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Abstract

We study the behaviour of global minimizers of a continuum Landau—de Gennes energy
functional for nematic liquid crystals, in three-dimensional axially symmetric domains diffeo-
morphic to a ball (a nematic droplet) and in a restricted class of S!-equivariant configurations.
It is known from our previous paper (Dipasquale et al. in J Funct Anal 286:110314, 2024)
that, assuming smooth and uniaxial (e.g. homeotropic) boundary conditions and a physically
relevant norm constraint in the interior (Lyuksyutov constraint), minimizing configurations
are either of forus or of split type. Here, starting from a nematic droplet with the homeotropic
boundary condition, we show how singular (split) solutions or smooth (torus) solutions (or
even both) for the Euler-Lagrange equations do appear as energy minimizers by suitably
deforming either the domain or the boundary data. As a consequence, we derive symmetry
breaking results for the minimization among all competitors.
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1 Introduction

The present article is the third of a series in a project on the analysis of the Landau—de Gennes
(LdG) model for nematic liquid crystal. Relying on our previous results [11, 12] (see [36] for
a short overview), we pursue our investigations on the qualitative properties of minimizers
of the Landau—de Gennes functional restricted to a class of axially symmetric configurations
with pointwise unit norm (the Lyuksyutov constraint). We refer to [11, 12] and the references
therein for an extensive discussion on this model and its physical background. For the sake
of concision, we shall simply recall the main elements and basic features of the model.

As customary in LdG Q-tensor theory (see, e.g., [34, 41]), we consider .Z3,3(R) the
vector space made of 3 x 3-matrices with real entries and its 5-dimensional subspace of
admissible matrices

Soi=1{0 = Qi) € Mra(R) : 0 = 0", w(Q) =0}.

Here Q' denotes the transpose of Q, tr(Q) the trace of Q. The space Sy is endowed with the
usual (Frobenius) inner product. As in [11, 12], the indicator function of physical interest is
provided by the signed biaxiality parameter

> w(Q%)
B(Q) =6 op €l-L1L. oo (1.1)
For a matrix Q satisfying |Q| = 1, the extremal values E (Q) = =1 occur iff the mini-

mal/maximal eigenvalue of Q is double which corresponds to the purely positive/negative
uniaxial phase in the language of liquid crystals. In turn, the case —1 < E (Q) < 1 corre-
sponds to the biaxial phase, and it is maximal for E (@) = 0 (i.e., maximal gap between the
distinct eigenvalues).

Following [11, 12], (rescaled) liquid crystal configurations occupying a given bounded
domain © C R3 (with C!-smooth boundary at least) are described through Sobolev maps
0 e WL2(Q; S*). The choice of the target S* C Sy, the unit sphere of Sp, encodes the
Lyuksyutov constraint typical of soft biaxial nematics [32] (see also [35]). As first suggested
in [11], the qualitative properties of a smooth (or merely Sobolev) configuration Q : Q — S*

@ Springer
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can be described by means of the signed biaxiality function Bo 0, through the biaxiality
regions, i.e.,

=™

B<t)i={xeQ:Bo0)<t), B2t} ={xeQ:Bo0w) =1}, re[-1,1],

(1.2)

and the corresponding biaxial surfaces {f =t} := {x € @ : f o Q(x) = t}. Among these
sets, a crucial role is played by {/3 = —1}, which should correspond to the experimentally
observed disclination lines, where eigenvalues exchange occurs (see, e.g., [27, 28]).

After rescaling and under the Lyuksyutov constraint, the reduced LdG energy functional
obtained in [11] takes the form

1
£,.(0) = /Q SIVOP +2W(Q)dx, (13)

for a material-dependent constant A > 0. It reduces to the Dirichlet integral & for maps
into S* when A = 0. The parameter A ~'/2 is known as the biaxial coherence length. The
functional &, formally corresponds to a LdG energy with quartic potential in the 1-constant
approximation for the elastic energy and in the regime of zero uniaxial correlation length
reflecting the norm constraint (see the discussion in [11, Section 1]). The reduced potential
W : So — R, when restricted to unit norm matrices, is given by
1 7 4
W) =—(1-F@) voest (1.4)
Hence W is nonnegative on S*. Its set of minima is called the vacuum manifold Qpiy :=
{(W=0}n S*, and Vign W(Q) = 0 forany Q € Qnin. The minimum of W is achieved when
the signed biaxiality is maximal, so that W(Q) = 0iff Q € Quin = RP? C S*, where we
regard the projective plane RP? C S* embedded as the set of positive uniaxial matrices

QminZ{Q€S4:Q:\/§<n®n—;Id>, neSz}. (1.5)

Since Omin = RP2, it has nontrivial topology, and both homotopy groups 772 (Qmin) = Z
and 71 (Qmin) = Z» play a role in the presence of defects, especially in the restricted class
of axisymmetric configurations. A critical point Q5 € W!2(Q; S*) of £, among S*-valued
maps satisfies in the weak sense the Euler—Lagrange equations

AQ; +IVQiI205 = AVean W(Q3) (1.6)

where the tangential gradient of W at Q € S* C Sy is given by
2 1 3
Vi W (Q) = (@7 = 31d — r())Q).

The left-hand side in (1.6) is the tension field of the S*-valued map Q; as in the theory of
harmonic maps, see e.g. [30].

Symmetry ansitze have been considered in several recent articles dedicated to Landau—de
Gennes models in dimension two or three, see e.g. [1, 2, 4, 22-24, 40, 42]. In the present
paper, we consider the LdG functional &, restricted to a class of S'-equivariant configurations,
continuing the analysis initiated in [12]. As reviewed in Sect. 2, we identify the group S! with
the subgroup of SO(3) made of rotations around the vertical axis of R3, and we consider the
induced action on Sy given by So > A > RAR' € Sy. Assuming that the open set Q € R3
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is bounded, smooth, and S!-invariant, i.e., R - =  for any R € S!, we restrict ourselves
to maps Q: Q2 — Sp which are Sl—equivariant, i.e.,

O(Rx) = RQ(x)R' forae.x €Q, VReS', (1.7)

with the obvious analogue definition for maps defined on the boundary. Following our nota-
tions from [11, 12], given an Sl—equivariant Dirichlet boundary data Qy : 02 — S*, we
set

Ag, (Q) = {Q e W89 : 0 =0pon asz},
and

AP (Q) = [Q € Ag,(Q) : Q is S'-equivariant } C Ag, (). (1.8)

We are then interested in minimizers Q; of £, over the restricted class ASQy:l(Q). As already
discussed in [12, Theorem 1.1] (and reviewed in the next sections), if €2 and Qy, are smooth
enough, then minimizers always exist and they are smooth up to a singular set, denoted by
sing( Q) ), made of (at most) finitely many interior point singularities located on the symmetry
axis. When present, these singular points are due either to a topological obstruction related
to the equivariance constraint or to an energy efficiency mechanism.

The main purpose of this article is to shed some light on the delicate interplay between
the geometry of the boundary and the properties of the Dirichlet boundary condition in
determining the qualitative properties of the corresponding minimizers. As initiated in [12],
we investigate nonexistence vs existence of singularities for maps minimizing £, over the

symmetric class ASQy;n(Q) for a boundary data Qy exploiting the topology of the vacuum

manifold Quin = RP2. The topology of minimizers will be either of what we called rorus
type, or split type in [12]. Here, a torus type minimizer Q; refers to a smooth minimizer (i.e.,
sing(Q;) = @), while a split type minimizer Q, is a singular minimizer (i.e., sing(Q;) # @).
This terminology, adopted in [12, Section 7], has been chosen according to our qualitative
description of the biaxiality regions and surfaces, i.e., the sublevel and level sets of the
composite function E o Q;, see [12, Theorems 1.4 & 1.5]. In few words, the torus type
refers to the fact that a biaxial surface of O, must have a connected component of genus one
enclosing at least a circle of negative uniaxiality, i.e., a (invariant) disclination ring. In turn,
the split type indicates that singularities come in pairs with a biaxiality assuming the value
—1 in between (i.e., there are disclination segments on the vertical axis), and biaxial surfaces
contain spheres with poles at the singular points. For the sake of concision, we refer to [12]
for a more detailed description and the precise results.

For simplicity, we restrict ourselves to axisymmetric cylinder-type domains diffeomorphic
to a ball (see Definition 2.3), or to the model case of a nematic droplet, i.e., the unit ball
Q = B; C R3. Concerning the boundary data, a natural choice is to take it smooth (at least
of class Cl) and valued in the vacuum manifold, i.e., Qy € C1(3S2; ]RPZ). Since 992 ~ S2,
every such map can be written in the form

Op(x) = @(v(x) Qv(x) — %Id) forallx € 992, veCl@Q:$?. 1.9

Since € is axisymmetric, such map Qy is S'-equivariant if and only if its lift v is itself
S'-equivariant (with respect to the obvious action of S! on S* € R3 by rotation). Then,
the topological nontriviality of Qy introduced in [12] and required here amounts to the
assumption that the topological degree deg v € Z of the lift is odd (this assumption only
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depends on Qy, and not on a particular choice of the lift v). For instance, if 32 is of class C?
and v in (1.9) is the outer unit normal field on 92 (i.e., v(x) = l_{(x)), then we obtain the
so-called homeotropic boundary condition (see (2.4)) which is s! -equivariant and its lift v
satisfies deg v = 1, i.e., it satisfies our topological requirement. A main example entering in
our discussion below is the case a nematic droplet 2 = B; with homeotropic boundary data.
Then Z(x) = ﬁ and Oy (x) = H(x) where H is the unit-norm hedgehog

3 1
H(x) = \/i 29X _21d)  forallx € 9By, (1.10)
2\xl Tkl 3

which is actually equivariant in the sense of (1.7) with respect to the full orthogonal group
0(@3).

Besides RP2-valued maps, we shall also consider more general S*-valued boundary
data. According to [11, 12], we shall always assume that  and Qp are smooth enough,
axisymmetric, and satisfying the conditions:

(HPy) B :=minseyg B o Qp(x) > —1;
(H P») Q is diffeomorphic (equivariantly and up to the boundary) to a ball;
(H P3) deg(v, 0R2) is odd;

where (H P3) has to be understood in the following way. In view of (H P;), the maximal
eigenvalue Amax (x) of Qp(x) is simple and the function A : 32 — R is smooth, hence
there is a well defined and smooth eigenspace map Vpax : 02 — RP? (which inherits
equivariance). Since Q2 ~ S? by (H P,), the mapping Vinax has a (nonunique) smooth lifting
v: 99 — S?%, which is required to satisfy (H P3). In the case 2 = Bj, besides the radial
hedgehog H, the main examples of boundary data satisfying our general assumptions are the
S'-equivariant harmonic spheres Opypn S? — S*, for positive parameters 1 and p (see
the full classification [12, Proposition 3.8 and proof of Theorem 1.3]).

In [12, Theorem 1.4 & 1.5], we have shown that under assumptions (H P;)-(H P3), mini-
mizers of £, over the class Asz:)n (£2) must be either of torus type (when smooth) or of split type
(when singular), in agreement with some physical expectations based on numerical simula-
tions (e.g., [10, 14, 21, 27, 28]). To complement this result, [12, Theorem 1.2 & 1.3] provide
in the case 2 = Bj two explicit continuous deformations! T" : [0, 1] — ny*‘;] (3B1; SH
of the hedgehog map H along which (H P;)-(H P3) are preserved and such that minimizers
corresponding to the final map Qp, = I'(1) are either all of torus type or all of split type
respectively (see also Remark 3.16). Our first main result actually shows that both type of
minimizers coexist for the same boundary data when suitably chosen at some intermediate

stage of one of these deformations.

Theorem 1.1 Leta € (0,1), A > 0, and T : [0,1] — cfy*gl(aBl; S* a continuous curve
along which (H P1)-(H P3) are satisfied. Assume that for Qp = I'(0) and Qp = I'(1), the
minimizers of €, over Asz;n(B]) are all of torus type and all of split type, respectively. Then
there exist 0 < t; < tp < 1 such that

(i) forevery 0 <t < t1 and Qv = I'(¢t), any minimizer of &, over Asz;n(Bﬂ is smooth
and thus of torus type;

ii) foreverytr <t < 1 and Qp = I'(t), any minimizer of €, over 1) is singular

(ii) <land Qy =T (@) £ ALY (By) s singul
and thus of split type;

1 Cszy% (0By; S*) stands for the subset of C2% (3 By ; S*) made of all S -equivariant maps. More generally, we

shall use the sub/supscript sym on a functional space to indicate that the mappings involved are st -equivariant.
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(iii) fort € {t1, 1} and Qv = T'(t), there exist a smooth and a singular minimizer of &,
over the class ASQy:](B 1), hence of torus and split type respectively.

As a consequence, there exists Qv € C 52}’,%(3 B1; Y sqlisfying (H P1)—(H P3) which yields
coexistence of torus and split minimizers of &€, over .ASQy;n (By).

The proof of Theorem 1.1, in Sect.3, essentially relies on the interior and boundary
regularity theory developed in [11, 12] and suitably presented in Sect. 3.1. Along with further
refinements, it follows that both smoothness and presence of singularities persist under strong
Wl'z-convergence as the pair (Qp, A) varies in the space of data cszy’&(asz; S* x [0, 00), in
analogy with [3, 18] in the case of minimizing harmonic maps into S?. Using these properties
together with unique continuation arguments, we prove in Theorem 3.14 a decomposition of
the space of data into two open sets, for which all the minimizers are of the same type (smooth
or singular), and their common boundary, where coexistence occurs. Then Theorem 1.1
follows as a direct consequence (see Corollary 3.15) as the two open sets are not empty by [12,
Theorem 1.2 & 1.3] and there exists an explicit continuous path connecting them (as already
mentioned). It is a natural open question to understand if for such explicit path deforming the
data used in [12, Theorem 1.2] into the one used in [12, Theorem 1.3] and passing through
the hedgehog H, the coexistence parameters given in Theorem 1.1 are precisely those of
the hedgehog, i.e., if O, = H yields coexistence of torus and split minimizers in the class
A" (BY).

Our coexistence property is somehow related to a similar result established in the recent
article [42], although the methods employed are completely different. As already commented
in more details in [12, Section 7], the analysis in [42] is performed to the case 2 = By with
boundary condition given by the unit norm hedgehog H, and the minimization is restricted
to the strictly smaller class of O(2) x Z,-equivariant configurations (the extra Z,-symmetry
corresponding to the reflection across the horizontal plane). In this restricted class, the author
performs a clever further constrained minimization which yields coexistence of minimizers
of “torus” and “split” type, although these notions are in a sense weaker than ours in [12].
However, their energy minimality in the full symmetric class Azm(B 1) remains unclear.

The second part of the article is dedicated to minimizers of £, over the equivariant class
(1.8) with homeotropic boundary conditions on axisymmetric domains & C R3 diffeo-
morphic to the unit ball. Here the goal is to show that the presence of smooth or singular
minimizers and even their coexistence depends in a subtle way on the shape of 2. To capture
the essence of these phenomena, we restrict ourselves to an explicit family of axisymmetric
cylinder-type domains denoted by CZ" , and obtained as a regularization (near the angles) of
vertical cylinders of height 24 and radius £, the parameter p being the smoothing parameter
(see Definition 2.3). The boundary condition Qy, is the homeotropic boundary data given by
(1.9) withv = 7 the outer unit normal field. Under these choices of € and QObp, assumptions
(H P1)—(H P3) above are satisfied and the results in [12] apply. Exploiting these facts, we
discuss here the nature of minimizers, i.e., smooth or singular, and thus their type, torus or
split, as the characteristic lengths /4 and £ vary. Borrowing a terminology from physics (see,
e.g., [6], for the case of Bose-Einstein condensates in trapping potentials), we are interested
in two opposite regimes, namely: (i) the case 7 >> £ of long and thin cylinders, (the “cigar
shape”), and its opposite, i.e., (ii) the case 1 < £ of flat and very large cylinders (the “pancake
shape”). Both cases are somehow natural, as they are a mathematical idealization of the case
in which the liquid crystals occupy a long pipe or it is arranged as a thin film respectively.

We shall see in Theorem 1.3 below that, in the asymptotic regime & >> £, a 2D-reduction
phenomenon occurs and the 3D-minimizers in Q:Z" o tend to minimize the 2D-energy on
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most of the horizontal cross-sections of the domain. To present and describe this dimension
reduction, it is useful to anticipate and analyse the effective 2D-variational problem which
involves maps defined on a generic horizontal cross-section D, of the smoothed cylinder Qﬁz o
This 2D-minimization problem is of independent interest and resembles the one considered
in [22] without the norm constraint.

For simplicity, we rescale the disc D, of radius £ to the unit disc D) and, to distinguish the
2D from the 3D case, we shall use the notation E) (instead of &, ) to refer to the LdG energy
in two dimensions. In other words, we consider for each A > 0 the 2D-LdG energy

1
E; (0Q) ::/D§|VQ|2+AW(Q)dx, (1.11)

defined for configurations in the class W12(ID; S*). Note that in the case A = 0, the energy
Ej still reduces to the Dirichlet integral.
In the 2D-problem, we are interested in minimizers of E, over the Sl—equivariant class

AN D) = {0 € WL2(D:§*) : 0 = H on oD}, (1.12)

sym

where H : R?\{0} — RP? C S*is the radial anchoring map (or constant norm hedgehog),
ie.,

— [3( 1 (M 1 1
Hx):=,>-|— —-1d]. 1.13
(x) A J;)z ® J;)z 3 (1.13)

The restriction of H to 8D, corresponds precisely to the homeotropic boundary condition
at the boundary of the cross-section D, € 8@2’ o where the outer normal is horizontal. We

observe that maps belonging to Asﬁym (D) are continuous in D (see Sect.2), hence there is a

natural decomposition A%m (D) = An U Ag (with disjoint union) according to the respective
value at the origin Q(0) = +e(, where ey is the matrix given by (2.8). Indeed, ey are the
only unit norm matrices invariant under the action of S! on $4, so that equivariance, norm
constraint, and continuity imply this decomposition.

Our second main result discusses the nature of 2D-minimizers as the parameter A > 0
varies, that is the belonging to the class Ay or to the class Ag. Note that fixing the cross-
section of the sample and varying the biaxial coherence length A~'/2 is mathematically
equivalent, by rescaling, to fixing the material-dependent length A~!/2 and varying the width
of the sample, which is physically more realistic.

Theorem 1.2 There exist 0 < Ly < Ay < A* < 400 such that the following statements hold.
(i) The maps Q ~ i with ii(z) = g7 (£2) explicitly given by (4.34), are (positively)
uniaxial, they are minimizers of E, over AN, and local minimizers of E) over A%m (D)
for every A = 0. In addition, these maps are the unique absolute minimizers for

A € (A, 00).

(ii) Ifr € [0, A™) then there exist minimizers Q) of E, over As. Moreover, these are local
minimizers of E) over Asﬁym (D), and they satisfy Eo 0, (D) = [—1, 11. In addition, if
A € [0, Ay), then minimizers over Ag are the the only minimizers of E, over A%m (D),
and uniqueness holds for A < Lo. If A > A*, then there is no minimizer of E, over

As.
(iii) If . = Ay, then the maps Q in (i) and Q;. in (ii) are both minimizers of E; over
AT (D).
H
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The previous theorem provides a purely energetic explanation of the biaxial escape phe-
nomenon in 2D-biaxial nematics, at least under norm and axial symmetry constraints. The
escape mechanism here is explained in a completely different way compared to [9], where
complete biaxial escape in 2D is inferred in the low-temperature limit. In our case, the bound-
ary data (1.13) is trivial in 77 (RP?), while in [9] its nontriviality implies that almost uniaxial
extensions cannot exist, even without the norm constraint. Indeed, according to claim (i), if
A is very large (equivalently, when the size of the sample is large compared to the character-
istic length A~!/2), then energy minimizers are purely positively uniaxial (and even explicit,
due to the norm constraint), because of the strong penalization of the biaxial phase induced
by the potential W. On the other hand, claim (ii) shows that reducing A to smaller values
(equivalently, reducing the size the sample compared to A ~!/2) makes uniaxiality non nec-
essarily favorable. Indeed, for A below the coexistence threshold A, the biaxiality parameter
of minimizers attains its full range [—1, 1], and complete biaxial escape occurs.

The proof of Theorem 1.2 is presented in Sect.4. As commented in more details there,
the cornerstone is Theorem 4.4 which gives an energy gap phenomenon between the infi-
mum of Dirichlet integral E( over the class Ay and the class Ag together with a complete
classification of the corresponding optimal maps following the lines of [12]. The main
difficulties come from the conformal invariance of the Dirichlet integral in 2D and the associ-
ated concentration/compactness alternative with possible bubbling-off of harmonic spheres
along minimizing sequences (see the proof of Proposition 4.15) as the pointwise constraints
Q(0) = xep are not weakly closed. This intermediate step and Theorem 1.2 can be seen as
analogues of the construction of small and large solutions for S?-valued harmonic maps in
two dimensions, see [8, 26]. Borrowing the terminology from the S-valued case, the large
solutions Q in (i) escape from the (small) spherical cap of S* centered at —eg containing
the image of the boundary datum H, as opposed to smalls solutions Q;, in (ii) (at least for A
small enough) for which the escape phenomenon does not happen. In the critical case A = A*,
bubbling-off of harmonic spheres cannot be excluded by a direct energetic comparison, and
existence or not of minimizers over the class .Ag remains to be established. Similarly, a
detailed analysis of Q, minimizer over Ag as A increases to A* has still to be performed. In
particular, it would interesting to determine whether or not the branch {0, } can be continued
beyond A* as a branch of critical points. Since these issues do not affect our main line of
investigation, we do not pursue the analysis further, and we leave those as open questions.

In Sect. 5, we take advantage of the previous 2D result to describe the asymptotic behaviour
of minimizers in the 3D cylindrical domains Q’Z’ o with homeotropic boundary condition in
the regime # >> £. Our third main result below shows that, for such long “cigar shaped”
domains, any minimizing configuration must be singular, hence of split type in the sense of
[12].

Theorem 1.3 Let A > 0 be a fixed number and Ao, \y the values provided by Theorem 1.2.
Given 0 < 2p < £ and a sequence h,, — +oo satisfying h,, > ¢, set Q, = Q:;’”p and let

Q(") be the homeotropic boundary data on 3S,. If. for each n, Q" is a minimizer of &,
over Asgg:) (2,), then the following statements hold for n large enough.

(i) (Split Structure) If £ < Ax/A, then sing (0™) £ @. As a consequence, Q™ is of
split type and B, := ,3 o QW satisfies B () = [—1, 1].

(1) (2D-reduction)Ift < «/)»o/k and Q[ denotes the unique minimizer of E; (+; Dy) over
gym (D), then QW — Qg strongly in WIOC (€°) and in fact, locally smoothly in

QZ asn — +oo.
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(iii) (Singularities Ejection) If £ < /Ao/X, then sing (Q™) N {x3 > 0} and sing (Q™) N
{x3 < 0} are both nonempty, each one of them contains an odd number of points,
sing (Q™) C {x3-axis} N {h, —a < |x3| < h, — é}for some constant o > 1
independent of n, and Q" = —ey on {x3-axis} N {|x3] < h, — a}. In addition,
Card( sing (Q("))) remains bounded as n — 00.

This theorem shows that singularities occur purely for reasons of energy efficiency, in
analogy with the case of minimizing harmonic maps into S? first described in [17]. Claim (ii) in
the theorem above states that minimizers tend to become two-dimensional (i.e., independent
of x3) on each fixed bounded portion of the (smoothed) cylinder as the height goes to infinity.
For sufficiently thin cylinders (below the critical threshold +/Ag/A), 2D minimizers on the
cross sections assume the value —ey at the origin by Theorem 1.2, so that negative uniaxiality
must occur on the symmetry axis for 3D minimizers. This property, in combination with
the boundary data, forces the presence of point singularities, and thus the split structure.
Finally, according to (iii), singularities have to escape to infinity along the symmetry axis
in a certain quantitative way, whereas full regularity on each fixed bounded portion of the
cylinders is inherited from the limiting map. From the presence of singularities, we derive
in Corollary 5.13 the instability of minimizers over AY o (€2, in the full class .A o (25).

As a consequence, minimizers of £, over A o™ (2) are not symmetric and non uniqueness

holds, in analogy with our previous result [12, Corollary 7.15]. Such symmetry breaking
phenomena were already proved in [3] and [16] for minimizing harmonic maps into S? (i.e.,
for the Frank-Oseen model). Hence, our result is a natural counterpart for the Landau—de
Gennes model, in agreement with the numerical simulations in [10].

The proof of Theorem 1.3 relies on various energy identities leading to uniform a priori
bounds and compactness properties. But the heart of the matter is a 2D-rigidity result for
local minimizers in infinite cylinders, see Proposition 5.10. Relying on the 2D-uniqueness
property in Theorem 1.2, we obtain x3-independence by constructing comparison maps with
optimal energy growth, and to this purpose it is crucial to assume that the cylinders are
sufficiently thin. Our analysis also shows that the number of singularities is bounded and
that, near each tip of the cylinder, there must be an odd number of them. It remains an open
question whether or not there is exactly one singular point near each tip for / large enough.

The next result describes the asymptotic behaviour of minimizers over the equivariant
class in the opposite regime 7 < £. It shows that for such “pancake shaped” domains the
minimizing configurations must be smooth, hence of torus type in the sense of [12].

Theorem 1.4 Let A > 0 be a fixed number. Given 0 < 2p < h and an increasing sequence
£, — 4o satisfying £, > ~/2h, set 2, := G:h and let Q(n) be the homeotropic boundary
data on Q. If, for each n, Q™ is a mmlmzzer of &, over A y<n>(52 ), then the following

statements hold for n large enough.

(i) (Torus Structure) We have sing (Q(”)) = (. As a consequence, Q™ is of torus type,
By = ,8 0" satisfies B () = [—1, 1], and the level set {8, = —1} contains an
invariant horizontal circle mutually lmked to the vertical axis.

(ii) (Asymptotic Ehaviour) 0™ — ey strongly in WlL’CZ(QI’;o) and in fact, locally

smoothly in QZO asn — +o00.
(iii) (Biaxiality Ejection) For any t € [—1, 1), there exist n;, € N and a value d; > 0
independent of n such that {8, < t} N Q:hwd; = (@ for any n > n;.
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According to claim (ii), minimizers approach the constant map e on each fixed bounded
portion of the cylinder as the width increases to infinity. Indeed, the influence of the noncon-
stant part of the boundary data, which is present only on the curved part of 9€2,,, fades as this
curved part is sent to infinity when £,, — +o00. Then, full regularity near the symmetry axis
(and hence everywhere) is inherited from the limiting map, whence the torus type structure.
Furthermore, the local smooth convergence to a constant uniaxial map pushes the biaxial sets
to infinity, in such a way that they remain at finite distance from the lateral boundary.

The proof of Theorem 1.4 also relies on monotonicity formulae, local energy bounds and
compactness arguments. The first key estimate is a linear law for the growth of the total
energy with respect to £ obtained through comparison maps. Refining it into a sublinear
estimate slightly in the interior (see Lemma 6.6) leads to the constancy of the limiting map
and to a uniform bound for the distance of the biaxial sets from the lateral boundary.

In our last main result, we discuss how the nature of minimizers of £, over the symmet-
ric class changes under deformations of the domain, in analogy with and complementing
Theorem 1.1 when varying the boundary data. Theorem 1.5 below refines the conclusions in
Theorems 1.3 and 1.4, and it shows how the transition from the “cigar shape” to the “pancake
shape” naturally leads to coexistence of torus and split minimizers under homeotropic bound-
ary data for domains of suitable limiting size. More precisely, starting from a cigar shape
domain provided by Theorem 1.3 where any minimizer is of split type, and then enlarging it
sufficiently we arrive at a pancake shape where any minimizer is of torus type by Theorem
1.4. Then Theorem 1.5 shows that split and torus minimizers must coexist in some domains
of intermediate size.The proof is similar in spirit to the one for Theorem 1.1 and it is still
based on persistence of smoothness and persistence of singularities.

Theorem 1.5 Let) > Oandh, £y, p > 0 be fixed numbers suchthat2p < £y/6and €y < 3 h.
For £ > £, set Qp = €h and let Q(e) be the homeotropic boundary data on 0$2. Assume
that every minimizer ofé‘;\ over AY (,30> (R2¢,) is of split type (i.e., it has a non empty singular

set). Then there exist numbers €y > El > Lo such that
(i) for every Lo < £ < L1, every minimizer of &, over Ang(r?) () is of split type (i.e.,
b

singular);
(ii) for every £ > >, every minimizer of &, over .Ang:?) () is of torus type (i.e., smooth);
b

(iii) for £ € {£1, €3}, &, admits both a split and a torus minimizer over Ang:?) (R9).
b

In the previous statement, we emphasize that the existence of £y is not conditional thanks
to Theorem 1.3 and a simple rescaling of variables. Indeed, fixing a height 7 > 0, setting
p = £p with p > 0 small enough, and rescaling variables with respect to the width £ > 0,

one obtains &) (-, Qﬁl p) =LEp; (- Ql ,) Then, applying (i) in Theorem 1.3 to &2, (-, Qh/z)

as £ — 0 shows that for £ > 0 sufficiently small, any minimizer of &, over AQ([) ()

must be singular. Concerning the values ¢; and ¢,, we actually expect that £1 = Ez, ie.,
only one critical size of the domain provides the coexistence property, but it seems to be
a quite difficult problem. Existence of a singular minimizer in the symmetric class at the
intermediate sizes £ = £ and £ = £, indicates once again that a symmetry breaking occurs
for global minimizers of £, over the global class .A 0 (£2¢). We shall prove in Corollary 6.12

that symmetry breaking still occurs in a nelghborhood of ¢ = ¢y and £ = ¢5,evenforf > £,
when all minimizers in the symmetric class are smooth. This fact enlightens the difficulty of
proving or disproving axial symmetry of minimizers over the full class. For instance, it would
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be already very interesting to determine whether or not minimizers of £, over .A 0® (S2¢) are
b
actually S!-equivariant for £ >> ¢, large enough.

To conclude, we would like to mention that all the results presented here should have an
analogue when the Lyuksyutov constraint is replaced by the Lyuksyutov (asymptotic) regime
as in [11, Section 4], and isotropic points playing the role of singular points. This will be the
object of future investigations.

2 Axisymmetric domains, symmetric criticality, and Euler-Lagrange
equations

2.1 Axially symmetric domains

In this preliminary subsection, we define the relevant class of cylindrical domains of interest
in the present paper. For geometric and topological properties of arbitrary axisymmetric
domains € R3, we refer to [12, Section 2].

First, we recall that the unit circle S' is identified with the subgroup of SO(3) made of all
rotations around the vertical x3-axis (see (2.1)), so that a matrix R € .#3x3(R) represents a
rotation of angle 6 around the vertical axis iff it writes

RO - cosf —sinf
R = (0 1) with R := <sin9 cosd ) . 2.1)
Axisymmetry is defined accordingly.

Definition 2.1 A set & C R3 is said to be axisymmetric (or S'-invariant, or rotationally
symmetric) if it is invariant under the action of Sl ie, R-Q = Q for every R € st
Equivalently, €2 is axisymmetric if
Q= |J R-Dg where Dg:=Qn{x;=0).
ReS!

For such domains, it is also useful to consider the (relatively) open subsets
D := Do N {x; > 0} and Dy := Dg N {x; < 0} (2.2)
of the vertical plane {x, = 0}, so that R, Dg = Dg. Indeed, if I = Q N {x3-axis} then the
following obvious identities hold:

Q\7=s'".-pf, aQuri=s'.ap;, Q=s'.-Df, 2.3)

with 8D5 - Fg C {x» = 0}. Note that if @ C R3 is a bounded and smooth open set then
Dgq (or Dg) is a bounded and smooth (resp. piecewise smooth and Lipschitz) relatively open
subset of the plane {x, = 0}.

Remark 2.2 (homeotropic boundary data) We observe that if € is axisymmetric and C3-
smooth (resp. C*%-smooth with k > 3), then the same property holds for the function given
by the signed distance to the boundary. Hence its gradient is an S'-equivariant map, and in
particular the outer normal field 7 (x) along 92 is C2-smooth (resp. C¥~1*-smooth) and
equivariant. As a consequence, the corresponding homeotropic boundary data given by

Op(x) := (7(x) ® 7 (x) — %Id) (2.4)
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is C2-smooth (resp. C¥~1%-smooth) and equivariant.

We shall be mainly concerned with axisymmetric domains & € R? which are home-
omorphic to a cylinder. To define properly those domains, let us first set some useful
notations.

Notation (rectangles & cylinders). Let /2, £ € (0, oo] and y € R3.

(i) Therectangle 9‘{2’ centered at the origin and the rectangle 9‘{2’ (y)centeredaty € {x; =
0} are the sets

R = (=€, ) x {0} x (—h,h) and RI(y):=y+ R (2.5)

(ii) The cylinder QZ centered at the origin and the cylinder @2’ (y) centered at y € R3 are
the sets

¢ = {xf +x3 < ) x {lxs| <h}, €y =y +. (2.6)

We shall refer to 4 as the height and ¢ as the thickness (or radius) of a cylinder.

In order to apply our boundary regularity theory in [12] for energy minimizers under S'-
symmetry constraint, we need to consider some regularized version of the cylinders in (2.6).
To define those, we first recall that for p € (1, 00), a p-disc centered at y = (y1, 0, y3) and
radius p > 0 included in the vertical plane {x; = 0} is a set of the form

1
DY (y) :={x = (x1,0,x3) € R (Ixy — y11” + 3 — y317) /7 < o).

We shall use p-discs with p = 4 to obtain inner C>-regularizations of rectangles and cylin-
ders. The scale of regularization p > 0 will usually be a fixed number to be explicitly specified
in terms of / and £ in the calculations.

Definition 2.3 (smoothed rectangles & cylinders) Let 2, £ > 0 and 0 < 2p < min{#k, £}.

(i) For vertical rectangles 9‘{2’ (resp. SRZ’ (y)) as in (2.5), the corresponding smoothed p-
rectangle SRZP (resp. %Zp(y)) is the union of all 4-discs Df,4) (), z = (z1,23) €
{xo = 0}, contained in 9‘{? (resp. 9‘{? ).

(ii) For vertical cylinders QQ‘ and Q? (y) asin (2.6), the corresponding smoothed p-cylinder
Q:Zp and Qiif’p(y), y € R3, are defined as

¢ = U R-R, . € (=y+0] .
ReS!

The radius p is called smoothing scale of 9{? and @Q‘. When it is not relevant, we shall simply
speak of smoothed rectangles and smoothed cylinders.

In view of the previous definition, Q:Z , is axially symmetric and the same holds for Q:Z Pye))
if and only if y belongs to the vertical axis, i.e., y = (0, 0, y3), y3 € R. Moreover, sz(y) n
{x, =0} = m@,p()’) whenever y € {x, = 0}.

Remark 2.4 The boundary of a smooth rectangle is of class C*! by our choice of Dé” ) (y)
with p = 4 (more generally, it is of class CP~!-! for each integer p > 2). The radius p > 0 of
the approximating discs gives the size of the region near the angles on which smoothing takes
place. In addition, it is straightforward to check that 9‘{2', o T ERZ’ and QZZ o 0 Qﬁ? (and similarly
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for their translated counterparts) in the Hausdorff distance as p | 0 as a consequence of the
elementary inclusions (recall that 0 < 2p < min{h, £})

W_,UR, PSR Cml, el uePcal cat, @7

and the obvious analogues for their translated counterparts.

2.2 Decomposition of Sy into invariant subspaces
In order to give an efficient description of S!-equivariant configurations, we will use the
following decomposition results from [12, Section 2] for the space Sy of admissible tensors.

Lemma 2.5 ([12, Lemmas 2.1 & 2.2, and Remark 2.3]) There is a distinguished orthonormal
basis {eo, e}l), eél), egz), e;z)} of So given by

L (-1 00 | (001 . (000

epi=—=| 0 —10],e”:=—000],e’:=—|001],
V6o o2 v2\100 v2\o10

@ = L (1)—018 ® = L (1)(1)8 (2.8)

1 = > & = ’ :
v2\0 0 0 v2\000

such that the subspaces
Lo :=Rey, L;:= Reil) [&>) Reél), Ly = Reiz) [&>) Reéz),
are invariant under the induced action of S' on Sy, namely, Sy > A — RAR' € Sy, and
So=LodL1®dL,~RpCeC. (2.9)

Moreover, the S'-action on Sy corresponds to an S'-action on each Ly by rotations of degree
k, in the sense that the induced S'-action on R ® C & C is given by

Ry - (1,81, 8) = (t,€¢1, %) YRy € S\ (2.10)

As a straightforward consequence of the decomposition (2.9) in the orthonormal basis
(2.8), we derive the following explicit formulas for a tensor Q and its determinant.

Lemma 2.6 Elements Q € Sy are in one-to-one (linear) correspondence with elements u =
(ug, u1,uz) € Rd C @ C. This correspondence, denoted as Q >~ u, is given by
—% +Re(uz)  Im(uz)  Re(up)
1 ug
0= 7 Im(uz) —5 — Re(u) Im(uy) | (2.11)
2\ Rew m@) 2

In addition, it is isometric, i.e., |Q|* = Tr(Q?) = |u|* = u(z) + |ut)? + |u2)?, and

dero= |20 (1 Ve e 4 rewdm 2.12)
(& = — | —=\| = —|U1|” — U2 euiur . .
22| V3\3 2 !

The previous lemmas yield in the obvious way a (linear, isometric) correspondence
between Q-tensor fields on 2 and maps from 2 into R @ C @ C. The following corol-
lary is a direct consequence of (2.8), (2.9), and (2.11). The proof is elementary and left to
the reader.
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Corollary 2.7 Let 2 be an open subset of RY. Elements Q € W12(; So) are in one-to-
one (linear) correspondence with elements u = (ug, u1, uz) € W-2(Q; R @ C @ C). This
correspondence, still denoted as Q =~ u, is given by relation (2.11) holding a.e. in .
In addition, if Q >~ u, then 101? = |u|? and IVQI2 = |Vul? ae in Q. In particular,
0 € Wh2(Q; S*) ifand only if u € W12(Q; S).

2.3 S'-equivariant Q-tensor fields

We now specialize our previous discussion to S!-equivariant Q-tensor fields on rotationally
invariant bounded open sets. It is natural to describe such sets and Q-tensor fields in terms
of cylindrical coordinates (r, x3, ¢) (which of course reduce to polar coordinates (r, ¢)
in the case of horizontal discs). This description yields the following refinement of the
decomposition in Corollary 2.7.

Lemma2.8 LetQ C R3 be a bounded and axisymmetric open set and Dg its vertical section
givenby (2.2). If Q € Weym(2; So) and Q ~ u = (ug, uy, u2) € W'2(Q; R&CC) is the
corresponding map in the sense of Corollary 2.7, then u is S'-equivariant with respect to the
action (2.10) on R@ Cd C. As a consequence, for each k € {0, 1, 2}, uy can be decomposed
as

up(x) = fi(r, x3)e'*?,

for functions fi € WI’Z(D;;, rdrdxs) which are C-valued for k = 1,2, and R-valued for
k = 0. Thus,

|A1> +4151° .
IVOP = VAP + VAR +IVAP + === aeing, (2.13)

where |ka|2 = |0, fk|2 + |8x3 fkyz. In particular, |VQ|2 does not depend on ¢, and

2 4 2
£0(Q) = n/ (IVfo|2 FIVAR + IV + L ERE
D r

Q

) rdrdx; < o0.

(2.14)
Proof In view of (2.10), the S! -equivariance of Q translates into the identities
uo(Rex) = up(x), u1(Rax) = € ui(x), uz(Rax) = e*us(x),
which hold for every R, € S! and a.e. x € Q. In terms of cylindrical coordinates, those
identities imply
wo(x) = fo(r,x3), w1(x) = fi(r, x3)e'?, ua(x) = falr,x3)e*?,  (2.15)
a.e.in Q. Hence fi € W'2(Dg, rdrdxs) since uy € W2(Q) for each k € {0, 1, 2}.
Moreover, Corollary 2.7 yields
K1 fel?
2

a.e.in Q,

2 2
IVOP =) IVu> =Y IVAI +
k=0 k=0

which proves (2.13). Finally, since the right hand side above only depends on (7, x3), applying
Fubini’s theorem leads to

k2 2
[ v ax=2x [ ve+ S0
Q Dg r

rdrdx; < +o0.
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Then (2.14) follows summing this equality over k = 0, 1, 2. O

Remark 2.9 1t is straightforward to check that the previous lemma also holds in two dimen-
sions, i.e., if Q =D, C R2 is a disc of radius p > 0 centered at the origin. In this case, if

0 € Weym(D,; So) and Q = u = (u, u1, u2), then
ur(x) = fi(r)e*? (2.16)

where (r, ¢) are the polar coordinates, and each f; belongs to WL2((0, p), rdr). In addition,
(2.13) and (2.14) still holds under the forms

S+41hP .
|VQ|2:|W|2:yf(;|2+\f{\2+|f2’]2+w ae.inD,, (2.17)

and
1 P 2 2 2 AP+
7/ |VQ|2dx:n/ P+ AP+ P+ DO g o
2 ID)/) 0 r
(2.18)
respectively.
The next result describes a fine property of the space Wsly’rzn Dy; S*) in the 2D-cEe D, C
R2. Symmetry and norm constraints yield the inclusion Wsly}%l (Dy; S4) cC O(]D)p; 84), a
property which will be of crucial importance for the 2D-minimization problems discussed

in Sect.4. Up to a rescaling, we may assume without loss of generality in the following
statement that p = 1.

Lemma2.10 Let D C R? be the unit disc. If Q € Weym (D; S*), then
() 0 e COD; S*) and either Q(0) = ey or Q(0) = —
Moreover, for {Q,} C Wsym(ID) S* and 0, € wh2(D; Sp), the following statements hold.

(i) If Qn— Q. weakly in WH2(D), then Qx € Waym(D;S*) and Q, — Qx in
loc(]D)\{O}) In particular, Q«|sp — QOnlap uniformly on 9D.
(iii) If Qn — Qs strongly in WH2(D) then Qi € Waym(D; S*), 04(0) = 0,(0) for n
large enough, and Q, — Qs uniformly on D.

Claims (i), (ii), and (iii) still hold replacing Q, Qn, and Q. with the corresponding maps
with values into “the unit sphere” of R ® C & C.

Proof (i) According to Corollary 2.7, we write Q >~ u = (ug, uy, uz) with uy € wi2(D),
k =0, 1, 2. By Remark 2.9 above, each function f; in (2. 16) belongs to WL2((0, 1), rdr).

Then the 1D-Sobolev embedding implies that f; € Clocz((O 1]), and in turn Q €

Cloc2 (D\{0}) < C%D\{0}) by S!-equivariance. Then it only remains to prove continuity
at the origin. To this purpose, we fix 0 < o’ < p < 1. Combining Young’s inequality with
(2.18) and Remark 2.9, we compute
P
/ ol dr
P

/ (|f1| + 1 )rdr—f—/ <|f2} +'f2') dr
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o 2+4 2
<\/\/ (‘f6‘2+’ff’2+’f2/‘2+ |f1| > |f2| )rdr
o

r

1
<—/ VO dx. (2.19)
2w D,

Since Q belongs to Wl’z(}D)), we have po |VQ|2dx — 0 as p — 0. Hence both ¢; :=
lim,—0 | f1(r)| and £ := lim,_,¢ | f>(r)| exist. On the other hand, it follows from (2.18) that
£y = £ = 0. Thus, both f; and f> extend by continuity to elements of C°([0, 1]; C) with
f1(0) = f2(0) = 0. In turn, (2.16) yields u; € CO(D; C) with ux(0) = 0 fork = 1, 2.
Finally, combining Corollary 2.7 with (2.16) leads to | Q (re'®)|> = | fo(r)|* + | f1(r)|* +

|f2(r)|2 = 1. Since f1(0) = f>2(0) = 0, we have | fo(r)] — 1 as r — 0. Moreover,
either fo(r) — 1 or fo(r) —> —1 as r — 0. Indeed, if the limit does not exist, then
liminf, ¢ fo(r) = —1 < 1 = limsup,_, fo(r). By continuity, it would imply the existence
of r, | 0 such that fo(r,) = 0, and leading to the identity 1 = |fo(r,)|> + | f1(ra)|* +
| f(r)|*> — 0asn — oo, a contradiction. Thus, fy extends by continuity to a function in
([0, 11; R) with fo(0) = =1, and in turn u € CO(D; S*) with u(0) = (£1,0,0). As a
consequence, Q 2~ u is continuous on D, and Q(0) = ey which proves (i).

(i7) In view of (i) all the maps involved are continuous. Moreover St. -equivariance allows

us to use the contmuous embedding wb2((0, 1), rdr) — Cloc ((0, 1]) and the compact

embedding CloC (0, 1]) — CIOC((O, 1]) to deduce that Q, — Q. locally uniformly on
D\{0}. As the convergence is also pointwise on D\ {0}, both equivariance and norm constraints

persist, and we have Q. € WSym (D; $* N (D). Moreover O, lap — Qxlap uniformly on
oD.

(iii) Assume now Q, — Q@ strongly in wlZ(D). By (ii), it only remains to prove
uniform convergence in a (small) disc centered at the origin. To achieve this, it suffices to
show that 0, (0) = Q.(0) for n large enough and that the sequence {Q,} is equicontinuous
at the origin. To check these properties, we first notice that (2.19) holds for each Q. By (i),
we can choose p’ = 0 and any fixed p € (0, 1) to obtain from (2.19),

10wl +| gl <5 [ Iverar. (2.20)

Letting n — oo above, the same inequality holds for the components fk*, k=1,2,o0f Q,.

By the Vitali-Hahn—Saks theorem (see e.g. [5, Theorem 1.30]), the strong wh2.
convergence of the sequence {Q,} implies that {|VQ, 12} is equiintegrable. Combining this
fact with (2.20), it follows that {fl(”) } and {f2(")} are equicontinuous at the origin. Moreover,
there exists p > 0 such that

3
/ |VQn|2dx+/ IVO«|*dx < 771 for n large enough.
Dz

D
M2, | p(n))2 M 1
Hence ’ f ‘ +’ 5 ‘ 4 in [0, p] for n large enough, which in turn implies that ‘ Jo ’ 5

in [0, p] for n large enough. By continuity, it follows that each fO") has constant sign in [0, p]

for n large enough. The same property holds for f, and the sign of fo(") must be the same
of f for n large enough because of the pointwise convergence in Dz \ {0}. This proves that
0,(0) = 04(0) for n large enough.
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Finally, combining the pointwise inequalities on fo(”) , the norm constraint, and (2.20), we
have for every 0 < p < p,

ROl

130+ £ )

) - 100 = ‘ <o + sl < %/D Va1 dx

Hence the sequence { fo(”)} is also equicontinuous at the origin by the Vitali-Hahn—Saks
theorem. Going back to (2.16), we deduce that the maps {u M) are equicontinuous at the origin,
and thus the same holds for {Q,} which completes the proof of the uniform convergence.
The final claim concerning the corresponding maps into R @ C & C follows taking scalar
products with the orthonormal basis in (2.8). ]

With Lemma 2.10 in hands, we can easily prove that W!2-tensor fields on a 3D-
axisymmetric domain €2 have a well-defined trace on the vertical axis.

Corollary 2.11 Let Q C R? be a bounded and axisymmetric open set with Lipschitz bound-
ary, and set 1 := N {x3-axis}. There is a (strongly) continuous trace operator Tr :
Weym (2 S*) — L1(I; {eo)) satisfying Tr Q = Q|, whenever Q € Weym(2; SHNCO(Q).

Proof We first notice that for £ > 0 small enough and # > 0 large enough, the set 2N Qi?
is (equivariantly) biLipschitz homeomorphic to a finite union of disjoint S!-invariant closed
cylinders, the homeomorphism being the identity on the vertical axis. Hence, up to a change of
variables, it is enough to construct the trace operator when the domain is an arbitrary cylinder
to have a well defined induced operator Tr : Wsly}%(Q nekl. sty » L1 (I; {xep}). In turn,
the conclusion follows by composition with the continuous restriction operator W2 () —
wl2@neh.
Assuming now that Q = 62’ =Dy x (=h, h) =Dy x I, then we have
Wem (@1 8% € L2(1: Wegn Dz §Y) € L1 (13 Wy (D SY))

with continuous inclusions. In view of Lemma 2.10 the mapping Wsly’,%(ID)g; SHIERE
Q(0) € {£ep} is well defined and (strongly) continuous. Hence, by composition of this
map with the inclusion maps above, we have a well defined and (strongly) continuous map
Tr: Wsly’rzn (Qh; S* — L1(I; {£ep}) with all the desired properties. m]

2.4 Existence of minimizers and Euler-Lagrange equations

We recall from [12] the following results about “symmetric criticality” and existence of
minimizers over the class Asg;n(Q). Even if the results were stated in case of 3D domain,
their proofs hold with obvious modifications in the planar case, i.e., when 2 is disc a centered

at the origin.

Proposition 2.12 ([12, Proposition 6.1 and 6.2]) Let Q2 C R3 be a bounded and axisymmetric
open set.

1) If 0, € Wsly’gl(Q; SYisa critical point of €, over Wsly’rzn(Q; S%), then Q;, is a critical
point of &, among all maps W1-%(; S*).

(ii) If 92 is Lipschitz regular and Qy € Lip(3€2; SY) is St-equivariant, then ASler’n (Q) is
not empty and there exists at least one minimizer of £, over ASQy:)n(Q).
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In other words, critical points of £, among equivariant compactly supported perturbations
preserving the S*-constraint are critical points with respect to every compactly supported
perturbation still preserving the S*-constraint (i.e., even with respect to those which are not
equivariant). In other words, they are weak solutions to (1.6).

Remark 2.13 For amap Q € Wsly}%l(Q; S, the energy functional (1.3) can be rewritten in
terms the correspondence Q >~ u = (fp, fle’¢, f2€’2¢’) in Lemma 2.8. By (2.12), we have

- ~ 3 33 —
B(f) = B(Q) =36det 0 = fy (foz +5 1A -3 |f2|2> - TfRe(fffz),
(2.21)
where f := (fo, f1, f2). Combining identity (1.4) with (2.14) yields
B 2, AP +41512 1-B(f)
£1(Q) = /pg (Ivf AL 20 ) rdrdzs . (2.22)

If Q is a critical point of £, among equivariant compactly supported perturbations (preserv-
ing the S*-constraint), then Q weakly solves (1.6) from the proposition above. To rephrase
the equations in terms of f, we may project (1.6) onto the orthonormal frame (2.8) or, equiv-
alently, take variations in the energy functional (2.22). The criticality condition (1.6) then
translates into the following nonlinear system for f = (fo, f1, f2) € W]'2(D$; S*, rdrdxs),
namely,

37 f0+r3 f0+8 LJo=— IVOI* fo + A1 = f3 —*|f1|2+ﬂ(f)fo>

il

BRI A 0 fi 0 fi =~ IVOP i = it = (<V3RT — S+ BUOA)

viS

A 3 ~
7 <—{fﬁ +2fof + ﬂ(f)fz) :
(2.23)

1 4
37 f2+ra,fz+a f= |VQ|2fz—r—2f2+

with E(f) as in (2.21) and |V Q|? as in (2.13), both depending only on f = (fo, f1, f2)-

Remark 2.14 (2D-case) In Sect.4 (mostly), we shall consider the two dimensional case
Q =D, C R2. To differentiate the 2D from the 3D case, we shall use the notation
E;(Q,D,) (instead of &) for the 2D-energy of a configuration Q € Wsym(Dp, SH. In
view of Remark 2.9, and as in (2.22), the energy of O >~ u = (o, fie'?, fze’M’) can be
written in terms of f, leading to

|fil>+4]f) 1—B(f)
EA(Q,Dp)=7t/ (|f} ! 7 2 4o e )rdr.

Then the criticality condition (in terms of f) for the functional E; is almost identical to
(2.23). It is obtained from it simply neglecting in each equation the terms 8)%3 and 0y, in the
left hand side and the right hand side respectively.
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3 Coexistence of smooth and singular minimizers
3.1 Regularity theory

The purpose of this subsection is to gather (and slightly refine) the main regularity results
and tools obtained in [11, 12] to have them at disposal in the most convenient form when they
will be repeatedly used in the next subsections. To this end, let us recall the usual definition
of singular set for a map Q defined on an open set €2. It is then defined as

sing(Q) = '\ {x € Q : Q is continuous in a neighborhood ofx}.

The following interior regularity theorem, even if not explicitly stated in [12], is a direct
consequence of the discussion in [12, Section 6]. In particular, formula (3.2) below is a
combination of the strong W !2-convergence of the rescaled maps Qi{’p together with the
explicit form (3.1) of all possible blow-up limits at a singular point. In our statement below,
we require Lipschitz regularity of the boundary only to ensure that the W!-2-trace operator
on 02 is well defined.

Theorem 3.1 ([12], interior regularity) Let Q@ C R? be a bounded and axisymmetric open set
with Lipschitz boundary, and Q). € Wsly’é(Q; SH minimizing &, among all Q € Wsly}%l(Q; SH
satisfying Q = Q; on 32. Then Q,; € C®(Q\sing(Q,)) and sing(Q,) C {x3-axis} N Q is
locally finite in Q. In addition, for every ¥ € sing(Q5), there exist a rotation Ry € S' and
0. € {£0} such that

6] Qi’p — Q. strongly in WIL’C2(R3) as p — 0;

(ii) ||Q;f’p = OQull 2y = 0(p") as p — 0 for some v > 0;

where Qi’p(x) = Q0,.(x + px) and

11 —x3 0 V3x1
09x):=Ry-—— | 0 —x3 V/3x2]. (3.1)

V6 Ix| V3x1 V/3x2 2x3
In particular,

1 1
lim — ~|VQ;*dx = lim —&,(Qy, B,(X)) =4 for every ¥ € sing(Q;).
p—0 p B, (%) 2 p—0p

(3.2)

Regularity at the boundary holds whenever the boundary of 2 and the boundary data are
smooth enough. In this case, the singular set is made of finitely many points inside the domain
Q.

Theorem 3.2 ([12], regularity up to the boundary) Let @ € R3 be a bounded and axisymmet-
ric open set with boundary of class C3, and let Qy, € C"1(3Q2; S*) be an S -equivariant map.
If Q. is a minimizer of €, over .ASQy:] (), then Q) € C®(Q\sing(Q3)) N cle (ﬁ\sing(Q)\))
for every a € (0, 1) and sing(Q,) is a finite subset of Q N {x3-axis}. Moreover,

(i) if Qb € C*¥(0Q), then Q). € C**(Q\sing(Q1));
(ii) if0Qis of class C** and Qy € C**(9Q) withk > 3, then Q). € C**(Q\sing(Q1));
(iii) if 9K2 is analytic and Qv € C®(0R2), then Q) € C®(R2\sing(Qy)).
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Those two theorems rest on analytical tools that we shall repeatedly use. The first one is
a monotonicity formula for the energy on balls, and we have to distinguish between balls
inside the domain and balls centered at the boundary. Our statement below about the interior
monotonicity formula is slightly different from the one in [12, Proposition 6.6] (in the sense
that we do not impose here a smooth boundary data), but a quick inspection of the proof
(which is based on [11, Proposition 2.4]) reveals that smoothness at the boundary is only
used to establish the boundary monotonicity formula. Concerning the boundary case, the
formula in [12, Proposition 6.6] involve constants depending only on A, the domain €2, and
the boundary data. We provide in Proposition 3.4 below a statement with a control on those
constant which is transparent from the proof of [12, Proposition 6.6].

Proposition 3.3 ([11, 12], interior monotonicity formula) Let Q2 C R3 be a bounded and
axisymmetric open set with Lipschitz boundary, and Q;, € Wsly’r%(Q; S* minimizing &,
among all Q € Wsly’rzn(Q; B satisfying Q = Q; on 0K2. Then,

1 1
;5A(ka By(X)) — ;&(QA, B, (X))

1 2 P
=/ _ dx+2A/ (—2 W(Qx)dx> dt
B,(®)\B, (¥) 1¥ — X| o \1"JB®

foreveryx € Qand0 < o < p < dist(x, 92).

30,

Ax — x|

Proposition 3.4 ([11, 12], boundary monotonicity formula) Let A, L > 0 and Q2 C R3a
bounded and axisymmetric open set with boundary of class C3. Let Qy € C11(3€2; S*) be
an S'-equivariant map satisfying || Ovllcrag) < L. If A € [0, Al and Q;. is a minimizer of
&y over ASQy;n(Q), then

1 _ 1 _
;&(Qx, B,(x)NQ) — ;&(Qx, By (X) N Q) = —K(p —0)
1

+/ _ dx +2)\/ (—2/ W(Q,\)dx) di
(B,(0\Bs ()N X — X o \1"Jp@na

forevery x € 0Q2 and every 0 < 0 < p < ry, where the radius v, > 0 only depends on <2,
and K, > 0 is a constant depending only on A, L, and Q.

90,

dx — x|

The second main ingredient we need to emphasize is an epsilon-regularity result, con-
sequence of a more general regularity theorem in [11, Theorem 2.12 & Proposition 2.18].
Here again, we have to distinguish the interior and the boundary case, and our statements
below provide a better control on the involved constants inherited from their proofs (see [12,
Section 6] and [11, Section 2]).

Proposition 3.5 ([11, 12], interior e-regularity) Let A > 0 and Q C R3 be a bounded
and axisymmetric open set with Lipschitz boundary. Let . € [0, A] and Q) € Wsly}%l(Q; SsH
minimizing &, among all Q € ngy’,%(Q; SB) satisfying Q = Q; on dK2. There exist a universal
constant €in > 0 such that for every ball B, (xo) € Q with r small enough (depending only
on N), the condition

1 €in

f/ VO P dx < =%
r JB,(xo) 4

implies Q) € C®(B,3(xo)), and V0, Lo (B, j16(x0)) < Cpr* for each k € N and a
constant Cy. depending only on k.
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Sketch of the proof We consider the universal constant &j, > 0 provided by [11, Corollary
2.19]. By Proposition 3.3, Q) satisfies the interior monotonicity formula which allows us to
argue as in [11, proof of Lemma 2.6] and obtain

1
sup ,/ 7|VQ,\| dx < sup *EA(Q)”Bp(x))

B, (X)CBr2(x0) P J B, (%) 2 B, (X)CSBy/2(x) P
1 h
< *&\(Q)\, B (x0)) < */ VO[> dx + fin S
r r B (x0) 4 2
for » small enough (depending only on A). By Proposition 2.12, Q, is a weak solution of
(1.6) in . Hence [11, Corollary 2.19] applies, and we conclude that Q) € C®(B,/3(xo))
with the announced estimates. O

Compared to [11, 12], we provide below a localized version (in terms of the data) of
the boundary epsilon-regularity. This statement will be of first importance when varying
the domain 2. The arguments remain essentially the same so that we only sketch the main
changes. The first version we state here holds under uniform smallness of the scaled Dirichlet
integral.

Proposition 3.6 ([11, 12], boundary e-regularity 1) Let A, L > 0 and Q C R? a bounded
and axisymmetric open set with boundary of class C3. Let Qp € C11(0Q;S*) be an S!-
equivariant map. Let A € [0, A] and Q) be a minimizer of &, over Asym(Q). Let x, € 0Q2
and ry > 0 be such that || Oyl c1. L@QNB,, (x) S < L. There exist &pq > Oand k € (0,1)
depending only on 0Q N By (x,) such that for every xo € 382 N By, j4(xy) and every radius
r € (0, ry/4) small enough (depending only on Q2 N B, (xy), A, and L), the condition

1
sup */ IVOsI* dx < &ba
B, (¥)SB,(x0) P JB,(1)NQ

implies Q) € C®(Bir(x9) N2) N CL(Bi, (x0) N Q) for every a € (0, 1) with the estimate
IV Ol Lo (Be, (xo)n) < Cr—! and a constant C > 0 depending only on 02 N B, (x4) and
L. In addition, if 9Q2 N By, (x4) is of class C* (of class C3 fork = 2) and Qyp € C* “(89 N
By, (xx)) with k > 2, then Q; € chk O[(BIC}'/Z(XO) N Q) and || Ql”ck (B (0)NQ) S < Croa,r
for a constant Cyo,r > 0 depending only onr, 32 N By, (xx), and || Qbll ckegns,, (x,))-

Sketch of the proof Since 9<2 is of class C 3 we can find § > 0 such that the nearest point
projection o on 9S2 is well defined and of class C? in the 28-tubular neighborhood of
08 N By, 2(x4). Then we argue as in [11, Section 2. 2] and we consider the reflection of
Q). across 92 given by [11, (2.22)] and denoted by Q 1. Then we choose r € (0, §/2) small
enough in such a way that T (B, (y)) € 022 N By, (y) and (B (y)) C B, (y) for every
y € 02 N By, j2(x4), where 0@ := 2w — id is the geodesic reflection across 9€2.

Arguing as in the proof of [11, Lemma 2.10], there exists a constant ¥ € (0, 1) depending
only on 92 N B, (x,) such that

sup l/ VO, 2dx < sup a IV, 7 dx + Cor < Ci&pq + Cor,
By (2)S Bier (x0) @ Y By (2) By(X)SBr(xg) P JBp()NQ
for a constant C; > 0 depending only on 92 N B, (x4), and a constant C, > 0 depending
only on Q2N B, (x+) and L. Then we choose &4 and r in such a way that C1&pqg+Cor < €pd,
where epq > 0 is the constant provided by [11, Corollary 2.17] (note that e,q only depends
on 92 N By, (x4)). By Proposition 2.12, 0, is a weak solution of (1.6) in 2. By our choice
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of epq > 0, the proofs of [11, Corollary 2.17 and Corollary 2.20] apply and lead to the main
conclusions with k := k /4. Once the gradient estimate is obtained, higher order estimates
follow from standard elliptic theory (see e.g. [15]). O

Combining Proposition 3.6 with the boundary monotonicity formula in Proposition 3.4,
we recover the following (more usual) epsilon-regularity at the boundary, which holds under
smallness of the Dirichlet integral in a neighborhood of a single point.

Corollary 3.7 ([11, 12], boundary e-regularity 2) Let A, L > 0 and 2 C R3 a bounded
and axisymmetric open set with boundary of class C3. Let Qp € C1(9Q;S*) be an S'-
equivariant map such that || Qvllc11pq) < L. Let & € [0, A] and Q) a minimizer of &,
over Asz:l (Q). There exist &4 > 0 and ik’ € (0,1) depending only on Q such that for
every xo € 02 and every radius r > 0 small enough (depending only on 2, A, and L), the
condition

1

f/ V0P dx < &y
I J B, (x0)NQ

implies Q) € C®(Bg,(x0) N2)N cle (B, (x0) N Q) for every o € (0, 1) with the estimate
IV OillLe By, one) < Cr~ and a constant C > 0 depending only on 2 and L. In
addition, if 02 is of class Ckf (of class C? for k = 2) and Qp € C*¥(dQ) with k > 2,
then Q; € Ck’“(B,Er,ﬂ(xo) NQ) and || Q. ||Ck,a(BE/r/2(xU)n§) < Cy o for a constant Cy o > 0
depending only on , and || Qb || ek (5)-

Proof Using the boundary monotonicity formula in Proposition 3.4, we can argue as [11,
Proof of Lemma 2.6, Step 2] to show that

1 _ 4
sup —=&5.(05, Bp(¥) N Q) < =&,(0Qx, Br(x0) N Q) + Cyr,
B, (X)CBr/6(x0) P r

for a constant C; > 0 depending only on A, L, and €2. Hence,

swp o wopar<t[ worar+or
B, (¥)SB,s(x0) P J B,(Xx)NQ T J B, (xo)NQ
for r > 0 small and a further constant C > 0 depending only on A, L, and 2.

Next we set r, := 4, and we consider a finite covering of 92 by balls Bl(xf,f), k =
1,..., K. Wedenoted by é’gd and icy. the constants provided by Proposition 3.6 with x, = x.
Choosing é’bd = %mink é’gd, K = émink Kk, and then r > 0 small enough such that
Crr < égd (depending only on €2, A, and L), we obtain that Q, satisfies

1 _
sup f/ IVOsI*dx < &y,
B, (¥)SB,6(x0) P JB,(x)NQ

for an index k such that xo € 92N By (xi‘). Then the conclusion follows from Proposition 3.6.
O

Remark 3.8 (Locally flat geometry) In the following sections, we shall consider the situation
where, for some x, € {x3-axis} and r, > 0, Q N By, (x4) = x4 + {£x3 > 0} N By, (0) and
Ob = ep on I N By, (x4) = x4 + {x3 = 0} N By, (0). According to [11, Remark 2.5] (see
the proof of [12, Proposition 6.6]), if Q, is as in Proposition 3.6, then

1 _ 1 _
600 B0 10) = —6(01 B () ND)
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,r1
dx+2k/ (—2/ W(Qk)dx) dt
o \I“JB.@mNnNa

(3.3)

1 2

/ 00
(B,\B, ()2 1X — X

alx — x|

forevery x € 9Q2 N By, (xx) and 0 < p < 0 < 2ry — |x, — X|. Asin [11, Remark 2.7], it
implies that

1 _ 4
sup —&(Qh, B,(X) N Q) < =&,.(Qs, Br(x0) N )
B, (X)CBy/6(x0) P r

for every xo € 02 N B, (x,) and 0 < r < r,. Repeating the proof of Corollary 3.7, we can
apply Proposition 3.6 to obtain the existence of universal constants sgd > 0and k® € (0, 1),

such that for every xo € 92N B, /4(x4) and r € (0, r,/4) small enough (depending only on
A), the condition

1 2 :
IVOil“dx < €ua
T J B, (x0)NQ

implies the same conclusions as in Proposition 3.6 in Bz, (xg) N £2.

3.2 Persistence of smoothness

We now apply the regularity theory of the previous subsection to show that absence of
singularities in energy minimizing configurations (within the equivariant class) is a strongly
W1-2_open/closed property.

Lemma3.9 Let (Qx, Ly) and a sequence {(Qy, Ay)} in Wsly’% (B,: S*) x [0, 00) be such that
0, — Q. strongly in W1’2(B,.) and A, — Ay asn — 00. Assume that Q is minimizing
&, among all Q € Wsly’rzn(B,; S8 satisfying Q = Qx on 9 B,, and that Q,, is minimizing &y,
among all Q € Wsly’% (B;: S satisfying Q = Q,, on dB,.

(i) Ifsing(Q+) N B, =0, then for every 0 < p < r, there exists an integer n, such that
sing(Qpn) N B, = @ whenever n > n,,.
(ii) Ifsing(Qn) N B, = @ for every n, then sing(Q) N B, = (.

Proof We start proving claim (i). Fix a radius 0 < p < r, and assume by contradiction that
there exists a (not relabeled) subsequence such that sing(Q,) N B, # @ for every n. Then we
choose for each n a point x,, € sing(Q,) N B,. Extracting a further subsequence if necessary,
we may assume that x, — x, € Ep. On the other hand, since Q is smooth in B,, we can
find a small enough radius 0 < o < r — p such that

1 €;
f/ V0P dx < 5,
0 JB,(x) 8

where the universal constant &;, > 01is given by Proposition 3.5. From the strong convergence
of Q, toward Q,, we deduce that

1 €;
7/ V0P dx < &
0 JB,(x) 4

for n large enough. By Proposition 3.5, it implies that Q, is smooth in B,/g(x4). Since
Xp — Xy, we have x, € By/g(xy) for n large enough, contradicting the fact that Q, is
singular at x;,.
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We now prove claim (ii). To this purpose, it is enough to show that sing(Q.) N B, =¥
for every 0 < p < r. Hence we fix an arbitrary radius 0 < p < r, and we assume by
contradiction that sing(Qx) N B, # @. By Theorem 3.1, sing(Qx) N Fp C {x3-axis} is
finite, and setting I, := B, N {x3-axis}, the trace of Q. on I, (see Corollary 2.11) is a
non trivial piecewise constant function with values in {£ep} (since we are assuming that
sing(Q«) N B, # ¥). On the other hand, Q, is smooth in Ep, so that either Q,, = ey or
Q. = —eg on I,. Extracting a subsequence if necessary, we may assume for instance that
On 1, =€ for every n. By the strong W -2-convergence of Q,, and the continuity of the trace
operator established in Corollary 2.11, we infer that Qp;, — Q, in Ll(lp) asn — oo.
Hence Q.|;, = ey contradicting its non triviality. O

Corollary 3.10 Ler @ C R3 be a bounded and axisymmetric open set with boundary of
class C3. Let (Qf, +) and a sequence {(Ql()n), )} in C2,(32; S*) x [0, 00) be such that

sym

ngn) — Qpin C2(3), and A, — hy asn — oo. For eachn € N, let Q. be a minimizer

of &, over ASQY(T) (2), Q4 a minimizer of &, over AZ;(Q), and assume that Q, — Qx
b

strongly in W12(Q).

(1) If sing(Q«) = @, then there exists an integer n, such that sing(Q,) = @ whenever
n 2 Ny
(ii) Ifsing(Qy) = O for every n, then sing(Qy) = @.

Proof We start proving claim (i). To prove it, it is enough to show that there exists § > 0
independent of n such that the C!-norms of Q,, are uniformly bounded in a §-neighborhood
of 02 (recall that sing(Q,,) coincides with the discontinuity points of Q). Indeed, in this case
we have sing(Q,) € QN {dist(-, 902) > 3} for every n. Recalling that sing(Q,,) < {x3-axis}
by Theorem 3.1, we choose a finite covering of €2 N {dist(-, 3€2) > &} N {x3-axis} by open
balls Bs/2(x1), ..., Bs/2(xk). We apply Lemma 3.9 in each B;(x;) to find an integer n, such
that sing(Q,) N Bs;2(x;) = @ for each j and every n > n,. Hence sing(Q,) = @ for every
n > ny.

To show that the C!-norm of 0, remains bounded in a §-neighborhood of 92, we shall
make use of the regularity estimates from Sect. 3.1. By Theorem 3.2, Q. is of class C1¢ for
every o € (0, 1) in a neighborhood of d2. Hence, for a radius n > 0 to be chosen small
enough, we have

1 / 2 €ha
— IVO4|"dx < —= forevery y € 012,
n JB,(»)ne 2

where the constant &, > 0 (depending only on ) is provided by Corollary 3.7. Next we

set A = sup, A, < 00, and L := sup, ||Qf)”)||cl<1<m) < 00. We now choose 1 > 0 small
enough (depending only on A, L, and €2) such that the conclusion of Corollary 3.7 holds.
We also set r := k'n with constant &’ € (0, 1) still given by Corollary 3.7 (depending only
on 2), and we consider a finite covering By, (y1), ..., By, (ys) of Q2 with y; € 9. Since
0, — O, strongly in W'2(Q), we can find an integer n,, such that

f/ IVQ,|*dx < &, foreach j=1,...,J andevery n > n,.
1 JB,(yj)N%

Applying Corollary 3.7, we infer that O, € Cl*“(Br* (yj) N Q) for every @ € (0, 1) and
each j with the estimate ||V Q| o5, GHNe) < Cry ! and a constant C independent of n.
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Since the balls B, (y1), ..., B, (y;) cover 92, the Cl-norm of 0, remains bounded in a
§-neighborhood of d€2 for some § € (0, ry).

We now prove claim (ii). Assume by contradiction that sing(Q.) # 9, i.e., O, has at least
one singular point x, € €2, which must belong to the {x3-axis} by Theorem 3.1. Choose a
radius » > O such that B, (x,) C €. Since Q,, — Q, strongly in W12(£2), we can apply
Lemma 3.9 in the ball B, (x,) to infer that Q. is smooth in B, (x4), a contradiction. ]

3.3 Persistence of singularities

By analogy with the previous subsection, we now study the behavior of the singular set
along strongly W!-2-convergent sequences of minimizers, proving that singular points con-
verge to singular points. The following result is the counterpart in the present context of [3,
Theorem 1.8] (see also [18]).

Proposition 3.11 Let (Qsx, 1) and a sequence {(Qn, An)} in Wegm (By; S*) x [0, 00) be such
that O, — Q strongly in Wl’z(Br) and Ay, — Ay asn — oo. Assume that Q. is minimizing
&, among all Q € Wsly’rzn(B,; SR satisfying Q = Qx on 9B, and that Q,, is minimizing &y,
among all Q € Wsly’,%] (B,; S$Y satisfying Q = Qy on dB,. Then, for every radius p € (0, r)

such that sing(Q4) N 9B, = @ and sing(Q+) N B, = {af, ..., ag}, there exists an integer
np such that for every n > ny, sing(Q,) N 9B, = ¥ and sing(Q,) N B, = {af, ..., a%} for
some distinct points a'l, ..., a% € B, satisfying Ia;’—a;ﬂ — Q0asn — ooforj=1,..., K.

Proof By Theorem 3.1, sing(Q.) and sing(Q,) are made of locally finitely many points
in B, N {x3-axis}. If sing(Q4) N 9B, = ¥, then Q, is smooth in a neighborhood of dB,,.
Applying Lemma 3.9 at the north and south pole of d B,,, we infer that there exists an integer
7, such that Q,, is smooth in a uniform neighborhood of 9 B, for every n > n,. Then we set
%P = sing(Q4) N B, and =P = sing(Q,) N B,. We claim that »? — = in the Hausdorff
distance. To prove this claim, let us first consider a, € >?. and prove that there exists
a, € T such thata, — ax. By contradiction, assume that >? remains at a positive distance
from a,. for n large. Then we can find n > 0 such that B, (a,) N £ = ¢ for n large enough.
Applying Lemma 3.9 in By (a4), we deduce that By, (a,) N ? = @, a contradiction. The other
way around, let a, € = be a sequence converging to some point a,. Since /7 remains at
a positive distance from 0B, we have a, € B,, and let us show that a, € =P, Again by
contradiction, assume that a, ¢ =£. Then we can find > 0 such that Boy(as) N =P =9
Applying Lemma 3.9 in By, (a4), we infer that By (a,) N %} = ¢ for n large enough, which
contradicts the fact that a, — a,. Hence £ — T¥ in the Hausdorff distance.

To complete the proof of Proposition 3.11, we shall make use of the following key lemma,
giving a lower bound on the mutual distance between singularities for minimizers, in the
spirit of [3, Theorem 2.1] for minimizing harmonic maps into S

Lemma3.12 Let M, A > 0 and A € [0, A]. Assume that Q) € Weym(B1; S*) is minimiz-
ing &, (-, By) among all maps Q € Wsly‘él(Bl; S*) satisfying Q = Q. on 3By, and that
Ex(Qy, B1) < M. Then there exists a constant k = kK (M, A) > 0 depending only on M and
A such that

la —b| >« foreverya,b €sing(Q) N Bip,a#b.

Proof We argue by contradiction assuming that there exists a sequence {Q,,} in Wsly}%l (B1; $Y
and A, € [0, A] such that Q, is minimizing &, (-, B;) among all maps Q € Wsly’%(Bl; 84)
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satisfying Q = Q, on 9By, and &, (Q,, B1) < M, and such that there exists two distinct
points a,, b, € §1ng(QA)ﬂBl/2 satisfying r, := |a, —b,| = 0asn — oo. Extracting a sub-
sequence if necessary, we may assume that A,, — A, € [0, A], lim,,, o @, = lim;,, o0 b, =
c« € By /2 By the compactness theorem in [12, Theorem 5.1], we can find a (not relabeled)
subsequence such that Q,, — Q. strongly in ng’cz(Bl) for a map Qy € Wsly}%l(Bl; SH
which is minimizing &, (-, B1) among all maps Q € Wsly’rzn(Bl; SR satisfying Q = Q.
on dBp. Arguing as in the proof of Proposition 3.11, we infer that ¢, € sing(Q.). Setting
cn = (an + by)/2, we have ¢, — ¢, and we define for x € B, and n large enough,

Qn(x) = On(cy +rpx).

Since ay, by € {x3-axis}, we have ¢, € {x3-axis}, and thus Q, € Wsly‘,%,(Bz; S*. From
the minimality of Q, and a change of variables, we infer that Q,, minimizes 5r3 a, (s B2)
among all maps Q € Wsly’,%] (By; S*) such that Q = Q,, on 3 B;. Extracting a subsequence if
necessary, we may assume that p := (a, —c,)/rn = (0,0, 1/2) and ps := (b, —¢,)/rn =
(0,0, —1/2). Then, by construction, pi, p2 € sing(Q,,).

By the interior monotonicity formula in Proposition 3.3, we have for every xg € B», every
t € (0, dist(xg, dBy)] and r € (0, 1),

1 ~ 1
;gr}%xn (Qn, B, (XO)) = ;5)»,, (Qila Byt (cn + rnx())))
n

1
< By _
r—lcn + rpxo — ¢l i (Qn: Brlaytriso—e.l €n + rnxo))
1
< g)‘n(Q”’ Br+|0n+VnX0*C*I(C*)) (3.4)

r— |en +rpxo — cxl
whenever # is large enough. Since Q,, — Q strongly in W]L’Cz(Bl) and A,, — A4, we have

1

im
n—00 1 — |cy + ruXo — Cxl

1
An (Qn» Br+\cn+r,,x0—c*\(c*)) = ;Ek*(Q*, Br(c*))- (3.5)

In view of (3.4)-(3.5) with xo = 0 and ¢ = 2, we first deduce that sup,, £, 2 (On, By) < 00.
By the compactness result in [12, Theorem 5.1], we can ﬁnd a (not relabeled) subsequence
suchthat 0, — Ox strongly in Wloc (By) foramap 0. € Wgym(Bz, S*) which is minimizing
&o(-, By) among all maps Q € Wsym(Bz, S*) satisfying Q = Q, on 8 B;.

Letting n — oo in (3.4), we infer from (3.5) that for every xo € B, every t €
(0, dist(xgp, 0B2)), and r € (0, 1/2) small enough,

1 - 1
?EO(Q*’ Bt(xo)) < ;5)L*(Q*7 Br(c*))~ (3.6)
On the other hand, since ¢, € sing(Q.), Theorem 3.1 tells us that
1 1 2
lim — —|VQ.|"dx = 4.
r—0r By (cx)
Letting now r — 0 in (3.6) yields

1 _
;50(Q*, By (x0)) < 4m forevery xo € By and ¢ € (0, dist(xo, 9B2)). 3.7

On the other hand, p; and p, are singular points of 0,, for each n, and thus p1, P2 € sing(Q*)
by Lemma 3.9. As a consequence, Theorem 3.1 and the interior monotonicity formula in
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Proposition 3.3 imply that for j = 1, 2,

1 _
;50(Q*, B/(pj)) =4m Vi e (0,1). (3.8)

Setting y, := (0,0,¢ — 1/2) fort € (0, 1), since B;(p1) U Bi—;(p2) < B1(y:), we gather
(3.7) and (3.8) to derive

am > &( Qs Bi())
> &(Qus Bi(p) + E0( Qs Bii(p2) > 4t +47(1 = 1) =47 Vi € (O, ).

Therefore |V Q,|> = 0 a.e. in Bi(y)\ (Bt(pl) U Bl_,(pz)) for every t € (0, 1). Since

BN U (Bl(yt) \ (Bi(p1) U Bl—r(Pz))) = Bi\ [p1, p21,

O<t<l

we conclude that [V Q4|? = 0 a.e. in B;. Thus Q, is constant in B, which contradicts the
fact that Q. is singular at p1, p2 € Bj. O

Proof of Proposition 3.11 Completed. To complete the proof, it remains to show that there
exists an integer n, > n, such that Card 2P =Card = forn > n p- Once again we argue
by contradiction assuming that for some (not relabeled) subsequence, we have Card X/ #
Card . In view of the previous discussion, Card ¥ > Card = for n large enough.
As a consequence, there exist at least two points a,, b, € >? such that a, # b, and
lim, a, = lim, b,, = ¢, for a point c,, € =2 In particular, |a, — b,| — 0. Then we choose
a radius n > O such that B,(cy) € B,. For n large enough, we have a,, b, € By />(cs).
Rescaling variables, we can apply Lemma 3.12 in By, (c) to deduce that |a, — by,| > «n for
some constant ¥ > 0 depending only on sup,, %S;W (Q,,, B (c*)) < oo and sup, n*A, < oo,
which contradicts the fact that |a, — b,,| — 0. O
The following result is the global counterpart of Proposition 3.11.

Corollary 3.13 Ler 2 C R3 be a bounded and axisymmetric open set with boundary of
class C3. Let (Or» As) and a sequence {(Qf)n), M)} in C2 (992 S*) x [0, 00) be such that

sym
Qt()") — Qf in C2(0Q), and A, — Ay asn — o0o. For eachn € N, let Q,, be a minimizer

of &, over AZ?:)(Q), Qs a minimizer of &, in AZ?(Q), and assume that Q, — Qi
b b

strongly in WH2(). If sing(Q4) = {af, ..., ax}, then there exists an integer n, such that
for every n > ny, sing(Qy) = {af, ..., ak} for some distinct points ai , ..., ay satisfying
|a;? —a;’.‘| — Qasn — oo.

Proof By Theorem 3.2, Q. is smooth in Q\sing(Q,) and sing(Q,) is a finite subset of
Q N {x3-axis}, i.e., sing(Q4) = {af,...,ax} S QN {x3-axis}. Let us fix § > 0 such
that B3s(af) N B35(a;f) = @ifi # j, and dist(a;f, 02) > 36. Weset Ks := {x € Q:
dist(x, 9R2) > §}\U; Bs (a;‘.‘), and we claim that Q,, — Q. in C2(K5). Indeed, by smoothness
of Q. away from sing(Q.), we can find a radius r € (0, §/2) such that

1 £€j
7/ |VQ*|2dx <= for every xo € K,
" JB,(x0) 8

where the universal constant ej, > 0 is provided by Proposition 3.5. Choosing r
smaller if necessary (depending only on A := sup,A, < 00), we may assume that
the conclusion of Proposition 3.5 holds for every A,. Then we consider a finite covering
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Br/16(y1), - ... Byj16(ys) of Ks. Since Q,, — QO strongly in W12(R), we have for n large
enough,

1 h
f/ |VQn|2dx<ﬁ forevery j=1,...,J.
rJB . 4

r(}/)

By Proposition 3.5, for n large enough, Q, is smooth in each B,16(y;) and
[|On ”C3(Br/l6()’/')) < C, for some constant C, > 0. Therefore Q,, remains bounded in C3(K5)
for n large enough. From the W!-2-convergence of Q, towards Q. and the Arzela-Ascoli
Theorem, we deduce that Q,, — QO in C2(Kj).

Now we set 5 := Q\ U;Bas (a;f) which is a bounded and axisymmetric open set with
boundary of class C3. By our discussion above and the assumption on Q,(j"), the restriction
of Q, to dQs converges in the C>-topology to the restriction of Q. to 32s. Applying
Corollary 3.10 in 25, we infer that sing(Q,) N Qs = @ for n large enough. Then we can
apply Proposition 3.11 in each ball Bz (a;f) with p = 24. It shows that for n large enough,

sing(Q,) N Bas (@}) = {a'}} for some point a} — a} asn — oo. |

3.4 Coexistence results in a ball

In this subsection, we take advantage of the results above to study the space
(boundary condition) x (A-parameter). We are interested in the nature of the sets of data
leading to smooth or/and singular solutions. To motivate this question, we recall the results
in [12] showing the existence for A > 0 arbitrary of boundary conditions Qsm""th and ngg

in C_(3By; S*) such that any minimizer of & over A”, Q\momh (B1), resp. over A5 (By), is

sym %mg

smooth, resp. singular. To apply the results of the previous subsection, the topology for the
space of boundary conditions we shall working with is the C>*-topology for some & € (0, 1).
Given « € (0, 1), we consider the sets

Bpmooth . {(Qb, A e Csym(aBl $* x [0, 00) : sing(Q;) = ¢ for every Q; € argmin 5,\},
AQy (BD)

BDS'"g {(Qb’ 2 € Csym(BBl st ) x [0, 00) : sing(Q;) # ¥ for every Q) € argmin SA}
syn

Qb (B1)
and

sym

BDcoexm <C2 o (3By; S4) x [0, OO)) \ (BD;mooth U BD;ing)-

As already mentioned, BDS™° £ ¢ and B DSlng # () by [12, Theorem 1.2 & Theorem
1.3], and more precisely,

BDI™OM 0 (C3% (3By; S*) x (1)) # B and BDS™ N (CH&@By; S*) x (1)) # @ for every & > 0.

The main result of this subsection is the following theorem whose proof is postponed to
the end of the subsection.

Theorem3.14 Let « € (0,1). The (disjoint) sets BDngOth and BDSing are open in
Sym(aBl S* x [0, 00), and BDCOexlSt coincides with their common boundary, i.e.,

aBDsmooth BDcoemst 3BD;mg.
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As a direct consequence of Theorem 3.14, we obtain the following corollary proving
immediately claims (i), (ii), and (iii) of Theorem 1.1. With the aid of Remark 3.16 below,
also the last claim of Theorem 1.1, and hence its full proof, follows at once from the corollary.

Corollary 3.15 Leta € (0,1), A > 0, and T : [0, 1] — Cf}}%(aBl; S% a continuous curve

such that (T(0), A) € BD3"® and (T(1), 1) € BDS™N There exist 0 < 1) < t, < 1 such
that

() (C(t), ») € BDE™ forevery0 <t < 1y;
(ii) (D(), ) € BDF™O™ foreveryn, <t < 1;
(i) (C(t1), ), (F'(12), A) € BDZP.

Proof Consider the continuops curveT : [0,1] — ny’&(aBl; S* x [0, co) given by F(t) :
(T'(¢), »). Then T'(0) € BD3" and T'(1) € BDS™°™ Consider

1 :=sup{r € [0,1] :T(s) € BDS™ for every 0 < s < t}.

By Theorem 3.14 and the continuity of T, we have 1; € (0,1) and T'(1)) € 9BDy"™ =
B DSt 50 that (i) holds.
Then we consider

t) :=inf {t €l0,1]1:T(s) € BDZ'(mooth forevery r <s < 1}.

Clearly #; < 2, and as above, Theorem 3.14 and the continuity of T imply 1, < 1 and
['(12) € dBDI™OM = B DCO™ist proving (ii), and completing the proof. O

Remark 3.16 As already alluded in the Introduction, there exists at least one curve I" with the
properties required by Corollary 3.15. This is obtained by concatenating the curves built in
(the proofs of) [12, Theorem 1.2 and Theorem 1.3]. Thus, the corollary shows in particular
that B D is not empty, clearly implying the last claim of Theorem 1.1, and concluding
its proof.

The proof of Theorem 3.14 rests on our regularity results together with the unique
continuation property for real analytic maps. This tool leads to the following uniqueness
statement.

Lemma3.17 Let Q; € Wym(Bi:S*) be a minimizer of (-, B) among all Q €
Wsly}%l(Bl;S“) satisfying Q = Q) on 0B1. For every radius p € (0,1) such that
sing(Q;) N 0B, = W, the restriction of Qy to B, is the unique minimizer of &, over the

class ASQyin(Bp).

Proof By Theorem 3.1 and since sing(Q3)Nd B, = ¥, Q) is (real) analytic in a neighborhood
of 9B,. We fix a further radius p’ € (p, 1) such that Q; is analytic in the open annulus
A := B,\B,. Now, let O, be a minimizer of £, over the class .ASQyin(Bp). We consider the
comparison map

O,(x) ifx e B,

Qr0) = {Q,\(x) it x € By \ By,

which belongs to Wsly’r%l(Bl; 84) and agrees with 0, on dB;. Hence,

Ex(Qp, Bp) + E.(Qx, B1\ Bp) < E(Qi, Bp) +Ex(Qi, B1\ By)
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= E(05, B1) < E.(Qx, B1) = E.(Qp, By) + E.(Qx, B\ By).

Thus 6;\(Q;L, By) = SA(Q;L, B1) which in turn implies that Q;\ minimizes & (-, Bl) among
all Q € Wsym (B;; $* ) satisfying Q = Q; on dB;. Once again, by Theorem 3.1, 0, is real
analytic in B 1\sing(Q;) with sing(Q;) a locally finite subset in B;. As a consequence, the
map Qj — Q;. is analytic in the openset By \ T containing A, where ¥ = sing(Q,) Using(05)
is a locally finite set in By, and QA — Q5 = 0in A. Thus, by unique continuation for real
analytic maps, 05 = 0, in B1\ X, which shows that Q) = 0,.in B,,. ]

In order to apply the results of the previous subsections, we establish now the following
strong W !-2-compactness property of minimizers.

Lemma3.18 Leta € (0, 1) and {(Q(n) An)} be a converging sequence in C%}% (3B1; SY x
[0, 00), and denote by (Qy, Ay) its limit. Every sequence {Q,} such that Q, minimizes
&, over Azl{,?)(B]) admits a subsequence strongly converging in W-2(By) to some Q.

minimizing &, over .Aszin(B1).
b

Proof We consider the comparison map Q,, defined by Qn (x) = Ql(j")(x /1x]). A direct

computation shows that sup,, &, (O, B1) < o0 since Qé") is bounded in the C>“-topology.
By minimality of Q,, we have &, (Q,, B1) < &,,(Qy, B1) < C for a constant C indepen-
dent of n. Applying [12, Theorem 5.1], we deduce that for a (not relabeled) subsequence,
0,— Q. weakly in WL2(B))and 0, — O strongly in WIL’CZ(Bl) for some Q, minimizing
&, over ASQY%H(Bl). Hence it remains to prove that Q, — Q. strongly in wh2(B)).

First we notice that Q,, — Q. strongly in L*(B;) by the compact Sobolev embedding
WL2(B) — L*(B)). Therefore,

xn/ W(Q,)dx — k*/ W(Qs) dx. (3.9)
Q Q

Now we fix an arbitrary small § € (0, 1), and we define for x € By,

X

o
~ 1-96
Qnlx) 1= um -~ .
(=15 (i) + 15 sl v s

Then 0, € Waym(Bi; So) satisfies 0, = QU on 9B,. Since 0" — O} in C2(@By),
Qn converges to the mapping x — Oy (x/|x]) in C>*(B{\Bj_s).In particular, |Qn| 1/2
for n large enough which allows us to define

ifx € Bi_s,

=y Qn sym
n = T n B

By minimality of Q,, we have &, (Q,, B1) < S,\n(Qn, By). Since Qn also converges to
x > Of(x/|x]) in C>* (B} \ Bi_s), we have

limsup &, (Qu, B1) < lim &, (O, Bi—s) + lim &, (Qn, B1 \ Bi_5)
n—oo n—oo

n—0o0

= (1 =8)&1_52,(Qx B1) + 5,\*(Q§(X/ |x]), By \ BI—B),
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Now letting § — 0, we deduce that

limsup &, (Qn, B1) < &, (Qx, Br).
n—oo
In view of (3.9), we thus have lim sup,, fBl IVO,I12dx < fBl |V Q4% dx. On the other hand,
liminf, [5 [V O, Zdx > s, |V Q. |* dx by lower semicontinuity of the Dirichlet energy.
Hence lim, [, |V Q, |2dx = s, |V Q4|?dx, and the conclusion classically follows. u]

Proof Step 1. We first prove that BDSmOOth is open. Let {(Q(") An)} be a sequence in
C22(3B1; SY x [0, 00) such that A, — As and Q(") — Qf in C>*(3By) for some
(Qf. 1s) € BDMO™M We aim to prove that (Q(") An) € BDS™OM for n large enough.
By contradiction, assume that (Q(") An) ¢ BDI™OM for some (not relabeled) subsequence.
Then, for each n we can find a minimizer Q,, of &, over A y(n) (B1) such that sing(Q,) # @.
By Lemma 3.18, we can extract a further subsequence such that O, — Q strongly in
W12(By) for some map Q. minimizing &y, over .AQ§ (By). Since (Qf, A4) € BD;“‘OO“‘, we
have sing(Q.) = ¥, and we infer from Corollary 3.10 that sing(Q,,) = ¢ for n large enough,
a contradiction.

Step 2. We now prove that B Dy
{(Q(") An)}isasequencein C22(3By; S* x [0, 00) converging to some (Qp, Ax) € BDy
Assume also by contradiction that (Q(") ) ¢ BDSlng Then we can find minimizers Q,
of &, over A y(n) (B1) such that sing(Q,) = @. Then Q, — Q. strongly in wL2(By) for

Sing g open following the same argument as above. Assume that

smg

some Q. minimizing £, over A T (B)) (up to a subsequence). Since (Qb, Ay) € BDsmg,

we have sing(Q,) # ¢ which is in contradlctwn with smg(Qn)‘_ ¢ and Corollary 3.10.
Step 3. To conclude the proof, it remains to prove that B DS°*' is the common boundary

of BDS™°" and B D;ing .Let (Qf,24) € B DEist and QY and QF be two minimizers of
&, over Asz%n (B)) such that sing(Q%) = ¥ and sing(Q%) # #. By Theorem 3.2, we have
0t e C%*(B)) and we can find a radius px € (0, 1) such that Q% € C2’°‘(§1\Bp*) (.e.,
sing(Q3) € B),). We fix an arbitrary sequence {p,} € (o, 1) such that p, — 1 asn — o0,
and we set for x € 0By,

04" (x) = QL(pux) and 0} (x) = QS(pn).

Then (Q}", pPhs) — (Qf. ) and (O}, pZhs) = (QF. 1) in C2*(3 By) x[0, 00). On the
other hand, rescaling variables we infer from Lemma 3.17 that the maps 0", : x > Q% (p,x)

and Q5 : x > Q% (pnx) are the unique minimizers of £, 2, over Asy[n:, (B1) and Asy;n,, (B1)
b

respectively. Since sing(Q!,) = ¥ and sing(Q%) # ¥, it shows that (Qb , 02hy) € BDsmoom
and (Qp", pais) € BDS™ for n large enough. Hence (Qf, As) € dBDEMM N JBDE™,

thus BD(‘;Oexm C E)BD;’“"Oth N BBDzmg. Now, to reach the claimed conclusion, it is enough
to prove that B DSOS O § g psmooth y g B psing, Indeed, this and the previous inclusion
together imply as announced B DSOS = § B psmooth — 3 g psmooth Ty this end, notice that

C2%(3By; S*) x [0, 00) is the union of the disjoint sets BD;mOO‘h, BD;mg, and BD;"e’“St.
Since the first two sets are open, BD;mOOth U BDt‘;"e"iSt and BD;?,ing U BD&"C"iSt are closed,
hence they must contain the closures of B DS™°th and BDfxing, respectively. In turn, this means
that BDgf’exiSt contains both BBD;’“OOth and BBD;ing (indeed, BD;mOOth and BDfxmg, being
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open, are disjoint from their boundaries). Therefore, d B DS™°" U 9 BDI™ C B DSt and
the conclusion follows. O

4 Landau-de Gennes minimizers in 2D

In this section, we examine a two dimensional minimization problem whose importance
(beyond its own interest) will be revealed mostly in Sect. 5. We consider the minimization of
the LdG energy among equivariant unit norm configurations defined on a two dimensional
disc D, := {z € C: |z| < p}. We will always assume p = 1 (discarding the subscript for
simplicity) which can always be achieved by rescaling the domain. In view of Lemma 2.6 and
Corollary 2.7, admissible configurations can be described as maps in the space Wsl};g1 (D; S
with the two equivalent forms: either in terms of tensors Q € St ¢ Sp, or in terms of
u € S* CR@ C @ C. However, we shall mostly rely on the R @ C @ C-description as it is
more suited for our purposes.

We consider, for fixed A > 0, the 2D-LdG energy E as in (1.11) and we aim to minimize
it over the Sl-equivariant class A2 (D) defined in (1.12), where H : 9D — RP2 < S*
denotes the radial anchoring map defined in (1.13). According to the correspondence in
Corollary 2.7, we have H >~ g7 where g7 : 0D — S* CR @ C @ Cis given by

(1,3,
gg(2) == (—2,0, 52 ) 4.1)

Here and in the sequel, we make use of the complex variable z := x| + ix», identifying in
this way R? with the complex plane C.

As we announced in Theorem 1.2 and proved in the present section, the uniaxial or biaxial
character of any minimizer of E; over Azm (D) depends on A in a crucial way. More precisely,
a sharp transition in the qualitative properties of minimizers occurs through a biaxial escape
mechanism, as the strength parameter A of the confining potential W in (1.11) decreases.

Note that, by Lemma 2.10, we have Agym (D) = AN U Ag with disjoint union, and

={0eA"M): 00)=e}={ue AZTD) :u(0) = (1,0,0)} =: Ax, (4.2)
and
As:={Q € AZ"(D) : QO)=—ep}={u € A D) : u(0)=(~1,0,0)} =:As . (4.3)

We aim to describe precisely to which of these two components the minimizers of E; over

Sym(ID)) belong to as the parameter A varies. To tackle this question, we rely in an essential
way on a gap phenomenon for the Dirichlet energy E( over the two components of the class
A%m (D) = AN U Ag which is of independent interest. This is the object of the next two
subsections. By studying the minimization problem of Ey in each class Ay or .Ag, we shall
prove that the corresponding infima are different. Describing the set of minimizers for both
the infima, we shall also make the energy gap fully explicit.

4.1 Large equivariant harmonic maps in 2D

In this subsection, we classify all critical points of the Dirichlet energy Ey in the class
Sym(D) satisfying Q(0) = eg. According to Proposition 2.12, those are critical points of
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Eo over W2(D; $*), and thus equivariant (weakly) harmonic maps from ID into S* satisfying
Q = H on 3D. In terms of the isometric correspondence Q =~ u from Corollary 2.7, we are
interested in equivariant (weakly) harmonic maps u into S* € R@® C & C satisfying u = &F
on dD and u(0) = (1, 0, 0). As recalled in the Introduction, these harmonic maps are usually
referred to in the literature as the large solutions of the harmonic map system, see [8]. They
escape from the (small) spherical cap containing the image of the boundary data gz given
in (4.1), as opposed to the small solution discussed in Proposition 4.6, for which the escape
phenomenon does not hold.

Recall that u € W12(D; S*) is a weakly harmonic map in D if u is a critical point of the
Dirichlet energy

Eo(u) :=/ l|Vu|2 dx (4.4)
b2

with respect to compactly supported perturbations preserving the S*-constraint. If, in addition,
u = gz on 0 in the sense of traces, then u is a distributional solution of the following
boundary value problem

[Au+|Vu|2u=0 in D, @)

u=gg on 0.

By Hélein’s theorem [19] and the general analyticity results for elliptic systems from [33,
Chapter 6], such amap u is real analytic in the interior. Under the Dirichlet boundary condition
&7 the map u is actually real analytic up to the boundary by [33, 37]. Hence it is harmonic
in D in the classical sense. According to (2.16), an equivariant harmonic map u has the form

u(re'®) = (fo(r), fi(r)e'?, fr(r)e'*?), (4.6)

and the Euler-Lagrange equation in (4.5) rewrites into a system of ODEs for r € (0, 1] (see
Remark 2.14),

1
f+-fo= —|Vul? fo,
1 1
Wt f==1Vul fi = = fi, @7
1" 1 ! 4
f - fi==1Vul’ o= = .
Here f(r) := (fo(r), f1(r), (r) e RPCHC, and by (2.17),
1 1
Vul® = loul’ + — logu|” = | ') + = (AP +417P) - (4.8)

In order to describe the equivariant solutions to (4.5) satisfying the condition u(0) =
(1,0, 0), we shall combine (4.7) with the classification of equivariant harmonic spheres
from [12]. Following [12], it is convenient to use complex differentiation through the usual
Wirtinger’s operators

1/ 0 .0 1/ 9 .0
oo==—-i—), Gz==|—+i—]).
2 \ oxg dx2 2\ 9xy 0x2

Since IVul2 =2 |82u|2+2 |8zu|2 and Au = 40z, u, the harmonic map equation (4.5) rewrites
as

1
B u + 5( |9.u)* + [9zul* )u = 0.
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Let us now recall the classical notions of conformality and isotropy.

Definition 4.1 A smooth map u : 2 — S* C R@ C & C defined on an open set Q2 C Cis
said to be

(i) conformal if

P = logu-dpu=0, (49

4
1 1
0o D = ) (0euj)” = |0, u|” — 7 Bl = 3

j=0
where “-” denotes the Euclidean scalar product in R @ C @ C ~ R extended by
bilinearity to C>;
(ii) isotropic if

4
02u-0lu =y (32u;)* =0, (4.10)
j=0

where 92 = 1 (32, — 82) — 50y,

Here we shall not need the full definition of total isotropy from [20, Chapter 6], which is
satisfied by the harmonic spheres discussed in [12, Section 3]. Actually, under (4.9)—(4.10),
it will be automatically satisfied for the equivariant solutions to (4.5), as we are going to
show in the following lemma. This extension result is the starting point of the classification
of all large equivariant solutions to (4.5).

Lemma4.2 Ifu € Wsl};gl(]D); SY is a weak solution of (4.5), then u is real analytic and
conformal in D. Moreover, u uniquely extends to amap U € C®(C; S*) which is equivariant,
harmonic, conformal, and isotropic in the whole C.

Proof The map u being a weak solution to (4.5), it is real analytic up to the boundary, as we
already remarked. Being equivariant, it is of the form (4.6), where the map f = (fo, f1, f2)
satisfies | f| = 1 and solves system (4.7) for r € (0, 1].

Since u belongs to WL2(D), we infer from (4.8) that

1
d
/O 7]+ |f1|2+4|f2|2)7’ < 0.

Hence rjz |f’(rj)|2+ |f1(rj)|2+4 }fz(rj)|2 — 0 for some sequence r; | 0. Since | f|*> = 1,
we have f’ - f = 0. Hence, taking the scalar product of (4.7) with r2f’ and integrating
between r; and r leads to

P10, fOP = 1O = 4101
2 2 2 .
=ri [0, f )| = AN = 4] falrp| — 0as j — oo
Thus [8,ul” — 5 |8su]” = (8, £ (NI — L (1 /1) > +41£20)1*) = 0. On the other hand, it
follows from (4.6) that 9, u - %8¢u = 0. Therefore u is conformal in the sense of Definition 4.1
since such property is independent of the chosen orthonormal frame.
Now we solve the Cauchy problem for (4.7) with Cauchy data ( f (D, f/(1)) to extend f

to its maximal interval of existence (0, rmax) = (0, 1]. We denote by f the maximal solution.
Then f is real analytic, and therefore it satisfies

~ ~ 1 ~ ~
If)>=1 and |f’|2=r—2(|f1|2+4|fz|2) forevery r € (0, rmax),  (4.11)
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since these identities hold for every r € (0, 1]. As a consequence of the uniform a priori
bounds induced by (4.11), it follows that rpax = 400, i.e., f solves (4.7) for r € (0, c0).
Setting

Ure'®) := (fo(r), fir)e'®, f(r)e?),

it follows by construction that U is an equivariant real analytic harmonic map from C into
S*, extending u to the whole plane. Repeating the argument above on f with r € (0, 00),
we infer that U is conformal in C. To complete the proof, it thus remains to show that U
is isotropic, i.e., it satisfies (4.10). To this purpose, we adapt to the equivariant setting the
strategy in [20, Proposition 6.1]. First, we notice that

;U - U—78|U| =0

U -U=08,0,U-U)—dU-3,U=0,

and
1
32U - 9,U = 5%:0:U - 0:0) =0,

since |U|> = 1 and U is conformal. Then we consider g := 83U . BZU which is a complex-
valued smooth function. Since U is a harmonic map, we have

d:g = 0: (02U - 92U) = 82U - 9,(20:,U) = —d2U - 8, ((19.U* + 19:U|*)U)
— (82U - U)a.(19:U)> + [8:U*) — (32U - 8.U) (1. U* + 8:U*) = 0

and thus g is an entire holomorphic function. On the other hand, w.r.to the S!-action on
Re Co Cgivenin (2.10), the map U satisfies the equivariance property R - U(z) = U(Rz)

forall R = ¢’ € S! and for all z € C. Long but elementary calculations now give

PU@) - 2UGR) =02(R-U@)-92(R-U)

=3?(U(R2)) - 92(U(R2)) = R*(32U(Rz) - 92U (R2)).
Hence g(e'?z) = e *9g(z). Since g is holomorphic, from the identity principle on the
domain C\{0}, we infer that g(z) = c¢/z* for some ¢ € C. Since g is smooth at the origin,
we conclude that ¢ = 0, and thus g = 0. Therefore (4.10) holds, and the proof is complete.
]

We now are ready to classify all large solutions to (4.5), i.e., solutions in the class Ax. The
proof of this classification parallels the one for harmonic mappings  from C U {oo} ~ S?
into S* satisfying w (0) = e (which is a combination of [12, Proposition 3.6, Proposition 3.8,
Remark 3.11 and Theorem 3.19]). It shows that large solutions are precisely the restriction
to the unit disc of those entire harmonic maps satisfying the boundary condition and the
constraint at the origin.

Proposition4.3 Ifu € WSym (D; S$*) is a weak solution to (4.5) satisfying u(0) = eq, then
there exists iy € C such that

1 2 |Ml|
@) =——\1- z|* =3 zI" + —— 1zI”,
(@) D(z)( 1?1z lzI* 3 |21
4 2 |l/Ll|2 2
2mz (1 - 1) 2v32 (14 5 122 ) ). (4.12)
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with

2
D(z) =1+ i 1z + 3 1z1* + % 126 (4.13)

In particular,
~ 1 2
Eo(u) := —|Vul|“dx = 6.
D 2

Proof In view of Lemma 4.2, u extends to a harmonic map U € C*(C, S*) which equiv-
ariant, conformal and isotropic in the whole C. By equivariance, it writes U (re’?) =
(fo(r), fi(r)e'?, fa(r)e??).

Step 1. We assume in this step that U is not linearly full, and we aim to show that (4.12)—
(4.13) hold with u; = 0. First we notice that, in this case, fi = 0 by [12, Remark 2.4]
and the boundary condition U = g7 on dID. Hence U takes values in the unit 2-sphere of
R @ {0} & C, that we denote by S; Setting o7 : S% — C U {oo} to be the stereographic
projection from its south pole (—1, 0, 0), we consider

Sf2(r) 029
I+ fo(r)

Since U (0) = (1,0,0), we have U(z) # (—1,0,0) for all z € C by [12, Remark 3.4].
Therefore n : C — C is well defined, real analytic, and conformal since U and o, are.
Then, n being conformal, it is either holomorphic or anti-holomorphic. Anti-holomorphicity
is easily excluded. Indeed, it would give 7(z) = ¢/z> by the identity principle on C \ {0}
for a suitable ¢ € C (since the two functions coincide on {|z| = 1} by equivariance). But n
is smooth near the origin, so that ¢ = 0. In turn n = 0 which is clearly impossible because
U(z) # (1,0,0) for |z| = 1. Then, 5 being holomorphic on C, we have 5(z) = cz?> for a
suitable ¢ € C\{0}, again by the identity principle and equivariance. Therefore,

1— ez 2¢72 >
L+ clPlz* 7 T+ elPlz*)

nre?) :=0;0 U(ré'?) =

U(z)=az‘lon(z)=(

Since U (z) = g (z) for|z| = 1, we obtainc = /3 which shows that (4.12)—(4.13) hold with

_ 2x/§r2
1434

n1 = 0. As a consequence, we have f>(r)
of u,

and by conformality and equivariance

~ 1 5
Eo(u) = §|Vu| dx
D

1 4 2 L 483
=/ —|8¢u|2dx=27r/ mrdr=2n/ =6
pr? o r? o (1+3r%)?

Step 2. We now assume U is linearly full, and we claim that (4.12)—(4.13) hold for some
wn1 € C\{0}. Following [12, Section 3.3], we set o 4 : S* — CU{o0} to be the stereographic
projection from the south pole (—1, 0, 0), and we consider

fir) e,‘¢ Sfa(r) e,‘2¢>
L+ fo(r) " 14 fo(r) '
Once again, since U (0) = (1, 0, 0), we have U(z) # (—1,0, 0) forall z € C by [12, Remark

3.4]. Hence (¢, n) : C — C2 is well defined and real analytic. Notice that the conclusions of
[12, Lemma 3.12] still hold in the present case (although we don’t know yet that U extends

(E(re"”), n(rei¢)) =040U(re'?) = (
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to a harmonic sphere U : C U {oo} ~ S* — S*) because U is conformal and isotropic on
the whole C by Lemma 4.2.

Now we can transpose word-by-word the argument in the proof of [12, Theorem 3.19]
to show that U extends to a finite energy harmonic sphere U € C®(S?; S*) (indeed, the
positive lift U : C — CP? defined there extends holomorphically to the whole CP! ~
S?~CU{oco}landU =7t o U+ on S2, where 7 : CP3 — S* is the twistor fibration). As a
consequence (compare with [12, Proposition 3.8]), there exist i1, uo € C\ {0} such that

i1 1% |eal? [
D(z) 9 ’

2 2
21z <1 _ % |z|4> uad (1 + % |z|2>), 4.14)

1?2 l? 12/
Y zl”.
The constraint U = (Ug, Uy, Uz) = gz on 0D first implies U; = 0 on 9D, which in
turn yields |ua| = +/3. Then U(z) = (=3, 0, %22%) = g(z) for every z € 9D, whence
w2 = /3. Thus, (4.14)—~(4.15) hold.

To complete the proof, it remains to show that Eo (u) = 67 forall u; € Cin (4.12)—(4.13).
In view of (4.8)—(4.11), the energy Eo (u) just depends on |u1]. It is continuous with respect
to u1, and Eo(u) = 6 for u1 = 0 as already computed in the previous step. Then it is
enough to check that Eo (u) is independent of |11 by showing that it has zero derivative for
|1] positive. To see this, we first notice that (u, 9),,,ju) = 0 since lu|2 =1, and O u =0
on 0D since u = g on dD. Differentiating under integral sign, integrating by parts and
using (4.5), we obtain

U(z) = (1 — il 1zl = 2l 1z1* +

with

D() =1+ | 1z + a2l 2l + (4.15)

~ 1
3wEo(u)=/3|u1|(5|W|2)dX=/ Vu V() u) dx
D D
=—f Au-3|m|udX=/ Vael? e - 3oy dx = 0.
D D

which concludes the proof. O

4.2 Energy gap for the Dirichlet integral of maps into S*

In this subsection, we compute explicitly the minimum values and describe the minimizers
of the minimization problems

min Eo(u), (4.16)
ue AN

and
min Eo(u), 4.17)
ueAs

where Ej is given in (4.4), thus making explicit a corresponding gap phenomenon. The
following theorem is the main result of the subsection, and it is a direct consequence of
Propositions 4.6 and 4.7 below.
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Theorem 4.4 The following gap holds for the Dirichlet energy (4.4):
27 = min Eg(u) < min Eo(u) = 67. (4.18)

ueAs UEAN
In addition, the minimum value of E() over As is uniquely achieved by

lzI* =3 2./372
us(z) = , 0, , (4.19)
’ <|z|4+3 lz1*+3

while the minimum value ofE() over ,ZN isattained atu € .ZN iffu is of the form (4.12)—(4.13).

Remark 4.5 (“Bubbling-off” of harmonic spheres) The resolution of (4.16)—(4.17) suffers
two main difficulties: (i) the conformal invariance of the functional Eo and the induced
lack of compactness of energy-bounded sequences; (ii) the fact that the classes Ay and Ag
are not closed under weak W!-2-convergence. To illustrate these facts, let us consider for
w1 € C, the mapping u,, € AN given by Proposition 4.3 and satisfying Eo(u,“) = 6m. As
[m1] — oo, we have u,, —us € .As weakly in w2(D), where ug is given by (4.19). Note
that ug solves (4.5) and satisfies Eo (us) = 2m. As the convergence is smooth away from the

origin, % ‘Vum ’2 dx—\% |Vu5|2 dx + 47 8¢ as measures on D. Finally, if u1/|pu1] — e as

|1 — oo, then uy, (z/p1) — u(z) strongly in WIL’CZ((C; S%), where

i) 11—z 267 0 4.20)
u(z) ;= , —, .
T+ 1z 1+ |22

is a finite energy harmonic 2-sphere (a “bubble”), it : CU {oco} =~ S? — S* with Eo(zl; C) =
4.

To discuss the minimization problem (4.17), we rely on existing results in the literature
[25, 39], and we actually prove that the minimality of ug holds even among non symmetric
competitors.

Proposition 4.6 The map us given by (4.19) is the unique minimizer of Eo in ng,ﬁz (D; $).

As a consequence, minueﬁS Eo(u) = 27 and us is the unique minimizer of Eg over As.

Proof We shall use the real coordinates u = (uo, . .., us) € RS ~ R @ C & C, and we shall
denote by S% = {u € S* : uy = 0} the upper/lower open half spheres.

First, we observe that ug(D) € S* . Since ug is a smooth harmonic map (see Remark 4.5),
we deduce from [39, Lemma 2.1] that us minimizes Eo over the whole W,, (D; S*). Now
we claim that ug is actually the unique minimizer over W2 (]D) S*). Since 84 is geodesically
convex, the uniqueness result from [25] tells us that us 1s the unique (smooth) solutlon to (4.5)
whose range is strictly included in S* . Now, if u € WgH (D; $*) is any minimizer of EO, then
u is a harmonic map smooth up to the boundary. Hence it suffices to show that u(D) € S* to
conclude that u = us. Assume by contradiction that u(z) = (uo(z), u1(2), ..., ua(z)) satis-
fies ug(zx) = O for some z, € ID. Then the competitor it (z) := (—|ug(2)|, u1(2), ..., us(z))
belongs to W 1,ﬁ2 (D; S*), and Eo ) < Eo (u). Thus, u is also a minimizer, whence a harmonic
map in D smooth up to the boundary. Then the function v(z) := |ug(z)| is a smooth solution
in D to —Av = |Vu?v > 0, with v(z) = 2 on 0D. By the maximum principle, we have
v 2 7 in D, in contradiction with the assumption v(z4) = 0. Therefore u(D) C S*, leading
to u = ug. Finally, since ug € ,Zs, it obviously follows that ug is the unique minimizer of Eo
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over XS, and a direct computation yields Eo (us) = 2m (see the the proof of Proposition 4.3).
O

Concerning (4.16), we have the following result.

Proposition 4.7 It holds
min Eo(u) = 67, 4.21)

ue AN

and the minimum is attained at a map u if and only if u is of the form (4.12)—(4.13).

The proof of Proposition 4.7 is postponed to the end of this subsection. In contrast with the
proof of Proposition 4.6, we now have to overcome the possible lack of compactness of min-
imizing sequences and concentration of energy. To this purpose, we shall construct suitable
minimizing sequences considering a regularization of problem (4.16). This regularization is
based on the following subclasses of XN,

Al ={ueA:u=(,00aeonD,}witho<p<1, A:= (] AL 422
O<p<l

As opposed to AN, the subsets .fozl are closed under weak W' 2-convergence. The following
lemma relates those different classes and their corresponding minimization problems.

Lemma 4.8 The following properties hold.

1) .ZON is a strongly dense subset of Ay in Wil’z(D).

(i) inf Eo(u) = inf Eo(u) = lim inf Eo(u).
ueAx ue AY p=>0ye AL

(iii) For each integer n > 1, the minimization problem
min Eo(u) (4.23)

uEAﬁ

~L
admits a solution. In addition, for any solution u, € Ay, we have

lim Eo(u,) = inf Eo(u). (4.24)
n—00

uc AN

Proof We start proving claim (i). Let us fix u € Ax arbitrary. We aim to construct
u, € Aﬁ such that u, — u strongly in WL2(D) as p — 0. Writing u(re’®) =
(fo(r), f1(r)e'?, f2(r)e??), we first set
€ ifr €0, o],
r—p ) .
u(y/pe'®) —eo) ifr e p,/pl,
e /e ) VP
u(re'?) ifr e [/p,1].

ii,(re'?) = {eo+

Thenii, € Wsly’rzn (D; ReChC)NCYD) and li, = gz on 0. Moreover, ii, — u uniformly
in D, which implies that |i ol — 1 uniformly in Das p — 0. For p > 0 small enough, we
thus have |it,| > 1/2 in D, and we can define

_ p(@)
uy(z) := |ﬁp(Z)|.
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By construction, we have u, € ,Zf\),, and u, — u uniformly in D as p — 0. In addition,
Eo(u,) = Eo(up; D5 \Dp) + Eo(u; D\ D /5).

and
EU(”M D 5\ Dy) < CEO(ﬁp; Dz \ Dy)
C(IL = HWPIP +1AWPIF +1£/P)F) ~— 0

Hence Eo(u,) — Eo(u) as p — 0, which implies that u, — u strongly in wi2(D).
Concerning (ii), the first equality is an obvious consequence of (i) since E is (strongly)
W12 continuous. Then we observe that p > inf A Eo is non decreasing. Therefore,

inf Eo = inf inf EO = lim inf Eo
.AO O<p<l _AP p%O_Aﬂ

~1
To prove claim (iii), we recall that Ay is weakly W12 closed. Hence existence of solu-
tions to (4.23) follows from the direct method of calculus of Variagons. Finally, (4.24) is a
consequence of (ii) together with the monotonicity of p + inf a8 Ey. O

By the previous lemma, a sequence {u,} of solutions to (4.23) provides a minimizing
sequence for (4.16). In the next result, we provide the key step for the asymptotic analysis
of such a sequence.

Lemma4.9 Let{u,} C AO be such that uy, solves (4.23) for every n > 1. Assume that, for
some (not relabelled) subsequence Un—uts, weakly in WH2(D). Then u, € Ag, D) and
Uy is a smooth harmonic map in D. Moreover, if u, € As, then there exists a further (not
relabelled) subsequence and r, — 07 such that ii, (z) := u,(r,z) satisfies ii,—i weakly in
Wl:)’f (C) for some equivariant nonconstant finite energy smooth harmonic map i : C — S*.

Proof Using maps of the form (4.12)—(4.13) as competitors, we infer from Lemma 4.8 that
hm Eo (up) = inf Eo (u) < (4.25)
MEAN

~sym

The class .Zl;yﬁm (D) being weakly W!-2-closed, we have u, € A - (). By minimality, each

uy, is a harmonic map in D \ Dy /n- Since u,—u, weakly in W1 2(]D)), it classically follows
that u, is a (weakly) harmonic map in D\ {0}, see e.g. [13, Theorem 1, p. 50]. Moreover, since
1, belongs to W12(ID) and the set {0} has zero capacity, u is actually a weakly harmonic
map in the whole disc ID, and thus a smooth harmonic map in D by regularity theory.

‘We now assume that u, € XS. Recalling Lemma 2.10, we write
un(re'®) =t (f§7 ), [V (e, [V () and w.(re'?) =: (fF (), 7 (1), f5 (e,

so that
(£, 70, £70) = (1,0,0) and  (f5(0), £i(0), £5(0) = (—1,0,0).

The functions fo(”) and f(;“ are continuous in [0, 1] and taking values in [—1, 1] by the
S*-constraint. In addition, we have fg(r) € (—1,1) for every r € (0, 1]. Indeed, assume
by contradiction that fj(t) = £1 for some ¢ € (0,1). Then, u, = (£1,0,0) on 9D,
which implies that u, = (&1, 0, 0) in D; by Lemaire’s constancy theorem [29]. Then u, =
(£1, 0, 0) in D by unique continuation, in contradiction with the boundary condition.
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By Lemma 2.10, u, — u locally uniformly in D \ {0}, and thus fo(") — f locally

uniformly in (0, 1]. Since f;(0) = —1, we have

lim min £\ = 1. 4.26
Jim_ min fo (4.26)
Recalling that fo(")(l) = —% and fo(") (0) = 1, each function fé”) must vanish on the interval

[0, 1]. We can thus define
rpi=min {r € [0,1]: £{"(r) =0} € (0, 1),
and

PN — min {r e[0,1]: fo(n)(r) = fglr} fo(")] € (0, 1).

~1
Since u, € A{ and f(r) > —1 for every r > 0, we infer from (4.26) that

1 .
—<r <™ —0,
n n—00

whence r, — 0. Combining Cauchy-Schwarz inequality and (4.8) leads to

Tn dr ~
L= £ ) = f3" (/)] < f ﬁwrfo(")(rnﬁ <\ Eo(un)y/log (nry) .
1/n
From the energy bound in (4.25), we conclude that
1
ry = limsup — < 1.
n—oo NIy

Now we set

iy (2) == uu(rp2),
so that i, € Wsly’fn(Dl/,n; $Y, i, = (1,0,0) in D1/ur,» and i, is a harmonic map in the
annulus

Q= {1/nry < |zl < 1/ra}.

Setting ii,(re'®) =: (7{(r), P (e, i (r)e?9), we also have fiV(1) = 0 by
construction.
In view of (4.25), we have for every r > 0,

lim sup Eo(ft,,, D,) < limsup Eo(ﬁn, Diy,) = lim sup Eo(u,,, D) < 6.
n—00 n—o0 n—00
Therefore we can extract a (not relabelled) subsequence such that i, —~# in WIL’CZ((C) for
some equivariant map i € WIL’CZ((C; S*) satisfying Eo(ii; C) < 67 by lower semicontinuity
of the Dirichlet energy. By Lemma 2.10 again, ii, — u locally uniformly in C \ {0}, so that
fo(n) — folocally uniformly in (0, 00) where @(re'®) =: (fo(r), fi(r)e'®, f2(r)e*?). Then
fo(l) = lim,, fo(") (1) =0, and | fo(0)| = 1 by equivariance. In particular, i is nonconstant.
Extracting a further subsequence if necessary, we have 1/nr, — r,, so that
Q= Q= {|z| > r«}.

Arguing as above, we infer that i is a weakly harmonic map in €2, and hence a classical
(smooth) harmonic map in €2,. Next, we claim that r, = 0. Indeed, assume by contradiction
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that 0 < r, < 1. Then & = (1, 0, 0) in D,, since it, — i locally uniformly on C\{0}. For
ZE€ D, /,*\{O} we now cons1der the inverted map v(z) := u(1/z). By conformal invariance of
EO, we have Eg(v, Dy/,) = Eo(u Q,) < 67, and v is a weakly harmonic map in Dy, \ {0}
satisfying v = (1, 0, 0) on 3Dy, . Again, since {0} has a vanishing capacity, v is actually a
weakly harmonic map in the whole disc Dy, and thus a smooth harmonic map in Dy e
Since v = (1,0, 0) on 9Dy ,,, Lemaire’s theorem [29] tells us that v = (1,0, 0) in Dy, .
Hence, u = (1, 0, 0) in 2., in contradiction with the fact that fo(l) =0.

Since r, = 0, & is weakly harmonic in C \ {0}, and thus weakly harmonic in the whole
C as argued above. Hence u is a smooth, nonconstant, equivariant harmonic map satisfying

Eo(ii; C) < 6. O
Proof of Proposition 4.7 Using maps of the form (4.12)—(4.13) as competitors, we obtain
inf Eo(u) < 67. 4.27)
ue AN

We are going to show that equality actually holds, so that any map of the form (4.12)—(4.13)
is a minimizer. Moreover, since any minimizer is a solution of (4.5), it must be of the form
(4.12)—(4.13) by Proposition 4.3, so that no other minimizers exist.

Let us now consider a sequence {u,} C .AO such that u,, solves (4.23) foreveryn > 1. In
view of Lemma 4.8, {u,} is a minimizing sequence for (4.16). To show that equality holds
in (4.27), it thus suffices to prove that lim,, Eo(u,,) = 6. By construction, {u,} is bounded
in W12(D), so that we can find a (not relabelled) subsequence such that u, —u, weakly in
W12(D). By Lemma 4.9, u, € fl%'m is a smooth harmonic map in D.

We now distinguish between two scenarios.

Case 1. Compact case: u, € XN. Under this assumption, we have Eo(u*) = 6 by
Proposition 4.3. In addition, by weak lower semicontinuity of the Dirichlet energy,

6w = Eo(uy) < lim Eg(un) = inf Ey < 67,

n—o0 N

which proves (4.21).
Case Il. Noncompact case: u, € As Under this assumption, we have Eo(u*) 27 by
Proposition 4.6. In view of Lemma 4.9, there exists a (not relabelled) subsequence and
r, — 0 such that the rescaled sequence i, (z) := u,(r,z) converges weakly in Wli)’cz (©) to
an entire nonconstant equivariant smooth harmonic map & of finite Dirichlet energy. Being
of finite energy, i extends to CU {oo} =~ S? to an equivariant weakly harmonic map, and thus
a smooth equivariant harmonic 2-sphere into S*. By the classification result in [12, Section
3], we thus have Eo(ii, C) > 47.

Setting r,, = \/r, — 0 and using the weak lower semicontinuity of the Dirichlet energy,
we infer that

6w > 1non— 11m Eo(u,,) hmlnon(u,,,]D) )+11m1non(u,,,ID)\ID) 7)
AN

> lim inf Eo(iiy; Dy ) + Eo(uy) > Eo(ii; C) + Eo(uy) > 67
n—0oo

which again proves (4.21). O

4.3 Uniaxiality vs Biaxiality in the 2D-LdG minimization

In the light of the previous section, we now discuss for A > 0 the variational problems

QIQE‘IN E; (Q), (4.28)
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and

erelijls E; (Q), (4.29)

where E) is the 2D-LdG energy in (1.11), and AN, As are the classes defined in (4.2)—(4.3).

Once again we rely in an essential way on the (isometric) identification So > R@ Cp C
and the induced correspondence Q >~ u between Q-tensor maps and R & C @ C-valued maps
from Corollary 2.7. Recalling that tr(Q3) = 3 det Q for every Q € Sy, we infer from (2.12)
that

1 3 33 -
W(Q) = ﬁ(l —uo(uf + E|u1|2 —3Juz|?) - {Re(ulu2)> = W) forQ~u.
(4.30)
Setting, for u € wlZ(D; s,
E;(u) ::/ 1|Vu|2 + AW ) dx,
D2
we obtain
E»(Q) = E,(u) for Q ~u.
If Q =~ u € Woym(D; S*) and u(re'®) = (fo(r), fi(r)e'?, f2(r)e’??), then
- 1 24 4162 1—
E3(0) = By (u) = n/o <|f/|2 $ EERIRE L, 3?”) rdr,  (431)

with f = (fo, f1, f2) and E (f) given in (2.21). Equivariant critical points Q >~ u of the
energy functional E, satisfy the following system of ODEs

1 1 ~
13+ = fo = =IVulfo+ = 7 <|f2| —f5 =3 1AP +ﬁ(f>fo>,
" 1 / 'y
R+ f = =1Vl fi =5 fi+ f( BER - i+ BOR). @)
i+ ;le =—IVul’fo - %fz + % <—ff12 +2fof2 +E(f)fz> :

with |Vu|? as in (4.8) depending also on f only.

In the sequel, our goal is to establish existence/nonexistence of solutions to (4.28)—(4.29)
starting from the gap phenomenon in Theorem 4.4. In turn, we shall derive qualitative proper-
ties of minimizers of E; in Aﬁm (D) = AsUAN. The main result, Theorem 1.2, is postponed
to the end of the subsection. It reveals the nature of minimizers of E; in A>™ (D) as A varies.
In particular, we shall see that biaxial escape occurs for reasons of energy efficiency.

We start with the following proposition providing the complete description of solutions

to (4.28).

Proposition 4.10 Forall . > 0,
min E =6 s .33
1 2 (Q) 7 (4.33)
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and the minimum is attained at Q > u if and only if u(z) = gg(£z) with gz given by (4.34)
below.

The proof is essentially based on the following preliminary lemma of independent interest.

Lemma4.11 Let Q € An with Q =~ u of the form (4.12)—(4.13). Then Q is positively
uniaxial if and only if uy = +4/3, that is u(z) = g7 (Ez) where

1

g = ———— (1 — 4z + 1z, 2v32(1 = [z?), 2«&2) (4.34)
I+ 1zI%)

extends (4.1) to D. Moreover, if H denotes the unit norm nematic hedgehog in (1.10), then

we have gz >~ (H o o;l) where 05 : S*\ {(0,0, —1)} — C is the stereographic projection

from the south pole of S2.

Proof Letus fix O € S* with Q ~ u = (ug, u1, uz). For a given 6 € R, we set Q ~ =
(uo, £luile?, |uz|e’??). From (4.30), we derive that W(Q) > W(é) with equality if and
only if u%sz > 0. Hence equality holds if and only if Re(u%sz) = |u;|?|uz| and Q = @ for
some 6 € R. As a consequence, W(Q) = 0 if and only if

3 343
0=1—uo(u}+ 5|u1|2 —3uz)?) - Tlullzluzl

3 1 9 343
=1—M0<2—2u(2)—2|u2|2>—;f(l—u(%—luzlz)luzl
3
=5(u0+xf3|u2|—1)(u0+~6|u2|+2),

where we have used that |u|? = u% + [u1]? + |ua|? = 1. Hence, W(Q) = 0 if and only if
either ug + ~/3uz| = 1, or ug + v/3lus| = —2.

Let us now consider Q € An with Q =~ u a map of the form (4.12)—(4.13), and Q >~ u.
If W(Q) =0in D, then u%@ > 0 in D which implies that ;1 € R. Since ug + \/§|u2| =1
on 3D, we infer that ug + +/3luz| = 1 in D by continuity. Inserting (4.12)—(4.13) in this
equation leads to ;1 = £+/3. The other way around, if 1, = £+/3, it is now easily seen that
W(Q) =0inD. m}

Proof of Proposition 4.10 Using H oo, I~ &7 as acompetitor, we infer from Proposition 4.7
and Lemma 4.11 that for any Q € Ax with Q >~ u,

Ex(Hooy") = Eo(H 00;") = Eo(gg) = 6w < Eo(u) < Ex(u) = E5(Q) . (4.35)

Hence (4.33) holds and H is a minimizer. On the other hand, if Q € Ay isa mil}}mizer, then
E; (Q) = 6m and all inequalities in (4.35) are equalities. Hence W (Q) = O and Eg(u) = 6.
Finally, combining again Proposition 4.7 with Lemma 4.11, we deduce that u(z) = g7 (%z).

[m}

Remark 4.12 In the previous proof, the characterization of uniaxial minimizers can be derived
in a different way. Indeed, if a minimizer Q is (positively) uniaxial, then it must be a minimizer
over the restricted class of maps Q € W:);,%, (D; RP?) with trace é = H on dD. Combining
with the fact that the mapping IT : S* — RP?2,

3 1
R@CQSzaveH(v):\/;<v®v—3Id>eRP2§S4,
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is an isometric two-fold cover with the result in [7], one can lift any such é toamap v €

Sym (]D) S?) with trace 7(z) = (0, z) on 3D (equivariance of the lift being a consequence of
its uniqueness when a lift at the boundary is chosen). Then we have Eo(é) = ; fD |V’17|2 dx.
Thus, minimizing maps are of the form Q = Mo v with v(z) = 1+|Z|2 (£(1 - 122), 2z), the
unique minimizing harmonic maps in the class Wsly}%1 (D; S?) with trace (0, z) on 9D (compare
[22, Section 3.1, equations (3.5)—(3.6)]).

We now address problem (4.29), and we begin with the dependence on A of the associated
value. Existence of solutions will be the object of Proposition 4.15.

Proposition 4.13 Setting
¢ ;= inf E s 4.36
A 1 s 2 (Q) ( )

then 2m < e;’: < 107 for every A = 0, and the function A +— e: is continuous and non-

decreasing. In addition, there exists A* € [ 48‘/:[ 52.36. ‘f 2] such that A + ¢} is

strictly increasing in [0, A*], e = 27, and ¢ = 107 for A > k*
To prove the proposition, we shall need the following technical lemma.

Lemma 4.14 (Bubble insertion) For each p € (0, 1) there exists v, € .Zs such that v, =
(1,0, 0) for |z| = p, and satlsfylng Eo(vp) — 41 as p — 0. As a consequence, for each
u € AN, there exists {w,} € .As such that w,—u weakly in w2y, w, —> u strongly in

Wloc (]D)\{O}) and Eo(wp) — Eo(u) +4mwasp — 0.
Proof Define

() = (Iz1* = 1,22,0),

lzI* +1

sothat v € Wloc (C; S, Tis S'-equivariant, 9(0) = (-1, 0, 0), and Eo(v C) = 4. We
rescale the map v setting, for p € (0, 1), D, (z) := v(z/,o ). Then,

max_ [v,(z) +v(0)| — 0 and Eo(’v\p, D,2) — 4.
|z|=p? p—0 p—0

Next we consider the linear interpolation between v, and —v(0),
Uy (rei?) if |z] < p?
Up(re'?) i= 19, (p%") — 'f)'__;;(ﬁm) +7,(p%e'") if 2] € [0, p],
—0(0) if [z] € [p, 1].

Since max,_ 2 [V, (z) +v(0)| — 0, we have [V, (z)| = 1/2 on 9D for p small enough. It
allows us to define

5, -
v, 1= — € Ag,
Pl
Wthh satisfies v,(z) = (1,0,0) for |z] > p. Arguing in Lemma 4.8, we obtain

E()(Up, Dp\D,2) — 0, and consequently

lim Eq(v,) = lim Eq(vp; D,) = lim Eq(D,; D,2) = 47,
p—0 p—0 p—0
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proving the first claim.

To prove the second claim, we fix u € Ay and we apply Lemma 4.8 (i) to obtain
up, € .A (see (4.22)) such that u, — wu strongly in WiZMD) as p — 0. Then
Eo(up) = Eo(up, D\D,) — Eo(u) Finally, we set

w,(2) = vp(z) iflz] < p
P up@) izl € Lo, 10,

and it is straightforward to check that w, € As has all the announced properties. O

Proof of Proposition 4.13 First, we observe that for each Q € Ag, the function A — E;(Q) €
R is affine and nondecreasing. Hence A + e} is nondecreasing and concave, therefore
continuous in (0, 0o). In view of Proposition 4.6, we have ¢ = 2m = Eo(Qs) with Qs >~ us
given by (4.19). Consequently,

21 < & < Ex(Qs) = Ey(us) — Eolus) = 27,
so that continuity also holds at 0.
Next we consider H o0, ' with H o 0'2 ~ gz asin (4.34), and w, € As obtained by

applying Lemma 4.14 to gz. Then, [ W(w,)dx — [ W(g) dx = 0.1f Q, =~ w,, it
follows from Proposition 4.10 and Lemma 4.14 that

¢f < En(Q,) = Eo(w)) +x/ W(wp)dxmﬁo(gﬁ) +47 = 107 .

By monotonicity we deduce that 277 = ¢f < ¢} < 107 for every A > 0.
An elementary calculation yields

B Qe =12 L2 —1)?
= { + £n2 (4.37)

As a consequence, if ¢ = 107 for some A > 0, then

10 = ¢ < Ex(Qs) = Ej(us) =27 + A (—\fn + fn2> ,

C 48v2
which implies that A > w33

To complete the proof, we are going to show thatif A > 52.36. 4712, then E, (Q) > 107
forevery Q € As. As aconsequence ¢; = 107 for A > 52.36. ‘/Tanz, so that the conclusion
follows by setting A* := min{A : ¢} = 107} and noticing that A — e} is strictly increasing
on [0, 3»*] by concavity. To derive the previous claim, we fix Q € As and we observe that
B := B(Q) = /6tr(Q?) belongs to W!2(D) N C (D) with

IVB| < 3v6(tr () * Vol = 3v3|VQl,

where we used that tr(Q%) = % for Q € S* € Sp. From this last inequality and Young’s
inequality, we deduce that

EA(Q)>f : |VB|2+L(1—B) dx > VA
D233

W6 5 o J, VI BIBldr.
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Since Q € Ag, we have B(D) = [—1, 1], so that the coarea formula yields

A _ VA VA
E B|VB|dx = — V1 —tdt = —_
M) > g (24)1/4 / VI-B|VB| 9 (24)1/4 / " 61/4
and the conclusion follows. O

We are now ready to discuss existence of solutions for variational problem (4.29) with
A = 0. The proof the proposition below is postponed as it requires two auxiliary results.

Proposition 4.15 Let A* > 0 be the constant defined in Proposition 4.13. The following
holds.

() If0 < A < A%, then ¢ < 107 and there exists Q) € As solving (4.29). In addition,

By, := B o Q; satisfies f.(D) = [~1, 1].
(i) Ifr > A¥, then ¢ = 107 and (4.29) has no solution.

To solve problem (4.29), we proceed as for (4.16) constructing an enhanced minimizing
sequence for which the eventual lack of compactness is easy to describe. It rests on the
following subclasses defined for p € (0, 1) by

Agi={ueds:u=(-1,00aeinD,}, AQ:= ] A. (4.38)
O<p<l

Note that, as for the class AN in (4.22), the subsets Ap are weakly W1 2_closed for any
p € (0,1). The following lemma is the analogue of Lemma 4.8 for E, restricted to As,
instead of E restricted to Ay. The proof being completely similar, it is left to the reader.

Lemma 4.16 The following properties hold.

6)) .ZO is a strongly dense subset Of.Zs in W1 2(D).
(ii) 1nf E)\(u) = 1nf E)L(u) = hm0 1nf EA(u)

ue.As ueA S
(iii) For each integer n > 1, the mlmmlzatlon problem

min E(u) (4.39)
ue A
~L
admits a solution. In addition, for any solution u, € Ag’ , we have

llm E,\(u,,) = inf E,\(u) (4.40)
ueAs

In the vein of Lemma 4.9, we now aim to describe the lack of compactness of the mini-
mizing sequence {u,} constructed in Lemma 4.16. The proof has some similarities with the
one of Lemma 4.9, and we concentrate on the main differences.

Lemma4.17 Let {u,} C .AO be such that u, solves (4.39) for everyn > 1. Assume that for
some (not relabelled) subsequence Un— 1ty weakly in WH2(D). Then uy, € A (]D)) and u s
is a critical point of E;V Moreover, if u, € AN, then there exist a further (not relabelled)
subsequence and r, — OV such that @i, (z) := u,(r,2) satisfies ii,—ii weakly in WIL’CZ((C)
for some equivariant nonconstant finite energy smooth harmonic map u : C — S*.
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Proof In view of Proposition 4.13 and Lemma 4.16 we have

hm E,\(un) = inf E,\(u) inf E;(Q)=¢} <107, 4.41)
ueAg QeAs
which is the key a priori bound to obtain compactness properties.
By equivariance, u, and u, write

un(re' )= (£ ), [V e, 7)), ey = (f5 (), £ e, £ ()

where f@ = (f\, £, 1) and f* = (fF, fF, f}) are continuous on [0, 1] by
Lemma 2.10.

By minimality of u,,, each f ) solves (4.32) in the interval (1/n, 1). Asa consequence, f*
solves (4.32) in (0, 1). Indeed, (4.41) implies a Wli’cl ((0, 1])-bound on the sequence { f my,
hence a WIL’COO((O, 1])-bound by Sobolev embedding. Back to the ODE (4.32), it yields a
Clzoc((O, 1]) bound on {f(")}. This is then enough to pass to the limit n — oo in (4.32) for
r € (0, 1). Thus, since f* solves (4.32) in (0, 1), Q4 =~ u, is a weak solution to (1.6) in
D\{0}. However, Q. being of finite energy and {0} of zero capacity, Q. weakly solves (1.6)
in the whole D, i.e., Q is a critical point of E;, or equivalently, u, is a critical point of E,.

We claim that fif (r) < lforeveryr € (0, 1]. To prove this claim, we argue as in the proof
of Lemma 4.2. Since Eo(u*) < 00, we infer from (4 31) that there exists a sequence r | 0
satisfying r; ‘(f ) (rk)| + |f1 (rk)| + 4 |f2 (rk)| — 0 as k — oo. Then we multiply
(4.32) by r2(f*)’ and integrate between ry and a fixed r € (0, 1). Using (f*)" - f* = 0 and
letting k — oo, we obtain

Pl O) = O+ 4|50+ 1= B(frorn)r?

2
Now assume by contradiction that f;'(#) = 1 for some 7 € (0, 1). Then f*(7) = (1,0, 0)
because | f*(¥)| = 1, and the previous identity yields (f*)'(¥) = 0. By uniqueness of the
Cauchy problem for (4.32), it follows that f*(r) = f*@#) = (1,0, 0) for every r € (0, 1].
However, since uy = gz on dD, we have f*(1) :~(—1/2, 0, v/3/2), a contradiction.

Let us now assume that u, € An. Since u, € Ag, we have

(f3" ), £(0), £7(0)) = (=1,0,0) and (f5(0), £ (0), £(0) = (1,0,0).
Arguing as in the proof of Lemma 4.9, f @ f¢ locally uniformly in (0, 1], and

lim maxf( "1,
n—00 [0,1]

Since f\"(0) = —1,each f" mustvanish on [0, 1] by continuity, at least for r large enough.
This allows us to define

ro :==min {r €0, 1] : fo(")(r) =0} € (0,1),
and

r = min {r € [0,1]: V() = max P} e©,1).

max

As in the proof of Lemma 4.9, we have 1/n < r, <™ — 0asn — o0, and

. 1
ry = limsup — < 1.
n—oo Nry
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Now we set i1,,(z) := u,(r,z), sothatu, € Wsly}%l(]D)]/,n; %), i, (z) = —ey for |z| < -, and

i, is a critical point of EM’% in the domain €2, := [# <|z| < 1/ry ] In addition, settlng

iy (re'?) =: (fo(")(r), ﬂ(")(r)ei¢, fz(”)(r)e"z‘p) f(") satisfies fo(”)(l) = 0 by our choice of
.

! By (4.41), we have E)er (tty, D1y, = Ex (u,) < 107m. Hence, we can find a (not rela-
belled) subsequence such that i1, —u weakly in W1 2(C) for a limiting equivariant map
U e WloC (C; $Y satisfying Eo(u C) < 10x. Since 2,, — Q4 := {|z] > r4}, we obtain that
ii is a weakly harmonic map in Q. Indeed, f, := (fy", 7", /i) satisfies (4.32) with Ar2
in place of A. Using the energy bound and the ODE as above, we derive that £ is bounded
in CIQOC((Q, 00)). Arguing again as above and since )Lr,% — 0, it implies that # is a critical
point of Eg in Q,, i.e., i is a weakly harmonic map in €2,. The rest of the proof now follows
exactly as in the proof of Lemma 4.9: i is nonconstant by the normalization fo(1) = 0,

r« = 0 by Lemaire’s theorem, and & extends to a finite energy harmonic map in the whole
C. o

Proof of Proposition 4.15 We start proving (i), arguing as in the proof of Proposition 4.7.
We thus assume that A < A*. We consider {u,} C .2(0 be such that u, solves (4.39) for
every n > 1. From Proposition 4.13 and Lemma 4.16, we infer that E)\(un) — e/\ < 107 as
n — oo. The sequence {u,} < As being bounded, we can find a (not relabelled) subsequence
such that u,, —u, weakly in wl 2(]]])). By Lemma 4.17, u,, € A Asym(]D)) and u, is a critical
point of E A

Now we clalm thatu, € As Assuming this claim holds, we have ¢} < E,\ (uy) < EA (uy)
and liminf, E; (u,) = ¢; by weak lower semicontinuity. Hence equality holds, and since
Uy € .As, we conclude that Q4 >~ u, is a minimizer for (4.29). In addition, ,B 0.00) =
and ,3 o Q4 =1 o0ndD, so that /3 0 0,MD) =[-1,1] by continuity (and Lemma 2.10).

To show that u, € JZS, we argue by contradiction assuming that u, € ZN. According
to Lemma 4.17, there exist a further (not relabelled) subsequence and r,, — O such that
iin(z) := u, (ryz) satisfies u, —u weakly in WIL’CZ (C) for some equivariant nonconstant finite
energy smooth harmonic map i. Setting r, = ,/r, and rescaling variables, we derive by
weak lower semicontinuity that

10m > ¢ = lim E; (uy) > liminf E; (uy; Dy) + liminf Ey (uy; D\ Dyy)
n—0o0 n—o0 n—o0

> liminf Eo(in: Dyyjr,) + Ex(us) > Eo(@: C) + Ex(us) > 10m, (4.42)

a contradiction. The last inequality above combines the inequality E;(uy) > 67 from Propo-

sition 4.10, with Eq(i1; C) > 4m from the classification result in [12, Section 3] (i being of

finite energy, it extends to C U {oo} ~ S? as a nonconstant equivariant harmonic 2-sphere
into S*). Hence, u, € As as claimed.

To prove (ii), we first observe that Proposition 4.13 yields ¢; = 10 for A > A,. Next

we argue by contradiction assuming that a minimizer Q, € Ag for (4.29) exists for some
A > A*. Since W(Q,(0)) = W(—ep) > 0, we have fD W(Q;)dx > 0. Therefore,

107 = ¢j, < Ex(Qn) < Ex(Q) + (A — ?»')/DW(Q,\)dx = Ex(Q:) = ¢; =107

for every A* < A/ < A, which gives the contradiction. O

Remark 4.18 1t is an open problem‘whether the solution _QA ~ u; _of (4.29) is unique or
not for each A € (0, A%). If u, (re'®) = (fo)‘(r), fl)‘(r)e’¢, fz}‘(r)e’z‘p), then choosing as
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competitors (fé\(r), j:lfl’\(r)|ei"’, Ifz)\(r)|e"2‘f’) implies that f2*(r) > 0 (since it is positive
at the boundary), and flx is real with constant sign. As a consequence, either flx =0 and in
turn u, is unique at least for A small (see Theorem A.3, Lemma A.1 and Lemma 2.10), or
f{ # 0 and both £ f]* give rise to minimizers.

Remark 4.19 The previous proof obviously breaks down in the limiting case A = A*. In
this case, it is unknown if a minimizer of (4.29) exists, or if the minimizing sequence {u,}
exhibits concentration of energy and bubbling-off of a harmonic sphere at the origin according
to Lemma 4.17.

We are finally in the position to discuss the global minimization of the energy E; in the
class (1.12). To this purpose, we define for A > 0,

ep:= inf  E3(Q), (4.43)
QA" (D)
and we recall that the constant A* > 0 is defined in Proposition 4.13, and ¢} is given by
(4.36).

Proposition 4.20 For every . > 0, we have ¢, = min{6m, ¢}} with ¢} given by (4.36),

so that A +—> e, is nondecreasing, continuous, and concave. Moreover, there exists A, €
242 28 A6 2]

[2;1—3[%’ 3 7

ey = 61 for A > A,

with Ay < A*, such that . +— e,_is strictly increasing in [0, A,], and

sym

Proof Recalling that Aﬁ (D) = As U AN, combining Proposition 4.7, Proposition 4.10,
and Proposition 4.13, we infer that ¢; = min{6m, ej} for every A > 0. It is therefore con-
tinuous, concave, and nondecreasing. Choosing A, to be the unique solution to ¢ = 6m,
the rest of claim follows from Proposition 4.13. By obvious modifications of the proof of
Proposition 4.13, we obtain the announced lower and upper bounds on A.. O

We are finally ready to prove the main result concerning 2D-minimization, i.e., to give
the full proof of Theorem 1.2.

Proof of Theorem 1.2 To prove (i) we argue as follows. According to Proposition 4.7 and
Proposition 4.10, the maps Q are uniaxial and minimizing Ej over Ay for every A > 0 with
E(Q) = 6m.Asa consequence, these maps are local minimizers of E) in A%m (D) because
in the decomposition A%m(ID)) = Ag U Ay into open and closed sets (see Lemma 2.10).
Finally, combining Propositions 4.13 and 4.20 we have ¢} > 67 and ¢; = 67 for A > A,
hence these maps are the absolute minimizers of E; because of Proposition 4.10.

In a similar way, concerning (ii), existence of a minimizer (hence, of a local minimizer)
0, in the class Ag follows from Proposition 4.15. Moreover, we have ¢; = ¢ < 6m for
A < Ay, and therefore Q; is a minimizer over A%m (D). Uniqueness for A < Ag and 1o > 0
small enough is proved in Theorem A.3 in the Appendix.

Finally, concerning (iii) we have E;  (u;,) = ej* =6mr =v¢,, = E; () for A = A,.
Hence Q and Q 2, are both global minimizers over the class A%m(]D)). O

Remark 4.21 According to Theorem 1.2, a sharp transition occurs in the qualitative properties
of energy minimizers of E; over A%m (D) for A close to the critical value A,. At A =

Ay, coexistence of uniaxial and biaxial minimizers occurs. For A > A, the influence of
the potential energy is so strong that it forces the uniaxial character of energy minimizers

(and the explicit form (4.34)), although a biaxial locally minimizing configuration exists.
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For . < A, uniaxiality is no longer energetically convenient as the effect of the potential
energy gets weaker, and minimizers are biaxial configurations satisfying 0, (0) = —ep and
E o 0x(D) = [—1, 1]. In this latter case, we see that although the boundary condition is
topologically trivial in 771 (RP?) and two uniaxial local minimizers exist, biaxial escape
occurs for energy minimizers. This phenomenon of purely energetic nature is of definite
interest, also in comparison with [9] where the biaxial escape mechanism is essentially
deduced from topological nontriviality of the boundary data.

5 Split minimizers in long cylinders

In this section, we return to the analysis of the LdG energy &, in three space dimension. We
shall discuss qualitative properties of minimizers of £, over Ag?(ﬂ) for specific choices of

axisymetric domains © € R? and boundary data Qp. Namely, we consider throughout this
section the homeotropic boundary data on 9S2 as defined in (2.4) for a domain €2 of “cigar
shape”, i.e., Q = (’ZZ o is the smoothed cylinder from Definition 2.3 in a regime where the
height 4 is large and the width £ is small.

By means of an asymptotic analysis, our aim is to show that in the regime of parameters
for which the cylinders Q;" p are very long and very thin (namely, VA < land h > 0),
minimizers must be singular for reasons of energy efficiency. In addition, we shall see that an
energy gap occurs between minimizers and any smooth configuration. This singular behavior
might be surprising since the homeotropic boundary condition admits smooth S!-equivariant
extensions, and smoothness of minimizers can’t be ruled out by some topological obstruction.
This phenomenon is clearly reminiscent of the energy gap for harmonic maps into S first
observed in [17]. By the presence of singularities, minimizers in this parameter regime are
thus of split type in the sense of [12, Section 7], and their regular biaxial sets {8 = t},
t € (—1, 1), contain topological spheres according to [12, Theorem 1.5].

5.1 Global energy identities for minimizers

We start with the following general lemma based on the partial regularity result from The-
orems 3.1 & 3.2. It provides a key integral identity to derive monotonicity inequalities and
rigidity results in the present and next section.

Lemma5.1 Let Q@ C R? be a bounded and axisymmetric open set with boundary of class
C3, and let Oy € Cch10Q; $Y be an S! -equivariant map. Let Q be a minimizer of &,
over AB’? (Q), and Q' € R3 a bounded axisymmetric open set with boundary of class C'
such that 32 and 32’ meet transversally and 0’ N sing(Q) = @. For every vector field
V e C'(R3; RY), the following identity holds,

fm, [(% VOP +W(Q))divV = > (3,0 : 8,008 V; | dx
ij

_ /Mmm [(% VOP +AW(Q)V - 7 ~ (% : %)]de, 50

where T denotes the (H%-a.e. defined) outer unit normal along 3(2 N ).

Proof We shall derive (5.1) through the Pohozaev multiplier argument, i.e., multiplying
equation (1.6) by V - VQ and integrating by parts the result. However, since sing(Q) might
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not be empty, we shall first integrate on a punctured domain, removing finitely many balls
centered at singular points, and then let the radius of this balls go to zero.

Recalling that Q € C*°(2\sing(Q)), the constraint | 0Pr=1 impliesthat Q : (V-VQ) =
0in €\ sing(Q). Hence, taking the scalar product of (1.6) with V-V Q in Q\ sing(Q) yields

AQ:(V-VQ) =iV W(Q): (V-VQ). (5.2)

Direct computations lead to

e 1 .
div(5IVOP V) = 3 IVQPdivy +Zj:(3ijQ 19;0)V,
= % IVOPdivV =) (30 :9;0)0,;V; +div((V - VQ) : VQ)
i.j

—AQ:(V-VQ), (5.3)

and
div(W(Q)V) = W(Q)divV + ViuW(Q) : (V- VQ). (5.4)

Combining (5.2)—(5.3)—(5.4), we obtain the following equality in 2 \ sing(Q),

(% IVoI? +AW(Q)) divV — Z 3 Vit Q:9;0
L]
:div[(%WQIz—I—AW(Q))V—% Vo). (5.5)

If sing(Q) = #, then (5.1) follows as in the general case, integrating by parts the right hand
side of (5.5) over QN Q’. So we may assume that sing(Q) # @. Since sing(Q) NI’ = @, we
can find o9 > 0 small enough that the balls { B2, ()} pesing(0) are disjoint and Bas,(p) €
QN Q' foreach p € sing(Q) N Q. For 0 < o < a9, we consider punctured domain

Qs = (RN Q) \ Upesing()ne Bo (p)

which is obviously a piecewise smooth domain with 92, = 9(Q N Q) U
(Upesing(Q)ﬁQ’aBa (P))

By Theorem 3.2, we have Q € cl@\ Upesing(g) Bo(p)) and Q €
C?(Upesing(0)dBs (p)). Hence AQ € L™ (Q\ Upesing(0) Bo(p)) by equation (1.6). Since
dQisofclass C3 and Qp € C11(32) € W3/22(3Q), it follows from standard elliptic theory
that Q0 € W22(Q\ Upesing(0) Bo(p)) (see e.g. [15, Theorem 8.12]). As a consequence, the
vector field

(! 2 00
@ = (2 Vol +AW(Q)>V Ve

satisfies ® € WH2(Q4; R} NC(Qy; R?) forevery 0 < o < op. By the divergence theorem
(on a Lipschitz regular domain), we have

f div<bdx:/ O 7 dH? —
- (2N

while (5.5) yields

1
/ [<7|VQ|2+)»W(Q)>divV—Zaj‘/l-B,-Q:an]dx: 1im/ div @ dx.
ane L\2 - -0 Jq,

/ O -7WdH?, (5.6
pesing(Q)ng 7 9B (P)
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Hence (5.1) follows once we prove that

. T 90 907,., ,
lim, o [(§|VQ| +AW(Q))V- 7 W'ﬁ]‘m —0 Vpesing(Q).

(5.7)

Let us now fix an arbitrary point p € sing(Q), that we may assume without loss of generality
to be the origin, i.e., p = 0. By Theorem 3.1, there exists a 0-homogeneous harmonic
map Q. which is smooth away from the origin, and an exponent v > 0 such that ||Q, —
O« ”C%E\B.) = 0(p")as p — Owith Q,(x) := Q(px).Inaddition, the explicit expression
in (3.1) yields IVO.(x)? = 2|x|72 for x # 0. As a a consequence, we easily infer the
following expansions as x — 0,

9 9
‘%‘ =o (1), ‘% =0 (Ix™) . IVOPR =24x172(1+0(D), and W(Q)=0(1).

In particular, |V — V(0)| |VQ|2 =o0 (|x|_2) by continuity of V. Since H2(3B,) = O(c?),
the previous expansions yield

) 1 90 90 2
] [(f VOP 4+ W )v ]dH
o0 2B, 5 IVl +AW(Q) SOV A
1 1
= lim <7|VQ|2+AW(Q)>V-7dH2: lim — VOV -7 dH?
o—0J5B, 2 o0 JyB, 2
1 1
= lim f —|IVOPPV(0)- 7 dH? = lim — V) -7 dH* =0, (5.8)
o—0 9B, 2 o—0 0'2 9B,
and the last equality holds since f( 2B, 7 dH? = 0 for every o > 0. O

With suitable choices of the vector field V in the previous lemma, we obtain the following
key identities in smoothed cylinders.

Corollary 5.2 Let QZ P be a smoothed cylinder and Qy, its homeotropic boundary data given
by (2.4). If Q is minimizing &) over Asym(d’ ), then the following identities hold.

(i) (radial energy identity) For every £ < r1 < ry < h — p, we have

” o
/ / ZAW(Q) dx dr
Qh

1 " 1 2 20
=—&(0,¢, NB +Z/ —/ A% +AW ——|—
. Q. ¢ ;N Bry) ; el mB,[2| tan Qb Qo) — 3 'S

1

e ¢, N Bry) +/
rl € ,N(Bry\Br) x|

3|X\

]dH2 dr.

(5.9

(ii) (horizontal energy identity) For any 0 < s < h — p such that (0, 0, £s) ¢ sing(Q)
we have

1 11002
E/ I:*|vtanQb|2+)xW(Qb)_ *‘7_) ]dH2
¢ N{|x3|<s} 2 2|10n
2
/ aQ 2
= — +2)»W(Q)] dx + (x"-VyQ): —= dH",(5.10)
¢ -1ox €N |x3|=s} 7
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where x =: (x', x3) € R x R.
(iii) (vertical energy identity) For every t|,t» € [—h + p, h — p] such that (0,0,t;) ¢
sing(Q) fori = 1,2, we have

1 0> .,
EA(Q('JI)»DZ)—*-/ 901" 3
2 Qg_pﬂ{x3=t1} ax3
1 30 |?
=Ep(Q(-.12). D) — = 99 dH?, (5.11)
2 Jet nixa=n) 19%3

where E,_is the 2D-LdG energy in (1.11).

Proof Proof of (i). For all r € (£, h — p] except finitely many if sing(Q) # 0, Q = Q:Zp and
Q' = B, satisfy the assumptions of Lemma 5.1 that we use with V(x) = x. Then V = i
on Q:Zp NdB,,and V - 7 =fon 8@:20 N B,. Noticing that

3 2

: ==
a7 ‘37

Q

on BQZZP N By,

SIS

B
because —Q =0ona¢" N B,, we infer from identity (5.1),
0x3 Lp

90

1 1 2
L, [Giver+iw@)+nw@]a=c | [5|VQ|2+AW<Q)—'j Jar?
€ pNBr oel By a7

XY

1 2
+r/ [7 IVOI2+AW(Q) — ’—[_) }dHZ,
egpmaB, 2 on

which rewrites as

1 90 | 1 d |1 1
,f Ll dH2+—2/ AW (Q)dx = — 7/ S IVOP +AW(Q) dx
rJeh naB, |01 re Jeh nB, dr | rJe} nB, 2
P P P
¢ 1 11902
s [ [ e awion - [ 22 Jare (5.12)
r2 Joeh nB, L2 2|97

Integrating (5.12) between r| and r, the conclusion follows.
Proof of (ii). We apply Lemma 5.1 with @ = Qfﬁl,p and Q' = Qtif,p for s < h — p, so that

QN Q' = ;. Choosing V(x) = (x’, 0), we notice that V - 7% =0on ¢y N {|x3| = s}, and

. 2
V-7 =ton 0¢; N {lx3| < s}. Using that % : 837 = E‘% on 3¢5 N {|x3] < s}, we

arrive at (5.10) directly from identity (5.1).
Proof of (iii). We assume that | < t; and we apply Lemma 5.1 with the domains Q = @Z 0

and @' = €5771%(0,0, (11 +1)/2). so that NQ' = €} N{r < x3 < 1}. We choose the

constant vector field V (x) = (0, 0, 1) which satisfies V = 7 on QZZP N{x3 =n},V= -7
on€} N{xs=n}and V-7 =0ondC N{n <x3 < 1} Using that 3301, = 0 on
8@2}0 N{t; < x3 < 1}, we derive (5.11) once again directly from (5.1). O

Remark 5.3 Ttis straightforward to check that identity (5.9) still holds for a ball B, (p) instead
of B, whenever p = (0,0,2) € Q, |z| <h—p,and L <r] <rp < h—p—|z|.
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5.2 A priori bounds and local compactness

In this subsection, we derive the necessary local boundedness and compactness properties
needed in the asymptotic analysis of minimizers for cylinders of divergent height.

The following result is the fundamental tool to obtain local uniform energy bounds for
energy minimizing configurations.

Proposition 5.4 Let Q:’Z’ o be a smoothed cylinder with h — p > ~/2¢, and Qy, its homeotropic
boundary data given by (2.4). If Q is minimizing &, over ASQy;n(QZp), then

I 1\ 1 N 1130
(1 - fzz(r— - —))—SA(Q, ¢t NB,)+ 1
1 r//n ¢ (B \Byy) X113 1x]
1 3 30 |?
< —&(0.¢ ,NB,) + —/ — (5.13)
r r Jep g, 19%3

for every 2L <y <1y < h —p.
Proof For /20 <rj <r < r < h — p, we set

s1i=Jrf =2 € (WWh—p), s:i=Vrt—2 e h—p), so:=/r =02 € (,h—p),

and we assume that (0, 0, &=s) ¢ sing(Q). By (5.10) and Young’s inequality, we estimate

1 s 100 * 7, »
— [ 2w(Q)dx +e¢ [5 1V Qo> + AW (Q0) = 5 | == | | an
lu ¢ N(|x3]<s) on
30 | 3
:/ Q dx+/ (x'-VyQ): —Q> dH?
e | 9x3 € Nfxa=s) on
a0 | 1 ¢ 30 |?
<f Q dx+zf ~ V0P dH2+—/ 907 1.
¢ | 0x3 9E3N(Ix3]=s) 2 2 Joesn(lxs|=s) | 0X3

(5.14)

Averaging (5.11) over t, € [—sy, s1], we derive that for any ¢ € [—h + p, h — p] such that
(0,0, 1) ¢ sing(Q),

1 aolr ., 1 N
E(Q(-.1.Dg) < = AR 4 —6(0: €
2 Jet ntxa=r) |93 25
1/ P, 1 N
<= —=| dH* + &(0.¢ nB,), (5.15)
2 ¢} Nixs=1) 9x3 V2ry ( tr rl)

using Qﬁ;' - Qﬁz p N B,, in the last inequality. Summing now (5.15) over ¢ € {£s} yields

1
ef S IVe QP ar < (E(Q(- ). Do + E:(Q(-, ~5). Dy))
¢ Nilxsl=s) 2

/ a0 V20
C?’pﬂ{lxﬂ:S}

< dH? + ~—
0x3

- &(0.¢; ,NBy). (5.16)

[NSHIR
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Noticing that CZp N{lx3] = s} = 3¢, N {|x3| = s}, we combine (5.14) with (5.16) to obtain

1 ) 1180 1*7 .,
— | 2w(Q)dx+e [5 1V Qo2 +2W(Qw) = 5 | == | | am
o e N{|x3]<s) on
30 |? 3 ¢
g/ 90 dx+z/ 99 de—i—LS,\(QQi ,NBy). (5.17)
¢ |0x3 A€ N{|x3|=s} | 0X3

Next we observe that 3€; N {|x3] < s} = BQZZ’ oN B, and € C QZ o N B,. Then, multiplying
(5.17) by 1/r?, integrating between r| and r», and then adding the resulting inequality to
(5.9) (term-by-term), we obtain

1 130
( fz(———)) Leu0.el, B+ 1122
reonrn q' N(Bry\Bry) X112 1x]
P
1 0 2 1 20| 0017 o
< —60,¢ ,NB )+f —(/ +£/ —| dH°)dr,
r Lo ) 2 Ue® [ oxs 0& "Nl =s(r)) 1 03

(5.18)

where we write s(r) 1= v/r? — €. Since €, ") < QZ ,N By, forevery r € (r1, r2), we obtain
by a change of variable,

o 20 |? 20|
/ 7([ 9e dx+e/ 9e dH?) dr
n PPN e [9x3 8¢, Nl |=s () | 9X3
11 30 ? 52 30 |?
<(———)/ %e dxH[ ﬁ(/ 9e dH?) ds
r 2/ Jep o, 10%3 5 (82423 €N |x3|=s} | 0X3
_ <1 1 ) / 30 |? ¢ 30 |
“\ron ¢ By, |9X3 e\l | 9x3
3 30 |?
3 20 (5.19)
¢ By, |0X3
Combining (5.19) with (5.18), the conclusion follows. ]

Combining Proposition 5.4 with a comparison argument, we now derive a fundamental
energy estimate for minimizers in terms of the height 4 of a “cigar shaped” smoothed cylinder.

Corollary 5.5 Let Q:Zp be a smoothed cylinder with h — p > 23/2¢, and Qy, its homeotropic
boundary data given by (2.4). If Q is minimizing &, over ASQy:l(Q:Zp), then

£(0. €} ) < 2hey2 + C),

where ¢, 2 is defined by (4.43), and C; = Ci({, p, A) is a constant independent of h. In
addition,

QZ

G| dx<Co Vre V20, h—p), (520
x3

1
-&.(0.¢,NB) +/
r ¢} B,

for a constant Cy = Cy(£, p, A) also independent of h. Moreover, the dependence of C| and
Cy on A 2 0is locally uniform.
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Proof We define ) 1= (€} \€}™") N {£x3 > O}, sothat €} = ¢} " UQf UL, and
0 = (D¢ x {£x3 = h — p}) U (9€} , N {£x3 > h — p}).

Setting & := €2, we fix Q5 € AZ"(D) such that E;(Q;) = ¢3. Since Q3 is mini-
mizing EA over Asym(]D)) Q5 is smooth up to 0D (see Sect.4). Rescaling variables, we

have EA(Q,\,H))Z) = ¢, for Q,\( ) = Q35(-/€). We define a L1psch1tz map Qh on
I setting 0" (x) := Qp(x) if x € ach N{tx3 > h — ,0} and 0"(x) := Q,(x)) if
x=("x3) eDpx{Exzs=h— p} Cons1der1ngthep01ntsp = (0,0, j:(h p/2)) € QF,
we extend Qh to the interior of Q by 0-homogeneity from the pomt p*. Then we finally
extend Qh to Qh setting Qh(x) = Q;L(x’) ifx = (', x3) € GK . By construction, we

have 0" € AW"‘& ) NLipe (€ \(p*)),

E.(0", &)Y = 2(h — p)Es (0, D) = 2(h — pe; g2,
and
£:(Q". 255) < CUIVun 0" 1725, + 1) < €1, (5.21)

fora constant C1 = C1(¢, p, ) independent of & and continuous w.r.to A. If Q is minimizing
& over AY" (€] ), then

£.(0) < E(OM) = &0, €77 + £.(0", @) + £.(0", ) < 2(h — p)es 2 +2C).

(5.22)
On the other hand, by definition of ¢, ,2, we have
h—p 8Q
E > E - x3),Dp)d
2 (0) = /_h+p (0 x3), D) x3+/h 02 |
aQ
> _
= 2(h — p)eyye +/h )3 oxs (5.23)

Since le"p NnB, C (’:Z'_p, combining (5.22) and (5.23) leads to fch 0B, |3Q |2dx < 4C;

for every r < h — p. In view of this estimate and (5.22), we can apply Proposition 5.4 with
m=h—pandr; =r > 24/2¢ to obtain

1 3
&) + */
- P r Q:ZpﬂBh,p

8C1

%2

0x3

8C
dx < 22}\[2 + 71,

1
560, ¢, nB) <

(5.24)

which proves (5.20) once we choose Co = 2¢,,2 + . Since C; is continuous in its
arguments, hence locally bounded w.r.to A, the proof is complete. O

Combining identity (5.11) with Corollary 5.5, we obtain an energy bound as in (5.20) for
arbitrary balls centered on the vertical axis.

Corollary 5.6 Let Q:Z',p be a smoothed cylinder with h — p > 23/2¢, and Qy, its homeotropic

boundary data given by (2.4). If Q is minimizing &, over ASQy:l(Q:Zp), then there exists a
constant C3 = C3({, p, A) independent of h such that

1 h
;gk(Qy Qg’p N Br(P)) < (3
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forevery p =(0,0,z2) € QZp N {x3-axis} and 2/20 <r <h — p — |z| — L.

Proof Integrating (5.11) with respect to ¢; € [z — r, z + r] and dividing the result by 2r, we
obtain

1 20/
Z—&(Q &) - o /@ o |75
1 30 |
= E,(0(-. 1), D) — 5/ s (5.25)
Qg_pﬂ{x3=t2} ax3

forevery t € [-h + p, h — p] such that #, ¢ sing(Q). Then, integrating (5.25) with respect
totp € [—r, r], we derive that

, N 20 *
£.(0. ¢!, N B,(p)) < £.(Q. E(p)) <&(Q,¢g)+§/ ™
Cy(p) | 9X3
1 30 |?
&(0.¢t, N B+ [ 921 4, (5.26)
7 2 € ,NBrtizle dx3

since QZ’pﬂB,(p) c&(p),¢, C QZPHBH_Z, and @ (p) € Q?,meerl% The conclusion
now follows from Corollary 5.5 with C3 = 2C»(1 4 1/£) and C, given by (5.20). O

Using suitable competitors, we can now deduce from the previous corollary that the energy
of minimizers remains bounded also near the top and bottom parts of the cylinder.

Corollary 5.7 Let Qf{’,p be a smoothed cylinder with h — 2p > 4¢, and Qy, its homeotropic
boundary data given by (2.4). If Q is minimizing &, over ASQY?(Q:ZP), then there exists a
constant C4 = C4(€, p, \) independent of h such that E;L(Q, QZP\QZ#)) < Cy.

Proof Applying Corollary 5.6 with » = 3£ and p* := (0, 0, :l:t) andt :=h —2p — 4L, we
infer that & (Q, €5(p*)) < Cj since €(p*) C %,p N B, (p*) with C3 = C3(¢, p, 1).
By Fubini’s theorem, we can find a level 7 € (h — 2p — 4, h — 2p — 3¢) such that
E; ( o(., £1), Dg) < C3/€. We shall now construct a competitor following an argument from
the proof of Corollary 5.5. First, we consider the domains Q,jf = (@Z p\q;) N {xx3 > 0}.
We define a map Q on BQi by settmg Q = Q on BQi N {*x; =7}, and Q = Qp On
8Qi {:l:X3 > 1 }. Then we extend Q to the interior of Qi by 0-homogeneity from the
pornt q = (0,0, £(h — p — 2¢)). As in the proof of Corollary 5.5 (see (5.21)), we have
SA(Q, th) < C for some constant C independent of £, thanks to our choice of 7. Now we
extend Q to QZYP setting 0=20Qin Q \Qi In this this way, Q € Asym (€ o) is a competi-
tor to test the minimality of Q which leads to &, (0, §2+ UQ,) < &(Q, Qh U, ) <2C.
Since QZ p\QiZ_p C Q;:' U £2,, the conclusion follows. O

The next result will be useful to turn the local boundedness in Corollaries 5.5 & 5.6 into
a local compactness property up to “the lateral boundary”. The arguments here are suitable
modifications of [12, Theorem 5.1 and 5.2], taking advantage of the translation invariance
of the Dirichlet boundary data. Before stating the result, let us define precisely the notion of
local minimality we shall use in the sequel.
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Definition 5.8 Let Qlf} be a cylinder with £ < oo. We call lateral boundary of the cylinder
Qllz, the set

dtel .= 9t N {|x3| < h) = 9Dy x (—h, h). (5.27)

An equivariant map Q € Wé’f(@h; S*) is said to be an equivariant local minimizer of &, in
¢ up 1o the lateral boundary if for every 1 € (0, h), Q € Waym(€]; $*) and £,(Q, €]) <
E)L(é, QZ) for every é € ng);,%,(ﬂlz; S4) satisfying é = Qon 8@?.

Lemma5.9 Let Q? be a bounded cylinder and Qy its homeotropic boundary data given
by (2.4). Let A; — A and {Q;} C Wsly’,%](cﬁh; SY a sequence such that each Q; is an
equivariant local minimizer of &, in Cz’ up to the lateral boundary and Q; = Qp on
Blat(’:;'. Ifsupj &,(Qj, QQ’) < 00, then there exists a (not relabeled) subsequence such that
Q; — QO strongly in Wl’z(Q:Z) for every n € (0, h), where Q, € Wsly’,%(Ch; SY is an
equivariant local minimizer of €, up to the lateral boundary satisfying Q. = Qv on 815“0:’2.

Proof By the uniform energy bound, the sequence {Q ;} is bounded in Wl’z(QZz’). Hence,
we can find a (not relabeled) subsequence such that Q ;— O, weakly in WI’Z(QQ’), strongly
in LZ(QZ?), and also a.e. in Qﬁh, for some Q. € Wsly}%](@h; 84). By w2 weak continuity
and locality of the trace operator, @, = Qp on alateﬁ. In addition, [12, Theorem 5.1]
implies that Q; — Q, strongly in W]f)’CZ(Br(p)) for every p € QIZ N {x3-axis} and r > 0
such that B, (p) C QZZ’. As a consequence, given an arbitrary § > 0 with 2§ < min{h, ¢},
we have Q; — Q) strongly in W12 in the set Dsj2 x {h —8 < |x3] < h—4/2}). By a
standard application of Fubini’s theorem and Fatou’s lemma, extracting a funher/\subsequence
if necessary, we can find n € (h—§, h —§/2) such that the restrictions Q;TL and Qf of Q; and
0. to € N {x3 = £} satisfy /Q\Ji—\/Q\;—L weakly in W!2(D,) and strongly in W!2(Ds/3).
By Lemma 2.10, we conclude that ’Q\f @f e CO9(y) and Q\Ji — @f uniformly in Dy.

Let us now fix an arbitrary é € Wsly’,% (@2’78; sH satisfying @ = Q,on 8€2’7‘3. We extend
0 to €] setting O = Q. in €/\¢4™°, and we set ; := || @j — O oo + ||§JT — 07 lloo +
27/ — 0as j — oo. For j large enough we have o; < 1, and we define v; € Wsly}%l(@; So)
as

—(=0ojn ~ ~ ~ .
%(gﬁx@ 07 () +0F @) (1 —opn<xy <,
v, x3) 1= { O(x, x3/(1 — 5))) if [x3] < (1 —a))n, (5.28)

OO N Gy - 9 () + 05 () i —n<x3 < —(1—oj)n.
ojn J

Since the restriction of Qy to 813‘@} is independent of x3, we have v; = Qp on 813‘@2.
Hence v; = Q; on 8@2. A simple calculation yields

1 ~
/“, Vv Pdx < f IVO|*dx (5.29)
¢ o l—o'j QU
4 (4

and

/@n\eu_aﬂn [Vvj[?dx < Ca,-/D IVOTIP+IVO; P+ VO P +IVO, 1P dx’
(4 (4 (4
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C, ~r =~ ~
+—(10] - QY I% + 1107 — 01 I%) < Coj. (5.30)
J

. . . . (l—0;
for some constant C = C (6, 1) mdependent J - By construction, we have [v;| = 1in 62 (Tf)r/,

and 0 < 1 —|vj| < o in GK\QZ oD . Therefore, |v;| > 1/2 for j large enough, and we
can define the competitor

~

|Uj | sym
which satisfies 0; = Q on 3¢/, Since Q; = v; in € 7"
(5.29) and (5.30) that

.12
/@,|VQ,~| dx < <
4

and |v;| > 1/2, we infer from

f IVO>dx + Coj .
e

J

(5.31)
On the other hand, Q; — Q. and éj — é a.e.in QZ. Then,
lim Aj/ W(Q;)dx =A/ W(Q«)dx and lim )Lj/ W(éj)dx
j—o0 QZ @Z j—o0 @27
=i | W(Q)dx (5.32)

¢
by dominated convergence. By minimality of Q;, (5.31)—(5.32), and weak lower semiconti-
nuity of the Dirichlet integral, we finally deduce that

£.(0x. €)) <liminf & (Q;, €)) < limsup&;;(Q;, &) < lim supgkj(éj, )
J—>00 j—o0 j—o0o

=&(0,¢)). (5.33)

Since 0 = Q. in €\&I ™2 it follows that & (Qx, €/7%) < &,.(0, €/7?) proving the mini-
mality of Q in QZ?*‘S. Moreover, choosing é = Qyleadstolim; & (9, Q:Z) = &.(0Qx, Q:Z)
which, in view of (5.32), implies that QO ; — O, strongly in W1’2(€2) (and thus strongly in
WI*Z(Q? _‘S)). The conclusion now follows from the arbitrariness of §. ]

5.3 Rigidity in infinite cylinders and proof of Theorem 1.3

The following rigidity result will be the key ingredient to deduce qualitative properties for
minimizers of &, on expanding cylinders QZ as h — +o0. To this purpose, we will heavily
use results from Sect. 4, to which the reader is referred also for some of the notation employed
here. We only recall from Theorem 1.2 that in the case A2 < Ao, the functional E; admits
a unique minimizer Q ¢ over A%m (D), and it satisfies Q ¢(0) = —ep.

Proposition 5.10 Let £ > 0 be such that A% < Lo with Mg the constant given by Theorem 1.2.
Assume that Q € Wlt’cz (o S*) is an equivariant local minimizer of &, in &3 up to the
lateral boundary satisfying Q = Q, on 9™ &3°, where Qy, denotes the homeotropic boundary
data given by (2.4). If £,.(Q, (’ZZ’) = O(h)ash — oo, then Q(x) = @g (x") where ée denotes
the unique minimizer of the 2D-functional E, over A%m (Dy). In particular, Q is smooth,
independent of x3, and Q = —eq on the x3-axis.
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Proof We first notice that
2n+1 |
n+
/ <EA(Q('7 1), D¢) + Ex(Q(-, —t),]D)z)> &(0,€87)< 2" VneN.
2’!
Hence, for each integer n, there exists i, € (2", 27+1) guch that o, th,) e Wl’z(]D)g) with

Ex(Q(+, £hy), Dg) = O(1) asn — oo.
We claim that

.0, 62") =2hue5 2+ O() asn — oo. (5.34)
We argue as in Corollary 5.5 to construct competltors and we set Qf = (C \Gh _1) n
{£x3 > 0}. We define a map Qn in € "N {lx3] < — 1} setting Qn(x) = Qg(x’) For

X € BQi N A{|x3| > h, — 1}, we set Q,,(x) = Q(x) and we then extend Q,, inside Q
by 0-homogeneity from the point p= = (0,0, £(h, — 1/2)). As in the proof of Corollary
5.5 (see (5.21)), our choice of h, ensures that E;L(Q,,, Qi) 0O(1) as n — oo. Since
£A(Q,,, QK”_I) = 2(h, — 1)ey2, the claim follows.

In view of (5.34), we now have

30 |2

d
0x3 3

h

n 1

2hpe; 2 —I—/ (EA(Q(-,x3),Dg) — euz) dxz + /h 3
—hy ¢hn

< E(Q. €)= 2hyez + O(1) . (5.35)

Recalling that E)\(Q( -, X3), ]D)[) —e2 = 0, letting n — o0 in (5.35) yields

- 1
/ (E)L(Q(-’)Q),D() - e)\lz) dxz + Am 5
— 00 -

As a consequence, there exists /Nln /" 400 such that E,\(Q( -, :I:ﬁ,,), Dg) — eyp2 aSH — O0.
Since A2 < Ag, it follows from Theorem 1.2 that Q( -, :I:fz,,) — @g strongly in wLZ(Dy).
Indeed, by weak lower semicontinuity of E,, any weak limit is a minimizer of E, over
M (Dy) so that convergence is in fact W!2-strong. Convergence of the full sequence
follows from the uniqueness of the limit. In addition, Theorem 1.2 also ensures that the smooth
map Qz satisfies @1{ (0) = —ep. Applying Lemma 2.10, we also infer that Q( -, j:fz,,) — @g
uniformly on Dy.
Finally, we construct a further competitor @n testing the minimality of Q following the
construction in the proof of Lemma 5.9. We first define a sequence a map v;, as in (5.28) with
hy in place of n, é and Q*i replaced by @g, and Q(-, +h,) instead of th Then |v,| > 1/2

%2

dx3 < 00.
0x3

for n large enough which allows us to define @n ‘= vy /|vy|. Then @n € Wsly’r%l(d’"; %
satisfies @n = Qon BGﬁ As in the proof of of Lemma 5.9, the minimality of Q implies that
E.(0, € ") < 5;(Q,,, @ ") = 25, ¢; 2 +0(1) asn — oo. Combining this upper bound with
the lower bound (5.35) with h instead of &, and lettmg n — oo we conclude that - BQ =

in @Z and E, (Q(-, x3), D¢) = ¢;42. By uniqueness of Qe, the conclusion follows. ]

Remark 5.11 Tt is not known whether Proposition 5.10 still holds for Az > > Ao, or if there
existsamap Q € W1 o (€°°, S*) whichis an equlvarlant local mlnlmlzer of &, up to the lateral
boundary connecting two different minimizers Q ¢ of E; over A ™ (Dy) as x3 — 00. One

may expect that such local minimizer do exist for M2 > w1th Q 7 (x/ ) = g (£x/) and
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g7 defined through (4.34). We have not pursued these issues, and these questions remain
open.

We are now in position to prove the main result of this section, that is Theorem 1.3.

Proof of Theorem 1.3 To prove claim (i), we argue by contradiction assuming that Q™ is
smooth for some subsequence. Notice that I, := 2, N {x3-axis} is a closed interval and that
Q,(j")(x) = e for each x € 92, N {x3-axis} = 81,. Hence Q™ = eg on I, by continuity,
which implies that 0™(. /L, x3) € An whenever |x3| < h—p. Combining Proposition 4.10
with Theorem 1.2 yields

hn—p
E(Q™, Q) > / E(Q"™ (-, x3), D) dox3 261 - 2(hy — p) = 2(hn — p)es, - (5.36)
—hutp
On the other hand, & (Q™, Q,) < 2hye;,2 + O(1) as n — oo by Corollary 5.5. Since
A% < Ay, we have ;2 < ¢, by Proposition 4.20. Hence this upper bound contradicts
(5.36) for n large enough.

Therefore sing(Q™) #  for n large enough. According to [12, Theorem 1.1], we then
have 8, (,) = [—1, 1] since this property holds for the tangent map at any singular point (see
also [12, Remark 7.18]). Finally, since €2, is connected, simply connected, with boundary
of class C3, and Ql()”) is the homeotropic boundary data, assumptions (H P1)—(H P3) in [11,
12] are satisfied and each Q(”) is a split minimizer in the sense of [12, Definition 7.11].

We now prove claim (ii). According to Corollary 5.5, Q™ satisfies the uniform bound
(5.20) whenever h, — p > r > 24/2¢. On the other hand, for each n > 0 such that
Q:Z c QZZ”p N B,, Q™ is obviously an equivariant local minimizer of &, ; In QZ up to the
lateral boundary, so that Lemma 5.9 applies. By a standard diagonal argument, we infer the
existence of a (not relabeled) subsequence such that Q(") — Q% strongly in Wl'z(QZ) for
every n > 0 asn — oo, where Q* € WIL’CZ(QZO; S* an equivariant local minimizer of £, in
€7° up to the lateral boundary agreeing with the homeotropic boundary data (2.4) on 3¢7°.
Then, letting n — oo in (5.20), we dedugg: that &, (Q*, ng) = O(h) as h — oo. Applying
Proposition 5.10, it follows that Q* = Q,. By uniqueness of the limit, the full sequence
actually converges to Q ¢ as claimed.

To prove the locally smooth convergence, we rely on the regularity results in Sect.3.1.
We fix an arbitrary n > 0, and we aim to prove that Q™ is bounded in C k (Q:Z) for every
k € N, which is clearly enough for our purposes. Let us first fix an arbitrary point x* €
Dy x [—n, n]. By smoothness of @g, we can find § > 0 small enough such that Bs(x*) C

fo and %&(Q\g, Bs (x*)) < &in/16, where i, > 0 denotes the universal constant from
Proposition 3.5. By the strong W!-2-convergence of Q, we have é&(Q("), B; (x*)) <
€in/8 for n large enough. By Proposition 3.5, it implies that Q™ is bounded in C¥ (Bj /16(x™))
forevery k € N. Nextwe fix x* € 0Dy x[—n, n] and aradiusr, € (0, £). By Sl—equviariance,
without loss of generality we can assume that x* = (x{, 0, x3) € {xo = 0}. For n large
enough, we have Q, N B, (x*) = €° N B, (x*) and 322, N B, (x*) = 3¢ N B, (x¥),
so that 92, N By, (x*) and the restriction of Ql()") to 02, N By, (x™) are independent of n.
Accordingly, the constants epq > 0 and £ > 0O from Proposition 3.6 only depends on £.
Arguing as in the proof of [12, Proposition 6.9], the equivariance of Q) implies that for
r € (0, r4/4) and every ball B,(x) C B, (x*),

1 C
7/ VO™ 2 dx < —*/ VO™ 2 ar?,
P JB,@ne € Jp, o
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where C, > 0 is a universal constant and D, (x*) := €° N B, (x*) N {x, = 0}. By the
strong Wl’z—convergence of Q™ and equivariance, the restriction of VO™ |2 to the slice
Dy, (x™) is strongly converging in L ! (Dy, (x™)). By the Vitali-Hahn—Sacks Theorem (see e.g.
(5, Theorem 1.30]), we can find r € (0, r,./4) such that [}, ., VO™ |2 dH? < LEpg/Cs
for n large enough. Hence,

1 _
sup f/ VO™ dx < &,
B, (X)CB (x*) P J B,(¥)NEF

and we infer from Proposition 3.6 that 0™ is bounded in C¥(Bg, 2(x*)N @) for every
k € N. In view of the arbtrariness of x* (either in the interior or at the boundary), by a
standard covering argument we finally conclude that Q" is bounded in Ck(QZ) for every
k eN.

It remains to prove claim (iii). Writing En = smg(Q(")) to ease the notation, we first
observe that the convergence of Q(”) towards Qg established in claim (ii) implies that X, N
{Ix3] < 1} = @ and Q" = —ey on {x3-axis} N {|x3| < 1} for n large enough. Since
0™ (gF) = ey at ¢F := (0,0, +h,) and Q™ (x) € {eg, —eo} for every x € (2, N
{x3-axis})\ X,, we deduce that both sets )],'l" =X, N{x3 > 0}and X := X, N {x3 < 0}
are nonempty (recall that X, is a finite subset of N {x3-axis}). In view of Theorem 3.1,
the restriction of Q" to (2, N {x3-axis) \ %, is constant on each connected component and
jumps from e to —ey at each point of . It easily implies that both 7 and ¥, contain an
odd number of points.

Letus now setz" := min {|p| : p € sing(Q™)} € (0, h,). We claim that h,—1, < o for
some constant o > 0. To prove this claim, we argue by contradiction assuming that for some
(not relabeled) subsequence, we have h, — ™" — too. Next we consider a point pin ¢
sing(Q™) such that | pm”‘| = tm‘“ Notice that claim (ii) implies that | p;n”‘| = tm‘“ — 00, S0
that the translated domain Qn = Q,— m‘“ satisfies Q — Casn — 00.By CorollaryS 6,
for every r > 2+/2¢ we have S;\(Q(”) Q N B,(pMin)) < Cr for n large enough (so that
r<hy—p—| pm‘“ | —£), where the constant C is independent of n. Considering the translated
map Q(”) (x) := Q™ (x + pM"), we then have &(Q(”) 2, NB,) < Cr. Arguing as in the
proof of claim (ii), we infer from Lemma 5.9 and Proposition 5.10 that 0™ — 0, strongly
in wh 2(@:") for every n > 0. In particular, Q(") — Q[ strongly in WL2(By). Since Q[ is
smooth, we deduce from Lemma 3.9 (applied in the ball By) that smg(Q(”)) N Byjp = ¥ for
n large enough, contradicting the fact that 0 € s1ng(Q(”)) Hence /,, — t™" remains bounded
from above.

Next we consider M := max {|p| : p € sing(Q™)} € (0, h,), and we claim that
1 < hy,—8 forsome § > Oindependent of n. Without loss of generality, we can assume ¢,
is achieved at a singular point p®* belonging to {x3 < 0} (the other case being analoguous).
To prove the claim, we argue by contradiction assuming that rnz = hy — ™ — O as
n — oo for some (not relabeled) subsequence. We observe that 2, N B,(q,,) = ¢q, + B:j
with Bf := B, N {x3 > 0}, and 0 = ey on 02, N B,(q,) = q, + B, N {x3 = 0}.
According to Remark 3.8, we have TLME;\(Q(”), Q,N By, (qn_)) < %EA(Q(”), Q,NB,(gq,;))-

Since 2, N B,y(g, ) < Qn\Q:?_p, Corollary 5.7 tells us that E(0M, Q, N B,(q,)) =
O(1) as n — oo. Therefore, &,(Q™, Q, N By, (g,)) = O(ty) as n — oco. Then we
consider the translated and rescaled map Q(”)(x) = 0 (g,x +q,, ) which satisfies Q(”) =
ey on B, N {x3 = 0}. Since 2, N By(g,) < Q,,\QZ_'O, we deduce from Corollary 5.7
that EM%(Q("), Bfr) = TLHS;L(Q("), @, N By(g,)) < C for a constant C independent of
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n. Accordmg to [12, Theorem 5. 5] there exists a (not relabeled) subsequence and Q*
Sym (B : $*) such that Q(") — Q* strongly in wh 2(B‘*) foreveryr € (0, 1). By continuity
of the trace operator, we have Q* =epon BN {x3 = 0}. Rescaling variables, we realize that
Q(”) is a weak solution of (1.6) in BJr w1th M — 0 in place of A. From the locally strong
W2_convergence of Q(”) we deduce that Q* is a weakly harmonic map into S* in B+ Now
we observe that (after rescaling Var1ables) Q(”) satisfies the interior monotonicity formula
from Proposition 3.3 in B+ with M’ — 0 in place of A. Once again, by the established
locally strong W1 2-convergence we infer that Q* satisfies the same interior monotonicity
formula with 4 = 0. In view of Remark 3.8 (applied to Q™), the same argument shows
that Q* satisfies the boundary monotonicity formula (3.3) with A = O for balls centered on
B1 N {x3 = 0}. This is then enough to apply the boundary regularity theory from [38] (see
also [11, Section 2]) and conclude that @* is smooth in a neighborhood of B; N {x3 = 0}. In
particular, we can find aradius n € (0, 1) such that %So(’Q\*, B;r) < egd/4, where egd > 0is
the universal constant provided by Remark 3.8. By strong W !:2-convergence, we then have
%So(é(”), B;‘) < egd/2 for n large enough. According to Remark 3.8, it implies that 0™ is

smooth in Bz, N{x3 > 0} for n large enough where k* > 01is a further universal constant. On

kn
the other hand, by construction Q(") is singular at p, = (py*™* — ¢, )/t = (0,0,7,) = 0
as n — 00, a contradiction. This proves the upper bound #*** < h,, — § for a constant § > 0
that we can choose to be equal to 1/«, taking the constant « larger if necessary.

It finally remains to prove that Card ¥, = O(1) as n — oo. By inequality in (5.26)
(applied with r = (p + @ + 1)/2 and z = h,, — r), we have &(Q(”), Q:Z”_p N {|x3| >
hn — p —a — 1}) = O(1), which in view of Corollary 5.7 yields & (Q™, Q, N {|x3| >
hy —p—a— 1}) = O(1) as n — o0. Hence, there exists a constant M > 0 independent
of n such that & (Q™, Bi/a(x)) < M for every x € {x3-axis} N {h, — a < |x3] <
hy — é}. In turn, applying Lemma 3.12 in such a ball By, (x) shows that there exists a
constant ¢ = ¢(M, A, «) > O (independent of n and x) such that |p — p’| > ¢ for every
P, P’ € Ty N Bijow(x) with p # p'. Since X, € {xz-axis} N {h, — o < |x3| < by — é},
we conclude that Card ¥, < «/c. Since this holds for every n large enough, the proof is
complete. O

5.4 Instability and symmetry breaking in long cylinders

To conclude this section, we discuss two important consequences of Theorem 1.3. We first
present a general result about the instability of singular configurations minimizing £, among
S'-equivariant maps. This instability is essentially issued from the instability of singular
tangent maps for the Dirichlet energy (see [30]).

Proposition 5.12 Let @ € R3 be a bounded and axisymmetric open set with boundary of
class C3, and let Oy € coQ; $Y be an S -equivariant map. If Q) is a minimizer of &,
in the class .A sym (Q) such that sing(Q,) # 0, then Q) is an unstable critical point of &)
in the class Agb (2). More precisely, for every radial function n € C°(B1 \ {0}) satisfying

|Vr]|2 [ n?dx < 0 and every p € sing(Q,), there exists a small r > 0 such that

for every v € S4 N Ly, Qj is unstable along the variations ®P"(x) =
El(@P7; 0;) <.

L)y, ie.,

7 (55

Proof According to Theorem 3.1, if p € sing(Q;), then there exist a degree-zero and equiv-
ariant homogeneous harmonic map Q. € C °°(]R3\{O}; S*) and v > 0 such that Q, is taking
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values in Lo @ L, and
Q" — O«llc2@p\pyy = OC") asr — 0, (5.37)

where Qf’r(x) := Q) (p + rx). By formula (3.1), we have |VQ*|2 % In turn, (5.37)
implies that [V Q"> — ﬁ locally uniformly in R3\{0}.
Recall that the second variation of the energy at a general map ® € C2°(2; Sp) is defined

as
i d? 05 +1®
&, (D; ==& | —
Mo [d,z ’ (IQA + l‘q>|>:|t=0
Using (1.6), one may proceed as for second variation formula for harmonic maps (see e.g.
[31, Chapter 1] or [11, Section 4.3]), to obtain

E, (P QA)=/Q|V<I>T|2—|VQA|2|¢T|2+A<D2W<QA)¢T>:<1>de, (5.38)

where &7 := & — (Q, : ®) 0, denotes the tangential component of ® along Q; . Choosing
r > 0 small enough in such a way that B.(p) C Q2 and B,(p) N sing(Q,) = {p}, we have
dP" e C2°(R2; Ly), and rescaling/translating B,-(p) to the unit ball B;(0) yields

£ (@ QA)—/ IVOG!2 = VP RIoY |2 + Ar2(D*W () ®Y) : & dx

Since ®%! = 57 and Q, is taking values in Lo @ L = Lzl, we infer that ®%! : Qf’r —
o1 Q*; = 0in Cloc(Bl\{O}) asr — 0. Hence QD(%’I — @01 = nv in Clloc(Bl\{O}). Since
DZW(Qi’ ) > D"W(Q,) in C]%C(Bl\{O}) and 7 is compactly supported in B; \ {0}, we
have

2 5
NE n-dx,
where we used the fact that |[v| = 1 in the last equality. By the sharp Hardy inequality
in R3 and the last equality above, there exist radial functions n € C2°(B1\{0}) such that
5(’)’ (nv; Q4) < 0 (see e.g. [11, proof of Proposition 4.7]). Then, for any such function, the
conclusion follows for  small enough. O

. /" - - -
lim £, (®7""; 03) =/ IV (o) 1* = [V Qs [5n1? dy = EJ(no; 0) :/ IV -
r—0 By By

Combining Theorem 1.3 with Proposition 5.12 and the full regularity of global minimizers
(without symmetry constraint) from [11, Theorem 1.1], we readily obtain the following
consequences for minimizers of £, in sufficiently long cylinders.

Corollary 5.13 Assume that M2 < Ao Let Q, := C?f’p for varying h, > £, h,, / +00 as
in Theorem 1.3, and Q(") = Qh" the homeotropic boundary data given by (2.4). If Qg;%n
and Q(l L, are minimizers of &, in the respective classes AY o (S and A o (2, then the

following properties hold for n large enough:

(1) sing(Qg'ylzn) %+ @ and stm is an unstable critical point of &, (under some symmetry
breaking perturbations);

(i) sing(nggb) = @ and Q(lob is not S'- -equivariant. In particular, the orbit under the

Sl-action {R - Q(lob(Rt VY rest provides infinitely many Ey-minimizers in the class
Q(n) (2), and nonuniqueness holds.
b
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6 Torus minimizers in large cylinders

We consider in this section the homeotropic boundary condition for large (smoothed) cylin-
ders, the geometry opposite to the one in the previous section. We shall prove that for
sufficiently large cylinders, any equivariant minimizers is smooth and thus of torus type,
as claimed in Theorem 1.4. This result is the counterpart of the main result of the previous
section in case of long (smoothed) cylinders but the conclusions are in the opposite direction.
In the spirit of Sect. 3, we shall exploit these two extreme cases to show that smooth and singu-
lar minimizers actually coexist for intermediate cylinders, i.e., Theorem 1.5, and deduce that
symmetry breaking occurs when minimization is performed without the symmetry constraint
(see Corollary 6.12).

The analysis in case of large cylinders resembles the one in Sect.5. It essentially relies
on a monotonicity formula, the construction of suitable competitors, local compactness of
minimizers, and regularity theory. In the last subsections, we obtain the coexistence result
of Theorem 1.5 applying the persistence of smoothness and the persistence of singularities
for minimizers developed in Sect. 3, and symmetry breaking follows by continuity w.r.t. the
thickness of the infimum values of the energy functional.

6.1 A priori energy bounds and local compactness

In this subsection, we establish some preliminary results starting with the following
monotonicity formula.

Lemma 6.1 Let Qh be a smoothed cylinder with2p < h < £ — p and Qy, its homeotropic
boundary data gzven by (2.4). If Q is minimizing &, over .A (Q: ’p), then

1 1 100
SE0.¢0, N B = —6.(0.€L, 1B + | L2
r ri € N(By\Byy) x| [0 [x]
n np 1190]?
+/ = / 2umexch+/ = / ~|=| dn* | dr
n e NB, n aeh nB, 2| 0n
(6.1)

foreveryh <ry <rp <€ —p.
Proof Forh < r < £— p, the boundaries 36[ and 9 B, are transversal and d B, Nsing(Q) =

#,hence Lemma 5.1 applies. Choosing the vector field V(x) = x inLemma 5.1, computations
analogous to those leading to (5.12) yield

d {1 N
— 7/ <7 VO +)\W(Q)> dx
dr | r q?’mer 2

_ 1/ 30 |?
rJe nos,

since Q =eyand V -1 = h on BQZ?p N B,. Integrating now over r € (ry, ry) yields (6.1). O

1 h 30 |?
dH? + 7/ AW (Q)dx + — / L1921 e,
G ,NB; dqh ,NB, 2 | an

an

The next result provides a first a priori estimate for the energy of minimizers in large
cylinders.
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Lemma 6.2 Let QZZ'! 0 be a smoothed cylinder and Qy, its homeotropic boundary data given

by (2.4). If Q is minimizing &, over A3 (€} ), then £,(Q, €} ) < K¢ for a constant K
independent of £.

Proof We prove the announced energy estimate by constructing a suitable competitor é
To this purpose, we introduce the subdomains €, := @?’p N {|x/| < £ - '?V} and Q] :=
QZZP N {|x’| > { — p}. Noticing that Oy = ey on 8@2”0 N {|x3| = h}, we set Q(x) = eg for

X € Q% To define @ in W, we consider the vertical slice Dg,, defined in (2.2). Notice that
14

£ > 2p,sothat D;g/, isatranslate of D, . Moreover, the shape of DI, is independent of £. We
¢ 20 ¢

set O(x) = Qu(x) for x € 9y NIC} | and, since O(x) = eg for x € Q] N{|x'| = £ — p),
we have O € Lip(0/; S*) and the translated map ¥ : (x;, 0, x3) € BDg,, > 0@ — 0+
2p

2p,0,x3) € S*is independent of £. Since S* is simply connected, ¥ admits an extension

W € Lip(Dg,: S*). Then we set O(x1,0,x3) = W(x; —€£+2p, 0, x3) for (x1, 0, x3) € DY,
14 14

Finally, we extend Q to QZ by S!-equivariance, that is setting Q(Rx) =R Q(X)Rt for every

ReS'andx € DS';,,. By construction Q € Lip(@’lf o S*) with a Lipschitz norm independent
~ ¢ ~ ’

of £, Q is Sl—equivariant, and Q = Qp on BQIZ’p. Hence, as in (2.14), we have

£(0.¢; )
|12 + 4|0y |?
2

+ 2)»W(\I’)> x1dxidxy < K¢,
X1

— 0.9 = n/ <|V\IJ|2 N
DQ//

for some K= K (h, p) > 0 independent of £. By minimality of Q, we have &, (Q, Q?,p) <
El(é, Q:Z p) and the conclusion follows. ]

Definition 6.3 Let 62’ be a cylinder with i < oo. We call top/bottom boundary of the
cylinder Q:?’ the set

d=¢h = 8¢ N {|x3] = h} = D¢ x {—h, h}.

. (€": $*) is said to be an equivariant local minimizer of &)
in Qﬁz’ up to the top/bottom boundary if for every n € (0,¢), Q € Wsly’r%](eﬁh; S*) and
E(0, Q:f)’) < EA(QV, (’:Z) for every é € Wsly’gl(@h; sH satisfying é = Qon 8@2.

An equivariant map Q € Wlt‘z

Remark 6.4 According to Remark 3.8, the regularity theory from Sect.3.1 applies to an
equivariant local minimizer Q of &, in @2’ up to the top/bottom boundary satisfying Q = eg
on 9= It shows that Q is smooth in the interior of € and up to =€} away from finitely
many points located on {x3-axis} N (’ZQ‘. As a consequence, the computations from the proof
of Lemma 5.1 can be performed, and as in Lemma 6.1, we infer that identity (6.1) holds for
h<r <rp</{and ij instead of Q’Z’p.

The following compactness lemma will be repeatedly used in the sequel.

Lemma 6.5 Let Q’Z be a bounded cylinder, and let {Q ;} C Wsly’r%l(eﬁh :SYH bea sequence such
that each Q j is an equivariant local minimizer of €, in QZ? up to the top/bottom boundary and
Qj=epon BZQ:?. If sup j &0, Q:? ) < o0, then there exists a (not relabeled) subsequence
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such that Q; — Qy strongly in Wl’z(Cg)for everyn € (0, £), where Q4 € Wsly}%l(Eh; SYH
is an equivariant local minimizer of &, up to the top/bottom boundary satisfying Q. = ey
on 3:@;.

Proof Since the sequence {Q ;} has equibounded &y -energy, {Q ;} is bounded in Wsly‘gn ((’Z?),
whence the existence of a (not relabeled) subsequence and Q. € Wsly’r%l(Ch; S*) such that
Q;— Q4 weakly in Wl’z(QZ?). In addition, Q« = egon SZQQ‘ by locality and weak continuity
of the trace operator.

We now argue as in Lemma 5.9. Fix an arbitrary r € (0, £) and é € (0, £ — r). Extracting
a further subsequence if necessary, by Fatou’s lemma and Fubini’s theorem there exists
n € (r,r + &) such that

lim | |Qj — Q." dH* =0 and / IVO; 1> +IVQ.|*dH> < C,
j—ooJr, r,

where I')) = Blateﬁf’] (see (5.27)), and C > 0 does not depend on j. Setting ¥, := {(, 0, x3) :
Ix3] < h}, we observe that T'; = Ugest R - ¥y By S!-equivariance, we deduce that the
restriction of Q; to y, is weakly convergent to Q in Wl*z(yn). By the compact embedding
W1'2(y,,) — C 0()7,7), we infer that Q; — Q, uniformly on ¥,. By equivariance again,
Q; — Q4 uniformly on F,,.

We fix an arbitrary Qe Wsly’,%](eff; SR satisfying 0 = 0, on BQZi'. We extend Q to G:Z
setting O = Q, in Qlﬁ \ €%, and we setoj 1= || Q; — Oullz=r,) +27/ — 0. For j large
enough so thato; < 1 andr < (1 — o)1, we define

vj(x) =
|x/| _ (1 _ 0,')?7 % X X/ ) N "
(01 (o) 0 (g ) = 2 (i) v einet
_ x/ ) h
0 1 _Uj,)g ifx e G(l_o‘/_)n.
Then v; € Wy (€); o), [vjl = 1in €_,,. and v; = Q; on 9¢; (indeed, v; =

Q; = ¢y on 8:@)). Since o; — 0, we have |vj| — 1 uniformly in Q:f’,\@:i’l_gj)n, and
thus |||v;| — l||Loo(€2) — 0. In addition, v; — Q ae. in Gﬁ because Q(-, x3) € CO(]D),,)
for a.e. x3 by Lemma 2.10. For j large enough we have |v;| > 1/2 and we can define the
competitor éj =v;/lvj| € Ws]y’,%, (@h; S*) which satisfies Qj =Qjon 8@2. As in the proof
of Lemma 5.9, we have

/h VO, dx < /h VO[> dx + Coj,
Q:W 677

which implies that E;L(é s Qﬁf’]) — &0, QZZ) as j — oo. In addition, by minimality of Q ;
we have lim sup;&.(Q;, QZZ) < lim supjﬁ,\(’ij, Q:f‘]). Letting j — oo yields &, (Qx, ng) <
liminf; £,(Q;, €}) < £.(Q. €!) by weak lower semicontinuity of £,. Since 0 = Q in
Qf’,; \ Qlﬁ', it implies that &, (Q, Q:f) < &(O, Qﬁf) proving the minimality of Q in Qi‘. As in
the proof of Lemma 5.9 again, choosing O = Q. implies the strong W !-2-convergence of
Q;inch O
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6.2 Sublinear energy growth and proof of Theorem 1.4

The next result is a key step in proving Theorem 1.4, in particular to control the asymptotic
location of the biaxiallity sets.

Lemma66 Let £; — +o0o be an increasing sequence. For each j € N, let Q; €
sym (Qh_, SY) be an equivariant local minimizer of &, in QZK up to the top/bottom boundary

sansfymg Q; = ey ond~ Q:hj. If £.(0Q;, Qﬁhj) = O(;) as j — oo, then there exists a
constant ¢ > 0 independent of j such that the following holds: for every ¢ € (0, &), there
existd; > 0 and j. € N such that

E.(Q) Byy—a. NE) < Cus(l) —de)  Yj > e, (6.2)
where C, denotes a constant independent of j and ¢. In particular,
£.(Q). Boe, NEY) =o0(t)) asj — oo (6.3)
foreveryo € (0, 1).

Proof By assumption, &,(Q;, th ) C_'K for some C > 0 independent of j. We claim that
for every € € (0, 1/2), there ex1sts an integer j. > 1 and d; > 1 independent of j such that

re(z-'—l; )*&(Q,, ) <e  VjZ=Je

where I', = BlatQZﬁ' (see (5.27)). Indeed, given ¢ € (0, 1/2) and j. > 1 to be chosen, we
have for0 <d < ¢;, and j > je,

_ 1 1[4 (&(Q;.Ty)
C > ?SA(QJ’ Q:?, \Q:Zl/._d) = Z/ (7]t)fdt
j . . jJei—a t

A

E(Q;.TH\ 1 (4 E(Q;, T\ d
> ( inf A(Qj r)) 7/ rdt > ( inf A(Q] r)) 2
re(t;—d.tj) r i Jo—a re(t;—d,t;) r 2

J

and the claim follows whenever we choose d; > 2€ and Je such that £;, > d.
As a consequence, for an arbitrary ¢ € (0, 1/2) and Jj = Je, there ex1sts r € (lj—dg, L))
such that

1

rj&(Qj, L) <e. (6.4)
J

Note that rj — 00 since £; — 4-00. From (6.4) and Sl—equivariance, we infer that for

J 2 Jes

00;

]T /
Ve
J

0x3

2 1 180, *

dX3:r—8 5 87
i T e x3
I

1
dH? < —SSA(Q],F e) <&,
Tj

where Vet = {(rj,O,x3) ¢ |x3] < h}. Since Q; (rf, 0, £h) = ey, we deduce (again by

S'-equivariance) that
10; —eo||L°°(rs) C«Vh Vi 2 Jes (6.5)

for some universal constant C, > 0.
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Next we define for j > j. and x € @i’g_,
J

x’ .
(|x/|_r;,‘+1)<Qj< £| | 3>_e0>+eo 1fx€€f;;\(’:fjs_,lv

vj(x) =
€ ifxeeh .
J
Then vj € Wsym(Qﬁ g, So) satisfies v = Qjon aeh e and |v | = 1in (’I oy Moreover,

combining (6.4) and (6 5), we obtain

/1 , |ij-|2 dx < Csrj,
G\l
J J

for some constant C independent of ¢ and j.
Now we choose ¢ € (0,1/2) in such a way that C,+/he<1/2. Then, for ¢ € (0, ¢)
arbitrary, we have |1 — |vj|| < |v§ —ey| < 1/2in Qf‘g by (6.5). Thus we can define for
J

j > jé"
5
0 = = | (€1 §%),
_] J
which satisfies éj = Qjon 8@’;5,, and
J
/¢ e IVO5|* dx < Cer§ (6.6)
&1

for afurther constant C independent of € and j. In addition, | Q; —ep| < 3| v; €—eg| <3CVh
. h .
in Q:rj: once again by (6.5). Consequently,

W(05) < C'e in cf;, (6.7)

still for a constant C’ independent of ¢ and j, by Taylor expansion of W near ey and choosing
& smaller if necessary.
By minimality of Q ;, we conclude from (6.6) and (6.7) that

£1(Q). ) < £.(05. €l) = £(05. €l \ €l _,) < Cers,

where C > 0 is still independent of j and ¢. Noticing that B,Js; N QZ’I_ c Qifg_, we deduce from
Remark 6.4 that ’

1
E(Qi, Br,—q NEM) < =&
Ej_ds A(Qj L;—de [j) rf

(0. By NEY) < Ce,

proving (6.2).
To complete the proof, we fix an arbitrary o € (0, 1). Then £; — d, > o{; for j large
enough, and by Remark 6.4 again,

75)\(Q]’ ol mQ:[)

ol &.(Qj. Bej—a, N Q’gj) < Ce.

£ 0 —d

Then (6.3) follows from the arbitrariness of ¢ letting j — oo. O
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The following rigidity result is an immediate consequence of Lemma 6.6.

Corollary 6.7 Let Q € WIL’CZ(QQ‘O; S*) be an equivariant local minimizer of &, in c’;o up to

the top/bottom boundary satisfying Q = eg on 3:¢go. If £.(0, C?) =0 as t — oo,
then Q = e.

Proof Let{; — oo be anincreasing sequence, and set Q ; := Q‘ ¢ - Then Q; is an equivari-
J

ant local minimizer of &, in Q:?j up to the top/bottom boundary satisfying Q = eg on BZQﬁf}/_
and £,(Q;, €} ) = O(¢). According to Lemma 6.6, we have &,.(Q;, Be;2N€}) = o(¢).
Let us now fix an arbitrary £ > h. From Remark 6.4, we deduce that for j large enough so
that £; > 2¢,

1 1 2
0< 5&(Q, Ben ¢h) = ;5(2. B ney) < 7605, Bey 2 ney) —0 asj— oo
J

Hence &,(Q, B¢ N QZ’;O) = 0. From the arbitraniness of ¢, it follows that Q is constant, and
thus Q = e( in view of its values on BQZL'O. ]

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4 Step I. We start proving that Q" — e strongly in W'2(¢!) for every
£ > 0. By Lemma 6.2, we have E(0M, Q) < K¢, for a constant K independent of n.
Given an arbitrary £ > h, we consider n large enough in such a way that ¢, > 2¢ 4 p. Then
ij’ C By N, € By,—p N Q. Applying the monotonicity formula (6.1) we obtain

20 2Ke
(0™, 8 < &(0™, By N Q) < ; &E(0™, By,—py N Q) < z

<4K¢.
n— P ly—p

(6.8)

In view of Lemma 6.5, we conclude that, up to a (not relabeled) subsequence, Q(”) — Q4
strongly in W1'2(€f3’) for every 0 < ¢ < oo, where O, € WI]O’CZ(Q’O’O; S*) is an equivariant
local minimizer of & up to the top/bottom boundary satisfying Q. = e on 9=¢"_ By lower
semicontinuity of &, letting n — oo in (6.8) yields &, (Qx, @2) < 4K €. Hence Corollary 6.7
applies and Q, = eg. By uniqueness of the limit, we now infer that the full sequence {Q™}
strongly converges to eg in WI’Q(Q:Z') forevery 0 < £ < oo.

Step 2. We now accomplish the proof of (ii) proving that sing(Q) = @ for n large enough

and that Q™ converges smoothly to eq locally in QZZO. To this purpose, we fix an arbitrary
£ > h and we consider n large enough so that £,, > £ + h.

Case 1: convergence near 8=¢§’. We fix an arbitrary point xo € BZCQ’. Given a radius
0 <re <h/2, By, (x0)N2, € QZ?M is a half ball for n large enough and Remark 3.8 applies
since Q™ = ey on By, (x0) N9, = Bay, (x0)NI=C!, . We fix aradius rg € (0, r,./4) such
that the conclusion of Remark 3.8 holds (it only depends on A). According to Step 1, we have
£.(0M, Ql;'Jrh) — 0 as n — oo. Therefore, %SA(Q("), By (x0) N R2,) < egd/Z whenever

n is large enough (independently of xo € 8262’), where egd > 0 is the universal constant

provided by Remark 3.8. Then Remark 3.8 tells us that Q) in smooth and bounded in
Ck(BK;,O /2(x0) NQ,) forevery k e N (independently of xq), where k* € (0, 1) is a universal
constant. By arbitrariness of xg, we deduce that sing(Q"™) N {h — 8. <|x3] < h} = @
for n large enough (recall that sing(Q™) C {x3 — axis}) and that Q% is bounded in
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Ck(@g N {h — éx<|x3| < h}) for every k € N with 6, := lcﬁro/Z > (. As a consequence,
0™ — ey in CK(€h N {h — 8.<|x3] < h}) for every k € N.

Case 2: convergence in the interior of Qf;. We fix a radius 0 < r; < 6. In view of Step 1,
we have £, (0™, QZZ’+5*) < (einr1)/8 for n large enough, where &j, > 0 is the universal
constant provided by Proposition 3.5. Choosing r| small enough (depending only on 1) and an
arbitrary point xo € € N {|x3] < h — 8.}, we then have %&(Q("), By, (x0)) < €in/8 so that
Proposition 3.5 applies. It shows that 0™ is smooth and bounded in C¥ (B /16(x0)) for every
k € N (independently of x). Once again, it implies that 0 is smooth in € N{|x3| < h—8}
for n large enough, so that sing(Q™) = @, and Q" — eg in Ck(ng N {|x3| < h —3,}) for
every k € N.

Step 3: proof of (i). We observe that the assumptions (H Po)—(H P3) from [11, 12] are satisfied
by Q™ for n large enough. Indeed, sing(Q"™) = ¢ for n large enough so that (H Py) holds

(recall Theorem 3.2). Since the boundary condition Qé") is positively uniaxial, (H P;) holds.

Then, €2, being a topological ball and Q]()”) the homeotropic boundary data (2.4), (H P») and
(H P3) trivially hold. Hence Q(”) is a torus minimizer in the sense of [12, Definition 7.6]
(for n large), and [12, Theorem 1.4] provides the announced properties of the function g, :=
BoQm.
Step 4. Now it only remains to prove (iii). To this purpose, we fix an arbitrary t € [—1, 1)
and, since E (ep) = 1, we infer from the previous step that there is an integer 7, such that
(B <t}NCh, =@foralln > .

Since Q(") is minimizing &, over AZ’? (2,,), Lemma 6.6 applies in Qﬁf}n —pr and we consider
the constant € > 0 (independent of n) provided by this lemma. We fix a value ¢ = ¢(t) to be
chosen later such that

0O<e< %min {eﬁd/(zc*), €in/(8Cs), &}. (6.9)

where C, denotes the constant in inequality 6.2. According to Lemma 6.6, we can findd; > 0
and an integer n, > n; such that
E(Q™ . Bt,—p-a, N €} _)) < Cutlly —p—ds)  Vn>ng, (6.10)

Enlarging n, and d; if necessary (see the proof of Lemma 6.6), we can assume that ¢, >
2d; +p+hforn > ng,and de > 2h + p (so that By, (x) N 0B, —p—q, = ¥ for every
X € By, —24,)- L

Let us now fix a point x,. € By, 24, N (62,—,0\@3 ») (possibly depending on n) that either
belongs to 8=¢hn_p or to thn_p N{lx3] < h — é4}. By Sl-equivariance, we may assume
without loss of generality that x, = (X, 1, X2, X4 3) satisfies x, 2 = 0 and x,; > 2h. If
Xy € 8:€hn_p,we sets :=rg € (0,h),ands :=r1 € (0, 5,)ifxy € ele,,—pﬂ“xﬂ < h—364}
(note that By (xs) < thn_p in this case). Next we denote £, := x41 € [2h, €, — 2d,),
¥ = Bs(xy) N (’:Z'n_ o N {xp = 0}, and we consider the sets

T@* = U Ry - E;‘ and T = U Ry - Z;‘,
4’6(_%%) $€(0,27)

Notice that B (x4) N QZ'H_ » S TFand T* C By,4on N QZ,— . Using the St -equivariance and
the monotonicity formula from Lemma 6.1, we derive that

2
Tl

1 1
S6(0", BNy, ) < 60", T = —-6(0", T
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2
by —p —de

4 1
b4

: &E(0™, B nel )«
i (0 tt2n N CE )

(0" Bt,—p-a, N €}, _,).

6.11)

In view of (6.10) and our choice of ¢, we conclude that for n > ng,
1o om h I
Sé‘;\(Q ,Bs(x*)ﬂgn_p) < min {sbd/Z, em/S}.

As in Step 2, by Proposition 3.5 and Remark 3.8, it implies that [VQ™| < M in Bj, (x) if
Xy € a=¢’gn_p, and [VQ™| < M in By, 16(xs) if x, € an_p N {|x3| < h — 8,}, where M
denotes a constant depending only on XA and &. By arbitrariness of x, and in view of Step 2,
we conclude that for n > ng,

IVO™| <M inBy, 2, NC; _, (6.12)

for some constant M depending only on A and 4.
We now claim that a suitable choice of ¢ = () yields

(Bn YN (By,—24, NE},_ ) =0 ¥n>ne. (6.13)

To prove this claim, we assume by contradiction that for n > n, (more precisely, for a
not relabeled subsequence), there exists x; € By, —24, N 65}" —p such that B, (x;) < t. Since

ne > ny, we must have x; ¢ Qgh. In view of (6.12), we can find aradius t € (0, &) depending
only on#, A, and 4 such that 8, < % in By (x;)N CZ —p By Sl—equivariance, it implies that
Bn < % in the set

gl .= U Ry - (B,;(x,«) N Qﬁn*/’)'
$e(0,27)

Note that the volume of T is at least half of the volume of the solid torus _J pe(0,27) Ro- Br (x1).
Setting ¢, := |x;| with x; =: (x}, x;,3), we thus have

i/ W(Q™)dx > ST S Sl & Vn>n,. (6.14)
L Jg 66

In addition to (6.9), we now choose ¢ such that

)\.C[
2C,°

e <
Asin (6.11), it follows from (6.10) and (6.14) that for n > n,,

1
he < S E(QM, T < &(Q", By N, )
t

£y +2h
2

<— (0™, By _,_g NeE
N y—y 5 (0 0 —p—de N €y, _

p) < Cye < ey,

a contradiction proving (6.13). Setting d; := 2d; + h and noticing that Ql;’n —q, € By, 24, N

Q:Zﬁ 0 the conclusion follows with n; := n,. O
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6.3 Intermediate cylinders and coexistence results

The purpose of this subsection is to prove coexistence of smooth/torus and singular/split
minimizers for intermediate cylinders. As a first step, we establish in Propositions 6.8 and 6.10
the persistence of regularity and persistence of singularities properties when changing the
shape of a smoothed cylinder.

Proposition 6.8 (persistence of regularity) Let h, £,, p > 0 be fixed with0 < 4p < €, < h,
and {£,} a sequence of positive numbers such that €, > 30,. Assume that £, — . as

n — oo. Setting Q) = Qll?),p’ Q, = ngmp, and Q, = szl*’p as well as Ql(j") and Qf
to be the corresponding homeotropic boundary conditions given by (2.4), let O, and Q

be minimizers of &, over .ASQyZ,?) (2,) and .ASQyin (24) respectively. Assume that Q, — Qx
b b

strongly in wL2(Q,) asn — oo.

(1) If sing(Qx) = O, then there exists an integer ny such that sing(Q,) = @ for every
n = Ny.
(i) Ifsing(Qp) = O for every integer n, then sing(Qy) = 0.

Proof To simplify the notation, we write Qpyp = %/Zp' Since 92,2 \ {|x3] = h} C 2,
the restrictions of O, and Q. to 0€2,/> belong at least to cz(aszb/z) by Theorem 3.2 and
Corollary 3.7 (applied at balls centered on 9€2,,2 N {|x3| = h}). To prove the proposition,
we only have to show that O, — Q, in C2(Q /2). Indeed, once this C2-convergence is
established, the conclusion follows from Corollary 3.10 in the domain £2; 5.

First, we observe that for £ < 2¢,, we have QQ’ C Q,, so that 8@2’ No, = 8=€2. Setting
ry 1= £y /2, it implies that for every x, = (X« 1, X42, Xx,3) € 8=€fjb, the set €2, N By, (x4)
is a half ball and Qf)”) = ep on 92, N By, (x4) so that Remark 3.8 applies.

By Theorem 3.2, O, is smooth in a neighborhood of d€2,. Therefore, we can find r| €
(0, r/4) (depending on 1) such that the conclusion of Remark 3.8 holds and

1 2 egd =gh
— IVO4|"dx < —= forevery xo € 075, /4
"1 J By, ()2 2 '

where the universal constant egd > 0 is given by Remark 3.8. Then we consider a finite
covering of 826229/4 by open balls Bku,l/z(xj), j=1...,J,withx; € 8262’&/4 and
k¥ € (0, 1) the further universal constant given by Remark 3.8. Since Q,, — QO strongly in
W1'2(Qb), we have for n large enough,

1
— |VQn|2dx<egd forevery j=1,...,J.
1 Br] (x_/')an

Applying Remark 3.8, we deduce that Q,, is bounded in Cz""(BKu,1 2 (x;) N §2,) for every
o € (0,1)andeach j =1,..., J. Hence Q, is bounded in the C>*-topology in
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Ls =%, N {h—8 < |x3| <h}

for some § € (0, k%r1/2).
By Theorem 3.2 again, Q. is smooth away from {x3-axis}. Hence we can find r, € (0, §/4)
such that

1 &; [
_ IVO.|?dx < % for every xo € (Qé’e?m \ €?9/4) N {lxs| <h—38/2},

By, (x0)
where €j, > 0 is the universal constant given by Proposition 3.5. Choosing r, small enough
(depending on 1), and using the strong convergence in W2() of Q,, toward Q. combined
with a covering argument (as above), we conclude from Proposition 3.5 that Q,, is bounded

in the C>%-topology in (Q:é’eb/él\@?b/‘t) N {|x3| <h-— 8/2} for every o € (0, 1).

To summarize, 0, is thus bounded in the C%“-topology in the set

LsU ((@{{W \ €}, ) N {lxsl < h — 5/2}) =Ls U (T, 4\ €} 4) = Ns.

From the strong lez(Qb)—convergence to Q,, we conclude that Q,, — O, in CZ(Nj).
Observing that 3€2,,2 C Ns, the conclusion follows. O

Proposition 6.9 (persistence of singularities) Let Q, and Q. be as in Proposition 6.8. If

sing(Qs) = {af,...,ax}, then there exists an integer n such that for every n > ny,
sing(Q,) = {af, ..., ak} for some distinct points ai, ..., ay satisfying Ia;’ - a7| — O as
n — oo.

Proof As in the proof of Proposition 6.8, O, — Q. in C 20 /2), and the conclusion
follows from Corollary 3.13 in the domain €2 ;. O

In combination with the previous propositions, we now provide the required compactness
property of minimizers as 2, — Q.

Lemma 6.10 Under the assumptions (and notations) of Proposition 6.8, assume that £,, — £,
asn — 00. There exists a (not relabeled) subsequence and Q , minimizing &, over Angin (R24)
b

such that Q, — Q strongly in W2(%) as n — oo.

Proof Notice that, by our ch01ce of the parameters, we have {x € @, : £, < r < 20} =
Nb\Qh where 2 = xl + xz, and the mapping ®, : €, — , given in cylindrical
coordinates by

(r, x3) ifr < ¢,
Ly —

b

" and Ty =Ly — Ly,

D, (r, x3) == { (opr — 1, x3) ifl, <r <28, withoy =1+
(r + ™, x3) if 26, <r < 4y,
(6.15)

is one-to-one and biLipschitz, S'-equivariant and such that ®,, (Qﬁh \€h ) = 243|> +1, \Qﬁ
For an arbitrary map Q e A o (22,,), we define Q,, = Q o &, I"and we observe that
Qn € AQ* (£24). Combining the chain rule, a change of variables, and (6.15) we obtain

1 ~ ~ ~
fo(Q, Q) < E(Qn, ) < Cr&(Q, ), (6.16)
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for a constant C, — 1 as n — oo depending only on ®,. In addition, we notice that,
if Q e AY m(Q ), then Qn IS Agym(Q*) because the ®,’s are equlvarlant Therefore,

testing the minimality of Q,, with the 0-homogenous extension of Q , we infer from direct
computatlons that sup,, £,(Qn, 2,) < 00, and thus, defining Qn = Q” o, Iand using
(6.16) with Qn = Qp, it follows sup,, EA(Qn, 2,) < 00. As a consequence, we can find a
(not relabeled) subsequence such that Qn—\Q* weakly in wl 2(Q*) Since Q,,|3Q* = Qb
independently of n and since the symmetry and unit norm constraints are weakly closed, we
have Q, € Agym(Q ). In addition, by lower semi-continuity of the energy,

E(Qx, Q4) < hmlnf&\(Qn,Q) (6.17)

sym

On the other hand, as above we have O, o &, € A o (2,), and the minimality of Q,

tggether with (6.16) applied twice (once with Qn = Qn and once with Q. o &, in place of
Q) yields

1 ~
75}»(Q11,Q*) E(On, Q) < EL(Qx 0 Py, ) < Crén(Qx, 24).

Since C, — 1, taking the lim sup,, above we deduce from (6.17) that lim,, &(Qn, Q) =
E(Ox, ). Bythecompactembeddlng wh(Q,) — L4(Q*) we have W(0,) — W(Q.)
strongly in L1(€2,). Hence, jQ |VQ,,| dx — jQ |VQ*| dx so that Qn — Q, strongly in

wh 2(Q*). Since Qn = Q, in ), C ., we conclude that Q,, — Q. strongly in wh2().
It now remains to show the minimality of Q.. To this purpose, let us fix an arbitrary

competitor Q € Agym (£24). Once again, we observe that Q o ®,, € AY 2:) (2,), and by

minimality of Q, along with (6.16),

1 ~
FSA(Qn, Q) < E(On, Q) < E(Q 0 Dy, ) < Cr&L(Q, 24).
n
Letting n — oo, we thus obtain &, (Qx, Q) < &,.(Q, ), which completes the proof. O

We are finally ready to prove our coexistence result for torus and split minimizers under
homeotropic boundary data.

Proof of Theorem 1.5 Throughout the proof we set ¢, := £9/3 < h.
Step 1. Define

{1 :=sup {f > £y : every minimizer of £, over .ASQy(rf) (R2¢) is split for everyfy < £ < E_},
b

and observe that £; < oo by Theorem 1.4. We claim that ¢; > {g. Indeed, assume by
contradiction that £; = £¢. Then, there exists a strictly decreasing sequence {€,,} such that
£, — Yo, and for each integer n, £, admits a minimizer Q, over AY ol )(an) such that

sing(Q,) = ¥. By Lemma 6.10, there exists a (not relabeled) subsequence such that Q,, —
Q. strongly in W1-2(,) where Q. minimizes &, over AQ@o) (2¢,). Applying Proposition
b

6.8, we infer that sing(Q.) = @, i.e., O is torus, contradicting our assumption on £o. Hence
L1 > L.
We now claim that £, admits both a split and a torus minimizer over AZ('?I) (2¢,). Indeed,

b
assume first by contradiction that every minimizer is split. Arguing as above with ¢ in
place of £y, it would lead to the existence of § > O such that for ;1 < ¢ < £; + 6,
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every minimizer is split, contradicting the definition of £;. Whence the existence of a torus

minimizer. To prove the existence of a split minimizer, let us consider a strictly increasing

sequence £y < ¢, < £1 such that £, — £;. For each integer n, let Q, be a minimizer of &,
sym . . I .

over Ale(fn) (£2¢,), which must be split by definition of £;. Applying Lemma 6.10, we can

find a (not relabeled) subsequence such that Q, — Qy strongly in wl 2(ng) where Qg
minimizes &, over A% (z 1) (£2¢,). Since sing(Q,) # ¥, we deduce from Proposition 6.9 that

sing(Qz) # 0, i.e., Q 1s a split solution.
Step 2. Define

£y :=inf {E > £o : every minimizer of &, over AZ:Z (2¢) is torus for every € > Z},
b

and observe that it is indeed well defined and finite by Theorem 1.4 (as the set above is
not empty). Clearly, £, > £; by definition of £;. Interchanging the roles of split and torus,
we can argue exactly as in the previous step to infer that there exists a minimizer of &, over
ASQY(I?Z) (£2¢,) which s split (assume by contradiction it does not exist, then use Proposition 6.8

b
and Lemma 6.10 along an increasing sequence £, — £» to deduce that for some § > 0, every
minimizer of £, over AZIZ () istorusforé, > £ > £,—§, hence contradicting the definition
b

of £5). The existence of a torus minimizer of &£, over ASQy(I?Z) (£2¢,) also follows as in Step 1.

b
We consider a strictly decreasing sequence ¢,, — ¢ and corresponding torus minimizers of
&, over Asz(er) (£2¢,). By Lemma 6.10 and Proposition 6.8, we can extract a subsequence
b

strongly converging in Wm(ng) toward a minimizer over ASQY(IZ) (£2¢,) which must by be
b

torus. O

6.4 Symmetry breaking in intermediate cylinders

We complete this section exploiting Theorem 1.5 to show that a symmetry breaking occurs
for intermediate cylinders of thickness £ close to the critical values 1 and ¢,. As in Corol-
lary 5.13, it relies on the full regularity of global energy minimizers [11, Theorem 1.1] among
nonsymmetric competitors, and on the continuity of the energy infimum with respect to the
thickness of the cylinder stated in the following lemma.

Lemma 6.11 Leth > 0 and p > 0 be fixed with h > 2p. For a smoothed cylinder C?’p, let
Q(Z) be its homeotropic boundary data given by (2.4). The functions

€ € (2p, +00) > Val(f) := inf {&(Q, Cip) i Qe Ao (@Zp)}
and
L€ Q2p. +00) = VaIP™(0) = inf [£,0. €], 0 € A @)
are continuous.
Proof Let ¢, — £, be an arbitrary converging sequence satifying with ¢, > 2p and

£« > 2p. Applying the Direct Method of Calculus of Variations, we can find for each n
amap Qn € Ay (€f ) and Q. € Ayen (€], ) such that (Qn, €}, ,) = Val(¢,) and
b ns b * ns
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En(Qy, Q?*, p) = Val(¢,) (see [11]). Now, we consider the sequence of equivariant biLips-

chitz homeomorphisms ®,, : QZZ’”’ e QQ}*’ o from the proof of Lemma 6.10, recalling that

their biLipschitz constants go to 1 as n — oo and that Q,(f") od = fo*) foralln e N.
We set Q, = Q0 @, ! € AQ(Z*)(Q:? o) and Oy = Qs 0®, € AQ(zn)(Q:z’ o)- Then,
b * b ns
(6.16) and energy minimality yield
Val(£y) < 5)\.(@}17 62*,,0) < Cu&i(On, Q?n,p) = C,Val(¢y)
< Cula(On. €} ) < CIE(Q4. €}, ) = CrVal(Ly),

for a constant C,, — 1 as n — oo. Hence, lim, Val(¢,,) = Val({,) showing that Val is
continuous at £,.. The same argument applies to Val*¥™ since the ®,,’s are equivariant. O

Corollary 6.12 Under the assumptions (and notations) of Theorem 1.5, there exists § > 0
such that

Val(£) < Val¥™(0) Ve € [€g, £1 + 8) U (L2 — 8, €2 + 5).

In particular, for £ € (Lo, £1 4+ 8) U (€ — &, £ + &), any minimizer of &, over .AQQ)(QZZ p)
( ,

is not S'-equivariant and there exists infinitely many minimizers.

Proof By [11, Theorem 1.1], any map realizing Val(¢) is smooth. By definition of £¢, ¢1,
and £, (see Theorem 1.5), for each € € [£g, £1] U {€>} there exists a singular map realizing
Val®™(¢). Hence Val(£) < Val®¥™(¢) for every £ € [£g, £1] U {£2}. By the continuity of
Val and Val®¥™ provided by Lemma 6.11, it follows that Val < Val®¥™ in a neighborhood of
[€o, £1] U {€2}. Then the orbit under the S!-action of a minimizer provides infinitely many
other minimizers. ]

Appendix A: Uniqueness of 2D-minimizers for A small

The aim of this appendix is to complete the proof of Theorem 4.21, showing that the minimizer
of the 2D-LdG energy E;, in the class A>™ (D) is unique whenever A > 0 small enough.
According to Proposition 4.6, the claim holds for A = 0 where the harmonic map ug given
by (4.19) is the unique minimizer even without the symmetry constraint. In Theorem A.3, we
shall prove that the same unconstrained uniqueness holds for every A > 0 sufficiently small,
and therefore in the restricted class A%m (D) as well. Our argument is inspired by the recent
interesting paper [22] addressing a similar question for minimizers of the 2D-LdG energy in
a more elaborated asymptotic analysis without the norm constraint.

We start with the following preliminary result (recall that the constant A, > 0 is defined

in Theorem 1.2).

LemmiAJ Let us € ZS given by (4.19), A € [0, A), and u; any minimizer of E;L over the
class Agﬁ(D). The family {u)\}0<)\<%* C C3(D; S*) is bounded, and u;, — us in C1(D) as
A — 0.

Proof By Proposition 4.6 and the minimality of each u;, we have

Eo(us) < Eo(uz) < Ex(uy) < EA(MS)EBEO(MS)-
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The family {u,\}0<)‘<%* is thus bounded in W12(D). Each W!2-weak limit u, along an

arbitrary sequence A, — 0 belongs to Xgﬁ(D) and satisfies Eo(us) < Eo(us) < Eo(us),
again by Proposition 4.6 and the weak lower semicontinuity of Eo. By uniqueness of us in
Proposition 4.6, we deduce that u, = us. In addition, E A, (Ua,) — Eo(us) also yields the
strong W1’2-convergence of uy, toward us as A, — 0.

To conclude the proof, it is enough to establish a C%(D)-bound on u;, since the embedding
CiD) — CclD)is compactand C 1(D) € W!2(D) is continuous. To obtain this C2-bound,
we rely on the regularity results from [11] in three dimensions.

We consider a fixed cylinder C = D x (—1, 1) and for each 2D-minimizer u; we consider
the boundary map v, € WL2(3C; S*) as the trace of uy, the latter extended to the whole
C independently of x3. Clearly, u, € WUI‘A’Z(C :S*) and it is easy to see that it is indeed the
unique minimizer because of its E »-minimality foreachx3 € (—1, 1). Thus, we may apply the
results in [11] to infer full interior regularity, i.e., that u; € C*(D; S*), and the full boundary
regularity up to the lateral boundary 9D x (—1, 1), so that u; € C®(D;S*). Finally, as
u;, — us in WH2(D) and in turn in W'-2(C) we can apply interior and boundary ¢-regularity
results on the whole family {u;}, as the scaled energy on balls centered at ¥ € D x {0}
can be made uniformly small for A > 0 small enough, to derive uniform C2-bounds for the
minimizers {u,} for A > 0 small enough. ]

In order to discuss the uniqueness property of u,, we first recall that its energy minimality
and smoothness properties yield the criticality condition

Ej (®:u3)
d ~ Uy +1d / 2 ~
=|—E,| ——— = —Auy — |Vur|“u) + AVan W) - ®dx =0,
[dz A (Iu,\-i-tcbl)],:o D( » = I Vurl“uy wan W (1))

(A.])
together with the positivity of the second variation

E/(®; uy)

d* ~ (u +1® )} / ) s e
=|—-—=E | ———— = Vor|” — |Vu,|“|®r|” + AD“W(u))®Pr.®rdx,
[dﬂ ,\<|u/\+[¢| o ]D>| 7|7 — [Vuy|*| | () Pr.Or

(A2)

defined for ® € C°(D; R @ C @ C) with @7 := & — u; (uy - P) denoting the tangential
component of ® along u; .

The following lemma guarantees injectivity of for the linearization of equations (A.1),
i.e., strict positivity of the quadratic forms (A.2) for A > 0 small enough.

LemmaA.2 Let us € As be as in (4.19), & € [0, A,) and u) be any minimizer of EA over
the class Agﬁ(]D)).
Then there exists mqy > 0 such that

[ 1veR = 19usPielax > mo [ 1veP dx. (A3)
D D
forany ¢ € WOI’Z(]D); R & C @ C). As a consequence, for A > 0 small enough we have

El (@ u5) > ?/qunz dx (A4)

forany ® € Hy := (W € Wy?(D;RGCHC) : W -u, =0).
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Proof In view of (4 19) we have us(z) = (fo(r), f1(r)e'?, fr(r)et?), where z = re'® € D
and fy(r) = 4+3 < —% in D. Since ug is a harmonic map we have —A fy = |Vus|2 fo,

where |Vug|> = (1-?—6%4)2 is bounded in D.
Since every ¢ € C°(ID; R@ C® C) can be written as ¢ = fo£ for some & € C3°(D; R@

C @ C), a classical integration by parts argument using the equation for fy gives

fDW;F—|ws|2|c|2dx=/D|Vfo|2|s|2+f§|va2—|ws|2f02|5|2dx
+1/ Vi Vgl dx
2 Jp
=/D|Vfo|2 EP + f2IVEP — [Vus]? fozlélzdx—/DA.folélzfoJrIVfolzlélzdx
=/ F21VEP dx.
D

The previous identity extends by density toany ¢ € WO1 2 (D; ReCaC) (correspondingly, to
any £ € W&’Z(D; R & Ca C)), so that in particular F(¢) := fD |V;°|2 —|Vus)? |Z12dx >0
whenever ¢ # 0.

Now we set

= inf(F(¢), llKll2=1,¢ €W, (D;R®CBC)}.

By the direct method in the Calculus of Variations it is easy to check that o, is attained and
it is nonnegative. Moreover, the previous observation shows that actually o, > 0 because of
the norm constraint. Thus, for any ¢ € W(} ‘2(]D>; R & C & C) we have

Vel = [VusP lc P dx > [mz f|ws| P dx,
/D > [ Fasie

so that for 7 : W > 0 and my : mequahty (A.3) follows.

Finally, inequality (A.4) follows easﬂy from (A.3). Indeed, for A > 0 small enough to be
chosen later and @ € H,,, so that ® = &7, (A.2) can be rewritten and estimated as follows:

E}(®;up) = / IVO|> — [Vus|? |® + (|Vus|* — |V |} | @ + AD*W (1) d - S dx
D

>mofD|vq>|2 dx—(n|ws|2—|wx|2||Loo<D>+A||DzvNV(->||Loo<s4>)/D|<I>|2dx.

Then, applying 2D-Poincaré inequality the lower bound (A.4) follows from the C!-
convergence in Lemma A.1 for A > 0 small enough. m}

We are finally ready for the main result of the appendix.

Theorem A3 Let 1 € [0, Ay) and u; a minimizer for the energy E;L over the class .Zgﬁ(]]])).
Then for X sufficiently small the minimizer is unique. As a consequence, u,,_is S'-equivariant
and it is the unique minimizer of E, over the class .ngyﬁm (D).

Proof We aim to show that for all pairs of minimizers u,, vy — us we have ||u) —v,|l;2 =
0 for every A > 0 small enough. The main ingredient in the proof is equation (A.4) in
Lemma A.2, i.e., the uniform strict positivity of the second variation E} (-; 1) along tangent

vector fields in Wol’2 for A > 0 small enough. Once uniqueness holds, then S'-equivariance
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of u) obviously follows and in turn its minimality in the subclass A (]D)) because of the
invariance property of Agﬁ(D) under the S'-action, namely, (R * u)(z) := Ru(R'z)R! for

any (u, R) € .Zgﬁ(]]])) x S!, combined with constancy of the energy functional E » along its
orbits.

We start by decomposing v;, along u, as vy = u; + w;, where in turn the difference w,
is pointwise decomposed into its tangential and its orthogonal part along u;,, i.e.,

T 1 1. T . 1
vy = uy +w, +wy, wi = [y —uy) - wpJuy, wy = wy —w; . (A.5)

From now on we assume that |wy| < 1/4 uniformly on D, which is always the case for A
small enough by Lemma A.1. Note that [wi|> + [w! > = |wy|> = —2u; - wib = 2wy,

whence [wi] =1 — /1 — [w!|? and in turn w- = u; (—1 +./1— |w{|2).

Combining the uniform convergence and C'-bounds from Lemma A.1 with (A.5),we see
that the following pointwise inequalities hold uniformly on ID for every A > 0 small enough
(the symbol < will mean inequality up to multiplicative constants independent of A), namely,

i S ] 12 < 174, 1Vwi] Sl (]| +1v]1) . ]|~ .
RCARICARSIZAR (A.6)

In view of (A.1) and (A.2), it is convenient to extend Wtoa degree-zero homogeneous
function of R @ C @ C \ {0} and to introduce the following operator,

Ej[W]=—AV — [VU?W +2DW (W), WeC)D;ROC®C\{0}), (A7)
together with its formal linearization at u,, namely,
E;[13]® i= —A® — |Vu |2 — 2(wk : vq>)uk £ D> W (1),
e C*D;ROCHC)NH,, (A.8)
so that by (A.1), (A.2) and pointwise orthogonality we have
E}(D; uy) = / Ejlu;]- ®dx, E/(®;u) = / E'uy]® - ®dx.  (A9)
D D
for any & € CD; R ® C & C) N H,. Notice that DW(uy) - ® = VianW(u;) - ® and
DzW(u VP D= DmnW(u 1)@ - ® whenever ® is tangent to S* at u; but, although these
terms could be easily computed from (1.4) and (1.1), exact formulas are irrelevant, as for our
purposes the corresponding contributions will be negligible as A — 0.

Since both u) and v, are solutions, we have Ei[v;\] = E;L[u;\] = 0, hence for w; =
wf + w; = v, —u, as above and ® = w{ € C2(D; R & C & C) N'Hy, from (A.7)—(A.8)
we infer

0 =/ (Ej[v] — Ej[u]) - w) dx
D
/D (Ei1va) F Ejlus + w] 15 E{luxlw] - Ej[u,]) - w]dx,

so that
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/ Ellww! -wldx =1 =11+111
D
= f (_E:\[ux + wy] + E; [u; + w{]) -wldx
D

+/ (Ejlwd + E{lww] — Efluw, +w]1) - w]dx.
D

Combining (A.9), (A.4) and Poincaré inequality we obtain ||w! 5 112 wi2 < I, with uniform

constant for A small enough. Thus, in order to conclude it is enough to show that I7T+111 S
0(1)”“){”%[/1,2 as A — 0, to obtain wk = 0 and in view of (A.6) also wA =0,i.e., vy = u,
for A small enough.

Concerning /11, an elementary calculation gives

Ejlux] + E{lw ] = E}lw, +w] 1= »(DW) + D*Www] — DW(wy +w]))
— 1V Py = Vs Pl = 2(Vay - Vool Y + |V + w{)] (w, +wl) =

~ ~ ~ 2
(D) + D2 W] = W +w])) +2(Vuy - Vol Yl + Vol [ @, +w]).

Using the uniform C'-bounds for uy, v, and w, together with Taylor’s theorem on DW we
easily obtain the pointwise bound

/ " T / T T 2 T 2
Ejl + By Jw] — Ejlw +w[1| S 4+ [l |+ |vul |,

so that for A < 1 small enough we obtain 711 < ||w/\ ||Loc||u))\ || 12 = 0(1)||w)\ || 12 s
A — 0 because of Lemma A.1 and (A.6).
Concerning /I, another simple calculation leads to

— B}l + wy] + Ejlw, + w] 1 = At + 2 (DW (s + wy) — DW (s + w]) )

2 2
+(2V(uk + w,\T) . wa + ‘Vwﬂ )vA + ‘V(uk + w,\T)‘ w)% .

In view of this last identity, the resulting terms in /7 can be pointwise estimated as follows.

Since w/\l = uy (—1 +.,/1- |w{|2), by orthogonality we also have
Awit - w!l = (—1+,/1 — |w{|2> Auk-w{—i—Z(V (—1+,/1 —Jw! |2> -vm) ~wl

so that the C2-bounds in Lemma A.1 together with (A.6) yield
|awt - wl| <l Pw] |+ vl D, (A.10)
uniformly on D for A small enough.
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Next, using the Lipschitz property of D W on compact sets in combination with (A.6) we
have the pointwise bounds

AM(DW s +w) = DW . +w])) - wl S awhiw] 1 S wf1P. A1

uniformly on D for A < 1 small enough. Finally, the uniform C!-bound from Lemma A.1
together with (A.6) also yield the pointwise bound

2 2
((ZV(u)\ + wAT) . Vwi‘ + ‘Vwi" )vk + ’V(u,\ + w{)‘ w,\l) . w{
S fwl | (1wt +wi) S [wl Paw] |+ Vol D, (A12)

uniformly on I for A small enough.
Collecting together (A.10)—(A.12) we finally obtain the pointwise estimate

(=Bt + wid + B+ w]1) - w] | S 1wl P (1] +19]1)

T T2 T2
S w1 (I P+ 19wl ),

so that integrating and arguing as above we easily obtain I/ < ||LU)7:||LOO||U))T”%)V]’2 =
o(l) ||w{ ”%}V‘l as A — 0, which completes the proof. O
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