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Abstract
We study singularity formation for the heat flow of harmonic maps from R

d . For each
d ≥ 4, we construct a compact, d-dimensional, rotationally symmetric target manifold that
allows for the existence of a corotational self-similar shrinking solution (shortly shrinker)
that represents a stable blowup mechanism for the corresponding Cauchy problem.

Mathematics Subject Classification 58E20 · 58J35 · 53C44 · 35B44 · 35C06 · 35B35

1 Introduction

Given Riemannian manifolds (M, h̃) and (N , h), a smooth map U : M → N is called har-
monic if it is a critical point (under compactly supported variations) of the energy functional

S(U ) := 1

2

∫
M
|dU |2dvolh̃, (1.1)

where the differential dU of the map U is viewed as a section of the vector bundle (T ∗M ⊗
U∗T N , h ⊗ U∗h̃). By means of local coordinates, this functional adopts a more explicit
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form1

S(U ) = 1

2

∫
M

h̃i j (x)hab(U (x))∂i U
a(x)∂ j U

b(x)

√
|h̃(x)|dx . (1.2)

Furthermore, the Euler-Lagrange system corresponding to (1.2) is given by

�h̃U a + h̃i j�a
bc(U )∂iU

b∂ j U
c = 0,

where �h̃ denotes the Laplace-Beltrami operator on M , and �a
bc are the Christoffel symbols

that correspond to metric h.
The studyof harmonicmaps is remarkably rich and it is impossible to survey all the relevant

literature.We therefore point the reader to the following works and references therein [15, 16,
30, 32]. A particularly prominent approach to the question of the existence of harmonic maps
was put forward in 1964 by Eells and Sampson [17]. Namely, they considered the negative
L2-gradient flow of (1.2)

∂tU
a − �h̃U a − h̃i j�a

bc(U )∂i U
b∂ j U

c = 0, t > 0, (1.3)

for arbitrary initial map U (0, ·) = U0. Due to the parabolic character of (1.3), the evolution
is expected to converge to a static solution, which represents a harmonic map. This approach
turned out to be very efficient under certain curvature assumptions on the target manifold. In
particular, it is shown in [17] that if M is closed and N is compact with non-positive sectional
curvature, then (1.3) admits for arbitrary smooth initial data a global solutionwhich converges
to a harmonic map as t → ∞. If the curvature of the target N has unrestricted sign, global
existence is known for “small” data [31]. In general, however, the flow (1.3) might form
singularities in finite time, as demonstrated first in [9, 11] for maps into the sphere.

In order to continue solutions past blowup, in a possibly weaker sense, one requires a
detailed understanding of the nature of singularities. Moreover, due to the local nature of the
blowup, it suffices to consider maps from the tangent space of the domain manifold, namely
R

d ; see, e.g., [19, 28, 37] for a discussion. In case d ≥ 3, a characterization due to Struwe
[37] provides the resolution of blowup solutions (along a sequence of times) into limiting
profiles, which are either given by non-constant harmonic maps from S

d−1 into N , or by a
profile coming from a self-similar solution. For N = S

d , explicit examples of blowup of
each type have been constructed [1, 2, 5, 6, 19, 20], and some even lead to stable blowup
dynamics [3, 4, 22]. However, for general target manifolds, the question of existence and
stability of blowup, and in particular of self-similar singularities, is largely open.

In the following, we restrict our attention to d ≥ 3 and to rotationally symmetric target
manifolds. More precisely, we study (1.3) for maps from R

d into N , where (N , h) is a
d-dimensional, complete, rotationally symmetric, warped product Riemannian manifold

(N , h) = (0, a∗) ×g S
d−1 for some a∗ ∈ (0,∞], (1.4)

where g is a suitable warping function; see, e.g., [10, 39]. In polar coordinates (u,�) ∈
(0, a∗) × S

d−1 on N , the metric h is given by

h = du2 + g(u)2d�2, (1.5)

where d�2 is the standard roundmetric on the sphere Sd−1 ↪→ R
d . Furthermore, the warping

function g must satisfy the following conditions

g ∈ C∞(R,R), g is odd, g′(0) = 1. (1.6)

1 Here, and throughout the paper, we use the Einstein summation convention.
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The point that corresponds to the limiting value u = 0 is referred to as the vertex of N . In
case of compactness of N , i.e., if a∗ < ∞ is the smallest positive zero of g, then, in addition
to (1.6), we require that g′(a∗) = −1 and that g extends 2a∗-periodically beyond the interval
(−a∗, a∗]. Rotational symmetry of the target allows us to restrict the attention to corotational
maps from R

d into N . Namely, by introducing polar coordinates (r , ω), r > 0, ω ∈ S
d−1,

on the domain, we restrict ourselves to maps of the form

(u(t, r , ω),�(t, r , ω)) = (u(t, r), ω). (1.7)

With this ansatz, the system (1.3) reduces to a single PDE for u. In particular, by setting
rv(t, r) := u(t, r), the initial value problem for (1.3) is equivalent to

⎧⎨
⎩

∂tv − ∂2r v − d + 1

r
∂rv + d − 1

r3
(
g(rv)g′(rv) − rv

) = 0, t > 0,

v(0, ·) = v0.
(1.8)

From the analytic point of view it is convenient to consider on N so-called normal coor-
dinates U = (U 1, . . . , U d), where

U j := u � j , for j = 1, . . . , d; (1.9)

see, e.g., [36]. In thisway, N (including its vertex) can be identifiedwith the ball Bd
a∗(0) ⊂ R

d .
Then, in normal coordinates, a corotational solutionU (t, ·) : Rd → R

d to (1.3) can bewritten
as

U (t, x) = u(t, |x |) x

|x | = xv(t, |x |), (1.10)

where v solves (1.8). We take this point of view in the following.

1.1 Main results

1.1.1 Existence of shrinkers

One way of exhibiting blowup is via self-similar solutions. Since the system (1.3) is invariant
under the scaling

U (t, x) 
→ Uλ(t, x) := U (t/λ2, x/λ), λ > 0,

it is plausible to look for non-trivial solutions of the following form

UT (t, x) = 	

(
x√

T − t

)
, T > 0, (1.11)

for a profile 	 : Rd → N . This type of self-similar (shrinking) solutions are also referred to
as shrinkers or homothetically shrinking solitons. In the corotational case, UT corresponds
to

vT (t, r) = 1√
T − t

φ

(
r√

T − t

)
, (1.12)

where in normal coordinates the similarity profiles are related by 	(x) = xφ(|x |).
In this paper, we study the existence and stability of solutions (1.11). Theminimal require-

ments we impose on the profile 	 : Rd → R
d are those of being smooth and bounded. By
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inserting the ansatz (1.12) into (1.8) we obtain an ODE for the profile φ = φ(ρ),

φ′′ +
(

d + 1

ρ
− ρ

2

)
φ′ − 1

2
φ − d − 1

ρ3

(
g
(
ρφ

)
g′

(
ρφ

)− ρφ
)
= 0. (1.13)

The existence of shrinkers depends, of course, on the geometry of the target N , which is
in turn completely encoded in the warping function g. From [17, 29], we know that the
assumption that N is non-positively curved precludes the formation of singularities. The
property of having non-positive sectional curvature formanifolds of type (1.4)–(1.5) is simply
characterized by the condition that

g′′(u) ≥ 0 for all u ∈ [0,∞);
see, e.g., [14]. One natural question would be as to whether (and how) this class of manifolds
can be enlarged so as to still preclude the existence of blowup in general, and shrinkers
in particular. An obvious candidate is the family of manifolds that are called “geodesically
convex” by Shatah and Tahvildar-Zadeh in [36], and are characterized by

g′(u) > 0 for all u ∈ [0,∞). (1.14)

We remark that the existence of self-similar blowup for this class of manifolds in the setting
of wave maps, the hyperbolic analogue of the harmonic map heat flow, has already been
studied in [36]. Using finite-speed of propagation, the authors in particular prove that for
every d ≥ 4 there exists a rotationally symmetric target satisfying (1.14) that allows for a
corotational self-similar blowup solution. As it turns out, for the harmonic map heat flow
this is not the case. We state this in the form of a proposition, and provide a short proof in
Sect. 1.3.

Proposition 1.1 Let d ≥ 2 and suppose (N , h) is a d-dimensional warped product Rieman-
nian manifold given by (1.4)–(1.5). If the warping function g satisfies (1.14), then the heat
flow of harmonic maps from R

d into N does not admit a non-trivial, smooth and bounded
corotational self-similar shrinking solution. Boundedness here stands for the image of the
shrinker being contained inside a bounded neighborhood of the vertex of N .

Note that Proposition 1.1 applies to a large class of positively curvedmanifolds, namely those
that have an increasing but strictly concave warping function g. Furthermore, it follows that
for a manifold (1.4)–(1.5) to admit a corotational shrinker, a necessary condition is that it
contains an “equator”, i.e., there exists u∗ > 0 such that g′(u∗) = 0. One prominent manifold
of that type is, of course, the sphere. What is more, it is known that the heat flow of harmonic
maps from R

d into the d-sphere admits for all 3 ≤ d ≤ 6 a corotational shrinker; see, e.g.,
[19, 20]. However, this seizes to be true for d ≥ 7; see [7]. To the best of knowledge of the
authors, there are no known examples of target manifolds that admit a corotational shrinker
for d ≥ 7. The purpose of the first of the two main result of this paper is to fill this gap.

Theorem 1.2 Let 0 < γ <
√
2− 1. For every d ≥ 4 there exists a compact, d-dimensional,

rotationally symmetric Riemannian manifold (N , h)given by (1.4)–(1.5), such that the follow-
ing holds: The heat flow of harmonic maps from R

d into N admits a non-trivial corotational
shrinker

UT (t, x) = 	

(
x√

T − t

)
,

where the profile 	 : Rd → N is smooth and furthermore,

h(	(x), p) ≤ rg + γ (1.15)
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for all x ∈ R
d , where p is the vertex of N and rg is the least positive critical point of the

warping function g.

We defer the proof to Sect. 1.4, although we will refer to it prior to that in the statement
of the Theorem 1.4 below.

Remark 1.3 Note that Proposition 1.1 implies that the image of any corotational shrinker
strictly contains the closed geodesic ball centered at the vertex of the target and character-
ized by g′(u) > 0. Theorem 1.2, on the other hand, shows that this just marginally holds
in general. Namely, there are target manifolds that allow for a shrinker such that the above
described geodesic ball just barely fails to contain the image of the shrinker. In particular,
(1.15) implies that in normal coordinates

‖	‖L∞(Rd ) ≤ rg + γ.

1.1.2 Stability of shrinkers

Given a blowup solution, the natural question is whether it is stable under small perturbations.
We show that the shrinker UT constructed in the proof of Theorem 1.2 is nonlinearly asymp-
totically stable under small corotational perturbations of the initial datum. More precisely,
we prove that there is an open set (in a suitable topology) of corotational initial data around
U1(0, ·) = 	, for which the Cauchy evolution of (1.3) forms a singularity in finite time T > 0
by converging to UT , that is, to the profile 	, after self-similar rescaling. For reasons that are
explained below, we fix a value for γ and restrict ourselves to a certain range of dimensions.

Theorem 1.4 Let γ = 1
4 , d ∈ {4, 5, 6, 7}, and (N , h) and UT be the Riemannian manifold

and the corresponding shrinker constructed in the proof of Theorem 1.2. Assume that s, k > 0
satisfy

d

2
< s ≤ d

2
+ 1

2d
, k > d + 2, k ∈ N. (1.16)

Then, there exists ε > 0 such that for any corotational initial datum of the form

U0 = 	 + η0,

where η0 : Rd → R
d is a Schwartz function satisfying

‖η0‖Ḣ s∩Ḣ k (Rd ) ≤ ε,

there exists T > 0 and a classical solution U ∈ C∞([0, T ) × R
d) to (1.3), whose gradient

blows up at the origin as t → T−. Furthermore, U can be decomposed in the following way

U (t, x) = 	

(
x√

T − t

)
+ η

(
t,

x√
T − t

)
, (1.17)

where for any r ∈ [s, k] we have that

‖η(t, ·)‖Ḣr (Rd ) → 0 (1.18)

in the limit t → T−.

We follow with several remarks.
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Remark 1.5 From (1.18) it follows that

‖U (t,
√

T − t ·) − 	‖Ḣr (Rd ) → 0, for t → T−.

In other words, the solution U , which starts off as a small deviation from 	, converges upon
self-similar rescaling back to 	 in a suitably chosen topology. This corresponds to what
is conventionally meant by stability of self-similar solutions. Based on the restrictions on
the choice of the lower Sobolev exponent s in (1.16), we bairly fail to control the L∞(Rd)

norm of the perturbation η, which means, that it could in principle, grow uncontrollably
pointwise and thereby wrap around the target manifold multiple times. However, by Sobolev
embedding, we infer that ‖∇η(t, ·)‖L∞(Rn) → 0, which implies that in the limit t → T− we
have

‖√T − t ∇U (t,
√

T − t ·) − ∇	‖L∞(Rd ) → 0.

Remark 1.6 The proof of Theorem 1.4 hinges on the spectral properties of the operator
representing the linearization around the shrinker. Here, obtaining results that are uniform
in d appears to be difficult. Hence, in order to provide a fully rigorous proof, we restrict
ourselves to lower space dimensions and a fixed value of γ . However, an analogous result
to Theorem 1.4 can be obtained in any given dimension d ≥ 4 and γ ∈ (0, γ ∗) for some
γ ∗ = γ ∗(d) <

√
2− 1.

Additionally, the restrictions on s, k in (1.16) guarantee exponential decay of the linearized
flow on a suitable subspace as well as the local Lipschitz-continuity of the nonlinearity
produced by the warping function g; see Sects. 4.1 and 5.

Remark 1.7 The proof Theorem 1.4 is similar in spirit to the approach developed in [25]
by the first and the third author for the Yang-Mills heat flow in d ≥ 5; see also [4] for the
three-dimensional harmonic map heat flow into the sphere by Biernat, Donninger and the
third author. However, in contrast to [4, 25], we cannot work entirely in Sobolev spaces
of integer order. In particular, in order to control the evolution in an intersection Sobolev
space Ḣ s ∩ Ḣ k , we necessarily have s /∈ N; see Sect. 1.5 below for more details. In turn, by
generalizing the approach to this situation, we provide a framework for studying stability of
singularity formation via shrinkers for the harmonic map heat flow in the corotational case
for arbitrary dimension d ≥ 3. In particular, modulo solving a spectral problem, our methods
can be applied to extend the result of [4] to d ∈ {4, 5, 6}.

1.2 Related results

The analysis of the heat flow of harmonic maps is a vast subject, and it is impossible to review
all of the relevant works here. Therefore, we concentrate on the results about singularity
formation that are related to our work, while for the general background we point the reader
to, e.g., [32, 38]. We emphasize that we survey primarily the papers that concern maps from
R

d into rotationally symmetric manifolds.
First we note that for corotational maps the energy functional (1.1) reduces (up to a

constant) to

E(u) = 1

2

∫ ∞

0
rd−1

(
(∂r u)2 + d − 1

r2
g(u)2

)
dr .

With the natural scaling uλ(t, r) = u(t/λ2, r/λ) we obtain E(uλ)(t) = λd−2E(u)(t/λ2),
which shows that the problem is energy critical in d = 2 and supercritical in d ≥ 3.
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In the energy critical case, Raphaël and Schweyer proved in [33] that there is a large class
of rotationally symmetric targets (including the 2-sphere) that allow for corotational blowup
solutions. What is more, they obtained stability of the underlying blowup mechanism see
also [34] for a refined description of possible blowup regimes that include unstable ones as
well. As is typical for the problems of critical type, the blowup in the aforementioned papers
is non-self-similar, and takes place via rescaling of a harmonic map. For a classical result on
blowup for maps from bounded 2-dimensional domains, see [9], and for more recent results,
see [12, 13].

In the energy supercritical case, d ≥ 3, the first construction of blowup was provided by
Coron and Ghidaglia [11], for maps into S

d . Subsequently, Fan [19] showed that within the
class of corotational maps into Sd there are infinitely many self-similar blowup solutions, but
only for the restricted range 3 ≤ d ≤ 6. For d ≥ 7, later on Bizoń andWasserman [7] proved
that shrinkers are in fact absent. Gastel, on the other hand, showed in [20] that if one allows
for non-corotational maps, namely those of higher equivariance classes that take values in
spheres of dimensions strictly higher than the one of the domain, then there are self-similar
solutions for any d ≥ 3. In terms of stability of self-similar blowup, the only known works
to the authors are [3], where Biernat and Donninger construct a spectrally stable self-similar
solution in d = 3, and [4], where they together with the third author of this paper prove
that the constructed blowup profile is nonlinearly stable. Existence and stability for non-self-
similar blowup was considered in several works, in particular by Biernat [1], Ghoul, Ibrahim
and Nguyen [22], and Biernat and Seki [6] for maps into the sphere. For results discussing
the question of continuation beyond blowup we refer the reader to [2, 21].

1.3 Proof of Proposition 1.1

We argue by contradiction. Assume there is a non-trivial corotational map 	 : Rd → N that
is smooth, bounded, and such that (1.11) solves (1.3) for t < T . This, in particular, means
that in the normal coordinates on N , we have that 	(x) = xφ(|x |), where φ : [0,∞) → R

is smooth and satisfies (1.13). Additionally, boundedness of 	 implies boundedness of ρ 
→
ϑ(ρ) := ρφ(ρ) on [0,∞).

Now, without loss of generality, we can assume that φ(0) > 0, as otherwise by reflection
symmetry we can consider −φ. Note that (1.14) and (1.6) imply that

f (u) := g(u)g′(u) > 0 for u > 0. (1.19)

Also note that (1.13) implies

d

dρ

(
ρd−1e−

ρ2

4 ϑ ′(ρ)

)
= (d − 1)ρd−3e−

ρ2

4 f
(
ϑ(ρ)

)
. (1.20)

Since φ(0) > 0, we have that ϑ(ρ) > 0 for small positive values of ρ. Based on this,
we conclude that ϑ must, in fact, be positive on the whole interval (0,∞). Indeed, there
would otherwise be the smallest ρ∗ > 0 such that ϑ(ρ∗) = 0, and integrating (1.20) on
(0, ρ∗) would yield a non-positive number on the left and positive on the right. Now, as ϑ is
globally positive, from (1.20) we have that ρ 
→ ρd−1e−ρ2/4ϑ ′(ρ) is increasing on (0,∞).

Consequently, since there is a small enough ρ0 > 0 such that C := ρd−1
0 e−

ρ20
4 ϑ ′(ρ0) > 0,

we have that

ϑ ′(ρ) ≥ Cρ1−de
ρ2

4
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for ρ ≥ ρ0. From here, we get that ϑ(ρ) →+∞ as ρ →+∞, which is in contradiction
with boundedness of 	.

1.4 Proof of Theorem 1.2

To construct the manifold (N , h), we only need to specify the warping function g. To begin,
we fix 0 < γ <

√
2 − 1. For d ≥ 4 we define g for small values of the argument in the

following way

g(u) := u
√
1− αu2 + βu4, (1.21)

where

α = 3

2(d − 1)(1+ γ )4
+ 1

2
, and β = 1

(d − 1)(1+ γ )4
. (1.22)

For this choice of g, the corresponding shrinker equation

φ′′(ρ)+
(

d + 1

ρ
− ρ

2

)
φ′(ρ)− 1

2
φ(ρ)+ (d − 1)

(
2αφ(ρ)3 − 3βρ2φ(ρ)5

) = 0

admits an explicit solution

φ(ρ) = a√
ρ2 + b

, (1.23)

where

a = 1+ γ and b = 2γ (2+ γ )
(
(d − 1)(1+ γ )2 − 3

)
(1+ γ )2

. (1.24)

It is straightforward to conclude that the least positive zero of g′ is given by rg = 1. Further-
more, we have that φ is smooth and

sup
ρ≥0

|ρφ(ρ)| = 1+ γ. (1.25)

We now also prove that g(u) > 0 for u ∈ (0, 1 + γ ]. If α2 − 4β < 0 then g(u) > 0 for all
u > 0 and in particular for u ∈ (0, 1+ γ ]. Otherwise, the least positive zero of g is given by

u∗ =
√

α − √
α2 − 4β

2β
,

and it is therefore enough to prove that 1 + γ < u∗. By simple algebraic manipulation we
see that this is equivalent to

(d − 1)(1+ γ )4 − 2d(1+ γ )2 + 3 < 0,

which holds when d ≥ 4 and γ <
√
2 − 1. Now, we simply extend g beyond u = 1 + γ

in a way that yields a compact manifold. In conclusion, we constructed a warping function
g that defines a compact manifold (N , h), and such that the shrinker ODE (1.13) admits an
explicit solution (1.23) (note that this is ensured by (1.25)). Furthermore, from (1.25) we
deduce (1.15).

123



Existence and stability of shrinkers for the harmonic map... Page 9 of 33 96

1.5 Outline of the proof of Theorem 1.4

Since the heat flowof corotational perturbations ofUT is governed by the (d+2)-dimensional
radial heat equation (1.8), we let n := d + 2 and consider the Cauchy problem for the
corresponding n-dimensional semilinear heat equation in w(t, x) := v(t, |x |)

⎧⎨
⎩

∂tw − �w = n − 3

|x |3
(
|x |w − g

(|x |w)
g′

(|x |w))
, t > 0,

w(0, ·) = w0(| · |),
which admits an explicit self-similar solution

wT (t, x) = 1√
T−t

φ
( |x |√

T−t

)
,

with φ given by (1.23)–(1.24). Consequently, the majority of our work consists of proving
stability of wT under small radial perturbations, which we then translate into a result about
UT by using the equivalence of Sobolev norms of corotational maps and those of their radial
profiles. The starting point are the similarity variables

τ := ln
(

T
T−t

)
and y := x√

T−t
.

By this, and the scaling of the dependent variable ψ(τ, y) = √
T − t w(t, x), self-similar

shrinking solutions become static, i.e., τ -independent, and thereby the problem of finite time
stability of blowup becomes the one of the asymptotic stability of a steady state profile. In
particular, assuming ψ(τ, ·) = φ(| · |) + ϕ(τ, ·), we obtain an equation for the perturbation
ϕ,

{
∂τ ϕ(τ, ·) = Lϕ(τ, ·) +N (ϕ(τ, ·)), τ > 0,

ϕ(0, ·) = √
T w0(

√
T | · |) − φ(| · |), (1.26)

with

L f (x) = � f (x) − 1
2 x · ∇ f (x) − 1

2 f (x) + V (x) f (x),

where the potentialV comes from linearizing aroundφ(|·|), andN is the nonlinear remainder.
First, one notices that L can be realized as a self-adjoint operator on a Hilbert spaceH, which
corresponds to a weighted L2-space of radial functions, see (2.14). However, since the weight
function is exponentially decaying, it is impossible to control the nonlinearity in such a setting.
Instead, we study the evolution in the intersection radial Sobolev space

Xk
s (Rn) = Ḣ s

r (Rn) ∩ Ḣ k
r (Rn),

with 0 < s − sc � 1, where sc = n/2 − 1 is the critical Sobolev exponent, and k ∈ N,
k � 1. The conditions on s, k are dictated by the following requirements. First, the choice
s > sc = n

2 −1 ensures exponential decay of the linearized evolution on a suitable subspace.
Furthermore, to obtain a reasonable space of distributions, we need s < n

2 , and thus, s has
to be non-integer. In addition, if k > n

2 , then Xk
s embeds continuously into L∞(Rn). The

stronger assumptions implied by (1.16) are due to an application of a generalized Schauder
estimate ([23], Proposition A.1), which allows us to prove the local Lipschitz property of the
nonlinearity.

In Xk
s , the self-adjoint structure of the linearized problem is lost and by that the standard

self-adjoint spectral and semigroup techniques become inaccessible. However, exploiting the
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96 Page 10 of 33 I. Glogić et al.

fact that Xk
s embeds continuously into H, see Lemma 2.1, allows us to transfer results on

the spectrum of L in H into growth bounds for the semigroup generated by L in Xk
s . In this

step, the fractional nature of s poses severe difficulties compared to previous works, see in
particular Lemma 4.5 and Proposition 4.6.

To analyze the spectral properties of L in H, we study the corresponding Schrödinger
operator and use a supersymmetric approach to show that the spectrum of L , which consists
only of real isolated eigenvalues, is confined to the left half plane, except for λ = 1. However,
this eigenvalue is an artifact of the time translation symmetry, and therefore not a genuine
instability. Consequently, L generates a semigroup onH, which decays exponentially on the
stable subspace orthogonal to the unstable mode G. Since G ∈ Xk

s , the orthogonal projection
onto G inH gives rise a (non-orthogonal) projection in Xk

s and by this, we are able to prove
exponential decay of the linearized evolution in Xk

s on an invariant subspace.
Following this, we employ a fixed point argument, where by a Lyapunov-Perron type

argument we show that for every initial datumw0 that is close enough to φ(| · |) there exists a
choice of time T near 1 that yields a global and exponentially decaying solution to (1.26). By
using regularity arguments, we show that smooth and rapidly decaying initial datum ϕ(0, ·)
leads to smooth solution. Finally, by using the equivalence of homogeneous Sobolev norms
we translate this to the stability result for UT , thereby establishing Theorem 1.4.

1.6 Notation and conventions

We write a � b if there exists a constant C > 0, such that a ≤ Cb and we write a � b if
a � b and b � a. If the constant C depends on some parameter ε, then we write a �ε b. We
denote the open ball with radius R > 0 in R

d by Bd
R and drop the index d if the dimension

is clear from context. We also use the common Japanese bracket notation 〈x〉 := √
1+ |x |2.

By C∞(Rd) and S(Rd) we denote the space of smooth functions and the space of Schwartz
functions respectively. By C∞

c (Rd) we denote the standard test space consisting of smooth
and compactly supported functions. In case of radial functions we use a lower index r as in
C∞

r (Rd), Sr (R
d), C∞

c,r (R
d). For convenience, we also write C∞(Rd), C∞

c (Rd) and S(Rd)

for sets of vector-valued functions whose every component belongs to that space. For a closed
linear operator (L,D(L)), we write ρ(L) for the resolvent set, and σ(L) := C\ρ(L) for the
spectrum. Given λ ∈ ρ(L), we use the following convention for the resolvent RL(λ) :=
(λ− L)−1. For f ∈ C∞

c (Rd), we use the following definition of the Fourier transform

f̂ (ξ) = F f (ξ) := (2π)−
d
2

∫
Rd

e−iξ ·x f (x)dx, ξ ∈ R
d .

2 Formulation of the problem

In this section we introduce similarity variables in which the self-similar blow up solution
φ becomes a static solution. Note that Eq. (1.8) is a semilinear heat equation in dimension
d+2. In the following we define n := d+2, n ≥ 6, and study the following Cauchy problem
for w(t, x) := v(t, |x |), x ∈ R

n , and radial initial data close to wT with T = 1, where

wT (t, x) = 1√
T − t

φ

( |x |√
T − t

)
, φ(ρ) = a√

ρ2 + b
, (2.1)
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with a, b given in (1.24). More precisely, we consider for radial functions ϕ0 : Rn → R the
initial value problem

⎧⎨
⎩

(∂t − �) w(t, x) = n − 3

|x |3
(
|x |w(t, x)− F

(|x |w(t, x)
))

, t > 0,

w(0, ·) = φ(| · |) + ϕ0,

(2.2)

where F := gg′ and g is the warping function constructed in the proof of Theorem 1.2.

2.1 Similarity variables

Let T > 0, for t ∈ [0, T ) and x ∈ R
n we define

τ = τ(t) := ln

(
T

T − t

)
and y = y(t, x) := x√

T − t
. (2.3)

Consequently, the time interval [0, T ) is mapped into [0,∞). The partial derivative with
respect to t and the Laplacian become

∂t = eτ

T

(
∂τ + 1

2
y · ∇y

)
, �x = eτ

T
�y .

With

ψ(τ, y) := √
T e−

τ
2 w

(
T − T e−τ ,

√
T e−

τ
2 y

)
(2.4)

we reformulate (2.2) as

⎧⎨
⎩

(
∂τ − �y + �

)
ψ(τ, y) = n − 3

|y|3
(
|y|ψ(τ, y) − F

(|y|ψ(τ, y)
))

, τ > 0,

ψ(0, ·) = √
T φ(

√
T | · |) +√

T ϕ0(
√

T ·),
(2.5)

where we define the formal operator

[� f ](y) := 1

2

(
y · ∇ f (y) + f (y)

)
, y ∈ R

n, (2.6)

acting on functions f defined on Rn . To study the evolution near φ, we make the ansatz

ψ(τ, ·) = φ(| · |) + ϕ(τ, ·)
for a radial function ϕ and write the evolution equation for the perturbation as

{
∂τ ϕ(τ, ·) = Lϕ(τ, ·) +N (ϕ(τ, ·)), τ > 0,

ϕ(0, ·) = U(ϕ0, T ),
(2.7)

where L := L0 + L1,

L0 f := � f − � f , L1 f := V f , (2.8)

with the radial potential V given by

V (y) := 3(n − 3)
(
2αφ2(|y|) − 5β|y|2φ4(|y|)), y ∈ R

n, (2.9)
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for α, β defined in (1.22). The nonlinearity can be written as

[N (ϕ(τ, ·))](y)

= (n − 3)

|y|3
(

F(|y|φ(|y|))+ F ′(|y|φ(|y|))|y|ϕ(τ, y)− F
(|y|φ(|y|)+ |y|ϕ(τ, y)

))
.

(2.10)

Finally, the initial condition for ϕ is given by

ϕ(0, ·) = √
T φ(

√
T | · |) +√

T ϕ0(
√

T ·) − φ(| · |) =: U(ϕ0, T ). (2.11)

2.2 Functional setup

To create a suitable functional setup, we rely on the homogeneous Sobolev inner product

〈 f , g〉Ḣ s (Rn) := 〈| · |sF f , | · |sFg〉L2(Rn),

where f , g ∈ C∞
c (Rd), s ≥ 0, and F is the n-dimensional Fourier transform. This induces

the homogeneous Sobolev norm on C∞
c (Rn)

‖ f ‖2
Ḣ s (Rn)

:= 〈 f , f 〉Ḣ s (Rn). (2.12)

As usual, the homogeneous Sobolev space Ḣ s(Rn) is defined as the completion of C∞
c (Rn)

under the norm (2.12). Now, given s, k ≥ 0 and f , g ∈ C∞
c (Rn), we define the inner product

〈 f , g〉Xk
s (Rn) := 〈 f , g〉Ḣ s (Rn) + 〈 f , g〉Ḣ k (Rn),

which induces the norm ‖ · ‖Xk
s (Rn) on C∞

c (Rn). This leads to the definition of the central

space of the paper, Xk
s (Rn), which we define as the completion of the space of radial test

functions C∞
c,r (R

n) with respect to ‖ · ‖Xk
s (Rn) for (s, k) satisfying

n

2
− 1 < s <

n

2
− 1+ 1

2(n − 2)
, and k > n, n ≥ 6. (2.13)

Furthermore, we set σ(x) := e−|x |2/4 for x ∈ R
n and define a weighted L2-space of radial

functions

H := { f ∈ L2
σ (Rn) : f is radial}, (2.14)

with induced norm ‖ · ‖H coming from the inner product

〈 f , g〉H :=
∫
Rn

f (x)g(x)σ (x)dx, for f , g ∈ H.

Lemma 2.1 For (s, k) as in (2.13), the following embeddings hold

Xk
s (Rn) ↪→ L∞(Rn) ↪→ H.

Furthermore, Xk
s (Rn) is closed under multiplication, i.e.,

‖ f g‖Xk
s (Rn) � ‖ f ‖Xk

s (Rn)‖g‖Xk
s (Rn),

for all f , g ∈ Xk
s (Rn).
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Proof The embedding Xk
s (Rn) ↪→ L∞(Rn) follows from the choice s < n

2 < k and
L∞(Rn) ↪→ H is a consequence of the strong decay of the weight function σ . The details
are provided in Appendix A.1. The algebra property follows by the generalized Leibniz rule,
see [27], Theorem 1, together with the embedding of Xk

s (Rn) into L∞(Rn). ��
Lemma 2.2 Let (s, k) satisfy (2.13). If f ∈ C∞

r (Rn) satisfies

|∂α f (x)| � 〈x〉−1−|α|,

for α ∈ N
n
0 , |α| ≤ k and all x ∈ R

n, then f ∈ Xk
s (Rn).

Proof The statement is proved by a standard approximation argument. For the interested
reader we attached a detailed proof in Appendix A.3. ��

3 Self-adjoint spectral theory

In this section, we investigate the linear operator L that appears in ourmain problem (2.7).We
first determine the spectrum of L in the self-adjoint setting and use this to show exponential
decay (on a suitable subspace) of the semigroup generated by L in Xk

s (Rn). The splitting
L = L0 + L1 allows us to study the free operator L0 first and then extend our results to the
full case by perturbation.

It is easy to see that L together with the domain D(L) := C∞
c,r (R

n) is an unbounded,
densely defined, symmetric operator on H. We have the following result.

Proposition 3.1 The operator (L,D(L)) is closable in H and the closure L : D(L) ⊆ H →
H is self-adjoint, has compact resolvent and generates a strongly continuous semigroup
(S0(τ ))τ≥0 of bounded operators on H. For the spectrum of L, which consists only of eigen-
values, we have

σ(L) ⊆ (−∞, 0) ∪ {1}.
The spectral point λ = 1 is a simple eigenvalue with the normalized eigenfunction

G(x) = �(|x |)
‖�‖H , �(|x |) = (|x |2 + b)−

3
2 (3.1)

with constant b from (1.24).

Proof We first show that the operator L0 with D(L0) := D(L) is closable with closure
L0 : D(L0) ⊆ H → H being self-adjoint, having compact resolvent and generating a
strongly continuous semigroup on H. This semigroup is explicitly given by

[S0(τ ) f ](x) = e−
τ
2
(
Hκ(τ) ∗ f

)
(e−

τ
2 x), x ∈ R

n, (3.2)

where Hκ(τ)(x) = e−
|x |2
4κ(τ) (4πκ(τ))− n

2 and κ(τ) := 1− e−τ . This follows from the unitary
equivalence of L0 to the one-dimensional Schrödinger operator

[A0u](ρ) = −u′′(ρ)+ q(ρ)u(ρ), ρ ∈ R
+, (3.3)

with

q(ρ) := ρ2

16
+ (n − 3)(n − 1)

4ρ2 − n − 2

4
,
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and domain D(A0) = U−1D(L0), where the unitary operator U is defined as

U : L2(R+) → H, u 
→ Uu = |Sn−1|− 1
2 | · |− n−1

2 e
|·|2
8 u(| · |).

It is easy to see that−L0 = U A0U−1. Using the properties of q , standard results imply that
the unique self-adjoint extension of A0 is given by the maximal operator A0 : D(A0) ⊆
L2(R+) → L2(R+),

D(A0) := {u ∈ L2(R+) : u, u′ ∈ ACloc(R
+), A0u ∈ L2(R+)}; (3.4)

see [25], Lemma 3.1 for the details.Moreover,A0 has compact resolvent and is bounded from
below which implies the same for the self-adjoint operator L0 := −UA0U−1, D(L0) :=
UD(A0). Consequently, L0 generates a strongly continuous semigroup on H. Using the
transformation for the time variable given by (2.3) for T = 1, we infer that Hκ(τ) is just the
standard heat kernel in self-similar coordinates. By considering the definition of a semigroup
generator one can check that L0 generates the semigroup (S0(τ ))τ≥0.

To study the operator L = L0 + L1, we start with the observation that the potential V
given by (2.9) is bounded, i.e., ‖V ‖L∞(Rn) < ∞, which implies the boundedness of the
operator L1 on H. Therefore, L is closable and the closure is given by L = L0 + L1 with
domain D(L) = D(L0). The Kato-Rellich theorem (see, e.g., [41], Theorem 6.4), shows the
self-adjointness of L and it similarly follows that L has compact resolvent. Furthermore, the
Bounded Perturbation Theorem (see, e.g., [18], p. 158, Theorem 1.3) yields the fact that L
is the generator of a strongly continuous semigroup (S(τ ))τ≥0 on H.

Next we investigate the spectrum of L via the properties of A : D(A) ⊆ L2(R+) →
L2(R+) defined by D(A) = D(A0), Au = A0u − L1u. This operator is unitary equivalent
to −L via the map U . Thus it suffices to study the spectrum of A. To show σ(A) ⊆ {−1} ∪
(0,∞), we first observe that

�A(ρ) := e−
ρ2

8 ρ
n−1
2 (ρ2 + b)−

3
2 , ρ > 0,

belongs to D(A) and satisfies (−I d − A)�A = 0, which means −1 ∈ σ(A). The unitary
equivalence of −L and A implies that

(U�A)(x) = |Sn−1|− 1
2 (|x |2 + b)−

3
2 , x ∈ R

n,

is an eigenfunction of L to the eigenvalue λ = 1, i.e., 1 ∈ σ(L) and G as defined in (3.1) is
a normalized eigenfunction. By inspection of the spectral ODE it follows that the geometric
eigenspace is indeed one-dimensional.

To show that σ(A) \ {−1} is contained in (0,∞), we factorize A + 1 to get a new self-
adjoint operator that is isospectral with A except λ = −1. We write A = A+A− − 1 for
suitable operators A+, A− such that ker(A−) = span(�A). Explicitly,

A+ = −∂ρ − �′A
�A

, and A− = ∂ρ − �′A
�A

.

We define a self-adjoint operator corresponding to A−A+ − 1,

AS : D(AS) ⊆ L2(R+) → L2(R+), [ASu](ρ) = −u′′(ρ) +
(n2 − 1

4ρ2 + Q(ρ)
)

u(ρ),

where Q is given by

Q(ρ) = ρ2

16
− n

4
+ 1+ 3b(5a4β(n − 3) − 6)

(ρ2 + b)2
+ 3(2− b − (n − 3)(5a4β − 2a2α + 2))

ρ2 + b
,
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for ρ > 0. The constants appearing here are those from (1.22) and (1.24). In order to exclude
non-positive eigenvalues of AS , we apply a GGMT type integral criterion as stated in [25],
Theorem A.1. More precisely, we define for n ∈ {6, 7, 8, 9} and p > 1,

B(n, p) := c(n, p)

∫ ∞

0
ρ2p−1|Q−(ρ)|pdρ, c(n, p) := (p − 1)p−1�(2p)

n2p−1 p p�(p)2
, (3.5)

where Q−(ρ) := min{0, Q(ρ)} for ρ > 0.We show that for every n we find a suitable p such
that B(n, p) < 1. It is easy to see that the potential Q has exactly one zero ρ∗ = ρ∗(n) > 0
and satisfies Q|(0,ρ∗) < 0 and Q|(ρ∗,∞) > 0. For n = 6 and p = 2, the integrand in (3.5) is
a simple rational function. Thus, one finds that

B(6, 2) < c(6, 2)
∫ 21

5

0
ρ3Q(ρ)2 <

4

5
,

where the last integral can be computed explicitly. For n ∈ {7, 8, 9} we proceed analogously
and choose for (n, p) the pairs (7, 2), (8, 4), (9, 4). TheoremA.1 in [25] now implies that the
spectrum ofAS is contained in [0,∞) and that zero is not an eigenvalue. AsAS is isospectral
with A modulo λ = −1, we infer that σ(A) ⊆ {−1} ∪ (0,∞) and by unitary equivalence it
follows that σ(L) ⊆ (−∞, 0) ∪ {1}. ��
Remark 3.2 The eigenvalue λ = 1 ofL is due to the time translation symmetry of the problem
and will be controlled later on by variation of the blowup time T in (2.7).

In the following, we define the orthogonal projection onto the unstable mode G,

P f := 〈 f , G〉HG, for f ∈ H. (3.6)

By the spectral structure of L, the linear evolution decays exponentially on the invariant
subspace ker P . Moreover, an even stronger result holds in terms of the graph norms corre-
sponding to fractional powers of the positive operator 1−L. More precisely, for k ∈ N0 and

f ∈ D((1− L)
k
2 ) we define

‖ f ‖
G((1−L)

k
2 )
:= ‖ f ‖H + ‖(1− L)

k
2 f ‖H, (3.7)

as the graph norm of order k. We note that C∞
c,r (R

n) is a core of (1− L)
k
2 .

Corollary 3.3 There exists ω0 > 0 such that for all k ∈ N0 and τ ≥ 0 we have

‖S(τ )(1− P) f ‖
G((1−L)

k
2 )
≤ e−ω0τ‖(1− P) f ‖

G((1−L)
k
2 )

, (3.8)

where f ∈ D((1− L)
k
2 ).

Proof The proof is a direct consequence of Proposition 3.1 together with the commutating

properties of (1− L)
k
2 for k ∈ N0; see [25], Proposition 3.6, for the details. ��

4 The linear evolution on Xk
s (R

n)

In this section, we consider the properties of the semigroup constructed in Proposition 3.1
when being restricted to Xk

s (Rn). We state some technical results first.
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Lemma 4.1 For j ∈ {0, ..., k}, we have Xk
s (Rn) ⊆ D((1− L)

j
2 ) and

‖(1− L)
j
2 f ‖H � ‖ f ‖Xk

s (Rn), (4.1)

for all f ∈ Xk
s (Rn).

Proof One finds that there exist smooth, radial and polynomially bounded functions wα

satisfying

‖(1− L)
j
2 f ‖H �

∑
|α|≤ j

‖wα∂α f ‖H,

for all f ∈ C∞
c,r (R

n). Exploiting the exponential decay of the weight function σ , we obtain

‖wα∂α f ‖H � ‖| · |−sα ∂α f ‖L2(Rn) � ‖ f ‖Ḣ sα+|α| � ‖ f ‖Xk
s (Rn),

by Hardy’s inequality, where sα = max{s − |α|, 0}. Note that the last inequality follows by
s ≤ sα + |α| ≤ k. For general f ∈ Xk

s (Rn) we use the density of C∞
c,r (R

n) in Xk
s (Rn) and

the closedness of (1− L)
j
2 . ��

Lemma 4.2 Let j ∈ N0 and R > 0. Then

‖∂α f ‖L2(Bn
R) �R, j

j∑
m=0

‖ f ‖G((1−L)
m
2 )

, (4.2)

for all f ∈ C∞
c,r (R

n) and all α ∈ N
n
0 with |α| = j .

Proof Let R > 0. We define the operator

B f := �

(
f̃

�

)′
,

for f ∈ C∞
c,r (R

n), where f = f̃ (| · |), and x ∈ R
n , with � denoting the eigenfunction of L

to the eigenvalue λ = 1; see Proposition 3.1. The formal adjoint operator in H is given by

B∗ f = − f̃ ′

μ
,

for μ(ρ) := e−
ρ
4 ρn−1�(ρ) and we can write (1− L) f = (B∗B f̃ )(| · |). For f ∈ C∞

c,r (R
n)

this implies

‖(B f )(| · |)‖2H = 〈B f (| · |), B f (| · |)〉H = 〈(B∗B f )(| · |), f )〉H
= 〈(1− L) f , f 〉H = ‖(1− L)

1
2 f ‖2H.

As inequality (4.2) is trivial for |α| = 0 due to the decay of the exponential weight function
σ , we first consider the case |α| = 1 and then show the estimate by induction. For |α| = 1
and i ∈ {1, ..., n}, we have

‖∂i f ‖2L2(BR)
=

∫
BR

x2i
|x |2 | f̃ ′(|x |)|2dx ≤

∫
BR

(
|(B f )(|x |)|2 + | f (x)|2

(
�′(|x |)
�(|x |)

)2 )
dx

≤ e
R2
4

∫
BR

e−
|x |2
4

(
|(B f )(|x |)| + | f (x)|2

(
�′(|x |)
�(|x |)

)2 )
dx

≤ CR
(‖B f ‖2H + ‖ f ‖2H

)
,
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which implies

‖∂α f ‖L2(BR) �R ‖ f ‖
G((1−L)

1
2 )

,

for all f ∈ C∞
c,r (R

n) and α ∈ N
n
0 with |α| = 1. To use induction we need the following

estimate

‖∂α f ‖L2(BR) �
|α|∑
i=0

‖D j f ‖L2(BR), (4.3)

which holds for all f ∈ C∞
r (Bn

R) and α ∈ N
n
0 (see [26], LemmaA.1), where the operators D j

are defined as follows: If j is even, one has D j f := �
j
2
r f̃ and if j is odd D j f := (

�
j−1
2

r f̃
)′,

where �r denotes the radial Laplacian on R
n . Note that Lemma A.1 in [26] is stated in

dimension n = 5 but can be straightforwardly adapted to higher dimensions. Furthermore,
we use the commutator relation

D j� = �D j + j

2
D j ,

for j ∈ N0 with the formal operator� from (2.6). Now assume that the inequality (4.2) holds
up to some j ∈ N. Then

‖D j+1 f ‖L2(BR ) = ‖D j−1(D2 f )‖L2(BR ) = ‖D j−1((L− 1+ 1+� − V ) f )‖L2(BR )

� ‖D j−1((1− L) f )‖L2(BR ) + ‖D j−1((� + 1) f )‖L2(BR ) + ‖D j−1(V f )‖L2(BR )

� ‖D j−1((1− L) f )‖L2(BR ) + ‖(�+ j+1
2

)
D j−1 f ‖L2(BR ) + ‖D j−1(V f )‖L2(BR )

�R, j

∑
α∈Nn

0|α|≤ j−1

‖∂α((1− L) f )‖L2(BR ) +
∑
α∈Nn

0|α|≤ j

‖∂α f ‖L2(BR )

�R, j

j−1∑
l=0

‖(1− L) f ‖G((1−L)
l
2 )
+

j∑
l=0

‖ f ‖G((1−L)
l
2 )

�R, j

j+1∑
l=0

‖ f ‖G((1−L)
l
2 )

,

for all f ∈ C∞
c,r (R

n), which, together with (4.3) implies the claim. Here we used that by the
definition of D j one has

‖D j f ‖L2(BR) �R, j

∑
α∈Nn

0|α|≤ j

‖∂α f ‖L2(BR),

for all f ∈ C∞
c,r (R

n). Furthermore, we exploited the boundedness of V and its derivatives
inside the ball with radius R to get the above estimate. ��

4.1 The semigroup on Xks (R
n)

Proposition 4.3 The restriction of (S(τ ))τ≥0 to Xk
s (Rn) defines a strongly continuous one-

parameter semigroup (SXk
s
(τ ))τ≥0 on Xk

s (Rn). Its generator is given by the part of L in

Xk
s (Rn), namely

LXk
s

f := L f , D(LXk
s
) := { f ∈ D(L) ∩ Xk

s (Rn) : L f ∈ Xk
s (Rn)}.
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Furthermore, the set of radial Schwartz functions Sr (R
n) is a core of LXk

s
.

Proof We first consider the free semigroup S0(τ ) and show that Xk
s (Rn) is invariant under

its action. Let f ∈ C∞
c,r (R

n) and τ > 0. By the explicit representation (3.2) we obtain

‖| · |sF(S0(τ ) f )‖L2(Rn) � e
1
2 ( n

2−1−s)τ‖| · |sF f ‖L2(Rn), (4.4)

where we used that the heat kernel Hκ(τ) is an element of L1(Rn) for τ > 0 with norm equal
to 1. The same holds for k instead of s. This implies the following bound for the operator
norm

‖S0(τ )‖L(Xk
s (Rn)) � max{e 1

2 ( n
2−1−s)τ , e

1
2 ( n

2−1−k)τ } = e
1
2 ( n

2−1−s)τ .

In a similar way we get the equality

‖| · |sF(S0(τ ) f − f )‖L2(Rn) = ‖| · |s(e τ
2 (n−1)e−(eτ−1)|·|2F( f )(e

τ
2 ·) − F f )‖L2(Rn),

by the explicit form of the heat kernel on the Fourier side. Again, the same holds for k instead
of s. An application of the dominated convergence theorem shows

lim
τ→0+

(S0(τ ) f − f ) = 0

in Xk
s (Rn) for all f ∈ C∞

c,r (R
n) and hence for all f ∈ Xk

s (Rn). Together with the embedding
Xk

s (Rn) ↪→ H by Lemma 2.1 all conditions for (S0(τ ))τ≥0 to be a strongly continuous
semigroup on Xk

s (Rn) are satisfied. A standard result from semigroup theory (see [18], p. 60,
Proposition 2.3) yields that the restriction of L0 to Xk

s (Rn) denoted by L0|Xk
s
with domain

D(L0|Xk
s
) = { f ∈ D(L0) ∩ Xk

s (Rn) : L0 f ∈ Xk
s (Rn)} generates the restricted semigroup

(S0(τ )|Xk
s
)τ≥0.

Since Xk
s (Rn) is closed under multiplication, see Lemma 2.1, and V ∈ Xk

s (Rn), we infer
that the operator L1 from (2.8) is bounded on Xk

s (Rn). The Bounded Perturbation Theorem
implies that LXk

s
generates a strongly continuous semigroup (SXk

s
(τ ))τ≥0 on Xk

s (Rn). That

this coincides indeed with the restriction of (S(τ ))τ≥0 to Xk
s (Rn) can be seen as in [25],

Proposition 3.14. Finally, since the set of radial Schwartz functions Sr (R
n) ⊂ Xk

s (Rn) is
dense and left invariant under the action of S0(τ ) for τ ≥ 0 we infer that Sr (R

n) is a core of
L0|Xk

s
and hence for the full operator LXk

s
. ��

Lemma 4.4 The restriction of the projection operator P defined by (3.6) to Xk
s (Rn) induces

a (non-orthogonal) projection PXk
s

on Xk
s (Rn),

PXk
s

f = 〈 f , G〉HG, for f ∈ Xk
s (Rn),

which commutes with the operator LXk
s

and the semigroup SXk
s
(τ ) for all τ ≥ 0. The kernel

of PXk
s

is given by

kerPXk
s
= { f ∈ Xk

s (Rn) : 〈 f , G〉H = 0}.
Proof By Lemma 2.2 and the fact that G = Cφ(| · |)3 for some constant C ∈ R we infer that
G ∈ Xk

s (Rn). For f ∈ Xk
s (Rn) we have

‖PXk
s

f ‖Xk
s
= |〈 f , G〉H|‖G‖Xk

s
≤ ‖ f ‖H‖G‖H‖G‖Xk

s
� ‖ f ‖Xk

s
,

by Lemma 2.1. That PXk
s
commutes with LXk

s
follows directly by G being the eigenfunction

of L to the eigenvalue λ = 1 and the self-adjointness of L in H. That PXk
s
commutes with

SXk
s
(τ ) for all τ ≥ 0 can be easily seen by again using the aforesaid properties. ��
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The main goal of this section is to show that the restricted semigroup (SXk
s
(τ ))τ≥0 exhibits

exponential decay on the stable subspace kerPXk
s
in Xk

s (Rn). For this, we need the following
estimate for the potential.

Lemma 4.5 Let R > 0. There are constants CR, C, εV > 0 such that

‖V f ‖Xk
s (Rn) ≤ CR

k∑
j=0

‖ f ‖
G((1−L)

j
2 )
+ C

RεV
‖ f ‖Xk

s (Rn),

for all f ∈ Xk
s (Rn).

Proof To show the claimed estimate we use that for all f ∈ C∞
c (Rn) and s as in (2.13) we

have

‖ f ‖Ḣ s (Rn) � ‖| · |−(n−�s�+s) ∗ (|∇|�s� f )‖L2(Rn) � ‖|∇|�s� f ‖L p(Rn) =: ‖ f ‖Ẇ �s�,p(Rn)

(4.5)

for 1
p = 1

2 + �s�−s
n by the Hardy-Littlewood-Sobolev inequality (see, e.g., [40], p. 335). This

allows us to take integer derivatives of the product V f instead of fractional ones appearing
in the Ḣ s(Rn) norm. In particular, we can use equivalence of norms (see, [40], p. 331), and
the standard Leibniz rule to infer that

‖V f ‖Ḣ s (Rn) � ‖V f ‖Ẇ �s�,p(Rn) �
∑
α∈Nn

0|α|=�s�

‖∂α(V f )‖L p(Rn)

�
∑
α∈Nn

0|α|=�s�

∑
β∈Nn

0
β≤α

(
α

β

)
‖∂β V ∂α−β f ‖L p(Rn),

for all f ∈ C∞
c,r (R

n). Thus, it suffices to estimate ∂β V ∂α−β f in L p(Rn) for α, β ∈ N
n
0 with

β ≤ α. For this we split

‖∂β V ∂α−β f ‖L p(Rn) ≤ ‖∂β V ∂α−β f ‖L p(BR) + ‖∂β V ∂α−β f ‖L p(Bc
R),

and use the decay |∂β V (x)| � 〈x〉−2−|β| for all β ∈ N
n
0 and x ∈ R

n . In BR we obtain by
Hölder’s inequality with 1

p = 1
2 + 1

q and Lemma 4.2

‖∂β V ∂α−β f ‖L p(BR) ≤ ‖∂β V ‖Lq (BR)‖∂α−β f ‖L2(BR) ≤ CR

|α|−|β|∑
j=0

‖ f ‖
G((1−L)

j
2 )

,

for some constant CR > 0. In Bc
R we use again Hölder’s inequality and exploit the decay of

V to get

‖∂β V ∂α−β f ‖L p(Bc
R) ≤ C‖| · |−2+m‖Lq (Bc

R)‖| · |−|β|−m∂α−β f ‖L2(Bc
R)

≤ C

RεV
‖ f ‖Ḣ |α|+m (Rn) ≤

C

RεV
‖ f ‖Xk

s (Rn),

for some C = C(m) > 0 and εV = ε(m) > 0, where m = max{s − |α|,−|β|}. Note that
the choice of m allows for Hardy’s inequality and the embedding Xk

s (Rn) ↪→ Ḣ |α|+m
r (Rn).
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For the exponent k we obtain

‖V f ‖Ḣ k (Rn) �
∑
α∈Nn

0|α|=k

‖∂α f ‖L2(Rn) ≤
∑
α∈Nn

0|α|=k

∑
β∈Nn

0
β≤α

(
α

β

)
‖∂β V ∂α−β f ‖L2(Rn),

for all f ∈ C∞
c,r (R

n), where

‖∂β V ∂α−β f ‖L2(Rn) ≤ ‖∂β V ∂α−β f ‖L2(BR) + ‖∂β V ∂α−β f ‖L2(Bc
R).

Again the behaviour of V together with Lemma 4.2 implies

‖∂β V ∂α−β f ‖L2(BR) ≤ CR

|α|−|β|∑
j=0

‖ f ‖
G((1−L)

j
2 )
≤ CR

k∑
j=0

‖ f ‖
G((1−L)

j
2 )

,

for some constant CR > 0. In Bc
R we infer

‖∂β V ∂α−β f ‖L2(Bc
R) ≤ C‖| · |−2−|β|∂α−β f ‖L2(Bc

R)

≤ C

R2 ‖| · |−|β|∂α−β f ‖L2(Bc
R)

≤ C

R2 ‖| · |−(|β|−l)∂α−β f ‖L2(Rn)

≤ C

R2 ‖ f ‖Ḣ k−l (Rn)

≤ C

R2 ‖ f ‖Xk
s (Rn),

for some C > 0 and l ≥ 0 satisfying 0 ≤ |β| − l < n
2 and k − l ≥ s, which justify the

application of Hardy’s inequality and the embedding Xk
s (Rn) ↪→ Ḣ k−l

r (Rn).
Finally, by putting everything together, the density of C∞

c,r (R
n) ⊆ Xk

s (Rn) and the closed-

ness of (1− L)
j
2 for j ∈ N0, we obtain

‖V f ‖Xk
s (Rn) ≤ CR

k∑
j=0

‖ f ‖
G((1−L)

j
2 )
+ C

RεV
‖ f ‖Xk

s (Rn),

for all f ∈ Xk
s (Rn) with suitably chosen CR > 0, C > 0 and some εV > 0. ��

Proposition 4.6 There exists ω > 0 such that

‖SXk
s
(τ )(1− PXk

s
) f ‖Xk

s (Rn) � e−ωτ‖(1− PXk
s
) f ‖Xk

s (Rn), (4.6)

for all τ ≥ 0 and f ∈ Xk
s (Rn).

Proof Let f ∈ C∞
c,r (R

n) and τ ≥ 0. It is easy to see that f̃ := (1 − PXk
s
) f belongs to

D(LXk
s
). First note that by standard properties of the Fourier transform we have

〈L0 f , f 〉Ḣ s (Rn) = 〈| · |sF(� f − � f ), | · |sF f 〉L2(Rn)

= −‖ f ‖2
Ḣ s+1(Rn)

+ 1
2

( n
2 − 1− s

) ‖ f ‖2
Ḣ s (Rn)

≤ −ωs‖ f ‖2
Ḣ s (Rn)

,
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for all f ∈ C∞
c,r (R

n)with ωs := 1
2

(
s+1− n

2

)
> 0 and the same holds for the Ḣ k(Rn)−norm

withωk := 1
2

(
k+1− n

2

)
> 0 instead. By the density ofC∞

c,r (R
n) in Xk

s (Rn) and the closedness
of L0|Xk

s
we infer

〈L0 f , f 〉Xk
s (Rn) ≤ −ωs‖ f ‖2Xk

s (Rn)
,

for all f ∈ Xk
s (Rn), as one has ωs < ωk . This implies

‖SXk
s
(τ ) f̃ ‖Xk

s (Rn)

d

dτ
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn)

= 1

2

d

dτ
‖SXk

s
(τ ) f̃ ‖2Xk

s (Rn)

= 〈LXk
s
SXk

s
(τ ) f̃ , SXk

s
(τ ) f̃ 〉Xk

s (Rn)

≤ −ωs‖SXk
s
(τ ) f̃ ‖2Xk

s (Rn)
+ |〈V SXk

s
(τ ) f̃ , SXk

s
(τ ) f̃ 〉Xk

s (Rn)|
≤ −ωs‖SXk

s
(τ ) f̃ ‖2Xk

s (Rn)
+ ‖V SXk

s
(τ ) f̃ ‖Xk

s (Rn)‖SXk
s
(τ ) f̃ ‖Xk

s (Rn),

for all f ∈ C∞
c,r (R

n). Dividing both sides by the norm of SXk
s
(τ ) f̃ togehter with the results

from Lemma 4.5, Corollary 3.3 and Lemma 4.1 we obtain

d

dτ
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) ≤
(

C

RεV
− ωs

)
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) + CR

k∑
j=0

‖SXk
s
(τ ) f̃ ‖

G((1−L)
j
2 )

≤
(

C

RεV
− ωs

)
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) + CRe−ω0τ‖ f̃ ‖
G((1−L)

j
2 )

≤
(

C

RεV
− ωs

)
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) + CRe−ω0τ‖ f̃ ‖Xk
s (Rn).

Next we choose R > 0 large enough to get

d

dτ
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) ≤ −ωs

2
‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) + Ce−ω0τ‖ f̃ ‖Xk
s (Rn), (4.7)

which is equivalent to

d

dτ

[
e

ωs
2 τ‖SXk

s
(τ ) f̃ ‖Xk

s (Rn)

]≤ Ce(
ωs
2 −ω0)τ‖ f̃ ‖Xk

s (Rn).

Integrating both sides from 0 to τ yields

e
ωs
2 τ‖SXk

s
(τ ) f̃ ‖Xk

s (Rn) − ‖ f̃ ‖Xk
s (Rn) ≤ C‖ f̃ ‖Xk

s (Rn)
e(

ωs
2 −ω0)τ−1
ωs
2 −ω0

,

which in turn implies

‖SXk
s
(τ ) f̃ ‖Xk

s (Rn) ≤ ‖ f̃ ‖Xk
s (Rn)

(
e−

ωs
2 τ + 2C

ωs−2ω0

(
e−ω0τ − e−

ωs
2 τ

))
� e−ωτ‖ f̃ ‖Xk

s (Rn),

with ω := min{ω0,
ωs
2 } > 0 for all f ∈ C∞

c,r (R
n). Note that in case ωs = 2ω0 one has to

choose another R > 0 in (4.7) to avoid this scenario. The statement now follows by density
of C∞

c,r (R
n) in Xk

s (Rn). ��
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5 The nonlinear time evolution

In the following, we restrict ourselves to real-valued functions from Xk
s (Rn). We note that

by Lemma 2.2, the blowup profile satisfies φ(| · |) ∈ Xk
s (Rn), see (2.1).

5.1 Estimates for the nonlinearity and the initial data operator

Lemma 5.1 The nonlinearity N from (2.10) extends to a map N : Xk
s (Rn) → Xk

s (Rn)

satisfying

‖N ( f ) −N (h)‖Xk
s (Rn) ≤ γ (‖ f ‖Xk

s (Rn), ‖g‖Xk
s (Rn))(‖ f ‖Xk

s (Rn) + ‖h‖Xk
s (Rn))‖ f − h‖Xk

s (Rn),

for all f , h ∈ Xk
s (Rn), where γ : [0,∞) × [0,∞) → [0,∞) is a continuous function.

Proof By density if suffices to prove the inequality for functions belonging to C∞
c,r (R

n). We
first establish an auxiliary identity for functions u ∈ C3(R) with u′′(0) = 0. Let a, b, c ∈ R,
then by three times application of the Fundamental Theorem of Calculus we have

u(a + c)− u(a + b)− u′(a)(c − b) = (c − b)

∫ 1

0
(b + x(c − b))

∫ 1

0
(a + w(b + x(c − b)))

∫ 1

0
u′′′(z(a + w(b + x(c − b))))dzdwdx .

For the nonlinearity we obtain

[N ( f ) −N (h)](y)

= n − 3

|y|3
(

F
(
|y|φ(|y|)+ |y|h(y)

)
− F

(
|y|φ(|y|) + |y| f (y)

)
− F ′(|y|φ(|y|)

)
|y|(h(y) − f (y))

)
.

Since F is an odd function we have F ′′(0) = 0 and the above identity yields

[N ( f ) −N (h)](y)

n − 3

=
∫ 1

0

∫ 1

0

∫ 1

0

(
h(y)

− f (y)
)(

f (y) + x(h(y) − f (y))
)(

φ(|y|)+ w( f (y) + x(h(y) − f (y)))
)

· F (3)
(
|y|z

(
φ(|y|)+ w

(
f (y) + x(h(y) − f (y))

)))
dzdwdx .

Note that F (3) is an odd function having all derivatives bounded. We use the generalized
Schauder estimate given in [23], Proposition A.1, which reads

‖u1u2u3F (3)(| · |v)‖Xk
s (Rn) � ‖u1u2u3F (3)(| · |v)‖Ḣ k1∩Ḣ k (Rn)

�
3∏

i=1

‖ui‖Xk
s (Rn)

k∑
j=0

‖v‖2 j
Xk

s (Rn)
,

(5.1)

for k1 := � n
2 − 2�, where u1, u2, u3, v ∈ C∞

c,r (R
n) and v is real-valued. By inspection, the

same bound holds for u3 being replaced by φ(| · |), respectively for v ∈ C∞
r (Rn)∩ Xk

s (Rn).
The proof of (5.1) is based on Hardy’s inequality and a Sobolev inequality for weighted
derivatives of radial functions, see [23], Proposition B.1. ��
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We need the following characterization of the initial data operator.

Lemma 5.2 Let 0 < δ ≤ 1
2 . Then the map

T 
→ U(ϕ, T ) : [1− δ, 1+ δ] → Xk
s (Rn),

as defined in (2.11) is continuous for ϕ ∈ Xk
s (Rn). Furthermore, we have

‖U(ϕ, T )‖Xk
s (Rn) � ‖ϕ‖Xk

s (Rn) + |T − 1|, (5.2)

for all ϕ ∈ Xk
s (Rn) and T ∈ [ 12 , 3

2 ].

Proof To show continuity of the given map, let ϕ ∈ Xk
s (Rn), T1, T2 ∈ [1 − δ, 1 + δ] and

write

U(ϕ, T1) − U(ϕ, T2) = (
√

T1 −
√

T2)[φ + ϕ](√T1·) +
√

T2([φ + ϕ](√T1·) − [φ + ϕ](√T2·)).
Next let ε > 0, then there exists χ ∈ C∞

c,r (R
n), such that ‖χ − [φ + ϕ]‖Xk

s (Rn) ≤ ε. By this
we can write the second term from above as

[φ + ϕ](√T1·) − [φ + ϕ](√T2·) = ([φ + ϕ](√T1·) − χ(
√

T1·)) + (χ(
√

T1·) − χ(
√

T2·))
+ (χ(

√
T2·) − [φ + ϕ](√T2·)),

to infer

lim
T2→T1

‖U(ϕ, T1) − U(ϕ, T2)‖Xk
s (Rn) ≤ Cε,

for some C > 0. Here we used the fact that limT2→T1 ‖χ(
√

T1·) − χ(
√

T2·)‖Xk
s (Rn) = 0,

as the function χ is smooth and compactly supported. As ε > 0 was chosen arbitrarily,
continuity follows. Next we show (5.2). Let ϕ ∈ Xk

s (Rn) and T ∈ [ 12 , 3
2 ], then we have

‖U(ϕ, T )‖Xk
s (Rn) = ‖√T ϕ(

√
T ·)+√

T φ(
√

T ·) − φ‖Xk
s (Rn)

≤ √
T ‖ϕ(

√
T ·)‖Xk

s (Rn) +
√

T ‖φ(
√

T ·) − φ‖Xk
s (Rn) + |√T − 1|‖φ‖Xk

s (Rn)

� ‖ϕ‖Xk
s (Rn) + |T − 1|‖φ‖Xk

s (Rn) + ‖φ(
√

T ·) − φ‖Xk
s (Rn).

To estimate the remaining term we do the following. For z ∈ R
+ we obtain

φ(
√

T z) − φ(z) = z(
√

T − 1)
∫ 1

0
φ′(z((

√
T − 1)τ + 1))dτ,

by the Fundamental Theorem of Calculus, which implies

‖φ(
√

T ·) − φ‖Xk
s (Rn)

|√T − 1| = C̃

∥∥∥∥
∫ 1

0

|1+ (
√

T − 1)τ || · |2
(|1+ (

√
T − 1)τ |2| · |2 + b)

3
2

dτ

∥∥∥∥
Xk

s (Rn)

≤ C̃
∫ 1

0

1

|tτ |
∥∥∥∥ |tτ |2| · |2
(|tτ |2| · |2 + b)

3
2

∥∥∥∥
Xk

s (Rn)

dτ,

for some C̃ > 0 and tτ := 1+ (
√

T − 1)τ . Note that
∥∥∥∥ |tτ |2| · |2
(|tτ |2| · |2 + b)

3
2

∥∥∥∥
Xk

s (Rn)

≤ max{|tτ |s− n
2 , |tτ |k− n

2 }
∥∥∥∥ | · |2
(| · |2 + b)

3
2

∥∥∥∥
Xk

s (Rn)

� 1,
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by Lemma 2.2, as we have

∣∣∣∣∂α

(
|·|2

(|·|2+b)
3
2

)
(x)

∣∣∣∣ � 〈x〉−1−|α| for x ∈ R
n and α ∈ N

n
0. This

shows

‖φ(
√

T ·) − φ‖Xk
s (Rn) � |√T − 1| � |T − 1|,

which in turn implies

‖U(ϕ, T )‖Xk
s (Rn) � ‖ϕ‖Xk

s (Rn) + |T − 1|,
as claimed. ��

5.2 Construction of strong solutions

To show existence of strong solutions to (2.7) we consider Duhamel’s formula

ϕ(τ) = SXk
s
(τ )U(ϕ0, T ) +

∫ τ

0
SXk

s
(τ − τ ′)N (ϕ(τ ′))dτ ′, τ ≥ 0. (5.3)

We introduce the Banach space

X k
s := {ϕ ∈ C([0,∞), Xk

s (Rn)) : ‖ϕ‖X k
s
:= sup

τ≥0
eωτ‖ϕ(τ)‖Xk

s
< ∞},

whereω > 0 is the constant from Proposition 4.6.We denote the ball inX k
s with radius δ > 0

by X k
s (δ) := {ϕ ∈ X k

s : ‖ϕ‖X k
s
≤ δ}. To run a fixed point argument, we define the operator

[K (ϕ, u)](τ ) := SXk
s
(τ )

(
u − C(ϕ, u)

)+
∫ τ

0
SXk

s
(τ − τ ′)N (ϕ(τ ′))dτ ′,

for ϕ ∈ X k
s , u ∈ Xk

s (Rn) and τ ≥ 0, where

C(ϕ, u) := PXk
s
u +

∫ ∞

0
e−τ ′PXk

s
N (ϕ(τ ′))dτ ′,

is a correction term on the unstable subspace PXk
s

(
Xk

s (Rn)
)
.

Lemma 5.3 For all sufficiently small δ > 0, all sufficiently large c > 0 and u ∈ Xk
s (Rn) with

‖u‖Xk
s (Rn) ≤ δ

c , the operator K (·, u) maps the ball X k
s (δ) into itself and satisfies

‖K (ϕ1, u)− K (ϕ2, u)‖X k
s
≤ 1

2
‖ϕ1 − ϕ2‖X k

s
, (5.4)

for all ϕ1, ϕ2 ∈ X k
s (δ) and all u ∈ Xk

s (Rn).

Proof First note that we have

[K (ϕ, u)](τ ) = (1− PXk
s
)SXk

s
(τ )u +

∫ τ

0
(1− PXk

s
)SXk

s
(τ − τ ′)N (ϕ(τ ′))dτ ′

−
∫ ∞

τ

eτ−τ ′N (ϕ(τ ′))dτ ′,
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for ϕ ∈ X k
s and u ∈ Xk

s (Rn), which yields the bound

‖[K (ϕ, u)](τ )‖Xk
s (Rn) � e−ωτ‖u‖Xk

s (Rn) +
∫ τ

0
e−ω(τ−τ ′)‖ϕ(τ ′)‖2Xk

s (Rn)
dτ ′

+
∫ ∞

τ

e−(τ ′−τ)‖ϕ(τ ′)‖2Xk
s (Rn)

dτ ′

� e−ωτ δ
(
1
c + δ

ω
+ δ

1+2ω

)
,

for ϕ ∈ X k
s (δ) and u ∈ Xk

s (Rn) satisfying ‖u‖Xk
s (Rn) ≤ δ

c by Proposition 4.6 and Lemma
5.1, which yields

‖K (ϕ, u)‖X k
s

� δ

for suitably chosen δ, c > 0.
Next let ϕ1, ϕ2 ∈ X k

s (δ), u ∈ Xk
s (Rn) and τ ≥ 0, then we have

‖N (ϕ1(τ )) −N (ϕ2(τ ))‖Xk
s (Rn) � δe−ωτ‖ϕ1(τ )− ϕ2(τ )‖Xk

s (Rn)

� δe−2ωτ‖ϕ1 − ϕ2‖X k
s
,

by Lemma 5.1, which implies

‖K (ϕ1, u) − K (ϕ2, u)‖Xk
s (Rn) � e−ωτ δ

(
1
ω
+ 1

1+2ω

)
‖ϕ1 − ϕ2‖X k

s
.

By choosing δ > 0 sufficiently small we infer

‖K (ϕ1, u)− K (ϕ2, u)‖X k
s
≤ 1

2
‖ϕ1 − ϕ2‖X k

s
,

and this shows (5.4). ��
With Lemma 5.3 at hand we are able to construct strong solutions to (2.7).

Theorem 5.4 There exists M > 0 sufficiently large and δ > 0 sufficiently small, such that for
all real-valued ϕ0 ∈ Xk

s (Rn) with ‖ϕ0‖Xk
s
≤ δ

M2 , there exists a T = T (ϕ0) ∈ [1− δ
M , 1+ δ

M ]
and a unique solution ϕ ∈ C([0,∞), Xk

s (Rn)) satisfying (5.3) for all τ ≥ 0, such that

‖ϕ(τ)‖Xk
s (Rn) ≤ δe−ωτ , ∀τ ≥ 0. (5.5)

Proof Let ϕ0 ∈ Xk
s (Rn) be such that ‖ϕ0‖Xk

s (Rn) ≤ δ
M2 . Using estimate (5.2) in Lemma 5.2

we choose M > 0 sufficiently large to obtain

‖U(ϕ0, T )‖Xk
s (Rn) ≤

δ

c
,

for all T ∈ [1 − δ
M , 1 + δ

M ] with the constant c > 0 from Lemma 5.3. Applying Banach’s
fixed point theoremwe infer that for every T ∈ [1− δ

M , 1+ δ
M ], there exists a unique solution

ϕT ∈ X k
s (δ) to the equation

ϕ(τ) = [K (ϕ,U(ϕ0, T ))](τ ), τ ≥ 0.

Furthermore, the so defined map T 
→ ϕT is continuous. To see this, note that we have

‖ϕT1 − ϕT2‖X k
s
≤ ‖K (ϕT1 ,U(ϕ0, T1))− K (ϕT1 ,U(ϕ0, T2))‖X k

s

+ ‖K (ϕT1 ,U(ϕ0, T2))− K (ϕT2 ,U(ϕ0, T2))‖X k
s

≤ ‖U(ϕ0, T1) − U(ϕ0, T2)‖Xk
s (Rn) +

1

2
‖ϕT1 − ϕT2‖X k

s
,
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which together with Lemma 5.2 implies the claim.
To conclude existence of a solution to (5.3), we need to find a T = T (ϕ0) such that the

correction term vanishes, i.e. C(ϕT (ϕ0),U(ϕ0, T )) = 0. Note that this is equivalent to〈
PXk

s
U(ϕ0, T )+

∫ ∞

0
e−τ ′PXk

s
N (ϕT (ϕ0)(τ

′))dτ ′, G

〉
H
= 0. (5.6)

A Taylor expansion of
√

T φ(
√

T | · |)− φ(| · |) in T = 1 reveals that

U(ϕ0, T ) = √
T ϕ0(

√
T ·) + C(T − 1)G + (T − 1)2R(T , ·),

for some C != 0, where the remainder is continuous in T and satisfies ‖R(T , ·)‖Xk
s (Rn) � 1

for all T ∈ [1 − δ
M , 1 + δ

M ]. Here we used that φ(| · |) + | · |φ′(| · |) = CG(| · |) for some
C != 0. With this at hand we obtain

〈PXk
s
U(ϕ0, T ), G〉H = C(T − 1) + f (T ),

for a continuous function f satisfying | f (T )| � δ
M2 + δ2 by the condition on the initial data

and T . Lemma 5.1 implies that (5.6) is equivalent to

T = F(T ) + 1 (5.7)

for a suitable function F , that is continuous and satisfies |F(T )| � δ
M2 + δ2. By choosing M

sufficiently large and δ sufficiently small we infer |F(T )| ≤ δ
M , which in turn implies that

the map T 
→ F(T )+1 maps the interval [1− δ
M , 1+ δ

M ] into itself. The Intermediate Value
Theorem now implies the existence of a solution to (5.7), which determines ϕT solving to
(5.3). By construction, ‖ϕT (τ )‖Xk

s (Rn) ≤ δe−ωτ for all τ ≥ 0.

To show uniqueness, let ϕ̃ ∈ C([0,∞), Xk
s (Rn)) be another solution to (5.3), ϕT != ϕ̃.

Then, by the fact that both solutions exhibit the same initial data, there exists ε ∈ (0, 1−δ
2 )

and τ0 > 0 such that

‖ϕT (τ0) − ϕ̃(τ0)‖Xk
s (Rn) > ε, (5.8)

and

‖ϕT (τ ) − ϕ̃(τ )‖Xk
s (Rn) < 2ε for τ ∈ [0, τ0].

We obtain

‖ϕ̃(τ )‖Xk
s (Rn) ≤ ‖ϕ̃(τ )− ϕT (τ )‖Xk

s (Rn) + ‖ϕT (τ )‖Xk
s (Rn) < 2ε + δe−ωτ < 1,

for τ ∈ [0, τ0]. For the semigroup (SXk
s
(τ ))τ≥0, we have the bound ‖SXk

s
(τ )‖ ≤ Meτ for

τ ≥ 0 and some M > 0. Together with Lemma (5.1)

‖ϕT (τ ) − ϕ̃(τ )‖Xk
s (Rn) � (eτ − 1) sup

τ ′∈[0,τ ]
‖ϕT (τ ′) − ϕ̃(τ ′)‖Xk

s (Rn),

for τ ∈ [0, τ0]. By a suitable choice of τ1 ∈ (0, τ0] we obtain
sup

τ∈[0,τ1]
‖ϕT (τ ) − ϕ̃(τ )‖Xk

s (Rn) ≤
1

2
sup

τ∈[0,τ1]
‖ϕT (τ )− ϕ̃(τ )‖Xk

s (Rn),

which shows ϕT = ϕ̃ in [0, τ1]. Iterating this argument yields ϕT = ϕ̃ in [0, τ0], which
contradicts (5.8). ��
Remark 5.5 The unique strong solution resulting from Theorem 5.4 is real-valued, since the
subspace of real-valued functions in Xk

s (Rn) is invariant under the action of SXk
s
and PXk

s
.
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5.3 Classical solutions

In this section, we show that initial data belonging to the Schwartz space generates classical
solutions to (2.7), which are furthermore smooth.

Proposition 5.6 If ϕ0 from Theorem 5.4 belongs to Sr (R
n), then the unique strong solution

ϕ to (5.3) belongs to C∞([0,∞) × R
n) and satisfies (2.7) in the classical sense.

Proof The regularity of U(ϕ0, T ) implies U(ϕ0, T ) ∈ D(LXk
s
), which together with the

locally Lipschitz continuity of N yields that the unique strong solution ϕ to (5.3) is
indeed a classical solution (see, e.g., [8], p. 60, Proposition 4.3.9). This means ϕ ∈
C([0,∞),D(LXk

s
)) ∩ C1([0,∞), Xk

s (Rn)) and ϕ solves

∂τ ϕ(τ) = Lϕ(τ) +N (ϕ(τ)), for τ ≥ 0, (5.9)

in Xk
s (Rn). By the continuous embedding Xk

s (Rn) ↪→ L∞(Rn) (see Lemma 2.1) we infer
that (5.9) holds pointwise. As the operator L can be decomposed as L = L0 + L1 with L1

bounded on Xk
s (Rn), it follows that ϕ satisfies

ϕ(τ) = S0(τ )U(ϕ0, T ) +
∫ τ

0
S0(τ − τ ′)(L1ϕ(τ ′) +N (ϕ(τ ′)))dτ ′, for τ ≥ 0.

The smoothing properties of the free semigroup, see Appendix A.4, now imply that ϕ(τ) ∈
C∞(Rn) for all τ ≥ 0.

To establish higher regularity in τ we apply a generalized version of Schwarz’s theorem
(see, e.g., [35], p. 235, Theorem 9.41) which allows to interchange the operators ∂τ and L
applied toϕ. Hence,mixed derivatives of all orders exist, which showsϕ ∈ C∞([0,∞)×R

n).
��

Proof of Theorem 1.4 Let η0 ∈ S(Rd) with η0(x) = xϕ0 for a radial Schwartz function
ϕ0 ∈ Sr (R

d), ϕ0 = ϕ̃0(| · |). By using the representation of the Fourier transform of radial
functions, an explicit computation (see [24], Proposition A.5), shows that

d∑
i=1

∣∣∣[Fdη0,i ](ξ)|2 � |ξ |2
∣∣∣[Fd+2ϕ̃0(| · |)

]
(|ξ |)

∣∣∣2.

In particular, ϕ0 can also be considered as a radial Schwartz function on Rn and

‖η0‖Ḣ s∩Ḣ k (Rd ) � ‖ϕ̃0(| · |)‖Ḣ s∩Ḣ k (Rd+2).

Hence, we can choose ε > 0 small enough to guarantee ‖ϕ0‖Xk
s (Rn) ≤ δ

M2 , where
δ, M > 0 are the constants from Theorem 5.4. Existence and uniqueness of a strong solution
ϕ ∈ C([0,∞), Xk

s (Rn)) to (5.3) for some T ∈ [1 − δ
M , 1 + δ

M ] follows by Theorem 5.4.
Proposition 5.6 implies ϕ ∈ C∞([0,∞)×R

n), solves (2.7) in the classical sense. Moreover,
ϕ(τ, ·) = ϕ̃(τ, | · |) and by (5.5)

‖ϕ(τ)‖Xk
s (Rn) � δe−ωτ

for all τ ≥ 0. To return to the original variables, note that

ψ(τ, y) := φ(|y|)+ ϕ(τ, y)
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is a classical solution to (2.5), that belongs to C∞([0,∞) × R
n). Furthermore, ψ is radial,

ψ(τ, y) = ψ̃(τ, |y|), and with

v(t, r) := 1√
T−t

ψ̃
(
ln

( T
T−t

)
, r√

T−t

)
= vT (t, r) + ϕ̃

(
ln

( T
T−t

)
, r√

T−t

)

we obtain a solution to (1.8) for initial data

v0(r) = φ(r) + ϕ̃0(r).

Finally, U ∈ C∞([0, T ) × R
d) defined by

U (t, x) := xv(t, |x |)
solves the original problem (1.3) with initial conditionU0 = 	+η0, where	(x) = xφ(|x |).
Furthermore, we have the decomposition

U (t, x) = x√
T−t

(
φ

( |x |√
T−t

)
+ ϕ̃

(
ln( T

T−t ),
|x |√
T−t

) )
,

Setting

η
(

t, x√
T−t

)
:= x√

T−t
ϕ̃

(
ln( T

T−t ),
|x |√
T−t

)

yields (1.17). Again, by [24], Proposition A.5 we infer that

‖η(t, ·)‖
Ḣs∩Ḣk (Rd )

�
∥∥∥ϕ

(
ln( T

T−t ), ·
)∥∥∥

Xk
s (Rn)

� δe−ω ln
(

T
T−t

)
� (T − t)ω,

for t ∈ [0, T ). This implies ‖η(t, ·)‖Ḣr (Rd ) → 0 as t → T− for r ∈ [s, k]. ��
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Appendix A.

A.1 Proof of Lemma 2.1

We first note that in view of the exponential decay of the weight function σ(x) = e−
|x |2
4 one

has the continuous embedding L∞(Rn) ↪→ H. So it suffices to show that Xk
s (Rn) can be
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continuously embedded into L∞(Rn). We have

‖ f ‖L∞(Rn) � ‖F f ‖L1(B1)
+ ‖F f ‖L1(Bc

1)

� ‖| · |−s‖L2(B1)
‖| · |sF f ‖L2(B1)

+ ‖| · |−k‖L2(Bc
1 )
‖| · |kF f ‖L2(Bc

1 )

� ‖ f ‖Xk
s (Rn),

for all f ∈ C∞
c,r (R

n). Let f ∈ Xk
s (Rn), then there exists a sequence ( f j ) j ⊆ C∞

c,r (R
n)

such that f j → f in Xk
s (Rn). The above inequality implies that ( f j ) j is a Cauchy sequence

in L∞(Rn), this means the limit h := lim j→∞ f j in L∞(Rn) exists. This defines a map
i : Xk

s (Rn) → L∞(Rn), i( f ) = h. To have an embedding i must be injective.
Let f ∈ Xk

s (Rn) be such that i( f ) = 0. Then there exists a sequence ( f j ) j ⊆ C∞
c,r (R

n)

with f j → f in Xk
s (Rn) and f j → 0 in L∞(Rn). For a Schwartz function ϕ ∈ S(Rn) we

have

|〈| · |sF( f j ), ϕ〉L2(Rn)| = |〈 f j ,F−1(| · |sϕ)〉L2(Rn)|
≤ ‖ f j‖L∞(Rn)‖F−1(| · |sϕ)‖L1(Rn) → 0 as j →∞.

Together with the density of S(Rn) in L2(Rn) we infer | · |sF( f j )⇀0 in L2(Rn) as j →∞.
The same holds for the sequence (| · |kF( f j )) j . But the strong limit f j → f in Xk

s (Rn)

implies in particular the weak limits | · |sF( f j )⇀ f and | · |kF( f j )⇀ f in L2(Rn), which is
a contradiction to the uniqueness of weak limits.

A.2 Alternative proof of the algebra property in Xks (R
n)

Let s, k ≥ 0 satisfy the conditions (2.13). Since Xk
s (Rn) is a space of radial functions, we

can give an elementary proof that Xk
s (Rn) is closed under multiplication, i.e., that we have

‖ f h‖Xk
s (Rn) � ‖ f ‖Xk

s (Rn)‖h‖Xk
s (Rn),

for all f , h ∈ Xk
s (Rn). We first observe

‖ f h‖Xk
s (Rn) � ‖ f h‖Ḣ �s�∩Ḣ k (Rn),

for all f , h ∈ C∞
c,r (R

n), where �s� = � n
2 � − 1. Next we use the following equivalence of

norms for integer exponents l ∈ N0

‖ f h‖Ḣ l �
∑
α∈Nn

0|α|=l

‖∂α( f h)‖L2(Rn) ≤
∑
α∈Nn

0|α|=l

∑
β∈Nn

0
β≤α

(
α

β

)
‖∂β f ∂α−βh‖L2(Rn),

where f , h ∈ C∞
c,r (R

n). Hence, we estimate

‖∂β f ∂α−βh‖L2(Rn) ≤ ‖| · |−m∂β f ‖L2(Rn)‖| · |
n
2−( n

2−m)∂α−βh‖L∞(Rn), (A.1)

for m ≥ 0 by Hölder’s inequality. For l = �s�, we choose m = s − |β|. To control weighted
derivatives in L∞(Rn), we use [23], Proposition B.1 and apply Hardy’s inequality to get

‖∂β f ∂α−βh‖L2(Rn) ≤ ‖| · |−s+|β|∂β f ‖L2(Rn)‖| · |
n
2−( n

2−s+|β|)∂α−βh‖L∞(Rn)

� ‖ f ‖Ḣ s (Rn)‖h‖
Ḣ �s�+ n

2−s
(Rn)

� ‖ f ‖Xk
s (Rn)‖h‖Xk

s (Rn),
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as 1
2 < n

2 − s + |β| < n
2 and s ≤ �s� + n

2 − s ≤ k.
For l = k one needs to handle the terms (∂α f )h and f (∂αh) appearing in the Leibniz

rule separately. We have

‖(∂α f )h‖L2(Rn) ≤ ‖∂α f ‖L2(Rn)‖h‖L∞(Rn) � ‖ f ‖Xk
s (Rn)‖h‖Xk

s (Rn),

by the continuous embedding Xk
s (Rn) ↪→ L∞(Rn) (see Lemma 2.1). The same holds for

f (∂αh). Next, if 1 ≤ |β| ≤ k − 1 we can restrict ourself to 1 ≤ |β| ≤ k−1
2 by symmetry and

use inequality (A.1) with m = n−2
2 to get

‖∂β f ∂α−βh‖L2(Rn) � ‖ f ‖
Ḣ |β|+ n−2

2 (Rn)
‖h‖Ḣ k−|β|+1(Rn)

� ‖ f ‖Xk
s (Rn)‖h‖Xk

s (Rn),

by Hardy’s inequality, Proposition B.1 in [23], and interpolation.

A.3 Proof of Lemma 2.2

Let f ∈ C∞
r (Rn) such that |∂α f (x)| � 〈x〉−1−|α| holds for α ∈ N

n
0, |α| ≤ k and all x ∈ R

n .
Let χ ∈ C∞

c,r (R
n), χ ≥ 0 be a cutoff function satisfying

{
χ(x) = 1, |x | ≤ 1,

χ(x) = 0, |x | ≥ 2.
(A.2)

We define the sequence ( f j ) j ⊂ C∞
c,r (R

n) by f j (x) := f (x)χ j (x) for x ∈ R
n and j ∈ N,

where χ j (x) := χ
( x

j

)
. Obviously, this sequence of functions converges to f in L∞(Rn), as

we have

‖ f − f j‖L∞(Rn) = ‖ f (1− χ
( ·

j

)
)‖L∞(Rn\Bn

j )
≤ ‖ f ‖L∞(Rn\Bn

j )
→ 0, as j →∞.

Now we use the fact that

‖ f ‖Ḣ s (Rn) � ‖ f ‖Ẇ �s�,p(Rn) �
∑
α∈Nn

0|α|=�s�

‖∂α f ‖L p(Rn),

for 1
p = 1

2 + �s�−s
n , see also (4.5). By the decay assumption on f one finds that the sequence

( f j ) j is a Cauchy sequence in Ẇ �s�,p(Rn), if and only if n
2 − 1 < s, which is exactly our

condition on s. In the same way we infer that ( f j ) j is a Cauchy sequence of radial functions
in Ḣ k(Rn) and thus also in Xk

s (Rn). As Xk
s (Rn) is complete, there exists f̃ ∈ Xk

s (Rn)

with lim j→∞ f j = f̃ in Xk
s (Rn). By the continuous embedding Xk

s (Rn) ↪→ L∞(Rn), see
Lemma 2.1, we conclude f̃ = f , which shows f ∈ Xk

s (Rn).

A.4 Smoothing property of the free semigroup

Recall that ϕ from Proposition 5.6 satisfies

ϕ(τ) = S0(τ )U(ϕ0, T ) +
∫ τ

0
S0(τ − τ ′)(L1ϕ(τ ′) +N (ϕ(τ ′)))dτ ′, for τ ≥ 0. (A.3)

We show that ϕ(τ) belongs to all Xl
s(R

n) for l ≥ k and use the continuous embedding
Xl

s(R
n) ↪→ Cm

r (Rn) with l ≥ n
2 + m. Let f ∈ C∞

c,r (R
n). Using the explicit form S0(τ ), see
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(3.2), we get

‖S0(τ ) f ‖Ḣ k+1(Rn) = e−
τ
2 ‖| · |k+1F(

(Hκ(τ) ∗ f )(e−
τ
2 ·))‖L2(Rn)

= e
1
2 ( n

2−1−(k+1))τ‖| · |k+1F(
Hκ(τ) ∗ f

)‖L2(Rn)

� e
1
2 ( n

2−1−(k+1))τ‖| · |kF( f )‖L2(Rn)‖| · |F(Hκ(τ))‖L∞(Rn)

� e
1
2 ( n

2−1−(k+1))τ κ(τ )−
1
2 ‖| · |kF( f )‖L2(Rn),

for τ > 0. Together with (4.4), we infer that

‖S0(τ ) f ‖Xk+1
s (Rn)

� e
1
2 ( n

2−1−s)τ κ(τ )−
1
2 ‖ f ‖Xk

s (Rn),

holds for all f ∈ Xk
s (Rn) by density. By (A.3) we infer

‖ϕ(τ)‖Xk+1
s (Rn)

≤ ‖S0(τ )U(ϕ0, T )‖Xk+1
s (Rn)

+
∫ τ

0
‖S0(τ − τ ′)(L1ϕ(τ ′) +N (ϕ(τ ′)))‖Xk+1

s (Rn)
dτ ′

� e
1
2 ( n

2−1−s)τ κ(τ )−
1
2 ‖U(ϕ0, T )‖Xk

s (Rn)

+
∫ τ

0
e
1
2 ( n

2−1−s)(τ−τ ′)κ(τ − τ ′)−
1
2 ‖L1ϕ(τ ′) +N (ϕ(τ ′))‖Xk

s (Rn)dτ ′.

As ϕ belongs to C([0,∞), Xk
s (Rn)) the continuity of the operators L1 and N imply the

estimate∫ τ

0
e
1
2 ( n

2−1−s)(τ−τ ′)κ(τ − τ ′)−
1
2 ‖L1ϕ(τ ′) +N (ϕ(τ ′))‖Xk

s (Rn)dτ ′

≤ sup
τ̃∈[0,τ ]

‖L1ϕ(τ̃ )+N (ϕ(τ̃ ))‖Xk
s (Rn)

∫ τ

0
e
1
2 ( n

2−1−s)(τ−τ ′)κ(τ − τ ′)−
1
2 dτ ′.

Hence, ϕ(τ) ∈ Xk+1
s (Rn) for τ ≥ 0 if∫ τ

0
e
1
2 ( n

2−1−s)(τ−τ ′)κ(τ − τ ′)−
1
2 dτ ′ < ∞. (A.4)

A straightforward calculation shows that the integral in (A.4) is equal to B( 12 ,
s
2 − n

4 + 1
2 ),

where B is the standard beta function and its value is well-defined for s > n
2 − 1. We

inductively infer ϕ(τ) ∈ Xl
s(R

n) for all τ ≥ 0 and l ≥ k, which implies the claim.

References

1. Biernat, P.: Non-self-similar blow-up in the heat flow for harmonic maps in higher dimensions. Nonlin-
earity 28(1), 167–185 (2015)
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