on ∂Ch
r . We extend Q̄ to Ch

η

setting Q̄ = Q∗ in Ch
η \ Ch

r , and we set σ j := ‖Q j − Q∗‖L∞(	η) + 2− j → 0. For j large
enough so that σ j < 1 and r < (1 − σ j )η, we define

v j (x) :=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣x ′∣∣− (1 − σ j )η

σ jη

(
Q j

(
η

x ′
|x ′| , x3

)
− Q∗

(
η

x ′
|x ′| , x3

))
+ Q∗

(
η

x ′
|x ′| , x3

)
if x ∈ Chη \ Ch

(1−σ j )η
,

Q̄

(
x ′

1 − σ j
, x3

)
if x ∈ Ch

(1−σ j )η
.

Then v j ∈ W 1,2
sym(C

h
η;S0), |v j | = 1 in Ch

(1−σ j )η
, and v j = Q j on ∂Ch

η (indeed, v j =
Q j = e0 on ∂=Ch

η). Since σ j → 0, we have |v j | → 1 uniformly in Ch
η\Ch

(1−σ j )η
, and

thus ‖|v j | − 1‖L∞(Ch� )
→ 0. In addition, v j → Q̄ a.e. in Ch

η because Q̄(·, x3) ∈ C0(Dη)

for a.e. x3 by Lemma 2.10. For j large enough we have |v j | � 1/2 and we can define the
competitor Q̃ j := v j/|v j | ∈ W 1,2

sym(C
h
η;S

4)which satisfies Q̃ j = Q j on ∂Ch
η . As in the proof

of Lemma 5.9, we have
∫

Chη

|∇ Q̃ j |2 dx �
∫

Chη

|∇ Q̄|2 dx + Cσ j ,

which implies that Eλ(Q̃ j ,C
h
η) → Eλ(Q̄,Ch

η) as j → ∞. In addition, by minimality of Q j

we have lim sup jEλ(Q j ,C
h
η) � lim sup jEλ(Q̃ j ,C

h
η). Letting j → ∞ yields Eλ(Q∗,Ch

η) �
lim inf j Eλ(Q j ,C

h
η) � Eλ(Q̄,Ch

η) by weak lower semicontinuity of Eλ. Since Q̄ = Q∗ in

Ch
η \ Ch

r , it implies that Eλ(Q∗,Ch
r ) � Eλ(Q̄,Ch

r ) proving the minimality of Q∗ in Ch
r . As in

the proof of Lemma 5.9 again, choosing Q̄ = Q∗ implies the strong W 1,2-convergence of
Q j in Ch

r . ��
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6.2 Sublinear energy growth and proof of Theorem 1.4

The next result is a key step in proving Theorem 1.4, in particular to control the asymptotic
location of the biaxiallity sets.

Lemma 6.6 Let � j → +∞ be an increasing sequence. For each j ∈ N, let Q j ∈
W 1,2

sym(C
h
� j

;S
4) be an equivariant local minimizer of Eλ in Ch

� j
up to the top/bottom boundary

satisfying Q j = e0 on ∂=Ch
� j
. If Eλ(Q j ,C

h
� j
) = O(� j ) as j → ∞, then there exists a

constant ε̄ > 0 independent of j such that the following holds: for every ε ∈ (0, ε̄), there
exist dε > 0 and jε ∈ N such that

Eλ
(
Q j , B� j−dε ∩ Ch

� j

)
� C∗ ε(� j − dε) ∀ j � jε, (6.2)

where C∗ denotes a constant independent of j and ε. In particular,

Eλ
(
Q j , Bσ� j ∩ Ch

� j

) = o(� j ) as j → ∞ (6.3)

for every σ ∈ (0, 1).

Proof By assumption, Eλ(Q j ,C
h
� j
) � C̄� j for some C̄ > 0 independent of j . We claim that

for every ε ∈ (0, 1/2), there exists an integer jε � 1 and dε > 1 independent of j such that

inf
r∈(� j−dε,� j )

1

r
Eλ(Q j , 	r ) < ε ∀ j � jε,

where 	r := ∂ latCh
r (see (5.27)). Indeed, given ε ∈ (0, 1/2) and jε � 1 to be chosen, we

have for 0 < d � � jε and j � jε ,

C̄ � 1

� j
Eλ
(
Q j ,C

h
� j

\ Ch
� j−d

) = 1

� j

∫ � j

� j−d

(Eλ(Q j , 	t )

t

)
t dt

�
(

inf
r∈(� j−d,� j )

Eλ(Q j , 	r )

r

)
1

� j

∫ � j

� j−d
t dt �

(
inf

r∈(� j−d,� j )

Eλ(Q j , 	r )

r

)
d

2
,

and the claim follows whenever we choose dε > 2C̄
ε

and jε such that � jε � dε .
As a consequence, for an arbitrary ε ∈ (0, 1/2) and j � jε , there exists rεj ∈ (� j −dε, � j )

such that

1

rεj
Eλ(Q j , 	rεj

) < ε. (6.4)

Note that rεj → +∞ since � j → +∞. From (6.4) and S
1-equivariance, we infer that for

j � jε ,

π

∫

γrεj

∣∣∣∣
∂Q j

∂x3

∣∣∣∣
2

dx3 = 1

rεj

∫

	rεj

1

2

∣∣∣∣
∂Q j

∂x3

∣∣∣∣
2

dH2 � 1

rεj
Eλ(Q j , 	rεj

) < ε,

where γrεj := {(rεj , 0, x3) : |x3| < h}. Since Q j (rεj , 0,±h) = e0, we deduce (again by

S
1-equivariance) that

‖Q j − e0‖L∞(	rεj
) � C∗

√
hε ∀ j � jε, (6.5)

for some universal constant C∗ > 0.
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Next we define for j � jε and x ∈ Ch
rεj
,

vεj (x) :=

⎧
⎪⎨
⎪⎩

(|x ′| − rεj + 1
)(

Q j

(
rεj

x ′

|x ′| , x3
)

− e0

)
+ e0 if x ∈ Ch

rεj
\ Ch

rεj−1,

e0 if x ∈ Ch
rεj−1.

Then vεj ∈ W 1,2
sym(C

h
rεj

;S0) satisfies vεj = Q j on ∂Ch
rεj
, and |vεj | = 1 in Ch

rεj−1. Moreover,

combining (6.4) and (6.5), we obtain
∫

Ch
rεj

\Ch
rεj−1

|∇vεj |2 dx � Cεrεj ,

for some constant C independent of ε and j .
Now we choose ε̄ ∈ (0, 1/2) in such a way that C∗

√
hε̄<1/2. Then, for ε ∈ (0, ε̄)

arbitrary, we have |1 − |vεj || � |vεj − e0| < 1/2 in Ch
rεj

by (6.5). Thus we can define for

j � jε ,

Q̃ε
j := vεj

|vεj |
∈ W 1,2

sym(C
h
rεj

;S
4),

which satisfies Q̃ε
j = Q j on ∂Ch

rεj
, and

∫

Ch
rεj

\Ch
rεj−1

|∇ Q̃ε
j |2 dx � Cεrεj (6.6)

for a further constantC independent of ε and j . In addition, |Q̃ε
j−e0| � 3|vεj−e0| � 3C∗

√
hε

in Ch
rεj

once again by (6.5). Consequently,

W (Q̃ε
j ) � C ′ε in Ch

rεj
, (6.7)

still for a constantC ′ independent of ε and j , by Taylor expansion ofW near e0 and choosing
ε̄ smaller if necessary.

By minimality of Q j , we conclude from (6.6) and (6.7) that

Eλ(Q j ,C
h
rεj
) � Eλ(Q̃ε

j ,C
h
rεj
) = Eλ

(
Q̃ε

j ,C
h
rεj

\ Ch
rεj−1

)
� Cεrεj ,

where C > 0 is still independent of j and ε. Noticing that Brεj ∩Ch
� j

⊆ Ch
rεj
, we deduce from

Remark 6.4 that

1

� j − dε
Eλ
(
Q j , B� j−dε ∩ Ch

� j

)
� 1

rεj
Eλ
(
Q j , Brεj ∩ Ch

� j

)
� Cε,

proving (6.2).
To complete the proof, we fix an arbitrary σ ∈ (0, 1). Then � j − dε > σ� j for j large

enough, and by Remark 6.4 again,

1

σ� j
Eλ
(
Q j , Bσ� j ∩ Ch

� j

)
� 1

� j − dε
Eλ
(
Q j , B� j−dε ∩ Ch

� j

)
� Cε .

Then (6.3) follows from the arbitrariness of ε letting j → ∞. ��
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The following rigidity result is an immediate consequence of Lemma 6.6.

Corollary 6.7 Let Q ∈ W 1,2
loc (C

h∞;S
4) be an equivariant local minimizer of Eλ in Ch∞ up to

the top/bottom boundary satisfying Q = e0 on ∂=Ch∞. If Eλ(Q,Ch
� ) = O(�) as � → ∞,

then Q ≡ e0.

Proof Let � j → ∞ be an increasing sequence, and set Q j := Q|Ch� j
. Then Q j is an equivari-

ant local minimizer of Eλ in Ch
� j

up to the top/bottom boundary satisfying Q = e0 on ∂=Ch
� j

and Eλ(Q j ,C
h
� j
) = O(� j ). According to Lemma 6.6, we have Eλ(Q j , B� j /2∩Ch

� j
) = o(� j ).

Let us now fix an arbitrary � � h. From Remark 6.4, we deduce that for j large enough so
that � j > 2�,

0 � 1

�
Eλ
(
Q, B� ∩ Ch∞

) = 1

�
Eλ
(
Q, B� ∩ Ch

� j

)
� 2

� j
Eλ
(
Q j , B� j /2 ∩ Ch

� j

)→ 0 as j → ∞.

Hence Eλ(Q, B� ∩ Ch∞) = 0. From the arbitraniness of �, it follows that Q is constant, and
thus Q ≡ e0 in view of its values on ∂Ch∞. ��

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 Step 1.We start proving that Q(n) → e0 strongly inW 1,2(Ch
� ) for every

� > 0. By Lemma 6.2, we have Eλ(Q(n), �n) � K�n for a constant K independent of n.
Given an arbitrary � > h, we consider n large enough in such a way that �n > 2�+ ρ. Then
Ch
� ⊆ B2� ∩ �n ⊆ B�n−ρ ∩ �n . Applying the monotonicity formula (6.1) we obtain

Eλ(Q(n),Ch
� ) � Eλ

(
Q(n), B2� ∩ �n

)
� 2�

�n − ρ
Eλ
(
Q(n), B�n−ρ ∩ �n

)
� 2K��n

�n − ρ
� 4K� .

(6.8)

In view of Lemma 6.5, we conclude that, up to a (not relabeled) subsequence, Q(n) → Q∗
strongly in W 1,2(Ch

� ) for every 0 < � < ∞, where Q∗ ∈ W 1,2
loc (C

h∞;S
4) is an equivariant

local minimizer of Eλ up to the top/bottom boundary satisfying Q∗ = e0 on ∂=Ch∞. By lower
semicontinuity of Eλ, letting n → ∞ in (6.8) yields Eλ(Q∗,Ch

� ) � 4K�. Hence Corollary 6.7
applies and Q∗ ≡ e0. By uniqueness of the limit, we now infer that the full sequence {Q(n)}
strongly converges to e0 in W 1,2(Ch

� ) for every 0 < � < ∞.
Step 2.We now accomplish the proof of (i i) proving that sing(Q(n)) = ∅ for n large enough

and that Q(n) converges smoothly to e0 locally in Ch∞. To this purpose, we fix an arbitrary
� > h and we consider n large enough so that �n � � + h.
Case 1: convergence near ∂=Ch

� . We fix an arbitrary point x0 ∈ ∂=Ch
� . Given a radius

0 < r∗ < h/2, B2r∗(x0)∩�n ⊆ Ch
�+h is a half ball for n large enough and Remark 3.8 applies

since Q(n) = e0 on B2r∗(x0)∩∂�n = B2r∗(x0)∩∂=Ch
�+h .We fix a radius r0 ∈ (0, r∗/4) such

that the conclusion of Remark 3.8 holds (it only depends on λ). According to Step 1, we have
Eλ(Q(n),Ch

�+h

) → 0 as n → ∞. Therefore, 1
r0
Eλ(Q(n), Br0(x0) ∩ �n) � ε

�
bd/2 whenever

n is large enough (independently of x0 ∈ ∂=Ch
� ), where ε

�
bd > 0 is the universal constant

provided by Remark 3.8. Then Remark 3.8 tells us that Q(n) in smooth and bounded in
Ck(Bκ�r0/2(x0)∩�n) for every k ∈ N (independently of x0), where κ� ∈ (0, 1) is a universal
constant. By arbitrariness of x0, we deduce that sing(Q(n)) ∩ {h − δ∗<|x3| � h} = ∅
for n large enough (recall that sing(Q(n)) ⊆ {x3 − axis}) and that Q(n) is bounded in
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Ck(Ch
� ∩ {h − δ∗<|x3| � h}) for every k ∈ N with δ∗ := κ�r0/2 > 0. As a consequence,

Q(n) → e0 in Ck(Ch
� ∩ {h − δ∗<|x3| � h}) for every k ∈ N.

Case 2: convergence in the interior of Ch
� . We fix a radius 0 < r1 < δ∗. In view of Step 1,

we have Eλ(Q(n),Ch
�+δ∗) � (εinr1)/8 for n large enough, where εin > 0 is the universal

constant provided by Proposition 3.5. Choosing r1 small enough (depending only onλ) and an
arbitrary point x0 ∈ Ch

� ∩ {|x3| � h− δ∗}, we then have 1
r1
Eλ
(
Q(n), Br1(x0)

)
� εin/8 so that

Proposition 3.5 applies. It shows that Q(n) is smooth and bounded inCk(Br1/16(x0)) for every
k ∈ N (independently of x0). Once again, it implies that Q(n) is smooth inCh

�∩{|x3| � h−δ∗}
for n large enough, so that sing(Q(n)) = ∅, and Q(n) → e0 in Ck(Ch

� ∩ {|x3| � h − δ∗}) for
every k ∈ N.
Step 3: proof of (i).Weobserve that the assumptions (HP0)–(HP3) from [11, 12] are satisfied
by Q(n) for n large enough. Indeed, sing(Q(n)) = ∅ for n large enough so that (HP0) holds
(recall Theorem 3.2). Since the boundary condition Q(n)

b is positively uniaxial, (HP1) holds.

Then,�n being a topological ball and Q(n)
b the homeotropic boundary data (2.4), (HP2) and

(HP3) trivially hold. Hence Q(n) is a torus minimizer in the sense of [12, Definition 7.6]
(for n large), and [12, Theorem 1.4] provides the announced properties of the function βn :=
β̃ ◦ Q(n).
Step 4. Now it only remains to prove (i i i). To this purpose, we fix an arbitrary t ∈ [−1, 1)
and, since β̃(e0) = 1, we infer from the previous step that there is an integer n̄t such that
{βn � t} ∩ Ch

2 h = ∅ for all n � n̄t .
Since Q(n) isminimizing Eλ overAsym

Qb
(�n), Lemma 6.6 applies inCh

�n−ρ , andwe consider
the constant ε̄ > 0 (independent of n) provided by this lemma. We fix a value ε = ε(t) to be
chosen later such that

0 < ε <
1

2
min

{
ε
�
bd/(2C∗), εin/(8C∗), ε̄

}
. (6.9)

whereC∗ denotes the constant in inequality 6.2. According to Lemma 6.6, we can find dε > 0
and an integer nε � n̄t such that

Eλ
(
Q(n), B�n−ρ−dε ∩ Ch

�n−ρ

)
� C∗ε(�n − ρ − dε) ∀n � nε, (6.10)

Enlarging nε and dε if necessary (see the proof of Lemma 6.6), we can assume that �n >

2dε + ρ + h for n � nε, and dε > 2 h + ρ (so that B2h(x) ∩ ∂B�n−ρ−dε = ∅ for every
x ∈ B�n−2dε ).

Let us now fix a point x∗ ∈ B�n−2dε ∩ (Ch
�n−ρ\Ch

2 h) (possibly depending on n) that either

belongs to ∂=Ch
�n−ρ or to Ch

�n−ρ ∩ {|x3| � h − δ∗}. By S
1-equivariance, we may assume

without loss of generality that x∗ = (x∗,1, x∗,2, x∗,3) satisfies x∗,2 = 0 and x∗,1 � 2 h. If
x∗ ∈ ∂=Ch

�n−ρ , we set s := r0 ∈ (0, h), and s := r1 ∈ (0, δ∗) if x∗ ∈ Ch
�n−ρ ∩{|x3| � h−δ∗}

(note that Br1(x∗) ⊆ Ch
�n−ρ in this case). Next we denote �∗ := x∗,1 ∈ [2h, �n − 2dε),

�∗
s := Bs(x∗) ∩ Ch

�n−ρ ∩ {x2 = 0}, and we consider the sets

T ∗
s :=

⋃

φ∈
(
− 2s

�∗ ,
2s
�∗
)
Rφ · �∗

s and T∗ :=
⋃

φ∈(0,2π)
Rφ · �∗

s .

Notice that Bs(x∗)∩Ch
�n−ρ ⊆ T ∗

s and T∗ ⊆ B�∗+2 h ∩Ch
�n−ρ . Using the S

1-equivariance and
the monotonicity formula from Lemma 6.1, we derive that

1

s
Eλ
(
Q(n), Bs(x∗) ∩ Ch

�n−ρ

)
� 1

s
Eλ
(
Q(n), T ∗

s ) = 2

π�∗
Eλ(Q(n),T∗)
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� 4

π
· 1

�∗ + 2h
Eλ
(
Q(n), B�∗+2h ∩ Ch

�n−ρ

)
� 2

�n − ρ − dε
Eλ
(
Q(n), B�n−ρ−dε ∩ Ch

�n−ρ

)
.

(6.11)

In view of (6.10) and our choice of ε, we conclude that for n � nε ,

1

s
Eλ
(
Q(n), Bs(x∗) ∩ Ch

�n−ρ

)
� min

{
ε
�
bd/2, εin/8

}
.

As in Step 2, by Proposition 3.5 and Remark 3.8, it implies that |∇Q(n)| � M in Bδ∗(x∗) if
x∗ ∈ ∂=Ch

�n−ρ , and |∇Q(n)| � M in Br1/16(x∗) if x∗ ∈ Ch
�n−ρ ∩ {|x3| � h − δ∗}, where M

denotes a constant depending only on λ and h. By arbitrariness of x∗ and in view of Step 2,
we conclude that for n � nε ,

|∇Q(n)| � M in B�n−2dε ∩ Ch
�n−ρ, (6.12)

for some constant M depending only on λ and h.
We now claim that a suitable choice of ε = ε(t) yields

{βn � t} ∩ (B�n−2dε ∩ Ch
�n−ρ) = ∅ ∀n � nε. (6.13)

To prove this claim, we assume by contradiction that for n � nε (more precisely, for a
not relabeled subsequence), there exists xt ∈ B�n−2dε ∩ Ch

�n−ρ such that βn(xt ) � t . Since

nε � n̄t , wemust have xt /∈ Ch
2 h . In view of (6.12), we can find a radius τ ∈ (0, h) depending

only on t , λ, and h such that βn � 1+t
2 in Bτ (xt )∩Ch

�n−ρ . By S
1-equivariance, it implies that

βn � 1+t
2 in the set

Tt :=
⋃

φ∈(0,2π)
Rφ · (Bτ (xt ) ∩ Ch

�n−ρ

)
.

Note that the volumeofTt is at least half of the volumeof the solid torus
⋃

φ∈(0,2π) Rφ ·Bτ (xt ).
Setting �t := |x ′

t | with xt =: (x ′
t , xt,3), we thus have

1

�t

∫

Tt
W (Q(n)) dx � π2τ 2

1 − t

6
√
6

=: ct ∀n � nε. (6.14)

In addition to (6.9), we now choose ε such that

ε <
λct
2C∗

.

As in (6.11), it follows from (6.10) and (6.14) that for n � nε,

λct � 1

�t
Eλ(Q(n),Tt ) � 2

�t + 2h
Eλ
(
Q(n), B�t+2h ∩ Ch

�n−ρ

)

� 2

�n − ρ − dε
Eλ
(
Q(n), B�n−ρ−dε ∩ Ch

�n−ρ

)
� C∗ε < λct ,

a contradiction proving (6.13). Setting dt := 2dε + h and noticing that Ch
�n−dt

⊆ B�n−2dε ∩
Ch
�n−ρ , the conclusion follows with nt := nε . ��
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6.3 Intermediate cylinders and coexistence results

The purpose of this subsection is to prove coexistence of smooth/torus and singular/split
minimizers for intermediate cylinders.As a first step,we establish in Propositions 6.8 and 6.10
the persistence of regularity and persistence of singularities properties when changing the
shape of a smoothed cylinder.

Proposition 6.8 (persistence of regularity) Let h, �", ρ > 0 be fixed with 0 < 4ρ < �" < h,
and {�n} a sequence of positive numbers such that �n � 3�". Assume that �n → �∗ as

n → ∞. Setting �" := Ch
�",ρ

, �n := Ch
�n ,ρ

, and �∗ := Ch
�∗,ρ as well as Q(n)

b and Q∗
b

to be the corresponding homeotropic boundary conditions given by (2.4), let Qn and Q∗
be minimizers of Eλ over Asym

Q(n)
b

(�n) and Asym
Q∗
b
(�∗) respectively. Assume that Qn → Q∗

strongly in W 1,2(�") as n → ∞.

(i) If sing(Q∗) = ∅, then there exists an integer n∗ such that sing(Qn) = ∅ for every
n � n∗.

(ii) If sing(Qn) = ∅ for every integer n, then sing(Q∗) = ∅.
Proof To simplify the notation, we write �"/2 := Ch

�"/2,ρ
. Since ∂�"/2 \ {|x3| = h} ⊆ �",

the restrictions of Qn and Q∗ to ∂�"/2 belong at least to C2(∂�"/2) by Theorem 3.2 and
Corollary 3.7 (applied at balls centered on ∂�"/2 ∩ {|x3| = h}). To prove the proposition,
we only have to show that Qn → Q∗ in C2(∂�"/2). Indeed, once this C2-convergence is
established, the conclusion follows from Corollary 3.10 in the domain �"/2.

First, we observe that for � � 2�", we have Ch
� ⊆ �n , so that ∂Ch

� ∩ ∂�n = ∂=Ch
� . Setting

r∗ := �"/2, it implies that for every x∗ = (x∗,1, x∗,2, x∗,3) ∈ ∂=Ch
�"
, the set �n ∩ B2r∗(x∗)

is a half ball and Q(n)
b = e0 on ∂�n ∩ B2r∗(x∗) so that Remark 3.8 applies.

By Theorem 3.2, Q∗ is smooth in a neighborhood of ∂�∗. Therefore, we can find r1 ∈
(0, r∗/4) (depending on λ) such that the conclusion of Remark 3.8 holds and

1

r1

∫

Br1 (x0)∩�∗
|∇Q∗|2 dx � ε

�
bd

2
for every x0 ∈ ∂=Ch

3�"/4,

where the universal constant ε
�
bd > 0 is given by Remark 3.8. Then we consider a finite

covering of ∂=Ch
3�"/4

by open balls Bκ�r1/2(x j ), j = 1, . . . , J , with x j ∈ ∂=Ch
3�"/4

and

κ� ∈ (0, 1) the further universal constant given by Remark 3.8. Since Qn → Q∗ strongly in
W 1,2(�"), we have for n large enough,

1

r1

∫

Br1 (x j )∩�n

|∇Qn |2 dx � ε
�
bd for every j = 1, . . . , J .

Applying Remark 3.8, we deduce that Qn is bounded in C2,α(Bκ�r1/2(x j ) ∩ �n) for every
α ∈ (0, 1) and each j = 1, . . . , J . Hence Qn is bounded in the C2,α-topology in
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Lδ := Ch
3�"/4

∩ {h − δ � |x3| � h
}

for some δ ∈ (0, κ�r1/2).
ByTheorem3.2 again, Q∗ is smooth away from {x3-axis}. Hencewe can find r2 ∈ (0, δ/4)

such that

1

r2

∫

Br2 (x0)
|∇Q∗|2 dx � εin

8
for every x0 ∈ (Ch

3�"/4
\ Ch

�"/4

) ∩ {|x3| � h − δ/2
}
,

where εin > 0 is the universal constant given by Proposition 3.5. Choosing r2 small enough
(depending on λ), and using the strong convergence inW 1,2(�") of Qn toward Q∗ combined
with a covering argument (as above), we conclude from Proposition 3.5 that Qn is bounded

in the C2,α-topology in
(
Ch
3�"/4

\Ch
�"/4

) ∩ {|x3| � h − δ/2
}
for every α ∈ (0, 1).

To summarize, Qn is thus bounded in the C2,α-topology in the set

Lδ ∪
(
(Ch

3�"/4
\ Ch

�"/4

) ∩ {|x3| � h − δ/2
}) = Lδ ∪ (Ch

3�"/4
\ Ch

�"/4

) =: Nδ.

From the strong W 1,2(�")-convergence to Q∗, we conclude that Qn → Q∗ in C2(Nδ).
Observing that ∂�"/2 ⊆ Nδ , the conclusion follows. ��
Proposition 6.9 (persistence of singularities) Let Qn and Q∗ be as in Proposition 6.8. If
sing(Q∗) = {a∗

1 , . . . , a
∗
K }, then there exists an integer n∗ such that for every n � n∗,

sing(Qn) = {an1 , . . . , anK } for some distinct points an1 , . . . , anK satisfying |anj − a∗
j | → 0 as

n → ∞.

Proof As in the proof of Proposition 6.8, Qn → Q∗ in C2(∂�"/2), and the conclusion
follows from Corollary 3.13 in the domain �"/2. ��

In combination with the previous propositions, we now provide the required compactness
property of minimizers as �n → �∗.

Lemma 6.10 Under the assumptions (and notations) of Proposition 6.8, assume that �n → �∗
as n → ∞. There exists a (not relabeled) subsequence and Q∗ minimizing Eλ overAsym

Q∗
b
(�∗)

such that Qn → Q∗ strongly in W 1,2(�") as n → ∞.

Proof Notice that, by our choice of the parameters, we have {x ∈ �n : �" � r < 2�"} =
Ch
2�"

\Ch
�"

where r2 := x21 + x22 , and the mapping �n : �n → �∗ given in cylindrical
coordinates by

�n(r , x3) :=

⎧⎪⎨
⎪⎩

(r , x3) if r < �",

(σnr − τn , x3) if �" � r < 2�",

(r + τn , x3) if 2�" � r � �n ,

with σn := 1 + �∗ − �n

�"
and τn := �∗ − �n ,

(6.15)

is one-to-one and biLipschitz, S1-equivariant and such that �n(C
h
2�"

\Ch
�"
) = Ch

2�"+τn
\Ch

�"
.

For an arbitrary map Q̂ ∈ A
Q(n)
b
(�n), we define Q̂n := Q̂ ◦ �−1

n and we observe that

Q̂n ∈ AQ∗
b
(�∗). Combining the chain rule, a change of variables, and (6.15) we obtain

1

Cn
Eλ(Q̂,�n) � Eλ(Q̂n,�∗) � CnEλ(Q̂,�n), (6.16)
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for a constant Cn → 1 as n → ∞ depending only on �n . In addition, we notice that,
if Q̂ ∈ Asym

Qn
(�n), then Q̂n ∈ Asym

Q∗
b
(�∗) because the �n’s are equivariant. Therefore,

testing the minimality of Qn with the 0-homogenous extension of Q(n)
b , we infer from direct

computations that supn Eλ(Qn,�n) < ∞, and thus, defining Q̃n := Qn ◦ �−1
n and using

(6.16) with Q̂n = Q̃n , it follows supn Eλ(Q̃n,�∗) < ∞. As a consequence, we can find a
(not relabeled) subsequence such that Q̃n⇀Q∗ weakly in W 1,2(�∗). Since Q̃n |∂�∗ = Q∗

b
independently of n and since the symmetry and unit norm constraints are weakly closed, we
have Q∗ ∈ Asym

Q∗
b
(�∗). In addition, by lower semi-continuity of the energy,

Eλ(Q∗,�∗) � lim inf
n→∞ Eλ(Q̃n,�∗). (6.17)

On the other hand, as above we have Q∗ ◦ �n ∈ Asym

Q(n)
b

(�n), and the minimality of Qn

together with (6.16) applied twice (once with Q̂n = Q̃n and once with Q∗ ◦ �n in place of
Q̂) yields

1

Cn
Eλ(Q̃n,�∗) � Eλ(Qn,�n) � Eλ(Q∗ ◦ �n,�n) � CnEλ(Q∗,�∗).

Since Cn → 1, taking the lim supn above we deduce from (6.17) that limn Eλ(Q̃n,�∗) =
Eλ(Q∗,�∗). By the compact embeddingW 1,2(�∗) ↪→ L4(�∗), we haveW (Q̃n) → W (Q∗)
strongly in L1(�∗). Hence,

∫
�∗ |∇ Q̃n |2 dx → ∫

�∗ |∇Q∗|2 dx so that Q̃n → Q∗ strongly in
W 1,2(�∗). Since Q̃n = Qn in�" ⊆ �∗, we conclude that Qn → Q∗ strongly in W 1,2(�").

It now remains to show the minimality of Q∗. To this purpose, let us fix an arbitrary
competitor Q ∈ Asym

Q∗
b
(�∗). Once again, we observe that Q ◦ �n ∈ Asym

Q(n)
b

(�n), and by

minimality of Qn along with (6.16),

1

Cn
Eλ(Q̃n,�∗) � Eλ(Qn,�n) � Eλ(Q ◦ �n,�n) � CnEλ(Q,�∗).

Letting n → ∞, we thus obtain Eλ(Q∗,�∗) � Eλ(Q,�∗), which completes the proof. ��
We are finally ready to prove our coexistence result for torus and split minimizers under

homeotropic boundary data.

Proof of Theorem 1.5 Throughout the proof we set �" := �0/3 < h.
Step 1. Define

�1 := sup

{
�̄ � �0 : every minimizer of Eλ over Asym

Q(�)
b

(��) is split for every�0 � � � �̄

}
,

and observe that �1 < ∞ by Theorem 1.4. We claim that �1 > �0. Indeed, assume by
contradiction that �1 = �0. Then, there exists a strictly decreasing sequence {�n} such that
�n → �0, and for each integer n, Eλ admits a minimizer Qn over Asym

Q(�n )
b

(��n ) such that

sing(Qn) = ∅. By Lemma 6.10, there exists a (not relabeled) subsequence such that Qn →
Q∗ strongly in W 1,2(��") where Q∗ minimizes Eλ over Asym

Q
(�0)
b

(��0). Applying Proposition

6.8, we infer that sing(Q∗) = ∅, i.e., Q∗ is torus, contradicting our assumption on �0. Hence
�1 > �0.

We now claim that Eλ admits both a split and a torus minimizer overAsym

Q
(�1)
b

(��1). Indeed,

assume first by contradiction that every minimizer is split. Arguing as above with �1 in
place of �0, it would lead to the existence of δ > 0 such that for �1 � � < �1 + δ,
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every minimizer is split, contradicting the definition of �1. Whence the existence of a torus
minimizer. To prove the existence of a split minimizer, let us consider a strictly increasing
sequence �0 < �n < �1 such that �n → �1. For each integer n, let Qn be a minimizer of Eλ
over Asym

Q(�n )
b

(��n ), which must be split by definition of �1. Applying Lemma 6.10, we can

find a (not relabeled) subsequence such that Qn → Q� strongly in W 1,2(��") where Q�

minimizes Eλ over Asym

Q
(�1)
b

(��1). Since sing(Qn) �= ∅, we deduce from Proposition 6.9 that

sing(Q�) �= ∅, i.e., Q� is a split solution.
Step 2. Define

�2 := inf

{
�̄ � �0 : every minimizer of Eλ over Asym

Q(�)
b

(��) is torus for every � � �̄

}
,

and observe that it is indeed well defined and finite by Theorem 1.4 (as the set above is
not empty). Clearly, �2 � �1 by definition of �1. Interchanging the roles of split and torus,
we can argue exactly as in the previous step to infer that there exists a minimizer of Eλ over
Asym

Q
(�2)
b

(��2)which is split (assume by contradiction it does not exist, then use Proposition 6.8

and Lemma 6.10 along an increasing sequence �n → �2 to deduce that for some δ > 0, every
minimizer ofEλ overAsym

Q(�)
b

(��) is torus for �2 � � > �2−δ, hence contradicting the definition

of �2). The existence of a torus minimizer of Eλ over Asym

Q
(�2)
b

(��2) also follows as in Step 1.

We consider a strictly decreasing sequence �n → �2 and corresponding torus minimizers of
Eλ over Asym

Q(�n )
b

(��n ). By Lemma 6.10 and Proposition 6.8, we can extract a subsequence

strongly converging in W 1,2(��") toward a minimizer over Asym

Q
(�2)
b

(��2) which must by be

torus. ��

6.4 Symmetry breaking in intermediate cylinders

We complete this section exploiting Theorem 1.5 to show that a symmetry breaking occurs
for intermediate cylinders of thickness � close to the critical values �1 and �2. As in Corol-
lary 5.13, it relies on the full regularity of global energyminimizers [11, Theorem 1.1] among
nonsymmetric competitors, and on the continuity of the energy infimum with respect to the
thickness of the cylinder stated in the following lemma.

Lemma 6.11 Let h > 0 and ρ > 0 be fixed with h > 2ρ. For a smoothed cylinder Ch
�,ρ , let

Q(�)
b be its homeotropic boundary data given by (2.4). The functions

� ∈ (2ρ,+∞) → Val(�) := inf
{
Eλ(Q,Ch

�,ρ) : Q ∈ A
Q(�)
b
(Ch

�,ρ)
}

and

� ∈ (2ρ,+∞) → Valsym(�) := inf
{
Eλ(Q,Ch

�,ρ) : Q ∈ Asym

Q(�)
b

(Ch
�,ρ)
}

are continuous.

Proof Let �n → �∗ be an arbitrary converging sequence satifying with �n > 2ρ and
�∗ > 2ρ. Applying the Direct Method of Calculus of Variations, we can find for each n
a map Qn ∈ A

Q(�n )
b

(Ch
�n ,ρ

) and Q∗ ∈ A
Q(�∗)
b

(Ch
�∗,ρ) such that Eλ(Qn,C

h
�n ,ρ

) = Val(�n) and
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Eλ(Q∗,Ch
�∗,ρ) = Val(�∗) (see [11]). Now, we consider the sequence of equivariant biLips-

chitz homeomorphisms �n : Ch
�n ,ρ

→ Ch
�∗,ρ from the proof of Lemma 6.10, recalling that

their biLipschitz constants go to 1 as n → ∞ and that Q(�n)
b ◦ �−1

n = Q(�∗)
b for all n ∈ N.

We set Q̃n := Qn ◦ �−1
n ∈ A

Q(�∗)
b

(Ch
�∗,ρ) and Q̂n := Q∗ ◦ �n ∈ A

Q(�n )
b

(Ch
�n ,ρ

). Then,

(6.16) and energy minimality yield

Val(�∗) � Eλ(Q̃n,C
h
�∗,ρ) � CnEλ(Qn,C

h
�n ,ρ

) = CnVal(�n)

� CnEλ(Q̂n,C
h
�n ,ρ

) � C2
nEλ(Q∗,Ch

�∗,ρ) = C2
nVal(�∗),

for a constant Cn → 1 as n → ∞. Hence, limn Val(�n) = Val(�∗) showing that Val is
continuous at �∗. The same argument applies to Valsym since the �n’s are equivariant. ��
Corollary 6.12 Under the assumptions (and notations) of Theorem 1.5, there exists δ > 0
such that

Val(�) < Valsym(�) ∀� ∈ [�0, �1 + δ) ∪ (�2 − δ, �2 + δ).

In particular, for � ∈ (�0, �1 + δ) ∪ (�2 − δ, �2 + δ), any minimizer of Eλ over A
Q(�)
b
(Ch

�,ρ)

is not S
1-equivariant and there exists infinitely many minimizers.

Proof By [11, Theorem 1.1], any map realizing Val(�) is smooth. By definition of �0, �1,
and �2 (see Theorem 1.5), for each � ∈ [�0, �1] ∪ {�2} there exists a singular map realizing
Valsym(�). Hence Val(�) < Valsym(�) for every � ∈ [�0, �1] ∪ {�2}. By the continuity of
Val and Valsym provided by Lemma 6.11, it follows that Val < Valsym in a neighborhood of
[�0, �1] ∪ {�2}. Then the orbit under the S

1-action of a minimizer provides infinitely many
other minimizers. ��

Appendix A: Uniqueness of 2D-minimizers for � small

The aimof this appendix is to complete the proof ofTheorem4.21, showing that theminimizer
of the 2D-LdG energy Eλ in the class Asym

H
(D) is unique whenever λ > 0 small enough.

According to Proposition 4.6, the claim holds for λ = 0 where the harmonic map uS given
by (4.19) is the unique minimizer even without the symmetry constraint. In TheoremA.3, we
shall prove that the same unconstrained uniqueness holds for every λ > 0 sufficiently small,
and therefore in the restricted class Asym

H
(D) as well. Our argument is inspired by the recent

interesting paper [22] addressing a similar question for minimizers of the 2D-LdG energy in
a more elaborated asymptotic analysis without the norm constraint.

We start with the following preliminary result (recall that the constant λ∗ > 0 is defined
in Theorem 1.2).

Lemma A.1 Let uS ∈ ÃS given by (4.19), λ ∈ [0, λ∗), and uλ any minimizer of Ẽλ over the
class ÃgH (D). The family {uλ}0<λ� λ∗

2
⊆ C2(D;S

4) is bounded, and uλ → uS in C1(D) as

λ → 0.

Proof By Proposition 4.6 and the minimality of each uλ, we have

Ẽ0(uS) � Ẽ0(uλ) � Ẽλ(uλ) � Ẽλ(uS)−→
λ→0

Ẽ0(uS).
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The family {uλ}0<λ� λ∗
2

is thus bounded in W 1,2(D). Each W 1,2-weak limit u∗ along an

arbitrary sequence λn → 0 belongs to ÃgH (D) and satisfies Ẽ0(uS) � Ẽ0(u∗) � Ẽ0(uS),
again by Proposition 4.6 and the weak lower semicontinuity of Ẽ0. By uniqueness of uS in
Proposition 4.6, we deduce that u∗ = uS. In addition, Ẽλn (uλn ) → Ẽ0(uS) also yields the
strong W 1,2-convergence of uλn toward uS as λn → 0.

To conclude the proof, it is enough to establish aC2(D)-bound on uλ since the embedding
C2(D) ↪→ C1(D) is compact andC1(D) ⊆ W 1,2(D) is continuous. To obtain thisC2-bound,
we rely on the regularity results from [11] in three dimensions.

We consider a fixed cylinder C = D× (−1, 1) and for each 2D-minimizer uλ we consider
the boundary map vλ ∈ W 1,2(∂C;S

4) as the trace of uλ, the latter extended to the whole
C independently of x3. Clearly, uλ ∈ W 1,2

vλ
(C;S

4) and it is easy to see that it is indeed the
uniqueminimizer because of its Ẽλ-minimality for each x3 ∈ (−1, 1). Thus,wemay apply the
results in [11] to infer full interior regularity, i.e., that uλ ∈ Cω(D;S

4), and the full boundary
regularity up to the lateral boundary ∂D × (−1, 1), so that uλ ∈ Cω(D;S

4). Finally, as
uλ → uS inW 1,2(D) and in turn inW 1,2(C)we can apply interior and boundary ε-regularity
results on the whole family {uλ}, as the scaled energy on balls centered at x̄ ∈ D × {0}
can be made uniformly small for λ > 0 small enough, to derive uniform C2-bounds for the
minimizers {uλ} for λ > 0 small enough. ��

In order to discuss the uniqueness property of uλ, we first recall that its energy minimality
and smoothness properties yield the criticality condition

Ẽ ′
λ(�; uλ)

:=
[
d

dt
Ẽλ

(
uλ + t�

|uλ + t�|
)]

t=0
=
∫

D

(−�uλ − |∇uλ|2 uλ + λ∇tanW̃ (uλ)
) · � dx = 0 ,

(A.1)

together with the positivity of the second variation

Ẽ ′′
λ(�; uλ)

:=
[
d2

dt2
Ẽλ

(
uλ + t�

|uλ + t�|
)]

t=0
=
∫

D

|∇�T |2 − |∇uλ|2|�T |2 + λD2W̃ (uλ)�T .�T dx ,

(A.2)

defined for � ∈ C∞
c (D;R ⊕ C ⊕ C) with �T := � − uλ(uλ · �) denoting the tangential

component of � along uλ.
The following lemma guarantees injectivity of for the linearization of equations (A.1),

i.e., strict positivity of the quadratic forms (A.2) for λ � 0 small enough.

Lemma A.2 Let uS ∈ AS be as in (4.19), λ ∈ [0, λ∗) and uλ be any minimizer of Ẽλ over
the class ÃgH (D).

Then there exists m0 > 0 such that∫

D

|∇ζ |2 − |∇uS|2|ζ |2 dx � m0

∫

D

|∇ζ |2 dx , (A.3)

for any ζ ∈ W 1,2
0 (D;R ⊕ C ⊕ C). As a consequence, for λ � 0 small enough we have

Ẽ ′′
λ(�; uλ) � m0

2

∫

D

|∇�|2 dx , (A.4)

for any � ∈ Hλ := {� ∈ W 1,2
0 (D;R ⊕ C ⊕ C) : � · uλ ≡ 0 }.
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Proof In view of (4.19) we have uS(z) = ( f0(r), f1(r)eiθ , f2(r)ei2θ ), where z = reiφ ∈ D

and f0(r) = r4−3
r4+3

� − 1
2 in D. Since uS is a harmonic map we have −� f0 = |∇uS|2 f0,

where |∇uS|2 = 96r2

(1+3r4)2
is bounded in D.

Since every ζ ∈ C∞
0 (D;R⊕C⊕C) can be written as ζ = f0ξ for some ξ ∈ C∞

0 (D;R⊕
C ⊕ C), a classical integration by parts argument using the equation for f0 gives∫

D

|∇ζ |2 − |∇uS|2 |ζ |2 dx =
∫

D

|∇ f0|2 |ξ |2 + f 20 |∇ξ |2 − |∇uS|2 f 20 |ξ |2 dx

+1

2

∫

D

∇ f 20 · ∇|ξ |2 dx

=
∫

D

|∇ f0|2 |ξ |2 + f 20 |∇ξ |2 − |∇uS|2 f 20 |ξ |2 dx −
∫

D

� f0|ξ |2 f0 + |∇ f0|2 |ξ |2 dx

=
∫

D

f 20 |∇ξ |2 dx .

The previous identity extends by density to any ζ ∈ W 1,2
0 (D;R⊕C⊕C) (correspondingly, to

any ξ ∈ W 1,2
0 (D;R⊕C⊕C)), so that in particular F(ζ ) := ∫

D
|∇ζ |2 −|∇uS|2 |ζ |2 dx > 0

whenever ζ �= 0.
Now we set

σ∗ := inf{F(ζ ) , ‖ζ‖L2 = 1 , ζ ∈ W 1,2
0 (D;R ⊕ C ⊕ C)} .

By the direct method in the Calculus of Variations it is easy to check that σ∗ is attained and
it is nonnegative. Moreover, the previous observation shows that actually σ∗ > 0 because of
the norm constraint. Thus, for any ζ ∈ W 1,2

0 (D;R ⊕ C ⊕ C) we have
∫

D

|∇ζ |2 − |∇uS|2 |ζ |2 dx � σ∗
∫

D

|ζ |2 dx � σ∗
‖|∇uS|2‖L∞

∫

D

|∇uS|2 |ζ |2 dx ,

so that for η := σ∗
‖|∇uS|2‖L∞ > 0 and m0 := η

1+η
inequality (A.3) follows.

Finally, inequality (A.4) follows easily from (A.3). Indeed, for λ > 0 small enough to be
chosen later and� ∈ Hλ, so that� = �T , (A.2) can be rewritten and estimated as follows:

Ẽ ′′
λ(�; uλ) =

∫

D

|∇�|2 − |∇uS|2 |�|2 + (|∇uS|2 − |∇uλ|2)|�|2 + λD2W̃ (uλ)� · � dx

� m0

∫

D

|∇�|2 dx − (‖ |∇uS|2 − |∇uλ|2‖L∞(D) + λ‖D2W̃ ( · )‖L∞(S4)

) ∫

D

|�|2 dx .

Then, applying 2D-Poincaré inequality the lower bound (A.4) follows from the C1-
convergence in Lemma A.1 for λ > 0 small enough. ��

We are finally ready for the main result of the appendix.

Theorem A.3 Let λ ∈ [0, λ∗) and uλ a minimizer for the energy Ẽλ over the class ÃgH (D).

Then for λ sufficiently small the minimizer is unique. As a consequence, uλ is S
1-equivariant

and it is the unique minimizer of Ẽλ over the class Ãsym
gH

(D).

Proof We aim to show that for all pairs of minimizers uλ, vλ → uS we have ‖uλ − vλ‖L2 ≡
0 for every λ > 0 small enough. The main ingredient in the proof is equation (A.4) in
Lemma A.2, i.e., the uniform strict positivity of the second variation Ẽ ′′

λ(·; uλ) along tangent
vector fields in W 1,2

0 for λ > 0 small enough. Once uniqueness holds, then S
1-equivariance
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of uλ obviously follows and in turn its minimality in the subclass Ãsym
gH

(D), because of the
invariance property of ÃgH (D) under the S

1-action, namely, (R ∗ u)(z) := Ru(Rtz)Rt for
any (u, R) ∈ ÃgH (D) × S

1, combined with constancy of the energy functional Ẽλ along its
orbits.

We start by decomposing vλ along uλ as vλ = uλ + wλ, where in turn the difference wλ

is pointwise decomposed into its tangential and its orthogonal part along uλ, i.e.,

vλ = uλ + wT
λ + w⊥

λ , w⊥
λ := [(vλ − uλ) · uλ]uλ , wT

λ := wλ − w⊥
λ . (A.5)

From now on we assume that |wλ| < 1/4 uniformly on D, which is always the case for λ
small enough by Lemma A.1. Note that |w⊥

λ |2 + |wT
λ |2 = |wλ|2 = −2uλ · w⊥

λ = 2|w⊥
λ |,

whence |w⊥
λ | = 1 −

√
1 − |wT

λ |2 and in turn w⊥
λ = uλ

(
−1 +

√
1 − |wT

λ |2
)
.

Combining the uniform convergence and C1-bounds from Lemma A.1 with (A.5),we see
that the following pointwise inequalities hold uniformly on D for every λ > 0 small enough
(the symbol�will mean inequality up tomultiplicative constants independent of λ), namely,

|w⊥
λ | � |wT

λ |2 < 1/4 , |∇w⊥
λ | � |wT

λ |
(
|wT

λ | + |∇wT
λ |
)
, |wT

λ | ≈ |wλ| ,
|∇wT

λ | � |∇wλ| + |wλ| . (A.6)

In view of (A.1) and (A.2), it is convenient to extend W̃ to a degree-zero homogeneous
function of R ⊕ C ⊕ C \ {0} and to introduce the following operator,

E ′
λ[�] = −�� − |∇�|2 � + λDW̃ (�) , � ∈ C2(D;R ⊕ C ⊕ C \ {0}), (A.7)

together with its formal linearization at uλ, namely,

E
′′
λ[uλ]� := −�� − |∇uλ|2� − 2

(
∇uλ · ∇�

)
uλ + λD2W̃ (uλ)� ,

� ∈ C2(D;R ⊕ C ⊕ C) ∩ Hλ , (A.8)

so that by (A.1), (A.2) and pointwise orthogonality we have

Ẽ ′
λ(�; uλ) =

∫

D

E ′
λ[uλ] · � dx , Ẽ ′′

λ(�; uλ) =
∫

D

E ′′[uλ]� · � dx . (A.9)

for any � ∈ C2(D;R ⊕ C ⊕ C) ∩ Hλ. Notice that DW̃ (uλ) · � = ∇tanW̃ (uλ) · � and
D2W̃ (uλ)� · � = D2

tanW̃ (uλ)� · � whenever � is tangent to S
4 at uλ but, although these

terms could be easily computed from (1.4) and (1.1), exact formulas are irrelevant, as for our
purposes the corresponding contributions will be negligible as λ → 0.

Since both uλ and vλ are solutions, we have E ′
λ[vλ] ≡ E ′

λ[uλ] ≡ 0, hence for wλ =
w⊥
λ + wT

λ = vλ − uλ as above and � = wT
λ ∈ C2(D;R ⊕ C ⊕ C) ∩ Hλ, from (A.7)–(A.8)

we infer

0 =
∫

D

(
E ′
λ[vλ] − E ′

λ[uλ]
) · wT

λ dx

=
∫

D

(
E ′
λ[vλ] ∓ E ′

λ[uλ + wT
λ ] ∓ E ′′

λ[uλ]wT
λ − E ′

λ[uλ]
)

· wT
λ dx ,

so that
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∫

D

E ′′
λ[uλ]wT

λ · wT
λ dx =: I = I I + I I I

:=
∫

D

(
−E ′

λ[uλ + wλ] + E ′
λ[uλ + wT

λ ]
)

· wT
λ dx

+
∫

D

(
E ′
λ[uλ] + E ′′

λ[uλ]wT
λ − E ′

λ[uλ + wT
λ ]
)

· wT
λ dx .

Combining (A.9), (A.4) and Poincaré inequality we obtain ‖wT
λ ‖2

W 1,2 � I , with uniform
constant for λ small enough. Thus, in order to conclude it is enough to show that I I + I I I �
o(1)‖wT

λ ‖2
W 1,2 as λ → 0, to obtain wT

λ ≡ 0 and in view of (A.6) also w⊥
λ ≡ 0, i.e., vλ = uλ

for λ small enough.
Concerning I I I , an elementary calculation gives

E ′
λ[uλ] + E ′′

λ [uλ]wT
λ − E ′

λ[uλ + wT
λ ] = λ

(
DW̃ (uλ) + D2W̃ (uλ)w

T
λ − DW̃ (uλ + wT

λ )
)

− |∇uλ|2 uλ − |∇uλ|2wT
λ − 2

(
∇uλ · ∇wT

λ

)
uλ +

∣∣∣∇(uλ + wT
λ )

∣∣∣2 (uλ + wT
λ ) =

λ
(
DW̃ (uλ) + D2W̃ (uλ)w

T
λ − DW̃ (uλ + wT

λ )
)

+ 2
(
∇uλ · ∇wT

λ

)
wT
λ +

∣∣∣∇wT
λ

∣∣∣2 (uλ + wT
λ ) .

Using the uniform C1-bounds for uλ, vλ and wλ together with Taylor’s theorem on DW̃ we
easily obtain the pointwise bound

∣∣∣E ′
λ[uλ] + E ′′

λ[uλ]wT
λ − E ′

λ[uλ + wT
λ ]
∣∣∣ � (1 + λ)

∣∣∣wT
λ

∣∣∣
2 +

∣∣∣∇wT
λ

∣∣∣
2
,

so that for λ < 1 small enough we obtain I I I � ‖wT
λ ‖L∞‖wT

λ ‖2
W 1,2 = o(1)‖wT

λ ‖2
W 1,2 as

λ → 0 because of Lemma A.1 and (A.6).
Concerning I I , another simple calculation leads to

−E ′
λ[uλ + wλ] + E ′

λ[uλ + wT
λ ] = �w⊥

λ + λ
(
DW (uλ + wλ) − DW (uλ + wT

λ )
)

+
(
2∇(uλ + wT

λ ) · ∇w⊥
λ +

∣∣∣∇w⊥
λ

∣∣∣
2 )

vλ +
∣∣∣∇(uλ + wT

λ )

∣∣∣
2
w⊥
λ .

In view of this last identity, the resulting terms in I I can be pointwise estimated as follows.

Since w⊥
λ = uλ

(
−1 +

√
1 − |wT

λ |2
)
, by orthogonality we also have

�w⊥
λ · wT

λ =
(
−1 +

√
1 − |wT

λ |2
)
�uλ · wT

λ + 2

(
∇
(
−1 +

√
1 − |wT

λ |2
)

· ∇uλ

)
· wT

λ ,

so that the C2-bounds in Lemma A.1 together with (A.6) yield

∣∣∣�w⊥
λ · wT

λ

∣∣∣ � |wT
λ |2(|wT

λ | + |∇wT
λ |) , (A.10)

uniformly on D for λ small enough.
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Next, using the Lipschitz property of DW̃ on compact sets in combination with (A.6) we
have the pointwise bounds

λ
(
DW̃ (uλ + wλ) − DW̃ (uλ + wT

λ )
)

· wT
λ � λ|w⊥

λ ||wT
λ | � |wT

λ |3 , (A.11)

uniformly on D for λ < 1 small enough. Finally, the uniform C1-bound from Lemma A.1
together with (A.6) also yield the pointwise bound

((
2∇(uλ + wT

λ ) · ∇w⊥
λ +

∣∣∣∇w⊥
λ

∣∣∣
2 )

vλ +
∣∣∣∇(uλ + wT

λ )

∣∣∣
2
w⊥
λ

)
· wT

λ

� |wT
λ |
(
|∇w⊥

λ | + |w⊥
λ |
)

� |wT
λ |2(|wT

λ | + |∇wT
λ |) , (A.12)

uniformly on D for λ small enough.
Collecting together (A.10)–(A.12) we finally obtain the pointwise estimate

∣∣∣
(
−E ′

λ[uλ + wλ] + E ′
λ[uλ + wT

λ ]
)

· wT
λ

∣∣∣ � |wT
λ |2
(
|wT

λ | + |∇wT
λ |
)

� |wT
λ |
(
|wT

λ |2 + |∇wT
λ |2
)
,

so that integrating and arguing as above we easily obtain I I � ‖wT
λ ‖L∞‖wT

λ ‖2
W 1,2 =

o(1)‖wT
λ ‖2

W 1,2 as λ → 0, which completes the proof. ��
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