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Abstract
We use the Landau-de Gennes energy to describe a particle immersed into nematic liquid
crystals with a constant applied magnetic field. We derive a limit energy in a regime where
both line and point defects are present, showing quantitatively that the close-to-minimal
energy is asymptotically concentrated on lines and surfaces nearby or on the particle. We
also discuss regularity of minimizers and optimality conditions for the limit energy.
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1 Introduction

This paper is about a physical model of a particle immersed in a liquid crystal, in a regime
where the energy is concentrated on lines and surfaces of singularities. The history of interac-
tion between variational problems and geometry has been long and of great mutual influence
[37], starting from the geometrically motivated problem of the brachistochrone curve [11,
34], Fermat’s principle in optics [14], material science [8] to general relativity [39, 58].

One particularly important problem ariseswhen the size of geometrical objects themselves
is to be minimized leading to so called minimal surfaces [49]. A classical example is the two
dimensional soap film spanning between predefined (fixed) boundary curves, called Plateau’s
problem [29, 72, 81]. Some solutions can be constructed explicitly [27, 46] or studied through
means of harmonic and complex analysis [23, 45, 69], but a general theory was not available
until the development of geometric measure theory and its language of currents, flat chains,
mass and varifolds to describe the objects and how to measure them [4, 30, 31, 67, 83].

A different question giving rise to problems involving minimal surfaces is given by the
classical �−convergence result of Modica and Mortola [63] (see also [61]) of a weighted
Dirichlet energy and a penalizing double-well potential to the perimeter functional. A con-
straint such as a prescribed volume ensures the problem to be non trivial. The energy typically
is concentrated in regions where none of the favourable states of the potential are attained. For
the limsup inequality, one constructs a one dimensional profile that minimizes the transition
between the favoured states.

Another variational problem in which geometry appears is given by the Ginzburg-Landau
model. In the famous work [13], the (logarithmically diverging) leading order term and (after
rescaling) a limit problem have been derived. The limiting variational problem is geometric
and consists in finding an optimal distribution of points in the plane subject to constraints
coming from the topological degree of the initial problem. This approach stimulated research
which lead to a large literature [3, 16, 21, 41, 50, 60, 75], in particular for problems in
micromagnetics [42, 48], superconductors [33, 47, 76] and liquid crystals [10, 43, 51].

Our work combines many of the before mentioned ideas to describe the different contri-
butions and effects that take place in our problem. For example, we use the generalized three
dimensional analogue of estimations in [13] as considered in [19, 21, 22, 44, 74] to obtain a
length minimization problem for curves. Coupled with this optimization problem, we show
using a Modica-Mortola type argument that the remaining part of the energy concentrates on
hypersurfaces which end either on the boundary of the domain or on the described line.

The main motivation for this article was the study of the formation and transition of
singularities in colloidal nematic liquid crystals, in particular the Saturn ring effect. It has been
observed in experiments that nematic liquid crystals may exhibit line and point singularities.
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Those can take the form of a ring around one or several of the colloidal particles depending
on the shape and size of the particles and the strength of an external electric or magnetic field
[53, 54, 64, 68]. This phenomenon is caused by the incompatibility between the boundary
condition at the surface of the particle where a positive topological charge is created, and the
condition at infinity where an electric or magnetic field enforces a uniform alignment of the
molecules in the direction of the field. While spheres are the most studied particles, there is
also a considerable interest in defect structures around non-spherical inclusions [7, 73, 82].
For the study of phenomena such as self assembly [78, 79, 88] usually a large number of
particles is needed. In this work however, we focus on the simpler case of a single colloidal
particle as a first step for understanding the complex interaction that takes place in colloidal
systems [35, 55, 68].

This article is the continuation of the work started in [5] where we studied a spherical
inclusion, our main theorem (Theorem 3.1) is a generalisation of Theorem 3.1 in [5] (see
Remark 3.3). In particular, our new theorem holds for an arbitrary manifold of class C2

instead of a sphere and we remove the hypothesis of rotational equivariance and convexity.
Although the applied ideas could be used to carry out a similar analysis for a larger

class of energy functionals, we place ourself in the context of the Landau-de Gennes model
for nematic liquid crystals. A common way to describe liquid crystals is by introducing a
unit vector field n, the so called director field, for example in the Oseen-Frank model. The
vector n represents the local orientation of the liquid crystal molecules. In practice, it is
often not possible to distinguish between n and−n, so that n should rather be RP2−valued,
where RP2 is the two-dimensional real projective space. More generally, one can think of
describing the arrangement of the molecules by a symmetric probability distribution ρ on
the sphere of directions. Because of the symmetry, the first moment of ρ vanishes and the
(shifted) second moment Q is a symmetric traceless matrix (also called Q−tensor), which
is used to represent ρ in the Landau-de Gennes model. In the following we will denote
Sym0 the space of such symmetric traceless matrices. Under this identification, the uniform
distribution on the sphere corresponds to the isotropic state in which all three eigenvalues
λ1 ≥ λ2 ≥ λ3 of Q are equal to zero or equivalently Q = 0. In case two eigenvalues are
equal, we call Q uniaxial. More precisely, if λ1 > λ2 = λ3 we say that Q is prolate (or
positively) uniaxial, while if λ1 = λ2 > λ3 it is called oblate (or negatively) uniaxial. If
all three eigenvalues of Q are distinct λ1 > λ2 > λ3, we speak of a biaxial Q−tensor.
A particularly important role is played by the set N of prolate uniaxial tensors of a given
norm as they are minimizers of the ordering potential in the Landau-de Gennes energy as we
will see in Sect. 2.1. Elements Q ∈ N can be written as Q = s∗(n ⊗ n − 1

3 Id) (s∗ being a
constant depending on the liquid crystal) and thus allow an identification with the director
field in direction±n. On the other hand, singularities are described by situations in which one
cannot identify a director field, e.g. if Q is isotropic or oblate uniaxial. However, the analysis
carried out in this paper does not discriminate between the two different possibilities as they
have asymptotically the same energetic cost in our regime. Nevertheless, in [17] it has been
proven that in some situations an oblate uniaxial defect core surrounded by a biaxial region
has strictly smaller energy compared to an isotopic core. We refer the interested reader to
[9] for a more detailed introduction to Q−tensors, the Landau-de Gennes energy and related
models for liquid crystals.

As we will see later in Sect. 2.1, the Landau-de Gennes model in our case comprises three
contributions related to the elastic, ordering and magnetic energy. The relative strength of
the individual terms are modulated by the dimensionless parameter ξ describing the ratio
between elastic and bulk energy, while η couples the elastic with the magnetic term. We are
concerned with the limit of η, ξ → 0, which can be physically interpreted as a limit of large
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particles and weak magnetic fields, see [5, 36]. This regime has been studied previously in
[2] for a spherical particle under the assumption that η| ln(ξ)| → 0 as η, ξ → 0 in which
a Saturn ring structure is found. In [1] the authors treated the problem in the absence of a
magnetic field, i.e. for η = ∞. For ξ → 0 they deduce that a point defect occurs. Our work
places itself in the intermediate regime in which η| ln(ξ)| → β ∈ (0,∞) as η, ξ → 0. As
seen in [5] for a spherical particle, this regime allows for incorporating different minimizing
configurations, depending on the parameter β. In a forthcoming paper [80], we are going to
develop numerical methods to calculate the minimizing configurations around non-spherical
particles based on the results in this work.

2 Preliminaries

Before we can state our results, we give a short introduction to the Landau-de Gennes model
that we use here and the concept of flat chains, stating some results that will be used later in
the proofs.

2.1 Landau-de Gennesmodel for nematic liquid crystals

Our article has been motivated by the study of liquid crystal colloids with external magnetic
field. Let E ⊂ R

3 be a colloidal particle and let � := R
3 \ E be the region occupied by the

liquid crystal. The Landau-de Gennes energy with additional magnetic field term [71, Ch. 6,
Secs. 3–4 and Ch. 10, Sec. 2.3] (see also [28, Ch. 3, Secs. 1-2]) can be stated in dimensionless
form as

Eη,ξ (Q) =
∫
�

1

2
|∇Q|2 + 1

ξ2
f (Q)+ 1

η2
g(Q)+ C0 dx , (1)

where the energy density f is given by

f (Q) = C − a

2
tr(Q2)− b

3
tr(Q3)+ c

4
tr(Q2)2 , (2)

and g is a function taking into account the effects of the external magnetic field in a way
we formalize a bit later in this section. The function Q : � → Sym0 is a tensorial order
parameter taking values in the space of symmetric traceless matrices

Sym0 := {Q ∈ R
3×3 : QT = Q and tr(Q) = 0} ,

equipped with the norm ‖Q‖2 := tr(Q2). It is used to describe the local distribution of
orientation of the liquid crystal molecules. We consider the case when the parameters η and
ξ converge to zero in a regime where η| ln(ξ)| → β ∈ (0,∞). The constant C0 = C0(η, ξ)

(resp. C) is chosen such that the energy density (resp. f ) becomes non-negative and with
minimal value 0.

The following properties of f are going to be used in the sequel:

1. The function f is non-negative andN := f −1(0) is a smooth, closed, compact, connected
manifold, diffeomorphic to the real projective plane RP2. Note that N is given by

N =
{
s∗
(
n⊗ n − 1

3
Id

)
: n ∈ S

2
}
,

for s∗ = 1
4c (b +

√
b2 + 24ac) (cf. [57]) and in particular Q is prolate uniaxial.
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2. We need f to behave uniformly quadratic close to its minima, i.e. we assume that there
exist constants δ0, γ1 > 0 such that for all Q ∈ Sym0 with dist(Q,N ) ≤ δ0 it holds

f (Q) ≥ γ1dist
2(Q,N ) .

3. Lastly, we need to quantify the growth of f . More precisely, we assume that there exist
constants C1,C2 > 0, such that for all Q ∈ Sym0

f (Q) ≥ C1

(
|Q|2 − 2

3
s2∗
)2

, Df (Q) : Q ≥ C1 |Q|4 − C2 .

It can be checked that f given in (2) satisfies these assumptions [5, 17, 19, 57]. The exponent
4 in the last assumption is not crucial but only needs to outweigh the growth of g.

We also recall the following facts about the geometry of Sym0:

1. Elements Q ∈ Sym0 admit the following decomposition: There exist s ∈ [0,∞) and
r ∈ [0, 1] such that

Q = s

((
n⊗ n − 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
, (3)

where n,m are normalized, orthogonal eigenvectors of Q. The values s and r are con-
tinuous functions of Q.

2. The set where decomposition (3) is not unique, is given by

C := {Q ∈ Sym0 \ {0} : r(Q) = 1} ∪ {0} , (4)

i.e.C consists of the isotropic aswell as the oblate uniaxial states.Another characterization
of C is C = {Q ∈ Sym0 : λ1(Q) = λ2(Q)}, where the two leading eigenvalues
of Q are denoted by λ1, λ2. Moreover, C has the structure of a cone over RP2 and
C\{0} ∼= RP2 × R.

3. There exists a continuous retraction R : Sym0 \ C → N such that R(Q) = Q for
all Q ∈ N . One can choose R to be the nearest point projection onto N . In this case,
R(Q) = s∗(n⊗ n − 1

3 Id) for Q ∈ Sym0\C decomposed as in (3).

The energy density g in (1) incorporates an external magnetic field into the model. This
motivates the following assumption:

1. The function g favours Q having an eigenvector equal to the direction of the external field,
in our case chosen to be along e3.More precisely, assume g is invariant by rotations around
the e3−axis and the function O(3) � R �→ g(R�QR) is minimal if e3 is eigenvector to
the maximal eigenvalue of R�QR. Decomposing Q as in (3) with n = e3 and keeping
s and m fixed, then g(Q) is minimal for r = 0. For a prolate uniaxial Q ∈ N , i.e.
Q = s∗(n⊗ n − 1

3 Id) for s∗ ≥ 0 and n ∈ S
2 we have

g(Q) = c2∗(1− n23) . (5)

The precise formula for g in (5) is not crucial to our analysis, but for simplicity we assume
this particular form. It would be enough to assume that g|N has a strict minimum in Q =
s∗(e3 ⊗ e3 − 1

2 Id), see Remark 4.18 in [5]. Besides this physical assumption, our analysis
requires g to satisfy the following hypotheses:

2. The function g : Sym0 → R is of classC2 away from Q = 0 and in particular satisfies the
Lipschitz condition close to N : There exist constants δ1,C > 0 such that if Q ∈ Sym0
with dist(Q,N ) < δ for 0 < δ < δ1, then

|g(Q)− g(R(Q))| ≤ C dist(Q,N ) . (6)
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3. The growth of g is slower than f , namely

|g(Q)| ≤ C (1+ |Q|4) , (7)

|Dg(Q)| ≤ C (1+ |Q|3) , (8)

for all Q ∈ Sym0 and a constant C > 0.

A physically motivated example that satisfies those assumptions [5, Prop. A.1] is for
example given by

g(Q) = 2

3
s∗ − Q33 . (9)

Under these assumptions on f and g, it has been shown in [5, Prop. 2.4 and Prop. 2.6]
that g acts on f as a perturbation in the following sense:

Proposition 2.1 For ξ, η > 0 with ξ � η, there exists a smooth manifold Nη,ξ ⊂ Sym0,
diffeomorphic to N such that

f (Q)+ ξ
2

η2
g(Q)+ ξ2C0(ξ, η) ≥ γ2 dist2(Q,Nη,ξ ) (10)

for a constant γ2 > 0. In addition, there exists a constant C > 0 such that

sup
Q∈Nη,ξ

dist(Q,N ) ≤ C
ξ2

η2
. (11)

Furthermore, there exists a unique Qη,ξ,∞ ∈ Nη,ξ such that

Qη,ξ,∞ = argmin
Q∈Sym0

1

ξ2
f (Q)+ 1

η2
g(Q) ,

given by Qη,ξ,∞ = sη,ξ,∗(e3 ⊗ e3 − 1
3 Id), where |s∗,t − s∗| ≤ Ct.

This shows that the constantC0 in (1) should be chosen to beC0(ξ, η) = − 1
ξ2

f (Qη,ξ,∞)−
1
η2
g(Qη,ξ,∞) ≥ 0 and it also holds true that C0(ξ, η) ≤ Cξ2/η4.
Since sη,ξ,∗ → s∗,0 = s∗ for ξ, η → 0 in our regime, it is convenient to also introduce

Q∞ := s∗(e3 ⊗ e3 − 1
3 Id) which minimizes ξ−2 f (Q)+ η−2g(Q) among Q ∈ N .

So far we have seen that the strong weight 1
ξ2

in front of the bulk potential f (compared to
1
η2

for g) favours Q to be close to the manifold N . In other words, we expect energy related
to f to be concentrated in regions where Q is far from N . In a sense that is specified in
Theorem 3.1, this region is related to the set where Q takes values in C. In the same spirit
we remark that under prolate uniaxial constraint, g prefers the normalized eigenvector n
corresponding to the largest eigenvalue to have a large third component n3 as formalized
in (5). Therefore we expect that the energy contribution coming from g is concentrated on
domains where |n3| ≈ 0. More precisely, we introduce

T := {Q ∈ Sym0 : s > 0 , 0 ≤ r < 1 , n3 = 0} , (12)

where r , s,n are defined as in (3). We study properties of T later on in Sect. 4.3 and Sect.A.
Most importantly, we will show in Corollary A.3 that ∂T = C. This is a consequence from
the fact that if r(Q) = 1, then Q has a two-dimensional eigenspace for the largest eigenvalue
which necessarily intersects the hyperplane {n3 = 0}.
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2.2 Flat chains

One of the main results of this paper is that the previously described energy concentrates on
lines and surfaces when η, ξ → 0. In order to state our main theorem, we therefore need an
appropriate framework to describe geometric objects such as lines, surfaces and boundaries
which is provided by geometric measure theory and in particular flat chains [86, 87]. The
very basic idea of geometric measure theory is to represent geometric objects as elements
of a vector space and therefore allows for algebraic operations such as addition. In that
respect, flat chains are such elements which in our case are dedicated to represent surfaces
and lines. In the following we give a quick overview of the most important results that we use
subsequently. For a detailed and complete presentation of flat chains and geometric measure
theory, we refer to [30–32, 67, 77].

Polyhedral flat chains. Let G be an abelian group (written additively) with neutral element
0 and | · | : G → [0,∞) a function satisfying |g| = 0 if and only if g = 0, | − g| = |g| and
|g + h| ≤ |g| + |h| for all g, h ∈ G. In this paper, we are only concerned with the easiest
case of G = Z2 and | · | the normal absolute value. For n, k ∈ N, k ≤ n, we denote by Pk

the group of polyhedral chains of dimension k with coefficients in G i.e. the set of formal
sums of compact, convex, oriented polyhedra of dimension k in R

n with coefficients in G
together with the obvious addition. We identify a polyhedron that results from glueing along
a shared face (and compatible orientation) with the sum of the individual polyhedra. Also, we
identify a polyhedron of opposite orientation with the negative of the original polyhedron.
An element P ∈ Pk can thus be written as

P =
p∑

i=1
giσi , (13)

where gi ∈ G and σi are compact, convex, oriented polyhedra that can be chosen to be
non-overlapping. Note that in our case of G = Z2, the non trivial coefficients gi all equal
1 and that the orientational aspect of the above definition becomes trivial. This reflects the
symmetry of the director field n ∼ −n in the sense that around singularities we change
orientation of n without changing the physics. In other words, we can lift Q locally away
from singularities to obtain a well-defined director n, but in general it is not possible to
combine those local liftings into a global one. The boundary ∂σ of a polyhedron σ is the
formal sum of the (k − 1)−dimensional polyhedral faces of σ with the induced orientation
and coefficient 1 under the above mentioned identifications. Note that ∂(∂σ ) = 0. We can
linearly extend this operator to a boundary operator ∂ : Pk → Pk−1.

Mass and flat norm. For a polyhedral chain P ∈ Pk written as in (13), we define the mass
M(P) =∑p

i=1 |gi |Hk(σi ) and the flat norm F(P) by

F(P) = inf
{
M(Q)+M(R) : P = ∂Q + R , Q ∈ Pk+1 , R ∈ Pk

}
.

Obviously it holds F(P) ≤ M(P) and F(∂P) ≤ F(P). One can show that F defines a norm
on Pk [32, Ch. 2].

Flat chains and associated measures. We define the space of flat chains Fk to be the
F−completion of Pk . The boundary operator ∂ extends to a continuous operator ∂ : Fk →
Fk−1 and we still denote byM the largest lower semicontinuous extension of the mass which
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was defined on Pk . Furthermore, one can show [32, Thm 3.1] that for all A ∈ Fk

F(A) = inf
{
M(Q)+M(R) : P = ∂Q + R , Q ∈ Fk+1 , R ∈ Fk

}
.

For a finitemass flat chain A ∈ Fk and ameasurable set X ⊂ R
n , we can define the restriction

A X via an approximation by polyhedral chains, for which the restriction coincides with the
intersection under some technical assumptions and passing to the limit. A precise definition
is given in [32, Ch. 4]. We also use the notation M(A, X) := M(A X) and F(A, X) :=
F(A X). To each flat chain A ∈ Fk , there exists an associated measure μA (see [32, Ch.
4]) such that for each μA−measurable set X , A X is a flat chain and μA(X) = M(A X).
The support of A is denoted supp (A) and given (if it exists) by the smallest closed set X
such that for every open set U ⊃ X there exists a sequence of polyhedral chains (Pj ) j
approximating A and such that all cells of all Pj lie inside U . If A is of finite mass, then
supp (A) = supp (μA) (see [32, Thm. 4.3]).

Cartesian products and induced mappings. In the case of finite mass flat chains A, B (or
one of the two chains having finite mass and finite boundary mass), it is possible to define the
product A× B (by polyhedral approximation), see e.g. [32, Sec. 6]. In particular, it is always
possible to define [0, 1] × B. For U ⊂ R

n, V ⊂ R
m open sets and a Lipschitz function

f : U → V , one can define an induced mapping f# on the level of flat chains, i.e. for a flat
chain A supported in U , f#A is a flat chain supported in V (see [32, Sec. 5] and [31, Sec. 2
and 3]).

Generic properties and Thom transversality theorem. A property of an object (such as
a function or a set) that can be achieved by an arbitrarily small perturbation of the object
is called generic. Examples are properties that hold in an “almost everywhere” measure
theoretic sense or that are true on a dense subset. In this work we encounter two such
properties: Two dimensional planes generically do not contain a fixed single point (can be
achieved by shifting normal to the plane). The second one is that a smooth map f : M → N
generically intersects a submanifold S ⊂ N transversely i.e. d f (TxM)+ T f (x)S = T f (x)N
for all points x ∈ f −1(S). The latter will be used to apply Thom’s transversality theorem
[85] in the form given in [40, Thm. 2.7].

Deformations. In certain situations it is beneficial to approximate a flat k−chain A by a
polyhedral k−chain P . The usual way to construct P is through “pushing” A onto the
k−skeleton of a grid in the following way. In this paper, a (cubic) grid of size h is understood
to be a cell complex in R

3 which consists of cubes of side length h. The “pushing” operation
consists of a radial projection of A from the center of each cube onto the faces of the cubes,
assuming that the center does not lie on A. Then, on each face the projected flat chain gets
again projected from the center of the face onto the edges (as long as the projected chain does
not contain any face center point). This procedure is stopped once the projected flat k−chain is
contained in the k−dimensional skeleton. This deformation procedure is a crucial ingredient
to prove that every A ∈ Fk can be written as A = P + B + ∂C , where P ∈ Fk is a
polyhedral chain, B ∈ Fk and C ∈ Fk+1 satisfy the estimates M(P) � M(A)+ hM(∂A),
M(∂P) � M(∂A), M(B) � hM(∂A) and M(C) � hM(A), see [86] or [32, Thm. 7.3].

Compactness.One point of importance from the perspective of calculus of variations are the
compactness properties of flat chains whose mass and the mass of their boundary is bounded.
We will use the result from [32, Cor. 7.5] which holds for coefficient groups G such that for
all M > 0 the set {g ∈ G : |g| ≤ M} is compact. This is trivially true in our case where
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G = Z2. Let K ⊂ R
n be compact and C1 > 0. Then the corollary states that

{
A ∈ Fk : supp (A) ⊂ K and M(A)+M(∂A) ≤ C1

}

is compact.

Rectifiability. Another aspect of flat chains concerns their regularity and if one can define
objects originating in smooth differential geometry such as tangent spaces. It turns out that this
can be achieved a.e. provided the flat chain is rectifiable. By definition, rectifiability of a flat
chain A ∈ Fk means that there exists a countable union of k−dimensionalC1−submanifolds
N of R

n such that A = A N [87, Sec. 1.2]. A rectifiable flat chain admits an approximate
tangent plane for Hk−a.e. x ∈ A [6, Thm 2.83]. Such a point x is called rectifiability point
of A and we denote rect(A) the set of all points of rectifiability of A. For finite groups G,
finite mass M(A) <∞ implies rectifiability of A, see [32, Thm 10.1].

3 Statement of result

Ourmain result concerns the asymptotic behaviour of the energyEη,ξ forη, ξ → 0. Physically
speaking, we consider the regime of large particles and weak magnetic fields, see [5, 36] for
more discussion of the physical interpretation of our limit.

The liquid crystal occupies a region � outside a solid particle E , i.e. � = R
3 \ E . We

assume the boundary of the particle M := ∂E to be sufficiently smooth for our analysis,
that is we requireM to be a closed, compact and oriented manifold of class at least C2. The
regularity will be needed to ensure that the outward unit normal field ν ∈ C1 of ∂E or in
other words M has continuous curvature. Furthermore, we assume that

� := {ω ∈M : ν3(ω) = 0}
is a C2−curve (or a union thereof) in M and that ∇ων3 �= 0 everywhere on � (seen inside
the tangent bundle TM), see also Remark 3.2.

In order to make the minimization of the energy Eη,ξ non trivial, we impose the following
boundary condition on M:

Q = Qb := s∗
(
ν ⊗ ν − 1

3
Id

)
on M . (14)

Indeed, without (14) the minimizer of Eη,ξ would be the constant function Qη,ξ,∞. We define
the class of admissible functions A := {Q ∈ H1(�,Sym0)+ Qη,ξ,∞ : Q satisfies (14)}.
It is convenient to define the energy EA

η,ξ for Q ∈ H1(�,R3×3)+ Qη,ξ,∞ by

EA
η,ξ (Q) :=

{
Eη,ξ (Q) if Q ∈ A ,
+∞ otherwise .

We also use the notation Eη,ξ (Q,U ) (resp. EA
η,ξ (Q,U )) for the energy Eη,ξ (resp. EA

η,ξ ) of
the function Q on the set U .

Theorem 3.1 Suppose that

η| ln(ξ)| → β ∈ (0,∞) as η→ 0 . (15)
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Then η EA
η,ξ → E0 in a variational sense, where the limiting energy E0 is given by

E0(T , S) = 2s∗c∗E0(M, e3)+ 4s∗c∗
∫
M
| cos(θ)| dμT M + π

2
s2∗βM(S)

+4s∗c∗M(T �) (16)

for (T , S) ∈ A0 := {(T , S) ∈ F2 × F1 : ∂T = S + �} and where

E0(M, e3) :=
∫
{ν3>0}

(1− cos(θ)) dω +
∫
{ν3≤0}

(1+ cos(θ)) dω .

The letter θ is used to denote the angle between e3 and the outward unit normal vector
ν(ω) at a point ω ∈ M. The variational convergence is to be understood in the following
sense: Along any sequence ηk, ξk → 0 with ηk | ln(ξk)| → β (not labelled in the following
statements):

1. Compactness and �−liminf: For any sequence Qη,ξ ∈ H1(�,R3×3) + Qη,ξ,∞ such
that there exists a constant C > 0 with

η EA
η,ξ (Qη,ξ ) ≤ C , (17)

there exists (T , S) ∈ A0, functions Q̃η,ξ ∈ C∞(�,Sym0) with limη,ξ→0 ‖Qη,ξ −
Q̃η,ξ‖L2 = 0 and Yη,ξ ∈ Sym0 with ‖Yη,ξ‖ → 0 such that Tη,ξ = (Q̃η,ξ − Yη,ξ )−1(T ),
Sη,ξ = (Q̃η,ξ − Yη,ξ )−1(C) for T and C given as in (12),(4) are smooth flat chains with

∂Tη,ξ = Sη,ξ + �η,ξ . (18)

Here,�η,ξ is a smooth approximation of�which converges to� inHausdorff distance and

hence also in flat norm. For any boundedmeasurable set B ⊂ � it holds EA
η,ξ (Q̃η,ξ , B) ≤

EA
η,ξ (Qη,ξ , B)+ CB for a constant CB > 0 and, up to extracting a subsequence,

lim
η,ξ→0

F(Tη,ξ − T , B) = 0 , lim
η,ξ→0

F(Sη,ξ − S, B) = 0 . (19)

Furthermore, we have

lim inf
η→0

η EA
η,ξ (Qη,ξ ) ≥ E0(T , S) . (20)

2. �−limsup: For any (T , S) ∈ A0, there exists a sequence Qη,ξ ∈ A with ‖Qη,ξ‖L∞ ≤√
2
3 sη,ξ,∗ such that (18),(19) hold and

lim sup
η→0

η EA
η,ξ (Qη,ξ ) ≤ E0(T , S) . (21)

Remark 3.2 (Assumptions in the theorem)

1. We note that due to our assumptions β ∈ (0,∞), the global energy bound (17) can be
reformulated as

EA
η,ξ (Qη,ξ ) ≤ C̃ | ln(ξ)| .

This reflects the classical behaviour of a logarithmic divergence of the energy close to
singularities as already observed in earlier works e.g. in [13].
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2. If Qη,ξ is smooth enough (for example C2) and verifies a Lipschitz estimate as in (26)

for n ∼ ξ−a, a ∈ [1, 2), we can choose Q̃η,ξ = Qη,ξ in the above theorem. This is
particularly true if Qη,ξ is aminimizer of (1). Indeed, from the Euler-Lagrange equations,
one can deduce the regularity and the required estimate on the gradient [12, Lemma A.2]
with n ∼ ξ−1.

3. The compactness claim holds for almost every Y ∈ Sym0 with ‖Y‖ small enough. The
norm converging to zero is needed to recover the condition ∂T = S+�, the stated energy
densities on T M, and the coefficient in front of M(T �).

4. Another possibility of introducing Sη,ξ is by using the operator S defined in [20, 21].
In our notation, this operator maps a function Q from (L∞ ∩ W 1,1)(�,Sym0) to
L1(Bα∗(0),F1), where α∗ > 0 and Bα∗(0) ⊂ Sym0. In other words, S allows us to
define a flat 1−chain SY (Qη,ξ ) for Qη,ξ ∈ (L∞ ∩W 1,1)(�,Sym0) and Y ∈ Bα∗(0).

5. The assumption of � = {ω ∈ M : ν(ω) · e3 = 0} being a C2−curve is not very
restrictive. In fact, this can already be achieved by a slight deformation of M which
changes the energies Eη,ξ and E0 in a continuous way. The assumption that ∇ων3 is
nowhere vanishing on � is used as a sufficient condition to ensure that the perturbed sets
�η,ξ stay regular and in a neighbourhood of �. In fact, since ν3 = 0 on � the derivative
vanishes in the direction tangential to �, so the condition is only on the part of ∇ων3
normal to �. In particular, the condition is verified if the Gaussian curvature |κM| > 0
on �.

Remark 3.3 (An alternative formulation of E0)

1. Wecan express the energy (16) in a slightly differentwaybywritingμT M = χGH2 M
for a mesurable set G ⊂M and defining

F := {ω ∈M \ G : ν(ω) · e3 > 0} ∪ {ω ∈M ∩ G : ν(ω) · e3 ≤ 0} . (22)

Then, (16) reads

E0(T , S) = 2s∗c∗
∫
F
(1− cos(θ)) dω + 2s∗c∗

∫
M\F

(1+ cos(θ)) dω

+ π

2
s2∗βM(S)+ 4s∗c∗M(T �) . (23)

The idea behind this reformulation and the definition of F is the following: Assume for
ξ, η > 0 that Q takes values in N such that (at least locally) we can lift Q to a director
field n. Because of the boundary condition, we can assume that for a given point ω ∈M
it holds that n(ω) = ν(ω). Following a ray in normal direction starting from ω, n must
approach ±e3 since far from the particle, Q must be close to Q∞. If ν3(ω) > 0, it is
energetically favourable for n to approach +e3. On the other hand, the ray intersecting
T means that n switches sign, i.e. if we start from ν3(ω) < 0 and cross T only once, n
converges to+e3. In this sense, the set F can be understood as the region onM in which
the lifting n along the rays starts from ν and approach+e3, while onM \ F the director
n turns from ν to −e3. Previously, the energy E0(M, e3) describes the minimal energy
concentrated on M, i.e. n always turns in the energetically favourable direction and the
integral involving μ M accounts for the additional energy caused by intersecting T .
See Fig. 1 for an illustration of the different quantities appearing in (23).

2. For convex particles E , there exists an orthogonal projection� : �→M. By convexity
of E , we find that E0(�#T ,�#S) ≤ E0(T , S), so that we can restrict ourselves to the
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Fig. 1 Illustration of flat chains
T , S and the sets F, Fc

appearing in the limit energy E0

case T � = 0 = S �. Using (22), we find that ∂F = �#S and (23) becomes

E0(�#T ,�#S) = 2s∗c∗
∫
F
(1− cos(θ)) dω + 2s∗c∗

∫
M\F

(1− cos(θ)) dω

+ π
2
s2∗βM(∂F) .

In particular, (16) is a generalization of the limit energy E0 defined in [5].

Remark 3.4 (Physical interpretation of T and S) The line singularity observed in physical
experiments [53, 54, 64] has its origin in the isotropic or oblate uniaxial-biaxial defect core
of the director field. In our mathematical framework this corresponds to the set where Qη,ξ
takes values in C and is therefore represented by Sη,ξ which tends towards S in the limit
model. Note that it is a priori not possible to distinguish + 1

2 and − 1
2 defect lines (see Fig. 3

(left)). But since the physical system as a whole must have a trivial topological degree, one
can deduce in the situation of Fig. 3 that one + 1

2 and two − 1
2 defect lines must be present.

By symmetry the line in the middle must be of degree + 1
2 .

Point singularities of the director n are represented by simply connected components of
T in our model due to the following reasoning. As illustrated in Fig. 2, the set where n3 = 0
attaches to � (yellow points on the surface of the sphere) and necessarily passes through the
point singularity and creates a simply connected component. However, with this description
it is not possible to determine the exact position of the point defect on the surface T . In the
case of a minimizing T around a spherical inclusion, T will approach the particle surface
since the nematic and magnetic exchange length become small w.r.t. the particle radius and
thus T forms a half-sphere (compare with [5, Ch. 6]). In the case of a peanut-shaped particle
aligned with the magnetic field we expect one of three different minimizing configurations,
depending on β, see Fig. 3. In particular, there exists a non-simply connected component
of T which does not correspond to a point defect, but originates in the connection of two
components of �. In summary, T is a surface which connects � to the singular set (lines and
points).

4 Compactness

The structure of this section is as follows. We regularize the sequence Qη,ξ in the first
subsection. For this new sequence Qη,ξ,n , we define a 2−chain Tη,ξ,n ∈ F2 and 1−chain
Sη,ξ,n ∈ F1 such that ∂Tη,ξ,n = Sη,ξ,n and we have bounds on the masses to get the
existence of limit objects T and S with ∂T = S. This construction is carried out in steps in
the subsections two, three and four. We distinguish the case of Qη,ξ,n being close to N and
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Fig. 2 Illustration of the integral
lines of the director field n around
a spherical inclusion and the level
set {x ∈ � : n3(x) = 0}
representing T . The point defect
lies on T

Fig. 3 Expected minimizers of E0 for β � 1 (left), β � 1 (right) and intermediate β (center). For small β the
line S has the tendency to stick toM and optimize F , thus no T appears. Here, S = � and F consists of two
connected components bounded by the three components of S. This configuration corresponds to three Saturn
rings around the particle. For intermediate β one may find a configuration as depicted in the middle, i.e. the
energy is decreased by joining two parts of S by a surface T glued toM. This leads to the disappearance of the
two rings that have been connected by T , and F contains only the part ofM above S. Finally, for large β, the
last ring disappears and we obtain a dipole configuration in which S = 0, F = ∅ and T has two components,
see Remark 3.4. This last configuration has been observed experimentally, see [73, Fig. 2(a)-(c)]

hence almost prolate uniaxial and the complementary case when Qη,ξ,n is far from N , e.g.
when Qη,ξ,n is isotropic or oblate uniaxial close to the boundary S. The passage to the limit
is to happen in the last subsection.

4.1 Approximating sequence

This section is devoted to the definition of a sequence of smooth functions Qη,ξ,n , replacing
Qη,ξ in our analysis and proving the properties required for the estimates in the following
chapters. More precisely, we need that

• the sequence Qη,ξ,n approximates Qη,ξ ,
• Qη,ξ,n |M approaches Qb in C1,
• Qη,ξ,n verifies the energy bound η Eη,ξ (Qη,ξ,n) ≤ η Eη,ξ (Qη,ξ )+ o(1) ≤ C̃ and
• the estimate Lip(Qη,ξ,n) ≤ C n holds.

While n is introduced as regularization parameter, we will later choose n dependent on ξ to
obtain a sequence which only depends on the original parameters η, ξ . More explicitly, we

can simply take e.g. n = ξ− 7
4 as we will see later.

For technical reasons, we are going to extend Qη,ξ into a small neighbourhood into the
interior of E . Since M is compact and of class C2, we can fix a small radius r0 > 0 such
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that M satisfies the inner ball condition for all radii r ≤ 2r0. In particular, 2r0 is smaller
than the minimal curvature radius of M. For x ∈ E such that dist(x,M) < 2r0, define

Qη,ξ (x) = s∗
(
ν(x)⊗ ν(x)− 1

3
Id

)
,

where ν(x) = ν(�M(x)),�M the orthogonal projection ontoM, is the obvious extension
of the outward normal unit vector field ν of ∂E in E . Also by C2−regularity ofM and given
n ∈ N, there exists a C2−diffeomorphism �n : R3 → R

3 such that

�n(x) =
{
x x ∈ � with dist(x,M) > 1√

n
,

x− 1
n ν(x) x ∈ R

3 with dist(x,M) ≤ 1
n ,

(24)

and |�n(x)− x | ≤ 1
n and in operator norm |∇�n(x)| ≤ 1+ C√

n
for all x ∈ �.

Let �R : Sym0 → BR(0) ⊂ Sym0 be the orthogonal projection with
√

2
3 s∗ ≤ R < ∞

to be fixed later. Furthermore, let � ∈ C∞c (R3) be a convolution kernel with 0 ≤ � ≤ 1,
�(x) = 0 if |x | > 1,

∫
R3 �(x) dx = 1 and ‖∇�‖∞ ≤ 1. We set �n(x) = n3�(nx). Then, for

n ≥ 2r−10 we define Qη,ξ,n(x) for x ∈ � as the convolution

Qη,ξ,n(x) := (
(�R ◦ Qη,ξ ◦�n) ∗ �n

)
(x) . (25)

Remark 4.1 1. In this definition Qη,ξ ◦ �n is defined in the interior of E up to distance 1
n

of M which is necessary in order to define the convolution.
2. Through the convolution, we change the boundary values of Qη,ξ , i.e. Qη,ξ,n does not

necessarily satisfy (14). The diffeomorphism �n ensures that the regularized sequence
Qη,ξ,n defined above approximates the boundary data Qb in C1.

3. Because of the convolution, the approximations of T , that we are about to construct, will
not end on �, but on a set �n = {ω ∈M : (ν3 ∗ �n)(ω) = 0} (which is again a line) in
the neighbourhood of �. Because of the C1−convergence of Qη,ξ,n |M → Qb we can
use a perturbation argument to deduce that �n converges in Hausdorff distance and in
flat norm to �. The details of this result are provided in Sect. 5.3.

The following proposition shows that this sequence has indeed the desired properties.

Proposition 4.2 There exists R ≥
√

2
3 s∗ such that the sequence Qη,ξ,n defined in (25) verifies:

1. The functions Qη,ξ,n are smooth and there exists a constant C > 0 such that

‖∇Qη,ξ,n‖L∞ ≤ C n . (26)

2. If ηEη,ξ (Qη,ξ ) � 1, we have convergence Qη,ξ,n−Qη,ξ → 0 in L2 and Qη,ξ,n|M → Qb

in C1 for n →∞ and ξ, η→ 0 provided ηn diverges in the limit n →∞, η→ 0.
3. If η Eη,ξ (Qη,ξ ) � 1 and n ∼ ξ−a for some a > 3

2 , then there exist constants C1,C2 > 0
such that for all measurable sets �′ ⊂ � with |�′| < ∞ the energy of Qη,ξ,n can be
bounded as

Eη,ξ (Qη,ξ,n,�′) ≤
(
1+ C1

(
1√
n
+ ξ

2

η2

))
Eη,ξ (Qη,ξ , B 2

n
(�′) ∩�)

+ C2

(
1

ξ
3
2 ηn

+
( |�′|
ηξ3n2

) 1
2
)

≤ (1+ o(1)) Eη,ξ (Qη,ξ , B 2
n
(�′) ∩�)+ o(1) ,

(27)
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where Br (�′) denotes the r−neighbourhood around �′ and o(1)→ 0 as η, ξ → 0.

Before proving the proposition, we show a series of three lemmata detailing how each
step of construction from Qη,ξ to Qη,ξ,n modifies the energy.

Lemma 4.3 There exists R ≥
√

2
3 s∗ such that we have convergence�R ◦ Qη,ξ − Qη,ξ → 0

in L2 as ξ, η→ 0 if η Eη,ξ (Qη,ξ ) � 1. For all measurable sets �′ ⊂ � it holds that

Eη,ξ (�R ◦ Qη,ξ , �′) ≤ Eη,ξ (Qη,ξ , �′) .

Proof For the L2 convergence, we note that Qη,ξ �= �R ◦ Qη,ξ only on the set A := {x ∈
� : |Qη,ξ (x)| > R}. Fixing R >

√
2
3 s∗ and using Proposition 2.1 we get

∫
�

|Qη,ξ −�R ◦ Qη,ξ |2 dx ≤
∫
A
|Qη,ξ −�R ◦ Qη,ξ |2 dx �

∫
A
dist2(Qη,ξ ,Nη,ξ ) dx

�
∫
�

F(Qη,ξ ) dx � ξ2Eη,ξ (Qη,ξ , �) ,

where we used the notation F(Q) = f (Q) + ξ2

η2
g(Q) + ξ2C0. Since η Eη,ξ (Qη,ξ , �) is

bounded, ‖Qη,ξ −�R ◦ Qη,ξ‖L2 � ξ√
η
→ 0 as η, ξ → 0.

It remains to prove the energy bound for�R ◦ Qη,ξ . For this, we directly get that∫
�′
|∇(�R ◦ Qη,ξ )|2 dx ≤

∫
�′
|∇Qη,ξ |2 dx .

For the bulk energy, we use [5, Prop. 4.1] to fix R ≥
√

2
3 s∗ such that F(Q) ≥ F(�RQ) for

all Q ∈ Sym0, where again F(Q) = f (Q) + ξ2

η2
g(Q) + ξ2C0. Integrating this pointwise

inequality implies the energy inequality. ��

Lemma 4.4 Let R ≥
√

2
3 s∗ be as in Lemma 4.3 and �n defined by (24). Then, �R ◦ Qη,ξ ◦

�n −�R ◦ Qη,ξ → 0 in L2 as n →∞ and there exist constants C1,C2 > 0 such that for
all measurable sets �′ ⊂ �

Eη,ξ (�R ◦ Qη,ξ ◦�n,�
′) ≤

(
1+ C1√

n

)
Eη,ξ (�R ◦ Qη,ξ , B 1

n
(�′) ∩�) + C2

η2n
.

Proof We start again with the L2−convergence noting that by definition of �n it holds
|(�R◦Qη,ξ ◦�n)(x)−(�R◦Qη,ξ )(x)| = 0 as soon as dist(x,M) ≥ 1√

n
. The complementary

set Un := {x ∈ � : dist(x,M) ≤ 1√
n
} is of measure |Un | � (

√
n)−1 an together with the

L∞− bounds |�R ◦ Qη,ξ ◦�n |, |�R ◦ Qη,ξ | ≤ R this implies L2−convergence.
For the energy estimate we calculate, using the estimate | det(∇�n)| ≤ 1+ C√

n∫
�′
|∇(�R ◦ Qη,ξ ◦�n)|2 dx ≤

(
1+ C√

n

)∫
�′
|∇(�R ◦ Qη,ξ )|2(�n(x)) dx

≤
(
1+ C√

n

)∫
�n(�′)

|∇(�R ◦ Qη,ξ )|2 1

| det(∇�n)| dx

≤
(
1+ C√

n

)(
C
∫
�n(�′)∩E

|∇ν|2 dx
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+
∫
�n(�′)∩�

|∇(�R ◦ Qη,ξ )|2 dx
)
.

Since�n(�
′) ⊂ B 1

n
(�′) and the curvature ofM is bounded,weget that

∫
�n(�′)∩E |∇ν|2 dx �

1
n . Therefore

∫
�′
|∇(�R ◦ Qη,ξ ◦�n)|2 dx ≤

(
1+ C1√

n

)∫
B 1
n
(�′)∩�

|∇(�R ◦ Qη,ξ )|2 dx + C2

n
.

We proceed similarly for the bulk potential F(Q) = f (Q)+ ξ2

η2
g(Q)+ ξ2C0, giving

∫
�′

F(�R ◦ Qη,ξ ◦�n) dx ≤
(
1+ C√

n

)∫
�n(�′)

F(�R ◦ Qη,ξ ) dx

≤
(
1+ C√

n

)(∫
�n(�′)∩E

F(Qη,ξ ) dx

+
∫
�n(�′)∩�

F(�R ◦ Qη,ξ ) dx
)
.

Since Qη,ξ = s∗(ν ⊗ ν − 1
3 Id) in E , we get that |F(Qη,ξ )| = | ξ2η2 g(Qη,ξ ) + ξ2C0| � ξ2

η2
.

We end up with

∫
�′

1

ξ2
F(�R ◦ Qη,ξ ◦�n) dx ≤

(
1+ C√

n

)∫
B 1
n
(�′)∩�

1

ξ2
F(�R ◦ Qη,ξ ) dx + C

η2n
.

��

Lemma 4.5 Let R ≥
√

2
3 s∗ be as in Lemma 4.3, �n defined by (24) and �n the convolution

kernel used to define Qη,ξ,n. Assume that ηEη,ξ (Qη,ξ ) � 1. Then, Qη,ξ,n−�R◦Qη,ξ ◦�n →
0 in L2 as η, ξ → 0 and n → ∞ provided nη → ∞. Furthermore, there exist constants
C1,C2 > 0 such that for all measurable sets �′ ⊂ � of finite measure

Eη,ξ (Qη,ξ,n,�′) ≤
(
1+ C1

(
1√
n
+ ξ

2

η2

))
Eη,ξ (�R ◦ Qη,ξ ◦�n, B 1

n
(�′) ∩�)

+ C2

(
1

n
+
(

1

ξ
3
2 n
+ 1

ξ
5
2 n2

)
Eη,ξ (�R ◦ Qη,ξ ◦�n, B 1

n
(�′) ∩�)

+ 1

ξ
3
2 n

3
2

(Eη,ξ (�R ◦ Qη,ξ ◦�n,�
′))

1
2 + 1

ξ
5
2 n3

+ |�′| 12
(

1

ξ
3
2 n
(Eη,ξ (�R ◦ Qη,ξ ◦�n, B 1

n
(�′) ∩�)) 12 + 1

ξ
3
2 n

3
2

))
.

(28)
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Proof We introduce the notation Q̃ := �R ◦ Qη,ξ ◦�n so that Qη,ξ,n = Q̃ ∗ �n . Now, we
observe that for any measurable �′ ⊂ �

∫
�′
|Qη,ξ,n − Q̃|2 dx =

∫
�′

∣∣∣∣
∫
B1(0)

(Q̃(x − z
n )− Q̃(x))�(z) dz

∣∣∣∣
2

dx

=
∫
�′

∣∣∣∣∣
∫
B1(0)

∫ 1
n

0
z · ∇ Q̃(x − t z)�(z) dz

∣∣∣∣∣
2

dx

≤ C

n2

∫
B 1
n
(�′)

|∇ Q̃|2 dx .

Similar to the proof of Lemma 4.4 we can split up the last integral into two integrals over the
sets B 1

n
(�′) ∩� and B 1

n
(�′) ∩ E to get

∫
�′
|Qη,ξ,n − Q̃|2 dx ≤ C

n2
Eη,ξ (Q̃, B 1

n
(�′) ∩�)+ C

n3
. (29)

The L2−convergence follows from the energy bound for Q̃, which is a consequence of
Lemma 4.3, Lemma 4.4 and the energy bound for Qη,ξ , provided nη→∞ as ξ, η→ 0 and
n →∞.

Next, we estimate the energy of Qη,ξ,n in terms of Q̃. For the gradient term we simply
obtain by Young’s inequality

∫
�′
|∇Qη,ξ,n |2 dx =

∫
�′
|(∇(Q̃ ∗ �n)|2 dx

≤
∫
B 1
n
(�′)

|∇ Q̃|2 dx ≤
∫
B 1
n
(�′)∩�

|∇ Q̃|2 dx + C

n
.

(30)

The only tricky part is the estimate for f (Qη,ξ,n). We decompose �′ into three sets
�1,�2,�3 defined as

�1 := {x ∈ �′ : dist(Q̃,Nη,ξ ) ≥ λ} ,
�2 := {x ∈ (�′ \�1) : |Qη,ξ,n − Q̃| ≥ λ} ,
�3 := �′ \ (�1 ∪�2) ,

where λ > 0 will be chosen later on. The volume of �1 can be estimated as follows

Eη,ξ (Q̃,�′) �
∫
�1

1

ξ2
F(Q̃) dx � λ2

ξ2
|�1| ,

where we also used Proposition 2.1. This gives |�1| � ξ2

λ2
Eη,ξ (Q̃,�′). Using the Lipschitz

continuity of f on the set BR(0) ⊂ Sym0, we can furthermore estimate

(∫
�1

η

ξ2
| f (Qη,ξ,n)− f (Q̃)| dx

)2

�
(∫

�1

η

ξ2
|Qη,ξ,n − Q̃| dx

)2

� η2

ξ4
|�1|

∫
�1

|Qη,ξ,n − Q̃|2 dx .
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Replacing |�1| by our above estimate and using (29) we get

∫
�1

η

ξ2
| f (Qη,ξ,n)− f (Q̃)| dx � η

ξλ

1

n
Eη,ξ (Q̃, B 1

n
(�′) ∩�)+ η

ξλ

1

n
3
2

(Eη,ξ (Q̃,�′))
1
2 .

(31)

The set �2 is also seen to be small since

λ2|�2| �
∫
�2

|Qη,ξ,n − Q̃|2 dx � 1

n2
Eη,ξ (Q̃, B 1

n
(�′) ∩�)+ 1

n3
,

again by (29) so that |�2| � 1
n2λ2

Eη,ξ (Q̃, B 1
n
(�′) ∩ �) + 1

λ2n3
. Proceeding as for �1, it

follows again by Lipschitz continuity of f that

∫
�2

η

ξ2
| f (Qη,ξ,n)− f (Q̃)| dx � η

ξ2n2λ
Eη,ξ (Q̃, B 1

n
(�′) ∩�)+ η

ξ2

1

λn3
. (32)

It remains to prove an estimate for f (Qη,ξ,n) on �3. To this goal, we write

f (Qη,ξ,n)− f (Q̃) =
(∫ 1

0
(Df )(Q̃ + s(Qη,ξ,n − Q̃)) ds

)
· (Qη,ξ,n − Q̃)

−
(∫ 1

0
(Df )(�N (Q̃ + s(Qη,ξ,n − Q̃))) ds

)
· (Qη,ξ,n − Q̃),

where we used the fact that Df = 0 on N . To shorten the notation, we define Qs :=
Q̃ + s(Qη,ξ,n − Q̃). Then

f (Qη,ξ,n)− f (Q̃)

=
(∫ 1

0

(∫ 1

0
(D2 f )(�N (Qs)+ t(Qs −�N (Qs))) dt

)
· (Qs −�N (Qs)) ds

)

· (Qη,ξ,n − Q̃) .

Note that |D2 f | in the above integral is bounded since f is smooth on a compact neighbour-
hood of N . Furthermore, since |Qη,ξ,n − Q̃| ≤ λ on �3 and dist(Q̃,Nη,ξ ) ≤ λ, it follows
from (11) that if λ � ξ2

η2
then |Qs −�N (Qs)| � λ. Therefore,

(∫
�3

| f (Qη,ξ,n)− f (Q̃)| dx
)2

� λ2|�3|
∫
�3

|Qη,ξ,n − Q̃|2 dx

� λ2|�′| 1
n2

Eη,ξ (Q̃, B 1
n
(�3) ∩�)+ λ

2

n3
|�′| ,

which gives

∫
�3

η

ξ2
| f (Qη,ξ,n)− f (Q̃)| dx � η

ξ2

λ

n
|�′| 12

(
Eη,ξ (Q̃, B 1

n
(�′) ∩�)

) 1
2 + η

ξ2

λ

n
3
2

|�′| 12 .
(33)
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Combining (31),(32), (33) and choosing λ = √ξ yields∫
�′
η

ξ2
f (Qη,ξ,n) dx ≤

∫
�′
η

ξ2
f (Q̃) dx

+ C

(
η

ξ
3
2 n

Eη,ξ (Q̃, B 1
n
(�′) ∩�)+ η

ξ
3
2 n

3
2

(Eη,ξ (Q̃,�′))
1
2

+ η

ξ
5
2 n2

Eη,ξ (Q̃, B 1
n
(�′) ∩�)+ η

ξ
5
2 n3

+ η

ξ
3
2 n
|�′| 12 (Eη,ξ (Q̃, B 1

n
(�′) ∩�)) 12 + η

ξ
3
2 n

3
2

|�′| 12
)
.

(34)

We finish the proof of this lemma with the estimates on g. Note that by Proposition
4.2 in [5] we can bound the energy contribution of g from the set where |Q| is small by
ξ2

η
Eη,ξ (Qη,ξ,n,�′). By smoothness of g away from Q = 0 we can estimate

∫
�′

g(Qη,ξ,n)− g(Q̃) dx � ξ2

η
Eη,ξ (Qη,ξ,n,�′)+ ‖∇g‖L∞

∫
�′
|Qη,ξ,n − Q̃| dx

� ξ2

η
Eη,ξ (Qη,ξ,n,�′)+

( |�′|
n2

Eη,ξ (Q̃, B 1
n
(�′) ∩�)+ |�

′|
n3

) 1
2

.

Combining this with (34) and (30), we subtract C ξ2

η2
Eη,ξ (Qη,ξ,n,�′) from both sides and

divide by 1 − C ξ2

η2
to get the estimate (28). Note, that in our regime for η and ξ , the terms

arising in the estimate for g are smaller than the corresponding terms for f in (34) and hence
do not display in (28). ��

With the results of Lemma 4.3, Lemma 4.4 and Lemma 4.5, we can now turn to the proof
of Proposition 4.2.

Proof of Proposition 4.2 The smoothness of the functions Qη,ξ,n is clear by standard convo-
lution arguments, since � is smooth. The bound on the gradient follows from the computation

|∇Qη,ξ,n(x)| ≤ ‖∇�n‖L∞
∫
B1(x)

|�RQη,ξ (�n(y))| dy ≤ 4

3
πR n .

Next, we prove the C1−convergence on M. For ω ∈M it holds that

|Qη,ξ,n(ω)− Qb(ω)| ≤
∫
B 1
n
(0)

∣∣∣Qη,ξ
(
ω − y − 1

n
νω−y

)
− Qb(ω)

∣∣∣�n(y) dy .

Note that Qη,ξ does not depend on η, ξ here as it is uniquely defined by the extension ν.
Since Qb and ν are continuous on a compact set, they are also uniformly continuous which
implies C0−convergence for n → 0. Analogously,

|∇ωQη,ξ,n(ω)− ∇ωQb(ω)| ≤
∫
B 1
n
(0)

∣∣∣(∇ωQη,ξ )(ω − y − νω−y)
(
Id+ 1

n
∇ων

)

−∇ωQb(ω)

∣∣∣�n(y) dy ,
and since∇ων is boundedwecanuse uniformcontinuity of∇ωQb to deduceC1−convergence
on M.
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Next, we show the L2−convergence of Qη,ξ,n − Qη,ξ to 0 as η, ξ → 0 and n →∞ with
ηn →∞. Writing

‖Qη,ξ,n − Qη,ξ‖L2(�) ≤ ‖Qη,ξ,n −�R ◦ Qη,ξ ◦�n‖L2(�)

+ ‖�R ◦ Qη,ξ ◦�n −�R ◦ Qη,ξ‖L2(�)

+ ‖�R ◦ Qη,ξ − Qη,ξ‖L2(�)

and applying Lemma 4.3 to the third, Lemma 4.4 to the second and Lemma 4.5 to the first
L2−difference on the right hand side, we see that ‖Qη,ξ,n − Qη,ξ‖L2(�) tends to zero if
nη→∞ as n →∞ and ξ, η→ 0.

If we assume that η Eη,ξ (Qη,ξ , �) ≤ C uniformly in η, ξ , then Lemma 4.3 implies that
also η Eη,ξ (�R ◦ Qη,ξ , �) ≤ C . In addition, by Lemma 4.4, it follows that η Eη,ξ (�R ◦
Qη,ξ ◦�n,�) ≤ C and that

Eη,ξ (�R ◦ Qη,ξ ◦�n,�
′) ≤

(
1+ C1√

n

)
Eη,ξ (Qη,ξ , B 1

n
(�′) ∩�) + C2

η2n
.

Combining this with Lemma 4.5 and using that η Eη,ξ (�R ◦ Qη,ξ ◦�n,�) ≤ C , we can find
new constants C1,C2 > 0 such that

Eη,ξ (Qη,ξ,n,�′) ≤
(
1+ C1

(
1√
n
+ ξ

2

η2

))
Eη,ξ (Qη,ξ , B 2

n
(�′) ∩�)

+ C2

(
1

ξ
3
2 ηn

+
( |�′|
ηξ3n2

) 1
2
)

for n ∼ ξ−a for some a > 3
2 . In this regime for n, the energy estimate is asymptotically

sharp. ��
Having established these properties of Qη,ξ,n , we are able to identify the size and structure

of the set where Qη,ξ,n is close to being prolate uniaxial as stated in the next Lemma.

Lemma 4.6 There exists a constants C, L > 0 such that for all δ > 0, there exists a finite set
I ⊂ � which satisfies

1. the following inclusions

Uδ ⊂
⋃
x∈I

B δ
Ln
(x) ⊂ Uδ/2 , (35)

where Uδ := {x ∈ � : dist(Qη,ξ,n(x),N ) > δ},
2. and

#I ≤ C
n3

η f δmin δ
3

(
ξ2 + 1

n2

)
, (36)

where f δmin = min{ f (Q) : dist(Q,N ) ≥ δ/2}.
Proof Let δ > 0 and x0 ∈ Uδ . Since Qη,ξ,n is Lipschitz continuous (Proposition 4.2), we
can define L := 8

3πR > 0, i.e. Ln ≥ 2‖∇Qη,ξ,n‖∞. We deduce that for any x ∈ B δ
Ln
(x0) it

holds

dist(Qη,ξ,n(x),N ) ≥ dist(Qη,ξ,n(x0),N )− ‖∇Qη,ξ,n‖∞ δ

Ln
≥ δ

2
,
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so that x ∈ Uδ/2. From this, we get that

Uδ ⊂
⋃
x∈Uδ

B δ
Ln
(x) ⊂ Uδ/2 .

By Vitali covering theorem, we find a subset I ⊂ Uδ with the same property and B 1
3
δ
Ln
(xi )∩

B 1
3
δ
Ln
(x j ) = ∅ for i �= j and xi , x j ∈ I . Furthermore, using Proposition 4.2

C ξ2

η
≥

∫
�

f (Qη,ξ ) dx ≥
∫
�

f (Qη,ξ,n) dx − C

η

(
ξ2 + 1

n2

)

≥
∫
Uδ/2

f (Qη,ξ,n) dx − C

η

(
ξ2 + 1

n2

)
≥ C#I |B δ

Ln
| fmin − C

η

(
ξ2 + 1

n2

)

≥ C#I
δ3 fmin

n3
− C

η

(
ξ2 + 1

n2

)
,

where we used that f ≥ fmin > 0 on Uδ/2. From this it follows that

#I ≤ C
n3

η fminδ3

(
ξ2 + 1

n2

)
.

��

In [5] a similar result was obtained using a regularization related to the energy and using
the Euler-Lagrange equation to derive the Lipschitz continuity. This approach would also
work in the new setting and one could obtain Lemma 4.6 with n = ξ−1. However, the new
approach has the advantage to be local and provide us without effort the local estimates
which lead to the lower bounds in Sect. 5.3.

From (36) it follows that the volume of the union of balls in (35) converges to zero for
η, ξ → 0 and n ∼ ξ−a , a ∈ [1, 2). The same holds true for the union of the surfaces of those
balls. Note however that the sum of the diameters is not bounded and diverges. With the tool
developed in [13] and used in [5, 19] it would be possible to derive a bound, namely the sum
of diameters can be shown to be bounded.

4.2 Definition of the line singularity

The goal of this section is to define a 1−chain Sη,ξ,n of finite length which satisfies the
compactness properties announced in Theorem 3.1. The necessary analysis has already been
carried out in [20, 21] but for the reader’s convenience we recall the important steps and
results.

For the construction of Sη,ξ,n , we follow Section 3 in [20]. We recall that C is the cone of
oblate uniaxial Q−tensors which can be seen as a smooth simplicial complex of codimension
2 in Sym0. Evoking Thom’s transversality theorem, one can assume that, for almost every
Y ∈ Sym0, the function Qη,ξ,n − Y is transverse to all cells of C. Subdividing the preimages
of the cells under the map Qη,ξ,n − Y if necessary, (Qη,ξ,n − Y )−1(C) defines a smooth,
simplicial, finite complex of codimension 2 which we call Sη,ξ,n . Note that Sη,ξ,n depends
on the choice of Y .

The relevant estimates on Sη,ξ,n needed to prove Theorem 3.1 in Sect. 5.3 are formulated
in Theorem C and Section 4 in [21]:
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Theorem 4.7 There exists a finite mass chain S such that one can choose a subsequence
Sη,ξ,n (not relabelled) and α > 0 with

F(Sη,ξ,n − S) → 0 for almost every Y ∈ Bα(0) .

Furthermore, for any open subset U ⊂ R
3 it holds

lim inf
ξ,η→0
n→∞

η Eη,ξ (Qη,ξ,n,U ∩�) ≥ π

2
s2∗β M(S U ) .

In our situation, by construction of Qη,ξ,n and for Y ∈ Bα(0) (α small enough) it holds
that

(Qη,ξ,n − Y )−1(C) ⊂ Uδ ⊂
⋃
x∈I

B δ
Ln
(x) .

Hence supp (Sη,ξ,n) ⊂ ⋃
x∈I B δ

Ln
(x) and in view of the lower bound in Theorem 4.7 we

deduce that the energy coming from Sη,ξ,n in U is already contained in U ∩⋃
x∈I B δ

Ln
(x).

4.3 Construction of T and estimates forQ close toN

In this subsection we carry out the first steps to define the 2−chain T . We start by defining

T := {Q ∈ Sym0 : s > 0 , 0 ≤ r < 1 , n3 = 0} ,
where r , s,n are defined as in (3). From this we want to define Tη,ξ,n close to Q−1η,ξ,n(T ). As
carried out in [20] and described in Sect. 4.2, for almost every Y the set (Qη,ξ,n−Y )−1(T ) is
in fact a smooth finite complex. In Lemma 4.9, we show that in addition for a.e. Y ∈ Sym0,
the definition

Tη,ξ,n := (Qη,ξ,n − Y )−1(T )

allows to control the area in regionswhere Qη,ξ,n is close toN . Since both the constructions of
Sη,ξ,n and Tη,ξ,n are valid for a.e.Y , we can choose the sameY and hence ∂Tη,ξ,n∩� = Sη,ξ,n .
In parts of� where Qη,ξ,n is far fromN , e.g. close to Sη,ξ,n , we need to modify Tη,ξ,n . This
will be the subject of the next subsection.

At first, we recall the (intuitively obvious) result that T is well behaved close to N in the
sense that the level sets {n3 = s} for s small have a similar H4−volume as T . This can be
interpreted as control on the curvature of T ∩N .

Lemma 4.8 There exists α0, α1,C > 0 such that for Q ∈ Sym0, dist(Q,N ) ≤ α0 and
α ∈ (0, α1) it holds that

lim
s→0

H4({Y ∈ Bα(0) : n3(Q − Y ) = s}) = H4(Bα(Q) ∩ T ) .

In the smooth case this lemma follows as in [62, Lemma 3], however we give a proof here
for completeness.

Proof The parameter α0 needs to be small enough to avoid problems far from N due to the
non-smoothness of T at the singularity 0 ∈ Sym0. So we choose 0 < α0 < 1

8dist(0,N ). To
avoid dealing with the topology of the sets involved, we pick 0 < α1 < 1

8diam (N ). Hence,
Bα(Q) ∩ T is diffeomorphic to a 4−dimensional ball.
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In the appendix, we check that ∂n3Q �= 0 in a neighbourhood of each Q ∈ T close to N ,
so that by the implicit function theorem, n3 is a smooth function of Q with DQn3(Q) �= 0
near Q ∈ T . In addition, n3 is uniformly bounded in C2 in dist(·,N ) ≤ α0 for α0 small
enough (since then r ≈ 0 and s ≈ s∗). It follows that

H4({Y ∈ Bα(0) : n3(Q − Y ) = s}) = H4({Y ∈ Bα(Q) : n3(Y ) = s})
→ H4({Y ∈ Bα(Q) : n3(Y ) = 0})
= H4(Bα(Q) ∩ T )

as s → 0. ��
For δ > 0, we introduce the set Aδ ⊂ � in which Qη,ξ,n is close to being prolate uniaxial

with norm
√

2
3 s∗ as

Aδ := {x ∈ � : dist(Qη,ξ,n(x),N ) < δ} . (37)

The next lemma shows that (in average) the H2−measure of (Qη,ξ,n − Y )−1(T ) that lies in
Aδ is controlled by the energy.

Lemma 4.9 There exists α0, δ0 > 0 such that for all α ∈ (0, α0), δ ∈ (0, δ0) one can find a
constant C > 0 such that∫

Bα(0)
H2(Aδ ∩ (Qη,ξ,n − Y )−1(T )}) dY ≤ C η Eη,ξ (Qη,ξ,n, Aδ) . (38)

Proof Let α, δ > 0 small enough such that for Y ∈ Bα(0), the map Q �→ n3(Q − Y ) is
smooth on {Q ∈ Sym0 : dist(Q,N ) < δ}. Let Aδ be defined as in (37). In order for the
map x �→ n3(Qη,ξ,n(x) − Y ) to be well defined, we need to restrict ourselves to a simply
connected subset of Aδ . For this, take x0 ∈ Aδ and r > 0 such that Aδ ∩ Br (x0) is simply
connected. We carry out the analysis on Aδ ∩ Br (x0), noting that we can cover Aδ by such
balls to find the estimate (38). With x0 ∈ Aδ and r > 0 fixed as described, we can calculate∫

Bα(0)
H2(Br (x0) ∩ Aδ ∩ (Qη,ξ,n(x)− Y )−1(T )}) dY

=
∫
Bα(0)

|Dχ{x∈�|n3(Qη,ξ,n(x)−Y )>0}|(Br (x0) ∩ Aδ) dY

≤ lim inf
ε→0

∫
Bα(0)

∫
Br (x0)∩Aδ

|∇x (hε ◦ n3 ◦ (Qη,ξ,n − Y ))(x)| dx dY

= lim inf
ε→0

∫
Bα(0)

∫
Br (x0)∩Aδ

|h′ε(n3(Qη,ξ,n(x)− Y ))∇Qn3(Qη,ξ,n(x)− Y ) :
∇x Q(x)| dx dY ,

where hε ∈ C1(R, [0, 1]) is an approximation of the Heaviside function, i.e. hε(x) = 0
for x ≤ 0, hε(x) = 1 for x ≥ ε and h′ε > 0 on (0, ε). The above inequality is then
just the lower semi continuity of the total variation. With the identity h′ε(n3(Qη,ξ,n(x) −
Y ))∇Qn3(Qη,ξ,n(x) − Y ) = −∇Y (hε ◦ n3 ◦ (Qη,ξ,n(x) − Y )) and the Fubini theorem we
can rewrite∫

Bα(0)

∫
Br (x0)∩Aδ

|h′ε(n3(Qη,ξ,n(x)− Y ))∇Qn3(Qη,ξ,n(x)− Y ) : ∇x Qη,ξ,n(x)| dx dY
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≤
∫
Br (x0)∩Aδ

|∇Qη,ξ,n |
∫
Bα(0)

|∇Y (hε ◦ n3 ◦ (Qη,ξ,n − Y ))| dY dx

=
∫
Br (x0)∩Aδ

|∇Qη,ξ,n |
∫ 1

0
H4({Y ∈ Bα(0) : hε(n3(Qη,ξ,n(x)− Y )) = s}) ds dx

=
∫
Br (x0)∩Aδ

|∇Qη,ξ,n |
∫ 1

0
H4({Y ∈ Bα(0) : n3(Qη,ξ,n(x)− Y ) = h−1ε (s)}) ds dx ,

where we also used the coarea formula. By Lemma 4.8 in the liminf ε → 0 this equals

lim inf
ε→0

∫
Br (x0)∩Aδ

|∇Qη,ξ,n |
∫ 1

0
H4({Y ∈ Bα(0) : n3(Qη,ξ,n(x)− Y ) = h−1ε (s)}) ds dx

=
∫
Br (x0)∩Aδ

|∇Qη,ξ,n |H4(Bα(Qη,ξ,n) ∩ T ) dx

by translation invariance of H4. Applying the inequality 2ab ≤ a2 + b2 we get
∫
Br (x0)∩Aδ

|∇Qη,ξ,n |H4(Bα(Qη,ξ,n) ∩ T ) dx

≤
∫
Br (x0)∩Aδ

η

2
|∇Qη,ξ,n |2 + 1

2η
H4(Bα(Qη,ξ,n) ∩ T )2 dx .

The Dirichlet term appears in the energy, so it remains to estimate H4(Bα(Qη,ξ,n) ∩ T )2 in
terms of g(Qη,ξ,n). We first note that T ∩ Bα(Qη,ξ,n(x)) = ∅ if dist(Qη,ξ,n(x), T ) > α and
since dist(Qη,ξ,n,N ) < δ we haveH4(Bα(Qη,ξ,n)∩T ) ≤ Cδα4 by Proposition A.5. Hence,
we get

∫
Br (x0)∩Aδ

H4(Bα(Qη,ξ,n) ∩ T )2dx ≤ (Cδα
4)2|Br (x0) ∩ Aδ∩

{x ∈ � : dist(Qη,ξ,n(x), T ) < α}| .
For x ∈ Aδ ∩ {x ∈ � : dist(Qη,ξ,n(x), T ) < α} we can estimate

g(Qη,ξ,n(x)) ≥ g(R(Qη,ξ,n(x)))− Cgdist(Qη,ξ,n(x),N )

≥
√
3

2
(1− n23(Qη,ξ,n(x)))− Cgδ

≥
√
3

2
(1− CT α)− Cgδ ≥ G > 0

for α, δ � 1 small enough. Hence,

G|Br (x0) ∩ Aδ ∩ {x ∈ � : dist(Qη,ξ,n(x), T ) < α}| ≤
∫
Br (x0)∩Aδ

g(Qη,ξ,n) dx .

��

We remark that althoughLemma 4.9 controls the size for a.e. fixed Y ∈ Bα(0), the estimate
degenerates with α. Hence it does not provide a uniform bound in α allowing to pass to the
limit Y → 0. A bound independent of α will be derived in the section on the lower bound.
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4.4 Estimates near singularities

At points x ∈ � where dist(Qη,ξ,n(x),N ) > δ, the estimates we derived in the previous
subsection are no longer available and we need new tools to bound the mass of Tη,ξ,n . We
are concerned with two different cases: The first case is the one of x ∈ Tη,ξ,n far from the
boundary Sη,ξ,n . We can simply “cut out” those pieces and replace them by parts of surfaces
of spheres which are controlled in mass. This will be made precise using Lemma 4.6. The
second case is more challenging. We will modify Tη,ξ,n close to the boundary Sη,ξ,n by using
a construction similar to the one used in the deformation theorem (see Lemma 4.11). This
will allow us to express the mass of the modified 2−chain in terms of the surface of cubes
and Lemma 4.6 permits us to control the number of such cubes.

Lemma 4.10 (Deformation in the interior) Let I int ⊂ I be the subset of points x0 ∈ I such

that dist(x0, Sη,ξ,n) > δ
Ln and dist(x0, Tη,ξ,n) < δ

Ln . Then, there exists a flat 2−chain T̃ int

with values in π1(N ) and support in Bint := ⋃
x∈I int B δ

Ln
(x) such that

1. ∂̃T int = ∂(Tη,ξ,n Bint),

2. and M(̃T int) � n
η

(
ξ2 + 1

n2

)
.

Proof Since Bint ∩ supp (Tη,ξ,n) �= ∅ and Bint ∩ supp (Sη,ξ,n) = ∅ we know that ∅ �=
∂(Tη,ξ,n Bint) ⊂ ∂Bint. Furthermore, since ∂2 = 0 it follows that ∂(Tη,ξ,n Bint) consists
of closed curves and divides ∂B int into domains. Let D be the set of these domains. Now pick

any subset D′ ⊂ D such that ∂
(⋃

U∈D′ U
) = ∂(Tη,ξ,n B). We define T̃ int := ∑

U∈D′ [U ].
Then, by definition Tη,ξ,n Bint and T̃ int have the same boundary and since T̃ int ⊂ ∂Bint we
also have

M(̃T int) ≤ M(∂Bint) ≤
∑
x∈I int

M(∂B δ
Ln
) ≤ #I 4π

δ2

L2n2
� n

η

(
ξ2 + 1

n2

)
.

��
At the boundary we cannot remove a disk without the risk of creating new boundary which

might not be controlled, so another method has to be used. The idea is the following: Take a
cube K of size δ

n which contains a part of the singular line Sη,ξ,n and intersects with Tη,ξ,n .
We then modify (deform) the “surface” connecting Tη,ξ,n ∩ ∂K and Sη,ξ,n ∩ K by pushing it
onto a part of ∂K (see also Fig. 4). The result is a modified Tη,ξ,n with the same boundary as
before and the surface inside the cube is controlled by the surface area of K and the length
of the singular line. We point out that this procedure and its proof are closely related to the
deformation theorem (for flat chains) (see [86], Chapter 5 in [31], Theorem 7.3 in [32] and
Chapter 4.2 in [30]) but differs in some details so that we give a full proof here.

Lemma 4.11 (Deformation close to the boundary) Let I bdry ⊂ I be the subset of points
x0 ∈ I such that dist(x0, Sη,ξ,n) < δ

Ln and dist(x0, Tη,ξ,n) < δ
Ln . Then there exists a flat

2−chain ˜T bdry with values in π1(N ) and support in a finite union of cubes of side length δ/n
called Bbdry verifying

⋃
x∈I bdry B δ

Ln
(x) ⊂ Bbdry such that

1. |Bbdry| � 1
η
(ξ2 + 1

n2
),

2. ∂˜T bdry = ∂(Tη,ξ,n Bbdry),
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3. and

M(˜T bdry) � n

η

(
ξ2 + 1

n2

)
. (39)

Proof For the sake of readability we drop the dependences on ξ, η, n in the notation of this

proof and simply write T̃ instead of T̃ bdry. Covering S with a cubic grid of size h = δ
n such

that S is in a general position, we can assume that the center xK of all cubes K that contain
parts of S does not intersects S or T , i.e. xK /∈ supp (T ), supp (S). Indeed, this is possible
since S intersects only a finite number of cubes according to Lemma 4.6. Let G be the set of
those cubes and X the set of its centers.

Step 1 (Construction and properties of the retraction map). Let K ∈ G be a cube and let
xK ∈ X be its center. Let P be the central projection onto ∂K originating in xK . We define
a homotopy � : [0, 1] × (K \ {xK }) → K between the identity on K and P by simply
taking�(t, x) = (1− t)x+ t Px . Note that by definition this homotopy is relative to ∂K , i.e.
�(t, x) = x for all t ∈ [0, 1] and x ∈ ∂K . Furthermore, for all x ∈ K \ {xk} and t ∈ [0, 1]
it holds

dist(�(t, x), xK ) ≥ dist(x, xK ) . (40)

Since |∂t�(t, x)| = | − x + Px | ≤ √3h and by (40) we deduce that � is locally Lipschitz
continuous and Lip(�(t, x)) ≤ C h dist(x, xK )−1. Since � is relative to ∂K we can glue
together all those functions defined on the cubes K ∈ G with the identity on cubes K /∈ G
to get a function � defined everywhere in R

3 \ X .
Step 2 (Intermediate estimate). In this step we want to show that if we allow for a small

translation of the chain S, then the mass of �#([0, 1] × S) can be bounded by M(S) times
the size of the cube h, up to a constant.

Applying Corollary 2.10.11 in [30] (or Section 2.7 in [31]) we get as in [86, Lemma 2.1]

M(�#([0, 1] × S)) ≤ ‖Id− P‖∞
∫
R3

sup
t∈[0,1]

Lip(�(t, x)) dμS(x)

≤ C h2
∫
R3

dist(x, X)−1 dμS(x) .

Taking the mean over translations τhy for a vector y ∈ [0, 1]3, we arrive at
∫
[0,1]3

M(�#([0, 1] × (τhy S)) dy = C h2
∫
[0,1]3

∫
R3

dist(x, X)−1 dμτhy S(x) dy

= C h2
∫
[0,1]3

∫
R3

dist(x + hy, X)−1 dμS(x) dy

= C h2
∫
R3

∫
[0,1]3

dist(x + hy, X)−1 dy dμS(x)

≤ C h
∫
R3

dμS(x)

= C h M(S) .

Hence, we can assume that S is in a position such that

M(�#([0, 1] × S)) ≤ C h M(S) . (41)
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Step 3 (Definition of T̃ ). We define

T̃ := ∂(�#([0, 1] × T ))− T .

Considering a cube K ∈ G, one can think of this construction as the boundary of the
three dimensional object created by filling the space between T and its projection onto ∂K
according to Step 1 and then removing the original part T . Another but equivalent point of
view is to take T̃ as all the points along the path created by projecting T ∂K , S together
with the projection P#(T ), see also Fig. 4. Indeed, one can calculate for K ∈ G

∂(�#([0, 1] × (T K ))) = �#((∂[0, 1])× (T K ))+�#([0, 1] × (∂T ) K )

+�#([0, 1] × T (∂K ))

= P#(T K )− (IdK )#(T )+�#([0, 1] × (S K ))

+�#([0, 1] × T (∂K )) .

Thus, we have the formula

T̃ K = P#(T K ) + �#([0, 1] × (S K )) + �#([0, 1] × T (∂K )) .

Since P#(T K )+�#([0, 1] × T (∂K )) ⊂ ∂K from which we derive the bound on the
mass of T̃

M(T̃ K ) ≤ M(∂K ) + M(�#([0, 1] × (S K ))) ≤ 6 h2 + C h M(S K ) , (42)

where we also used the estimate (41) on K of Step 2. On all cubes K /∈ G, T̃ K = 0, so
that we find supp (T̃ ) ⊂⋃

K∈G K . Defining Bbdry := ⋃{K : K is cube of the grid, ∃x ∈
I bdry with K ∩ B δ

Ln
(x) �= ∅}, it is clear that T̃ is supported in Bbdry since

⋃
K∈G K ⊂ Bbdry.

Furthermore, by definition of Bbdry, we have the claimed inclusion
⋃

x∈I bdry B δ
Ln
(x) ⊂ Bbdry.

The measure of Bbdry can easily be estimated since it is formed by cubes covering⋃
x∈I bdry B δ

Ln
(x), the cubes having the same length scale δ

n as the balls. Therefore, up to

a constant only depending on the space dimension and L , (36) implies that |Bbdry| �
h3 n3

ηδ3
(ξ2 + 1

n2
) = 1

η
(ξ2 + 1

n2
). Since ∂ ◦ ∂ = 0, the boundary of T̃ coincides with ∂T .

Since all calculations in Step 3 were local and � is relative to the boundaries of the cubes,
(39) follows from summing up (42) over all cubes K ∈ G. ��

As a direct consequence of Lemma 4.9, Lemma 4.10 and Lemma 4.11 we have the
following corollary:

Corollary 4.12 There exists a flat 2−chain T̃η,ξ,n with values in π1(N ) such that

1. ∂ T̃η,ξ,n = Sη,ξ,n,
2. for all x0 ∈ � and R > 0

M(T̃η,ξ,n BR(x0)) � η Eη,ξ (Qη,ξ,n, BR(x0))+ n

η

(
ξ2 + 1

n2

)
, (43)

3. and

F(T̃η,ξ,n − Tη,ξ,n) � n

η

(
ξ2 + 1

n2

)
. (44)
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Fig. 4 Construction near the
boundary inside a cube: The
newly created area (grey) is
controlled by the surface of the
cube and the length of the line
singularity (red)

Proof Starting from Tη,ξ,n and the estimate in Lemma 4.9, we can modify Tη,ξ,n according

to Lemma 4.10 and Lemma 4.11 in the region Bint ∪ Bbdry to obtain T̃η,ξ,n without changing
the boundary Sη,ξ,n by setting

T̃η,ξ,n := T̃ int Bint + T̃ bdry Bbdry + Tη,ξ,n ((Bint ∪ Bbdry)c) .

Estimate (43) is a direct consequence of the three aforementioned lemmata. Finally, by
construction Tη,ξ,n − T̃η,ξ,n is supported in Bint ∪ Bbdry and ∂(Tη,ξ,n − T̃η,ξ,n) = 0. Hence,

F(Tη,ξ,n − T̃η,ξ,n) ≤ |Bint ∪ Bbdry|, from which (44) follows for n large and η, ξ small
enough. ��

In the following analysis we only work with T̃η,ξ,n . In order to improve readability, we
drop the tilde in our notation from now on.

4.5 Proof of compactness for fixed Y

Let B ⊂ � open, bounded and choose n := ξ−a for a ∈ ( 32 , 2). Then, by Lemma 4.9 and
Corollary A.3, we deduce that for α > 0 and ξ, η > 0, there exist Yη,ξ ∈ Bα(0) ⊂ Sym0
such that our construction yields a flat chain Tη,ξ,n ∈ F2 such that ∂Tη,ξ,n = Sη,ξ,n + �n
and

M(Tη,ξ,n B) ≤ C

(
η Eη,ξ (Qη,ξ,n, B)+ ξ

2−a

η

)

≤ C

⎛
⎝η Eη,ξ (Qη,ξ , B2ξa (B) ∩�)+ ξ

2−a

η
+ ξ

a− 3
2

η
(1+ |B| 12 )

⎞
⎠ ,

where we also used (27) of Proposition 4.2. In particular the energy bound (17) implies that
M(Tη,ξ,n B) is bounded. Applying a compactness theorem for flat chains as stated in the
preliminary part ( [32, Cor. 7.5]), there exists a subsequence (which we do not relabel) and
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a flat chain T ∈ F2 with support in � such that F((Tη,ξ,n − T ) B) → 0 for ξ, η → 0.
Extracting another subsequence if necessary we can assume that Yη,ξ → Y ∈ Bα(0) for
η, ξ → 0. We note that the T constructed here depends on Y (and α). In order to keep our
notation simple, we only write this dependence explicitly when necessary, i.e. when we pass
to the limit ‖Y‖, α→ 0 in Sect. 5.3. Since the boundary operator ∂ is continuouswe conclude
with Theorem 4.7 that ∂T = S+�Y , where �Y = {ω ∈M : n3(s∗(ν⊗ν− 1

3 Id)−Y ) = 0}.
The finite mass of T and S immediately implies rectifiability [32, Thm 10.1].

5 Lower bound

This section is devoted to the �−liminf inequality of Theorem 3.1. The proof necessary to
deduce the line energy has already been given in [21], so that we will only state the result for
completeness (Proposition 5.1). The energy contributions of T far fromM are to be derived
in Sect. 5.1. In the remaining, we are concerned with the energy of T and F close to, resp.
on, M.

The precise cost of a singular line in our setting has been derived first in [18] based on
ideas in [44, 74]. In our case, the result reads as follows.

Proposition 5.1 Let B ⊂ � be a bounded open set and Uη := {x ∈ � : dist(x, Sη,ξ,n) ≤√
η}. Then

lim inf
η,ξ→0

η Eη,ξ (Qη,ξ,n,Uη ∩ B) ≥ π

2
s2∗β M(S B) . (45)

Proof See Theorem C and Proposition 4.1 in [21] for a proof of the version we used here. ��
To derive the exact minimal energy for the lower bound related to T , we introduce the

following auxiliary problem:

I (r1, r2, a, b) = inf
n3∈H1([r1,r2],[−1,1])

n3(r1)=a, n3(r2)=b

∫ r2

r1

s2∗|n′3|2
1− n23

+ c2∗(1− n23) dr (46)

for 0 ≤ r1 ≤ r2 ≤ ∞, a, b ∈ [−1, 1]. It is one dimensional and only takes into
account the derivative along the integration path. Problem (46) is equivalent to mini-
mizing

∫ ( 1
2 |∂r Q|2 + g(Q)

)
dr subject to a N−valued function Q and fitting boundary

conditions. This reflects that by Lemma 4.6, the regions where Qη,ξ,n is far from N
are small. Indeed, if Q(r) = s∗(n(r) ⊗ n(r) − 1

3 Id) for a S
2−valued function n, then

∂r Q = s∗((∂rn) ⊗ n + n ⊗ (∂rn)) and hence |∂r Q|2 = 2s2∗|∂rn|2 since |n|2 = 1
and therefore 2(∂rn) · n = ∂r |n|2 = 0. Using again that n ∈ S

2, we can write n =
(±√1− n3ñ1,±

√
1− n23ñ2, n3), where ñ = (ñ1, ñ2) is a S

1−valued function. One can

then easily calculate that |∂rn|2 ≥ |
√
1− n232n3∂r n3|2 + |∂r n3|2 = |∂r n3|2/(1 − n23) (with

equality if ñ is constant), which is the first term in (46). For the second term in (46) we note
that by (5) it holds that g(s∗(n ⊗ n − 1

3 Id)) = c2∗(1 − n23). The functional in (46) has been
introduced in [2] and studied in [2, Lemma 3.4], [5, Lemma 4.17], which show the following
lemma:

Lemma 5.2 Let 0 ≤ r1 ≤ r2 ≤ ∞. Then,

1. I (r1, r2,−1, 1) ≥ 4s∗c∗.
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2. Let θ ∈ [0, π]. Then the minimizer n3 of I (0,∞, cos(θ), 1) is explicitly given by

n3(r , θ) = A(θ)− exp(−2c∗/s∗r)
A(θ)+ exp(−2c∗/s∗r) , A(θ) = 1+ cos(θ)

1− cos(θ)
(47)

and

I (0,∞, cos(θ),±1) = 2s∗c∗(1∓ cos(θ)) . (48)

In this lemma, we use that g reduces to c2∗(1 − n23) for Q in N , as demanded in (5).
However, as pointed out in Remark 4.18 in [5], this is not necessary.

During the blow up procedure in the next subsection, we want to quantify the energy
necessary for a Qη,ξ,n close toN to pass from n3(Qη,ξ,n) ≈ ±1 to n3(Qη,ξ,n − Y ) = 0, i.e.
to intersect Tη,ξ,n . Since problem (46) does not take into account the perturbation made by
subtracting Y ∈ Bα(0) from Qη,ξ,n , we introduce for α > 0 small enough

Iα(r1, r2, a, b) := inf{I (r1, r2, a,±n3(Q)) : Q ∈ Sym0, n3(Q − Y ) = ±b, Y ∈ Bα(0)} .
(49)

Since n3(Q) and n3(Q−Y ) are only defined up to a sign, it is necessary to define Iα using the
infimumnot only over Y but also the choice of sign. This leads to the slightly counter-intuitive
situation that e.g. Iα(r1, r2, a,−a) = 0 for all a ∈ [−1, 1]. As a consequence, we only have
convergence of Iα(r1, r2, a, b)→ I (r1, r2, a, b) for α → 0 if ab ≥ 0. In what follows, we
will only be concerned with the case b = 0 as this corresponds to a point on Tη,ξ,n , and hence
we have convergence of Iα(r1, r2, a, 0) to I (r1, r2, a, 0) for all a ∈ [−1, 1] for α→ 0.

The knowledge about the optimal profile in (48) is also used in the construction of the
upper bound, in particular the fact that |n3| − 1 and all derivatives of n3 decay fast enough
(here exponentially) as r → ∞. The result that for minimizers of (46), n23 approaches 1
exponentially fast is complemented by the next lemma. It states that for a bounded energy
configuration on a line, n23 cannot always stay far from 1.

Lemma 5.3 There exist constants C > 0 and δ0 > 0 such that for all K > 0, for all
δ ∈ (0, δ0), there exists Cδ > 0 such that for all η, ξ > 0 small enough, any one-dimensional
interval � and any Q ∈ H1(�,Sym0) satisfying the bound η Eη,ξ (Q, �) ≤ K < ∞ there is
a set Iδ ⊂ � such that

|� \ Iδ| ≤ K

Cδ
η and |n3(Q)| ≥ 1− Cδ on Iδ .

Proof For δ > 0 small enough let

gδmin := min
{
g(Q) : Q ∈ Sym0, dist(Q,N ) ≤ δ, |Q − Q∞| ≥ a

√
δ
}
,

where a > 0 is chosen as in [5]. Proposition 2.5 in [5] then implies that gδmin > 0. Then,
with the notation

A := {x ∈ � : |Q − Q∞| < a
√
δ} ,

B := {x ∈ � : dist(Q,N ) < δ} ,
it holds

K ≥ η Eη,ξ (Q, �) ≥ 1

η
gδmin|B ∩ (� \ A)| .
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Expanding |Q− Q∞| for Q ∈ B and δ > 0 small enough, one can see that |n3(Q)| ≤ 1− p

implies |Q − Q∞| ≥ 1
2 s∗
√
p. With the choice p = 4a2δ

s2∗
we then see

K ≥ 1

η
gδmin

∣∣∣∣B ∩
{
x ∈ � : |n3(Q(x))| ≤ 1− 4a2

s2∗
δ

}∣∣∣∣ . (50)

So we set C := 4a2

s2∗
and Iδ := B ∩ {x ∈ � : |n3(Q(x))| ≤ 1− Cδ}. It remains to show the

estimate on |� \ Iδ|. In view of Proposition 2.1, it holds that

ξ2

η
K ≥

∫
�\B
γ2dist

2(Q,Nη,ξ ) dx ≥ Cγ2
(
δ2 − C

ξ4

η4

)
|� \ B| ,

from which we infer that |�\B| � K ξ2

ηδ2
. Together with (50) this implies

|� \ Iδ| ≤ |� \ B| + |B ∩ (� \ A)| � K ξ2

ηδ2
+ Kη

gδmin

.

��
In the following two sections, we detail how Lemma 5.2 combined with Lemma 5.3 can

be applied in the case of T � and on the surface M.

5.1 Blow up at points of T inÄ

We define the measure μη,ξ (U ) := ηEη,ξ (Qη,ξ,n,U ) for any open set U . Since the energy
ηEη,ξ (Qη,ξ,n) is bounded, the measure μη,ξ converges (up to extracting a subsequence)
weakly* to a measure μ.

Lemma 5.4 For H2−a.e. point of rectifiability x0 ∈ � of T it holds that

dμ

dμT
(x0) ≥ 2 Iα(0,∞, 0, 1) . (51)

Proof Step 1: Notation and preliminaries.Recall that for a point of rectifiability x0 ∈ rect(T )
it holds

lim
r→0

μT (Br (x0))

πr2
= lim

r→0

H2(rect(T ) ∩ Br (x0))

πr2
= 1 .

We note that for H2−a.e. point x0 ∈ rect(T ) there exists the limit

lim
r→0

μ(Br (x0))

πr2
=: L . (52)

In the following we assume that x0 ∈ � is a point of rectifiability of T which also satisfies
(52).

Let r0 > 0 such that Br0(x0) ⊂ �. Next, we introduce some notation. Let �r (x) :=
(x − x0)/r be a rescaling and define Tr := (�r )#T . Note that �r (Br (x0)) = B1(0) =: B1.
The rectifiability ensures that there exists a unit vector ν ∈ S

2 such that

F (Tr B1 − Pν B1)→ 0 for r → 0 , (53)

where Pν = {ν}⊥ is the two dimensional plane perpendicular to ν passing through 0. Indeed,
by Theorem 10.2 in [56] we know that (Trk − x0)/r2k approaches Pν in a weak sense and by

123



129 Page 32 of 62 F. Alouges et al.

Theorem 31.2 in [77] we get the equivalence between the weak convergence and convergence
in the F−norm in our case of T having integer coefficients and T , ∂T being of bounded mass
(Fig. 5).

Since μη,ξ⇀μ and Tη,ξ → T w.r.t. the flat norm for η, ξ → 0, it holds for almost every
r that

μη,ξ (Br (x0))→ μ(Br (x0))

F((Tη,ξ − T ) Br (x0))→ 0 .
(54)

We further choose a sequence (rk)k∈N converging to zero as k →∞ such that (54) holds for
each rk and ∣∣∣∣ μ(Brk (x0))

M(T Brk (x0))
− L

∣∣∣∣+ F(Trk B1 − Pν B1) ≤ 1

k
. (55)

Given the sequence rk , we can extract a subsequence ξk, ηk such that ηk/rk ≤ 1
k and

F((�rk )#Tηk ,ξk B1 − Trk B1)+
∣∣∣∣μξk ,ηk (Brk (x0))− μ(Brk (x0))

M(T Brk (x0))

∣∣∣∣ ≤ 1

k
. (56)

Step 2: Flat norm convergence. Denote Tk := ((�rk )#Tηk ,ξk ) B1. By (53) and (56) it
follows that Tk → Pν B1 in the flat norm. Hence there exist flat chains A2,k ∈ F2 and
A3,k ∈ F3 with M(A2,k),M(A3,k)→ 0 (for k →∞) such that

Tk − Pν B1 = A2,k + ∂A3,k . (57)

This implies that ∂(Tk− Pν B1) = ∂A2,k or in other words ∂(Tk− A2,k) = ∂(Pν B1) = 0
in B1 since Pν is the boundary of the half space Hν = {p + tν : p ∈ Pν, t > 0}, i.e.
Pν B1 = ∂(Hν B1) in B1. This implies the existence of a flat chain Wk ∈ F3(B1) such
that Tk − A2,k = ∂Wk = ∂(1 − Wk), where 1 ∈ F3(B1) is the flat chain associated to the
set B1. Note that we can also choose the complement setWc

k = 1−Wk since it has the same
boundary in B1. From (57) we deduce that

∂(Hν B1 −Wk) = Pν B1 − A2,k + Tk = ∂A3,k .

This implies that

Hν B1 −Wk = A3,k or 1− (Hν B1 −Wk) =Hν B1 −Wc
k = A3,k .

Without loss of generalitywe chooseWk such that Hν B1−Wk = A3,k and sinceM(A3,k)→
0 as k →∞ we conclude that the symmetric difference |Wk�(Hν B1)| also converges to
zero for k →∞.

Step 3: One dimensional estimates. For z ∈ Pν we define the line �z := {z + tν : t ∈
R and z + tν ∈ B1}.

From Step 2 we recall that |Wk�(Hν B1)|,M(A2,k)→ 0 as k →∞. This implies that
for a subsequence (not relabelled) and almost all z ∈ Pν

|Wk�(Hν ∩ �z)|,H0(A2,k ∩ �z)→ 0 for k →∞ (58)

and hence for k large enough �z crosses Tk = ∂Wk + A2,k .
Defining Qk(y) := Qη,ξ,n(x0 + rk y), the energy in Brk (x0) can be expressed as

μηkξk (Brk (0))

πr2k
= 1

π

∫
B1(0)

ηk

2rk
|∇Qk |2 + rk

ηk
g(Qk)+ ηkrk

ξ2k
f (Qk)+ ηrkC0 dy (59)
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Fig. 5 Schematic illustration of
the quantities involved in Step 2
of the blow up procedure for T

≥ 1

π

∫
Pν∩B1

∫
�z

η′k
2
|∂t Qk |2 + 1

η′k
g(Qk)+ η′k

(ξ ′k)2
f (Qk)+ η′kC ′0 dt dz .

(60)

where we introduced the notation η′k := ηk
rk

and ξ ′k := ξk
rk

and C ′0 = C0(ξ
′
k, η

′
k). Note that

η′k/ξ ′k = ηk/ξk .
This implies that by Fatou’s lemma

L ≥ 1

π

∫
Pν∩B1

lim inf
k→∞

∫
�z

η′k
2
|∂t Qk |2 + 1

ηk
g(Qk)+ η′k

(ξ ′k)2
f (Qk)+ η′kC ′0 dt dz .

In view of (51) that we want to prove, we can restrict ourselves even further to the lines
�z with

lim inf
k→∞

∫
�z

η′k
2
|∂t Qk |2 + 1

η′k
g(Qk)+ η′k

(ξ ′k)2
f (Qk)+ η′kC ′0 dt

≤ 2Iα(0,∞, 0, 1) , (61)

otherwise there is nothing to prove. By choosing another subsequence (which depends on z),
we can assume this liminf is a limit and therefore that the sequence is bounded.

Using the inequality A2 + B2 ≥ 2AB, the bound (61) implies that

2Iα(0,∞, 0, 1) ≥ 2
∫
�z

1√
2
|∂t Qk |

√(
η′k
ξ ′k

)2

f (Qk)+ g(Qk)+ C ′0 dt

≥ √
2γ2

η′k
ξ ′k

∫
�z

|∂t Qk |dist(Qk,Nη′k ,ξ ′k ) dt ,

where we also used (10) of Proposition 2.1 in the last inequality. Denoting m :=
min�z dist(Qk,Nηk ,ξk ) and M := max�z dist(Qk,Nηk ,ξk ) we can estimate the energy neces-
sary for switching from (M+m)/2 toM on the set �z,m,M := {x ∈ �z : dist(Qk(x),Nηk ,ξk ) >
1
2 (M + m)} by

2Iα(0,∞, 0, 1) ≥
√
2γ2

η′k
ξ ′k

M + m

2

∫
�z,m,M

|∂t Qk | dt ≥
√
2
γ2

4

η′k
ξ ′k
(M2 − m2) , (62)
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where in the last stepweused |Q(M)−Q(
1
2 (M+m))| ≥ M−|Q−Q(

1
2 (M+m))| ≥ M− 1

2 (M+m)
for matrices Q(d) ∈ Sym0 at distance d from Nηk ,ξk and any Q ∈ Nηk ,ξk . Taking then the
supremum of the RHS in Q ∈ Sym0 yields

∫
�z,m,M

|∂t Qk | dt ≥ 1
2 (M−m). In order to obtain

a uniform convergence of dist(Qk,Nηk ,ξk ), it remains to estimate m.
Again from (61) by using (10) in Proposition 2.1, we get that

2Iα(0,∞, 0, 1) ≥ γ2
η′k
(ξ ′k)2

∫
�z

dist2(Qk,Nη′k ,ξ ′k ) dt ≥ γ2
η′k
(ξ ′k)2

|�z |m2 .

In other words, m2 ≤ 2Iα(0,∞,0,1)
γ2|�z |

(ξ ′k )2
η′k

. Plugging this estimate into (62) yields

sup
�z

dist2(Qk,Nη′k ,ξ ′k ) = M2 ≤ 8Iα(0,∞, 0, 1)√
2γ2

(
ξ ′k
η′k
+ (ξ ′k)2

|�z |η′k

)
. (63)

In view of (11) of Proposition 2.1 we can conclude that Qk is uniformly close to N and
dist(Qk,N ) converges uniformly to zero as ξ ′k, η′k → 0.

This implies together with the convergences in (58) that there exists a sequence tk → 0
such that n3(Qk − Yk)(z + tkν) = 0, where Qk(y) := Qηk ,ξk (x0 + rk y) and Yk := Yηk ,ξk .

We now split �z into �±z , where �+z := {z+tν ∈ � : t ≥ tk} and �−z := {z+tν ∈ � : t ≤ tk}
and show that on both rays there are points for which Qk is close to Q∞.

Applying Lemma 5.3 for δ > 0with the bound in (61) implies that for k large enough there
exists t+k ∈ (tk, 1) such that |n3(Qk(t

+
k )− Yk)| > 1− C

√
δ. The goal is to take δ→ 0. For

this, we choose a sequence δk depending on k such that δk and η′k/Cδk ≤ 1
k converge to zero

as k →∞, where Cδk is the constant from Lemma 5.3. Similarly, there exists t−k ∈ (−1, tk)
such that |n3(Qk(t

−
k )− Yk)| > 1− C

√
δk .

The final estimate for the integral over �z then follows by summing the contributions from
�±z , both in which we pass from n3(Qk − Yk) = 0 to |n3(Qk − Yk)| = 1. Knowing that Qk

is uniformly close to N , we can apply Lemma 17 in [19], the Lipschitz assumption on g in
(6) and use the definition of Iα to determine the energetic cost on �±z . This yields

L ≥ lim inf
k→∞

1

π

∫
Pν∩B1

∫
�z

η′k
2
|∇Qk |2 + 1

η′k
g(Qk)+ η′k

(ξ ′k)2
f (Qk)+ η′kC ′0 dt dz

≥ 1

π

∫
Pν∩B1

lim inf
k→∞

∫
�z

η′k
2
|∇Qk |2 + 1

η′k
g(Qk)+ η′k

(ξ ′k)2
f (Qk)+ η′kC ′0 dt dz

≥ 1

π

∫
Pν∩B1

lim inf
k→∞

∫
�z

η′k
2
(1− C‖Qk −R(Qk)‖L∞(�z))|∇R(Qk)|2

+ 1

η′k
g(R(Qk))− C |Qk −R(Qk)| dt dz

≥ 1

π

∫
Pν∩B1

2Iα(0,∞, 0, 1) dz
≥ 2 Iα(0,∞, 0, 1) .

(64)

��
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5.2 Surface energy

In this section we do the necessary calculations to find the announced energy contribution
on M. For this, we estimate the energy in a boundary layer around M. More precisely, we
define M√

η := {x ∈ � : dist(x,M) ≤ √η}. Then we proceed similarly to the previous
section, the goal is to apply Lemma 5.2 to the rays perpendicular to M on which Qη,ξ,n is
taking values close to N .

We assume η small enough such that
√
η < 1

2r0, where r0 was fixed in the beginning of
Sect. 4 such that r0 is smaller than the minimal curvature radius ofM. For ω ∈M and r > 0
we define

Lω,r := {ω + tν(�) : t ∈ [0, r ]} . (65)

We now rewrite the energy so that the line integrals over Lω,√η appear. We note that for
0 < η � 1 the map M × [0,√η] → � given by (ω, r) �→ ω + rν(ω) is injective. The
differential of this map is given by IdTωM + r dων + ν. Using the normalized eigenvectors
ν, ω1, ω2 corresponding to the eigenvalues 1, κ1, κ2 with κi being the principal curvatures of
M at ω, i.e. the eigenvalues of the Gauss map dων. Then

det(Id+ r dων(ω)) = (1+ rκ1)(1+ rκ2)

and the gradient transforms as

|∇Qη,ξ,n|2 = |∂r Qη,ξ,n |2 + 1

|1+ r |κ1||2 |∂ω1Qη,ξ,n |
2 + 1

|1+ r |κ2||2 |∂ω2Qη,ξ,n |
2 .

In order to shorten our formulas, we still use the notation ∇Qη,ξ,n . The energy can then be
rewritten as

Eη,ξ (Qη,ξ,n,M√
η) =

∫
M

∫ √
η

0

(
1

2
|∇Qη,ξ,n |2 + 1

ξ2
f (Qη,ξ,n)+ 1

η2
g(Qη,ξ,n)

)

2∏
i=1
(1+ rκi ) dr dω .

We now distinguish two cases depending on whether the ray Lω,√η intersects Tη,ξ,n or
not.

Case 1: Lω,√η does not intersect Tη,ξ,n . In this case we can assume that

∫ √
η

0

(
1

2
|∇Qη,ξ,n |2 + 1

ξ2
f (Qη,ξ,n)+ 1

η2
g(Qη,ξ,n)

) 2∏
i=1
(1+ rκi ) dr

≤ Iα(0,∞, 1, cos(θ)) ,
otherwise there is nothing to prove. With the same argument as in (61)-(63) we can show
that supLω,√η dist(Qη,ξ,n,Nη,ξ ) converges to zero as ξ, η→ 0. Analogously to the blow up

procedure, for δ > 0 we use Lemma 5.3 to deduce that there exists a radius tω ∈ [0,√η]
such that |n3(Qη,ξ,n)(ω + tων(ω))| ≥ 1 − C

√
δ. We choose a sequence δη → 0 such

that η/Cδη → 0 as η → 0. Note that Qη,ξ,n does not verify the boundary condition (14),
but a slightly perturbed version. For η, ξ → 0 we still obtain the right energy thanks to
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Proposition 4.2 and the uniform convergence therein. As in (64) we then obtain

lim inf
η,ξ→0

∫
Lω,√η

η

2
|∇Qη,ξ,n|2 + 1

η
g(Qη,ξ,n)+ η

ξ2
f (Qη,ξ,n)+ ηC ′0 dt

≥ lim inf
η,ξ→0

∫
Lω,√η

η

2
(1− C‖Qη,ξ,n −R(Qη,ξ,n)‖L∞(�z))|∇R(Qη,ξ,n)|2

+ 1

η
g(R(Qη,ξ,n))− C |Qη,ξ,n −R(Qη,ξ,n)| dt

≥ I (0,∞, 1, | cos(θ)|) .

(66)

Case 2: Lω,√η intersects Tη,ξ,n . Let t ′ω ∈ (0,√η) denote the radius of intersection between
Lω,√η and Tη,ξ,n . The only difference to Case 1 is that we estimate the two parts t ≤ t ′ω and
t ≥ t ′ω separately.

With the same reasoning as before we can assume that the energy on the ray is bounded
and that dist(Qη,ξ,n,Nη,ξ ) is uniformly converging to zero on the ray. On Lω,t ′ω we obtain
just like in Step 1 the estimate

lim inf
η,ξ→0

∫
Lω,t ′ω

η

2
|∇Qη,ξ,n|2 + 1

η
g(Qη,ξ,n)+ η

ξ2
f (Qη,ξ,n)+ ηC ′0 dt

≥ Iα(0,∞, cos(θ), 0) .
(67)

On the remaining part of the ray Lω,√η we want to find the energy Iα(0,∞, 1, 0). Since
t ′ω might be arbitrarily close to

√
η, we cannot apply Lemma 5.3 to conclude that n3(Qη,ξ,n)

is close to±1 somewhere. Extending the ray up to a distance t = 2
√
η fromM and repeating

the above reasoning, we can find for δ > 0 and η small enough tω ∈ [√η, 2√η] such that
|n3(Qη,ξ,n)(ω + tων(ω))| ≥ 1− C

√
δ. Now we proceed again as in (66) and combine with

(67) to obtain

lim inf
η,ξ→0

∫
Lω,2√η

η

2
|∇Qη,ξ,n |2 + 1

η
g(Qη,ξ,n)+ η

ξ2
f (Qη,ξ,n)+ ηC ′0 dt

≥ Iα(0,∞, cos(θ), 0)+ Iα(0,∞, 1, 0) .
(68)

5.3 Proof of compactness and lower bound

We now need to combine the estimates (45), (51), (66) and (68). To this aim, we use the
localization technique for �−convergence as described for example in [15, Ch. 16]. Let Ui ,
i = 1, 2, 3 be three pairwise disjoint sets open in �. Then it holds that

lim inf
η,ξ→0

η Eη,ξ (Qη,ξ ) ≥ lim inf
η,ξ→0

3∑
i=1
η Eη,ξ (Qη,ξ ,Ui ) ≥

3∑
i=1

lim inf
η,ξ→0

η Eη,ξ (Qη,ξ ,Ui )

≥ π

2
s2∗β M(S U1)+ 2Iα(0,∞, 1, 0)M(T (� ∩U2))

+
∫
M

I (0,∞, 1, | cos(θ)|) dμ
(1−T M) U3

+
∫
M

Iα(0,∞, 1, 0)+ Iα(0,∞, cos(θ), 0) dμT (M∩U3)
.

Since the LHS does not depend on the sets Ui , we can take the supremum over all pairwise
disjoint open sets. For ε > 0 and by inner regularitywe can approximate themeasureM(S) by
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a compact set A1,ε ⊂ rect(S) and an open setU1,ε ⊃ A2,ε such thatM(S)−M(S A1,ε) ≤ ε,
H2(M ∩U1,ε) ≤ ε/2 and M(T U1,ε) ≤ ε/2 since the measures μS and μT are mutually
singular. Furthermore, we find another compact set A2,ε ⊂ (rect(T ) ∩ �) \ U1,ε such that
M(T �)−M(T A2,ε) ≤ ε. Then, by construction there exists an open set U2,ε ⊃ A2,ε

such thatU2,ε ∩U1,ε = ∅ and dist(M,U2,ε) > 0. Finally, taking an open neighbourhood of
M disjoint fromU2,ε and removingU1,ε from it, we find a third open setU3,ε which satisfies
H2(M \U3,ε) ≤ ε. By monotonicity we then find

lim inf
η,ξ→0

η Eη,ξ (Qη,ξ ) ≥ sup
U1,U2,U3

π

2
s2∗β M(S U1)+ 2Iα(0,∞, 1, 0)M(T (� ∩U2))

+
∫
M

I (0,∞, 1, | cos(θ)|) dμ
(1−T M) U3

+
∫
M

Iα(0,∞, 1, 0)+ Iα(0,∞, cos(θ), 0) dμT (M∩U3)

≥ 2Iα(0,∞, 1, 0)M(T �)+ π
2
s2∗β M(S)

+
∫
M

I (0,∞, 1, | cos(θ)|) dμ
(1−T M)

+
∫
M

Iα(0,∞, 1, 0)+ Iα(0,∞, cos(θ), 0) dμT M .

(69)

We now want to pass to the limit α→ 0. In order to mark the dependence of T and S on α,
we add the index α in our notation for the rest of the proof. Since Iα(0,∞, 1, 0) ≥ s∗c∗ > 0,
the mass of Tα � is bounded uniformly in α and sinceM has finite surface area it follows
thatM(Tα) is bounded independent of α. Since the mass of Sα and the length of the curves�α
are also uniformly bounded, we conclude that the flat chains Tα as well as their boundaries
∂Tα = Sα+�α have finite mass. Choosing a sequence αk → 0, (69) holds and we can apply
the compactness theorem for flat chains [32, Cor. 7.5] as stated in Sect. 2.2. From this we
get that there exists a subsequence (not relabelled) and flat chains T ∈ F2, S ∈ F2 such
that F(Tαk − T ) → 0 and F(Sαk − S) → 0 as k → ∞. Since boundaries are preserved
under flat convergence and, as we will prove below, �α → � in the flat norm, it holds that
∂T = S+�. We note that Iαk (0,∞,±1, 0)→ I (0,∞,±1, 0), and Iαk (0,∞, cos(θ), 0)→
I (0,∞, cos(θ), 0) as αk → 0. Passing to the limit αk → 0 in (69) thus yields

lim inf
η,ξ→0

η Eη,ξ (Qη,ξ ) ≥ 2I (0,∞, 1, 0)M(T �)+ π
2
s2∗β M(S)

+
∫
M

I (0,∞, 1, | cos(θ)|) dμ
(1−T M)

+
∫
M

I (0,∞, 1, 0)+ I (0,∞, cos(θ), 0) dμT M

= 4s∗c∗M(T �)+ π
2
s2∗β M(S)

+ 2s∗c∗
∫
M
(1− | cos(θ)|) dω + 4s∗c∗

∫
M
| cos(θ)| dμT M .

(70)

Combining the compactness result from Sect. 4.5 for fixed α with the above estimates, we
can choose a diagonal sequence αk(ξ,η) → 0 as η, ξ → 0 such that

lim
η,ξ→0

F(Tη,ξ,n,αk(ξ,η) − T ) = 0 lim
η,ξ→0

F(Sη,ξ,n,αk(ξ,η) − S) = 0
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and (70) holds.
It remains to verify that ∂T = S + � as claimed by Theorem 3.1. We recall from the

boundary condition (14) that

Qη,ξ (ω) = Qb(ω) = s∗
(
ν(ω)⊗ ν(ω)− 1

3
Id

)
for all ω ∈M .

This implies that on �

n3(Qη,ξ (ω)) = n3(Qb(ω)) = ν3(ω) = 0 . (71)

by definition. Furthermore, we assumed that the derivative of ν3 on � is non-degenerate, i.e.
∇ων3(ω) �= 0 for all ω ∈ �. Hence, on � it holds

∇ωn3(Qη,ξ (ω)) = ∇ων3(ω) �= 0 . (72)

Next, we consider the function F(ω, n, Y ) := n3(Qη,ξ,n(ω) + Y ) for n ∈ N and Y ∈
Bα(0) ⊂ Sym0 for 0 < α � 1. Note that we can rewrite

F(ω, n, Y ) = n3(Qη,ξ (ω)+ (Qη,ξ,n(ω)− Qη,ξ (ω))+ Y )

= n3(Qb(ω)+ (Qη,ξ,n(ω)− Qη,ξ (ω))+ Y ) .

Since onM, Qη,ξ,n is by construction an approximation by convolution of Qb, it holds that
Qη,ξ,n → Qb inC1 onM for n → 0. In other words, from (71) we get that F(ω,∞, 0) = 0.

For the rest of the proof we argue locally on M. Let (u, v) be a local parametrization on
M such that ∇u is parallel to � and ∇v is in direction of the normal vector of the curve
�, called ν� . We can choose (u, v) such that ω0 = (u(0), v(0)) ∈ � and (u, v(0)) locally
parametrizes �. Then

∂vF(ω, n, Y )|ω0,∞,0 = ∂vF((u, v), n, Y )|(0,0),∞,0
= Dn3(Qb(ω0))(∂vQb(ω0)+ ∂v(Qη,ξ,n(ω)− Qη,ξ (ω))) .

For n large enough we can assume that ‖Dn3‖C0(N )‖Qη,ξ,n − Qη,ξ‖C1(M) ≤ 1
2 infω |∂vn3

(Qb(ω))| by Proposition 4.2. Since Dn3(Qb(ω0))∂vQb(ω0) = ∂vn3(Qb(ω))|ω=ω0 it follows
from (72) that ∂vF(ω, n, Y )|ω0,∞,0 �= 0.

The assumptions of the implicit function theorem are therefore satisfied and there
exists an open neighbourhood V of (u(0),∞, 0) and a function ṽ defined on V such that
F((u, ṽ(u, n, Y )), n, Y ) = 0 on V . In other words,

0 = F((u, ṽ(u, n, Y )), n, Y ) = n3(Qη,ξ,n((u, ṽ(u, n, Y )))+ Y ) .

So (u, ṽ(u, n, Y )) serves as a local parametrization of the set �n,Y := {ω ∈ M :
n3(Qη,ξ,n(ω) + Y ) = 0}. Noting that M is of class C2 and hence ν ∈ C1, it holds that
ṽ and �n,Y are also of class C1 and in particular �n,Y has finite length.

Since ṽ→ 0 uniformly as n →∞ and Y → 0, it holds that n3(Qη,ξ,n+Y ) also uniformly
converges to n3(Qb). By Theorem 3.3 in [24] it follows the Hausdorff convergence of �n,Y
to �, i.e.

distH(�, �n,Y )

:= max

{
sup
ω∈�

dist(ω, �n,Y ), sup
ω′∈�n,Y

dist(ω′, �)
}
→ 0 for n →∞ and Y → 0 .
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Using the parametrization ṽ to link � to �n,Y , we can also build a flat 2−chain Gn,Y with
boundary ∂Gn,Y = � − �n,Y . It then holds

F(� − �n,Y ) ≤ M(Gn,Y ) ≤ sup
(ω,m,Z)∈V

H1(�m,Z ) distH(�, �n,Y ) .

6 Upper bound

This section is devoted to the construction of the recovery sequence of Theorem 3.1. Essen-
tially, there are three steps in this construction:

1. We approximate T by a sequence Tn , solution to a minimization problem. The advantage
of replacing T by Tn is the gain of regularity. Indeed, as we will see in Sect. 6.1, T and
its boundary inside� will be of class C1,1. Furthermore, by a comparison argument, we
can show that ∂(Tn M) is a line of finite length.

2. We introduce local coordinate systems in which we can define Qη,ξ,n and estimate its
energy.

3. Choosing a diagonal sequence n(ξ, η) we find the recovery sequence.

6.1 A first regularity result for (almost) minimizers

In this subsection, we rewrite the limit energy E0 in a way that it only depends on T :

E0(T ) = E0(M, e3)+ 4s∗c∗
∫
M
| cos(θ)| dμT M + 4s∗c∗M(T �)

+ π
2
s2∗βM(∂T − �) , (73)

where � ∈ F1 is given by the curve {ν3 = 0} ⊂ M. For the approximation of a flat chain
T ∈ F2 we are going to study the following minimization problem:

min
T̃∈F2

E0(T̃ )+ n F(T̃ − T ) , (74)

for n ∈ N. The existence of a minimum of (74) is imminent since by assumption T verifies
E0(T )+ nF(T − T ) = E0(T ) <∞, the energy is non-negative and lower semi-continuous
with respect to convergence in the flat norm. We have the following result:

Proposition 6.1 Let T ∈ F2 with E0(T ) <∞. For all n ∈ N, the problem (74) has a solution
Tn ∈ F2. The minimizer Tn verifies

1. Tn → T for n →∞ in the flat norm.
2. Tn � is of class C1 up to the boundary (∂Tn) �.
3. ∂Tn is of class C1,1 (with uniformly bounded curvature) outside of �.

We note that the above Proposition also holds true for n = 0, i.e. minimizers of (73) and
hence of our limit problem are of class C1 up to the boundary in � which is of class C2.
As we will see later, the minimizers of E0 are in fact smooth (see Proposition 7.1). In order
to make this subsection more readable and simplify notation, we divide (73) by 4s∗c∗ and
redefine the parameter β to replace the constant 1

8
s∗
c∗ β. Also, we will simply write n instead

of n
4c∗s∗ . Since in this subsection we are only concerned with the regularity of minimizers,

this change of notation does not impact our results.

123



129 Page 40 of 62 F. Alouges et al.

The proof of Proposition 6.1 makes use of a series of lemmas which we are going to state
and prove first. The main ideas for the regularity of Tn and ∂Tn have already been developed
in earlier papers [25, 26, 65, 83], so it remains to check that we can apply them in our case.
For the sake of simple notation, we drop the subscript n for the rest of this section and define
S := ∂T − �. We recall from Sect. 2.2 that rect(S) is the set of all points of rectifiability of
S. In particular, for x0 ∈ rect(S) the density limr→0 μS(Br (x0))/(2r) exists and is strictly
positive.

Lemma 6.2 It holds that supp (S) = rect(S) and H1(supp (S) \ rect(S)) = 0.

Proof Let’s show first that S is supported by a closed 1-dimensional set.
For this, we prove that S cannot contain subcycles of arbitrary small length. Assume that

S1 is a subcycle of S, i.e. M(S) = M(S1)+M(S− S1) and ∂S1 = 0, and that S1 is supported
in Br (x0) for r ∈ (0, 12r0). By (7.6) in [32], there exists a constant b > 0 and T1 ∈ F2

such that S1 = ∂T1 and M(T1) ≤ bM(S1)2. By projecting T1 onto Br (x0) ∩ �, we can
furthermore assume that T1 is supported in Br (x0) and lies within�. Projecting onto Br (x0)
does not affect the previous estimate since it decreases the mass. Projecting T1 E onto M
has Lipschitz constant less than 1+ 4 r

r0
and hence, the estimate stays true with an additional

factor of 1+ 4 r
r0
. We estimate by minimality of T

E0(T )+ nF(T − T0) ≤ E0(T + T1)+ nF(T + T1 − T0)

≤ E0(T )+M(T1)− βM(S1)+ nF(T − T0)+ nM(T1)

≤ E0(T )− βM(S1)+ nF(T − T0)+ (n + 1)

(
1+ 4

r

r0

)
bM(S1)

2 ,

and thus βM(S1)− b(n + 1)(1+ 4 r
r0
)M(S1)2 ≤ 0. We hence find that either M(S1) = 0 or

that M(S1) ≥ β/(3b(n + 1)).
Now, let x0 be a point of rectifiability of S and r ≤ β/(6b(n + 1)). Assume that

μS(Br (x0)) < 2r . Then, since
∫ r

0
μS(∂Bs(x0)) ds ≤ μS(Br (x0)) < 2r ,

we can invoke Theorem 5.7 of [32] to deduce that there exists a set of positive measure
I ⊂ [0, r ] such that μS(∂Bs(x0)) < 2 for all s ∈ I . Thus, we can find radii s < r such
that M(∂(S Bs(x0))) ≤ 1. But since ∂� = 0, it also holds that ∂S = ∂∂T − ∂� = 0, so
S1 := S Bs(x0) cannot have just one end.Weconclude that ∂S1 = 0. In additionM(S1) < 2r
by assumption. Hence, we haveM(S1) < β/(3b(n+1)) and the above calculation shows that
necessarily M(S1) = 0. In particular, x0 is not in the support of S which is a contradiction.

Let us conclude now that S is indeed a closed set. Let rect(S) be the rectifiability set of
S. Since S has coefficients in a finite group, it is rectifiable [87] with μS = H1 rect(S).
Now, take a sequence xk ∈ rect(S) and assume xk → x . By the above reasoning it holds
μS(Br (xk)) ≥ 2r for all r ≤ β/(6b(n + 1)) and in the limit k → ∞ also μS(Br (x)) ≥
2r . It follows from Theorem 2.56 in [6] that μS ≥ H1 rect(S) and we conclude that
H1(supp (S) \ rect(S)) = 0. ��

After having established this basic property of S, we can state a first regularity result:

Lemma 6.3 The flat chain S is supported on a finite union of closed C1, 12−curves.
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Proof Our goal is to prove that S is an almost minimizer of the length functionalM and apply

Theorem 3.8 in [65] to deduce C1, 12−regularity.
Let x0 ∈ � and r ∈ (0, 12r0) such that Br (x0) ⊂ �. Let r ∈ (0, r). Consider T ′ ∈ F2 with

supp (T − T ′) ⊂ Br (x0) ⊂ �. For almost every r ∈ (0, r), it holds that Sr := S Br (x0)
is a flat chain with boundary ∂Sr = S ∂Br (x0). In this case, S′r := ∂T ′ Br (x0) has
the same boundary. Hence, the flat chain A := Sr + S′r = ∂T + ∂T ′ is a cycle, i.e.
verifies ∂A = 0 and is supported inside Br (x0). We can construct the cone C ′ with vertex
x0 over A. Then, ∂C ′ = A and M(C ′) ≤ crM(A). Now, we distinguish two cases: It
holds either M(Sr ) ≤ M(S′r ) (which is enough for our conclusion as we will see below) or
M(Sr ) ≥ M(S′r ) and hence M(A) ≤ 2M(Sr ). Comparing T to T +C ′ and by minimality of
T we get that

βM(Sr ) ≤ βM(S′r )+ (n + 1)M(C ′) ≤ βM(S′r )+ 2c(n + 1)rM(Sr ) .

For r small enough we conclude that

M(Sr ) ≤
(
1+ 4c(n + 1)

β
r

)
M(S′r ) . (75)

In case T ′ is not entirely contained in �, we need to project those parts of T ′ and of the
boundary S′r onto M. Since we assumed r < r ≤ 1

2r0, the Lipschitz constant of the pro-
jection can be estimated by 1 + 4 r

r0
, i.e. our analysis and in particular (75) holds true if

we replace M(S′r ) by (1 + 4 r
r0
)M(S′r ). If we now consider x0 ∈ M, we can carry out the

same construction, projecting all objects onto�. Since the projection onto� has a Lipschitz
constant 1+O(r), the estimate (75) holds with a bigger constant in front of r . This shows that
there exists a constant C = Cn,β,r0 > 0 such that S is (M,Cr , r)−minimal in the sense of
Almgren. Together with Lemma 6.2, (75) allows us to apply Theorem 3.8 in [65] which gives
the C1,1/2−regularity and the decomposition of supp (S) into a finite union of curves, possi-
bly meeting at triple points. Finally, since our flat chains take values only in π1(N ) = {0, 1},
we can exclude the existence of triple points since they would create boundary. Hence, S is
a union of curves. ��

The regularity of S in Lemma 6.3 is not optimal. The following Lemma provides us with
the smoothness we announced in Proposition 6.1:

Lemma 6.4 The flat chain S is supported on a finite union of closed C1,1−curves. In partic-
ular, the curvature of S is bounded.

Proof Let x0 ∈ supp (S). Assume first that x0 ∈ � and take r > 0 such that Br (x0) ⊂ �
and μS(∂Br (x0)) = 2. Let {x1, x2} := supp (S) ∩ ∂Br (x0) and define Sr := S Br (x0).
We compare Sr (and T Br (x0)) to two competitors.

Thefirst one is the geodesic segment Sg joining x1 and x2 in ∂Br (x0). For the corresponding
Tg we use a piece of ∂Br (x0) between T (∂Br (x0)) and Sg . By minimality of Sr we find

βM(Sr ) ≤ 2πr (β + 4(n + 1)r) . (76)

Our second competitor is the flat chain supported on the straight line segment joining x1
to x2 which we call S′. Then S′ + Sr is supported in Br (x0) and is closed, i.e. ∂(S′ + Sr ) = 0.
By the construction (7.6) in [32], we get the existence of a flat chain T ′ ∈ F2 supported in�
and a constant b > 0 (depending only on the dimensions of the flat chains and the ambient
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space) such that ∂T ′ = S′ + Sr and M(T ′) ≤ b(M(S′) +M(Sr ))2. Since x0 ∈ supp (S) it
also holds that M(Sr ) ≥ 2r . This, together with the minimality of Sr and (76) implies that

2βr ≤ βM(Sr ) ≤ βM(S′)+ b(n + 1)(M(S′)+M(Sr ))
2

≤ βM(S′)+ b(n + 1)

(
M(S′)+ 2πr

(
1+ 4(n + 1)

β
r

))2

≤ βM(S′)+ C1r
2 , (77)

for C1 = 2(2 + 2π)2b(n + 1) and r small enough. Hence, (77) implies (2 − (C1/β)r)r ≤
M(S′). If we now choose r even smaller to assure r ≤ r1 := (C1)

−1β, one gets even
M(S′) ≥ r , i.e. the points x1 and x2 must not be too close.

Our goal is now to show that Sr is in fact close to S′ and that S′ is almost a diameter of
Br (x0), in the sense that Sr lies in a small neighbourhood of S′ and the distance between x0
and S′ is of order r2. Let’s denote � := M(S′) = |x2−x1|. SupposeM(Sr ) ≤ �+α for aα > 0
and let ρ > 0 be the smallest positive number such that Sr lies within a ρ−neighbourhood
of S′. Then, M(Sr ) ≥

√
�2 + 4ρ2 and hence �2 + 4ρ2 ≤ M(Sr ) ≤ (� + α)2 which yields

the bound

ρ ≤
√
�α

2
+ α

2

4
≤ √

2rα , (78)

provided α ≤ 4r and � ≤ 2r . Applying this result to our case where α = β−1C1r2, we get
Sr is contained in a neighbourhood of S′ of radius ρ ≤ √

2β−1C1r3.
In addition, if Sr is supported in a ρ−cylinder around S′, there exists a Tρ ∈ F2 and

a constant c (depending only on the space dimension) such that M(Tρ) ≤ cρM(Sr ) and
∂Tρ = S′ + Sr . This implies that M(Sr ) ≤ � + β−1(n + 1)cρM(Sr ). Previously, we have
also shown that M(Sr ) ≤ �+ β−1C1r2 ≤ 3r , leading to

M(Sr ) ≤ �+ C2ρr , where C2 = 3c
n + 1

β
. (79)

Now, we want to iterate this procedure. Let α0 := β−1C1r2 as start of our induction.

1. Knowing that M(Sr ) ≤ � + αk (either by (77) or by induction hypothesis) and by (78)
we can deduce that Sr lies in a ρk−neighbourhood of S′, for ρk = √2rαk .

2. Since Sr lies in a ρk−neighbourhood of S′, one can use (79) with ρ = ρk to obtain
M(Sr ) ≤ �+ αk+1, where αk+1 := C2rρk .

Throughout this iteration, αk and ρk verify ρk+1 = √2rαk+1 = √2C2ρk r . Thus, ρk con-
verges to 2C2r2 in the limit k →∞. We can conclude that the distance between a point in Sr
and S′ is at most 2C2r2. In particular, since x0 ∈ supp (Sr ), it holds that dist(x0, supp (S′))
is of order r2 which shows that the line S′ is close to being a diameter.

Let us turn now to the assertion of the lemma. For x0 ∈ supp (S) and r > 0 chosen small
enough, we denote τr (x0) the vector

x2−x1‖x2−x1‖ , where x1, x2 are constructed as before. By our
previous calculations, we know that the corresponding points for r

2 are at most at distance
2C2r2 from the line connecting x1 and x2 which gives ‖τr (x0)−τ r2 (x0)‖ ≤ C3r . This shows
that the limit τ(x0) = limr→0 τr (x0) exists and that ‖τr (x0)− τ(x0)‖ ≤ 2C3r . The triangle
inequality then yields the existence of another constant C4 > 0, depending on β and n, such
that for x, y ∈ supp (S) with |x − y| =: r small enough we have ‖τ(x)− τ(y)‖ ≤ C4r .

Now if x0 ∈M, we observe that as r > 0, the projection onto� has a Lipschitz constant
which converges to 1 as r → 0. We can reproduce the same construction, projecting back all
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the competitors onto� and we end up with the same estimate, up to an error which vanishes
as r → 0. In particular, the curvature of S is bounded by C4. ��

Having reached the optimal regularity for S, we now turn to the properties of T .

Lemma 6.5 The flat chain T � is supported on a hypersurface of class C1 up to the
boundary.

Proof We first discuss the regularity in the interior of T �. Let x0 ∈ �, r > 0 such that
Br (x0)∩ supp (T �) �= ∅ and consider a variation T ′ of T in Br (x0). Then, by minimality
of T we find

M(T ) ≤ M(T ′) + nF(T − T ′) ≤ M(T ′) + 4

3
πnr3 .

We can then apply the result of Taylor [83], or more general Theorem 1.15 in [25] to obtain
C1,α−regularity in �, for some α > 0.

For the regularity up to the boundary we want to apply Theorem 31.1 in [26]. In order to
do this we need to show that on a certain scale, the boundary S is close to a straight line and
T is almost flat.

Take a point of rectifiability x0 ∈ S. We define a blow-up sequence rk ↘ 0. Since S is
supported by C1,1−curves, a blow up of S converges to a straight line. We claim that a blow
up of T converges to a limit T0 which is a half plane. For this, we use the minimality of T to
deduce for r > 0 small enough that

M(T Br (x0))+ 2βr ≤ M(T Br (x0))+ βM((∂T ) Br (x0))

≤ M(cone(T ∂Br (x0)))+ βM(cone((∂T ) ∂Br (x0)))

≤ r

2
M(T ∂Br (x0))+ βrM((∂T ) ∂Br (x0))

= r

2
M(T ∂Br (x0))+ 2βr .

This implies thatM(T Br (x0))/r2 ismonotonically increasing and thus admits a unique limit
d .WedefineTrk = (T−x0)/rk andbymonotonicityweget for s1 < s2 thatM(Trk Bs1)/s

2
1 ≤

M(Trk Bs2)/s
2
2 . For rk → 0 both sides converge to the same limit πd . But this means that

M(T0 Bs1)/s
2
1 = M(T0 Bs2)/s

2
2 , i.e. T0 is a cone and hence a half-plane. Since a half

plane has density 1
2 , we find d = 1

2 . In particular, we have for k large enough

M

(
Trk − x0

rk
B1

)
= π

2
+ o(1) ,

from which it follows that condition (31.6) in [26] holds and thus we can apply Theorem
31.1 on a length scale R ≤ rk . We remark that by convergence in the flat norm, following
[59], we also verify the condition (31.4) of Theorem 31.1 in [26]. By compactness of the
boundary (∂T ) �, we find a finite cover with balls of uniformly positive radius to which
we can apply Theorem 31.1. This allows us to conclude. ��

Proof of Proposition 6.1 We have already established the existence of a minimizer of (74).
The convergence F(Tn − T0)→ 0 for n →∞ is obvious since n F(Tn − T0) ≤ E0(T0) <∞
for all n ∈ N.

The regularity of Tn follows from Lemma 6.4 and Lemma 6.5. ��
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6.2 Construction of the recovery sequence

In this section we will use the approximation of T given by the minimizer of (74) to construct
our recovery sequence. First we establish the following Proposition which yields additional
control over ∂(T M)\∂T and its boundarywhichwill be necessary for the final construction
in Proposition 6.8.

Proposition 6.6 Let T ⊂ � be a flat 2−chain of finite mass and S ⊂ � be a flat 1−chain
of finite mass such that ∂S = 0 and ∂T = S + �. Then, there exist finite mass flat chains
Tn ∈ F2 of class Lip up to the boundary and Sn ∈ F1 of class C1,1 such that

1. ∂Sn = 0 and ∂Tn = Sn + �,
2. F(Tn − T )→ 0 and E0(Tn)→ E0(T ) as n →∞,
3. and there exists a constant Cn > 0 such that M(∂(Tn M)\∂Tn) ≤ Cn and M(∂(∂(Tn

M)\∂Tn)) ≤ Cn.

Essentially, the first two parts of Proposition are proved by Proposition 6.1, saying that
the minimizer Tn of (74) fulfils our claims. It remains to prove the last assertion i.e. that we
can modify Tn to control the length of the set where the Tn attaches toM. For this, we need
the following average argument stating that we can find radii r such that the corresponding
sets Tn Mr , for Mr := {x ∈ � : dist(x,M) = r}, are of finite length.
Lemma 6.7 Let Tn be as constructed in the previous subsection. There exist a constant c > 0
and a radius r ∈ (0, 12r0) such that

M(Tn Mr ) ≤ 4cM(Tn)

r0
. (80)

Proof Assume thatM(Tn Mr ) >
4cM(Tn)

r0
for all r ∈ (0, 12r0) and some c > 0. This implies

∫ r0/2

0
μTn (Mr ) dr > 2cM(Tn) .

Now, there exists a constant c > 0 such that
∫ r0/2
0 μTn (Mr ) dr ≤ cM(Tn) (see (5.7) in [32]).

Hence, the lemma is proved. ��
Now, we can modify Tn by replacing a small part close to M by a projection to control

the boundary of Tn M which is not included in S.

Proof of Proposition 6.6 We construct Tn as in Proposition 6.1. To ensure the additional
estimate, we choose a radius r and a slice Mr as in Lemma 6.7. With the same argu-
ment as in Lemma 6.7 for Sn one can choose r ∈ (0, 12r0) for which additionally
M(Sn Mr ) is finite. Let � : �r0 → M be the projection onto M. We define
� :Mr×[0, 1] → �by�(x, t) := (1−t)x+t�x . Then, by [31, Sec. 2.7], [30,Cor. 2.10.11],
M(�#(Tn Mr ×[0, 1])) ≤ CrM(Tn Mr ) and also M(�#(Tn Mr )) ≤ CM(Tn Mr ).
Again by the same argument, we get M(∂�#(Tn Mr )) ≤ CM(∂(Tn Mr )). This proce-
dure can be applied to almost every r ∈ (0, 12r0), in particular, we can choose a sequence
rn → 0 as n → ∞. Replacing Tn close to M with these projections, we get the desired
estimates.

The convergence of the energy E0(Tn) to E0(T ) is a consequence of the convergence
statements in Proposition 6.1 and the fact that Tn M approaches T M. ��
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The recovery sequence Qη,ξ for our problem will be constructed around the regularized
sequence of T . The gained regularity permits us to define Qη,ξ directly and without the need
to write T as a complex and “glue” together the parts of Qη,ξ on each simplex.

Proposition 6.8 There exists a recovery sequence Qη,ξ for the problem (21).

The construction relies on the approximation and regularisation made in the previous
subsection. We will construct Qη,ξ step by step: The straightforward parts are the profile on
F andM\F away from ∂F , as well as the transition across T . We recall the notation F from
(22) that if we write μT M = χGH2 M for a measurable set G ⊂M, then F is given by

F := {ω ∈M \ G : ν(ω) · e3 > 0} ∪ {ω ∈M ∩ G : ν(ω) · e3 ≤ 0} .
In order to be compatible with the latter, we have to adjust the construction made in [5] for
the singular line S. The profile of the part of S that approaches the surfaceM can be chosen
as in [5]. Last, we need to connect ∂F\S to the profile of T already constructed. This last
part is a bit subtle since ∂F \ S does not appear in the energy. The control we obtained in
Proposition 6.6 is artificial and indeed we do not control the length of ∂F \ S. Another
problem for our construction originates in the fact that the optimal profile n3 needs to be
accompanied by a horizontal vectorfield (denoted v in the proof) to form a director field. Far
fromM, this can be chosen constant, but onM the director must match the normal. In order
to be able to construct a regular vectorfield v, we need to “cut holes” into T in regions on
M where ν = ±e3 that are also covered by T . Similarly, we also cut out some pieces of T
close toM as the transition of v from boundary data to constant far fromM would result in
infinite energy.

Proof From now on, we fix n large. In view of Proposition 6.6 we can find a constant
0 < Cn < +∞ such that M(∂(Tn M)),M(∂(∂(Tn M) \ ∂Tn)) ≤ Cn and that the
curvature of Sn is also bounded by Cn .

Furthermore, whenever this does not lead to confusion, we drop the subscript parameters
η, ξ and n in order to make the construction more readable.

Step 0: Modification of T . We start by noting that the construction “close” to the particle
surfaceM will take place in a neighbourhood of size η. More precisely, let M > 1. We will
focus on on the 3Mη neighbourhood ofM in�, denoted byM3Mη. By taking 3Mη < 1

2r0,
we can ensure that the extension ν = ν ◦�M exists on M3Mη as before.

Throughout the construction, we make the assumption that H0(supp (T ) ∩ ν−1(±e3)) is
a finite set, say {x1, ..., xN } for some N ∈ N. We furthermore assume that xi /∈ S. It is a
simplification and we will explain in Step 7 how to adapt the proof for the general case.

If all points xi for i = 1, ..., N lie inside �, we can choose 0 < ε′ <

min{ εN , 12dist(xi ,M) : i = 1, . . . , N }. Then by slicing it holds that

∫ ε′

ε′/2
M(∂(T \ Bs(xi )) ds ≤ M(T Bε′(x)) ≤ C(ε′)2 , (81)

where the last inequality follows from the C1 regularity of T but may also be easily deduced
from the minimality of T , similarly to the case xi ∈ M discussed below. From (81) it follows
that we can choose a radius si ∈ ( ε′2 , ε′) such that M(∂(T \ Bsi (xi )) ≤ Cε′. We define

T̃ := T \ ⋃N
i=1 Bsi (xi ). Note that ∂ T̃ differs from ∂T since we introduced boundaries

coming from ∂Bsi (xi ). Since the lengths of those boundaries are controlled by Cε′, the
energy of T̃ can be estimated as E0(T̃ ) ≤ E0(T )+ CNε′ ≤ E0(T )+ Cε.
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In the case where one (or more) point xi lies onM, we also “cut a hole” into Tn around xi
in the following way. By minimality of Tn we compare the energy in (74) with T ′ where the
Tn Bε′(xi ) has been pushed out onto the boundary of Bε′(xi )∩�. The newly created surface
has surface at most 4π(ε′)2 and the additional term in the flat distance is of order n(ε′)3 so
that the difference in energy between T and T ′ is of order (ε′)2. Since ν3(xi ) = 1 it holds
ν3(x) ≥ 1

2 for x in a neighbourhood of each xi , and therefore |M(T ) −M(T ′)| ≤ C(ε′)2.
We can proceed as before by slicing to select a radius si and then modify T ′ to obtain a T̃ .

With this procedure we obtain a modified flat chain T̃ with does not intersect {ν = ±e3}
in M3Mη and with energy E0(T̃ ) ≤ E0(T ) + Cε. We will continue to work with T̃ in the
next steps and omit the tilde in our notation.

Step 1: Adaptation of the optimal profile. The goal of this step is to construct a one
dimensional profile close to the optimal one in Lemma 5.2, but where the transition takes
place on a finite length and which gives the correct energy density (48) for η → 0. To this
goal, we use the “artificial” length scale Mη introduced in Step 0 and define

�±η (t, θ, v) := s∗
(
n±(t/η, θ)⊗ n±(t/η, θ)− 1

3
Id

)
for t ∈ [0,Mη] , (82)

with n± = (

√
1− n2

3(v1, v2),±n3), where n3(t, θ) is the optimal profile from (47) and

(v1, v2) ∈ S
1. We will later take the limit η→ 0 and M →∞ such that n±(Mη/η)→±e3.

Now we define �±η (t, θ, v) for t in the interval [Mη, 2Mη] to be

�±η (t, θ, v) := s∗(n±inter(t, θ)⊗ n±inter(t, θ)−
1

3
Id) for t ∈ (Mη, 2Mη] , (83)

where n±inter(t, θ) is the unit vector interpolating between n±(M, θ) and ±e3, that is, for
α = ± arcsin(n±(M, θ) · e3)

n±inter(t, θ) = cos
(
α
2Mη−t
Mη ± π

2
t−Mη
Mη

)
n̂±(M, θ)+ sin

(
α
2Mη−t
Mη ± π

2
t−Mη
Mη

)
e3

for

n̂±(M, θ) = n±(M, θ)− n±3 (M, θ)e3
|n±(M, θ)− n±3 (M, θ)e3|

.

This definition achieves the transition of�±η (Mη, θ, v) to Q∞ in a way that the bulk potential
f vanishes. Finally, we define the transition between Q∞ and Qη,ξ,∞ to take place for
t ∈ [2Mη, 3Mη] via a linear interpolation

�±η (t, θ, v) := (3Mη − t)Q∞ + (t − 2Mη)Qη,ξ,∞ for t ∈ (2Mη, 3Mη] . (84)

To finish the definition of the profile�±η , we have to construct the vectorfield v : �→ R
2

with modulus 1. In order for�±η to meet the boundary conditions, we require that v = ν′ :=
(ν1,ν2)√
ν21+ν22

on M. We define v as follows: Let e ∈ S
1 and let ν′ denote a radial extension of

ν′ into a neighbourhood of M in �, i.e. ν′ = ν′ ◦ �M. We introduce a monotone cut-off
function ϕ : � → [0, 1] depending only on the distance to M which satisfies ϕ = 1 in
a r0

4 −neighbourhood of M and ϕ = 0 at distance greater than r0
2 . Note that in the region

where ϕ �= 0 the function ν′ is defined. We can furthermore assume that ϕ is Lipschitz, i.e.
|∇ϕ| ≤ C . We define

v := ϕν′ + (1− ϕ)e
|ϕν′ + (1− ϕ)e| .
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This vector field is well-defined and S
1 valued except for the set on which ϕ(ν′ − e) = −e.

For a generic choice of e and ϕ, this set is 1−dimensional and we can assume that it intersects
T only in finitely many points.

For the construction of the profile around T , we can cut out small parts of T around these
points as we did in Step 0, so that v is a Lipschitz S

1−valued vector field in a neighbourhood
of T and coincides with ν′ onM and with a constant vector e far fromM. Since the removal
of parts of T creates new boundary components, as in Step 0, this procedure introduces a
further error of order ε, where ε > 0 is the length scale of the holes.

All in all, we end up with a slightly modified chain T (of approximately same energy)
and a “horizontal” vector field v which is C1 in a neighbourhood of the support of T .

Step 2: Construction on F and Fc. Let ω ∈ F3Mη := {ω ∈ F : dist(ω, ∂F) ≥ 3Mη} ⊂
M and let 0 ≤ r < 3Mη ≤ 1

2r0. For v defined in Step 1 we set

Qη,ξ (ω + rν(ω)) := �+η (r , θ, v(ω + rν(ω))) where θ = arccos(ν(ω) · e3) (85)

and as before ν is the normal vector field ofM. We note that with this definition Qη,ξ (ω) =
Qb(ω).

It remains to calculate the energy contribution coming from F3Mη,R , where F3Mη,R :=
{x ∈ � : x = ω + rν(ω), ω ∈ F3Mη, r ∈ [0, R]} for R > 0. It holds that

η Eη,ξ (Qη,ξ , F3Mη,3Mη)

=
∫
F3Mη

∫ 3Mη

0

(
η

2
|∇Qη,ξ |2 + η

ξ2
f (Qη,ξ )+ 1

η
g(Qη,ξ )+ ηC0

) 2∏
i=1
(1+ rκi ) dr dω ,

where κi denotes the principal curvatures ofM as in the previous section. By definition of�+η
it holds that f (Qη,ξ ) = 0 for r ∈ [0, 2Mη]. Furthermore, by Proposition 2.1, C0 � ξ2/η4

and by exponential convergence of n3 to 1 we deduce that
∫ 3Mη

2Mη

∣∣∣∣ ηξ2 f (Qη,ξ )+ 1

η
g(Qη,ξ )+ ηC0

∣∣∣∣ dr � η

ξ2

ξ2

η2
e−MMη = Me−M .

We also point out that
∫ 2Mη
Mη

1
η
g(Qη,ξ ) dr � Me−M . By the construction in Step 0 and Step

1 we can bound the gradient of v uniformly for all x = ω′ +rν(ω′), where distM(ω′, ω) ≥ ε
for all ω ∈ M with ν3(ω) = ±1. Lemma 5.2 implies that the derivative of n3 w.r.t. θ
is bounded. Around the points ω ∈ M where ν3(ω) = 1 and for 3Mη ≤ r0/2 it holds
v(x) = ν′(x). The gradient of �+η can be bounded by

|∇�+η |2 � |∇n3|2 +
∣∣∣∇

(√
1− n2

3 (v1, v2)
)∣∣∣2 . (86)

We point out that the first term in (86) is easily seen to be bounded since ∇n3 = 0 in ω
as ν3 = 1 is a extremal value. For the second term we recall that v(x) = ν′(x). A direct
calculation using the explicit profile from Lemma 5.2 shows that

√
1− n2

3(x)
(ν1(x), ν2(x))√

1− ν3(x)2
= 2

exp(− c∗ r
s∗ η )(ν1(x), ν2(x))

1+ ν3(x)+ (1− ν3(x)) exp(− 2c∗ r
s∗ η )

.

Since ν = ∇dist(·,M) and |∇ν| = |D2dist(·,M)| ≤ C , one can see from this representation
that the tangential gradient is uniformly bounded and the radial derivative is bounded by
C/η. Therefore, integrating η|∇�+η |2 over the ε−neighbourhood of the points ω ∈M with
ν3(ω) = +1 and r ≤ 3Mη leads to the upper bound CMε2. Note that the same argument
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does not work for �+η near the points where ν3 = −1. This is due to the fact that in this
situation 1 − n2

3 first increases to 1 before decaying. Together with the singularity of v at
ν3 = −1 this implies that (1 − n2

3)|∇v|2 is not necessarily integrable. This is the reason
why we did not attribute those points to F so that Qη,ξ is defined around ν3 = −1 using the
profile �−η instead. The above allows us to estimate

η Eη,ξ (Qη,ξ , F3Mη,3Mη) ≤
∫
F3Mη

[∫ Mη

0

(
η

2
|∂r Qη,ξ |2 + 1

η
g(Qη,ξ )

)

2∏
i=1
(1+ rκi ) dr + CMe−M

]
dω

≤ (1+ CMe−M )

∫
F3Mη

I (0,M, cos(θ),+1) dω + CMε2 + o(1) .

Analogously, we can define Qη,ξ on Fc away from ∂F by using �− and estimate its
energy. Note that this construction may already create the part of T that attaches to the
surface M in the limit η, ξ → 0. Indeed, if a point ω is contained in F although the energy
density corresponding to Fc would be lower, the profile constructed passes trough n3 = 0
within a distance Mη from M and hence is included in the limiting T (Fig. 6).

Step 3: Construction on T . Let x ∈ Tη := {x ∈ supp (T ) : dist(x,M) >

3Mη and dist(x, S) > 3Mη}. For each connected component of T (and thus of Tη) we
can associate a sign depending on the sign of the degree of the singularity line S (if the
component of T has such). This must be compatible with the part of T that reaches M and
already has been constructed in Step 2. The compatibility corresponds to the choice of the
signs of �±η and of the distance function, viewing Tη as a boundary, locally. Assuming that
in Step 2 we chose �+η whenever dist(·, Tη) > 0 and �−η for dist(·, Tη) < 0, we define

Qη,ξ,n(x) := �+η
(
dist(x, T ),

π

2
, v(x)

)
.

We recall that T has been modified in such as way that v from Step 1 is Lipschitz in a
neighbourhood of T and hence |∇v| is bounded. Writing Tη,t := {x ∈ � : dist(x, Tη) =
dist(x, T ) and dist(x, Tη) ≤ t} for t ≥ 0 we can estimate by Lemma 5.2 and the coarea
formula∫
Tη,3Mη

[
η

2
|∇Qη,ξ,n|2 + η

ξ2
f (Qη,ξ,n)+ 1

η
g(Qη,ξ,n)+ ηC0

]
dx

≤
∫
Tη,Mη

[
η

2
|∇Qη,ξ,n |2 + 1

η
g(Qη,ξ,n)

]
dx + CMe−M

M(T )

= 2s∗c∗
∫
Tη,Mη

|n′3(dist(x, Tn)/η)| dx + CMe−M
M(T )

= 2s∗c∗
∫ Mη

0

∫
Tη,Mη∩{dist(·,T )=s}

|n′3(s/η)| ds + o(1)+ CMe−M
M(T )

= 2s∗c∗
∫ Mη

0
H2(Tη,Mη ∩ {dist(·, T ) = s})|n′3(s/η)| ds + o(1)+ CMe−M

M(T )

≤ 2s∗c∗
(
2M(T )+ o(1)

) ∫ Mη

0
|n′3(s/η)| ds + o(1)+ CMe−M

M(T )

= 4s∗c∗|n3(M)|M(T )+ o(1)+ CMe−M
M(T ) ,
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where we also used that H2(Tη,Mη ∩ {dist(·, T ) = s}) → 2M(T ) for s → 0. Note that
|n3(M)| ≤ 1. Hence, for η, ξ → 0 we end up with

lim sup
η,ξ→0

∫
Tη,3Mη

η

2
|∇Qη,ξ,n|2 + η

ξ2
f (Qη,ξ,n)+ 1

η
g(Qη,ξ,n)+ ηC0 dx

≤ 4s∗c∗(1+ CMe−M )M(T ) .

Step 4: Construction on S �. Following the notation we used in Step 2 and 3, we
introduce the region

S3Mη := {x ∈ � : dist(x,M) > 3Mη, ∃y ∈ T with dist(y, S) ≤ 3Mη

and dist(x, T ) = ‖x − y‖ ≤ 3Mη}
(87)

around the singular line S (see also Fig. 7). We will construct Qη,ξ,n as follows: Depending
on the sign attributed to the connected component of T in Step 3 or the change between F
and Fc in Step 2, we place a singularity of degree − 1

2 (resp. 1
2 ) as in Lemma 5.2 in [5] in

the center of S3Mη. We do so by setting Q = 0 in a disk of radius ξ (perpendicular to S) and
oblate Q uniaxial with director field (sin(φ/2), 0, cos(φ/2)) on the annulus between the radii
2ξ and η, interpolating linearly in radial direction between these two regions. From the circle
of radius η to the boundary of the region (87), we use the profile �±η to make a transition to
Q∞ along∇dist(·, T ). By doing so, we get the compatibility between the construction made
for T and S.

More precisely, we define as in [5](Lemma 5.2, Step 3, Equation (55))

QB(r , φ) :=

⎧⎪⎪⎨
⎪⎪⎩

0 r ∈ [0, ξ) ,(
r
ξ
− 1

)
Q(φ) r ∈ [ξ, 2ξ) ,

Q(φ) r ∈ [2ξ, η) ,
where r ∈ [0, η), φ ∈ [0, 2π) and

Q(φ) = s∗
(
n(φ)⊗ n(φ)− 1

3
Id

)
with n(φ) =

⎛
⎝sin(φ/2)

0
cos(φ/2)

⎞
⎠ .

We use this to define Qη,ξ on a small η−neighbourhood of S as follows. For η small enough,
we can assume that the η−neighbourhood is parametrized by the projection onto S, the radius
dist(·, S) and an angle φ.

Modifying T close to S if necessary, we can furthermore assume that on each (small) plane
disk perpendicular to S, the restriction of T to this disk is given by a straight line segment. To
see that this modification is possible, we claim that one can select a radius r ∈ (2η, 3η) and a
slice Tr of T at dist(·, S) = r such that 3ηTr ≤ 2η

∫ 3η
2η H1(Ts) ds ≤ CH2({T ∩{dist(x, S) ≤

3η}}. Indeed, this follows from C1−regularity of T up to the boundary or by constructing
a competitor for T in the following way: Around a point p ∈ S one can choose a tubular
neighbourhood, depending on the curvature of S, and translate S. In case all of the Tr did
not satisfy the above condition, this operation decreases the energy of T locally up to lower
order terms. One can then replace T by a T̃ inside the tubular neighbourhood {dist(x, S) ≤ r}
where T̃ is defined by the straight lines connecting S to Tr on each disk perpendicular to S
with asymptotically negligible energy cost.

In order to define the profile on disks perpendicular to S, we introduce a orthonormal
C1,1−frame along S. By Lemma 6.4 we already know that the tangent vector field τS of S
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is of this class. Ideally, one would like to choose the normal vector of T to be part of the
frame, however we only know that T is of class C1 up to the boundary. Instead, we will take
an arbitrary normal vector field νS to S of class C1,1. The existence of such a vector field can
easily be seen via the following construction: Since S is compact and of bounded curvature,
we can find finitely many points pi ∈ S such that there exist normal vectors νi to S in pi ,
where neighbouring vectors νi , ν j form an angle of strictly less than π . We can then choose
C2−smooth curves on the sphere S

2 connecting all those νi , resulting in νS . The third vector
for our frame is simply obtained by taking the cross product τS × νS .

Consider x0 ∈ S. By applying rotations if necessary, we can assume that νS = e1 and
τS × νS = e3. We then set

Qη,ξ,n(x) := QB(dist(x, S), φ(x)) ,

where

φ(x) =
⎧⎨
⎩
arccos

(
νS · x−x0‖x−x0‖

)
if (τS × νS) · x−x0‖x−x0‖ ≥ 0 ,

2π − arccos
(
νS · x−x0‖x−x0‖

)
otherwise.

It remains the transition from the set {dist(·, S) = η} to the boundary of (87). Since τS×νS
might not agree with νT , the T constructed around S and the T coming from Step 3 does not
necessarily line up. However, we have enough space to smoothly connect both parts inside
Ar ,η = {dist(·, S) = r}\{dist(·, S) = η} with asymptotically negligible contribution to the
energy. Indeed, there exists a Lipschitz deformation D : Ar ,η → {dist(·, S) = η} relative to
{dist(·, S) = η} such that Tr = T ∩ {dist(·, S) = r} gets mapped onto T ∩ {dist(·, S) = η}.
We can then extend Qη,ξ from {dist(·, S) = η} to all {dist(·, S) ≤ r} along this deformation
D by setting Qη,ξ (x) = Qη,ξ (D(x)).

Let � be the projection along ∇dist(·, T ) onto {dist(·, S) = r} ∪ (T ∩ {dist(·, S) ≥ r}).
The function Qη,ξ is already defined on the first set in the union, for the second we simply
pose Qη,ξ (x) = s∗((v(x), 0)⊗ (v(x), 0)− 1

3 Id) in order to be compatible with Step 3. For
x ∈ S3Mη\({dist(·, S) ≤ r} ∪ (T ∩ {dist(·, S) ≥ r})) we then define

Qη,ξ (x) := �+η (‖x −�x‖, θ(x), v(x)) ,
where θ(x) is the angle between e3 and the director field that we have already constructed in
�x , i.e. θ(x) = arccos(n(φ(D(x))) · e3) or θ(x) = arccos(v(�x) · e3) depending on which
set contains �x .

It is easy to see that since f , g and C0 are uniformly bounded and the curvature of S is
bounded by Lemma 6.4, we get for the integral up to distance η

η

∫
{dist(·,S)≤η}

1

2
|∇Qη,ξ,n |2 + 1

ξ2
f (Qη,ξ,n)+ 1

η2
g(Qη,ξ,n)+ C0 dx

≤ η

2

∫ η

2ξ

∫
{dist(·,S)=r}

|∇(Q ◦ φ)(x)|2 dr + η

2

∫ 2ξ

ξ

∫
{dist(·,S)=r}

|∇(QB(r , φ(x)))|2 dr

+ C
η

ξ2
H3({dist(·, S) ≤ 2ξ}) + C

η

η2
H3({dist(·, S) ≤ η}) .

Estimating the gradient at distance r := dist(·, S) ∈ [2ξ, η) yields

1

2
|∇(Q ◦ φ)(x)|2 = s2∗|∇(n ◦ φ)(x)|2 ≤ s2∗

∣∣∣∣∣∣

⎛
⎝

1
2 cos(φ/2)

0
− 1

2 sin(φ/2)

⎞
⎠⊗∇φ(x)

∣∣∣∣∣∣

2
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Fig. 6 Schematic view of the
different parts of T and S that are
constructed in Step 2 to 6

≤ s2∗
4r2

(1+ Cr)+ C ,

where we used that the derivative of the polar angle in the disk perpendicular to S is 1
r and

that derivatives of the basis vector fields τS , νS and τS×νS of our frame are bounded. Hence,
we get

η

2

∫ η

2ξ

∫
{dist(·,S)=r}

|∇(Q ◦ φ)(x)|2 dr ≤ s2∗π
2
ηM(S �)

∫ η

2ξ

1

r
dr + o(1)

≤ π

2
s2∗η| ln(ξ)|M(S �)+ o(1) .

Similarly, for r ∈ [ξ, 2ξ) we obtain
1

2
|∇(QB(r , φ(x)))|2 = s2∗

∣∣∣∣
(
r

ξ
− 1

)
∇(n ◦ φ)(x)

∣∣∣∣
2

+ s2∗
∣∣∣∣∇

(
r

ξ
− 1

)∣∣∣∣
2

≤ C

∣∣∣∣∣∣
(
r

ξ
− 1

)⎛
⎝

1
2 cos(φ/2)

0
− 1

2 sin(φ/2)

⎞
⎠⊗∇φ(x)

∣∣∣∣∣∣

2

+ C

ξ2
,

from which it follows that

η

2

∫ 2ξ

ξ

∫
{dist(·,S)=r}

|∇(QB(r , φ(x)))|2 dr ≤ Cη .

For the energy of the remaining part of the domain defined in (87) we use Lipschitz
continuity of�,D to get

η

∫
S3Mη\{dist(·,S)≤η}

1

2
|∇Qη,ξ,n |2 + 1

ξ2
f (Qη,ξ,n)+ 1

η2
g(Qη,ξ,n)+ C0 dx

≤ Cη

(
(Mη)2

η2
+ M2e−M

)
M(S �)+ o(1)

which vanishes in the limit η→ 0. We obtain

lim sup
η,ξ→0

η

∫
S3Mη

1

2
|∇Qη,ξ,n |2 + 1

ξ2
f (Qη,ξ,n)+ 1

η2
g(Qη,ξ,n)+ C0 dx ≤ π

2
s2∗ β M(S �) .

Step 5: Construction on S M. The domain

S0,3Mη := {x ∈ � : dist(x, S) ≤ 3Mη, dist(x,M) ≤ 3Mη and

dist(x, ∂(∂(T M) \ ∂T )) ≥ 3Mη}
can essentially be treated in the same manner as in Step 4 or as in [5, p.1444, Step 3]. Also
the boundary of T in� (but close toM) that was created in Step 0 and Step 1 to ensure that
v is well-defined, is treated in the same way. To give some more details, we can reuse the
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Fig. 7 Sketch of the construction
for Qη,ξ,n in Step 4 in the region
S3Mη defined in (87) (grey
shaded area). Dashed lines
indicate the direction of the
projection�

profile QB from the previous step (assuming a + 1
2−singularity) for defining Qη,ξ in a ball

of radius η centered in xS in the middle of S0,3Mη, seen as family of plane sets perpendicular
to S. Note that Qη,ξ has already been defined on the boundary on each of those plane sets.
Thus, a simple two dimensional interpolation of the phase angle along ∇dist(·, xS) as in [5,
eq (56-64)] shows that the energy contribution is

Eη,ξ (Qη,ξ , S0,3Mη) ≤ (1+ Cη)
π

2
s2∗| ln(ξ)|M(S M)+ Cη

(Mη)2

η2
+ Cβε .

Step 6: Construction on ∂F \S. It remains to fill the “gaps” left by the Steps 2 to 5 (see also
Fig. 6). The important part is the transition between the part of T that approaches M (and
which was constructed in Step 2) and the part that stays bounded away, including the region
where S detaches from M. At distance larger than 3Mη from M, we set Qη,ξ = Qη,ξ,∞
for all points where we haven’t defined Qη,ξ so far. Note that this is compatible with the
previous constructions.

Let’s consider the set ϒ3Mη := {x ∈ � : dist(x, ∂(T M)\∂T ) ≤
3Mη and dist(x, ∂(∂(T M)\∂T )) ≥ 3Mη}. Considering the slices of ϒ3Mη orthogonal to
and parametrized by ∂(T M), we note that Steps 2 to 5 ensure that Qη,ξ takes values in
N whenever meeting the boundary of the slice and Qη,ξ having trivial homotopy class. For
an arbitrary Q ∈ N , we can define Qη,ξ := Q on a disk of size η in the middle of the slice
and again by linear interpolation of the phase towards the boundary of the disk. We thus get
a function Qη,ξ ∈ H1(ϒ0,3Mη,N ) respecting the previous constructions and Q = Qb on
M. Furthermore, the interpolation allows us to estimate |∇Q|2 ≤ C((Mη)−2 + η−2) and
since g is bounded, f (Q) = 0 (because Q takes values inN ) the energy contribution can be
estimated

ηEη,ξ (Q, ϒ0,3Mη) ≤ C η |ϒ0,3Mη|
(

1

(Mη)2
+ 1

η2
+ 1

)

≤ C M(∂(T M) \ ∂T )
(
η + (Mη)

2

η
+ η(Mη)2

)
,

which vanishes in the limit η, ξ → 0 due to our hypothesis about the finite size of ∂(T
M) \ ∂T .

It remains the region where S detaches from M or in other words ϒ1,3Mη := {x ∈
� : dist(x, ∂(∂(T M) \ S)) ≤ 3Mη}. We can also use interpolation to construct Qη,ξ
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and estimate its energy but we need to be a bit more careful since this time f (Qη,ξ ) cannot
be chosen to be zero. This is due to the isotropic core of our construction around S. So we
connect the “core” parts from Step 4 and 5 where we defined S in � and close to M via a
tube in which Qη,ξ is defined via the profile QB which has been used in both steps. Around
this tube, we can again apply the previous idea of linear interpolation of the phase, this time
on slices perpendicular to the tube. We end up with

Eη,ξ (Qη,ξ , ϒ1,3Mη) ≤ CMηM(∂(∂(T M) \ ∂T )) ,
which vanishes in the limit η→ 0 in view of the bound M(∂(∂(T M) \ ∂T )) ≤ Cn .

Step 7: Conclusion Combining Step 1 to Step 6, we obtain a function Qη,ξ which respects
the boundary conditions and satisfies the energy estimate

lim sup
η,ξ→0

η Eη,ξ (Qη,ξ ) ≤ (1+ CMe−M ) E0(T , S)+ C(1+ β)ε .

Since M can be chosen arbitrarily large and ε arbitrarily small, we can construct a diagonal
sequence and obtain the claim.

It remains to show how to proceed if the assumption that the set supp (T )∩{x ∈M3Mη :
ν(x) = ±e3} is finite does not hold. In this case, there is an additional approximation step
that needs to be carried out as we detail in the following.

Using the area formula for ν [6, Thm. 2.91], it holds that∫
S2

H0(supp (T ) ∩ ν−1(y)) dH2(y) ≤ C
∫
supp (T )∩{dist(·,M)≤r0/2}

|∇ν(x)|2 dx ,

which is finite by regularity ofM. Therefore, for all ε > 0 there exists a unit vector eε3 ∈ S
2

such that |eε3 − e3| < ε and H0(supp (T ) ∩ ν−1(eε3)) < ∞. Write supp (T ) ∩ ν−1(eε3) ={x1, ..., xN }. We can furthermore choose eε3 such that all of the points xi /∈ supp (S). We
can then proceed as in Step 0. In the remaining steps of the proof, we also need to adapt the
“optimal profile”. Replacing the function 1− n23 by 1− (n · eε3)2 in Lemma 5.2, we obtain a
new function nε3 that we use to construct n±η in Step 1 by posing

n± =
√
1− (nε3)2v ± nε3e

ε
3 ,

the function v being constructed as before but with �(eε3)⊥(ν) instead of ν′.
By exponential decay of the optimal profile nε3, the interpolation between n

ε,±(M, θ) and
±e3 taking place in �ε,±η (t, θ, v) for t ∈ (Mη, 2Mη] is well defined.

Noting that

|1− (n · eε3)2 − (1− (n · e3)2)| ≤ 2ε + ε2 ,
we deduce that the additional error introduced by this change is estimated by C ε

η
(3Mη)(H2

(M)+M(T )) which is of order Mε(1+ E0(T , S)). Therefore, we obtain the final bound

lim sup
η,ξ→0

η Eη,ξ (Qη,ξ ) ≤ (1+ CMe−M + CMε) E0(T , S)+ Cβε + CMε

and passing to the limit first in ε → 0 and then in M →∞ yields the result. ��

7 Regularity and optimality conditions for the limit problem

Let us first state an improved regularity results for minimizers of the energy E0:
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Proposition 7.1 Let T be a minimizer of (16) and S = ∂T − �. Then each component of
T � is an embedded manifold-with-boundary of class C∞.

Proof The main work has been already carried out in the proof of Proposition 6.1 for n = 0.
The higher regularity can be obtained by Schauder theory. For details we refer to Theorem
2.1 in [66]. ��

Next,wegive a characterization ofminimizers of the limit energy.Because of the regularity
given by Proposition 7.1, we can take variations of T � and S � in the classical sense to
derive the optimality conditions. Furthermore, we can obtain a version of Young’s law [70,
84]

Proposition 7.2 Let T be a minimizer of (16) and S = ∂T − �. Then T � has zero mean
curvature and S � is of constant curvature 8

π
c∗
s∗ β

−1. Furthermore, Young’s law holds

ν∂(T∩�) · ν∂F+ = νM · e3 on ∂(T �) \ S ,
i.e. T meets M in an angle θ = arccos(νM · e3).
Proof The first claim is a well known fact since the variation of M(T �) along a smooth
vector field  in � yields [52, Proposition 2.1.3]

(M(T �))′( ) =
∫
T∩�

HT ( · νT ) dx +
∫
∂(T∩�)

( · ν∂T ) dx , (88)

where HT is the mean curvature of T , νT is a normal vector of T and ν∂T is the inward
normal vector of ∂(T �) in the tangent space of T . With the same argument and since
∂S = 0, we get that

(M(S))′( ) =
∫
S
KS( · νS) dx , (89)

where KS is the curvature of S and νS is the normal vector of S in R
3, such that the plane

for the circle of maximal curvature is spanned by νS and a tangent vector to S. This yields
for the boundary that

0 =
∫
S
 ·

(
4s∗c∗ν∂T + π

2
s2∗βKSνS

)
dx ,

from which we deduce ν∂T = ±νS and KS = ± 8
π

c∗
s∗ β

−1. In particular, the circle of maximal
curvature for S lies in the plane spanned by the tangent space of T . Finally, taking variations
on M we get

(∫
F±

1∓ cos(θ) dω

)′
( ) =

∫
∂F±

(1∓ cos(θ)) ( · ν∂F±) dω .

Since ν∂F− = −ν∂F− , we hence get(∫
F+

1− cos(θ) dω +
∫
F−

1+ cos(θ) dω

)′
( ) = −

∫
∂F+

2 cos(θ)( · ν∂F+) dω .
(90)

As in the proof of Theorem 19.8 in [56], (88) and (90) combine to

0 =
∫
∂F+

 · (4s∗c∗νT |M − 4s∗c∗ cos(θ)ν∂F+) d .
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If we take a variation with  · νM = 0 and write

 · νT |M =  · ((ν∂T · ν∂F+)ν∂F+) +  · ((νT |M · τ)τ )
where τ is a unit tangent vector to M, perpendicular to ν∂F+ , we get

 · ((ν∂T · τ)τ ) = 0 and ν∂T · ν∂F+ = cos(θ) .

The first equality is automatically true since ν∂T · τ = 0 (ν∂T can only have a component in
direction ν∂F+ and one in direction νM) and the second one implies that

ν∂T · ν∂F+ = νM · e3 .
��

A The complex T

In this section, we collect and prove all results in connection to the structure of T as defined
in Sect. 4.3. Recall that

T := {Q ∈ Sym0 : s > 0 , 0 ≤ r < 1 , n3 = 0} .
Our first result is a characterization of T that provides us with a more accessible

parametrization.

Proposition A.1 Every matrix Q ∈ T can be written as

Q = λ(n⊗ n − R�n MRn) ,

where λ > 0, n = (n1, n2, 0) ∈ S
2, Rn is the rotation around n ∧ e3, such that Rnn = e3

and

M =
⎛
⎝M ′ 0

0
0 0 0

⎞
⎠

with M ′ ∈ R
2×2 symmetric, tr(M ′) = 1 and 〈M ′v, v〉 > −1 for all v ∈ S

1. The matrix Q is
oblate uniaxial if and only if M ′ = 1

2 Id.

Proof A matrix Q of the above form Q = λ(n ⊗ n − R�n MRn) has n as an eigenvector to
the eigenvalue λ and n3 = 0 by definition. Furthermore, since minv∈S1〈M ′v, v〉 > −1 the
eigenvalue λ is strictly bigger than the other eigenvalues, thus r < 1 and Q ∈ T . Conversely,
we can write every Q ∈ Sym0 as

Q = λ1n⊗ n + λ2m⊗m+ λ3p⊗ p ,

with λ1 ≥ λ2 ≥ λ3 and n,m,p ∈ S
2 pairwise orthogonal eigenvectors of Q to λ1, λ2, λ3.

By definition of T , n3 = 0 as required for our parametrization and clearly we can identify
λ = λ1. Setting M = −Rn(

λ2
λ1
m ⊗m + λ3

λ1
p ⊗ p)R�n , it is obvious that M is of the above

form and that Q ∈ T can be written as claimed.
If M ′ = 1

2 Id then

Q = λ(n⊗ n − R�n MRn) = 3

2
λ

(
n⊗ n − 1

3
Id

)
,
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i.e. Q is oblate uniaxial. The reverse implication follows similarly, since the matrices R�n , Rn
are invertible. ��
Remark A.2 Given a vector u ∈ R

3 as axis of rotation and an angle θ , then this rotation is
described by the matrix R with

R =
⎛
⎝ cos θ + u21(1− cos θ) u1u2(1− cos θ)− u3 sin θ u1u3(1− cos θ)+ u2 sin θ
u1u2(1− cos θ)+ u3 sin θ cos θ + u22(1− cos θ) u2u3(1− cos θ)− u1 sin θ
u1u3(1− cos θ)− u2 sin θ u2u3(1− cos θ)+ u1 sin θ cos θ + u23(1− cos θ)

⎞
⎠ .

Corollary A.3 T is a four dimensional smooth complex and ∂T = C.

Proof From the characterization in Proposition A.1, it is clear that one can use the map
Q �→ (λ,n,m11,m12) to make T a four dimensional manifold with a conical singularity in
Q = 0. In particular, T is a smooth complex.

Proposition A.1 furthermore implies that the boundary of T consists of matrices of the
form λ = 0 (from which follows directly Q = 0) or M ′ has the eigenvalue −1 (which
corresponds to r = 1). In particular, the matrices with r = 0 are not included in ∂T as one
may think from the definition in (12). This implies the inclusion ∂T ⊂ C. For the inverse
inclusion, take Q ∈ C with orthogonal eigenvectors m,p ∈ S

2 associated to the largest
eigenvalue λ1 = λ2. So in fact we have a two dimensional subspace of eigenvectors to
this eigenvalue spanned by m and p. Since the hyperplane defined through {n3 = 0} is of
codimension one, there exists a unit vector n ∈ {n3 = 0} ∩ span{m,p} which we were
looking for. The unit eigenvector orthogonal to n in the plane span{m,p} requires M ′ to have
the eigenvalue −1 or in other words minv∈S1〈M ′v, v〉 = −1, so that Q ∈ ∂T . ��
Lemma A.4 Let Q ∈ T ∩N . Then, the normal vector NQ on T at Q is given by

NQ = 3

2
λ

⎛
⎝ 0 0 n1

0 0 n2
n1 n2 0

⎞
⎠ ,

where n = (n1, n2, 0) ∈ S
2 is the eigenvector associated to the largest eigenvalue λ1.

Proof We are going to prove a slightly more general result by first considering Q ∈ T and
calculating the tangent vectors to T in Q. We use the representation from Proposition A.1
and vary λ,n,m11,m12 one after another.

• First, we can easily take the derivative with respect to λ and obtain T1 = (n ⊗ n −
R�n MRn).

• Second, we vary the parameter n. So, let’s consider n = (n1, n2, 0) ∈ S
2. Without

loss of generality we assume that n2 �= 0 and write n(t) = (n1 + t, n2 − n1
n2
t). Then

|n(t)|2 = 1+ O(t2) and

n(t)⊗ n(t) = n⊗ n + t Dn⊗n + O(t2) , Dn⊗n =
⎛
⎜⎝

2n1 n2 − n21
n2

0

n2 − n21
n2

−2n1 0
0 0 0

⎞
⎟⎠ .

The derivative of the second term R�n(t)MRn(t) can be calculated using Remark A.2 with

the axis n⊥(t) := n(t) ∧ e3. Since n(t) ⊥ e3 we can write

Rn(t) = Rn + t DRn + O(t2) , DRn =
1

n2

⎛
⎝ −2n1n2 −n22 + n21 −n2−n22 + n21 2n1n2 n1

n2 −n1 0

⎞
⎠ .
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The second tangent vector T2 is thus given by T2 = λ(Dn⊗n− D�Rn
MRn− R�n MDRn ).

• Third, we can take the derivative with respect to m11. This is straightforward and we
obtain

T3 = λR�n
⎛
⎝1 0
0 −1

0

⎞
⎠ Rn .

• Last, varying m12 we easily calculate

T4 = λR�n
⎛
⎝0 1
1 0

0

⎞
⎠ Rn .

Before proceeding, we want to calculate a fifth vector by varying n3. As it will turn out later,
this is indeed the normal vector.

• Writing once again n = (n1, n2, 0) and defining n(t) := (n1
√
1− t2, n2

√
1− t2, t)we

can express

n(t)⊗ n(t) = n⊗ n + t(n⊗ e3 + e3 ⊗ n)+ O(t2) .

As for the second tangent vector, we use Remark A.2 and the rotation around n⊥(t) =
n(t) ∧ e3. Unlike previously, n(t) is no longer orthogonal to e3 for t �= 0, namely
θ = arccos(〈n(t), e3〉) = t . Substituting this our expression of the rotation matrix we
get

Rn(t) = Rn + t D3 + O(t2) , D3 =
⎛
⎝1− n22 n1n2 0

n1n2 1− n21 0
0 0 1

⎞
⎠ .

Adding the two partial results, we get

N := λ(n⊗ e3 + e3 ⊗ n − D�3 MRn − R�n MD3) .

It remains to show that {T1,T2,T3,T4, N } are pairwise orthogonal if Q is oblate uniaxial.
Indeed, then it follows that N is a normal vector, since it is orthogonal to TQT .

It is easy to see that since the trace is invariant by change of basis and since R�n = R−1n

〈T3,T4〉 = λ2tr

((
1 0
0 −1

)(
0 1
1 0

))
= λ2tr

((
0 1
−1 0

))
= 0 .

Noting that n⊗ nR�n MRn = 0 for M ∈ Sym0 with mi j = 0 if i = 3 or j = 3, we get

〈T1,T3〉 = λtr

⎛
⎝(n⊗ n − R�n MRn)

⎛
⎝R�n

⎛
⎝1 0
0 −1

0

⎞
⎠ Rn

⎞
⎠
⎞
⎠

= λtr

⎛
⎝M

⎛
⎝1 0
0 −1

0

⎞
⎠
⎞
⎠ = λtr

⎛
⎝
⎛
⎝m11 −m12

m12 −m22

0

⎞
⎠
⎞
⎠ = λ(2m11 − 1) .

With the same argument we also find

〈T1,T4〉 = λtr

⎛
⎝(n⊗ n − R�n MRn)

⎛
⎝R�n

⎛
⎝0 1
1 0

0

⎞
⎠ Rn

⎞
⎠
⎞
⎠
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= λtr

⎛
⎝M

⎛
⎝0 1
1 0

0

⎞
⎠
⎞
⎠ = λtr

⎛
⎝
⎛
⎝m12 m11

m22 m12

0

⎞
⎠
⎞
⎠ = 2λm12 .

Furthermore, we claim that

〈T1,T2〉 = λ tr

(
(n⊗ n − R�n MRn)(Dn⊗n − D�Rn

MRn − R�n MDRn )

)
= 0 .

Indeed, one can check that

tr(n⊗ nDn⊗n) = 0 = tr(n⊗ nD�Rn
MRn) ,

tr(n⊗ nR�n MDRn ) = 0 = tr(R�n MRnDn⊗n) ,
tr(R�n MRnD

�
Rn
MRn) = 0 = tr(R�n MRnR

�
n MDRn ) .

This implies that

〈N ,T3〉 = λ2tr

⎛
⎝(n⊗ e3 + e3 ⊗ n − D�3 MRn − R�n MD3)

⎛
⎝R�n

⎛
⎝1 0
0 −1

0

⎞
⎠ Rn

⎞
⎠
⎞
⎠ = 0 ,

since again the traces of all cross terms vanish. Similarly,

〈N ,T4〉 = 0 .

Next, we have the equality

〈T2,T3〉 = −4λ2m12

n2
.

This follows since tr(Dn⊗nT3) = 0 and tr(D3MRnT3) = 2m12
n2

. The latter fact is evident if

one calculates M

⎛
⎝1 0
0 −1

0

⎞
⎠ =

⎛
⎝m11 −m12

m12 −m22

0

⎞
⎠ and RnD�3 =

⎛
⎝ 0 −1/n2 1
1/n2 0 −n1/n2
−1 n1/n2 0

⎞
⎠.

This also permits us to derive

〈T2,T4〉 = 2λ2
2m11 − 1

n2
.

Again, we simply calculate the traces of all cross terms. For example

tr(n⊗ e3Dn⊗n) = 0 ,

tr(n⊗ e3R�n MDRn ) = 0 ,

tr(n⊗ e3D�Rn
MRn) = m12

n2
(n21 − n22)− n1(2m11 − 1) ,

tr(D�Rn
MRnDn⊗n) = 2

m11n1
n2

+ 1

n22
(n21(2m11 − 1)+ m11) ,

tr(D�Rn
MRnR

�
n MDRn ) = −2n1m12

n2
+ 1

n22

(
3(m2

11 + m2
12)− (1+ n21)(2m11 − 1)

)
,

tr(D�Rn
MRnD

�
Rn
MRn) = 2

m11m22 + m2
12

n22
,
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We end up with

〈N ,T2〉 = 6λ2m12(n21 − n22)

n2
− 6λ2n1(2m11 − 1) .

Another straightforward calculation shows that

〈N ,T1〉 = λ2n1m12(n
5
1m12 − 2n41n2m11 − 2n31m12 − 2n21n

3
2m11 + 3n21n2m11

− 2n21n2 − n1n
4
2m12 + n1m12 + n32m11 − n2m11 − 2n32 + 2n2) .

After these calculations, it is apparent that for prolate uniaxial Q ∈ Sym0 (and in particular
Q ∈ N ), i.e. M ′ = 1

2 Id all inner products vanish. In order to form a basis, we must prove
that the vectors themselves never vanish. We find

‖T1‖2 = 2(m2
11 − m11 + m12 + 1) ,

‖T2‖2 = 2

n22
(6n21(1− 2m11)− 6m12n1n2 + 5m2

11 − 2m11 + 5m12 + 2) ,

‖T3‖2 = 2λ2 ,

‖T4‖2 = 2λ2 ,

‖N‖2 = λ2(12m11n
2
1 − 6n21 + 12m12n1n2 + 2m2

11 − 8m11 + 2m2
12 + 8) ,

and thus for M ′ = 1
2 Id it holds that ‖T1‖2 = 6

4 , ‖T2‖2 = 9
2λ

2n−22 and ‖N‖2 = 9
2λ

2.
This concludes the proof that {T1,T2,T3,T4} form indeed a basis of TQT , and since N

is orthogonal to TQT , the result follows. ��

Proposition A.5 There exists C, α0 > 0 such that for all α ∈ (0, α0) and Q ∈ N it holds

H4(Bα(Q) ∩ T ) ≤ Cα4 .

Proof As seen before, T has the structure of a smooth manifold aroundN . By invariance of
N under rotations, it is enough to show that the claim holds around one Q ∈ N . The Ricci
curvature κ ofN is bounded so that we can choose α0 > 0 small enough such that Bα(Q)∩T
is contained in the geodesic ball in T of size 2α around Q for all α ∈ (0, α0). Furthermore,
if needed, we can choose α0 > 0 even smaller such that 1− κ

36α20
≤ 2. Theorem 3.1 in [38]

then implies that

H4(Bα(Q) ∩ T ) ≤ volT (B2α(Q)) ≤ 16π2α4 . ��
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68. Muševič, I.: Nematic liquid-crystal colloids. Materials 11(1), 24 (2018)

123



129 Page 62 of 62 F. Alouges et al.

69. Nitsche, J.C.C.: Lectures on Minimal Surfaces. Cambridge University Press, Cambridge (2011)
70. Philippis, G.D., Maggi, F.: Regularity of free boundaries in anisotropic capillarity problems and the

validity of Young’s law. Arch. Ration. Mech. Anal. 216(2), 473–568 (2014)
71. Priestley, E.B., Wojtowicz, P.J., Sheng, P. (eds.): Introduction to Liquid Crystals. Plenum Press (1974)
72. Radó, T.: On the Problem of Plateau. Springer, Berlin (1933)
73. Sahu, D.K., Anjali, T.G., Basavaraj, M.G., Aplinc, J., Čopar, S., Dhara, S.: Orientation, elastic interaction
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