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Abstract

We use the Landau-de Gennes energy to describe a particle immersed into nematic liquid
crystals with a constant applied magnetic field. We derive a limit energy in a regime where
both line and point defects are present, showing quantitatively that the close-to-minimal
energy is asymptotically concentrated on lines and surfaces nearby or on the particle. We
also discuss regularity of minimizers and optimality conditions for the limit energy.
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1 Introduction

This paper is about a physical model of a particle immersed in a liquid crystal, in a regime
where the energy is concentrated on lines and surfaces of singularities. The history of interac-
tion between variational problems and geometry has been long and of great mutual influence
[37], starting from the geometrically motivated problem of the brachistochrone curve [11,
34], Fermat’s principle in optics [14], material science [8] to general relativity [39, 58].

One particularly important problem arises when the size of geometrical objects themselves
is to be minimized leading to so called minimal surfaces [49]. A classical example is the two
dimensional soap film spanning between predefined (fixed) boundary curves, called Plateau’s
problem [29, 72, 81]. Some solutions can be constructed explicitly [27, 46] or studied through
means of harmonic and complex analysis [23, 45, 69], but a general theory was not available
until the development of geometric measure theory and its language of currents, flat chains,
mass and varifolds to describe the objects and how to measure them [4, 30, 31, 67, 83].

A different question giving rise to problems involving minimal surfaces is given by the
classical I'—convergence result of Modica and Mortola [63] (see also [61]) of a weighted
Dirichlet energy and a penalizing double-well potential to the perimeter functional. A con-
straint such as a prescribed volume ensures the problem to be non trivial. The energy typically
is concentrated in regions where none of the favourable states of the potential are attained. For
the limsup inequality, one constructs a one dimensional profile that minimizes the transition
between the favoured states.

Another variational problem in which geometry appears is given by the Ginzburg-Landau
model. In the famous work [13], the (logarithmically diverging) leading order term and (after
rescaling) a limit problem have been derived. The limiting variational problem is geometric
and consists in finding an optimal distribution of points in the plane subject to constraints
coming from the topological degree of the initial problem. This approach stimulated research
which lead to a large literature [3, 16, 21, 41, 50, 60, 75], in particular for problems in
micromagnetics [42, 48], superconductors [33, 47, 76] and liquid crystals [10, 43, 51].

Our work combines many of the before mentioned ideas to describe the different contri-
butions and effects that take place in our problem. For example, we use the generalized three
dimensional analogue of estimations in [13] as considered in [19, 21, 22, 44, 74] to obtain a
length minimization problem for curves. Coupled with this optimization problem, we show
using a Modica-Mortola type argument that the remaining part of the energy concentrates on
hypersurfaces which end either on the boundary of the domain or on the described line.

The main motivation for this article was the study of the formation and transition of
singularities in colloidal nematic liquid crystals, in particular the Saturn ring effect. It has been
observed in experiments that nematic liquid crystals may exhibit line and point singularities.
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Those can take the form of a ring around one or several of the colloidal particles depending
on the shape and size of the particles and the strength of an external electric or magnetic field
[53, 54, 64, 68]. This phenomenon is caused by the incompatibility between the boundary
condition at the surface of the particle where a positive topological charge is created, and the
condition at infinity where an electric or magnetic field enforces a uniform alignment of the
molecules in the direction of the field. While spheres are the most studied particles, there is
also a considerable interest in defect structures around non-spherical inclusions [7, 73, 82].
For the study of phenomena such as self assembly [78, 79, 88] usually a large number of
particles is needed. In this work however, we focus on the simpler case of a single colloidal
particle as a first step for understanding the complex interaction that takes place in colloidal
systems [35, 55, 68].

This article is the continuation of the work started in [5] where we studied a spherical
inclusion, our main theorem (Theorem 3.1) is a generalisation of Theorem 3.1 in [5] (see
Remark 3.3). In particular, our new theorem holds for an arbitrary manifold of class C?
instead of a sphere and we remove the hypothesis of rotational equivariance and convexity.

Although the applied ideas could be used to carry out a similar analysis for a larger
class of energy functionals, we place ourself in the context of the Landau-de Gennes model
for nematic liquid crystals. A common way to describe liquid crystals is by introducing a
unit vector field n, the so called director field, for example in the Oseen-Frank model. The
vector n represents the local orientation of the liquid crystal molecules. In practice, it is
often not possible to distinguish between n and —n, so that n should rather be R P2 —valued,
where R P2 is the two-dimensional real projective space. More generally, one can think of
describing the arrangement of the molecules by a symmetric probability distribution p on
the sphere of directions. Because of the symmetry, the first moment of p vanishes and the
(shifted) second moment Q is a symmetric traceless matrix (also called Q—tensor), which
is used to represent p in the Landau-de Gennes model. In the following we will denote
Symy the space of such symmetric traceless matrices. Under this identification, the uniform
distribution on the sphere corresponds to the isotropic state in which all three eigenvalues
A1 = Az > Az of Q are equal to zero or equivalently O = 0. In case two eigenvalues are
equal, we call Q uniaxial. More precisely, if A; > Ay = A3 we say that Q is prolate (or
positively) uniaxial, while if A; = A > Az it is called oblate (or negatively) uniaxial. If
all three eigenvalues of Q are distinct A; > Ay > A3, we speak of a biaxial Q—tensor.
A particularly important role is played by the set A/ of prolate uniaxial tensors of a given
norm as they are minimizers of the ordering potential in the Landau-de Gennes energy as we
will see in Sect.2.1. Elements Q € N can be written as Q = s,(n ® n — %Id) (s« being a
constant depending on the liquid crystal) and thus allow an identification with the director
field in direction £n. On the other hand, singularities are described by situations in which one
cannot identify a director field, e.g. if Q is isotropic or oblate uniaxial. However, the analysis
carried out in this paper does not discriminate between the two different possibilities as they
have asymptotically the same energetic cost in our regime. Nevertheless, in [17] it has been
proven that in some situations an oblate uniaxial defect core surrounded by a biaxial region
has strictly smaller energy compared to an isotopic core. We refer the interested reader to
[9] for a more detailed introduction to Q —tensors, the Landau-de Gennes energy and related
models for liquid crystals.

As we will see later in Sect. 2.1, the Landau-de Gennes model in our case comprises three
contributions related to the elastic, ordering and magnetic energy. The relative strength of
the individual terms are modulated by the dimensionless parameter & describing the ratio
between elastic and bulk energy, while 7 couples the elastic with the magnetic term. We are
concerned with the limit of , £ — 0, which can be physically interpreted as a limit of large
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particles and weak magnetic fields, see [5, 36]. This regime has been studied previously in
[2] for a spherical particle under the assumption that n|In(¢)| — 0 as n, & — 0 in which
a Saturn ring structure is found. In [1] the authors treated the problem in the absence of a
magnetic field, i.e. for n = oo. For & — 0 they deduce that a point defect occurs. Our work
places itself in the intermediate regime in which n|In(§)| — B € (0, 00) as n,& — 0. As
seen in [5] for a spherical particle, this regime allows for incorporating different minimizing
configurations, depending on the parameter 8. In a forthcoming paper [80], we are going to
develop numerical methods to calculate the minimizing configurations around non-spherical
particles based on the results in this work.

2 Preliminaries

Before we can state our results, we give a short introduction to the Landau-de Gennes model
that we use here and the concept of flat chains, stating some results that will be used later in
the proofs.

2.1 Landau-de Gennes model for nematic liquid crystals

Our article has been motivated by the study of liquid crystal colloids with external magnetic
field. Let E C R3 be a colloidal particle and let @ := R\ E be the region occupied by the
liquid crystal. The Landau-de Gennes energy with additional magnetic field term [71, Ch. 6,
Secs. 3—4 and Ch. 10, Sec. 2.3] (see also [28, Ch. 3, Secs. 1-2]) can be stated in dimensionless
form as

_ [ Yyops L 1
£,6(0) = /92|VQ| + 5@+ —52(Q)+ Co dx. ()
where the energy density f is given by
b
(@) = € = Su(Q?) - 31(Q") + (@), )

and g is a function taking into account the effects of the external magnetic field in a way
we formalize a bit later in this section. The function Q : € — Sym, is a tensorial order
parameter taking values in the space of symmetric traceless matrices

Symg = {Q e R¥? : 0T = Q and tr(Q) = 0},

equipped with the norm || 0l? = tw(Q?). It is used to describe the local distribution of
orientation of the liquid crystal molecules. We consider the case when the parameters 1 and
& converge to zero in a regime where n|In(§)| — B € (0, 00). The constant Co = Co(n, &)
(resp. C) is chosen such that the energy density (resp. f) becomes non-negative and with
minimal value 0.

The following properties of f are going to be used in the sequel:

1. The function £ is non-negativeand A" := £~!(0) is a smooth, closed, compact, connected
manifold, diffeomorphic to the real projective plane R P2. Note that A is given by

N:{s*(n@)n—%ld) : neSz},

for s, = ﬁ(b + /b2 + 24ac) (cf. [57]) and in particular Q is prolate uniaxial.
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2. We need f to behave uniformly quadratic close to its minima, i.e. we assume that there
exist constants 8y, y; > 0 such that for all Q € Sym,, with dist(Q, ') < & it holds

Q) = yidist?(Q,N).

3. Lastly, we need to quantify the growth of f. More precisely, we assume that there exist
constants Cy, C» > 0, such that for all Q € Sym,

2 \2
f(Q)ZC1<|QI2—§Sf> . Df(Q):0=Ci|0' (.

It can be checked that f given in (2) satisfies these assumptions [5, 17, 19, 57]. The exponent
4 in the last assumption is not crucial but only needs to outweigh the growth of g.
We also recall the following facts about the geometry of Sym,:

1. Elements Q € Sym, admit the following decomposition: There exist s € [0, 00) and
r € [0, 1] such that

Q:s((n@n—éld)—l—r(m@m—%ld)), 3)

where n, m are normalized, orthogonal eigenvectors of Q. The values s and r are con-
tinuous functions of Q.
2. The set where decomposition (3) is not unique, is given by

C == {Q € Symy \ {0} : r(Q) =1}U{0}, “

i.e. C consists of the isotropic as well as the oblate uniaxial states. Another characterization
of CisC = {Q € Symy : A1(Q) = A2(Q)}, where the two leading eigenvalues
of Q are denoted by Ay, A>. Moreover, C has the structure of a cone over RP? and
C\{0} ZRP% x R.

3. There exists a continuous retraction R : Sym, \ ¢ — N such that R(Q) = Q for
all O € N. One can choose R to be the nearest point projection onto N In this case,
R(Q)=s,(n®@n — %Id) for Q € Sym(\C decomposed as in (3).

The energy density g in (1) incorporates an external magnetic field into the model. This
motivates the following assumption:

1. The function g favours Q having an eigenvector equal to the direction of the external field,
in our case chosen to be along e3. More precisely, assume g is invariant by rotations around
the e3—axis and the function O(3) 3 R — g(RT QR) is minimal if e3 is eigenvector to
the maximal eigenvalue of R T Q R. Decomposing Q as in (3) with n = e3 and keeping
s and m fixed, then g(Q) is minimal for » = 0. For a prolate uniaxial Q € N, i.e.
Q0=s5s,n®n— %Id) for s, > 0 and n € S? we have

g(0) =c2(1—njd). 5)

The precise formula for g in (5) is not crucial to our analysis, but for simplicity we assume
this particular form. It would be enough to assume that g|ar has a strict minimum in Q =
sq(e3 ® ez — %Id), see Remark 4.18 in [5]. Besides this physical assumption, our analysis
requires g to satisfy the following hypotheses:

2. The function g : Sym, — Risof class C? away from Q = 0 and in particular satisfies the
Lipschitz condition close to N: There exist constants 81, C > 0 such that if O € Sym,
with dist(Q, M) < § for 0 < § < &1, then

18(Q) — g(R(Q)] = Cdist(Q, N). (6)
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3. The growth of g is slower than f, namely

lg(Q)] < Ca+10h, (7
IDg(Q)] < C (14101, ®)

for all Q € Sym, and a constant C > 0.

A

A physically motivated example that satisfies those assumptions [5, Prop. A.1] is for
example given by

2
g(0) = 3%~ 033. ©)

Under these assumptions on f and g, it has been shown in [5, Prop. 2.4 and Prop. 2.6]
that g acts on f as a perturbation in the following sense:

Proposition 2.1 For &, 7 > 0 with &€ < n, there exists a smooth manifold N, ¢ C Symy,
diffeomorphic to N such that

£ .
F@)+ 8@+ E2Co(5,m) = y2 dist*(Q, Niye) (10)
for a constant y, > 0. In addition, there exists a constant C > 0 such that
52
sup dist(Q,N) < C. (11)
QE./\/.n_g n

Furthermore, there exists a unique Q¢ oo € Ny e such that

.1 1
oo — < + — )
On.c, ng;;l;lr; &2 f(0) nzg(Q)

given by Qp g0 = Spe.+(€3 ® €3 — %Id), where |sy; — s«| < Ct.

This shows that the constant Cy in (1) should be chosentobe Co (&, ) = — ;—2 f(Qy00)—

L2(0y.6.00) = 0 and it also holds true that Co(§, 1) < C&2/n".

Since s;,¢.+ —> 5x,0 = S4 for &, 7 — 0 in our regime, it is convenient to also introduce
Ooo = s«(e3 Qe3 — %Id) which minimizes E_Zf(Q) + r/_zg(Q) among Q € N.

So far we have seen that the strong weight %z in front of the bulk potential f (compared to

# for g) favours Q to be close to the manifold V. In other words, we expect energy related
to f to be concentrated in regions where Q is far from N In a sense that is specified in
Theorem 3.1, this region is related to the set where Q takes values in C. In the same spirit
we remark that under prolate uniaxial constraint, g prefers the normalized eigenvector n
corresponding to the largest eigenvalue to have a large third component n3 as formalized
in (5). Therefore we expect that the energy contribution coming from g is concentrated on
domains where |n3| ~ 0. More precisely, we introduce

T ={0€eSymy; : s>0,0<r<1,n3=0}, (12)

where 7, s, n are defined as in (3). We study properties of 7 later on in Sect. 4.3 and Sect. A.
Most importantly, we will show in Corollary A.3 that 97 = C. This is a consequence from
the fact thatif »(Q) = 1, then Q has a two-dimensional eigenspace for the largest eigenvalue
which necessarily intersects the hyperplane {n3 = 0}.
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2.2 Flat chains

One of the main results of this paper is that the previously described energy concentrates on
lines and surfaces when 7, & — 0. In order to state our main theorem, we therefore need an
appropriate framework to describe geometric objects such as lines, surfaces and boundaries
which is provided by geometric measure theory and in particular flat chains [86, 87]. The
very basic idea of geometric measure theory is to represent geometric objects as elements
of a vector space and therefore allows for algebraic operations such as addition. In that
respect, flat chains are such elements which in our case are dedicated to represent surfaces
and lines. In the following we give a quick overview of the most important results that we use
subsequently. For a detailed and complete presentation of flat chains and geometric measure
theory, we refer to [30-32, 67, 77].

Polyhedral flat chains. Let G be an abelian group (written additively) with neutral element
Oand |- |: G — [0, 0co) a function satisfying |g| = Oifandonlyif g =0, | — g| = |g| and
lg + h| < |g|+ |h| forall g,h € G. In this paper, we are only concerned with the easiest
case of G = Zp and | - | the normal absolute value. For n, k € N, k < n, we denote by pk
the group of polyhedral chains of dimension k with coefficients in G i.e. the set of formal
sums of compact, convex, oriented polyhedra of dimension k in R"” with coefficients in G
together with the obvious addition. We identify a polyhedron that results from glueing along
a shared face (and compatible orientation) with the sum of the individual polyhedra. Also, we
identify a polyhedron of opposite orientation with the negative of the original polyhedron.
An element P € P¥ can thus be written as

P
P = goi. (13)
i=1

where g; € G and o; are compact, convex, oriented polyhedra that can be chosen to be
non-overlapping. Note that in our case of G = Zj, the non trivial coefficients g; all equal
1 and that the orientational aspect of the above definition becomes trivial. This reflects the
symmetry of the director field n ~ —n in the sense that around singularities we change
orientation of n without changing the physics. In other words, we can lift Q locally away
from singularities to obtain a well-defined director n, but in general it is not possible to
combine those local liftings into a global one. The boundary do of a polyhedron o is the
formal sum of the (k — 1)—dimensional polyhedral faces of o with the induced orientation
and coefficient 1 under the above mentioned identifications. Note that 9(do) = 0. We can
linearly extend this operator to a boundary operator 3 : P¥ — PK—1,

Mass and flat norm. For a polyhedral chain P € P* written as in (13), we define the mass
M(P) = 3P, |gi|H* (07) and the flat norm F(P) by

F(P) = inf{M(Q)+M(R) : P:8Q+R,Qe7?‘k+l,RePk}.

Obviously it holds F(P) < M(P) and F(d P) < [F(P). One can show that F defines a norm
on PX [32, Ch. 2].

Flat chains and associated measures. We define the space of flat chains F* to be the
F—completion of P¥. The boundary operator  extends to a continuous operator 9 : F*¥ —
F*=1 and we still denote by M the largest lower semicontinuous extension of the mass which
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was defined on PX. Furthermore, one can show [32, Thm 3.1] that for all A € F¥
F(A) = inf{M(Q)-i—M(R) : P=00+R,Q0eF* R efk} .

For a finite mass flat chain A € F* and a measurable set X C R”, we can define the restriction
AL_X via an approximation by polyhedral chains, for which the restriction coincides with the
intersection under some technical assumptions and passing to the limit. A precise definition
is given in [32, Ch. 4]. We also use the notation M(A, X) := M(AL X) and F(A, X) :=
F(A L X). To each flat chain A € F¥, there exists an associated measure 4 (see [32, Ch.
4]) such that for each 4 —measurable set X, AL X is a flat chain and w4 (X) = M(AL X).
The support of A is denoted supp (A) and given (if it exists) by the smallest closed set X
such that for every open set U D X there exists a sequence of polyhedral chains (Pj);
approximating A and such that all cells of all P; lie inside U. If A is of finite mass, then
supp (A) = supp (1 4) (see [32, Thm. 4.3]).

Cartesian products and induced mappings. In the case of finite mass flat chains A, B (or
one of the two chains having finite mass and finite boundary mass), it is possible to define the
product A x B (by polyhedral approximation), see e.g. [32, Sec. 6]. In particular, it is always
possible to define [0, 1] x B. For U C R", V. C R™ open sets and a Lipschitz function
f : U — V, one can define an induced mapping f3 on the level of flat chains, i.e. for a flat
chain A supported in U, f#A is a flat chain supported in V (see [32, Sec. 5] and [31, Sec. 2
and 3]).

Generic properties and Thom transversality theorem. A property of an object (such as
a function or a set) that can be achieved by an arbitrarily small perturbation of the object
is called generic. Examples are properties that hold in an “almost everywhere” measure
theoretic sense or that are true on a dense subset. In this work we encounter two such
properties: Two dimensional planes generically do not contain a fixed single point (can be
achieved by shifting normal to the plane). The second one is that a smoothmap f : M — N
generically intersects a submanifold S C N transversely i.e. df(Ty M) + TS = Tr)N
for all points x € f~!(S). The latter will be used to apply Thom’s transversality theorem
[85] in the form given in [40, Thm. 2.7].

Deformations. In certain situations it is beneficial to approximate a flat k—chain A by a
polyhedral k—chain P. The usual way to construct P is through “pushing” A onto the
k—skeleton of a grid in the following way. In this paper, a (cubic) grid of size 4 is understood
to be a cell complex in R? which consists of cubes of side length /. The “pushing” operation
consists of a radial projection of A from the center of each cube onto the faces of the cubes,
assuming that the center does not lie on A. Then, on each face the projected flat chain gets
again projected from the center of the face onto the edges (as long as the projected chain does
not contain any face center point). This procedure is stopped once the projected flat k—chain is
contained in the k—dimensional skeleton. This deformation procedure is a crucial ingredient
to prove that every A € F* can be written as A = P + B + C, where P € FXisa
polyhedral chain, B € F*and € e Fktl satisfy the estimates M(P) < M(A) + hM(dA),
M@ P) < M(3A), M(B) < hM(3A) and M(C) < hM(A), see [86] or [32, Thm. 7.3].

Compactness. One point of importance from the perspective of calculus of variations are the
compactness properties of flat chains whose mass and the mass of their boundary is bounded.
We will use the result from [32, Cor. 7.5] which holds for coefficient groups G such that for
all M > Otheset{g € G : |g| < M} is compact. This is trivially true in our case where
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G = 7. Let K C R" be compact and C; > 0. Then the corollary states that
{A e F* + supp (A) C K and M(A) + M(3A) < cl}

is compact.

Rectifiability. Another aspect of flat chains concerns their regularity and if one can define
objects originating in smooth differential geometry such as tangent spaces. It turns out that this
can be achieved a.e. provided the flat chain is rectifiable. By definition, rectifiability of a flat
chain A € F* means that there exists a countable union of k—dimensional C' —submanifolds
N of R" such that A = AL N [87, Sec. 1.2]. A rectifiable flat chain admits an approximate
tangent plane for H¥—a.e. x € A [6, Thm 2.83]. Such a point x is called rectifiability point
of A and we denote rect(A) the set of all points of rectifiability of A. For finite groups G,
finite mass M(A) < oo implies rectifiability of A, see [32, Thm 10.1].

3 Statement of result

Our main result concerns the asymptotic behaviour of the energy &, ¢ forn, § — 0.Physically
speaking, we consider the regime of large particles and weak magnetic fields, see [5, 36] for
more discussion of the physical interpretation of our limit.

The liquid crystal occupies a region €2 outside a solid particle E, i.e. @ = R3\ E. We
assume the boundary of the particle M := 0E to be sufficiently smooth for our analysis,
that is we require M to be a closed, compact and oriented manifold of class at least C2. The
regularity will be needed to ensure that the outward unit normal field v € C! of 3E or in
other words M has continuous curvature. Furthermore, we assume that

I' = {weM : vi(w) =0}

is a C2—curve (or a union thereof) in M and that V13 # 0 everywhere on I" (seen inside
the tangent bundle 7' M), see also Remark 3.2.

In order to make the minimization of the energy &, ¢ non trivial, we impose the following
boundary condition on M:

Q0 = Qp = 54 (v@v—%ld) on M. (14)

Indeed, without (14) the minimizer of £, ¢ would be the constant function Q; ¢ ~. We define
the class of admissible functions A = {Q € H'(Q, Symg) + Op.e,00 : O satisfies (14)}.
It is convenient to define the energy 5;]‘}5 for 0 € HY(Q, R¥>3) + On.6,00 by

Ene(Q) if Qe A,

+00 otherwise .

Ene(Q) = :

We also use the notation &, (Q, U) (resp. 5,;‘}5(Q, U)) for the energy &, ¢ (resp. 55‘}&_) of
the function Q on the set U.

Theorem 3.1 Suppose that

nnéE)| — pe(0,00) asn—0. (15)
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129 Page 10 of 62 F. Alouges et al.

Then n 5;]45 — & in a variational sense, where the limiting energy & is given by

v
E0(T. 8) = 25.c,Eg(M, €3) + ds.c. f |cos(®)] digi_uq + 5 STBM(S)
M
+4s,0,M(T L Q) (16)

for (T, S) e Ay == {(T,S) € F2 x F!' : 9T = S + T} and where

Eo(M, e3) = / (1 —cos(#)) dw +/ (14 cos(@)) dw .
{v3>0} {v3=0}

The letter 6 is used to denote the angle between e3 and the outward unit normal vector
v(w) at a point w € M. The variational convergence is to be understood in the following
sense: Along any sequence ny, & — 0 with ni|In(é)| — B (not labelled in the following
statements):

1. Compactness and T'—liminf: For any sequence Q¢ € H'(Q,R¥>3) 4+ Q6,00 Such
that there exists a constant C > 0 with

n & (Qne) < C, (17)

there exists (T, S) € Ay, functions Q,,g € C™(Q2, Symy) with llm,, >0 10y —
Qn;an =0and Y, € Symy with ||Yy ¢|l — O such that T, s = (Qng —Yy.0) N (D),
Sp.e = (Q,] e—Ype)” L) for T and C given as in (12),(4) are smooth flat chains with

0Tpe = Spe + Iy (18)

Here, 'y ¢ is a smooth approximation of T which converges to I" in Hausdorff distance and
hence also in flat norm. For any bounded measurable set B C 2 it holds 8 (Q,7 £, B) <
77, E (Qn,e, B) + Cp for a constant Cg > 0 and, up to extracting a subsequence,

lim F(T,: —T,B) = lim F —S,B)=0.
m (Ty,¢ ,B)=0, Jm (Sye —S,B)=0 (19)

Furthermore, we have

liminfy &% (Qn.6) = &(T. ). (20)

2. T'—limsup: For any (T, S) € Ao, there exists a sequence Q¢ € Awith |Qpellre <
\@sn,g,* such that (18),(19) hold and

limsup 1 €% (0p.) < &(T. S). Q1)
n—0

Remark 3.2 (Assumptions in the theorem)

1. We note that due to our assumptions g € (0, co), the global energy bound (17) can be
reformulated as

EA(0y0) < €I

This reflects the classical behaviour of a logarithmic divergence of the energy close to
singularities as already observed in earlier works e.g. in [13].

@ Springer



Convergence to line and surface energies in nematic liquid... Page 110f62 129

2. If Q¢ is smooth enough (for example C?) and verifies a Lipschitz estimate as in (26)

forn ~ £74 a €[l1,2), we can choose 677/5 = Qy.¢ in the above theorem. This is
particularly true if Q,, ¢ is aminimizer of (1). Indeed, from the Euler-Lagrange equations,
one can deduce the regularity and the required estimate on the gradient [12, Lemma A.2]
withn ~ &£~1,

3. The compactness claim holds for almost every ¥ € Sym, with ||Y|| small enough. The
norm converging to zero is needed to recover the condition 37 = S+ 1T, the stated energy
densities on T L M, and the coefficient in front of M(7T L ).

4. Another possibility of introducing S ¢ is by using the operator S defined in [20, 21].
In our notation, this operator maps a function Q from (L% N whiyQ, Symg) to
LY(By+(0), F1), where o, > 0 and By+(0) C Sym,. In other words, S allows us to
define a flat 1—chain Sy (Q,,¢) for @, ¢ € (L N W) (Q, Symy) and ¥ € By+(0).

5. The assumption of I' = {w € M : v(w) - e3 = 0} being a C2—curve is not very
restrictive. In fact, this can already be achieved by a slight deformation of M which
changes the energies &, ¢ and & in a continuous way. The assumption that V,v3 is
nowhere vanishing on I" is used as a sufficient condition to ensure that the perturbed sets
I';,¢ stay regular and in a neighbourhood of I'. In fact, since v3 = 0 on I" the derivative
vanishes in the direction tangential to I', so the condition is only on the part of V,v3
normal to I'. In particular, the condition is verified if the Gaussian curvature |k r¢| > 0
onl.

Remark 3.3 (An alternative formulation of &)

1. We can express the energy (16) inaslightly different way by writing iy, = xGHLM
for a mesurable set G C M and defining

F ={weM\G :viw)-e3>0U{weMNG : v(w) - -e3 <0}. (22)

Then, (16) reads

(T, S) = 2s*c*/(1 — cos(0)) dw+2s*c*/ (1 + cos()) dw
F M\F
+ %sfﬁM(S)+4s*c*M(Tl_Q). (23)

The idea behind this reformulation and the definition of F is the following: Assume for
&,n > 0 that Q takes values in N\ such that (at least locally) we can lift Q to a director
field n. Because of the boundary condition, we can assume that for a given point w € M
it holds that n(w) = v(w). Following a ray in normal direction starting from w, n must
approach *ej3 since far from the particle, Q must be close to Q. If v3(w) > 0, it is
energetically favourable for n to approach +e3. On the other hand, the ray intersecting
T means that n switches sign, i.e. if we start from v3(w) < 0 and cross T only once, n
converges to +e3. In this sense, the set F' can be understood as the region on M in which
the lifting n along the rays starts from v and approach +e3, while on M \ F the director
n turns from v to —e3. Previously, the energy Eo(M, e3) describes the minimal energy
concentrated on M, i.e. n always turns in the energetically favourable direction and the
integral involving u L M accounts for the additional energy caused by intersecting 7.
See Fig. 1 for an illustration of the different quantities appearing in (23).

2. For convex particles E, there exists an orthogonal projection IT : 2 — M. By convexity
of E, we find that Ey(ITx T, I14S) < & (T, S), so that we can restrict ourselves to the
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129 Page 12 of 62 F. Alouges et al.

Fig. 1 Illustration of flat chains
T, S and the sets F, F¢
appearing in the limit energy &g

TT() SLM

case TL Q =0 = SL Q. Using (22), we find that 9 F = I14S and (23) becomes
Eo(TIuT, T1xS) = 2840y / (1 —cos(0)) dw + 2S*C*/ (1 — cos(9)) dw
F M\F
)
+ Es*ﬁM(aF).

In particular, (16) is a generalization of the limit energy & defined in [5].

Remark 3.4 (Physical interpretation of 7' and S) The line singularity observed in physical
experiments [53, 54, 64] has its origin in the isotropic or oblate uniaxial-biaxial defect core
of the director field. In our mathematical framework this corresponds to the set where Q¢
takes values in C and is therefore represented by S, ¢ which tends towards S in the limit
model. Note that it is a priori not possible to distinguish +% and —% defect lines (see Fig.3
(left)). But since the physical system as a whole must have a trivial topological degree, one
can deduce in the situation of Fig.3 that one +% and two —% defect lines must be present.
By symmetry the line in the middle must be of degree —|—%.

Point singularities of the director n are represented by simply connected components of
T in our model due to the following reasoning. As illustrated in Fig. 2, the set where n3 = 0
attaches to I" (yellow points on the surface of the sphere) and necessarily passes through the
point singularity and creates a simply connected component. However, with this description
it is not possible to determine the exact position of the point defect on the surface 7. In the
case of a minimizing 7 around a spherical inclusion, 7 will approach the particle surface
since the nematic and magnetic exchange length become small w.r.t. the particle radius and
thus T forms a half-sphere (compare with [5, Ch. 6]). In the case of a peanut-shaped particle
aligned with the magnetic field we expect one of three different minimizing configurations,
depending on B, see Fig.3. In particular, there exists a non-simply connected component
of T which does not correspond to a point defect, but originates in the connection of two
components of I'. In summary, 7 is a surface which connects I" to the singular set (lines and
points).

4 Compactness

The structure of this section is as follows. We regularize the sequence Q¢ in the first
subsection. For this new sequence Q¢ », we define a 2—chain T, ¢, € F~ and 1—chain
Spen € F! such that 8T, ¢, = Sy&n. and we have bounds on the masses to get the
existence of limit objects 7 and S with 97 = S. This construction is carried out in steps in
the subsections two, three and four. We distinguish the case of Q, ¢ , being close to A" and
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Fig. 2 Illustration of the integral
lines of the director field n around

a spherical inclusion and the level

set {x € Q : n3(x) =0} /
representing 7. The point defect
lieson T

Fig.3 Expected minimizers of &y for 8 <« 1 (left), B > 1 (right) and intermediate 8 (center). For small 8 the
line S has the tendency to stick to M and optimize F, thus no 7 appears. Here, S = I" and F consists of two
connected components bounded by the three components of S. This configuration corresponds to three Saturn
rings around the particle. For intermediate S one may find a configuration as depicted in the middle, i.e. the
energy is decreased by joining two parts of S by a surface T’ glued to M. This leads to the disappearance of the
two rings that have been connected by 7', and F contains only the part of M above S. Finally, for large j, the
last ring disappears and we obtain a dipole configuration in which § = 0, F = ¢ and 7 has two components,
see Remark 3.4. This last configuration has been observed experimentally, see [73, Fig. 2(a)-(c)]

hence almost prolate uniaxial and the complementary case when Q,, ¢ , is far from NV, e.g.
when Q) ¢ , is isotropic or oblate uniaxial close to the boundary S. The passage to the limit
is to happen in the last subsection.

4.1 Approximating sequence

This section is devoted to the definition of a sequence of smooth functions Q¢ », replacing
Oy.¢ in our analysis and proving the properties required for the estimates in the following
chapters. More precisely, we need that

e the sequence Q¢ , approximates Oy ¢,

e Oy.¢nlm approaches Qp in cl,

o Q). verifies the energy bound 7 £, £(Qy.z.0) < 1 Eye(Qye) +0(1) < C and
o the estimate Lip(Qj.¢,,) < C n holds.

While # is introduced as regularization parameter, we will later choose n dependent on & to
obtain a sequence which only depends on the original parameters 71, £&. More explicitly, we
7

can simply take e.g. n = £~ 4 as we will see later.
For technical reasons, we are going to extend QO ¢ into a small neighbourhood into the
interior of E. Since M is compact and of class C 2 we can fix a small radius ro > 0 such
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that M satisfies the inner ball condition for all radii » < 2rp. In particular, 2rg is smaller
than the minimal curvature radius of M. For x € E such that dist(x, M) < 2rg, define

One(x) = sy (WX) ®V(x) — %Id) ,

where V(x) = v(ITaq(x)), [T the orthogonal projection onto M, is the obvious extension
of the outward normal unit vector field v of  E in E. Also by C?—regularity of M and given
n € N, there exists a C2—diffeomorphism ®, : R3 — R3 such that

o) x x € Q with dist(x, M) > -, 24)
X) =
" =150 x € R with dist(xr, M) < 1,

and |®,(x) — x| < 1 and in operator norm [V, (x)| < 1 + % for all x € .

Let I1g : Symy — Bgr(0) C Sym, be the orthogonal projection with %s* <R <>

to be fixed later. Furthermore, let ¢ € CZ° (]R3) be a convolution kernel with 0 < o < 1,
o(x) =0if x| > 1, ng o(x)dx =1and |Vglleo < 1. Weset 0,(x) = n3Q(nx). Then, for

n> 21‘61 we define Q,) ¢ »(x) for x €  as the convolution

Qn,é,n(x) = ((HR o Qr],é CROMES Qn) (x). (25)
1

Remark 4.1 1. In this definition Q; ¢ o @, is defined in the interior of £ up to distance
of M which is necessary in order to define the convolution.

2. Through the convolution, we change the boundary values of Q) ¢, i.e. Oy ¢, does not
necessarily satisfy (14). The diffeomorphism ®,, ensures that the regularized sequence
Qy.¢,n defined above approximates the boundary data Q) in cl.

3. Because of the convolution, the approximations of 7', that we are about to construct, will
notendonI',butonasetl’, ={w e M : (V3 *x0,)(w) = 0} (which is again a line) in
the neighbourhood of I'. Because of the C! —convergence of Q¢ ,lpm — Qp We can
use a perturbation argument to deduce that I',, converges in Hausdorff distance and in

flat norm to I'. The details of this result are provided in Sect.5.3.

The following proposition shows that this sequence has indeed the desired properties.

Proposition 4.2 There exists R > %S* suchthat the sequence Q) ¢ , definedin (25) verifies:
1. The functions Qy ¢, are smooth and there exists a constant C > 0 such that
IVOysnllLe = Cn. (26)

2. Ifn&pe(Qyne) S 1, wehave convergence Qy e n— Qe — Oin L?and Onenlm — Qp
in C forn — oo and &, n — 0 provided nn diverges in the limit n — oo, n — 0.

3 Ifn&e(Qne) S landn ~ 79 for some a > % then there exist constants C1, Co > 0
such that for all measurable sets Q' C Q with |Q'| < oo the energy of Qn.¢.n can be

bounded as
A 1 52 /
Ene(Qnen, ) < | 1+C —ﬁﬁ-? 5n,E(Qn,s,B%(Q)ﬂQ)
. C2< 1 +< 2] )2) @7)
g%nn 7753"2

< (I+0(1) &6(Qpe, B2(Q)NQ) +0(1),
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where B, (2') denotes the r —neighbourhood around Q' and o(1) — O asn, & — 0.

Before proving the proposition, we show a series of three lemmata detailing how each
step of construction from @, ¢ to O ¢ , modifies the energy.

Lemma 4.3 There exists R > %S* such that we have convergence T1g o Qp e — Qpe — 0
inL*>as&, n— 0ifn Ene(Qne) S 1. For all measurable sets Q' C Q it holds that

Eng(MroQne, Q) < £ 6(0ye, Q).

Proof For the L2 convergence, we note that O, ¢ # I1g o Q; ¢ only onthe set A = {x €

Q : [Qye(x)| > R}. Fixing R > \/gs* and using Proposition 2.1 we get

IA

/Q|Q,,,g—nRoQ,,,g|2 dx /A|Q,,,§—nRoQ,,,g|2 drx < Adistz(Qn,g,Nn,g)dx

< /Q F(Qpe)dx < £28)6(0ne, Q)

where we used the notation F(Q) = f(Q) + f]—jg(Q) + £2Cy. Since n &, £(0y.6, Q) is
bounded, |0y e — Mg o Opell;2 S

~

% — Qasn, & - 0.
It remains to prove the energy bound for Iz o O ¢. For this, we directly get that

/WmRan,;)Fdx < / VOl dr.
Q' Q

For the bulk energy, we use [5, Prop. 4.1] to fix R > %s* such that F(Q) > F(ITg Q) for
all QO € Sym,, where again F(Q) = f(Q) + i—ig(Q) + £2Cy. Integrating this pointwise

inequality implies the energy inequality. O

Lemma4.4 Let R > %s* be as in Lemma 4.3 and ®,, defined by (24). Then, TIIg o Q¢ ©

&, —Mro Qpe — 0in L? as n — oo and there exist constants Cy, Co > 0 such that for
all measurable sets Q' C Q

Ci
5r1,.§(nR o Qn,é o ®,, Q/) =< (1 + ﬁ)
Proof We start again with the L>—convergence noting that by definition of @, it holds
[((ITRo Oy e0®y)(x)—(IMroQy £)(x)| = Oassoonasdist(x, M) > ﬁ.Thecomplementary

C
En6 (Mg o Qe BLE)ND) + 0.

set U, = {x € Q : dist(x, M) < ﬁ} is of measure |U,| < (v/n)~! an together with the
L —bounds [ITg 0 Q¢ 0 Pyl [TIg 0 Oy ¢l < R this implies Lz—convergence.
For the energy estimate we calculate, using the estimate | det(V®,)| < 1 + %

fQ/ V(TR o Qe 0 ) dr < (1 + %) fg IV(Ik 0 Qy.6) /(@ (x) dx

c 1
< 1+f>/ V(Mg o Qpe) ————— dx
( ) Jo, @) e | det(VD,)|
c
< (1 + —) <C/ |Vy|? dx
NG @, (Q)NE
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+/ |V([g 0 Qpe)l dx) i
O, (Q)HNQ

Since ®,, (') C B1 (') and the curvature of M isbounded, we getthatfcbn(ﬂ,)nE VD)2 dx <

%. Therefore

| 1v (Mo 00 0P ax < (1 " 3)/ V(TTr o Qo) dr+ 2.
ol V) I, @na n

We proceed similarly for the bulk potential F(Q) = f(Q) + i—z g(0) + £2Cy, giving

IA

C
F(Ilg o o®,) dx 1+ — / F(Ilg o dx
/, (Tg © Qe 0 P) ( ﬁ) iy TR 0

C
1+ — F dx
( * «/ﬁ) <ll>n(Q’)ﬂE (@n.e)

-|—f F(HROQW,E) dx) .
@, (2)NR

. _ _ . 2 2
Since Qy ¢ = 5:(VQ TV — %Id) in E, we get that |F(Qy,¢)| = |§ng(Qn,§) +£2¢y| < %
We end up with

IA

1 c 1 C
/Q/?F(n,qogmo(bn)dx < <l+ﬁ)/;3 P (Mo Qo) dx o

L@)na &2

Lemma4.5 Let R > %S* be as in Lemma 4.3, ®,, defined by (24) and o, the convolution
kernel used to define Qy ¢ n. Assume thatnEy e (Qne) S 1. Then, Qy e n—TRoQye0®, —
OinL?asn, & — 0andn — oo provided nn — oo. Furthermore, there exist constants
C1, Cy > 0 such that for all measurable sets Q' C Q of finite measure

1 2
Ene(Quen. Q@) < (1 +C (7 + %))&;,g(nR 0Qpeo®,, BI(Q)NQ)
\/ﬁ n n
1 1 1 ,
+ Ol -+t Ene(ITgr o Qg o Py, B1(2) N Q)
" £in  &2n? "
1 1 1 (28)
+ 55 Ee(Mg o Opg o @p, )7 + —
Ein2 &n

(1 -
+|Q’|2< (Ene(Mr o Qng o . BLQ)ND)2 + — ))

3 §3n

(1098
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Proof We introduce the notation Q := Ilg o Opeo®,sothat Q) ¢, = Q * 0. Now, we
observe that for any measurable Q' C Q

2
/ Qnem — OF dx = / / (O — ) — O)e) dz| dx
Q 4 B1(0)
1 2
= / / /n Z-VQ(x—tz)Q(z) dz| dx
/ B1(0) JO
<S[ vora.
n B (R)

Similar to the proof of Lemma 4.4 we can split up the last integral into two integrals over the
sets B1 ()N Qand B1 (') N E to get

- c. - , c
o 1Qnen— QI dx = —5&£(Q, BI()NE) + 5. 29)

The L2—convergence follows from the energy bound for Q, which is a consequence of
Lemma 4.3, Lemma 4.4 and the energy bound for Q,, ¢, provided nn — oo as §, n — 0 and
n — 00.

Next, we estimate the energy of Q¢ , in terms of Q. For the gradient term we simply
obtain by Young’s inequality

/IVQn,s,nlzdx =/ V(D # o)I? dx
Q Q

. . c (30)
f VO dr < / VO dr + C.
BL(Q/) n

B1(Q)NQ
n

IA

The only tricky part is the estimate for f(Qy.e.,). We decompose Q' into three sets
A1, Ay, Az defined as
A = fxeQ :dist(Q,Nye) > A},

As x € (@ \AD @ |Qpen— Ol =4},
Az = Q\(A1UA),

where A > 0 will be chosen later on. The volume of A can be estimated as follows
2

?'A”v

s 1 .
£:(0,9Q) 2 —F(Q)dx 2
N3

2 ~
where we also used Proposition 2.1. This gives [A1]| < %5,,,5 (Q, ). Using the Lipschitz
continuity of f on the set Bg(0) C Sym,, we can furthermore estimate

2
(/A 5%|Qn,g,n ~ 0 dx)

772 ~ 2
—|A1|f 1Qpen — OF dr.
54 Ay e

A

2
(/A §%|f<Qn.s,n) — £(O)] dx)

A

@ Springer



129 Page 18 of 62 F. Alouges et al.

Replacing | A 1| by our above estimate and using (29) we get

fA S%If(Qn,s,n)—f(Q)ldx S &r,6(0, Bl(Q)ﬂQ)Jr (5 £(0. 27,
1

3D

?A sxnz

The set A, is also seen to be small since
2 512 1 5 / 1
W2l S | 1Qnen— 0P dx S —&£(0.BL()NQ) + — .
A> n n n
again by (29) so that [A| S —=&, (0, B1(R) N Q) + 7. Proceeding as for Ay, it
follows again by Lipschitz continuity of f that

1

/ 1)~ (D)1 ds 5 £ BUND + g

e (32)

It remains to prove an estimate for f(Q, ¢ ,) on Aj3. To this goal, we write

1
F(Qnen) — f(O) = ( /0 (DFY(Q +5(Qnen— Q) ds) (Qnen—0)
1
- ( /0 (DATIA(Q + 5(Qpen — O))) ds) (Qnen— 0,

vghere we used tlle fact that Df = 0 on N. To shorten the notation, we define Q; =
O +5(Qyen — Q). Then

J(Qnen) — f(Q)
1 1
= (/0 (fo (D* £)(TAr(Qy) + 1(Qs — TTA(Q))) dt) (0 — TN (0y)) ds)
. (Qn,é,n - Q) .

Note that | D2 f| in the above integral is bounded since f is smooth on a compact neighbour-
hood of V. Furthermore, since |Q; ¢, — Q| < A on Az and dist(Q, Ny.¢) < A, it follows

from (11) that if A > i—z then | Qs — A7 (Qy)| < A. Therefore,

2
(/A If(Qn,g,n)—f(Q)ldX> 5x2|A3|/A Qe — OF dx

A

2 /1 A }‘2 /
W= E£(0. B1(A3) N Q)+ Q]
n n n

which gives

1

~ 3 A
/52|f(Qm> f@lar 5 g0 “121E (6,60, Bi @) @) + ]

1
+ 1)
£ 3

(33)
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Combining (31),(32), (33) and choosing A = /€ yields

[ @ = [ Erda

’ C(%gmg(g, BL@)ND) + ' (6,6(0, 2)?
SZn n san
. 0 (34)
+ T25n,s(Q, B%(Q’) NQ) +

gin

n
5

§3n3

77 /l s / 1 7] /l

T 1Q12(8,6(Q, BL(Q) N Q)2 + — |Q|2)~
7’1 n

+

E?n%

We finish the proof of this lemma with the estimates on g. Note that by Proposition
4.2 in [5] we can bound the energy contribution of g from the set where |Q| is small by
2
%Sn,g(Q,,,g,n, ). By smoothness of g away from Q = 0 we can estimate

2

/Q 8(Qyen) —g(Q)dx S %gn,s(Qn,s,n,Q/)'i‘||Vg||L°° /Q 1Qnn — Ol dx

N

g2 L , 21\
WSW»E(QW,EWQ)‘F nTS,,,g(Q,B%(Q)ﬁQ)—I— P .

Combining this with (34) and (30), we subtract C%Snﬁg(Q,,,gy,,, Q') from both sides and

divide by 1 — Ci—i to get the estimate (28). Note, that in our regime for n and &, the terms
arising in the estimate for g are smaller than the corresponding terms for f in (34) and hence
do not display in (28). O

With the results of Lemma 4.3, Lemma 4.4 and Lemma 4.5, we can now turn to the proof
of Proposition 4.2.

Proof of Proposition 4.2 The smoothness of the functions 0, ¢ , is clear by standard convo-
lution arguments, since g is smooth. The bound on the gradient follows from the computation

4
IVOyen(0)] < ||VQn||L°°/ Mg QO e(@n()Idy < gan.

Bi(x)

Next, we prove the C! —convergence on M. For w € M it holds that

1
0@ = 0@ = [ [0ps(0=y = 1ums) = Qs(@)fon ) ay.
B (0) n

1
n

Note that Q) ¢ does not depend on 7, & here as it is uniquely defined by the extension V.
Since Qp and v are continuous on a compact set, they are also uniformly continuous which
implies C?—convergence for n — 0. Analogously,

1
Vo Qnn(@) = Vo Qs(@)| = / (V0 0y )@ = v = vory) (10 + —V,7)
B1(0) n

=V Op(@)|on(y) dy,

and since V,,Vis bounded we can use uniform continuity of V,, Qj to deduce C 1 —convergence
on M.
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Next, we show the L>—convergence of Onen—QOpetolasn, & — Oandn — oo with
nn — oo. Writing

”Qn,é,n - Qn,EHLZ(Q) = ”Qn,é,n —Ilgo Qn,é ° cbn“Lz(Q)
+ Mg o Qpeo Py —Tgro Opelli2g
+ Mg o Qe — OnellL2

and applying Lemma 4.3 to the third, Lemma 4.4 to the second and Lemma 4.5 to the first
L?—difference on the right hand side, we see that [|Qy g0 — OnellL2(q) tends to zero if
nn — ooasn — ooand &, n — 0.

If we assume that n £, ¢(Qy.¢, ) < C uniformly in 7, &, then Lemma 4.3 implies that
also n &, ¢(Ilg o Qy ¢, Q) < C. In addition, by Lemma 4.4, it follows that n &, ¢ (ITg o
Oye 0 @, Q) < C and that

Cq C
5n,g(nRan,go¢'n,Q/) < (l-i-ﬁ)f;n,g(Qn,g,B%(Q/)ﬁQ) + r]27

Combining this with Lemma 4.5 and using that n &, ¢ (TIg 0 Oy ¢ 0 ®,, ) < C, we can find
new constants Cq, C2 > 0 such that

A

/ 1 52 /
Ene(Qnens Q) < (1 + cl(ﬁ + ﬁ»sﬁ(gn,g, B1(@)NQ)

ca(gt(5) )
g %‘%nn 7753’12

forn ~ £€7¢ for some a > % In this regime for n, the energy estimate is asymptotically
sharp. O

Having established these properties of Q,, ¢ ,, we are able to identify the size and structure
of the set where Q,, ¢ , is close to being prolate uniaxial as stated in the next Lemma.

Lemma 4.6 There exists a constants C, L > 0 such that for all § > 0, there exists a finite set
I C Q2 which satisfies

1. the following inclusions

Us C UB%(x) c Usp, (35)

xel

where Us = {x € Q : dist(Qy ¢ ,(x), N) > 8},
2. and

n3 5 1
#I§CW<E +;T2>’ (36)
where f2, = min{f(Q) : dist(Q, N) > §/2}.

Proof Let § > 0 and xo € Us. Since Qy ¢, is Lipschitz continuous (Proposition 4.2), we
can define L := %nR > 0,i.e. Ln > 2|V Qy ¢ nlloo. We deduce that for any x € B%(xo) it

holds

)

NSRS

. . 8
dist(Qpg,n(x), N) = dist(Qy,g,n(x0), N) — IVOngnlloor— =
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so that x € Usz. From this, we get that

Us C U Bs (x) C Usp.
xeUs
By Vitali covering theorem, we find a subset I C Us with the same property and B 15 (xi)N
B%LL(XJ) = fori # j and x;, x; € I. Furthermore, using Proposition 4.2

C g2

n

v

/ dx > / dx — ¢ <§2 + 1 )
o f(QVIf) X Z o f(Qn,é,n) ; ﬁ
C 1 C 1
f(QU,E,n)dx_*<§2+*2> > C#I|Bi|fmin—*<§2+—2>
Us)a n n In n n

8 fmin  C 1
c#l f;m“ - = (sz - —2> ,
n n n

\%

%

where we used that f > fuin > 0 on Us/z. From this it follows that

#] < C ”l3 (52_}_ 1)
n 77fmin§3 n?) "’

[m}

In [5] a similar result was obtained using a regularization related to the energy and using
the Euler-Lagrange equation to derive the Lipschitz continuity. This approach would also
work in the new setting and one could obtain Lemma 4.6 with n = £ 1. However, the new
approach has the advantage to be local and provide us without effort the local estimates
which lead to the lower bounds in Sect.5.3.

From (36) it follows that the volume of the union of balls in (35) converges to zero for
n,& > 0andn ~ £7% a € [1,2). The same holds true for the union of the surfaces of those
balls. Note however that the sum of the diameters is not bounded and diverges. With the tool
developed in [13] and used in [5, 19] it would be possible to derive a bound, namely the sum
of diameters can be shown to be bounded.

4.2 Definition of the line singularity

The goal of this section is to define a 1—chain S, ¢, of finite length which satisfies the
compactness properties announced in Theorem 3.1. The necessary analysis has already been
carried out in [20, 21] but for the reader’s convenience we recall the important steps and
results.

For the construction of Sy, ¢ ,, we follow Section 3 in [20]. We recall that C is the cone of
oblate uniaxial Q —tensors which can be seen as a smooth simplicial complex of codimension
2 in Sym. Evoking Thom’s transversality theorem, one can assume that, for almost every
Y € Sym,, the function Q; ¢ , — Y is transverse to all cells of C. Subdividing the preimages
of the cells under the map Q; ¢, — Y if necessary, (Qyen — Y)~'(C) defines a smooth,
simplicial, finite complex of codimension 2 which we call S, ¢ ,. Note that S, ¢ , depends
on the choice of Y.

The relevant estimates on S, ¢ , needed to prove Theorem 3.1 in Sect. 5.3 are formulated
in Theorem C and Section 4 in [21]:
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Theorem 4.7 There exists a finite mass chain S such that one can choose a subsequence
Sy.&.n (not relabelled) and a > 0 with

F(Spen—3S) — 0  foralmosteveryY € By(0).

Furthermore, for any open subset U C R3 it holds

liminf 1 £,.6(Qnen, UNS) 2 %sfﬂ M(SLU).
s>

n—o0

In our situation, by construction of Q¢ , and for Y € B, (0) (« small enough) it holds
that

Qe =110 C Us ¢ [JBp@).
xel
Hence supp (Sy.z.n) C Uyer BLL (x) and in view of the lower bound in Theorem 4.7 we
deduce that the energy coming from S, ¢ , in U is already contained in U N J,.; B 2 (x).

4.3 Construction of T and estimates for Q close to A/

In this subsection we carry out the first steps to define the 2—chain 7. We start by defining
T :={QeSym; : s>0,0<r <1,n3=0},

where r, s, n are defined as in (3). From this we want to define T;, ¢ , close to Q;,];n (7). As

carried out in [20] and described in Sect. 4.2, for almost every Y the set (Qy.¢, —Y YT is
in fact a smooth finite complex. In Lemma 4.9, we show that in addition for a.e. Y € Sym,,
the definition

Tn,E,n = (Q?;,E,n - Y)_I(T)

allows to control the area in regions where Q,, ¢ , is close to . Since both the constructions of
Sy.e.nand Ty ¢ , are valid fora.e. Y, we can choose the same Y and hence 07, ¢ ,NQ2 = Sy ¢ 1.
In parts of Q where Q) ¢  is far from V, e.g. close to Sy ¢ ,,, we need to modify 7;, ¢ ,. This
will be the subject of the next subsection.

At first, we recall the (intuitively obvious) result that 7 is well behaved close to NV in the
sense that the level sets {n3 = s} for s small have a similar H*—volume as 7. This can be
interpreted as control on the curvature of 7 N A,

Lemma 4.8 There exists g, a1, C > 0 such that for Q € Sym,, dist(Q, N) < «ag and
a € (0, ay) it holds that

lim 7} ({Y € Bu(0) : n3(Q —¥) =sh) = H'(Bo(QNT).

In the smooth case this lemma follows as in [62, Lemma 3], however we give a proof here
for completeness.

Proof The parameter g needs to be small enough to avoid problems far from N due to the
non-smoothness of 7 at the singularity 0 € Sym,. So we choose 0 < ap < %dist(O, N). To

avoid dealing with the topology of the sets involved, we pick 0 < o] < %diam (N). Hence,
B, (Q) N T is diffeomorphic to a 4—dimensional ball.
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In the appendix, we check that d,, O # 0 in a neighbourhood of each Q € 7 close to V,
so that by the implicit function theorem, 73 is a smooth function of Q with Dgn3(Q) # 0
near Q € 7. In addition, n3 is uniformly bounded in C 2 in dist(-, N) < o for o small
enough (since then r ~ 0 and s ~ s*). It follows that

HY(Y € Bu(0) : n3(Q —Y) =s})) = H*({Y € Bo(Q) : n3(Y) =s})
— HY({Y € Bu(Q) : n3(Y) = 0})
= H' (B, (Q)NT)

ass — 0. O

For § > 0, we introduce the set As C 2 in which Q) ¢ , is close to being prolate uniaxial

with norm %s* as
As = {x e Q : dist(Qpen(x), N) <8} (37)

The next lemma shows that (in average) the H2—measure of (Qnen—Y )~1(T) that lies in
Ag is controlled by the energy.

Lemma 4.9 There exists o, 8o > 0 such that for all a € (0, ag), 8§ € (0, 8g) one can find a
constant C > 0 such that

i (O)Hz(As N(Quen—Y) NN AY < Cn & e(Qnens As) . (38)

Proof Let o, § > 0 small enough such that for ¥ € By (0), the map Q +— n3(Q —Y) is
smooth on {Q € Sym, : dist(Q,N) < 8}. Let As be defined as in (37). In order for the
map x > n3(Qy.¢.(x) —Y) to be well defined, we need to restrict ourselves to a simply
connected subset of As. For this, take xo € As and r > 0 such that As N B, (xo) is simply
connected. We carry out the analysis on As N B, (xp), noting that we can cover As by such
balls to find the estimate (38). With xg € As and r > 0 fixed as described, we can calculate

) H2 (B (x0) N As N (Qpen(x) — Y) "N} dY

= / [D XixeQn3(Qy.en)-1)>04 (Br(x0) N As) dY
o (0)

IA

e—0

lim inff / IVa(he on3 0 (Qpen — Y)(@0)] dx dY
2 (0) r (x0)NAs

e—0

= lim inf/ / |h, (n3(Qn.e.n(x) — Y))Von3(Qpen(x) —Y):
2 (0) J By (x0)NAs
Vi Q(x)| dx dY,

where he € C'(R, [0, 1]) is an approximation of the Heaviside function, i.e. hc(x) = 0
forx < 0, he(x) = 1 forx > € and h. > 0 on (0, €). The above inequality is then
just the lower semi continuity of the total variation. With the identity A (n3(Qn.en(x) —
Y)Von3(Qpen(x) —=Y) = =Vy(he on3 o (Qy.e,n(x) —Y)) and the Fubini theorem we
can rewrite

f / lh, (n3(Qn.e.n(x) — Y)Von3(Qpen(x) —=Y) : Vi Qpen(x)| dx dY
By (0) J By (x0)NAs
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IA

/ VO, enl / Wy (he o n3 0 (Qyem — YY) dY dx
B (x0)NAs By (0)

1
/ |VQn,S,n|/ H({Y € Bu(0) : he(n3(Qyen(x) —Y)) =s}) ds dx
B (x0)NAs 0

1
_ / IV 0yl / HAY € Ba(0) : n3(Qpen®) — ¥) = h- ()] ds dx |
By (x0)NAs 0

where we also used the coarea formula. By Lemma 4.8 in the liminf € — 0 this equals

1
liminf/ |VQ,,,§’,1|/ H*({Y € By(0) : n3(Qpen(x) —=Y) = h;l(s)}) ds dx
By (x0)NAs 0

e—0

= / IVQy.enl H(Ba(Qnen) N T) dx
By (x0)NAs
by translation invariance of H*. Applying the inequality 2ab < a” 4 b* we get
[ V0l M BalQyen N T)
By (x0)NAs
n 1
< [ A0l + 5 HBu(Qyin) N T
B, (xo)n4; 2 2n

The Dirichlet term appears in the energy, so it remains to estimate ’H4(Ba(Qn,§ )N )% in
terms of g(Qy.¢,,). We first note that 7 N By (Q.6.n (x)) = Pif dist(Qy ¢ »(x), 7) > a and
since dist(Qy,&,n, N) < § we have H4(Ba(Q,7,5,,,) NT) < Csa* by Proposition A.5. Hence,
we get

/ HH B (Qne) N TY2dx < (Csa®)2|B, (x0) N Ash)
By (x0)NA;s
{x €Q : dist(Qyen(x). T) < a}|.
Forx € AsN{x € Q : dist(Qy¢.(x), T) < a} we can estimate
g(Qr),S,n(x)) > g(R(Qn,S,n(x))) - ngiSt(Qn,é,n(x)»N)

3
\Ea —n3(Qy (%)) — Cyd

A%

\

3
> \E(l—cm)—cga >G>0

for @, § < 1 small enough. Hence,

GIBy(x0) N A5 N {x € Q : dist(Qyen(). T) < )] < / ¢(Qen) dr.
By (xg)NAs

[}

We remark that although Lemma 4.9 controls the size for a.e. fixed Y € B,(0), the estimate
degenerates with . Hence it does not provide a uniform bound in « allowing to pass to the
limit ¥ — 0. A bound independent of « will be derived in the section on the lower bound.
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4.4 Estimates near singularities

At points x € Q where dist(Qy ¢ ,(x), N) > §, the estimates we derived in the previous
subsection are no longer available and we need new tools to bound the mass of T}, ¢ ,. We
are concerned with two different cases: The first case is the one of x € T} ¢ ,, far from the
boundary S, ¢ ,. We can simply “cut out” those pieces and replace them by parts of surfaces
of spheres which are controlled in mass. This will be made precise using Lemma 4.6. The
second case is more challenging. We will modify T}, ¢ , close to the boundary S, ¢ , by using
a construction similar to the one used in the deformation theorem (see Lemma 4.11). This
will allow us to express the mass of the modified 2—chain in terms of the surface of cubes
and Lemma 4.6 permits us to control the number of such cubes.

Lemma4.10 (Deformation in the interior) Let 1™ C I be the subset of points xo € 1 such
that dist(xo, Sy,e.n) > Lin and dist(xg, T”’E’") < Lin Then, there exists a flat 2—chain T™!
with values in w1 (N) and support in B™ = |, ¢ yim BLa7 (x) such that

1. T = 3(Tyy¢.n L B™M),

2. and M(T™) S % (82 + ).
Proof Since 'Bim N supp (Ty.e.n) # ¥ and B N supp (Sp.en) = ¥ we know that ¢ #
3(Ty.e.n L B™) C 9B™. Furthermore, since 3% = 0 it follows that 3(T ¢ , L B'™) consists
of closed curves and divides d B™ into domains. Let D be the set of these domains. Now pick

any subset D’ C D suchthat 8 (Jycp U) = 0(Tye.n L B). We define 700 = Y vep UL

Then, by definition 7, ¢ , L Bi" and 7" have the same boundary and since 7' C 3 B'™ we
also have

—— . 82 n 1
int 2
M(T) < M@O@B™) < Z:lM(aBgn) < #14m o S . (s +—n2> .
xel[m

[m}

At the boundary we cannot remove a disk without the risk of creating new boundary which
might not be controlled, so another method has to be used. The idea is the following: Take a
cube K of size % which contains a part of the singular line S, ¢ , and intersects with 7}, ¢ ;.
We then modify (deform) the “surface” connecting T3 ¢ , N 0K and S ¢, N K by pushing it
onto a part of dK (see also Fig.4). The result is a modified 7}, ¢ , with the same boundary as
before and the surface inside the cube is controlled by the surface area of K and the length
of the singular line. We point out that this procedure and its proof are closely related to the
deformation theorem (for flat chains) (see [86], Chapter 5 in [31], Theorem 7.3 in [32] and
Chapter 4.2 in [30]) but differs in some details so that we give a full proof here.

Lemma 4.11 (Deformation close to the boundary) Let I’ < I be the subset of points
xo € I such that dist(xo, Spen) < % and dist(xg, Ty £.0) < 1?7' Then there exists a flat

—~——

2—chain Tb with values in w1 (N') and support in a finite union of cubes of side length §/n
called B" verifying |, < bars B%(x) c B sych that

1 |BP S 56 + ),
2. Ty = §(Tyy ¢, L BY™),
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3. and
T bdry < n 2 !
M(Tbdry) N; & +’T2 . 39)

Proof For the sake of readability we drop the dependences on &, 1, n in the notation of this

proof and simply write 7" instead of 704y, Covering S with a cubic grid of size h = % such
that S is in a general position, we can assume that the center xg of all cubes K that contain
parts of S does not intersects S or T, i.e. xx ¢ supp (T), supp (S). Indeed, this is possible
since S intersects only a finite number of cubes according to Lemma 4.6. Let G be the set of
those cubes and X the set of its centers.

Step 1 (Construction and properties of the retraction map). Let K € G be a cube and let
xg € X beits center. Let P be the central projection onto d K originating in xx . We define
a homotopy @ : [0, 1] x (K \ {xkx}) — K between the identity on K and P by simply
taking ® (¢, x) = (1 —)x +¢ Px. Note that by definition this homotopy is relative to 0K, i.e.
d(t,x) =xforallt € [0, 1] and x € dK. Furthermore, for all x € K \ {xx} and ¢ € [0, 1]
it holds

dist(® (7, x), xx) > dist(x, xg) . (40)

Since |8, ®(r, x)| = | — x + Px| < +/3h and by (40) we deduce that ® is locally Lipschitz
continuous and Lip(® (¢, x)) < C h dist(x, xk) L. Since @ is relative to 9K we can glue
together all those functions defined on the cubes K € G with the identity on cubes K ¢ G
to get a function ® defined everywhere in R3 \ X.

Step 2 (Intermediate estimate). In this step we want to show that if we allow for a small
translation of the chain S, then the mass of ®([0, 1] x ) can be bounded by M(S) times
the size of the cube %, up to a constant.

Applying Corollary 2.10.11 in [30] (or Section 2.7 in [31]) we get as in [86, Lemma 2.1]

M(®5([0, 1] x §) = [1d— Pl / sup  Lip(®(t. x)) dus (x)
R3 t€(0,1]

IA

C h? / dist(x, X)™" dus(x).
R3

Taking the mean over translations 7, for a vector y € [0, 113, we arrive at

M@y ([0, 1] x (T $)) dy

Ch? / [ dist(x, X) ™! dpuq,, s(x) dy
[0,1]° [0,113 JR3 :

C h? fm . /R3 dist(x + Ay, X)7 ! dus(x) dy

Ch? /W/ dist(x +hy, X)" dy dus(x)
3 [0’1]‘

Ch/ dus(x)
R3
= ChM(S).

IA

Hence, we can assume that S is in a position such that

M(P4([0, 1] x §)) < C hM(S). (41)
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Step 3 (Definition of T). We define
T = 9(®4([0,11x T)) —T.

Considering a cube K € G, one can think of this construction as the boundary of the
three dimensional object created by filling the space between T and its projection onto d K
according to Step 1 and then removing the original part 7. Another but equivalent point of
view is to take 7 as all the points along the path created by projecting 7 L 9K, S together
with the projection Py(T), see also Fig.4. Indeed, one can calculate for K € G

3(D#([0, 1] x (T2 K))) = D4 ((3[0, 1]) x (T L K)) + D4([0, 1] x (0T)L K)
+ ®4([0,1] x TL (0K))
= Py(T 1= K) — (Idg)#(T) + ®4([0, 1] x (SL K))
+ ®4([0,1] x TL (0K)) .

Thus, we have the formula
TLK = Pue(TLLK) + ®4([0,1] x (SL K)) + ®x([0,1] x TL (0K)).

Since P4(T' L K) + @4([0, 1] x T L (3K)) C 9K from which we derive the bound on the
mass of T

M(T LK) < M@BK) + M(®4([0, 1] x (SLK)) < 6h* + CAM(SLK), (42)

where we also used the estimate (41) on K of Step 2. On all cubes K ¢ G, TLK=0,s0
that we find supp (7) C Uk K. Defining B .= | J{K : K is cube of the grid, 3x €
159 with K N B (x) # @}, it is clear that T is supported in B since | Jg . K C BPY.

Furthermore, by definition of B we have the claimed inclusion Uyepay Bs (x) C Bbdry
Ln

The measure of B can easily be estimated since it is formed by cubes covering
(U esbay B s (x), the cubes having the same length scale % as the balls. Therefore, up to
Ln

a constant only depending on the space dimension and L, (36) implies that |BdY| <
h3:—;(§2 + ”%) = %(52 + n%). Since d o 3 = 0, the boundary of T coincides with 97 .
Since all calculations in Step 3 were local and @ is relative to the boundaries of the cubes,

(39) follows from summing up (42) over all cubes K € G. ]

As a direct consequence of Lemma 4.9, Lemma 4.10 and Lemma 4.11 we have the
following corollary:

Corollary 4.12 There exists a flat 2—chain f,;\/g,, with values in 7 (N') such that

1. 0Ty e.n = Sp.e.ns
2. forall xo € Qand R > 0

—~ nf., 1
M(Ty 6.0 L Br(x0)) < 1 Epe(Qn.e.n, BrR(x0)) + 0 £+ R (43)
3. and
— n 1
F(Tn,é,n - n,é,n) S/ ; (52 + n7> . (44)
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Fig.4 Construction near the
boundary inside a cube: The
newly created area (grey) is
controlled by the surface of the
cube and the length of the line
singularity (red)

Sn.&.n, LK

Proof Starting from 75, ¢ , and the estimate in Lemma 4.9, we can modify 7; ¢ , according

to Lemma 4.10 and Lemma 4.11 in the region B U B to obtain ]f,]\;n without changing
the boundary S, ¢ , by setting

Tyen = T BM 4 7bdy| oAy o ((B™ U BYMY)Y),

Estimate (43) is a direct consequence of the three aforementioned lemmata. Finally, by
construction Ty, ¢, — Ty ¢, is supported in B™ U B*Y and §(T;, ¢, — Ty ¢..) = 0. Hence,

F(Tyen — Tyen) < |B™ U BPY| from which (44) follows for n large and 7, & small
enough. O

In the following analysis we only work with fn\;n In order to improve readability, we
drop the tilde in our notation from now on.

4.5 Proof of compactness for fixed Y

Let B C 2 open, bounded and choose n := £7¢ fora € (%, 2). Then, by Lemma 4.9 and
Corollary A.3, we deduce that for @ > 0 and &, n > 0, there exist ¥; ¢ € By(0) C Sym,
such that our construction yields a flat chain 7, ¢, € F 2 such that 0Ty en = Spen + Ty
and

M(T;,6,n L B)

IA

sz—a
c (77 Sn,s(Qn,é,n, B) + ” )

2—a ll*i
§ &2 1
; —I—T(H—IBIZ) ,

IA

C | né&ne(Qye, Baga(B) N2) +

where we also used (27) of Proposition 4.2. In particular the energy bound (17) implies that
M(T;,e,» L B) is bounded. Applying a compactness theorem for flat chains as stated in the
preliminary part ( [32, Cor. 7.5]), there exists a subsequence (which we do not relabel) and
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a flat chain T e F? with support in & such that F((Tyen —T)LB) — Ofor &, n — 0.
Extracting another subsequence if necessary we can assume that Y, ¢ — Y € B, (0) for
n, & — 0. We note that the T constructed here depends on Y (and «). In order to keep our
notation simple, we only write this dependence explicitly when necessary, i.e. when we pass
tothe limit ||Y||, « — 01in Sect. 5.3. Since the boundary operator 9 is continuous we conclude
with Theorem 4.7 that 97 = S+ 'y, whereI'y = {w € M : n3(s,(v®v — %Id) —-Y) =0}
The finite mass of 7 and S immediately implies rectifiability [32, Thm 10.1].

5 Lower bound

This section is devoted to the I'—liminf inequality of Theorem 3.1. The proof necessary to
deduce the line energy has already been given in [21], so that we will only state the result for
completeness (Proposition 5.1). The energy contributions of 7" far from M are to be derived
in Sect. 5.1. In the remaining, we are concerned with the energy of T and F close to, resp.
on, M.

The precise cost of a singular line in our setting has been derived first in [18] based on
ideas in [44, 74]. In our case, the result reads as follows.

Proposition 5.1 Let B C Q be a bounded open set and U, = {x € Q : dist(x, Syen) <
/1. Then

liminf 1 £,.6(Qnen Uy N B) = %sﬁﬂ M(SL B). (45)
7,6 —>

Proof See Theorem C and Proposition 4.1 in [21] for a proof of the version we used here. O

To derive the exact minimal energy for the lower bound related to 7', we introduce the
following auxiliary problem:

207 12
"2 55 |nh]

I(ri,r,a,b) = inf f 2
nseH (r1,n) -1 Jry 1 —nj

n3(ry)=a, n3(ry)=b

+ci(1 —n3) dr (46)

for 0 < ry < rp < o00,a,b € [—1,1]. It is one dimensional and only takes into
account the derivative along the integration path. Problem (46) is equivalent to mini-
mizing f (%|3rQ|2 + g(Q)) dr subject to a A'—valued function Q and fitting boundary
conditions. This reflects that by Lemma 4.6, the regions where Q) ¢, is far from N
are small. Indeed, if Q(r) = s.(n(r) @ n(r) — _%Id) for a S?—valued function n, then
3 Q = s:((3n) ® n +n ® (3,n)) and hence [3,Q> = 252|3,n|*> since n|> = 1
and therefore 2(d,n) - n = 8,|n|2 = 0. Using again that n € S?, we can write n =

(£V1 —n3ny, /1 — n%fzz, n3), where i = (7i, fi2) is a S'—valued function. One can

then easily calculate that |3,n|> > |,/1 — n32n39,n3|> + |3,n3|* = [3,n3|?/(1 — n) (with
equality if 72 is constant), which is the first term in (46). For the second term in (46) we note
that by (5) it holds that g(s«(n ® n — %Id)) = ci(l - n%). The functional in (46) has been
introduced in [2] and studied in [2, Lemma 3.4], [5, Lemma 4.17], which show the following
lemma:

Lemmab5.2 Let O <r; <rp < oo. Then,

1. I(r1,rp, —1,1) > 4s.cy.
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2. Let 6 € [0, ). Then the minimizer n3 of 1(0, oo, cos(0), 1) is explicitly given by

A(0) — exp(—2cy/s41) A©) = 1 + cos(0)
A(O) 4 exp(—2cy/s5r) "1 —cos(8)

n3(r,0) = 47)

and

1(0, 0o, cos(8), £1) = 2syc4(1 F cos(@)) . (48)

In this lemma, we use that g reduces to ci(l — n%) for Q in N, as demanded in (5).
However, as pointed out in Remark 4.18 in [5], this is not necessary.

During the blow up procedure in the next subsection, we want to quantify the energy
necessary fora Q¢ , close to NV to pass from n3(Qp.¢,,) =& £1tonz(Qpen—Y) =0,ie.
to intersect 7)) ¢ ,. Since problem (46) does not take into account the perturbation made by
subtracting ¥ € B, (0) from Q, ¢ ,, we introduce for o > 0 small enough

Iy(r1,r2,a,b) = inf{I(r1,r2,a, £n3(Q)) : Q € Symgy, n3(Q —Y) ==xb, Y € B,(0)}.
(49)

Since n3(Q) and n3(Q —Y) are only defined up to a sign, it is necessary to define /,, using the
infimum not only over Y but also the choice of sign. This leads to the slightly counter-intuitive
situation that e.g. I, (r1, 2, a, —a) = O forall a € [—1, 1]. As a consequence, we only have
convergence of 1,(ry, r2,a,b) — I(r1,r2,a,b) fora — 0if ab > 0. In what follows, we
will only be concerned with the case b = 0 as this corresponds to a point on 7, ¢ ,,, and hence
we have convergence of I, (r1, r2,a,0)to I(ry,r2,a,0) foralla € [—1, 1] fora — 0.

The knowledge about the optimal profile in (48) is also used in the construction of the
upper bound, in particular the fact that |n3| — 1 and all derivatives of n3 decay fast enough
(here exponentially) as r — oo. The result that for minimizers of (46), n% approaches 1
exponentially fast is complemented by the next lemma. It states that for a bounded energy
configuration on a line, n% cannot always stay far from 1.

Lemma 5.3 There exist constants € > 0 and 8o > 0 such that for all K > 0, for all
8 € (0, 8p), there exists Cs > O such that for all n, & > 0 small enough, any one-dimensional
interval £ and any Q € H'(¢, Symy) satisfying the bound n £, £(Q, £) < K < 0o there is
a set Iy C € such that

K
[Nl = =1 and |n3(Q)| =1—C8onls.
s

Proof For § > 0 small enough let
Shin = min {2(0) : Q € Symy, dist(Q. N) <5, 10 — Ol = aV5] .

where a > 0 is chosen as in [5]. Proposition 2.5 in [5] then implies that gﬁﬁn > 0. Then,
with the notation

A.
B :

{x €l : 10— 0cl <ave},
{x € £ : dist(Q, N) < 8},

it holds

1
K > n&:(0,0 > ngnin|Bﬂ(5\A)|~
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Expanding |Q — Q| for Q € B and § > 0 small enough, one can see that [n3(Q)| < 1—p
implies |Q — Qoo| > %s*ﬁ With the choice p = 4?;‘3 we then see

l 4a?
K > ;gminBﬂ xedl: |n3(Q(x))|§l—S—28 . (50)

Sowe set € = 43%2 and Is '= BN{x €€ : [n3(Q(x))| <1— &§}. It remains to show the
estimate on |€ \ Is|. In view of Proposition 2.1, it holds that

2 4
Tk oz [ pas@ N0 a2 On(st -5 )iensl,
n 0\B n

2
from which we infer that [¢\B| < Kn%. Together with (50) this implies

K&> Ky
e\ Is] < [E\B|+|BNE\A)| < or T
min

[}

In the following two sections, we detail how Lemma 5.2 combined with Lemma 5.3 can
be applied in the case of T L 2 and on the surface M.

5.1 Blow up at points of Tin Q

We define the measure (£ (U) = n&;e(Qy,e.n, U) for any open set U. Since the energy
nEy.e(Qy.e.n) is bounded, the measure 1, ¢ converges (up to extracting a subsequence)
weakly* to a measure L.

Lemma 5.4 For H>—a.e. point of rectifiability xo € Q of T it holds that

du
dur

(x0) = 214(0,00,0,1). (51)

Proof Step 1: Notation and preliminaries. Recall that for a point of rectifiability xo € rect(T)
it holds

. ur(Br(x0)) . H?(rect(T) N By (x0)) _
im ————— = lim =

r—0 ar? r—0 r?

1.

We note that for H2—a.e. point xo € rect(7) there exists the limit

lim HBr(x0))
oy R R
r—0 wr

L. (52)

In the following we assume that xo € Q2 is a point of rectifiability of 7" which also satisfies
(52).

Let rop > O such that B,;(xp) C €. Next, we introduce some notation. Let ®,(x) =
(x — x0)/r be arescaling and define 7, := (®,)47T. Note that ®, (B, (xg)) = B1(0) =: By.
The rectifiability ensures that there exists a unit vector v € S? such that

F({,L_B —P,L_B)—0 forr—0, (53)

where P, = {v}* is the two dimensional plane perpendicular to v passing through 0. Indeed,
by Theorem 10.2 in [56] we know that (7,, — x¢)/ r,f approaches P, in a weak sense and by
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Theorem 31.2 in [77] we get the equivalence between the weak convergence and convergence
in the F—norm in our case of 7 having integer coefficients and 7', 9T being of bounded mass
(Fig. 5).

Since wye—p and Ty ¢ — T w.r.t. the flat norm for n, § — 0, it holds for almost every
r that

tn.& (Br(x0)) = (B (x0))

(54)
F(Ty: — T)L B, (x0)) = 0.

We further choose a sequence (rx)reN converging to zero as k — oo such that (54) holds for
each r; and

n(By (x0)) 1
— = — L|+FT, LB —P,LB)) < —. 55
M(TLBrk(X(])) + ( Tk 1 v 1) =% ( )
Given the sequence ry, we can extract a subsequence &, nx such that ny /ry < % and
M (Br (X0)) — (Bp (x0)) | _ 1
F((®r)# Ty B1 — T L By) + ‘ e . —. (56

M(T L By, (x0)) =k

Step 2: Flat norm convergence. Denote T = ((®,)#Ty,.) L B1. By (53) and (56) it
follows that 7 — P, L Bj in the flat norm. Hence there exist flat chains A,y € F2 and
Az € F? with M(Ay 1), M(A3 %) — O (for k — 00) such that

Ty — P,L By = Ark +0A3 . 57

This implies that 8(7y — P,L_B) = d A, j or in other words 8(Ty — Az ;) = d(P,LB;) =0
in B since P, is the boundary of the half space H, = {p +tv : p € P,, t > 0}, i.e.
P, By = 3(H, L By) in B;. This implies the existence of a flat chain Wy, € F3(By) such
that Ty — Axx = OWy = 9(1 — W), where 1 € F3 (By) is the flat chain associated to the
set B1. Note that we can also choose the complement set W,f = 1 — Wy since it has the same
boundary in Bj. From (57) we deduce that

O(H,LB — W) =P, LB — Ay + T = 0A3 .
This implies that
H,L B — Wy =A3; or 1—(H,LBy— W) =H,L B —WkC=A3,k.

Without loss of generality we choose Wy, such that H,|_B;— W), = A3 ; and since Ml(A3 ) —
0 as k — oo we conclude that the symmetric difference |W; A(H, L B1)| also converges to
zero for k — oo.

Step 3: One dimensional estimates. For z € P, we define the line £, = {z+1tv : t €
Rand z +tv € By}.

From Step 2 we recall that |W; A(H, L By)|, M(A3 1) — 0as k — oo. This implies that
for a subsequence (not relabelled) and almost all z € P,

Wi ACH, N £)], HO(Asx N E,) — 0 fork — oo (58)

and hence for k large enough ¢, crosses Ty = d Wy + Az k.
Defining Qx(y) := Qy,e,n(x0 + r1y), the energy in B, (xo) can be expressed as

b B 0D _ 1/ v Qi +—g<Qk)+ W F (0 +nnCody  (59)
g Bi(0) 27k &
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Fig.5 Schematic illustration of
the quantities involved in Step 2
of the blow up procedure for 7'

!
K F(Q1) +n,C)dr dz.

1 n,
= ol
T JP,nB Je, 2

where we introduced the notation 7, = 'Z—]’: and & = f—]’: and Cy = Co(§;, n). Note that

/& = i/ék-

This implies that by Fatou’s lemma

n
&2
(60)

1
L > — hmmf/ =19, 0k ? +—g(Qk)+

2f(Qk) + 1, Cp dr dz .
p,NB, k—o0 )

&

In view of (51) that we want to prove, we can restrict ourselves even further to the lines
£, with

liminff 18, 0x1? + f(Qp) + 1, Cy dt
k— 00 A

(Sk)2
< 21,(0,00,0, 1), (61)

otherwise there is nothing to prove. By choosing another subsequence (which depends on z),
we can assume this liminf is a limit and therefore that the sequence is bounded.
Using the inequality A2 + B> > 2AB, the bound (61) implies that

1 /N 2
2/@7'3@"'/(5,() f(Qi) +8(Qu) + Cp dt
Va2 f 3¢ Qildist(Qp. Ny 1) dr

214(0, 00,0, 1)

v

v

where we also used (10) of Proposition 2.1 in the last inequality. Denoting m :=
ming, dist(Qx, Ny, ) and M = maxy, dist(Qx, Ny, g ) we can estimate the energy neces-
sary for switching from (M +m)/2to M ontheset £, ,, pr = {x € £; : dist(Qx (x), N3y, 8) >
1(M + m)} by

M
210(0,00,0,1) = V2l +’"/ 00 dr = VIR — ), (@)
“3k 2 Jem 4.8
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where in the last step we used | Q(M)—Q(%(M+m))| > M—IQ—Q(%(MJ”")H > M—%(M—i—m)
for matrices Q¥ € Sym, at distance d from N, ¢, and any Q € Ny & - Taking then the
supremum of the RHS in O € Sym,, yields fe |8, Okl dr > 5 (M m). In order to obtain
a uniform convergence of dist(Qx, Ny, &), it remams to estimate m.

Again from (61) by using (10) in Proposition 2.1, we get that

/ n/
(sk>2/ (00 Ny ) 1 2 2 i’

21,(0,00,0,1) (ék

I . Plugging this estimate into (62) yields

In other words, m? <

/ 2
£

B 2y €21

In view of (11) of Proposition 2.1 we can conclude that Qy is uniformly close to A/ and
dist(Qy, N) converges uniformly to zero as &, ;. — 0.

This implies together with the convergences in (58) that there exists a sequence ty — 0
such that n3(Qx — Yx)(z + xv) = 0, where Q(y) = Op.g (xo +rry) and Yy = Yy, g,

We now split £, mtoZjE Whereﬁ"' {z+tvel:t>nlandl; = {z+tv el t <)
and show that on both rays there are points for which Qy is close to Q .

Applying Lemma 5.3 for § > 0 with the bound in (61) implies that for k large enough there
exists t]:“ € (t, 1) such that |n3(Qk(t,:r) — Y| > 1—¢€/3. The goal is to take § — 0. For
this, we choose a sequence 8 depending on k such that § and ), /Cs, < k converge to zero
as k — oo, where Cj, is the constant from Lemma 5.3. Similarly, there exists 7,” € (=1, %)
such that [n3(Qr(t, ) — Yi)| > 1 — €/6.

The final estimate for the integral over £, then follows by summing the contributions from
Zi both in which we pass from n3(Qx — Yx) = 0to |n3(Qk — Yx)| = 1. Knowing that Q
is uniformly close to A/, we can apply Lemma 17 in [19], the Lipschitz assumption on g in
(6) and use the definition of /, to determine the energetic cost on Kzt. This yields

L= hmmf—/ / v 0P + £(Q0) + 1,Cl dr dz
k—oo 1 Jp,nB

(5,)2
1
_ uminf/ T 19 042 + - g(00) + 2L (1) + 1.C) dt dz
7 Jp,nB, k—oo Jo, 2 m (Ek)2 ko
1 L. 77;/( 2
> — lim inf —=(1-C - R o)) |VR
=/, imin /l % (1 - €10k~ RO 120 IVR(QV) o
1
+ 7 &(R(0D) — €10~ R(QV)| dr d:
k
> — 21,(0,00,0,1) dz
P,NB;
> 214(0,00,0, 1).
O
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5.2 Surface energy

In this section we do the necessary calculations to find the announced energy contribution
on M. For this, we estimate the energy in a boundary layer around M. More precisely, we
define M ST = {x € Q : dist(x, M) < ./n}. Then we proceed similarly to the previous
section, the goal is to apply Lemma 5.2 to the rays perpendicular to M on which Oy ¢, is
taking values close to \V.

We assume 7 small enough such that /7 < %ro, where rg was fixed in the beginning of
Sect. 4 such that ry is smaller than the minimal curvature radius of M. Forw € M andr > 0
we define

Lo, = {o+tv(Q) : t €[0,r]}. (65)

We now rewrite the energy so that the line integrals over L,, ; appear. We note that for
0 < n < 1the map M x [0, \/n] — K given by (w,7) = w + rv(w) is injective. The
differential of this map is given by Idz, a4 + ¥ dyv 4 v. Using the normalized eigenvectors
Vv, w1, wy corresponding to the eigenvalues 1, k1, ko with «; being the principal curvatures of
M at w, i.e. the eigenvalues of the Gauss map d,,v. Then

det(Id +r dyv(w)) = (1 + re))(1 + ri2)

and the gradient transforms as

IVOyenl> =18 Qnenl® + 2 |9 Qp.e.nl* +

2
m |2|8@Qn,§,n| .

[1+ rlks]

In order to shorten our formulas, we still use the notation V Q, ¢ ,. The energy can then be
rewritten as

Vi , 1 1
gn,E(Qn,E,na Mﬁ) = /M/O <§|VQT],$J!| +?f(Qn,é,n)+?g(Qr],E,n)>

2
H(l +rk;) dr dow.

i=1

We now distinguish two cases depending on whether the ray L, Nl intersects T, ¢ , or
not.
Case 1: L, s does not intersect Ty ¢ . In this case we can assume that

Vil , 1 1 2
/0 <§|VQn,§,n| + ?f(Qn,é,n) + ﬁé&Qn,&,n)) 1_[(1 +rk;) dr

i=1
< I4(0, 00, 1, cos(8)),

otherwise there is nothing to prove. With the same argument as in (61)-(63) we can show
that SUpL,, dist(Qy.¢,n, Ny.£) converges to zero as £, n — 0. Analogously to the blow up
procedure, for § > 0 we use Lemma 5.3 to deduce that there exists a radius 7, € [0, /7]
such that [n3(Qy.e.0) (@ + tuyv(@)] = 1 — ¢€/5. We choose a sequence §, — 0 such
that n/Cs, — 0 as n — 0. Note that O, ¢ » does not verify the boundary condition (14),
but a slightly perturbed version. For n, & — 0 we still obtain the right energy thanks to
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Proposition 4.2 and the uniform convergence therein. As in (64) we then obtain

. n 1 n
lim inf / D19 Qe + 2 8(Qpen) + 25 F(Qnem) +1Ch i
=0 Jr,, 52 n 3

.. n
> lim mf/ 5(1 — ClQyen — R(Qyen) L)) IVR(Qye.0) )
Lw,ﬁ

n.E—0 (66)

1
+ ;g(R(Qn,é,n)) - C|Qr;,§,n - R(Qn,é,n” dt
> (0,00, 1, |cos(@)]) .

Case2: Ly, s intersects Ty g n.Let t;, € (0, \/n) denote the radius of intersection between
L, s and Ty ¢ . The only difference to Case 1 is that we estimate the two parts ¢ < #,, and
t > 1, separately.

With the same reasoning as before we can assume that the energy on the ray is bounded
and that dist(Qy.£.», NV;,¢) is uniformly converging to zero on the ray. On L, 1/, We obtain
just like in Step 1 the estimate

. n 1 n
lim inf / D190y enl® + ~g(Qnem) + 2L F(Qnen) +nCh dr
n§=0 Jp 2 n § (67)

o

> I4(0, 00, cos(9),0) .

On the remaining part of the ray L, ; we want to find the energy /, (0, 0o, 1, 0). Since
1;, might be arbitrarily close to ,/7, we cannot apply Lemma 5.3 to conclude that n3(Q, £, )
is close to =1 somewhere. Extending the ray up to a distance ¢ = 2, /7 from M and repeating
the above reasoning, we can find for § > 0 and » small enough #,, € [/, 2,/7] such that
[n3(Qy.e.n) (@ + (@) = 1 — ¢/5. Now we proceed again as in (66) and combine with
(67) to obtain

. n 1
lim inf / D19 0y enl® + ~g(Qpem) + -5 F(Qnen) +nCh dr
1620 J1,0 52 n § (68)

> 14(0, 00, cos(6), 0) + 14(0, 00, 1, 0) .

5.3 Proof of compactness and lower bound

We now need to combine the estimates (45), (51), (66) and (68). To this aim, we use the
localization technique for I'—convergence as described for example in [15, Ch. 16]. Let U,
i = 1,2, 3 be three pairwise disjoint sets open in 2. Then it holds that

3 3
lim inf D nEne(Qne U = Zl;n; inf n &6 (Qn.g. Ui)
SN0 i—1 "

v

liminf n &, £(Qp.¢)
n,E—0

A%

%sfﬁ M(SL Uy) + 21,0, 0o, 1, )M(T L (2 N U))

+ /M 1(0, 00, 1, | cos(8)]) d“(lfTLM)l_U3

+ / 1(0, 00, 1,0) + 1,(0, 00, cos(8), 0) dl’LTL(MﬂUg) .
M k

Since the LHS does not depend on the sets U;, we can take the supremum over all pairwise
disjoint open sets. For e > 0 and by inner regularity we can approximate the measure M(S) by
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acompactset A  C rect(S) andanopenset U D Aj suchthat M(S)—M(SLA; ) <e,
H2(MN Uie) <€/2and M(T LU, ) < €/2 since the measures j5 and w7 are mutually
singular. Furthermore, we find another compact set Ay  C (rect(7) N Q) \ Uy, such that
M(T L ) — M(T L Ay ¢) < €. Then, by construction there exists an open set Uz ¢« D Az ¢
such that U N U; ¢ = @ and dist(M, U, ) > 0. Finally, taking an open neighbourhood of
M disjoint from U3 ¢ and removing U] . from it, we find a third open set U3z  which satisfies
H>(M \ Us¢) < €. By monotonicity we then find

liminfn &, (Qye) =  sup zszﬂ M(SL Uy) + 21,00, 00, 1, 0)M(T L (2 N U3))
1,60 U Us U3 2

+f 1(0, 00, 1, [cos(@)) die(y_z|_ap)l_u,
M

+ / IO( (Oa 00, ]5 0) + IO[ (05 00, COS(Q)a 0) d’uTI_(MﬁU3)
M . (69)
> 214(0, 00,1, OM(T L Q) + 52 M(S)

+ / 10, 00, 1, | cos@)]) diz g s
M

+ f [0((03 OO, ]a 0) + I(X(Os OO, COS(G), 0) dlu’Tl_M N
M

We now want to pass to the limit « — 0. In order to mark the dependence of 7 and S on «,
we add the index « in our notation for the rest of the proof. Since 1, (0, oo, 1, 0) > s.ci > 0,
the mass of Ty, L €2 is bounded uniformly in & and since M has finite surface area it follows
that M((7,,) is bounded independent of «. Since the mass of S, and the length of the curves I',
are also uniformly bounded, we conclude that the flat chains 7;, as well as their boundaries
dTy = Sq + 'y, have finite mass. Choosing a sequence oy — 0, (69) holds and we can apply
the compactness theorem for flat chains [32, Cor. 7.5] as stated in Sect. 2.2. From this we
get that there exists a subsequence (not relabelled) and flat chains T € F2, § € F? such
that F(T,, — T) — 0 and F(S,, — S) — 0 as k — oo. Since boundaries are preserved
under flat convergence and, as we will prove below, I', — I' in the flat norm, it holds that
0T = S+T'. Wenote that I, (0, 0o, £1,0) — 1(0, oo, %1, 0), and I, (0, 0o, cos(8), 0) —
1(0, 00, cos(0), 0) as ax — 0. Passing to the limit oz — 0 in (69) thus yields

limin 5 £,,6(Qye) = 210, 00, 1,OM(TL.2) + %sfﬂ M(S)
+ /M 1(0, 00, 1, | cos(9)]) d/’L(l—Tl_M)
+ /M 1(0, 00, 1,0) + 1(0, 00, cos(6), 0) duy(_», (70)
— 45, e, M(TL Q) + %sfﬁ M(S)
+ 254Cy /M(l — | cos(0)]) dw + 4sycs /M [cos(@)] dprp py -

Combining the compactness result from Sect. 4.5 for fixed o with the above estimates, we
can choose a diagonal sequence oy, ;) — 0 as n, & — 0 such that

Jm F ey = D=0 I FSy sy =9 =0
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and (70) holds.
It remains to verify that 37 = § + I' as claimed by Theorem 3.1. We recall from the
boundary condition (14) that

1
Ope(@) = Op(w) = s4 (v(a)) Q v(w) — gld) forallw € M.
This implies that on I"

n3(Qpe(w)) = n3(Qp(w)) = v3(w) =0. (71)

by definition. Furthermore, we assumed that the derivative of v3 on I is non-degenerate, i.e.
Vev3(w) # 0 for all w € T'. Hence, on I it holds

Von3(Qne(@) = Vyvi(w) # 0. (72)
Next, we consider the function F(w,n,Y) = n3(Qyen(@w) +Y) forn e Nand Y €
B, (0) C Sym for 0 < o < 1. Note that we can rewrite
F(w,n,Y) = n3(Qpe(w) + (Qnen(@) — Ope(w) +7)
n3(0p(@) + (Qyen(@) — Ope(@) +Y).

Since on M, Q, ¢ , is by construction an approximation by convolution of Qy, it holds that
Qyen — Qpin C! on M forn — 0.Inother words, from (71) we get that F(w, 00, 0) = 0.

For the rest of the proof we argue locally on M. Let (u, v) be a local parametrization on
M such that Vu is parallel to I and Vv is in direction of the normal vector of the curve
", called vr. We can choose (u, v) such that wg = (#(0), v(0)) € T" and (u, v(0)) locally
parametrizes I". Then

WF(w,n,Y)|wy,000 = 0F((u,v),n,Y)|0,0),00,0
Dn3(Qp(@0))(0y Op(wo) + 0y(Qy.g.n(w) — Oy e (@))) .

For n large enough we can assume that || Dns|lcoay | @n.e.n — Onellcrvmy < %infw |0yn3
(Qp(w))| by Proposition4.2. Since Dn3(Qp(w0)) 0y Qp(wo) = 0y13(Qp(@))|w=awy, it follows
from (72) that 9, F (@, 1, Y)|wy,00,0 7 0.

The assumptions of the implicit function theorem are therefore satisfied and there
exists an open neighbourhood V of (#(0), co, 0) and a function v defined on V such that
F((u,v(u,n,Y)),n,Y)=0o0n V. In other words,

0 = F((u7 ﬁ(uv n, Y))! n, Y) = n?)(Q}],S,n((u! {j(ua n, Y))) + Y) .

So (u,v(u,n,Y)) serves as a local parametrization of the set I,y = {w € M
n3(Qy.e.n(@) + Y) = 0}. Noting that M is of class C? and hence v € C!, it holds that
# and I,y are also of class C! and in particular I',, y has finite length.

Since ¥ — Ouniformly asn — ooandY — 0, itholds that n3(Q,. ¢, +Y) also uniformly
converges to n3(Qp). By Theorem 3.3 in [24] it follows the Hausdorff convergence of ', y
tol,ie.

diStH (F, Fn, Y)

:= max | sup dist(w, [';.y), sup dist(w’, )} — Oforn — ocoand ¥ — 0.
wel w'ely,y
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Using the parametrization v to link I'" to I, y, we can also build a flat 2—chain G, y with
boundary G,y =T' — I’y y. It then holds

F(T —Thy) < M(Guy) < sup  H'(Tp.z) disty (T, Ty) .
(w,m,Z2)eV

6 Upper bound

This section is devoted to the construction of the recovery sequence of Theorem 3.1. Essen-
tially, there are three steps in this construction:

1. We approximate T by a sequence 7,,, solution to a minimization problem. The advantage
of replacing T by T, is the gain of regularity. Indeed, as we will see in Sect. 6.1, T and
its boundary inside 2 will be of class C'-!. Furthermore, by a comparison argument, we
can show that 3 (7, L M) is a line of finite length.

2. We introduce local coordinate systems in which we can define Q) ¢ , and estimate its
energy.

3. Choosing a diagonal sequence n(&, n) we find the recovery sequence.

6.1 A first regularity result for (almost) minimizers
In this subsection, we rewrite the limit energy & in a way that it only depends on 7'
E(T) = Eg(M, e3) + dsycy /M [cos(O)] dipf yq + 4sxc:M(T L Q)
+ %sfﬂM(aT -, (73)

where I' € F! is given by the curve {v3 = 0} C M. For the approximation of a flat chain
T e F? we are going to study the following minimization problem:

min & (T) +nF(T —T), (74)
TeF?
for n € N. The existence of a minimum of (74) is imminent since by assumption T verifies
Eo(T) +nF(T —T) = &(T) < oo, the energy is non-negative and lower semi-continuous
with respect to convergence in the flat norm. We have the following result:

Proposition 6.1 Let T € F2with E(T) < oo. Foralln € N, the problem (74) has a solution
T, € F2. The minimizer T, verifies

1. T, — T forn — oo in the flat norm.
2. T, L Qs of class C' up to the boundary (3T,) L Q.
3. 3Ty, is of class C'1 (with uniformly bounded curvature) outside of T

We note that the above Proposition also holds true for n = 0, i.e. minimizers of (73) and
hence of our limit problem are of class C! up to the boundary in Q which is of class C2.
As we will see later, the minimizers of & are in fact smooth (see Proposition 7.1). In order
to make this subsection more readable and simplify notation, we divide (73) by 4s.c, and
redefine the parameter S to replace the constant %j—iﬂ. Also, we will simply write n instead
of 4CZ_Y*. Since in this subsection we are only concerned with the regularity of minimizers,
this change of notation does not impact our results.
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The proof of Proposition 6.1 makes use of a series of lemmas which we are going to state
and prove first. The main ideas for the regularity of 7,, and 97, have already been developed
in earlier papers [25, 26, 65, 83], so it remains to check that we can apply them in our case.
For the sake of simple notation, we drop the subscript n for the rest of this section and define
S = 0T —I'. We recall from Sect. 2.2 that rect(S) is the set of all points of rectifiability of
S. In particular, for xo € rect(S) the density lim,_o is(B,(x0))/(2r) exists and is strictly
positive.

Lemma 6.2 It holds that supp (S) = rect(S) and Hl(supp (8) \ rect(S)) = 0.

Proof Let’s show first that S is supported by a closed 1-dimensional set.

For this, we prove that S cannot contain subcycles of arbitrary small length. Assume that
S1 isasubcycle of S, i.e. MI(S) = M(S1) +M(S — S1) and 957 = 0, and that S; is supported
in B, (xq) for r € (0, %ro). By (7.6) in [32], there exists a constant b > 0 and 77 € F?
such that §; = 977 and M(T}) < bM(Sl)z. By projecting 77 onto B, (xp) N Q, we can
furthermore assume that 7Tj is supported in B, (xo) and lies within . Projecting onto B, (x()
does not affect the previous estimate since it decreases the mass. Projecting 77 L E onto M
has Lipschitz constant less than 1 + 4:—0 and hence, the estimate stays true with an additional
factor of 1 + 4:—0. We estimate by minimality of 7

Eo(T) +nF(T — To) E(T +T) +nF(T + T, — Top)

=
< &(T) + M(Ty) — BMI(S1) + nF(T — To) 4+ nM(T1)

IA

Eo(T) — BM(S)) + nF(T — To) + (n + 1) (1 +4:—0> bM(S1)?,

and thus SMI(S1) —b(n + 1)(1 + 4r’—0)IMI(S1)2 < 0. We hence find that either MI(S;) = 0 or
that MI(S1) > B/(3b(n + 1)).

Now, let xo be a point of rectifiability of S and r < B/(6b(n + 1)). Assume that
us(Br(xg)) < 2r. Then, since

/0 ws(9Bs(x0)) ds < s (Br(xo)) < 2r,

we can invoke Theorem 5.7 of [32] to deduce that there exists a set of positive measure
1 C [0, r] such that us(dBs(xg)) < 2 for all s € I. Thus, we can find radii s < r such
that M(3(S L Bs(x0))) < 1. But since " = 0, it also holds that 8§ = 9907 — o' = 0, so
S1 := SL_By(xo) cannot have just one end. We conclude that 35 = 0. In addition MI(S) < 2r
by assumption. Hence, we have Ml(S1) < B/(3b(n+ 1)) and the above calculation shows that
necessarily M(S1) = 0. In particular, xq is not in the support of S which is a contradiction.
Let us conclude now that S is indeed a closed set. Let rect(S) be the rectifiability set of
S. Since S has coefficients in a finite group, it is rectifiable [87] with ug = H L rect(S).
Now, take a sequence x; € rect(S) and assume x; — x. By the above reasoning it holds
ws(Br(xg)) = 2r forall r < B/(6b(n + 1)) and in the limit k — oo also us(B,(x)) >
2r. It follows from Theorem 2.56 in [6] that us > H' L rect(S) and we conclude that
H! (supp (S) \ rect(S)) = 0. O

After having established this basic property of S, we can state a first regularity result:

Lemma 6.3 The flat chain S is supported on a finite union of closed Cl'% —curves.
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Proof Our goal is to prove that S is an almost minimizer of the length functional Ml and apply
Theorem 3.8 in [65] to deduce C L3 —regularity.

Letxg € Qand7 € (0, %ro) such that Br(xg) C Q.Letr € (0, 7). Consider T’ € F2 with
supp (T — T') C By(xg) C Q. For almost every r € (0, 7), it holds that S, := S B, (xp)
is a flat chain with boundary 8S, = SL 3B, (xp). In this case, S, = 37T'L B,(xp) has
the same boundary. Hence, the flat chain A = S, + S; = 9T + 3T’ is a cycle, i.e.
verifies dA = 0 and is supported inside B, (xp). We can construct the cone C’ with vertex
xo over A. Then, 3C" = A and M(C’) < c¢rM(A). Now, we distinguish two cases: It
holds either MI(S,) < M(S,) (which is enough for our conclusion as we will see below) or
M(S,) > M(S,) and hence M((A) < 2M(S;). Comparing T to T + C’ and by minimality of
T we get that

BM(S,) < BM(S,) + (n+ DM(C') < BM(S,) + 2c(n + D)rM(S,).
For r small enough we conclude that

de(n+1)
p

In case T’ is not entirely contained in €2, we need to project those parts of T’ and of the
boundary S/ onto M. Since we assumed r < 7 < %ro, the Lipschitz constant of the pro-
jection can be estimated by 1 + 4:—0, i.e. our analysis and in particular (75) holds true if
we replace M(S)) by (1 + 4:—0)M(S;). If we now consider xo € M, we can carry out the

M(S,) < <1+ r> M(S)) 5)

same construction, projecting all objects onto €. Since the projection onto €2 has a Lipschitz
constant 1 + O (r), the estimate (75) holds with a bigger constant in front of r. This shows that
there exists a constant C = Cj, g,r, > 0 such that § is (M|, Cr, 7)—minimal in the sense of
Almgren. Together with Lemma 6.2, (75) allows us to apply Theorem 3.8 in [65] which gives
the C!-!/2—regularity and the decomposition of supp (S) into a finite union of curves, possi-
bly meeting at triple points. Finally, since our flat chains take values only in 771 (V) = {0, 1},
we can exclude the existence of triple points since they would create boundary. Hence, S is
a union of curves. O

The regularity of S in Lemma 6.3 is not optimal. The following Lemma provides us with
the smoothness we announced in Proposition 6.1:

Lemma 6.4 The flat chain S is supported on a finite union of closed C1-' —curves. In partic-
ular, the curvature of S is bounded.

Proof Let xo € supp (S). Assume first that xo € @ and take r > 0 such that B, (xg) C Q
and us(9B,(x0)) = 2. Let {x1, x} := supp (S) N 3B, (xo) and define S, = SL B,(xp).
We compare S, (and T L B, (xp)) to two competitors.

The first one is the geodesic segment S, joining x1 and x7 in d B, (x). For the corresponding
T, we use a piece of 3 B, (xp) between T L (3 B, (xp)) and S,. By minimality of S, we find

BM(Sy) = 2nr (B+4(+ Dr) . (76)

Our second competitor is the flat chain supported on the straight line segment joining x|
to xp which we call §”. Then S” + S, is supported in B, (xg) and is closed, i.e. 3(S"+ S,) = 0.
By the construction (7.6) in [32], we get the existence of a flat chain T’ € F 2 supported in 2
and a constant b > 0 (depending only on the dimensions of the flat chains and the ambient
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space) such that 37’ = S’ + S, and M(T") < b(M(S") + M(S,))2. Since xo € supp (S) it
also holds that M(S,) > 2r. This, together with the minimality of S, and (76) implies that

28r < BM(S,) < BMI(S') + b(n + 1)(M(S") + M(S,))>

A

IA

2
BM(S) +b(n +1) (M(S/) +2mr (1 + wr»

BM(S") + C1r?, (77)

IA

for C; = 2(2 + 27)%b(n + 1) and r small enough. Hence, (77) implies (2 — (C1/B)r)r <
M(S"). If we now choose r even smaller to assure r < r; = (Cl)_lﬂ, one gets even
M(S") > r, i.e. the points x| and x, must not be too close.

Our goal is now to show that S, is in fact close to S’ and that S’ is almost a diameter of
B, (xp), in the sense that S, lies in a small neighbourhood of S” and the distance between xg
and §' is of order 2. Let’s denote £ := M(S’) = |x—x1|. Suppose M(S,) < ¢+« foraa > 0
and let p > 0 be the smallest positive number such that S, lies within a p—neighbourhood
of §’. Then, MI(S,) > /€2 + 4p2 and hence €% + 4p> < M(S,) < (£ + «)? which yields
the bound

Vi 2
p=\5+5 = Voa, (78)

provided & < 4r and ¢ < 2r. Applying this result to our case where o = S~ Cr2, we get
S, is contained in a neighbourhood of S’ of radius p < /28~1Cyr3.

In addition, if S, is supported in a p—cylinder around §’, there exists a T, € F 2 and
a constant ¢ (depending only on the space dimension) such that M(T,) < cpM(S,) and
9T, = S’ + S,. This implies that M(S,) < £ + B~ (n + 1)cpM(S,). Previously, we have
also shown that M((S,) < £ + ,3_1C1r2 < 3r, leading to

n+1

M(S,) < €+ Capr, where Ca =3¢ (719)

Now, we want to iterate this procedure. Let g := f —1¢,r? as start of our induction.

1. Knowing that MI(S,) < £ 4 o (either by (77) or by induction hypothesis) and by (78)
we can deduce that S, lies in a p; —neighbourhood of S, for py = /2ray.

2. Since S, lies in a px —neighbourhood of §’, one can use (79) with p = pi to obtain
M(S,) <€ + ag41, where a1 = Corpg.

Throughout this iteration, o and pg verify pxy1 = /2ragr1 = /2C20x r. Thus, p con-
verges to 2C,r? in the limit k — 0o. We can conclude that the distance between a pointin S,
and ' is at most 2C»r2. In particular, since xo € supp (S, ), it holds that dist(xo, supp (S”))
is of order > which shows that the line S’ is close to being a diameter.

Let us turn now to the assertion of the lemma. For x¢ € supp (S) and » > 0 chosen small
enough, we denote 7, (xo) the vector ”ﬁ :ﬁ; B where x1, x» are constructed as before. By our
previous calculations, we know that the corresponding points for 5 are at most at distance
2C,r? from the line connecting x1 and x, which gives ||t (xg) — 43 (x0)|l < Csr. This shows
that the limit 7 (xg) = lim,_,¢ 7, (x0) exists and that ||z, (x0) — T(x0)|| < 2Csr. The triangle
inequality then yields the existence of another constant C4 > 0, depending on 8 and n, such
that for x, y € supp (S) with |[x — y| =: r small enough we have ||[t(x) — 7(y)| < Cyr.

Now if xo € M, we observe that as r > 0, the projection onto £ has a Lipschitz constant
which converges to 1 as r — 0. We can reproduce the same construction, projecting back all

@ Springer



Convergence to line and surface energies in nematic liquid... Page430f62 129

the competitors onto Q and we end up with the same estimate, up to an error which vanishes
as r — 0. In particular, the curvature of S is bounded by Cj. O

Having reached the optimal regularity for S, we now turn to the properties of 7.

Lemma 6.5 The flat chain T L 2 is supported on a hypersurface of class C' up to the
boundary.

Proof We first discuss the regularity in the interior of 7 L Q. Let xop € 2, r > 0 such that
B, (xp) Nsupp (T L Q) # @ and consider a variation 7’ of T in B, (xp). Then, by minimality
of T we find

M(T) < M(T) + nF(T —T') < M(T') + %nnr3.

We can then apply the result of Taylor [83], or more general Theorem 1.15 in [25] to obtain
1% _regularity in €2, for some o > 0.

For the regularity up to the boundary we want to apply Theorem 31.1 in [26]. In order to
do this we need to show that on a certain scale, the boundary S is close to a straight line and
T is almost flat.

Take a point of rectifiability xo € S. We define a blow-up sequence ry ~\ 0. Since S is
supported by C! —curves, a blow up of S converges to a straight line. We claim that a blow
up of T converges to a limit 7y which is a half plane. For this, we use the minimality of T to
deduce for r > 0 small enough that

M(T L By(x0)) +2Br < M(T L By(x)) + BM((dT) L By (x0))

M(cone(T L 8B, (xp))) + BM(cone((dT) L 9 B, (x0)))
%M(T L 9B, (x0)) + BrM((dT) L dB,(x0))

=
=

IA

%M(T L 8B, (x0)) + 2Br .

This implies that M(T_B, (xo)) /r* is monotonically increasing and thus admits a unique limit
d.Wedefine T, = (T —x¢)/ry and by monotonicity we get fors; < s that M(7,, B, )/512 <
M(7;, L By,)/ s2. For r;, — 0 both sides converge to the same limit 7w d. But this means that
M(To L By,)/s7 = M(To L Bsz)/s%, i.e. Tp is a cone and hence a half-plane. Since a half

plane has density %, we findd = % In particular, we have for k large enough

T —
M(ul_Bl) =T Lo,
Tk 2

from which it follows that condition (31.6) in [26] holds and thus we can apply Theorem
31.1 on a length scale R < ry. We remark that by convergence in the flat norm, following
[59], we also verity the condition (31.4) of Theorem 31.1 in [26]. By compactness of the
boundary (37) L €2, we find a finite cover with balls of uniformly positive radius to which
we can apply Theorem 31.1. This allows us to conclude. O

Proof of Proposition 6.1 We have already established the existence of a minimizer of (74).
The convergence F(7,, — Tp) — 0 for n — oo is obvious since n F(T,, — Ty) < Ey(Tp) < oo
foralln € N.

The regularity of 7,, follows from Lemma 6.4 and Lemma 6.5. O
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6.2 Construction of the recovery sequence

In this section we will use the approximation of 7' given by the minimizer of (74) to construct
our recovery sequence. First we establish the following Proposition which yields additional
control over 8 (TLM)\ 87 and its boundary which will be necessary for the final construction
in Proposition 6.8.

Proposition 6.6 Let T C Q be a flat 2—chain of finite mass and S C Q be a flat 1—chain
of finite mass such that S = 0 and 0T = S + I'. Then, there exist finite mass flat chains
T, € F? of class Lip up to the boundary and S, € F" of class C"' such that

1. 3S, =0and T, = S, + T,

2. F(T, —T) — 0and &E(T,) — Eo(T) asn — oo,

3. and there exists a constant C,, > 0 such that M(3(T,,L M)\OT,) < C,, and M(3(d(T, -
MNIT,) < Co.

Essentially, the first two parts of Proposition are proved by Proposition 6.1, saying that
the minimizer 7,, of (74) fulfils our claims. It remains to prove the last assertion i.e. that we
can modify 7, to control the length of the set where the 7}, attaches to M. For this, we need
the following average argument stating that we can find radii r such that the corresponding
sets T, L M, for M, := {x € Q : dist(x, M) = r}, are of finite length.

Lemma 6.7 Let T, be as constructed in the previous subsection. There exist a constant ¢ > 0

and a radius r € (0, %ro) such that

4cM(T,)
ro '

M(T, L M) = (80)

Proof Assume that M(T,,_M,) > %ﬁm forallr € (0, %ro) and some ¢ > 0. This implies

ro/2
/ ur, (M) dr > 2cM(T,) .
0

Now, there exists a constant ¢ > 0 such that fOrO/z ur, (M) dr < cM(T,,) (see (5.7) in [32]).
Hence, the lemma is proved. O

Now, we can modify 7,, by replacing a small part close to M by a projection to control
the boundary of 7, L M which is not included in S.

Proof of Proposition 6.6 We construct T,, as in Proposition 6.1. To ensure the additional
estimate, we choose a radius r and a slice M, as in Lemma 6.7. With the same argu-
ment as in Lemma 6.7 for S, one can choose r € (0, %ro) for which additionally
M(S, L M,) is finite. Let IT : Qp — M be the projection onto M. We define
@ : M, x[0,1] = Qby ®(x, ) := (1—t)x+tTTx. Then, by [31, Sec. 2.7], [30, Cor.2.10.11],
M(®Py(T,, LM, x [0, 1])) < CrM(T,_M,) and also M(IT4(T,,L_M,)) < CM(T,,L_M,).
Again by the same argument, we get MI(8TTx(7,, L M,)) < CM(3(T,, L M,)). This proce-
dure can be applied to almost every r € (0, %ro), in particular, we can choose a sequence
r, — 0asn — oo. Replacing T, close to M with these projections, we get the desired
estimates.

The convergence of the energy £y(7,) to & (T) is a consequence of the convergence
statements in Proposition 6.1 and the fact that 7,, L. M approaches T L M. O
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The recovery sequence Q, ¢ for our problem will be constructed around the regularized
sequence of T'. The gained regularity permits us to define 0, ¢ directly and without the need
to write T as a complex and “glue” together the parts of O, ¢ on each simplex.

Proposition 6.8 There exists a recovery sequence Qy ¢ for the problem (21).

The construction relies on the approximation and regularisation made in the previous
subsection. We will construct O, ¢ step by step: The straightforward parts are the profile on
F and M\ F away from 9 F, as well as the transition across 7. We recall the notation F from
(22) that if we write | = XG H? L M for a measurable set G C M, then F is given by

F ={weM\G :viw)-e3>0U{we MNG : v(w)-e3 <0}.

In order to be compatible with the latter, we have to adjust the construction made in [5] for
the singular line S. The profile of the part of S that approaches the surface M can be chosen
as in [5]. Last, we need to connect d F'\S to the profile of T already constructed. This last
part is a bit subtle since d F \ S does not appear in the energy. The control we obtained in
Proposition 6.6 is artificial and indeed we do not control the length of dF \ S. Another
problem for our construction originates in the fact that the optimal profile n3 needs to be
accompanied by a horizontal vectorfield (denoted v in the proof) to form a director field. Far
from M, this can be chosen constant, but on M the director must match the normal. In order
to be able to construct a regular vectorfield v, we need to “cut holes” into 7 in regions on
M where v = +ej3 that are also covered by 7. Similarly, we also cut out some pieces of T’
close to M as the transition of v from boundary data to constant far from M would result in
infinite energy.

Proof From now on, we fix n large. In view of Proposition 6.6 we can find a constant
0 < C, < o0 such that M(3(T,, L M)), M(3(d(T,, L M) \ 9T,)) < C, and that the
curvature of S, is also bounded by C,,.

Furthermore, whenever this does not lead to confusion, we drop the subscript parameters
n, & and n in order to make the construction more readable.

Step 0: Modification of T. We start by noting that the construction “close” to the particle
surface M will take place in a neighbourhood of size 1. More precisely, let M > 1. We will
focus on on the 3Mn neighbourhood of M in €, denoted by M3,,,. By taking 3Mn < %ro,
we can ensure that the extension v = v o T exists on M3y, as before.

Throughout the construction, we make the assumption that HO (supp (T) N 71 (+e3)) is
a finite set, say {xi, ..., xy} for some N € N. We furthermore assume that x; ¢ S. Itis a
simplification and we will explain in Step 7 how to adapt the proof for the general case.

If all points x; for i = 1,..,N lie inside €, we can choose 0 < € <
min{%, %dist(x,-, M) i =1,..., N}. Then by slicing it holds that

€

M((T \ Bs(x)) ds < M(TL Bo(x)) < C(¢')?, (81)
e)2

where the last inequality follows from the C! regularity of T but may also be easily deduced
from the minimality of 7', similarly to the case x; € M discussed below. From (81) it follows
that we can choose a radius s; € (5/, €’) such that M(3(T \ By, (x;)) < Ce'. We define
T =T \ UlN:] By, (x;). Note that T differs from 97 since we introduced boundaries
coming from 3By, (x;). Since the lengths of those boundaries are controlled by Ce’, the
energy of T can be estimated as So(f") < &(T)+ CNe' < &(T) + Ce.
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In the case where one (or more) point x; lies on M, we also “cut a hole” into 7}, around x;
in the following way. By minimality of 7,, we compare the energy in (74) with 7’ where the
T, B/ (x;) has been pushed out onto the boundary of B,/ (x;) N 2. The newly created surface
has surface at most 47 (¢/)? and the additional term in the flat distance is of order n(¢’)? so
that the difference in energy between T and T is of order (¢')%. Since v3(x;) = 1 it holds
v3(x) > % for x in a neighbourhood of each x;, and therefore |M(T) — M(T")| < C(€')2.
We can proceed as before by slicing to select a radius s; and then modify 7" to obtain a 7.

With this procedure we obtain a modified flat chain T with does not intersect {v = tes3}
in M3y, and with energy Eo(T) < &(T) + Ce. We will continue to work with 7' in the
next steps and omit the tilde in our notation.

Step 1: Adaptation of the optimal profile. The goal of this step is to construct a one
dimensional profile close to the optimal one in Lemma 5.2, but where the transition takes
place on a finite length and which gives the correct energy density (48) for n — 0. To this
goal, we use the “artificial” length scale M1 introduced in Step 0 and define

Dr(t,0,v) = s, (ni(t/n,9)®ni(r/n,9)— éld) forr € [0, Mn],  (82)

with n* = /1= n%(vl, v2), £n3), where n3(z, 0) is the optimal profile from (47) and

(v, v2) € S'. We will later take the limit 7 — 0 and M — oo such that n®(Mn/n) — +es.
Now we define Cbi(t, 0, v) for ¢ in the interval [Mn, 2Mn] to be

1
OF(t,0,v) = s (s, (r.0) @mip (1,0) — g101) forr € (Mn, 2Mn], (83)

+

where n; . (¢, 0) is the unit vector interpolating between nt(M, 6) and =es, that is, for

o = +arcsin(n® (M, 6) - e3)

nE o (1,0) = cos (w21t & 2 RE (M, 0) + sin (0241 4 20 ) e
for
nt(M,0) —ni (M, 6)e;

At
n-(M,0) = .
M0 = .0 - n;y (M, 0)es)

This definition achieves the transition of (I>§]t (Mn, 8, v) to O in a way that the bulk potential
f vanishes. Finally, we define the transition between Qo and Q¢ ~ to take place for
t € [2Mn, 3Mn] via a linear interpolation

E(1,6,v) == My —1)Qc0+ (1 —2MN)Qpeoo forr e @Mn,3Mnl.  (84)

To finish the definition of the profile ®* we have to construct the vectorfield v :  — R2
with modulus 1. In order for d>,]jE to meet the boundary conditions, we require that v = v :=
(v1,v2)

v12+v%

on M. We define v as follows: Let e € S! and let v/ denote a radial extension of

v’ into a neighbourhood of M in Q, i.e. Vv =1 oIl M. We introduce a monotone cut-off
function ¢ : @ — [0, 1] depending only on the distance to M which satisfies ¢ = 1 in
a l?To—neighbourhood of M and ¢ = 0 at distance greater than %0 Note that in the region

where ¢ # 0 the function v/ is defined. We can furthermore assume that ¢ is Lipschitz, i.e.
[Vp| < C. We define

oV + (1 —g)e
lpv" + (1 — p)e

@ Springer



Convergence to line and surface energies in nematic liquid... Page 47 of 62 129

This vector field is well-defined and S! valued except for the set on which eV —e) = —e.
For a generic choice of e and g, this set is 1 —dimensional and we can assume that it intersects
T only in finitely many points.

For the construction of the profile around 7', we can cut out small parts of 7" around these
points as we did in Step 0, so that v is a Lipschitz S! —valued vector field in a neighbourhood
of T and coincides with v" on M and with a constant vector e far from M. Since the removal
of parts of T creates new boundary components, as in Step 0, this procedure introduces a
further error of order €, where € > 0 is the length scale of the holes.

All in all, we end up with a slightly modified chain T (of approximately same energy)
and a “horizontal” vector field v which is C! in a neighbourhood of the support of 7.

Step 2: Construction on F and F¢. Letw € F3y, = {w € F : dist(w, dF) > 3Mn} C
Mandlet0 <r <3Mn < %ro. For v defined in Step 1 we set

One(w+rv(w) = CD;]"(r, 0, v(w+rv(w))) where § = arccos(v(w) - €3) (85)

and as before v is the normal vector field of M. We note that with this definition Q¢ (w) =

Op(w).
It remains to calculate the energy contribution coming from F3 g, where F3py; r i=
xeQ:x=w+rv(w), o€ F3yy, r € [0, R]} for R > 0. It holds that

n 517,&(Q11,§’ F3Mr],3M11)

3Mn 1 5
n n
= / / <§|VQn,S|2+*2f(Qﬂ,$)+ *g(Qn,g)-i-nCo) H(l—i—r/c,') dr dow,
F3py J0 £ 1 1
where k; denotes the principal curvatures of M as in the previous section. By definition of <I>7J7r

it holds that f(Q,.¢) = 0 for r € [0, 2Mn]. Furthermore, by Proposition 2.1, Co < £2/n*
and by exponential convergence of n3 to 1 we deduce that
n

3Mn 1 n ‘;’_-2 Iy Iy
S [(Qne) +-8(Qne) +nCo| dr < S-5e¢ " Mn=Me ™.
/ZMn g2 ) et T SR s £2 92
We also point out that f;f:” %g(Q,,,g) dr < Me=™ . By the construction in Step 0 and Step
1 we can bound the gradient of v uniformly for all x = '+ rv(w’), where distp( (0, @) > €
for all o € M with v3(w) = £1. Lemma 5.2 implies that the derivative of n3 w.r.t. 6

is bounded. Around the points w € M where v3(w) = 1 and for 3Mn < ro/2 it holds
v(x) = V/(x). The gradient of <I>;7Ir can be bounded by

2
VoI S |Vn3|2+‘V( 1 —n2 (vl,vz))‘ . (86)

We point out that the first term in (86) is easily seen to be bounded since Vnz = 0 in o
as v3 = 1 is a extremal value. For the second term we recall that v(x) = v/(x). A direct
calculation using the explicit profile from Lemma 5.2 shows that

1@, 20) _ exp(— =) (V1(x), V2(x))
V=307 1)+ (= i) exp(= 35

Since v = Vdist(-, M) and |[VV| = |D2dist(-, M)| < C, one can see from this representation
that the tangential gradient is uniformly bounded and the radial derivative is bounded by
C/n. Therefore, integrating ;7|V<I>,‘7" |2 over the e —neighbourhood of the points w € M with

1 —nix)

v3(w) = +1 and r < 3M7) leads to the upper bound C Me2. Note that the same argument
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does not work for d>n+ near the points where v3 = —1. This is due to the fact that in this
situation 1 — n% first increases to 1 before decaying. Together with the singularity of v at
v3 = —1 this implies that (1 — 1'1§)|Vv|2 is not necessarily integrable. This is the reason
why we did not attribute those points to F so that Q,, ¢ is defined around v3 = —1 using the
profile &, instead. The above allows us to estimate

Mn n 5 1
N Ene(On.es Famn3mn) < / [[ <§|arQn,S| +*g(Qn,g))
F3my 0 n
2
l_[(l +ri;) dr + CMeMi| dw
i=1

< (14+CMe™) 1(0, M,cos(8), +1) do + CMe* 4+ o0(1).
Famy

Analogously, we can define 0, ¢ on F¢ away from 9 F by using &~ and estimate its
energy. Note that this construction may already create the part of 7 that attaches to the
surface M in the limit , £ — 0. Indeed, if a point w is contained in F although the energy
density corresponding to F¢ would be lower, the profile constructed passes trough n3 = 0
within a distance M7 from M and hence is included in the limiting 7' (Fig. 6).

Step 3: Construction on T. Let x € T, = {x € supp (T) : dist(x, M) >
3Mn and dist(x, S) > 3Mn}. For each connected component of 7 (and thus of 7)) we
can associate a sign depending on the sign of the degree of the singularity line S (if the
component of 7 has such). This must be compatible with the part of 7 that reaches M and
already has been constructed in Step 2. The compatibility corresponds to the choice of the
signs of dﬁ and of the distance function, viewing T, as a boundary, locally. Assuming that
in Step 2 we chose CIZ';r whenever dist(-, T;;) > 0 and <I>,7’ for dist(:, T;;) < 0, we define

Qpen(x) = ®F (dist(x,T),%,v(x)).

We recall that T has been modified in such as way that v from Step 1 is Lipschitz in a
neighbourhood of T and hence |Vv| is bounded. Writing 7, ; = {x € Q : dist(x, T})) =
dist(x, T) and dist(x, ;) < t} for ¢+ > 0 we can estimate by Lemma 5.2 and the coarea
formula

J

n

n n 1
SIVQpenl* + 5 £ (Qnen) + —8(Qyen) +1Co | dx
M 2 3 n

3Mn

IA

n 2 1 M
f ~IVOuenl”+—8(Qnen)| dx + CMe™™ M(T)
Ty L2 n
n.Mn

25:Cx / Inj (dist(x, T,,)/n)| dx + CMe™™ M(T)
Ty.my

Mn
2S*C*/ / |r1%(s/n)| ds +o(1) + CMe ™ M(T)
0 Ty mpN{dist(-, T)=s}

M
= 2854Cx / ! HZ(T,%M,, N{dist(-, T) = s})Ing(s/n)I ds +o(1) + CMe™M M(T)
0

Mn
Inj(s/m| ds + o(1) + CMe™™ M(T)

IA

2504 (2M(T) + 0(1))/
0

4s,ciIn3(M)| M(T) + o(1) + CMe ™ M(T) ,
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where we also used that Hz(T,,.M,7 N {dist(-, T) = s}) — 2M(T) for s — 0. Note that
[n3(M)| < 1. Hence, for n, §€ — 0 we end up with

. n 1 1
lim sup/ *|VQn,E,n|2 + ?f(Qnsn) + Eg(Qn,é,n) +nCop dx
T,

n,6—0 n,3Mn 2

< dspe(1 4+ CMeM)M(T) .

Step 4: Construction on S |— Q. Following the notation we used in Step 2 and 3, we
introduce the region

S3py = {x € Q : dist(x, M) > 3Mn, Iy € T with dist(y, S) < 3Mn
and dist(x, T) = ||lx — y|| < 3Mn}
(87)

around the singular line S (see also Fig.7). We will construct Q, ¢ , as follows: Depending
on the sign attributed to the connected component of 7" in Step 3 or the change between F
and F€ in Step 2, we place a singularity of degree —% (resp. %) as in Lemma 5.2 in [5] in
the center of S357,. We do so by setting O = 0 in a disk of radius & (perpendicular to §) and
oblate Q uniaxial with director field (sin(¢/2), 0, cos(¢/2)) on the annulus between the radii
2¢& and n, interpolating linearly in radial direction between these two regions. From the circle
of radius 7 to the boundary of the region (87), we use the profile CD,Z;E to make a transition to
O~ along Vdist(-, 7). By doing so, we get the compatibility between the construction made
for T and S.
More precisely, we define as in [S](Lemma 5.2, Step 3, Equation (55))

0 rel0,&),
0s(r.9) = {(E-1) 0@ rels26),
0(e) ref2,n),
where r € [0, ), ¢ € [0, 27r) and
1 sin(¢/2)
(@) = s« <n(¢>) ®n(p) — §1d> with n(¢) = 0
cos(¢/2)

We use this to define Q,, ¢ on a small n—neighbourhood of S as follows. For 1 small enough,
we can assume that the n—neighbourhood is parametrized by the projection onto S, the radius
dist(-, S) and an angle ¢.

Modifying T close to S if necessary, we can furthermore assume that on each (small) plane
disk perpendicular to S, the restriction of T to this disk is given by a straight line segment. To
see that this modification is possible, we claim that one can select a radius r € (21, 3n) and a
slice T, of T atdist(-, S) = r such that 357, < 27 j‘jn" HU(Ty) ds < CH2({T N{dist(x, S) <
31}}. Indeed, this follows from C!—regularity of T up to the boundary or by constructing
a competitor for 7 in the following way: Around a point p € S one can choose a tubular
neighbourhood, depending on the curvature of S, and translate S. In case all of the 7, did
not satisfy the above condition, this operation decreases the energy of T locally up to lower
order terms. One can then replace T by a T inside the tubular neighbourhood {dist(x, S) < r}
where T is defined by the straight lines connecting S to 7, on each disk perpendicular to S
with asymptotically negligible energy cost.

In order to define the profile on disks perpendicular to S, we introduce a orthonormal
C!'—frame along S. By Lemma 6.4 we already know that the tangent vector field g of §
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is of this class. Ideally, one would like to choose the normal vector of T to be part of the
frame, however we only know that T is of class C' up to the boundary. Instead, we will take
an arbitrary normal vector field vg to S of class C!-!. The existence of such a vector field can
easily be seen via the following construction: Since S is compact and of bounded curvature,
we can find finitely many points p; € S such that there exist normal vectors v; to S in p;,
where neighbouring vectors v;, v; form an angle of strictly less than 7. We can then choose
C?—smooth curves on the sphere S* connecting all those v;, resulting in vg. The third vector
for our frame is simply obtained by taking the cross product tg x vg.

Consider xg € S. By applying rotations if necessary, we can assume that vs = e; and
s X vs = e3. We then set

Onen(x) = Qp(dist(x, S), ¢(x)),

where
X—X0 : X—X0
5 arccos (vs . m) if (tg x vg) - T=xol = 0,
X) =
27 — arccos ( vg - ﬁ otherwise.

It remains the transition from the set {dist(-, S) = n} to the boundary of (87). Since 75 X vg
might not agree with vr, the T constructed around S and the 7 coming from Step 3 does not
necessarily line up. However, we have enough space to smoothly connect both parts inside
Ay = {dist(-, ) = r}\{dist(-, S) = n} with asymptotically negligible contribution to the
energy. Indeed, there exists a Lipschitz deformation © : A, , — {dist(:, S) = n} relative to
{dist(-, S) = n} such that 7, = T N {dist(-, S) = r} gets mapped onto 7" N {dist(-, S) = n}.
We can then extend Q,, ¢ from {dist(-, §) = 5} to all {dist(-, §) < r} along this deformation
D by setting Oy £ (x) = Q6 (D(x)).

Let IT be the projection along Vdist(-, T') onto {dist(-, §) = r} U (T N {dist(-, S) > r}).
The function Q¢ is already defined on the first set in the union, for the second we simply
pose Qe (x) = s:((v(x),0) ® (v(x),0) — %Id) in order to be compatible with Step 3. For
x € S3pp\({dist(-, S) < r} U (T N {dist(:, S) > r})) we then define

Qpe(@) = & (Ilx — Mx ], 6(x), v(x)).

where 6 (x) is the angle between e3 and the director field that we have already constructed in
I[1x, i.e. O (x) = arccos(n(¢(D(x))) - e3) or O(x) = arccos(v(I1x) - e3) depending on which
set contains ITx.

It is easy to see that since f, g and Cyp are uniformly bounded and the curvature of S is
bounded by Lemma 6.4, we get for the integral up to distance n

1 1 1
[ LV Quenl + = f(Qpem) + —g(Qnem) + Co dx
(dist(-,$)<n} 2 3 n

n 2&
< ﬂ/ / IV(Q o) (P dr + ﬂ/ / V(Q5(r. ¢ O dr
2 Jae Jydist(,$)=r) 2 Je  Jidiste.,8)=r)
+ cg%HS({distc, S) <28)) + C%H%{dmc, S) <.

Estimating the gradient at distance r := dist(-, S) € [2&, n) yields

1 3 cos(¢/2)
5|V<Qo¢>(x)|2 = s2[Vmo@)(x)* < s? 0 ® Vo (x)
—1sin(¢/2)
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Fig.6 Schematic view of the
different parts of 7" and S that are
constructed in Step 2 to 6

SZ
< =2=04+Crn+cC
— 472 ’

where we used that the derivative of the polar angle in the disk perpendicular to S is % and
that derivatives of the basis vector fields g, vg and tg X vg of our frame are bounded. Hence,
we get

S27T

n
= nM(SI_Q)/ 1dr—i—o(l)
2 28 r

IA

n
g// IV(Q o ¢)(x) | dr
26 J{dist(., )=r)

T 20 ()| ML Q) + o(1).

()

2

, %cos(¢/2) c
C<f—1> 0 |evew| +,
§ —Lsin(¢/2) §

A

Similarly, for r € [, 2£) we obtain

2
+Sf

2

1
5IVQs(r. NI = 57

(é - 1) V(0o ¢)(x)

IA

from which it follows that
n (%
Ef / IV(Qg(r, ¢ ())I*dr < Cn.
3 {dist(-,S)=r}

For the energy of the remaining part of the domain defined in (87) we use Lipschitz
continuity of IT, ® to get

1

1 2
*|VQn,§,n| + 52

1
. f F(Quem) + —g(Qyen) +Co dx
Sy \(dist(, )<} 2 n

2
< Cp <(”117—Z) + Mze_M) M(SL Q) + o(1)

which vanishes in the limit  — 0. We obtain
1

£

Step 5: Construction on S M. The domain

1 T
15 f(Qn,g,n)Jr?g(Qn,s,n)JrCodx < Esi/ﬂ/ﬂ(sun.
r], —

. 1
limsup n / §|VQr;,§,n|2 +
S3mn

So3mn = {x € Q : dist(x, §) < 3Mn, dist(x, M) < 3Mn and
dist(x, 0(d(T |l M) \ 9T)) > 3Mn}

can essentially be treated in the same manner as in Step 4 or as in [5, p.1444, Step 3]. Also
the boundary of 7 in €2 (but close to M) that was created in Step 0 and Step 1 to ensure that
v is well-defined, is treated in the same way. To give some more details, we can reuse the
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Fig.7 Sketch of the construction Qneo0
for Oy ¢ » in Step 4 in the region
S3 My defined in (87) (grey :
shaded area). Dashed lines !
indicate the direction of the i |
projection IT 3Mn | o

Tyen

,,,,,,,,, Qr;.&m

3Mn | Py

Qn.go0

profile O p from the previous step (assuming a +%—singu]arity) for defining Q¢ in a ball
of radius 7 centered in xg in the middle of So 357y, seen as family of plane sets perpendicular
to S. Note that O, ¢ has already been defined on the boundary on each of those plane sets.
Thus, a simple two dimensional interpolation of the phase angle along Vdist(-, xg) as in [5,
eq (56-64)] shows that the energy contribution is

(Mn)?
n2

E16(Qu: Soamy) = (1+CTs2 | In@IMSL M) + Cn-=3= + Cpe.

Step 6: Construction on 0 F'\ S. It remains to fill the “gaps” left by the Steps 2 to 5 (see also
Fig. 6). The important part is the transition between the part of T that approaches M (and
which was constructed in Step 2) and the part that stays bounded away, including the region
where S detaches from M. At distance larger than 3Mn from M, we set Oy ¢ = Oy.¢,00
for all points where we haven’t defined Q; ¢ so far. Note that this is compatible with the
previous constructions.

Let’s consider the set Y3p, = {x € Q : (dist(x,d(T L M)\OT) <
3Mn and dist(x, 3(d(T L M)\dT)) > 3Mn}. Considering the slices of Y37, orthogonal to
and parametrized by (7 L M), we note that Steps 2 to 5 ensure that Q,, ¢ takes values in
N whenever meeting the boundary of the slice and Q,, ¢ having trivial homotopy class. For
an arbitrary Q € N, we can define O, ¢ = Q on adisk of size n in the middle of the slice
and again by linear interpolation of the phase towards the boundary of the disk. We thus get
a function Q¢ € H 1(To,3 My» N) respecting the previous constructions and Q = Qj on
M. Furthermore, the interpolation allows us to estimate IVOI? < C((Mn)~%2 4+ n~2) and
since g is bounded, f(Q) = 0 (because Q takes values in ) the energy contribution can be
estimated

A

1 1
nEre(Q. Yosmy) < CnlYosm |(7+7+1)
n.§ n n M2 T

(Mn)?

IA

C M((T L M)\ dT) (n+ +n(Mn)2> ,

which vanishes in the limit n, & — 0 due to our hypothesis about the finite size of 9(7 L
M)\ oT.

It remains the region where S detaches from M or in other words Y3y, = {x €
Q : dist(x, 9(d(T L M)\ S)) < 3Mn}. We can also use interpolation to construct Q, ¢
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and estimate its energy but we need to be a bit more careful since this time f(Q; ¢) cannot
be chosen to be zero. This is due to the isotropic core of our construction around S. So we
connect the “core” parts from Step 4 and 5 where we defined S in Q2 and close to M via a
tube in which Q, ¢ is defined via the profile Q g which has been used in both steps. Around
this tube, we can again apply the previous idea of linear interpolation of the phase, this time
on slices perpendicular to the tube. We end up with

Ene(Qne Ti3my) = CMMAO(T L M)\ IT)),

which vanishes in the limit 7 — 0 in view of the bound M(3(d(T L M) \ aT)) < C,.

Step 7: Conclusion Combining Step 1 to Step 6, we obtain a function Q, ¢ which respects
the boundary conditions and satisfies the energy estimate

limsupn &, :(0y:) < (1+ CMe M)y Ey(T, S)+ C(1+ Pe.
n,E—0
Since M can be chosen arbitrarily large and € arbitrarily small, we can construct a diagonal
sequence and obtain the claim.

It remains to show how to proceed if the assumption that the set supp () N {x € M3y, :
V(x) = *e3} is finite does not hold. In this case, there is an additional approximation step
that needs to be carried out as we detail in the following.

Using the area formula for v [6, Thm. 2.91], it holds that

/ HO(supp (T) N~ () dH2(y) < € / VD00 de,
s? supp (T)N{dist(-, M)<ro/2}

which is finite by regularity of M. Therefore, for all € > 0 there exists a unit vector e5 € S?
such that |e5 — e3| < € and HO (supp (T) N i_l(eg)) < 00. Write supp (T) N V‘l(eg) =
{x1, ..., xn}. We can furthermore choose €§ such that all of the points x; ¢ supp (S). We
can then proceed as in Step 0. In the remaining steps of the proof, we also need to adapt the
“optimal profile”. Replacing the function 1 — n% byl —(n- e§)2 in Lemma 5.2, we obtain a
new function n§ that we use to construct nni in Step 1 by posing

nt = /1— (n§)?v £ njes,

the function v being constructed as before but with H(eg)J_ (v) instead of v'.

By exponential decay of the optimal profile n§, the interpolation between n“*(M, 0) and
ez taking place in @f”i(t, 6,v) fort € (Mn, 2Mn] is well defined.
Noting that

I1—(m-e)*—(1—(n-e3)?)| < 2¢+e2,

we deduce that the additional error introduced by this change is estimated by C ,57 BM n)(H2
(M) 4+ M(T)) which is of order Me(1 4+ Ey(T, S)). Therefore, we obtain the final bound

limsupn & :(Qpe) < (1+ CMe™ 4+ CMe) Eo(T,S)+ CBe +CMe
n,E—0

and passing to the limit first in € — 0 and then in M — oo yields the result. O

7 Regularity and optimality conditions for the limit problem

Let us first state an improved regularity results for minimizers of the energy £:
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Proposition 7.1 Let T be a minimizer of (16) and S = oT — I'. Then each component of
T L Q is an embedded manifold-with-boundary of class C°.

Proof The main work has been already carried out in the proof of Proposition 6.1 for n = 0.
The higher regularity can be obtained by Schauder theory. For details we refer to Theorem
2.1 in [66]. O

Next, we give a characterization of minimizers of the limit energy. Because of the regularity
given by Proposition 7.1, we can take variations of 7L €2 and S €2 in the classical sense to
derive the optimality conditions. Furthermore, we can obtain a version of Young’s law [70,
84]

Proposition 7.2 Let T be a minimizer of (16) and S = 0T — I'. Then T L Q has zero mean
curvature and S  is of constant curvature %% B\, Furthermore, Young’s law holds

V3(TNQ) - VoF+t = VA - €3 On (TLR)\S,
i.e. T meets M in an angle 6 = arccos(vpg - €3).

Proof The first claim is a well known fact since the variation of M(7 L ) along a smooth
vector field E in €2 yields [52, Proposition 2.1.3]

M(TLQ)(BE) = f Hr(E-vr) dx + / (E-vyr) dx, (88)
NQ ATNR)

where Hp is the mean curvature of T, vy is a normal vector of 7' and vyy is the inward
normal vector of 9(7 L ) in the tangent space of 7. With the same argument and since
S = 0, we get that

)@ = [ K@ ug) dx. (39)
S
where K is the curvature of S and vg is the normal vector of § in R?, such that the plane

for the circle of maximal curvature is spanned by vg and a tangent vector to S. This yields
for the boundary that

T
0 = / g - <4s*c*var + 5&%,31(3\)5) dx ,
N
from which we deduce vyr = £vgand Kg = £+ % E—: ﬂ_l . In particular, the circle of maximal

curvature for § lies in the plane spanned by the tangent space of T'. Finally, taking variations
on M we get

/
(/ 1 F cos(9) da)) (B) = / (1 Fcos@)) (E-vyp+) do.
F* JF=E
Since vyp- = —vy -, we hence get

/
(/ 1 — cos(0) dw—i—/ 1+ cos(9) dw) (8) = —/ 2cos(0)(E - vyp+) do.
F+ - aF+
(90)
As in the proof of Theorem 19.8 in [56], (88) and (90) combine to

0 = f E - (dscavr|m — dsscs cos(@)vyp+) d.
oFt
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If we take a variation with & - vyq = 0 and write
E-vrlm = E-(var - vgpH)vyrt) + E - ((vrlm - 0)T)
where 7 is a unit tangent vector to M, perpendicular to vy g+, we get
E-((var 1)) = 0  and  vyr -vyp+ = cos(H).

The first equality is automatically true since vyr - T = 0 (vy7 can only have a component in
direction vy g+ and one in direction v ) and the second one implies that

VaT - VgF+ = VA - €3.

A The complex 7

In this section, we collect and prove all results in connection to the structure of 7 as defined
in Sect.4.3. Recall that

T :={0€Symy:s>0,0<r<1,n3=0}.

Our first result is a characterization of 7 that provides us with a more accessible
parametrization.

Proposition A.1 Every matrix Q € T can be written as
Q=) n®n—R]MRy),

where . > 0, n = (n1,n,,0) € S2, R, is the rotation around n A e3, such that Ryn = e3
and

0
/
M = MO

000

with M’ € R2*2 symmetric, tr(M') = 1 and (M'v, v) > —1 for allv € S'. The matrix Q is
oblate uniaxial if and only if M’ = %Id.

Proof A matrix Q of the above form Q = A(n ® n — R M Ry) has n as an eigenvector to
the eigenvalue A and n3 = 0 by definition. Furthermore, since min, g1 (M'v, v) > —1 the
eigenvalue X is strictly bigger than the other eigenvalues, thus r < 1 and Q € 7. Conversely,
we can write every Q € Sym, as

Q0 =An@n+im@m+i3pRp,

with A1 > A > A3 andn,m,p € S? pairwise orthogonal eigenvectors of Q to Ay, A2, A3.
By definition of 7, n3 = 0 as required for our parametrization and clearly we can identify
A = A1. Setting M = —Rn(%m ®m + i—fp ® p)R,T, it is obvious that M is of the above
form and that Q € 7 can be written as claimed.

If M' = }1d then

3 1
Q0 = An®n—RIMR,) = Ex<n®n—§lol) ,
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i.e. Q is oblate uniaxial. The reverse implication follows similarly, since the matrices RI , Rn
are invertible. O

Remark A.2 Given a vector u € R3 as axis of rotation and an angle 6, then this rotation is
described by the matrix R with

cos O + u%(l —cosf)  ujuz(l —cos6) —uszsinf ujuz(l —cosd) + us sind
R =1{ujur(1 —cosf) + uzsinf cos@—}-u%(l —cos0) uru3z(l —cosf) —uysinf
uu3z(l —cosf) — upsinf upruz(l —cosf) +ujpsind  cosé + u%(l —cos )

Corollary A3 7 is a four dimensional smooth complex and 37T = C.

Proof From the characterization in Proposition A.l, it is clear that one can use the map
O +— (A,n,mq1,mq2) to make 7 a four dimensional manifold with a conical singularity in
Q = 0. In particular, 7 is a smooth complex.

Proposition A.1 furthermore implies that the boundary of 7 consists of matrices of the
form A = 0 (from which follows directly Q = 0) or M’ has the eigenvalue —1 (which
corresponds to » = 1). In particular, the matrices with » = 0 are not included in 37 as one
may think from the definition in (12). This implies the inclusion 37 C C. For the inverse
inclusion, take Q € C with orthogonal eigenvectors m, p € S? associated to the largest
eigenvalue A1 = X,. So in fact we have a two dimensional subspace of eigenvectors to
this eigenvalue spanned by m and p. Since the hyperplane defined through {n3 = 0} is of
codimension one, there exists a unit vector n € {n3 = 0} N span{m, p} which we were
looking for. The unit eigenvector orthogonal to n in the plane span{m, p} requires M’ to have
the eigenvalue —1 or in other words min, g1 (M'v, v) = —1, so that Q € 37. O

LemmaA.4 Let Q € T NN. Then, the normal vector Ng on T at Q is given by

3 0 0 n
Ng = A 0 0nyl,
n1n20

where n = (n1, ny, 0) € S? is the eigenvector associated to the largest eigenvalue A.

Proof We are going to prove a slightly more general result by first considering Q € 7 and
calculating the tangent vectors to 7 in Q. We use the representation from Proposition A.1
and vary A, n, myy, mj; one after another.
e First, we can easily take the derivative with respect to A and obtain T{ = (n ® n —
R} MRy).
e Second, we vary the parameter n. So, let’s consider n = (ny,n,,0) € S2Z. Without
loss of generality we assume that n, # 0 and write n(t) = (n] +¢,ny — %[)' Then
In(1)|> = 1+ O(t?) and

2ny  no — "o

na
n(t) n(t) = n®n+tDn®n+0(t2)» Dngn = nz_% —2n; 0O
0 0 0

The derivative of the second term R;—(t) M Ry (1) can be calculated using Remark A.2 with
the axis n*(r) := n(¢) A e3. Since n(¢) L e3 we can write

—2nny —n% + n% —ny
Ry = Ra+1Dg, +0(?), Dg, = - —n3+n? 2mny  my
ny —ny 0
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The second tangent vector T} is thus given by Ty = A(Dngn — D;nMRn — Rl MDg,).
e Third, we can take the derivative with respect to m ;. This is straightforward and we

obtain
10
Ts=xR] [0 -1 |Ra.
0
e Last, varying m> we easily calculate
01
Tsy=iR) {10 |Ry.
0

Before proceeding, we want to calculate a fifth vector by varying n3. As it will turn out later,
this is indeed the normal vector.

e Writing once againn = (n1, nz, 0) and defining n(t) = (n1v/1 — 2, np/1 — 12, 1) we
can express

n)®n() = n@n+t(n@e;+e;®@n) + OF?).

As for the second tangent vector, we use Remark A.2 and the rotation around nl@) =
n(t) A e3. Unlike previously, n(7) is no longer orthogonal to e3 for ¢+ # 0, namely
6 = arccos({n(t), e3)) = t. Substituting this our expression of the rotation matrix we
get

l—n% niny 0
Ruiy = Rn+tD3+0(t2), D3 = | niny l—n%O
0 0 1

Adding the two partial results, we get
N = A(n®e;+e3®n— Di MRy — R} MD3).

It remains to show that {T, T», T3, T4, N} are pairwise orthogonal if Q is oblate uniaxial.
Indeed, then it follows that N is a normal vector, since it is orthogonal to Tp7 .
It is easy to see that since the trace is invariant by change of basis and since R,T =R:!

w = an(( () ()

Noting thathZ)nRIMRn = 0for M € Sym withm;; =0ifi =3 or j = 3, we get

10
(T1,T3) = ar| m®n—RI MRy | R] |0 -1 |Rn
0
10 mip —mi2
=M |{M|O0-1 = Afr mip —moo = A@2m —1).
0 0
With the same argument we also find
01
(T, Tg) = Ar[m@n—RIMRy) [R] |10 | Ry
0
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01 mip mij
=amMm|{M|10 = Atr mopy mip = 2 mjyy.
0 0

Furthermore, we claim that
(T, Ty) = A tr((n ®n — Ry MRn)(Dngn — D MRy — R,TMDRH)> =0.

Indeed, one can check that

trM @ NDpgn) = 0 = trn®nDj MRy),
trm ® nR MDg,) = 0 = tr(R,) M RyDnen) »
tr(Ry MRaDj MRy) = 0 = tr(Ry MRyR] MDk,).

This implies that

10
(N,T3) = X*r |n®e3+e3®@n— D] MRy — R, MD3) | R] [0 —1 | Ry =0,
0

since again the traces of all cross terms vanish. Similarly,
(N,T4) = 0.

Next, we have the equality

(T, Ts) = —4a2 212
np

This follows since tr(DpgnT3) = 0 and tr(D3M R, T3) = 2:':—2‘2 The latter fact is evident if

10 miy —mip 0 —1/ny 1
one calculates M | 0 —1 = | mip —ma and RnD;r =\|1/nn 0 —ni/ny
0 0 =1 ni/np 0
This also permits us to derive
2 -1
(T2, Ty) = 222772

na

Again, we simply calculate the traces of all cross terms. For example

tr(n ® e3Dpen) = 0,

trn ® e3R] MDpg,) = 0,

mi2
tr(n ® e3Df MRy) = n—(n% —n3) —niQ2my — 1),
2

miini

1
tr(D;nMRnD,.@n) =2 + nj(n%(Zmll - +m),

2

nimi2

tr(Dg MRaR] MDg,) = —2

1

+ — (3m}y +mi) — (1 +nh@my — 1))
na ny

muima + miy

2 )

tr(Dg MRaDj MRy) = 2
n;
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We end up with

6A2m12(n% — n%)

n2

(N, T,) = — 6121 2my; — 1).

Another straightforward calculation shows that

5 4 3 2.3 2
(N, T1) = A2nimia(nimi2 — 2ninamyy — 2nym2 — 2ninymyy + 3ninami
— 2}1%1’12 - nlngmlz +nimpp + ngmll —npomi| — Zrz% + 2n7).
After these calculations, it is apparent that for prolate uniaxial Q € Sym (and in particular

QeN)ie M = %Id all inner products vanish. In order to form a basis, we must prove
that the vectors themselves never vanish. We find

ITi? = 20m7, —my +miz + 1),
2

IT2)1? = n—2<6n%(1 —2my1) — 6mipning + 5m3, — 2myy +5min 4 2)
2

ITs11* = 227,
ITal* = 227,
INI? = A2(12my1n} — 607 + 12mpaning + 2m3, — 8myy +2m3, +8),

and thus for M’ = 11d it holds that | T[> = §, |T2)|> = %157 and | N||* = 322
This concludes the proof that {Ty, T, T3, T4} form indeed a basis of Tp 7, and since N

is orthogonal to T 7, the result follows. O

Proposition A.5 There exists C, ag > 0 such that for all « € (0, ag) and Q € N it holds
H (Bo(Q)NT) < Ca*.

Proof As seen before, 7 has the structure of a smooth manifold around . By invariance of
N under rotations, it is enough to show that the claim holds around one Q € N. The Ricci
curvature « of NV is bounded so that we can choose «g > 0 small enough such that B, (Q)N7T
is contained in the geodesic ball in 7 of size 2« around Q for all « € (0, ). Furthermore,

if needed, we can choose g > 0 even smaller such that 1 — 3 é‘az < 2. Theorem 3.1 in [38]
0

then implies that

H (Bo(Q) N'T) < volr(By(Q)) < l6w’a’.
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