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Abstract
An effective model is identified for thin perfectly plastic plates whosemicrostructure consists
of the periodic assembling of two elastoplastic phases, as the periodicity parameter converges
to zero. Assuming that the thickness of the plates and the periodicity of the microstructure are
comparably small, a limiting description is obtained in the quasistatic regimevia simultaneous
homogenization and dimension reduction by means of evolutionary �-convergence, two-
scale convergence, and periodic unfolding.

Mathematics Subject Classification 74C05 · 74G65 · 74K20 · 49J45 · 74Q09 · 35B27

1 Introduction

With this paper, we begin the task of identifying reduced models for thin composite elasto-
plastic plates with periodic microstructure. We focus here on the case in which the thickness
h of the plates and their microstructure width εh are asymptotically comparable, namely, we
assume the existence of the limit

lim
h→0

h

εh
=: γ ∈ (0,+∞).
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This corresponds, roughly speaking, to the situation in which homogenization and dimen-
sion reduction occur somewhat simultaneously and a strong interaction between vanishing
thickness and periodicity comes into play. Different scalings of γ (i.e., γ = 0 and γ = +∞)
will be the subject of a forthcoming companion paper.

Finding lower dimensional models for thin three-dimensional structures is a classical task
in the Mathematics of Continuum Mechanics. A rigorous identification of a reduced model
for perfectly plastic plates in the quasistatic regime has been undertaken in [13]. An additional
regularity result for the associated stress has been established in [19]. The case of dynamic
perfect plasticity is the subject of [28, 38], whereas the setting of shallow shells has been
tackled in [37]. A parallel analysis in the presence of hardening has been performed in [35,
36] We further mention the two works [14, 15] in the purview of finite plasticity.

The study of composite elastoplastic materials is a challenging endeavour. In the small
strain regime, limit plasticity equations have been identified in [31, 32, 42] both in the periodic
and in the aperiodic and stochastic settings. The Fleck andWillis model is the subject of [25,
27], whereas gradient plasticity has been studied in [30]. For completeness, we also mention
[9, 10, 16, 18] for an analysis of large-strain stratified composites in crystal plasticity and
[17] for a static result in the finitely plastic setting. The characterization of inhomogeneous
perfectly plastic materials and a subsequent periodic homogenization have been undertaken
in [23, 24].

The novelty of the present contribution consists in the fact that we combine both dimension
reduction and periodic homogenization in order to deduce a limiting description, as the two
smallness scales (thickness and width of the microstructure) converge to zero, for perfectly
plastic thin plates.

To complete our literature overview, we briefly recall the mainmathematical contributions
on simultaneous homogenization anddimension reduction. In [6], the author derives a limiting
plate model starting from 3d linearized elasticity, while assuming the material to be isotropic
and the microstructure to be periodic. In [12], the case of linear elastic plates with possible
aperiodicmicrostructure is tackled by relying onmaterial (planar) symmetries of the elasticity
tensor, and by introducing the notion of H -convergence adapted to dimension reduction. In
[4] an effective plate model is identified in the general case (without further periodicity or
material-symmetries assumptions) by means of �-convergence (the analysis presented there
also covers some non-linear models). We also mention the book [41] where linear rod and
plate models are obtained by simultaneous homogenization and dimension reduction, and
appropriate estimates are also provided, as well as the recent work [5] on high-contrast elastic
plates. Different non-linear elastic plate models obtained by �-convergence are discussed in
[3, 8, 33, 40, 45].

To the Authors’ knowledge, this manuscript represents instead the first work on effective
theories for plates undergoing inelastic deformations.

We conclude this introduction by briefly presenting our results. First, after establishing
a general disintegration result for measures in the image of suitable first-order differential
operators, cf. Proposition 4.2, and relying on an auxiliary result related to De Rham cohomol-
ogy, cf. Proposition 4.11, in Theorem 4.14, we identify two-scale limits of rescaled strains.
We point out that the intermediate results in Proposition 4.2 are of independent interest and
apply to a more general setting than that investigated in this contribution. We have chosen
to pursue this avenue because these tools will also be instrumental for the analysis of further
regimes of plastic thin-plates homogenization. We emphasize that for identifying two-scale
limits of rescaled strains we could not rely on the results obtained in the context of elasticity
(see, e.g. [4]), since these results relied on Korn inequalities which are not available in the
plastic setting, hence a new approach needed to be developed.
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For a given boundary datum w, the limiting model that we identify is finite on triples
(u, E, P) ∈ Ahom

γ (w), where the latter denotes the set of limits of plastic triples given by
displacements, elastic, and plastic strains in the sense of two-scale convergence for measures,
cf. Definition 3.9.We refer toDefinition 5.7 and to Sect. 5.2 for the precise definition andmain
disintegration properties of the class Ahom

γ (w). On such triples, the effective elastic energy
and dissipation potential are homogenized densities depending only on the limiting two-scale
elastic and plastic strain, respectively. Our analysis stems from adapting the approach of [23]
to the setting of dimension reduction problems for composite plates. This is, however, a non-
trivial task: a first hurdle consists in the already mentioned compactness result for rescaled
strains, see Sect. 4.3. Further difficulties originate from the fact that the limit problem is of
fourth order, see Sect. 5. Further, analogously to [13], the limiting description is truly three-
dimensional. We refer to [19, Section 5] for a discussion of this issue and an example. Our
effective model is completely characterized in Sect. 5.5. After introducing a suitable notion
of stress–strain duality, in Theorem 5.15 we prove a two-scale limiting Hill’s principle. The
lower semicontinuity of the effective energy and dissipation functionals is proven in Theorem
5.17. Key tools are an adaptation of unfolding techniques for dimension reduction (see
Proposition 4.17), aswell as a technical rank-one decomposition characterization (seeLemma
4.18). Finally, with Theorem 6.2 we prove the main result of this contribution, showing via
evolutionary �-convergence, cf. [39] the convergence of three-dimensional inhomogeneous
quasistatic evolutions to energetic solutions for our two-scale reduced model.

The paper is organized as follows. Section2 contains some preliminary results on two-
scale convergence, disintegration of Radonmeasures, BD and BH functions, as well as some
auxiliary claims about stress tensors. In Sect. 3 we specify the setting of the problem and the
main assumptions. We additionally recall the existence results for quasistatic evolution for
generalmulti-phasematerials. The characterizationof limiting triples in the sense of two-scale
convergence for Radon measures is the focus of Sect. 4. The effective stress–strain duality is
analyzed in Sect. 5, whereas the convergence of quasistatic evolutions is proven in Sect. 6.

2 Preliminaries

In this section we specify our notation and collect a few preliminary results.

2.1 Notation

We will write any point x ∈ R
3 as a pair (x ′, x3), with x ′ ∈ R

2 and x3 ∈ R, and we will use
the notation ∇x ′ to denote the gradient with respect to x ′. We denote by y ∈ Y the points on
a flat 2-dimensional torus (Y = R

2/Z
2 with quotient topology). We denote by I the open

interval I := (− 1
2 ,

1
2

)
. In what follows we will also adopt the following notation for scaled

gradients and symmetrized scaled gradients:

∇hv :=
[
∇x ′v

∣∣∣ 1
h ∂x3v

]
, Ehv := sym∇hv,

∇̃γ v :=
[
∇yv

∣∣∣ 1
γ
∂x3v

]
, Ẽγ v := sym ∇̃γ v, (2.1)

where h, γ > 0 and v is a function on the appropriate domain. The scaled divergence
operators divh and d̃ivγ are defined in the following way:

divhv := ∂x1v1 + ∂x2v2 +
1

h
∂x3v3, d̃ivγ v := ∂y1v1 + ∂y2v2 +

1

γ
∂x3v3.
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Analogously, we define the operator c̃urlγ , for functions taking values in R
3 (see (4.21)–

(4.23) below). Note that the operators ∇̃γ , d̃ivγ , c̃urlγ act on functions that have as (part
of) their domain I × Y (with a slight abuse of notation we write this domain with I on the
first place, despite the fact that the associated differential operators are defined as above).
Furthermore, if γ = 1 we will use the shorter notation Ẽ , ∇̃, d̃iv, c̃url for the corresponding
differential operators.

Ifa, b ∈ R
N ,wewritea·b for theEuclidean scalar product, andwedenote by |a| := √a · a

the Euclidean norm. We write M
N×N for the set of real N × N matrices. If A, B ∈ M

N×N ,
we use the Frobenius scalar product A : B :=∑

i, j Ai j Bi j and the associated norm |A| :=√
A : A. We denote by M

N×N
sym the space of real symmetric N × N matrices, and by M

N×N
dev

the set of real deviatoric matrices, respectively, i.e. the subset of M
N×N
sym given by matrices

having null trace. For every matrix A ∈ M
N×N we denote its trace by trA, and its deviatoric

part by Adev will be given by

Adev = A − 1

N
trA.

The symmetrized tensor product a � b of two vector a, b ∈ R
N is the symmetric matrix

with entries (a � b)i j := ai b j+a j bi
2 . Note that tr(a � b) = a · b, and that |a � b|2 =

1
2 |a|2|b|2 + 1

2 (a · b)2, so that

1√
2
|a||b| ≤ |a � b| ≤ |a||b|.

Given a vector v ∈ R
3, we will use the notation v′ to denote the vector

v′ :=
(

v1
v2

)
.

TheLebesguemeasure inR
N and the (N−1)-dimensional Hausdorffmeasure are denoted

by LN and HN−1, respectively. For U ⊂ R
N , U denotes its closure. Given an open subset

U ⊂ R
N and a finite dimensional Euclidean space E , we use standard notations for Lebesgue

spaces L p(U ; E) and Sobolev spaces H1(U ; E) orW 1,p(U ; E). The characteristic function
of U will be given by 1U .

We will write Ck(U ; E) for the space of k-times continuously differentiable functions
ϕ : U → E and C∞(U ; E) := ⋂∞

k=0 Ck(U ; E) for the space of infinitely differentiable
function. We will distinguish between the spaces Ck

c (U ; E) (Ck functions with compact
support contained in U ) and Ck

0 (U ; E) (Ck functions “vanishing on ∂U"). We will write
C(Y; E) to denote the space of all continuous functions which are [0, 1]2-periodic, and set
Ck(Y; E) := Ck(R2; E) ∩ C(Y; E). We will identify Ck(Y; E) with the space of all Ck

functions on the 2-dimensional torus.
We will frequently make use of the standard mollifier ρ ∈ C∞(RN ), defined by

ρ(x) :=
{
C exp

(
1

|x |2−1
)

if |x | < 1,

0 otherwise,

where the constant C > 0 is selected so that
∫
RN ρ(x) dx = 1, and the associated family

{ρε}ε>0 ⊂ C∞(RN ) with

ρε(x) := 1

εN
ρ
( x

ε

)
.
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Throughout the text, the letter C stands for generic constants which may vary from line
to line.

2.2 Measures

We first recall some basic notions from measure theory that we will use throughout the paper
(see, e.g. [22]).

Given a Borel set U ⊂ R
N and a finite dimensional Hilbert space X , we denote by

Mb(U ; X) the space of bounded Borel measures on U taking values in X , and endowed
with the norm ‖μ‖Mb(U ;X) := |μ|(U ), where |μ| ∈Mb(U ;R) is the total variation of the
measureμ. For everyμ ∈Mb(U ; X)weconsider theLebesgue decompositionμ = μa+μs ,
whereμa is absolutely continuouswith respect to theLebesguemeasureLN andμs is singular
with respect toLN . Ifμs = 0, we always identifyμwith its density with respect toLN , which
is a function in L1(U ; X).With a slight abuse of notation,wewillwriteMb(U ;R) =Mb(U )

and Mb(U ; [0,+∞)) =M+
b (U ).

If the relative topology ofU is locally compact, by Riesz representation theorem the space
Mb(U ; X) can be identified with the dual of C0(U ; X), which is the space of all continuous
functions ϕ : U → X such that the set {|ϕ| ≥ δ} is compact for every δ > 0. The weak*
topology on Mb(U ; X) is defined using this duality.

The restriction of μ ∈Mb(U ; X) to a subset E ⊂ U is the measure μ�E ∈Mb(E; X)

defined by

μ�E(B) := μ(E ∩ B), for every Borel setB ⊂ U .

Given two real-valued measures μ1, μ2 ∈Mb(U ) we write μ1 ≥ μ2 if μ1(B) ≥ μ2(B)

for every Borel set B ⊂ U .

2.2.1 Convex functions of measures

Let U be an open set of R
N . For every μ ∈ Mb(U ; X) let dμ

d|μ| be the Radon-Nikodym
derivative of μ with respect to its variation |μ|. Let H : X → [0,+∞) be a convex and
positively one-homogeneous function such that

r |ξ | ≤ H(ξ) ≤ R|ξ | for every ξ ∈ X , (2.2)

where r and R are two constants, with 0 < r ≤ R.
Using the theory of convex functions of measures, developed in [21, 29], we introduce

the nonnegative Radon measure H(μ) ∈M+
b (U ) defined by

H(μ)(A) :=
∫

A
H

(
dμ

d|μ|
)

d|μ|,

for every Borel set A ⊂ U . We also consider the functional H : Mb(U ; X) → [0,+∞)

defined by

H(μ) := H(μ)(U ) =
∫

U
H

(
dμ

d|μ|
)

d|μ|.

One can prove thatH is lower semicontinuous onMb(U ; X) with respect to weak* conver-
gence (see, e.g., [1, Theorem 2.38]).
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Let a, b ∈ [0, T ] with a ≤ b. The total variation of a function μ : [0, T ] →Mb(U ; X)

on [a, b] is defined by

V(μ; a, b) := sup

{
n−1∑

i=1
‖μ(ti+1)− μ(ti )‖Mb(U ;X) : a = t1 < t2 < . . . < tn = b, n ∈ N

}

.

Analogously, we define theH-variation of a function μ : [0, T ] →Mb(U ; X) on [a, b] as

DH(μ; a, b) := sup

{
n−1∑

i=1
H (μ(ti+1)− μ(ti )) : a = t1 < t2 < . . . < tn = b, n ∈ N

}

.

From (2.2) it follows that

rV(μ; a, b) ≤ DH(μ; a, b) ≤ RV(μ; a, b). (2.3)

2.2.2 Disintegration of a measure

Let S and T be measurable spaces and let μ be a measure on S. Given a measurable function
f : S → T , we denote by f#μ the push-forward of μ under the map f , defined by

f#μ(B) := μ
(
f −1(B)

)
, for every measurable setB ⊆ T .

In particular, for any measurable function g : T → R we have

∫

S
g ◦ f dμ =

∫

T
g d( f#μ).

Note that in the previous formula S = f −1(T ).
Let S1 ⊂ R

N1 , S2 ⊂ R
N2 , for some N1, N2 ∈ N, be open sets, and let η ∈M+

b (S1). We
say that a function x1 ∈ S1 �→ μx1 ∈ Mb(S2;RM ) is η-measurable if x1 ∈ S1 �→ μx1(B)

is η-measurable for every Borel set B ⊆ S2.
Given a η-measurable function x1 �→ μx1 such that

∫
S1
|μx1 | dη < +∞, then the gener-

alized product η
gen.⊗ μx1 satisfies η

gen.⊗ μx1 ∈Mb(S1 × S2;RM ) and is such that

〈η gen.⊗ μx1 , ϕ〉 :=
∫

S1

(∫

S2
ϕ(x1, x2) dμx1(x2)

)
dη(x1),

for every bounded Borel function ϕ : S1 × S2 → R.
Moreover, the following disintegration result holds (c.f. [1, Theorem 2.28 and Corollary

2.29]):

Theorem 2.1 Let μ ∈ Mb(S1 × S2;RM ) and let proj : S1 × S2 → S1 be the projection
on the first factor. Denote by η the push-forward measure η := proj#|μ| ∈M+

b (S1). Then
there exists a unique family of bounded Radon measures {μx1}x1∈S1 ⊂ Mb(S2;RM ) such
that x1 → μx1 is η-measurable, and

μ = η
gen.⊗ μx1 .

123
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For every ϕ ∈ L1(S1 × S2, d|μ|) we have
ϕ(x1, ·) ∈ L1(S2, d|μx1 |) for η-a.e. x1 ∈ S1,

x1 →
∫

S2
ϕ(x1, x2) dμx1(x2) ∈ L1(S1, dη),

∫

S1×S2
ϕ(x1, x2) dμ(x1, x2) =

∫

S1

(∫

S2
ϕ(x1, x2) dμx1(x2)

)
dη(x1).

Furthermore,

|μ| = η
gen.⊗ |μx1 |.

Arguing as in [23, Remark 5.5], we have the following:

Proposition 2.2 With the same notation as in Theorem 2.1, for η-a.e. x1 ∈ S1

dμ

d|μ| (x1, ·) =
dμx1

d|μx1 |
|μx1 | − a.e. on S2.

Proof Since dμ
d|μ| ∈ L1(S1 × S2, d|μ|), from Theorem 2.1 we have dμ

d|μ| (x1, ·) ∈
L1(S2, d|μx1 |) for η-a.e. x1 ∈ S1. Thus,

η
gen.⊗ dμx1

d|μx1 |
|μx1 | = η

gen.⊗ μx1 = μ = dμ

d|μ| |μ| = η
gen.⊗ dμ

d|μ| (x1, ·) |μx1 |,

from which we have the claim. ��

2.3 BD and BH functions

2.3.1 Functions with bounded deformation

Let U be an open set of R
N . The space BD(U ) of functions with bounded deformation is

the space of all functions u ∈ L1(U ;RN ) whose symmetric gradient Eu := sym Du (in
the sense of distributions) satisfies Eu ∈ Mb(U ;MN×N

sym ). We point out that BD(U ) is a
Banach space endowed with the norm

‖u‖L1(U ;RN ) + ‖Eu‖Mb(U ;MN×N
sym )

.

We say that a sequence {uk}k converges to u weakly* in BD(U ) if uk⇀u weakly in
L1(U ;RN ) and Euk⇀Eu weakly* in Mb(U ;MN×N

sym ). As a consequence of compactness,

then necessarily {uk}k converges to u strongly in L1. Every bounded sequence in BD(U )

has a weakly* converging subsequence. If U is bounded and has a Lipschitz boundary,
BD(U ) can be embedded into LN/(N−1)(U ;RN ) (the embedding is compact in L p , for
1 ≤ p < N/(N − 1)) and every function u ∈ BD(U ) has a trace, still denoted by u, which
belongs to L1(∂U ;RN ). If� is a nonempty open subset of ∂U , there exists a constantC > 0,
depending on U and �, such that

‖u‖L1(U ;RN ) ≤ C‖u‖L1(�) + C‖Eu‖Mb(U ;MN×N
sym )

. (2.4)

(see [43, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the space
BD(U ) we refer to [43].
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2.3.2 Functions with bounded Hessian

The space BH(U ) of functions with bounded Hessian is the space of all functions u ∈
W 1,1(U ) whose Hessian D2u (in the sense of distributions) belongs to Mb(U ;MN×N

sym ). It
is a Banach space endowed with the norm

‖u‖L1(U ) + ‖∇u‖L1(U ;RN ) + ‖D2u‖Mb(U ;MN×N
sym )

.

If U has the cone property, then BH(U ) coincides with the space of functions in L1(U )

whose Hessian belongs to Mb(U ;MN×N
sym ). If U is bounded and has a Lipschitz boundary,

BH(U ) can be embedded intoW 1,N/(N−1)(U ). IfU is bounded and has aC2 boundary, then
for every function u ∈ BH(U ) one can define the traces of u and of ∇u, still denoted by u
and∇u; they satisfy u ∈ W 1,1(∂U ),∇u ∈ L1(∂U ;RN ), and ∂u

∂τ
= ∇u · τ in L1(∂U ), where

τ is any tangent vector to ∂U . If, in addition, N = 2, then BH(U ) embeds into C(U ), which
is the space of all continuous functions on U . The general properties of the space BH(U )

can be found in [20].

2.4 Auxiliary claims about stress tensors

2.4.1 Traces of stresses

We suppose here that U is an open bounded set of class C2 in R
N . If σ ∈ L2(U ;MN×N

sym )

and divσ ∈ L2(U ;RN ), then we can define a distribution [σν] on ∂U by

[σν](ψ) :=
∫

U
ψ · divσ dx +

∫

U
σ : Eψ dx, (2.5)

for every ψ ∈ H1(U ;RN ). It follows that [σν] ∈ H−1/2(∂U ;RN ) (see, e.g., [44, Chapter
1, Theorem 1.2]). If, in addition, σ ∈ L∞(U ;MN×N

sym ) and divσ ∈ LN (U ;RN ), then (2.5)

holds for ψ ∈ W 1,1(U ;RN ). By Gagliardo’s extension theorem [26, Theorem 1.II], in this
case we have [σν] ∈ L∞(∂U ;RN ), and

[σkν] ∗−⇀ [σν] weakly* inL∞(∂U ;RN ),

whenever σk
∗−⇀ σ weakly* in L∞(U ;MN×N

sym ) and divσk −⇀ divσ weakly in LN (U ;RN ).
We will consider the normal and tangential parts of [σν], defined by

[σν]ν := ([σν] · ν)ν, [σν]⊥ν := [σν] − ([σν] · ν)ν.

Since ν ∈ C1(∂U ;RN ), we have that [σν]ν, [σν]⊥ν ∈ H−1/2(∂U ;RN ). If, in addition,
σdev ∈ L∞(U ;MN×N

dev ), then it was proved in [34, Lemma 2.4] that [σν]⊥ν ∈ L∞(∂U ;RN )

and

‖[σν]⊥ν ‖L∞(∂U ;RN ) ≤
1√
2
‖σdev‖L∞(U ;MN×N

dev )
.

More generally, if U has Lipschitz boundary and is such that there exists a compact set
S ⊂ ∂U with HN−1(S) = 0 such that ∂U\S is a C2-hypersurface, then arguing as in [24,
Section 1.2] we can uniquely determine [σν]⊥ν as an element of L∞(∂U ;RN ) through any
approximating sequence {σn} ⊂ C∞(U ;MN×N

sym ) such that

123
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σn → σ strongly in L2(U ;MN×N
sym ),

divσn → divσ strongly in L2(U ;RN ),

‖(σn)dev‖L∞(U ;MN×N
dev )

≤ ‖σdev‖L∞(U ;MN×N
dev )

.

2.4.2 Lp regularity

We recall the following proposition from [24] (see also [34]).

Proposition 2.3 Let U ⊂ R
N be an open, bounded set with Lipschitz boundary. The set

S(U ) :=
{
σ ∈ L2(U ;MN×N

sym ) : div σ ∈ LN (U ;RN ), σdev ∈ L∞(U ;MN×N
dev )

}
,

is a subset of L p(U ;MN×N
sym ) for every 1 ≤ p <∞, and

‖σ‖L p(U ;MN×N
sym )

≤ Cp

(
‖σ‖L2(U ;MN×N

sym )
+ ‖div σ‖LN (U ;RN ) + ‖σdev‖L∞(U ;MN×N

dev )

)
.

3 Setting of the problem

We describe here our modeling assumptions and recall a few associated instrumental results.
Unless otherwise stated, ω ⊂ R

2 is a bounded, connected, and open set with C2 boundary.
Given a small positive number h > 0, we assume that the set

�h := ω × (hI ),

is the reference configuration of a linearly elastic and perfectly plastic plate.
We consider a non-zero Dirichlet boundary condition on the whole lateral surface, i.e. the

Dirichlet boundary of �h is given by �h
D := ∂ω × (hI ).

We work under the assumption that the body is only submitted to a hard device on �h
D and

that there are no applied loads, i.e. the evolution is only driven by time-dependent boundary
conditions. More general boundary conditions, together with volume and surface forces have
been considered, e.g., in [11, 13, 24] but will, for simplicity of exposition, be neglected in
this analysis.

3.1 Phase decomposition

We recall here some basic notation and assumptions from [23].
Recall that Y = R

2/Z
2 is the 2-dimensional torus, let Y := [0, 1)2 be its associated

periodicity cell, and denote by I : Y → Y their canonical identification. We denote by C the
set

C := I−1(∂Y ). (3.1)

For any Z ⊂ Y , we define

Zε :=
{
x ∈ R

2 : x
ε
∈ Z

2 + I(Z)
}

, (3.2)

and to every function F : Y → X we associate the ε-periodic function Fε : R2 → X , given
by

Fε(x) := F (yε) , for
x

ε
−

⌊ x
ε

⌋
= I(yε) ∈ Y .

123



93 Page 10 of 56 M. Bužančić et al.

With a slight abuse of notation we will also write Fε(x) = F
( x

ε

)
.

The torus Y is assumed to be made up of finitely many phases Yi together with their inter-
faces. We assume that those phases are pairwise disjoint open sets with Lipschitz boundary.
Then we have Y =⋃

i Y i and we denote the interfaces by

� :=
⋃

i, j

∂Yi ∩ ∂Y j .

Furthermore, the interfaces are assumed to have a negligible intersection with the set C, i.e.
for every i

H1(∂Yi ∩ C) = 0. (3.3)

We will write

� :=
⋃

i �= j

�i j ,

where �i j stands for the interface between Yi and Y j .
We assume that ω is composed of the finitely many phases (Yi )ε , and that �h ∪ �h

D is a
geometrically admissible multi-phase domain in the sense of [24, Subsection 1.2]. Addition-
ally, we assume that �h is a specimen of an elasto-perfectly plastic material having periodic
elasticity tensor and dissipation potential.

We are interested in the situation when the period ε is a function of the thickness h, i.e.
ε = εh , and we assume that the limit

γ := lim
h→0

h

εh

exists in (0,+∞).Weadditionally require that� satisfies the following: there exists a compact
set S ⊂ � with H1(S) = 0 such that �\S is a C2-hypersurface.

We say that a multi-phase torus Y is geometrically admissible if it satisfies the above
assumptions.

Remark 3.1 We point out that we assume greater regularity than that in [23], where the
interface �\S was allowed to be aC1-hypersurface. Under such weaker assumptions, in fact,
the tangential part of the trace of an admissible stress [σν]⊥ν at a point x on � \ S would not
be defined independently of the considered approximating sequence. By requiring a higher
regularity of � \ S, we will avoid dealing with this situation.

The set of admissible stresses.
We assume there exist convex compact sets Ki ∈ M

3×3
dev associated to each phase Yi . We

work under the assumption that there exist two constants rK and RK , with 0 < rK ≤ RK ,
such that for every i

{ξ ∈ M
3×3
dev : |ξ | ≤ rK } ⊆ Ki ⊆ {ξ ∈ M

3×3
dev : |ξ | ≤ RK }.

Finally, we define

K (y) := Ki , for y ∈ Yi .

The elasticity tensor.
For every i , let (Cdev)i and ki be a symmetric positive definite tensor onM

3×3
dev and apositive

constant, respectively, such that there exist two constants rc and Rc, with 0 < rc ≤ Rc,
satisfying
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rc|ξ |2 ≤ (Cdev)iξ : ξ ≤ Rc|ξ |2 for every ξ ∈ M
3×3
dev , (3.4)

rc ≤ ki ≤ Rc. (3.5)

Let C be the elasticity tensor, considered as a map from Y taking values in the set of
symmetric positive definite linear operators, C : Y ×M

3×3
sym → M

3×3
sym , defined as

C(y)ξ := Cdev(y) ξdev + (k(y) trξ) I3×3 for every y ∈ Y and ξ ∈ M
3×3,

where Cdev(y) = (Cdev)i and k(y) = ki for every y ∈ Yi .
Let Q : Y ×M

3×3
sym → [0,+∞) be the quadratic form associated with C, and given by

Q(y, ξ) := 1

2
C(y)ξ : ξ for every y ∈ Y and ξ ∈ M

3×3
sym .

It follows that Q satisfies

rc|ξ |2 ≤ Q(y, ξ) ≤ Rc|ξ |2 for every y ∈ Y and ξ ∈ M
3×3
sym . (3.6)

The dissipation potential.
For each i , let Hi : M3×3

dev → [0,+∞) be the support function of the set Ki , i.e

Hi (ξ) = sup
τ∈Ki

τ : ξ.

It follows that Hi is convex, positively 1-homogeneous, and satisfies

rk |ξ | ≤ Hi (ξ) ≤ Rk |ξ | for every ξ ∈ M
3×3
dev . (3.7)

Then we define the dissipation potential H : Y ×M
3×3
dev → [0,+∞] as follows:

i For every y ∈ Yi , we take

H(y, ξ) := Hi (ξ).

ii For a point y ∈ � \ S on the interface between Yi and Y j , such that the associated normal
ν(y) points from Y j×I to Yi×I , we set

H(y, ξ) :=
{
Hi j (a, ν(y)) if ξ = a � ν(y) ∈ M

3×3
dev ,

+∞ otherwise on M
3×3
dev ,

where for a ∈ R
3 and ν ⊥ a ∈ S

2,

Hi j (a, ν) := inf
{
Hi (ai � ν)+ Hj (−a j � ν) :
a = ai − a j , ai ⊥ ν, a j ⊥ ν

}
.

iii For y ∈ S, we define H arbitrarily (e.g. H(y, ξ) := rk |ξ |).

Remark 3.2 We point out that H is a Borel function on Y ×M
3×3
dev . Furthermore, for each

y ∈ Y , the function ξ �→ H(y, ξ) is positively 1-homogeneous and convex. However, the
function (y, ξ) �→ H(y, ξ) is not necessarily lower semicontinous. This creates additional
difficulties in proving lower semicontinuity of dissipation functional given in Theorem 5.17,
see also [23, Theorem 5.7].

123



93 Page 12 of 56 M. Bužančić et al.

Admissible triples and energy.
On �h

D we prescribe a boundary datum being the trace of a map wh ∈ H1(�h;R3) of the
following form:

wh(z) :=
(

w̄1(z
′)− z3

h
∂1w̄3(z

′), w̄2(z
′)− z3

h
∂2w̄3(z

′), 1

h
w̄3(z

′)
)

for a.e. z = (z′, z3) ∈ �h, (3.8)

where w̄α ∈ H1(ω), α = 1, 2, and w̄3 ∈ H2(ω). The set of admissible displacements and
strains for the boundary datum wh is denoted by A(�h, wh) and is defined as the class of
all triples (v, f , q) ∈ BD(�h)× L2(�h;M3×3

sym )×Mb(�
h;M3×3

dev ) satisfying

Ev = f + q in �h,

q = (wh − v)� ν∂�hH2 on �h
D .

The function v represents the displacement of the plate, while f and q are called the elastic
and plastic strain, respectively.

For every admissible triple (v, f , q) ∈ A(�h, wh) we define the associated energy as

Eh(v, f , q) :=
∫

�h
Q

(
z′

εh
, f (z)

)
dz +

∫

�h∪�h
D

H

(
z′

εh
,
dq

d|q|
)

d|q|.

The first term represents the elastic energy, while the second term accounts for plastic dissi-
pation.

3.2 The rescaled problem

As usual in dimension reduction problems, it is convenient to perform a change of variables
in such a way to rewrite the system on a fixed domain independent of h. To this purpose, we
consider the open interval I = (− 1

2 ,
1
2

)
and set

� := ω × I , �D := ∂ω × I .

We consider the change of variables ψh : � → �h , defined as

ψh(x
′, x3) := (x ′, hx3) for every (x ′, x3) ∈ �, (3.9)

and the linear operator �h : M3×3
sym → M

3×3
sym given by

�hξ :=
⎛

⎜
⎝

ξ11 ξ12
1
h ξ13

ξ21 ξ22
1
h ξ23

1
h ξ31

1
h ξ32

1
h2

ξ33

⎞

⎟
⎠ for every ξ ∈ M

3×3
sym . (3.10)

To any triple (v, f , q) ∈ A(�h, wh) we associate a triple (u, e, p) ∈ BD(�) ×
L2(�;M3×3

sym )×Mb(� ∪ �D;M3×3
sym ) defined as follows:

u := (v1, v2, hv3) ◦ ψh, e := �−1h f ◦ ψh, p := 1
h�−1h ψ#

h (q).

Here the measure ψ#
h (q) ∈Mb(�;M3×3) is the pull-back measure of q , satisfying

∫

�∪�D

ϕ : dψ#
h (q) =

∫

�h∪�h
D

(ϕ ◦ ψ−1h ) : dq for every ϕ ∈ C0(� ∪ �D;M3×3).
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According to this change of variable we have

Eh(v, f , q) = hQh(�he)+ hHh(�h p),

where

Qh(�he) =
∫

�

Q

(
x ′

εh
,�he

)
dx (3.11)

and

Hh(�h p) =
∫

�∪�D

H

(
x ′

εh
,
d�h p

d|�h p|
)

d|�h p|. (3.12)

We also introduce the scaled Dirichlet boundary datum w ∈ H1(�;R3), given by

w(x) := (w̄1(x
′)− x3∂1w3(x

′), w̄2(x
′)− x3∂2w3(x

′), w3(x
′)) for a.e. x ∈ �.

By the definition of the classA(�h, wh) it follows that the scaled triple (u, e, p) satisfies the
equalities

Eu = e + p in �, (3.13)

p = (w − u)� ν∂�H2 on �D, (3.14)

p11 + p22 + 1
h2

p33 = 0 in � ∪ �D . (3.15)

We are thus led to introduce the class Ah(w) of all triples (u, e, p) ∈ BD(�) ×
L2(�;M3×3

sym )×Mb(� ∪ �D;M3×3
sym ) satisfying (3.13)–(3.15), and to define the functional

Jh(u, e, p) := Qh(�he)+Hh(�h p) (3.16)

for every (u, e, p) ∈ Ah(w). In the following we will study the asymptotic behaviour of the
quasistatic evolution associated with Jh , as h → 0 and εh → 0.

Notice that if w̄α ∈ H1(ω̃), α = 1, 2, and w̄3 ∈ H2(ω̃), where ω ⊂ ω̃, then we can
trivially extend the triple (u, e, p) to �̃ := ω̃ × I by

u = w, e = Ew, p = 0 on �̃ \�.

In the following we will always denote this extension also by (u, e, p), whenever such an
extension procedure is needed.
Kirchhoff-Love admissible triples and limit energy.

We consider the set of Kirchhoff-Love displacements, defined as

K L(�) := {
u ∈ BD(�) : (Eu)i3 = 0 for i = 1, 2, 3

}
.

We note that u ∈ K L(�) if and only if u3 ∈ BH(ω) and there exists ū ∈ BD(ω) such that

uα = ūα − x3∂xαu3, α = 1, 2. (3.17)

In particular, if u ∈ K L(�), then

Eu =
⎛

⎝Eū − x3D2u3
0
0

0 0 0

⎞

⎠ . (3.18)

If, in addition, u ∈ W 1,p(�;R3) for some 1 ≤ p ≤ ∞, then ū ∈ W 1,p(ω;R2) and
u3 ∈ W 2,p(ω). We call ū, u3 the Kirchhoff-Love components of u.
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For every w ∈ H1(�;R3) ∩ K L(�) we define the class AK L(w) of Kirchhoff-Love
admissible triples for the boundary datum w as the set of all triples (u, e, p) ∈ K L(�) ×
L2(�;M3×3

sym )×Mb(� ∪ �D;M3×3
sym ) satisfying

Eu = e + p in �, p = (w − u)� ν∂�H2 on �D, (3.19)

ei3 = 0 in �, pi3 = 0 in� ∪ �D, i = 1, 2, 3. (3.20)

Note that the space
{
ξ ∈ M

3×3
sym : ξi3 = 0 for i = 1, 2, 3

}

is canonically isomorphic to M
2×2
sym . Therefore, in the following, given a triple (u, e, p) ∈

AK L(w) we will usually identify e with a function in L2(�;M2×2
sym ) and p with a measure

in Mb(� ∪ �D;M2×2
sym ). Note also that the class AK L(w) is always nonempty as it contains

the triple (w, Ew, 0).
To provide a useful characterization of admissible triplets in AK L(w), let us first recall

the definition of zero-th and first order moments of functions.

Definition 3.3 For f ∈ L2(�;M2×2
sym ) we denote by f̄ , f̂ ∈ L2(ω;M2×2

sym ) and f ⊥ ∈
L2(�;M2×2

sym ) the following orthogonal components (with respect to the scalar product of

L2(�;M2×2
sym )) of f :

f̄ (x ′) :=
∫

I
f (x ′, x3) dx3, f̂ (x ′) := 12

∫

I
x3 f (x

′, x3) dx3

for a.e. x ′ ∈ ω, and

f ⊥(x) := f (x)− f̄ (x ′)− x3 f̂ (x
′)

for a.e. x ∈ �. We name f̄ the zero-th order moment of f and f̂ the first order moment of
f .

The coefficient in the definition of f̂ is chosen from the computation
∫
I x

2
3 dx3 = 1

12 . It

ensures that if f is of the form f (x) = x3g(x ′), for some g ∈ L2(ω;M2×2
sym ), then f̂ = g.

Analogously, we have the following definition of zero-th and first order moments of
measures.

Definition 3.4 For μ ∈ Mb(� ∪ �D;M2×2
sym ) we define μ̄, μ̂ ∈ Mb(ω ∪ γD;M2×2

sym ) and

μ⊥ ∈Mb(� ∪ �D;M2×2
sym ) as follows:

∫

ω∪γD

ϕ : dμ̄ :=
∫

�∪�D

ϕ : dμ,

∫

ω∪γD

ϕ : dμ̂ := 12
∫

�∪�D

x3ϕ : dμ

for every ϕ ∈ C0(ω ∪ γD;M2×2
sym ), and

μ⊥ := μ− μ̄⊗ L1
x3 − μ̂⊗ x3L1

x3 ,

where ⊗ is the usual product of measures, and L1
x3 is the Lebesgue measure restricted to

the third component of R
3. We name μ̄ the zero-th order moment of μ and μ̂ the first order

moment of μ.
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Remark 3.5 More generally, for any function f which is integrable over I , we will use the
short-hand notation

f̄ :=
∫

I
f (·, x3) dx3, f̂ := 12

∫

I
x3 f (·, x3) dx3.

We are now ready to recall the following characterization of AK L(w), given in [13,
Proposition 4.3].

Proposition 3.6 Letw ∈ H1(�;R3)∩K L(�) and let (u, e, p) ∈ K L(�)×L2(�;M3×3
sym )×

Mb(�∪�D;M3×3
dev ). Then (u, e, p) ∈ AK L (w) if and only if the following three conditions

are satisfied:

1. Eū = ē + p̄ in ω and p̄ = (w̄ − ū)� ν∂ωH1 on γD;
2. D2u3 = −(ê + p̂) in ω, u3 = w3 on γD, and p̂ = (∇u3 − ∇w3)� ν∂ωH1 on γD;
3. p⊥ = −e⊥ in � and p⊥ = 0 on �D.

3.3 Definition of quasistatic evolutions

Recalling Sect. 2.2, the Hh-variation of a map μ : [0, T ] →Mb(� ∪ �D;M3×3
dev ) on [a, b]

is defined as

DHh (μ; a, b) := sup

{
n−1∑

i=1
Hh (μ(ti+1)− μ(ti )) : a = t1 < t2 < . . . < tn = b, n ∈ N

}

.

For every t ∈ [0, T ] we prescribe a boundary datum w(t) ∈ H1(�;R3) ∩ K L(�) and
we assume the map t �→ w(t) to be absolutely continuous from [0, T ] into H1(�;R3).

Definition 3.7 Let h > 0. An h-quasistatic evolution for the boundary datum w(t) is a
function t �→ (uh(t), eh(t), ph(t)) from [0, T ] into BD(�) × L2(�;M3×3

sym ) ×Mb(� ∪
�D;M3×3

sym ) that satisfies the following conditions:

(qs1)h for every t ∈ [0, T ] we have (uh(t), eh(t), ph(t)) ∈ Ah(w(t)) and

Qh(�he
h(t)) ≤ Qh(�hη)+Hh(�hπ −�h p

h(t)),

for every (υ, η, π) ∈ Ah(w(t)).
(qs2)h the function t �→ ph(t) from [0, T ] intoMb(�∪�D;M3×3

sym ) has bounded variation
and for every t ∈ [0, T ]
Qh(�he

h(t))+DHh (�h p
h; 0, t) = Qh(�he

h(0))

+
∫ t

0

∫

�

C

(
x ′
εh

)
�he

h(s) : Eẇ(s) dxds.

The following existence result of a quasistatic evolution for a general multi-phase material
can be found in [24, Theorem 2.7].

Theorem 3.8 Assume (3.4), (3.5), and (3.7). Let h > 0 and let (uh0, e
h
0 , p

h
0 ) ∈ Ah(w(0)) sat-

isfy the global stability condition (qs1)h. Then, there exists a two-scale quasistatic evolution
t �→ (uh(t), eh(t), ph(t)) for the boundary datum w(t) such that uh(0) = u0, eh(0) = eh0 ,
and ph(0) = ph0 .

Our goal is to study the asymptotics of the quasistatic evolution when h goes to zero. The
main result is given by Theorem 6.2.
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3.4 Two-scale convergence adapted to dimension reduction

We briefly recall some results and definitions from [23].

Definition 3.9 Let � ⊂ R
3 be an open set. Let {μh}h>0 be a family inMb(�) and consider

μ ∈Mb(�× Y). We say that

μh 2−∗−−⇀ μ two-scale weakly* in Mb(�× Y),

if for every χ ∈ C0(�× Y)

lim
h→0

∫

�

χ

(
x,

x ′

εh

)
dμh(x) =

∫

�×Y
χ(x, y) dμ(x, y).

The convergence above is called two-scale weak* convergence.

Remark 3.10 Notice that the family {μh}h>0 determines the family of measures {νh}h>0 ⊂
Mb(�× Y) obtained by setting

∫

�×Y
χ(x, y) dνh(x, y) =

∫

�

χ

(
x,

x ′

εh

)
dμh(x)

for every χ ∈ C0
0 (�× Y). Thus μ is simply the weak* limit in Mb(�× Y) of {νh}h>0.

We collect some basic properties of two-scale convergence below:

Proposition 3.11 (i) Any sequence that is bounded in Mb(�) admits a two-scale weakly*
convergent subsequence.

(ii) LetD ⊂ Y and assume that supp(μh) ⊂ �∩ (Dεh × I ). Ifμh 2−∗−−⇀ μ two-scale weakly*
in Mb(�× Y), then supp(μ) ⊂ �×D.

4 Compactness results

In this section, we provide a characterization of two-scale limits of symmetrized scaled gra-
dients. We will consider sequences of deformations {vh} such that vh ∈ BD(�h) for every
h > 0, their L1-norms are uniformly bounded (up to rescaling), and their symmetrized gradi-
ents Evh form a sequence of uniformly bounded Radonmeasures (again, up to rescaling). As
already explained in Sect. 3.2, we associate to the sequence {vh} above a rescaled sequence
of maps {uh} ⊂ BD(�), defined as

uh := (vh1 , vh2 , hvh3 ) ◦ ψh,

where ψh is defined in (3.9). The symmetric gradients of the maps {vh} and {uh} are related
as follows

1

h
Evh = (ψh)#(�h Eu

h). (4.1)

The boundedness of 1
h ‖Evh‖Mb(�

h ;M3×3
sym )

is equivalent to the boundedness of

‖�h Euh‖Mb(�;M3×3
sym )

. We will express our compactness result with respect to the sequence

{uh}h>0.
We first recall a compactness result for sequences of non-oscillating fields (see [13]).
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Proposition 4.1 Let {uh}h>0 ⊂ BD(�) be a sequence such that there exists a constant C > 0
for which

‖uh‖L1(�;R3) + ‖�h Eu
h‖Mb(�;M3×3

sym )
≤ C .

Then, there exist functions ū = (ū1, ū2) ∈ BD(ω) and u3 ∈ BH(ω) such that, up to
subsequences, there holds

uhα → ūα − x3∂xαu3, strongly in L1(�), α ∈ {1, 2},
uh3 → u3, strongly in L1(�),

Euh
∗−⇀

(
Eū − x3D2u3 0

0 0

)
weakly* in Mb(�;M3×3

sym ).

Now we turn to identifying the two-scale limits of the sequence �h Euh .

4.1 Corrector properties and duality results

In order to define and analyze the space of measures which arise as two-scale limits of scaled
symmetrized gradients of BD functions, we will consider the following general framework
(see also [2]).

Let V and W be finite-dimensional Euclidean spaces of dimensions N and M , respec-
tively. We will consider kth order linear homogeneous partial differential operators with
constant coefficients A : C∞c (Rn; V ) → C∞c (Rn;W ). More precisely, the operator A acts
on functions u : Rn → V as

Au :=
∑

|α|=k
Aα∂αu.

where the coefficients Aα ∈ W⊗V ∗ ∼= Lin(V ;W ) are constant tensors, α = (α1, . . . , αn) ∈
N
n
0 is a multi-index and ∂α := ∂

α1
1 · · · ∂αn

n denotes the distributional partial derivative of order
|α| = α1 + · · · + αn .

We define the space

BVA(U ) =
{
u ∈ L1(U ; V ) : Au ∈Mb(U ;W )

}

of functions with bounded A-variations on an open subset U of R
n . This is a Banach space

endowed with the norm

‖u‖BVA(U ) := ‖u‖L1(U ;V ) + |Au|(U ).

Here, the distributional A-gradient is defined and extended to distributions via the duality
∫

U
ϕ · dAu :=

∫

U
A∗ϕ · u dx, ϕ ∈ C∞c (U ;W ∗),

where A∗ : C∞c (Rn;W ∗) → C∞c (Rn; V ∗) is the formal L2-adjoint operator of A

A∗ := (−1)k
∑

|α|=k
A∗α∂α.

The total A-variation of u ∈ L1
loc(U ; V ) is defined as

|Au|(U ) := sup

{∫

U
A∗ϕ · u dx : ϕ ∈ Ck

c (U ;W ∗), |ϕ| ≤ 1

}
.
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Let {un} ⊂ BVA(U ) and u ∈ BVA(U ). We say that {un} converges weakly* to u in BVA

if un → u in L1(U ; V ) and Aun
∗−⇀ Au in Mb(U ;W ).

In order to characterize the two-scale weak* limit of scaled symmetrized gradients, we
will generally consider two domains �1 ⊂ R

n1 , �2 ⊂ R
n2 , for some n1, n2 ∈ N, and we

will (just for the purposes of this subsection) denote their points by x1 ∈ �1, x2 ∈ �2. We
will assume that the operator Ax2 is defined through partial derivatives only with respect to
the entries of the n2-tuple x2. In the spirit of [23, Section 4.2], we will define the space

XAx2 (�1) :=
{
μ ∈Mb(�1 ×�2; V ) : Ax2μ ∈Mb(�1 ×�2;W ),

μ(F ×�2) = 0 for every Borel set F ⊆ �1

}
.

We will assume that BVAx2 (�2) satisfies the following weak* compactness property:

Assumption 1 If {un} ⊂ BVAx2 (�2) is uniformly bounded in the BVAx2 -norm, then there
exists a subsequence {um} ⊆ {un} and a function u ∈ BVAx2 (�2) such that {um} converges
weakly* to u in BVAx2 (�2), i.e.

um → u in L1(�2; V ) and Ax2um
∗−⇀ Ax2u in Mb(�2;W ).

Furthermore, there exists a countable collection {Uk} of open subsets ofR
n2 that increases

to �2 (i.e. Uk ⊂ Uk+1 for every k ∈ N, and �2 = ⋃
k U

k) such that BVAx2 (Uk) satisfies
the weak* compactness property above for every k ∈ N.

The following theorem is our main disintegration result for measures inXAx2 (�1), which
will be instrumental to define a notion of duality for admissible two-scale configurations.
The proof is an adaptation of the arguments in [23, Proposition 4.7].

Proposition 4.2 Let Assumption 1 be satisfied. Let μ ∈ XAx2 (�1). Then there exist η ∈
M+

b (�1) and a Borel map (x1, x2) ∈ �1 × �2 �→ μx1(x2) ∈ V such that, for η-a.e.
x1 ∈ �1,

μx1 ∈ BVAx2 (�2),

∫

�2

μx1(x2) dx2 = 0, |Ax2μx1 |(�2) �= 0, (4.2)

and

μ = μx1(x2) η ⊗ Ln2
x2 . (4.3)

Moreover, the map x1 �→ Ax2μx1 ∈Mb(�2;W ) is η-measurable and

Ax2μ = η
gen.⊗ Ax2μx1 .

Proof By assumption, we have μ ∈Mb(�1×�2; V ) and λ := Ax2μ ∈Mb(�1×�2;W ).
Setting

η := proj#|μ| + proj#|λ| ∈M+
b (�1),

where proj# is the push-forward by the projection of �1 × �2 on �1, we obtain as a
consequence of Theorem 2.1:

μ = η
gen.⊗ μx1 and λ = η

gen.⊗ λx1 , (4.4)

with μx1 ∈ Mb(�2; V ) and λx1 ∈ Mb(�2;W ). Further, if we set S := {x1 ∈ �1 :
|λx1 |(�2) �= 0}, then λ = η�S gen.⊗ λx1 .
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For every ϕ(1) ∈ C∞c (�1) and ϕ(2) ∈ C∞c (�2;W ∗) we have
∫

�1

ϕ(1)(x1)
〈
μx1 ,A∗x2ϕ

(2)
〉
· dη(x1) =

∫

�1

(∫

�2

ϕ(1)(x1)A∗x2ϕ
(2)(x2) · dμx1 (x2)

)
· dη(x1)

=
〈
η

gen.⊗ μx1 , ϕ
(1)A∗x2ϕ

(2)
〉
=

〈
μ,A∗x2

(
ϕ(1)ϕ(2)

)〉

=
〈
Ax2μ, ϕ(1)ϕ(2)

〉
=

〈
η�S gen.⊗ λx1 , ϕ

(1)ϕ(2)
〉

=
∫

�1

(∫

�2

ϕ(1)(x1)ϕ
(2)(x2) · dλx1 (x2)

)
1S(x1) · dη(x1)

=
∫

�1

ϕ(1)(x1)
〈
1S(x1)λx1 , ϕ

(2)
〉
· dη(x1).

From this we infer that for η-a.e. x1 ∈ �1 and for every ϕ ∈ C∞c (�2;W ∗)
〈
μx1 ,A∗x2ϕ

〉 = 〈
1S(x1)λx1 , ϕ

〉
. (4.5)

We can consider μx1 and λx1 as measures on R
n2 if we extend the measure μ by zero on

the complement of �2. Then, using the standard mollifiers {ρε}ε>0 on R
n2 , we define the

functions με
x1 := μx1 ∗ ρε and λε

x1 := λx1 ∗ ρε , which are smooth and uniformly bounded
in L1(�2; V ) and L1(�2;W ), respectively. For every ϕ ∈ Cm

c (�2;W ∗) (where m is taken
to be the order of the partial differential operator A∗x2 ), supp(ϕ) ⊂ Uk for k large enough.
Furthermore, the support ofϕ∗ρε is contained in�2 provided ε is sufficiently small (smallness
depending only on k), and thus from (4.5) we have

〈με
x1 ,A

∗
x2ϕ〉 =

∫

R
n2

(
μx1 ∗ ρε

) ·A∗x2ϕ dx2 =
∫

R
n2

(
A∗x2ϕ ∗ ρε

) · dμx1

=
∫

R
n2

A∗x2 (ϕ ∗ ρε) · dμx1 = 〈μx1 ,A∗x2 (ϕ ∗ ρε)〉

= 〈1S(x1)λx1 , ϕ ∗ ρε〉 =
∫

R
n2

(ϕ ∗ ρε) · 1S(x1) dλx1

=
∫

R
n2

1S(x1)
(
λx1 ∗ ρε

) · ϕ dx2

= 〈1S(x1)λ
ε
x1 , ϕ〉.

Hence, for η-a.e. x1 ∈ �1 the sequence {με
x1} is eventually bounded in BVAx2 (Uk). By

Assumption 1, this implies strong convergence in L1(Uk; V ) up to a subsequence. As ε → 0,
we have both ϕ∗ρε → ϕ andA∗x2ϕ∗ρε → A∗x2ϕ uniformly, so by the Lebesgue’s dominated
convergence theorem we obtain, for η-a.e. x1 ∈ �1,

〈με
x1 ,A

∗
x2ϕ〉 → 〈μx1 ,A∗x2ϕ〉 and 〈1S(x1)λ

ε
x1 , ϕ〉 → 〈1S(x1)λx1 , ϕ〉.

From the convergence above, we conclude for η-a.e. x1 ∈ �1 that με
x1 → μx1 strongly in

L1(Uk; V ) (the convergence holds for the whole sequence since every subsequence has a
subsequence converging in n L1 to the same limit). Since μx1 has bounded total variation,
we have that μx1 ∈ L1(�2; V ) for η-a.e. x1 ∈ �1. This, together with (4.5), implies

μx1 ∈ BVAx2 (�2) and Ax2μx1 = 1S(x1)λx1 .

From (4.4)we nowhave thatμ is absolutely continuouswith respect toη⊗Ln2
x2 . Consequently,

for η-a.e. x1 ∈ �1 there exists a Borel measurable function which is equal toμx1 for L
n2
x2 -a.e.

x2 ∈ �2, so that (4.3) immediately follows.
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Finally, since μ(F ×�2) = 0 for every Borel set F ⊆ �1, we have
∫

�1

f (x1)

(∫

�2

μx1(x2) dx2

)
dη(x1) =

∫

�1×�2

f (x1) dμ(x1, x2) = 0

for every f ∈ Cc(�1), from which we obtain the second claim in (4.2). This concludes the
proof. ��

Lastly, we give a necessary and sufficient condition with which we can characterize the
Ax2 -gradient of a measure, under the following two assumptions.

Assumption 2 For everyχ ∈ C0(�1×�2;W )withA∗x2χ = 0 (in the sense of distributions),
there exists a sequence of smooth functions {χn} ⊂ C∞c (�1 ×�2;W ) such thatA∗x2χn = 0
for every n, and χn → χ in L∞(�1 ×�2;W ).

Assumption 3 The following Poincaré-Korn type inequality holds in BVAx2 (�2):
∥
∥
∥
∥u −

∫

�2

u dx2

∥
∥
∥
∥
L1(�2;V )

≤ C |Ax2u|(�2), ∀u ∈ BVAx2 (�2).

Proposition 4.3 Let Assumption 1, 2 and 3 be satisfied. Let λ ∈ Mb(�1 × �2;W ). Then,
the following items are equivalent:

(i) For every χ ∈ C0(�1 ×�2;W ) with A∗x2χ = 0 (in the sense of distributions) we have
∫

�1×�2

χ(x1, x2) · dλ(x1, x2) = 0.

(ii) There exists μ ∈ XAx2 (�1) such that λ = Ax2μ.

Proof Let χ ∈ C0(�1 ×�2;W ) with A∗x2χ = 0 (in the sense of distributions) and let {χn}
be an approximating sequence of χ as in Assumption 2. Assume that (ii) holds. Then, we
have

∫

�1×�2

χ(x1, x2) · dλ(x1, x2) =
∫

�1×�2

χ(x1, x2) · dAx2μ(x1, x2)

= lim
n

∫

�1×�2

χn(x1, x2) · dAx2μ(x1, x2)

= lim
n

∫

�1×�2

A∗x2χn(x1, x2) dμ(x1, x2) = 0.

So we have (i).
Let us prove that the space

EAx2 = {
Ax2μ : μ ∈ XAx2 (�1)

}

is weakly* closed inMb(�1×�2;W ). By the Krein-Šmulian theorem it is enough to show
that the intersection of EAx2 with every closed ball inMb(�1 ×�2;W ) is weakly* closed.
This implies, since the weak* topology is metrizable on any closed ball ofMb(�1×�2;W ),
that it is enough to prove that EAx2 is sequentially weakly* closed.

Let {λn}n∈N ⊂ EAx2 and λ ∈Mb(�1 ×�2;W ) be such that

λn
∗−⇀ λ in Mb(�1 ×�2;W ).
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By the definition of the space EAx2 , there exist measures μn ∈Mb(�1 ×�2; V ) such that
λn = Ax2μn . By Proposition 4.2, for every n ∈ N we have that there exist ηn ∈ M+

b (�1)

and μn
x1 ∈ BVAx2 (�2) such that, for ηn-a.e. x1 ∈ �1,

μn = μn
x1(x2) ηn ⊗ Ln2

x2 , Ax2μn = ηn
gen.⊗ Ax2μ

n
x1 .

Additionally, μn
x1 satisfies

∫
�2

μn
x1(x2) dx2 = 0 for every n ∈ N. Then, by Assumption 3,

there is a constant C independent of n such that

|μn |(�1 ×�2) =
∫

�1×�2

|μn(x1, x2)| dx1dx2 =
∫

�1

(∫

�2

|μn
x1(x2)| dx2

)
dηn(x1)

≤ C
∫

�1

|Ax2μ
n
x1 |(�2) dηn(x1) = C

∫

�1

(∫

�2

d|Ax2μ
n
x1 |(x2)

)
dηn(x1)

= C
∫

�1×�2

d

(
ηn

gen.⊗ |Ax2μ
n
x1 |

)
= C |Ax2μn |(�1 ×�2) ≤ C .

Hence there exists a subsequence of {μn}, not relabeled, and an elementμ ∈Mb(�1×�2; V )

such that

μn
∗−⇀ μ in Mb(�1 ×�2; V ).

Then, for every ϕ ∈ C∞c (�1 ×�2;W ∗) we have

〈λ, ϕ〉 = lim
n
〈λn, ϕ〉 = lim

n
〈Ax2μn, ϕ〉

= lim
n
〈μn,A∗x2ϕ〉 = 〈μ,A∗x2ϕ〉.

From the convergence above we deduce that λ = Ax2μ ∈ EAx2 . This implies that EAx2 is
weakly* closed in Mb(�1 ×�2;W ) = (C0(�1 ×�2;W ∗))′.

Assume now that (i) holds. If λ /∈ EAx2 , by Hahn-Banach’s theorem, there exists χ ∈
C0(�1 ×�2;W ∗) such that

∫

�1×�2

χ · dλ = 1, (4.6)

and, for every u ∈ BVAx2 (�1 ×�2),
∫

�1×�2

χ · dAx2u = 0. (4.7)

In particular, choosing u to be a smooth function, (4.7) implies that A∗x2χ = 0 (in the sense

of distributions). As a consequence, (4.6) contradicts (i). Thus, λ ∈ EAx2 . ��

4.1.1 Compactness result for scaled maps with finite energy

If we consider Ax2 = Ẽγ , A∗x2 = d̃ivγ , �1 = ω with points x1 = x ′, and �2 = I × Y with
points x2 = (x3, y), then we denote the associated spaces from the previous section by:

BDγ (I × Y) :=
{
u ∈ L1(I × Y;R3) : Ẽγ u ∈Mb(I × Y;M3×3

sym )
}
,

Xγ (ω) :=
{
μ ∈Mb(�× Y;R3) : Ẽγ μ ∈Mb(�× Y;M3×3

sym ),

μ(F × I × Y) = 0 for every Borel set F ⊆ ω
}
.
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Despite the fact that Y is a flat torus, Proposition 4.2 and Proposition 4.3 are satisfied if we
establish the validity of Assumption 1, 2 and 3, which will be done below.

Remark 4.4 To each u ∈ BDγ (I × Y), we can associate a function

v :=
(
1

γ
u1,

1

γ
u2, u3

)
. (4.8)

Then

Ev =
⎛

⎝
1
γ
Eyu′ 1

2

(
Dyu3 + 1

γ
∂x3u

′
)

1
2

(
Dyu3 + 1

γ
∂x3u

′
)T

∂x3u3

⎞

⎠ ,

from which we can see that v ∈ BD(I ×Y). Here Eyu′ denotes the symmetrized gradient in
y of the field u′, which is a 2× 2 matrix. Furthermore, the L1-norms of u and v are always
within a constant factor of one another, whose magnitude depends on a fixed estimate of γ

and 1
γ
. The same holds true for the Mb-norms of Ẽγ u and Ev.

Alternatively, we can define the change of variables ψ : (γ I ) × Y → I × Y given by

ψ(x3, y) :=
(
1
γ
x3, y

)
and consider the function w := u ◦ψ . Then w ∈ BD((γ I )×Y) and

we have

Ẽγ u = 1

γ
ψ#(Ẽw).

Using any one of these scalings, we obtain that BDγ (I ×Y) satisfies the weak* compactness
property Assumption 1.

The following lemma establishes the validity of Assumption 2.

Lemma 4.5 For any χ ∈ C0(�× Y;M3×3
sym ) with d̃ivγ χ(x, y) = 0 (in the sense of distribu-

tions), we can construct an approximating sequence which satisfies Assumption 2.

Proof We take χ ∈ C0(�× Y;M3×3
sym ), extend it by zero outside � and define

χ̃ ε(x, y) := �1+εχ
(
ϕε(x ′)x ′, (1+ ε)x3, y

)
,

where �1+ε is the linear operator described in (3.10), and ϕε : ω → [0, 1] is a contin-
uous function that is zero in a neighbourhood of ∂ω and equal to 1 for x ′ ∈ ω such that
dist(x ′, ∂ω) ≥ ε. Notice that χ̃ ε ∈ Cc(� × Y;M3×3

sym ), χ̃ ε → χ as ε → 0 in L∞ and

d̃ivγ χ̃ε = 0 (in the sense of distributions). TheC∞-regularity of the approximating sequence
follows by convolving {χ̃ ε} with a standard sequence of mollifiers. ��

The following claim establishes the validity of Assumption 3.

Theorem 4.6 There exists a constant C > 0 such that
∥∥∥∥u −

∫

I×Y
u

∥∥∥∥
L1(I×Y;R3)

≤ C |Ẽγ u|(I × Y)

for each function u ∈ BDγ (I × Y). The constant C can be chosen uniformly in γ in a fixed
interval [γ1, γ2], for 0 < γ1 < γ2 <∞ (depending then on γ1, γ2).
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Proof In view of the first part Remark 4.4, it is enough to show the claim for the case γ = 1.
Namely, if we prove it for arbitrary u and γ = 1 by applying it to v defined by (4.8) and
γ ∈ [γ1, γ2], we obtain the claim. In order to prove the claim for γ = 1, we argue by
contradiction. If the thesis does not hold, then there exists a sequence {un}n ⊂ BD(I × Y)

such that
∫

I×Y
|un | dx3dy > n|Ẽun |(I × Y), with

∫

I×Y
un dx3dy = 0.

We can normalize the sequence such that
∫

I×Y
|un | dx3dy = 1, and |Ẽun |(I × Y) <

1

n
.

In particular the sequence {un} is bounded in BD(I × Y).
By Assumption 1, there exists a subsequence {um} ⊆ {un} and a function u ∈ BD(I ×Y)

such that {um} converges weakly* to u in BD(I × Y), i.e.

um → u in L1(I × Y;R3), and Ẽum
∗−⇀ Ẽu in Mb(I × Y;M3×3

sym ).

It’s clear that the limit satisfies
∫

I×Y
|u| dx3dy = 1, with

∫

I×Y
u dx3dy = 0. (4.9)

Also, by the weak* lower semicontinuity of the total variation of measures, we have

|Ẽu|(I × Y) = 0, (4.10)

which implies Ẽu = 0. As a result, the limit u is a rigid deformation, i.e. is of the form

u(x3, y) = A

⎛

⎝
y1
y2
x3

⎞

⎠+ b, where A ∈ M
3×3
skew, b ∈ R

3.

Further, (4.10) implies that u has no jumps along C1 hypersurfaces contained in I ×Y . Thus
u should be [0, 1]2-periodic in the y variable, and a simple calculation shows that the only
function of the above formmust satisfy A ≡ 0. Hence, u must be a constant vector. However,
this contradicts with (4.9). ��
Remark 4.7 If one doesn’t assume periodicity, then the following version of the Poincaré-
Korn inequality can be proved, using the arguments in the proof of Assumption 4.6: There
exists a constant C > 0 such that

∥∥∥∥∥∥
u − A

⎛

⎝
x1
x2

γ x3

⎞

⎠− b

∥∥∥∥∥∥
L1((0,1)2×I ;R3)

≤ C |Eγ u|((0, 1)2 × I )

for each function u ∈ BDγ ((0, 1)2× I ) and suitably chosen A ∈ M
3×3
skew, b ∈ R

3, depending
on u. Again, the constant C can be chosen independently of γ in a fixed interval [γ1, γ2], for
0 < γ1 < γ2 <∞.

The following two propositions are now a consequence of Proposition 4.2 and Proposition
4.3, respectively.
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Proposition 4.8 Let μ ∈ Xγ (ω). Then there exist η ∈M+
b (ω) and a Borel map (x ′, x3, y) ∈

�× Y �→ μx ′(x3, y) ∈ R
3 such that, for η-a.e. x ′ ∈ ω,

μx ′ ∈ BDγ (I × Y),

∫

I×Y
μx ′(x3, y) dx3dy = 0, |Ẽγ μx ′ |(I × Y) �= 0, (4.11)

and

μ = μx ′(x3, y) η ⊗ L1
x3 ⊗ L2

y . (4.12)

Moreover, the map x ′ �→ Ẽγ μx ′ ∈Mb(I × Y;M3×3
sym ) is η-measurable and

Ẽγ μ = η
gen.⊗ Ẽγ μx ′ .

Proposition 4.9 Let λ ∈Mb(�× Y;M3×3
sym ). The following items are equivalent:

(i) For every χ ∈ C0(� × Y;M3×3
sym ) with d̃ivγ χ(x, y) = 0 (in the sense of distributions)

we have
∫

�×Y
χ(x, y) : dλ(x, y) = 0.

(ii) There exists μ ∈ Xγ (ω) such that λ = Ẽγ μ.

Additionally, we state the following property, which will be used in the proof of Lemma
4.18. The proof is analogous to [23, Proposition 4.7. item (b)].

Proposition 4.10 Letμ ∈ Xγ (ω). For anyC1-hypersurfaceD ⊆ Y , if ν denotes a continuous
unit normal vector field to D, then

Ẽγ μ��×D = a(x, y)� ν(y) η ⊗ (H2
x3,y�I ×D),

where a : �×D �→ R
3 is a Borel function.

4.2 Auxiliary results

Wewill need the following result, which is connectedwith the compactly supportedDeRham
cohomology. Recall the definitions of ∇̃γ , d̃ivγ , and c̃urlγ . In the next proposition, we will
consider the case γ = 1.

Proposition 4.11 (a) Let Y(3) be a flat torus in R
3 and let χ ∈ C∞(Y(3);R3) be such that

divχ = 0 and
∫
Y(3) χ = 0. Then there exists F ∈ C∞(Y(3);R3) such that curl F = χ .

(b) Let Y be a flat torus in R
2 and let χ ∈ C∞c (I × Y;R3) be such that d̃ivχ = 0 and∫

I×Y χ = 0. Then there exists F ∈ C∞c (I × Y;R3) such that

c̃url F = χ.

Proof The first claim is standard and can be easily proved by, e.g. Fourier transforms. For
the second claim, observing that χ is also periodic on Y(3), by the first part of the statement
we obtain F̃ ∈ C∞(Y(3);R3) such that curl F̃ = χ on Y(3). Since χ has compact support
in I × Y , there exists 0 < δ < 1

2 such that c̃url F̃ = 0 on Ĩδ × Y , where Ĩδ = {( 12 − δ, 1
2 ) ∪
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(− 1
2 ,− 1

2 + δ)}. Let now ϕ̃ ∈ C∞(Sδ), where Sδ = Ĩδ × (0, 1)2, be such that F̃ = ∇̃ϕ̃ on
Sδ . For α ∈ {1, 2}, let

∑

k∈Z
aα
k (x3, y2)e

2π iky1

be the exponential Fourier series of F̃α = ∂yα ϕ̃ with respect to the variable y1. Note that the
coefficients {aα

k (x3, y2)}k∈Z are smooth functions and periodic with respect to the variable
y2 and x3. Additionally, the Fourier series of smooth functions converges uniformly, and the
result of differentiating or integrating the series term by term will converge to the derivative
or integral of the original series. Hence, we infer that

ϕ̃(x3, y) = a10(x3, y2)y1 +
∑

k∈Z\{0}

a1k (x3, y2)

2π ik
e2π iky1 + b1(x3, y2) on Sδ, (4.13)

for a suitable smooth function b1(x3, y2). Then, differentiating with respect to y1 and y2, we
have that

∂y1y2 ϕ̃(x3, y) = ∂y2a
1
0(x3, y2)+

∑

k∈Z\{0}
∂y2a

1
k (x3, y2)e

2π iky1 on Sδ.

However, since

∂y1y2 ϕ̃(x3, y) = ∂y1 F̃2(x3, y) =
∑

k∈Z\{0}
2π ika2k (x3, y2)e

2π iky1 on Sδ,

by the uniqueness of the Fourier expansion we have that ∂y2a
1
0(x3, y2) = 0, i.e.

a10(x3, y2) = c1(x3), (4.14)

for some c1 ∈ C∞( Ĩδ). Further, differentiating (4.13) with respect to y2, we have that

∂y2 ϕ̃(x3, y) =
∑

k∈Z\{0}

∂y2a
1
k (x3, y2)

2π ik
e2π iky1 + ∂y2b

1(x3, y2) on Sδ.

Since ∂y2 ϕ̃ = F̃2 is periodic, we conclude that ∂y2b
1 is also periodic with respect to the

variable y2 and we can consider its Fourier series. Let c2 ∈ C∞( Ĩδ) be the corresponding
zero-th term. Then the antiderivative of ∂y2b

1 − c2 with respect to y2 is a periodic function.
Combining this fact with (4.13) and (4.14), we deduce that there exists a smooth function
ϕ̂ ∈ C∞( Ĩδ;C∞(Y)) such that ϕ̃ can be rewritten as

ϕ̃(x3, y) = ϕ̂(x3, y)+ c1(x3) y1 + c2(x3) y2 on Ĩδ × Y.

From this, differentiating with respect to x3, we have that

F̃3(x3, y) = ∂x3 ϕ̂(x3, y)+ c′1(x3) y1 + c′2(x3) y2 on Ĩδ × Y.

As a consequence of the periodicity of F̃3 and ∂x3 ϕ̂ in the variables y1 and y2, we conclude
that c′1 = 0 and c′2 = 0. Since Ĩδ ×Y is a union of two disjoint open sets, we have that c1, c2
are constant on each connected component. Using the fact that, for α ∈ {1, 2},

∂yα ϕ̃(x3, y) = ∂yα ϕ̂(x3, y)+ cα(x3) on Ĩδ × Y, (4.15)
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the periodicity of F̃α = ∂yα ϕ̃ implies that c1, c2 are in fact constant. This can be seen by
integrating the equation (4.15) over the plane x3 = − 1

2 and x3 = 1
2 . Thus we conclude that

F̃(x3, y) = ∇̃ϕ̂(x3, y)+
⎛

⎝
c1
c2
0

⎞

⎠ on Ĩδ × Y. (4.16)

Consider now the exponential Fourier series of F̃3 with respect to the x3 variable, such that

F̃3(x3, y) =
∑

k∈Z
a3k (y)e

2π ikx3 on Ĩδ × Y.

Integrating the third component in (4.16)with respect to x3, we have that there exists a smooth
function b3(x3, y), which has values b3+(y) and b3−(y) on each of the two parts of Ĩδ × Y ,
such that

ϕ̂(x3, y) = a30(y)x3 +
∑

k∈Z\{0}

a3k (y)

2π ik
e2π ikx3 + b3(x3, y) on Ĩδ × Y.

From this and (4.15) we have, for α ∈ {1, 2},

F̃α(x3, y)− cα = ∂yαa
3
0(y)x3 +

∑

k∈Z\{0}

∂yαa
3
k (y)

2π ik
e2π ikx3 + ∂yαb

3(x3, y) on Ĩδ × Y.

Considering the continuity and periodicity in x3 of the above terms, evaluating in x3 = − 1
2

and x3 = 1
2 gives ∂yαa

3
0(y) = ∂yαb

3−(y) − ∂yαb
3+(y). From this we have that there exists a

constant c3 and a map ϕ ∈ C∞(Y × Ĩδ) such that ϕ and all its derivatives are periodic in the
x3 variable, and for which

ϕ̂(x3, y) = ϕ(x3, y)+ c3x3 on Ĩδ × Y.

From this and (4.16) we conclude that

F̃(x3, y) = ∇̃ϕ(x3, y)+
⎛

⎝
c1
c2
c3

⎞

⎠ on Ĩδ × Y.

Finally, we consider a smooth function k : I → R that is zero on the set
[− 1

2 + δ, 1
2 − δ

]

and one in a neighbourhood of x3 = − 1
2 , x3 = 1

2 . By taking

F := F̃ − ∇̃(k ϕ)−
⎛

⎝
c1
c2
c3

⎞

⎠ on I × Y,

we have the claim. ��
Remark 4.12 By considering functions scaled by γ in the third component and by 1

γ
in the

direction x3, one can apply the proof item (b) in Proposition 4.11 so that the statement is
valid for maps in the space C∞c ((γ I )× Y;R3).

Consequently, for χ ∈ C∞c (I ×Y;R3) such that d̃ivγ χ = 0 and
∫
I×Y χ = 0 there exists

F ∈ C∞c (I × Y;R3) such that c̃urlγ F = χ , which can be easily seen by rescaling in the
direction x3.
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Remark 4.13 If χ ∈ C∞c (�× Y;M3×3
sym ) is such that d̃ivγ χ = 0, then for a.e. x ′ ∈ ω

∫

I×Y
χ3i (x, y) dx3dy = 0, i = 1, 2, 3.

Indeed, by putting

ϕ(x) =
⎛

⎝
2γ x3 c1(x ′)
2γ x3 c2(x ′)
γ x3 c3(x ′)

⎞

⎠ ,

for c ∈ C∞c (ω;R3), we infer that

Ẽγ ϕ =
⎛

⎝
0 0 c1
0 0 c2
c1 c2 c3

⎞

⎠ ,

and the conclusion results from testing χ with Ẽγ ϕ on I ×Y , and by the arbitrariness of the
maps ci , i = 1, 2, 3.

4.3 Two-scale limits of scaled symmetrized gradients

We are now ready to prove the first main result of this section.

Theorem 4.14 Let {uh}h>0 ⊂ BD(�) be a sequence such that there exists a constant C > 0
for which

‖uh‖L1(�;R3) + ‖�h Eu
h‖Mb(�;M3×3

sym )
≤ C .

Then there exist ū = (ū1, ū2) ∈ BD(ω), u3 ∈ BH(ω), μ ∈ Xγ (ω), and a subsequence of
{uh}h>0, not relabeled, which satisfy:

�h Eu
h 2−∗−−⇀

(
Eū − x3D2u3 0

0 0

)
⊗ L2

y + Ẽγ μ two-scale weakly* inMb(�× Y;M3×3
sym ).

Proof Owing to [43, Chapter II, Remark 3.3], we can assume without loss of generality that
the maps uh are smooth functions for every h > 0. Further, the uniform boundedness of the
sequence {Evh} implies that

∫

�

|∂xαu
h
3 + ∂x3u

h
α| dx ≤ Ch, for α = 1, 2, (4.17)

∫

�

|∂x3uh3 | dx ≤ Ch2. (4.18)

In the following, we will consider λ ∈Mb(�× Y;M3×3
sym ) such that

�h Eu
h 2−∗−−⇀ λ two-scale weakly* inMb(�× Y;M3×3

sym ).

By using Proposition 4.1 we have that there exist (ū1, ū2) ∈ BD(ω), u3 ∈ BH(ω) such
that

(Euh)αβ
∗−⇀ 1

2
(∂xα ūβ + ∂xβ ūα)− x3∂xαxβu3, α, β = 1, 2.
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Let χ ∈ C∞c (�× Y;M3×3
sym ) be such that d̃ivγ χ = 0. We have

∫

�×Y
χ(x, y) : dλ(x, y)

= lim
h→0

∫

�
χ
(
x, x ′

εh

)
: d

(
�h Eu

h(x)
)
= − lim

h→0

∫

�
uh(x) · div

(
�hχ

(
x, x ′

εh

))
dx

= − lim
h→0

∑

α=1,2

∫

�
uhα(x) (∂x1χα1 + ∂x2χα2)

(
x, x ′

εh

)
dx

− lim
h→0

1

h

∫

�
uh3(x) (∂x1χ31 + ∂x2χ32)

(
x, x ′

εh

)
dx

− lim
h→0

∑

α=1,2

1

εh

∫

�
uhα(x) (∂y1χα1 + ∂y2χα2)

(
x, x ′

εh

)
dx

− lim
h→0

1

hεh

∫

�
uh3(x) (∂y1χ31 + ∂y2χ32)

(
x, x ′

εh

)
dx

− lim
h→0

∑

α=1,2

1

h

∫

�
uhα(x) ∂x3χα3

(
x, x ′

εh

)
dx − lim

h→0

1

h2

∫

�
uh3(x) ∂x3χ33

(
x, x ′

εh

)
dx

= − lim
h→0

∑

α=1,2

∫

�
uhα · (∂x1χα1 + ∂x2χα2)

(
x, x ′

εh

)
dx

− lim
h→0

1

h

∫

�
uh3 · (∂x1χ31 + ∂x2χ32)

(
x, x ′

εh

)
dx

+ lim
h→0

(
h

εhγ
− 1

)
⎛

⎝
∑

α=1,2

1

h

∫

�
uhα · ∂x3χα3

(
x, x ′

εh

)
dx + 1

h2

∫

�
uh3 · ∂x3χ33

(
x, x ′

εh

)
dx

⎞

⎠ ,

(4.19)

where in the last equality we used that 1
εh

∂y1χi1+ 1
εh

∂y2χi2+ 1
h ∂x3χi3 =

(
1
h − 1

εhγ

)
∂x3χi3.

From Proposition 4.1 we know that we have the following convergences:

uhα → ūα − x3∂xαu3, strongly in L1(�), α = 1, 2,

uh3 → u3, strongly in L1(�).

Notice that

lim
h→0

∑

α=1,2

∫

�

uhα(x) (∂x1χα1 + ∂x2χα2)
(
x, x ′

εh

)
dx

=
∑

α=1,2

∫

�

(ūα − x3∂xαu3)

(
∂x1

∫

Y
χα1(x, y) dy + ∂x2

∫

Y
χα2(x, y) dy

)
dx

= −
∫

�×Y
χ(x, y) : d

((
Eū(x ′)− x3D2u3(x ′) 0

0 0

)
⊗ L2

y

)
. (4.20)

Next, in view of Remark 4.13, we can use item (b) in Proposition 4.11, i.e. Remark 4.12 to
conclude that there exists F ∈ C∞c (� × Y;R3) such that c̃urlγ F = (χ3i )i=1,2,3. Thus we
have
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χ31 = ∂y2F3 −
1

γ
∂x3F2, (4.21)

χ32 = 1

γ
∂x3F1 − ∂y1F3 (4.22)

χ33 = ∂y1F2 − ∂y2F1. (4.23)

Next we compute

lim
h→0

1

εh

∫

�

uh3(x) ∂x1y2F3
(
x, x ′

εh

)
dx = lim

h→0

∫

�

uh3(x) ∂x2

(
∂x1F3

(
x, x ′

εh

))
dx

− lim
h→0

∫

�

uh3(x) ∂x1x2F3
(
x, x ′

εh

)
dx . (4.24)

Notice that

lim
h→0

∫

�

uh3(x) ∂x1x2F3
(
x, x ′

εh

)
dx =

∫

�×Y
u3 ∂x1x2F3(x, y)dxdy

=
∫

�

∂x1x2u3

∫

Y
F3(x, y)dydx . (4.25)

Recalling (4.17), we find

lim
h→0

∫

�

uh3(x) ∂x2

(
∂x1F3

(
x, x ′

εh

))
dx = − lim

h→0

∫

�

∂x2u
h
3(x) ∂x1F3

(
x, x ′

εh

)
dx

= lim
h→0

∫

�

∂x3u
h
2 ∂x1F3

(
x, x ′

εh

)
dx

= − lim
h→0

∫

�

uh2 ∂x1x3F3
(
x, x ′

εh

)
dx

= −
∫

�×Y
(ū2 − x3∂x2u3) ∂x1x3F3(x, y)dxdy

=
∫

�

∂x1x2u3

∫

Y
F3(x, y)dydx . (4.26)

From (4.24), (4.25), (4.26) we infer

lim
h→0

1

h

∫

�

uh3(x) ∂x1 y2F3
(
x, x ′

εh

)
dx = lim

h→0

1

εhγ

∫

�

uh3(x) ∂x1 y2F3
(
x, x ′

εh

)
dx

= 0. (4.27)

In a similar way for uh3 (recalling (4.18)), we deduce

lim
h→0

1

h

∫

�

uh3(x) ∂x1x3F2
(
x, x ′

εh

)
dx = − lim

h→0

1

h

∫

�

∂x3u
h
3(x) ∂x1F2

(
x, x ′

εh

)
dx

= 0. (4.28)

From (4.21), (4.27), (4.28) we conclude that

lim
h→0

1

h

∫

�

uh3(x) ∂x1χ31

(
x, x ′

εh

)
dx = 0. (4.29)

Analogously, we obtain

lim
h→0

1

h

∫

�

uh3(x) ∂x2χ32

(
x, x ′

εh

)
dx = 0. (4.30)
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Lastly, using similar arguments as above, we compute

lim
h→0

(
h

εhγ
− 1

)⎛

⎝
∑

α=1,2

1

h

∫

�

uhα(x) ∂x3χα3

(
x, x ′

εh

)
dx + 1

h2

∫

�

uh3(x) ∂x3χ33

(
x, x ′

εh

)
dx

⎞

⎠

= lim
h→0

(
h

εhγ
− 1

)
⎛

⎝−
∑

α=1,2

1

h

∫

�

∂x3u
h
α(x) χα3

(
x, x ′

εh

)
dx + 1

h2

∫

�

uh3(x) ∂x3χ33

(
x, x ′

εh

)
dx

⎞

⎠

= lim
h→0

(
h

εhγ
− 1

)⎛

⎝
∑

α=1,2

1

h

∫

�

∂xαu
h
3(x) χα3

(
x, x ′

εh

)
dx + 1

h2

∫

�

uh3(x) ∂x3χ33

(
x, x ′

εh

)
dx

⎞

⎠

= lim
h→0

(
h

εhγ
− 1

)(
− 1

h

∫

�

uh3(x) (∂x1χ31 + ∂x2χ32)
(
x, x ′

εh

)
dx

+
(

h

εhγ
+ 1

)
1

h2

∫

�

uh3(x) ∂x3χ33

(
x, x ′

εh

)
dx

)

= 0. (4.31)

From (4.19), (4.20), (4.29), (4.30), (4.31) we have that
∫

�×Y
χ(x, y) : d

(
λ(x, y)−

(
Eū(x ′)− x3D2u3(x ′) 0

0 0

)
⊗ L2

y

)
= 0.

From this and Proposition 4.9 we find that there exists μ ∈ Xγ (ω) such that

λ−
(
Eū − x3D2u3 0

0 0

)
⊗ L2

y = Ẽγ μ.

This, in turn, yields the claim. ��

4.4 Unfolding adapted to dimension reduction

We proceed along the lines of [23, Section 4.3].
For every ε > 0 and i ∈ Z

2, let

Qi
ε :=

{
x ∈ R

2 : x − εi

ε
∈ Y

}
.

Given an open set ω ⊆ R
2, we will set

Iε(ω) :=
{
i ∈ Z

2 : Qi
ε ⊂ ω

}
.

Given με ∈Mb(ω × I ) and Qi
ε ⊂ ω, we define μi

ε ∈Mb(I × Y) such that
∫

I×Y
ψ(x3, y) dμi

ε(x3, y) =
1

ε2

∫

Qi
ε×I

ψ

(
x3,

x ′

ε

)
dμε(x), ψ ∈ C(I × Y).

Definition 4.15 For every ε > 0, the unfolding measure associated with με is the measure
λ̃ε ∈Mb(ω × I × Y) defined by

λ̃ε :=
∑

i∈Iε(ω)

(
L2
x ′ �Qi

ε

)
⊗ μi

ε.
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The following proposition provides the relationship between the two-scale weak* conver-
gence and unfolding measures. The proof is analogous to [23, Proposition 4.11.].

Proposition 4.16 Letω ⊆ R
2 be an open set and let {με} ⊂Mb(ω× I ) be a bounded family

such that

με
2−∗−−⇀ μ0 two-scale weakly* inMb(ω × I × Y).

Let {λ̃ε} ⊂Mb(ω× I ×Y) be the family of unfolding measures associated with {με}. Then

λ̃ε
∗−⇀ μ0 weakly* inMb(ω × I × Y).

To analyze the sequences of symmetrized scaled gradients of BD functions in the context
of unfolding, we will need to consider the following auxiliary spaces

BDh
ε
(I × Y) :=

{
u ∈ L1(I × Y;R3) : Ẽ h

ε
u ∈Mb(I × Y;M3×3

sym )
}
,

BDh
ε

(
(0, 1)2 × I

) :=
{
u ∈ L1 ((0, 1)2 × I ;R3) : E h

ε
u ∈Mb

(
(0, 1)2 × I ;M3×3

sym

) }
,

where Ẽ h
ε
and E h

ε
denote the distributional symmetrized scaled gradients, cf. (2.1). Similarly

as in Remark 4.4, scaling in the the first two components shows that these auxiliary spaces
are equivalent to the usual BD space on the appropriate domain.

Proposition 4.17 Let ω ⊆ R
2 be an open set and let B ⊆ Y be an open set with Lipschitz

boundary. Let γ0 ∈ (0, 1] and let h, ε > 0 be such that

γ0 ≤ h

ε
≤ 1

γ0
.

If uε ∈ BD(ω× I ), the unfolding measure associated with �h Euε�(Bε\Cε)× I is given by

∑

i∈Iε(ω)

(
L2
x ′ �Qi

ε

)
⊗ Ẽ h

ε
ûih,ε�I × (B \ C), (4.32)

where C has been introduced in (3.1) and ûih,ε ∈ BDh
ε
(I × Y) is such that

∫

I×B
|ûih,ε| dx3 dy +

∫

I×∂B
|ûih,ε| dH2 + |Ẽ h

ε
ûih,ε| (I × (B ∩ C))

≤ C

ε2
|�h Euε|

(
int(Qi

ε)× I
)

, (4.33)

for some constant C independent of i , h and ε.

Proof Since Bε has Lipschitz boundary, uε1Bε×I ∈ BDloc(ω × I ) with

Euε�Bε × I = E
(
uε1Bε×I

)+ [uε�∂Bε × I � ν]H2�∂Bε × I ,

where uε�∂Bε × I denotes the trace of uε1Bε×I on ∂Bε × I , while ν is the exterior normal
to ∂Bε × I . We note that the third component of ν is equal to zero.
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Remark that Cε =
(∪i∂Qi

ε

) ∩ ω. Accordingly, for i ∈ Iε(ω) and ψ ∈ C1(I × Y;M3×3
sym ),

∫

Qi
ε×I

ψ

(
x3,

x ′

ε

)
: d (�h Euε�(Bε \ Cε)× I ) (x)

=
∫

int(Qi
ε)×I

ψ

(
x3,

x ′

ε

)
: d (�h Euε�Bε × I ) (x)

=
∫

int(Qi
ε)×I

ψ

(
x3,

x ′

ε

)
: d�h E

(
uε1Bε×I

)
(x)

+
∫

int(Qi
ε)×I

ψ

(
x3,

x ′

ε

)
: �h [uε�∂Bε × I � ν] dH2�∂Bε × I (x).

We set vih,ε(x) := diag
(
1, 1, 1

h

)
uε(εi + εx ′, x3) for x ∈ (0, 1)2 × I . Then vih,ε ∈

BDh
ε

(
(0, 1)2 × I

)
, and E h

ε
vih,ε(x) = ε�h Euε(εi + εx ′, x3). Performing a change of vari-

ables, we find
∫

Qi
ε×I

ψ

(
x3,

x ′

ε

)
: d (�h Euε�(Bε \ Cε)× I ) (x)

= ε

∫

(0,1)2×I
ψ

(
x3, x

′) : dE h
ε

(
vih,ε1I(B)×I

)
(x)

+ ε

∫

(0,1)2×I
ψ

(
x3, x

′) : �h

[
diag(1, 1, h) vih,ε�I(∂B)× I � ν

]
dH2(x)

= ε

∫

(0,1)2×I
ψ

(
x3, x

′) : dE h
ε

(
vih,ε1I(B)×I

)
(x)

+ ε

∫

(0,1)2×I
ψ

(
x3, x

′) :
[
vih,ε�I(∂B)× I � ν

]
dH2(x).

Notice that we can assume that
∫

(0,1)2×I
|vih,ε|dx +

∫

∂(0,1)2×I
|vih,ε�∂(0, 1)2 × I | dH2 ≤ C |E h

ε
vih,ε|

(
(0, 1)2 × I

)

= C

ε
|�h Euε|

(
int(Qi

ε)× I
)

,

for some constant C independent of i , h and ε. This can be achieved by using Remark 4.7
since subtracting a rigid deformation to uε on Qi

ε × I corresponds to subtracting an element
of the kernel of E h

ε
to vih,ε , which does not modify the calculations done thus far. Hence,

by the trace theorem and Poincaré-Korn’s inequality in BD
(
(0, 1)2 × I

)
, we get the desired

inequality.
Defining ûih,ε(x3, y) := 1

ε
vih,ε (I(y), x3), we obtain

|Ẽ h
ε
ûih,ε| (I × Y) ≤

∫

I×C
|ûih,ε�I × C| dH2 + |Ẽ h

ε
ûih,ε| (I × (Y \ C))

= 1

ε

∫

∂(0,1)2×I
|vih,ε�∂(0, 1)2 × I | dH2 + 1

ε
|E h

ε
vih,ε|

(
(0, 1)2 × I

)

≤ C + 1

ε
|E h

ε
vih,ε|

(
(0, 1)2 × I

) = C + 1

ε2
|�h Euε|

(
int(Qi

ε)× I
)

.
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Furthermore,

ε

∫

(0,1)2×I
ψ : dE h

ε

(
vih,ε1I(B)×I

)
= ε2

∫

I×(Y\C)

ψ : d Ẽ h
ε

(
ûih,ε1B×I

)

and

ε

∫

(0,1)2×I
ψ :

[
vih,ε�I(∂B)× I � ν

]
dH2 = ε2

∫

I×(Y\C)

ψ :
[
ûih,ε�I × (∂B \ C)� ν

]
dH2.

So we have

1

ε2

∫

Qi
ε×I

ψ

(
x3,

x ′

ε

)
: d (�h Euε�(Bε \ Cε)× I ) (x)

=
∫

I×(Y\C)

ψ(x3, y) : d Ẽ h
ε

(
ûih,ε1B×I

)
(y, x3)

+
∫

I×(Y\C)

ψ(x3, y) :
[
ûih,ε�I × (∂B \ C)� ν

]
dH2(x3, y)

=
∫

I×Y
ψ(x3, y) : d Ẽ h

ε
ûih,ε�I × (B \ C)(x3, y),

from which (4.32) follows. It remains to prove (4.33). Again, up to adding an affine trans-
formation to ûih,ε (cf. Remark 4.7) on I × B, we can assume

∫

I×B
|ûih,ε| dx3dy +

∫

I×∂B
|ûih,ε| dH2 + |Ẽ h

ε
ûih,ε| (I × (B ∩ C))

≤ C |Ẽ h
ε
ûih,ε| (I × B)+ |Ẽ h

ε
ûih,ε| (I × (B ∩ C)) ≤ C |Ẽ h

ε
ûih,ε| (I × Y)

≤ C

ε2
|�h Euε|

(
int(Qi

ε)× I
)

.

This concludes the proof of the theorem. ��

As a consequence of Proposition 4.17, we deduce the following lemma, which in turn will
be used in the proof of the lower semicontinuity of Hhom in Sect. 5.5.

Lemma 4.18 Let B ⊆ Y be an open set with Lipschitz boundary, such that ∂B \ T is a C1-
hypersurface, for somecompact setT withH1(T ) = 0. Additionally, assume that ∂B∩C ⊆ T .
Let vh ∈ BD(�) be such that

vh
∗−⇀ v weakly* inBD(�)

and

�h Evh�� ∩ (Bεh × I )
2−∗−−⇀ π two-scale weakly* inMb(�× Y;M3×3

sym ).

Then π is supported in �× B̄ and

π��× (∂B \ T ) = a(x, y)� ν(y) ζ, (4.34)

where ζ ∈M+
b (�× (∂B\T )), a : �× (∂B\T )→ R

3 is a Borel map, and ν is the exterior
normal to ∂B.
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Proof Denote by π̃ ∈Mb(�× Y;M3×3
sym ) the two-scale weak* limit (up to a subsequence)

of

�h Evh�� ∩ ((Bεh \ Cεh )× I ) ∈Mb(�;M3×3
sym ).

Then it is enough to prove the analogue of (4.34) for π̃ . Indeed, the two-scale weak* limit
(up to a subsequence) of

�h Evh�� ∩ ((Bεh ∩ Cεh )× I ) ∈Mb(�;M3×3
sym )

is supported on �×B ∩ C. Since by assumption ∂B∩C ⊆ T , we have that ∂B\T and B ∩ C
are disjoint sets, which implies

π��× (∂B \ T ) = π̃��× (∂B \ T ).

By Proposition 4.17, the unfolding measure associated with �h Evh�(Bεh\Cεh )× I is given
by

∑

i∈Iεh (ω)

(
L2
x ′ �Qi

εh

)
⊗ Ẽ h

εh
v̂iεh �I × (B \ C), (4.35)

where v̂iεh ∈ BD(I × Y) is such that

∫

I×B
|v̂iεh | dx3dy +

∫

I×∂B
|v̂iεh | dH2 + |Ẽ h

εh
v̂iεh | (I × (B ∩ C))

≤ C

εh2
|�h Evh |

(
int(Qi

εh
)× I

)
. (4.36)

Further, by Proposition 4.16, the family of associated measures in (4.35) converge weakly*
to π̃ inMb(�×Y;M3×3

sym ). Then, for every χ ∈ C∞c (�×Y;M3×3
sym ) with d̃ivγ χ(x, y) = 0,

we get

∫

�×Y
χ(x, y) : dπ̃(x, y)

= lim
h→0

∫

�×Y
χ(x, y) : d

⎛

⎝
∑

i∈Iεh (ω)

(
L2
x ′ �Qi

εh

)
⊗ Ẽ h

εh
v̂iεh �I × (B \ C)

⎞

⎠

= lim
h→0

∑

i∈Iεh (ω)

∫

Qi
εh

(∫

I×(B\C)

χ(x, y) : d Ẽ h
εh

v̂iεh

)
dx ′

= lim
h→0

∑

i∈Iεh (ω)

∫

Qi
εh

(∫

I×B
χ(x, y) : d Ẽ h

εh
v̂iεh −

∫

I×(B∩C)

χ(x, y) : d Ẽ h
εh

v̂iεh

)
dx ′.

(4.37)
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By the integration by parts formula for BD functions over I × B we have
∫

�×Y
χ(x, y) : dπ̃(x, y)

= lim
h→0

∑

i∈Iεh (ω)

∫

Qi
εh

(
−

∫

I×B
d̃iv h

εh
χ(x, y) · v̂iεh (x3, y) dx3dy

+
∫

I×∂B
χ(x, y) :

[
v̂iεh (x3, y)� ν

]
dH2(x3, y)−

∫

I×(B∩C)

χ(x, y) : d Ẽ h
εh

v̂iεh

)
dx ′

= lim
h→0

∑

i∈Iεh (ω)

∫

Qi
εh

(
−

(
εh

h
− 1

γ

)∫

I×B
∂x3χ(x, y) · v̂iεh (y, x3) dx3dy

+
∫

I×∂B
χ(x, y) :

[
v̂iεh (y, x3)� ν

]
dH2(y, x3)−

∫

I×(B∩C)

χ(x, y) : d Ẽ h
εh

v̂iεh

)
dx ′.

Owing to (4.36), we conclude that the the sum

∑

i∈Iεh (ω)

∫

Qi
εh

∫

I×B
∂x3χ(x, y) · v̂iεh (y, x3) dx3dy

is finite. Further, in view of (4.36) we can rewrite the above limit as
∫

�×Y
χ(x, y) : dπ̃(x, y) = lim

h→0

(∫

�×Y
χ(x, y) : dλh1(x, y)+

∫

�×Y
χ(x, y) : dλh2(x, y)

)
,

(4.38)

with λh1, λh2 ∈Mb(�× Y;M3×3
sym ), such that (up to a subsequence)

λh1
∗−⇀ λ1 and λh2

∗−⇀ λ2 weakly* inMb(�× Y;M3×3
sym )

for suitable λ1, λ2 ∈Mb(�×Y;M3×3
sym ). Then, we have supp(λ1) ⊆ �×∂B and supp(λ2) ⊆

�× (B ∩ C).
By the density argument described in Lemma 4.5, we conclude that (4.38) holds for every

χ ∈ C0(�× Y;M3×3
sym ) with d̃ivγ χ = 0. The definition of λ1 and λ2 then yields

∫

�×Y
χ(x, y) : d (π̃ − λ1 − λ2) (x, y) = 0.

Thus, from Proposition 4.9 we conclude that there exists μ ∈ Xγ (ω) such that

π̃ − λ1 − λ2 = Ẽγ μ.

Recalling the assumption that ∂B∩C ⊆ T and using the same argument as above, we obtain

π̃��× (∂B \ T ) = λ1��× (∂B \ T )+ Ẽγ μ��× (∂B \ T ).

In view of Proposition 4.10 and recalling the assumption that ∂B \ T is a C1-hypersurface,
we are left to prove the analogue of (4.34) for λ1.

We consider

v̂h(x, y) =
∑

i∈Iεh (ω)

1Qi
εh

(x ′) v̂iεh (x3, y),
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so that λh1(x, y) =
[
v̂h(x3, y)� ν

]
L2
x ′ ⊗ (H2

x3,y�I × ∂B). Then {v̂h} is bounded in L1(�×
∂B;R3) by (4.36). Up to a subsequence,

v̂h L2
x ′ ⊗ (H2

x3,y�I × ∂B)
∗−⇀ η weakly* inMb(�× ∂B;R3)

for a suitable η ∈Mb(�× ∂B;R3). Since ν is continuous on ∂B \ T , we infer

λ1��× (∂B \ T ) = η

|η| (x, y)� ν(y) |η|��× (∂B \ T ),

which concludes the proof, since η
|η| is a Borel function. ��

5 Two-scale statics and duality

In this section we define a notion of stress–strain duality and analyze the two-scale behavior
of our functionals.

5.1 Stress-plastic strain duality on the cell

Definition 5.1 Let γ ∈ (0,+∞). The set Kγ of admissible stresses is defined as the set of
all elements � ∈ L2(I × Y;M3×3

sym ) satisfying:

(i) d̃ivγ � = 0 in I × Y ,
(ii) � !e3 = 0 on ∂ I × Y ,
(iii) �dev(x3, y) ∈ K (y) for L1

x3 ⊗ L2
y-a.e. (x3, y) ∈ I × Y .

Since condition (iii) implies that�dev ∈ L∞(I ×Y;M3×3
sym ), for every� ∈ Kγ we deduce

from Proposition 2.3 that � ∈ L p(I × Y;M3×3
sym ) for every 1 ≤ p < ∞.

Definition 5.2 Let γ ∈ (0,+∞). The family Aγ of admissible configurations is given by
the set of triplets

u ∈ BDγ (I × Y), E ∈ L2(I × Y;M3×3
sym ), P ∈Mb(I × Y;M3×3

dev ),

such that

Ẽγ u = E L1
x3 ⊗ L2

y + P in I × Y.

Definition 5.3 Let � ∈ Kγ and let (u, E, P) ∈ Aγ . We define the distribution [�dev : P]
on R× Y by

[�dev : P](ϕ) := −
∫

I×Y
ϕ � : E dx3dy −

∫

I×Y
� : (u � ∇̃γ ϕ

)
dx3dy, (5.1)

for every ϕ ∈ C∞c (R× Y).

Remark 5.4 Note that the second integral in (5.1) iswell defined since BD(I×Y) is embedded
into L3/2(I ×Y;R3). Moreover, the definition of [�dev : P] is independent of the choice of
(u, E), so (5.1) defines a meaningful distribution on R× Y .

The following results can be established from the proofs of [24, Theorem 6.2] and [24,
Proposition 3.9] respectively, by treating the relative boundary of the “Dirichlet” part as
empty, the “Neumann” part as ∂ I × Y , and considering approximating sequences which
must be periodic in Y .
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Proposition 5.5 Let � ∈ Kγ and (u, E, P) ∈ Aγ . Then [�dev : P] can be extended to a
bounded Radon measure on R× Y , whose variation satisfies

|[�dev : P]| ≤ ‖�dev‖L∞(I×Y;M3×3
sym )
|P| in Mb(R× Y).

Proposition 5.6 Let � ∈ Kγ and (u, E, P) ∈ Aγ . If Y is a geometrically admissible multi-
phase torus, then

H

(
y,

dP

d|P|
)
|P| ≥ [�dev : P] in Mb(I × Y).

5.2 Disintegration of admissible configurations

Let ω̃ ⊆ R
2 be an open and bounded set such that ω ⊂ ω̃ and ω̃ ∩ ∂ω = γD . We also denote

by �̃ = ω̃ × I the associated reference domain.
In order to make sense of the duality between the two-scale limits of stresses and plastic

strains, we will need to disintegrate the two-scale limits of the kinematically admissible fields
in such a way to obtain elements of Aγ , for γ ∈ (0,+∞).

Definition 5.7 Let w ∈ H1(�̃;R3) ∩ K L(�̃). We define the class Ahom
γ (w) of admissible

two-scale configurations relative to the boundary datum w as the set of triplets (u, E, P)

with

u ∈ K L(�̃), E ∈ L2(�̃× Y;M3×3
sym ), P ∈Mb(�̃× Y;M3×3

dev ),

such that

u = w, E = Ew, P = 0 on (�̃ \�)× Y,

and also such that there exists μ ∈ Xγ (ω̃) with

Eu ⊗ L2
y + Ẽγ μ = E L3

x ⊗ L2
y + P in �̃× Y. (5.2)

Lemma 5.8 Let (u, E, P) ∈ Ahom
γ (w) with the associated μ ∈ Xγ (ω̃), and let ū ∈ BD(ω̃)

and u3 ∈ BH(ω̃) be the Kirchhoff-Love components of u. Set

η := L2
x ′ + (proj#|P|)s ∈M+

b (ω̃).

Then the following disintegrations hold true:

Eu ⊗ L2
y =

(
A1(x ′)+ x3A2(x ′) 0

0 0

)
η ⊗ L1

x3 ⊗ L2
y, (5.3)

E L3
x ⊗ L2

y = C(x ′)E(x, y) η ⊗ L1
x3 ⊗ L2

y, (5.4)

P = η
gen.⊗ Px ′ . (5.5)

Above, A1, A2 : ω̃ → M
2×2
sym and C : ω̃ → [0,+∞] are Radon-Nikodym derivatives of

Eū, −D2u3 and L2
x ′ with respect to η, E(x, y) is a Borel representative of E, and Px ′ ∈

Mb(I × Y;M3×3
dev ) for η-a.e. x ′ ∈ ω̃.

Furthermore, we can choose a Borel map (x ′, x3, y) ∈ �̃× Y �→ μx ′(x3, y) ∈ R
3 such

that, for η-a.e. x ′ ∈ ω̃,

μ = μx ′(x3, y) η ⊗ L1
x3 ⊗ L2

y, Ẽγ μ = η
gen.⊗ Ẽγ μx ′ , (5.6)

where μx ′ ∈ BDγ (I × Y),
∫
I×Y μx ′(x3, y) dx3dy = 0.
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Proof The proof is analogous to [23, Lemma 5.4]. The only difference is the statement and
argument for the disintegration of Eu ⊗ L2

y , that we detail below.

First we note that proj#
(
Ẽγ μ

)
αβ
= proj#

(
Eyμ

)
αβ
= 0 for α, β = 1, 2. Then, from

(5.2) we get

(Eū)αβ = proj#
(
Eu ⊗ L2

y

)

αβ
=

(∫

I×Y
Eαβ(x, y) dx3dy

)
L2
x ′

+ proj#(P)αβ

≤ e(1)
αβ (x ′)L2

x ′ + (proj#|P|)sαβ,

where we set e(1) := ∫
I×Y |E(·, x3, y)| dx3dy + (proj#|P|)a ∈ L2(ω̃;M3×3

sym ). Similarly,
after multiplying equation (5.2) by x3, we have that

(−D2u3
)
αβ
= 1

12
proj#

(
x3Eu ⊗ L2

y

)

αβ
= 1

12

(∫

I×Y
x3Eαβ(x, y) dx3dy

)
L2
x ′

+ 1

12
proj#(x3P)

≤ e(2)
αβ (x ′)L2

x ′ +
1

12
(proj#|x3P|)sαβ,

where we set e(2) := 1
12

∫
I×Y |x3E(·, x3, y)| dx3dy + 1

12 (proj#|x3P|)a ∈ L2(ω̃;M3×3
sym ).

Consequently, the measures Eū and −D2u3 are absolutely continuous with respect to η, so
we find

Eū ⊗ L2
y = A1(x

′) η ⊗ L1
x3 ⊗ L2

y,

−D2u3 ⊗ L2
y = A2(x

′) η ⊗ L1
x3 ⊗ L2

y,

for suitable A1, A2 : ω̃ → M
2×2
sym such that (5.3) hold true. ��

Remark 5.9 From the above disintegration, we have that, for η-a.e. x ′ ∈ ω̃,

Ẽγ μx ′ =
[
C(x ′)E(x, y)−

(
A1(x ′)+ x3A2(x ′) 0

0 0

)]
L1
x3 ⊗ L2

y + Px ′ in I × Y.

Thus, the triple
(

μx ′ ,

[
C(x ′)E(x, y)−

(
A1(x ′)+ x3A2(x ′) 0

0 0

)]
, Px ′

)

is an element of Aγ .

5.3 Admissible stress configurations and approximations

For every eh ∈ L2(�;M3×3
sym ) we define σ h(x) := C

(
x ′
εh

)
�heh(x). Then, in view of [24,

Theorem 3.6], we introduce the set

Kh =
{
σ h ∈ L2(�;M3×3

sym ) : divhσ h = 0 in �, σ h ν = 0 in ∂� \ �D,

σ h
dev(x

′, x3) ∈ K

(
x ′

εh

)
for a.e. x ′ ∈ ω, x3 ∈ I

}
,
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which is the set of stresses for the rescaled h problems. Next we introduce the set of two-scale
limiting stresses.

Definition 5.10 The set Khom
γ is the set of all elements � ∈ L2(�× Y;M3×3

sym ) satisfying:

(i) d̃ivγ �(x ′, ·) = 0 in I × Y for a.e. x ′ ∈ ω,
(ii) �(x ′, ·) !e3 = 0 on ∂ I × Y for a.e. x ′ ∈ ω,
(iii) �dev(x, y) ∈ K (y) for L3

x ⊗ L2
y-a.e. (x, y) ∈ �× Y ,

(iv) σi3(x) = 0 for i = 1, 2, 3,
(v) divx ′ σ̄ = 0 in ω,
(vi) divx ′divx ′ σ̂ = 0 in ω,

where σ := ∫
Y �(·, y) dy, and σ̄ , σ̂ ∈ L2(ω;M2×2

sym ) are the zero-th and first order moments
of the 2× 2 minor of σ .

Remark 5.11 Notice that as a consequence of the properties (iii) and (iv) in the Definition
5.10we can actually conclude that σ̄ , σ̂ ∈ L∞(ω;M2×2

sym ). Namely, the uniform boundedness

of sets K (y) implies that the deviatoric part of the weak limit, i.e. σdev = σ − 1
3 tr σ I3×3, is

bounded in L∞(�;M3×3
sym ). Thus we have that

⎛

⎝
σ11 σ12 0
σ12 σ22 0
0 0 0

⎞

⎠− 1

3

⎛

⎝
σ11 + σ22 0 0

0 σ11 + σ22 0
0 0 σ11 + σ22

⎞

⎠ is bounded in L∞(�;M3×3
sym ).

Hence, the components σαβ are all bounded in L∞(�).

In the following propositionwe show that the setKhom
γ characterizesweak two-scale limits

of sequences of elastic stresses {σ h}.
Proposition 5.12 Let {σ h} be a bounded family in L2(�;M3×3

sym ) such that σ h ∈ Kh for every
h, and

σ h 2−⇀ � two-scale weakly inL2(�× Y;M3×3
sym ).

Then � ∈ Khom
γ .

Proof Consider a sequence {σ h} ⊂ L2(�;M3×3
sym ) such that σh ∈ Kh for every h, and assume

that σ h⇀σ weakly in L2(�;M3×3
sym ). We first establish the macroscopic properties (iv), (v),

(vi). To obtain (iv), let v ∈ C∞c (�;R3) and V ∈ C∞(�;R3) be defined by

V (x ′, x3) :=
∫ x3

− 1
2

v(x ′, ζ ) dζ.

From the condition divhσ h = 0 in �, for every ϕ ∈ H1(�;R3) with ϕ = 0 on �D we have
∫

�

σ h(x) : Ehϕ(x) dx = 0. (5.7)

Setting

ϕ(x) =
⎛

⎝
2h V1(x)
2h V2(x)
h V3(x)

⎞

⎠ ,
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and passing to the limit as h → 0, we find

∫

�

σ(x) :
⎛

⎝
0 0 v1(x)
0 0 v2(x)

v1(x) v2(x) v3(x)

⎞

⎠ dx =
∫

�

σ(x) :
⎛

⎝
0 0 ∂x3V1(x)
0 0 ∂x3V2(x)

∂x3V1(x) ∂x3V2(x) ∂x3V3(x)

⎞

⎠ dx = 0.

Consequently, from the arbitrariness of v, we infer that σi3 = 0.
To obtain (iv) and (v) let ϕ̄ ∈ C∞c (ω;R3) and choose the test function

ϕ(x) =
⎛

⎝
ϕ̄1(x ′)− x3 ∂x1 ϕ̄3(x ′)
ϕ̄2(x ′)− x3 ∂x2 ϕ̄3(x ′)

1
h ϕ̄3(x ′)

⎞

⎠ .

We deduce from (5.7) that
∫

�

σ h(x) :
(
E ϕ̄(x ′)− x3D2ϕ̄3(x ′) 0

0 0

)
dx = 0.

Passing to the limit, we conclude that

divx ′ σ̄ = 0 in ω, and divx ′divx ′ σ̂ = 0 in ω.

Next we prove the microscopic properties (i), (ii) and (iii). Consider test functions

εh φ
(
x, x ′

εh

)
, for φ ∈ C∞c (ω;C∞(I × Y;R3)) in (5.7). We first observe that the sequence

∇h

(
εh φ

(
x,

x ′

εh

))
=

[
εh ∇x ′φ

(
x,

x ′

εh

)
+ ∇yφ

(
x,

x ′

εh

) ∣∣∣∣
εh

h
∂x3φ

(
x,

x ′

εh

) ]

converges strongly two-scale in L2(� × Y;M3×3). Hence, passing to the limit as h → 0,
we find

∫

�×Y
�(x, y) : Ẽγ φ (x, y) dxdy = 0.

Suppose now that φ (x, y) = ψ(1)(x ′) ψ(2)(x3, y) for ψ(1) ∈ C∞c (ω) and ψ(2) ∈ C∞(I ×
Y;R3). Then

∫

ω

ψ(1)(x ′)
(∫

I×Y
�(x, y) : Ẽγ ψ(2)(x3, y) dx3dy

)
dx ′ = 0.

Thus, for a.e. x ′ ∈ ω,

0 =
∫

I×Y
�(x, y) : Ẽγ ψ(2)(x3, y) dx3dy

= −
∫

I×Y
d̃ivγ �(x, y) · ψ(2)(x3, y) dx3dy +

∫

∂(I×Y)

�(x, y) ν · ψ(2)(x3, y) dH2(x3, y)

= −
∫

I×Y
d̃ivγ �(x, y) · ψ(2)(x3, y) dx3dy +

∫

∂ I×Y
�(x, y) !e3 · ψ(2)(x3, y) dH2(x3, y),

from which we infer d̃ivγ �(x ′, ·) = 0 in I × Y and �(x ′, ·) !e3 = 0 on ∂ I × Y .
Finally, we define

�h(x, y) =
∑

i∈Iεh (ω̃)

1Qi
εh

(x ′) σ h(εhi + εhI(y), x3), (5.8)

123



Effective quasistatic evolution models for perfectly... Page 41 of 56 93

and consider the set

S = {� ∈ L2(�× Y;M3×3
sym ) : �dev(x, y) ∈ K (y) for L3

x ⊗ L2
y-a.e. (x, y) ∈ �× Y}.

The construction of �h from σ h ∈ Kh ensures that �h ∈ S and that �h −⇀
� weakly in L2(�× Y;M3×3

sym ). Since the compactness of K (y) implies that S is is convex

and weakly closed in L2(�× Y;M3×3
sym ), we have that � ∈ S, which concludes the proof. ��

Conversely, under additional star-shapedness assumptions on ω, we now provide an
approximation result for elements of Khom

γ .

Lemma 5.13 Let ω ⊂ R
2 be an open bounded set that is star-shaped with respect to one of

its points and let � ∈ Khom
γ . Then, there exists a sequence �n ∈ L2(R2 × I × Y;M3×3

sym )

such that the following holds:

(a) �n ∈ C∞(R2; L2(I × Y;M3×3
sym )) and �n → � strongly in L2(ω × I × Y;M3×3

sym ),

(b) d̃ivγ �n(x ′, ·) = 0 on I × Y for every x ′ ∈ R
2,

(c) �n(x ′, ·) !e3 = 0 on ∂ I × Y for every x ′ ∈ R
2,

(d) (�n(x, y))dev ∈ K (y) for every x ′ ∈ R
2 and L1

x3 ⊗ L2
y-a.e. (x3, y) ∈ I × Y .

Further, if we set σn(x) :=
∫
Y �n(x, y) dy, and σ̄n, σ̂n ∈ L2(ω;M2×2

sym ) are the zero-th and
first order moments of the 2× 2 minor of σn, then:

(e) σn ∈ C∞(R2 × I ;M3×3
sym ) and σn → σ strongly in L2(ω × I ;M3×3

sym ),
(f) divx ′ σ̄n = 0 in ω,
(g) divx ′divx ′ σ̂n = 0 in ω.

Proof After a translation we may assume that ω is star-shaped with respect to the origin.
Thus, in particular,

ω ⊆ αω, for all α ≥ 1. (5.9)

We extend � to R
2 × I × Y by setting � = 0 outside � × Y . Let ρ be the standard

mollifier on R
2 and define the planar dilation dn(x ′) =

(
n

n+1 x
′
)
, for every n ∈ N. Owing to

(5.9), there exists a vanishing sequence εn > 0 such that for every map ϕ ∈ C∞c (ω;R2)

supp(ρεn ∗ ϕ) ⊂⊂ n+1
n ω = d−1n (ω) implies supp

(
(ρεn ∗ ϕ) ◦ d−1n

) ⊂⊂ ω. (5.10)

We then set

�n(x
′, x3, y) :=

(
(� ◦ dn) (·, x3, y) ∗ ρεn

)
(x ′). (5.11)

With a slight abuse of notation, we have

σn(x
′, x3) =

(
(σ ◦ dn) (·, x3) ∗ ρεn

)
(x ′),

σ̄n(x
′) = (

(σ̄ ◦ dn) ∗ ρεn

)
(x ′),

σ̂n(x
′) = ( (

σ̂ ◦ dn
) ∗ ρεn

)
(x ′).

Items (a) and (e) are immediate consequences of the above construction, while item (d)
follows from Jensen’s inequality since K (y) is convex. Next, for x ′ ∈ R

2

d̃ivγ �n(x
′, ·) = d̃ivγ (� ◦ dn) ∗ ρεn = 0 in I × Y,

which proves item (b).
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To prove item approximation of stresses (f) - regime gamma, we observe that, for every
map ϕ ∈ C∞c (ω;R2) there holds

〈divx ′ σ̄n, ϕ〉 = −
∫

R2
σ̄n : ∇x ′ϕ dx ′ = −

∫

R2
(σ̄ ◦ dn) : (ρεn ∗ ∇x ′ϕ) dx ′

= −
∫

R2
(σ̄ ◦ dn) : ∇x ′ (ρεn ∗ ϕ) dx ′ = −( n+1n )2

∫

R2
σ̄ : [∇x ′ (ρεn ∗ ϕ) ◦ d−1n ] dx ′

= −( n+1n )

∫

R2
σ̄ : ∇x ′ [(ρεn ∗ ϕ) ◦ d−1n ] dx ′ = ( n+1n )〈divx ′ σ̄ , (ρεn ∗ ϕ) ◦ d−1n 〉 = 0,

where in last equation we used that divx ′ σ̄ = 0 in ω and (5.10).
Similarly for item approximation of stresses (g) - regime gamma, for every map ϕ ∈

C∞c (ω) we have

〈divx ′divx ′ σ̂n, ϕ〉 =
∫

R2
σ̄n : ∇2

x ′ϕ dx ′ =
∫

R2
(σ̂ ◦ dn) : (ρεn ∗ ∇2

x ′ϕ) dx ′

=
∫

R2
(σ̂ ◦ dn) : ∇2

x ′(ρεn ∗ ϕ) dx ′ = ( n+1n )2
∫

R2
σ̂ : [∇2

x ′(ρεn ∗ ϕ) ◦ d−1n ] dx ′

=
∫

R2
σ̂ : ∇2

x ′ [(ρεn ∗ ϕ) ◦ d−1n ] dx ′ = 〈divx ′divx ′ σ̂ , (ρεn ∗ ϕ) ◦ d−1n 〉 = 0,

where in last equation we used that divx ′divx ′ σ̂ = 0 in ω and (5.10). ��

5.4 The principle of maximum plastic work

The aim of this subsection is to prove an inequality between two-scale dissipation and plastic
work, which in turn will be essential to prove the global stability condition of two-scale
quasistatic evolutions. The claim is given in Corollary 5.16 below.

The proof of the following proposition and consequently Theorem 5.15 relies on the
approximation argument given in Lemma 5.13 and on two-scale duality, which can be estab-
lished only for smooth stresses by disintegration and Definition 5.3, see also [23, Proposition
5.11]. The problem is that the measure η defined in Lemma 5.8 can concentrate on the points
where the stress (which is only in L2) is not well-defined. The difference with respect to [23,
Proposition 5.11] is that one can rely only on the approximation given by Lemma 5.13 which
is given for star-shaped domains. To prove it for general domains we use the localization
argument (see the proof of Step 2 of Proposition 5.14 and the proof of Theorem 5.15).

Proposition 5.14 Let � ∈ Khom
γ and (u, E, P) ∈ Ahom

γ (w) with the associated μ ∈ Xγ (ω̃).

There exists an element λ ∈Mb(�̃× Y) such that for every ϕ ∈ C2
c (ω̃)

〈λ, ϕ〉 = −
∫

�×Y
ϕ(x ′)� : E dxdy +

∫

ω

ϕ σ̄ : Ew̄ dx ′ − 1

12

∫

ω

ϕ σ̂ : D2w3 dx
′

−
∫

ω

σ̄ : ((ū − w̄)�∇ϕ) dx ′ − 1

6

∫

ω

σ̂ : (∇(u3 − w3)�∇ϕ
)
dx ′

− 1

12

∫

ω

(u3 − w3) σ̂ : ∇2ϕ dx ′.

Furthermore, the mass of λ is given by

λ(�̃× Y) = −
∫

�×Y
� : E dxdy +

∫

ω

σ̄ : Ew̄ dx ′ − 1

12

∫

ω

σ̂ : D2w3 dx
′. (5.12)
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Proof The proof is subdivided into two steps.
Step 1. Suppose that ω is star-shaped with respect to one of its points.

Let {�n} ⊂ C∞(R2; L2(I × Y;M3×3
sym )) be the sequence given by Lemma 5.13. We set

λn := η
gen.⊗ [(�n)dev(x

′, ·) : Px ′ ] ∈Mb(�̃× Y),

where the duality [(�n)dev(x ′, ·) : Px ′ ] is a well defined bounded measure on I ×Y for η-a.e.
x ′ ∈ ω̃ and η is defined in Lemma 5.8. Further, in view of Remark 5.9, Definition 5.3 gives

∫

R×Y
ψ d[(�n)dev(x

′, ·) : Px ′ ]

= −
∫

I×Y
ψ(x3, y)�n(x, y) :

[
C(x ′)E(x, y)−

(
A1(x ′)+ x3A2(x ′) 0

0 0

)]
dx3dy

−
∫

I×Y
�n(x, y) :

(
μx ′(x3, y)� ∇̃γ ψ(x3, y)

)
dx3dy,

for every ψ ∈ C1(R× Y), and

|[(�n)dev(x
′, ·) : Px ′ ]| ≤ ‖(�n)dev(x

′, ·)‖L∞(I×Y;M3×3
sym )
|Px ′ | ≤ C |Px ′ |,

where the last inequality stems from item (d) in Lemma 5.13. This in turn implies that

|λn | = η
gen.⊗ |[(�n)dev(x

′, ·) : Px ′ ]| ≤ C η
gen.⊗ |Px ′ | = C |P|,

from which we conclude that {λn} is a bounded sequence.
Let now Ĩ ⊃ I be an open set which compactly contains I . Let ξ be a smooth cut-off

function with ξ ≡ 1 on I , and with support contained in Ĩ . Finally, consider a test function
φ(x, y) := ϕ(x ′)ξ(x3), for ϕ ∈ C∞c (ω̃). Since ∇̃γ φ(x, y) = 0, we have

〈λn, φ〉 =
∫

ω̃

(∫

I×Y
φ(x, y) d[(�n)dev(x

′, ·) : Px ′ ]
)

dη(x ′)

= −
∫

�̃×Y
ϕ(x ′) �n(x, y) :

[
C(x ′)E(x, y)−

(
A1(x ′)+ x3A2(x ′) 0

0 0

)]
d
(
η ⊗ L1

x3 ⊗ L2
y

)

= −
∫

�̃×Y
ϕ(x ′) �n(x, y) : E(x, y) dxdy

+
∫

�̃

ϕ(x ′) σn(x) :
(
A1(x ′)+ x3A2(x ′) 0

0 0

)
d
(
η ⊗L1

x3

)

= −
∫

�̃×Y
ϕ(x ′) �n(x, y) : E(x, y) dxdy +

∫

�̃

ϕ(x ′) σn(x) : dEu(x). (5.13)

Since u ∈ K L(�̃), we infer

∫

�̃

ϕ(x ′) σn(x) : dEu(x) =
∫

ω̃

ϕ(x ′) σ̄n(x
′) : dEū(x ′)− 1

12

∫

ω̃

ϕ(x ′) σ̂n(x
′) : dD2u3(x

′),

(5.14)
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where ū ∈ BD(ω̃) and u3 ∈ BH(ω̃) are the Kirchhoff-Love components of u. From the
characterization given in Proposition 3.6, we can thus conclude that

∫

�̃

ϕ(x ′) σn(x) : dEu(x) =
∫

ω̃

ϕ(x ′) σ̄n(x
′) : ē(x ′) dx ′ +

∫

ω̃

ϕ(x ′) σ̄n(x
′) : d p̄(x ′)

+ 1

12

∫

ω̃

ϕ(x ′) σ̂n(x
′) : ê(x ′) dx ′ + 1

12

∫

ω̃

ϕ(x ′) σ̂n(x
′) : d p̂(x ′)

=
∫

ω̃

ϕ(x ′) σ̄n(x
′) : ē(x ′) dx ′ +

∫

ω̃

ϕ(x ′) d[σ̄n : p̄](x ′)

+ 1

12

∫

ω̃

ϕ(x ′) σ̂n(x
′) : ê(x ′) dx ′ + 1

12

∫

ω̃

ϕ(x ′) d[σ̂n : p̂](x ′),
(5.15)

where in the last equality we used that σ̄n and σ̂n are smooth functions. Notice that, since
p̄ ≡ 0 and p̂ ≡ 0 outside of ω ∪ γD , there holds

∫

ω̃

ϕ d[σ̄n : p̄] =
∫

ω∪γD

ϕ d[σ̄n : p̄],
∫

ω̃

ϕ d[σ̂n : p̂] =
∫

ω∪γD

ϕ d[σ̂n : p̂].

Since e = E = Ew̄ − x3D2w3 on �̃\�, we deduce, using (5.13)-(5.15),that

〈λn, φ〉 = −
∫

�̃×Y
ϕ(x ′)�n : E dxdy +

∫

ω̃

ϕ σ̄n : ē dx ′ + 1

12

∫

ω̃

ϕ σ̂n : ê dx ′

+
∫

ω∪γD

ϕ d[σ̄n : p̄] + 1

12

∫

ω∪γD

ϕ d[σ̂n : p̂]

= −
∫

�×Y
ϕ(x ′)�n : E dxdy +

∫

ω

ϕ σ̄n : ē dx ′ + 1

12

∫

ω

ϕ σ̂n : ê dx ′

+
∫

ω∪γD

ϕ d[σ̄n : p̄] + 1

12

∫

ω∪γD

ϕ d[σ̂n : p̂]. (5.16)

Using that divx ′ σ̄n = 0 in ω, by applying an integration by parts (see also [13, Proposition
7.2]) we obtain for every ϕ ∈ C1(ω)

∫

ω∪γD

ϕ d[σ̄n : p̄] +
∫

ω

ϕ σ̄n : (ē − Ew̄) dx ′ +
∫

ω

σ̄n : ((ū − w̄)�∇ϕ) dx ′ = 0. (5.17)

Likewise in view of the fact that divx ′divx ′ σ̂n = 0 in ω and u3 = w3 on γD , by integration
by parts (see also [13, Proposition 7.6]) we find that for every ϕ ∈ C2(ω)

∫

ω∪γD

ϕ d[σ̂n : p̂] +
∫

ω

ϕ σ̂n : (ê + D2w3) dx
′

+ 2
∫

ω

σ̂n :
(∇(u3 − w3)�∇ϕ

)
dx ′ +

∫

ω

(u3 − w3) σ̂n : ∇2ϕ dx ′ = 0. (5.18)

Let now λ ∈Mb(�̃× Y) be such that (up to a subsequence)

λn
∗−⇀ λ weakly* inMb(�̃× Y).
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By items (a) and (e) in Lemma 5.13, owing to (5.16)-(5.18) we obtain

〈λ, φ〉 = lim
n
〈λn, φ〉

= lim
n

[
−

∫

�×Y
ϕ(x ′)�n : E dxdy +

∫

ω

ϕ σ̄n : Ew̄ dx ′ − 1

12

∫

ω

ϕ σ̂n : D2w3 dx
′

−
∫

ω

σ̄n : ((ū − w̄)�∇ϕ) dx ′ − 1

6

∫

ω

σ̂n :
(∇(u3 − w3)�∇ϕ

)
dx ′

− 1

12

∫

ω

(u3 − w3) σ̂n : ∇2ϕ dx ′
]

= −
∫

�×Y
ϕ(x ′)� : E dxdy +

∫

ω

ϕ σ̄ : Ew̄ dx ′ − 1

12

∫

ω

ϕ σ̂ : D2w3 dx
′

−
∫

ω

σ̄ : ((ū − w̄)�∇ϕ) dx ′ − 1

6

∫

ω

σ̂ : (∇(u3 − w3)�∇ϕ
)
dx ′

− 1

12

∫

ω

(u3 − w3) σ̂ : ∇2ϕ dx ′.

Taking ϕ ↗ 1ω̃, we deduce (5.12).
Step 2. If ω is not star-shaped, then since ω is a bounded C2 domain (in particular, with
Lipschitz boundary) by [7, Proposition 2.5.4] there exists a finite open covering {Ui } of ω

such that ω ∩Ui is (strongly) star-shaped with Lipschitz boundary.
Let {ψi } be a smooth partition of unity subordinate to the covering {Ui }, i.e.ψi ∈ C∞(ω),

with 0 ≤ ψi ≤ 1, such that supp(ψi ) ⊂ Ui and
∑

i ψi = 1 on ω.
For each i , let

�i (x, y) :=
{

�(x, y) if x ′ ∈ ω ∩Ui ,

0 otherwise.

Since �i ∈ Khom
γ , the construction in Step 1 yields that there exist sequences {�i

n} ⊂
C∞(R2; L2(I × Y;M3×3

sym )) and

λin := η
gen.⊗ [(�i

n)dev(x
′, ·) : Px ′ ] ∈Mb((ω ∩Ui )× I × Y),

where again η is defined in Lemma 5.8 such that

λin
∗−⇀ λi weakly* inMb((ω ∩Ui )× I × Y),

with

〈λi , ϕ〉 = −
∫

(ω∩Ui )×I×Y
ϕ(x ′)� : E dxdy +

∫

ω∩Ui

ϕ σ̄ : Ew̄ dx ′ − 1

12

∫

ω∩Ui

ϕ σ̂ : D2w3 dx
′

−
∫

ω∩Ui

σ̄ : ((ū − w̄)�∇ϕ) dx ′ − 1

6

∫

ω∩Ui

σ̂ : (∇(u3 − w3)�∇ϕ
)
dx ′

− 1

12

∫

ω∩Ui

(u3 − w3) σ̂ : ∇2ϕ dx ′,

for every ϕ ∈ C2
c (ω ∩Ui ). This allows us to define measures on �̃× Y by letting, for every

φ ∈ C0(�̃× Y),

〈λn, φ〉 :=
∑

i

〈λin, ψi (x
′) φ〉,
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and

〈λ, φ〉 :=
∑

i

〈λi , ψi (x
′) φ〉.

From the above computations, λn
∗−⇀ λ weakly* in Mb(�̃ × Y), and λ satisfies all the

required properties. ��
The next theorem allows us to compare the density of the dissipation due to the limiting
two-scale plastic strain and that of the measure λ.

Theorem 5.15 Let � ∈ Khom
γ and (u, E, P) ∈ Ahom

γ (w) with the associated μ ∈ Xγ (ω̃).
Then

H

(
y,

dP

d|P|
)
|P| ≥ λ,

where λ ∈Mb(�̃× Y) is given by Proposition 5.14.

Proof Let {�i
n}, {λin} and λi be defined as in Step 2 of the proof of Proposition 5.14. Item

(d) in Lemma 5.13 implies that

(�i
n)dev(x, y) ∈ K (y) for every x ′ ∈ ω and L1

x3 ⊗ L2
y-a.e. (x3, y) ∈ I × Y.

By Proposition 5.6, we have for η-a.e. x ′ ∈ ω̃

H

(
y,

dPx ′

d|Px ′ |
)
|Px ′ | ≥ [(�i

n)dev(x
′, ·) : Px ′ ] as measures on I × Y.

Since dP
d|P| (x, y) = dPx ′

d|Px ′ | (x3, y) for |Px ′ |-a.e. (x3, y) ∈ I × Y by Proposition 2.2, we can
conclude that

H

(
y,

dP

d|P|
)
|P| = η

gen.⊗ H

(
y,

dP

d|P|
)
|Px ′ | = η

gen.⊗ H

(
y,

dPx ′

d|Px ′ |
)
|Px ′ |

=
∑

i

ψiη
gen.⊗ H

(
y,

dPx ′

d|Px ′ |
)
|Px ′ |

≥
∑

i

ψiη
gen.⊗ [(�i

n)dev(x
′, ·) : Px ′ ]

=
∑

i

ψiλ
i
n = λn .

By passing to the limit, we have the desired inequality. ��
As a direct consequence of the previous theorem and (5.12), we are now in a position to
state a principle of maximum plastic work in our setting. For (u, E, P) ∈ Ahom

γ (w) we now
define

Qhom(E) :=
∫

�×Y
Q (y, E) dxdy (5.19)

and

Hhom(P) :=
∫

�×Y
H

(
y,

dP

d|P|
)

d|P|. (5.20)
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Corollary 5.16 Let γ ∈ (0,+∞). Then

Hhom(P) ≥ −
∫

�×Y
� : E dxdy +

∫

ω

σ̄ : Ew̄ dx ′ − 1

12

∫

ω

σ̂ : D2w3 dx
′,

for every � ∈ Khom
γ and (u, E, P) ∈ Ahom

γ (w).

5.5 Liminf inequalities under weak two-scale convergence

For (u, e, p) ∈ Ah(w), we recall the definition of energy functionals Qh and Hh given in
(3.11) and (3.12). The next result shows that Qhom and Hhom provide lower bounds for the
asymptotic behavior of our elastic energies and dissipation potential with respect to weak
two-scale convergence of elastic and plastic stresses.

Theorem 5.17 Let γ ∈ (0,+∞). Let (uh, eh, ph) ∈ Ah(w) be such that

uh
∗−⇀ u weakly* inBD(�̃), (5.21)

�he
h 2−⇀ E two-scale weakly inL2(�̃× Y;M3×3

sym ), (5.22)

�h p
h 2−∗−−⇀ P two-scale weakly* inMb(�̃× Y;M3×3

dev ), (5.23)

with (u, E, P) ∈ Ahom
γ (w). Then,

Qhom(E) ≤ lim inf
h

Qh(�he
h) (5.24)

and

Hhom(P) ≤ lim inf
h

Hh(�h p
h). (5.25)

Proof Let ϕ ∈ C∞c (�×Y;M3×3
sym ). From the coercivity condition on the quadratic formQh

we obtain

0 ≤ 1

2

∫

�

C

(
x ′

εh

)(
�he

h(x)− ϕ

(
x,

x ′

εh

))
:
(

�he
h(x)− ϕ

(
x,

x ′

εh

))
dx .

Since C

(
x ′
εh

)
�heh(x)

2−⇀ C(y)E(x, y) weakly two-scale in L2(� × Y;M3×3
sym ), we can

apply the lim inf to the above inequality and we find
∫

�×Y
C(y)E(x, y) : ϕ (x, y) dxdy − 1

2

∫

�×Y
C(y)ϕ (x, y) ϕ (x, y) dxdy ≤ lim inf

h
Qh(�he).

Choosing ϕ such that ϕ → E strongly in L2(�× Y;M3×3
sym ) yields (5.24).

To prove (5.25), we can assume without loss of generality that

lim inf
h

Hh(�h p
h) <∞. (5.26)

We write

ph =
∑

i

phi +
∑

i �= j

phi j (5.27)
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where phi := ph�� ∩ ((Yi )εh × I ) and phi j := ph��̃ ∩ ((�i j\S)εh × I ). Up to a subse-
quence,

�h p
h
i

2−∗−−⇀ Pi two-scale weakly* inMb(�̃× Y;M3×3
dev ),

�h p
h
i j

2−∗−−⇀ Pi j two-scale weakly* inMb(�̃× Y;M3×3
dev ).

Clearly,

P =
∑

i

Pi +
∑

i �= j

Pi j ,

with supp(Pi ) ⊆ �̃× Y i and supp(Pi j ) ⊆ �̃× �i j . In view of (5.22), we infer

�h Eu
h��̃ ∩ ((Yi )εh × I )

2−∗−−⇀ E 1�̃×Yi
L3
x ⊗ L2

y + Pi two-scale weakly* inMb(�̃× Y;M3×3
sym ).

Recalling (3.3), we can additionally assume that �i j ∩ C ⊆ S. Then, with a normal ν on �i j

that points from Y j to Yi for every j �= i , Lemma 4.18 implies that

Pi��̃× (�i j \ S) = ai j (x, y)� ν(y) ηi j (5.28)

for suitable ηi j ∈ M+
b (�̃ × (�i j\S)) and a Borel map ai j : �̃ × (�i j\S) → R

3 such that
ai j ⊥ ν for ηi j -a.e. (x, y) ∈ �̃× (�i j\S).

Using a version of Reshetnyak’s lower semicontinuity theorem adapted for two-scale
convergence (see [23, Lemma 4.6]), we deduce

lim inf
h

∫

�∪�D

H

(
x ′

εh
,
d�h phi
d|�h phi |

)

d|�h p
h
i |

= lim inf
h

∫

�̃

Hi

(
d�h phi
d|�h phi |

)

d|�h p
h
i | ≥

∫

�̃×Y
Hi

(
dPi
d|Pi |

)
d|Pi |

=
∫

�̃×Yi

Hi

(
dPi
d|Pi |

)
d|Pi | +

∫

�̃×�

Hi

(
dPi
d|Pi |

)
d|Pi |

≥
∫

�̃×Yi

H

(
y,

dPi
d|Pi |

)
d|Pi | +

∑

j �=i

∫

�̃×(�i j \S)

Hi

(
dPi
d|Pi |

)
d|Pi |

≥
∫

�̃×Yi

H

(
y,

dPi
d|Pi |

)
d|Pi | +

∑

j �=i

∫

�̃×(�i j \S)

Hi
(−ai j (x, y)� ν(y)

)
dηi j . (5.29)

Next, we have

�h p
h
i j = �h

[
(uhi − uhj )� ν

(
x ′

εh

)]
H2��̃ ∩ ((�i j \ S)εh × I )

=
[
diag

(
1, 1,

1

h

)
(uhi − uhj )� ν

(
x ′

εh

)]
H2��̃ ∩ ((�i j \ S)εh × I ),

where uhi and u
h
j are the traces on �̃∩ ((�i j\S)εh × I ) of the restrictions of uh to (Yi )εh × I

and (Y j )εh × I respectively, such that uhi −uhj is perpendicular to ν. Then, since the infimum
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in the inf-convolution definition of H on � \ S is actually a minimum, we obtain

∫

�∪�D

H

(
x ′

εh
,
d�h phi j
d|�h phi j |

)

d|�h p
h
i j |

=
∫

�̃∩((�i j \S)εh×I )
H

(
x ′

εh
,
d�h phi j
d|�h phi j |

)

d|�h p
h
i j |

=
∫

�̃∩((�i j \S)εh×I )
H

(
x ′

εh
,

[
diag

(
1, 1,

1

h

)
(uhi − uhj )� ν

(
x ′

εh

)])
dH2(x)

=
∫

�̃∩((�i j \S)εh×I )
Hi j

(
diag

(
1, 1,

1

h

)
(uhi − uhj ), ν

(
x ′

εh

))
dH2(x)

=
∫

�̃∩((�i j \S)εh×I )

[
Hi

(
bh,i j
i (x)� ν

(
x ′

εh

))
+ Hj

(
−bh,i j

j (x)� ν

(
x ′

εh

))]
dH2(x)

(5.30)

for suitable Borel functions bh,i j
i , bh,i j

j : �̃ ∩ ((�i j\S)εh × I ) → R
3 which are orthogonal

to ν for H2-a.e. x ∈ (�i j\S)εh × I and such that

bh,i j
i − bh,i j

j = diag

(
1, 1,

1

h

)
(uhi − uhj ) for H2-a.e. x ∈ (�i j \ S)εh × I .

From the coercivity condition of the dissipation potential H and (5.26), we conclude that
∫

�̃∩((�i j \S)εh×I )

[∣∣∣∣b
h,i j
i (x)� ν

(
x ′

εh

)∣∣∣∣+
∣∣∣∣b

h,i j
j (x)� ν

(
x ′

εh

)∣∣∣∣

]
dH2(x) ≤ C,

for some constantC > 0, which implies the boundedness of bh,i j
i and bh,i j

j in L1.We can now
argue as in Step 2 of the proof of [23, Theorem 5.7] or [24, Proposition 2.3], using also (5.28),
and infer the existence of suitable measures ζi j ∈ M+

b (�̃ × (�i j\S)), and Borel functions
ci , c j : �̃× (�i j\S)→ R

3 which are orthogonal to ν for ζi j -a.e. (x, y) ∈ �̃× (�i j\S), and
such that

P��̃× (�i j \ S) =
(
ci (x, y)− c j (x, y)

)
� ν(y) ζi j .

Thus, by (5.29), we have

lim inf
h

Hh(�h p
h)

≥
∫

�̃×(∪iYi )

H

(
y,

dP

d|P|
)

d|P|

+
∑

i �= j

∫

�̃×(�i j \S)

[
Hi

(
ci (x, y)� ν(y)

)
+ Hj

(
−c j (x, y)� ν(y)

)]
dζi j

≥
∫

�̃×(∪iYi )

H

(
y,

dP

d|P|
)

d|P| +
∑

i �= j

∫

�̃×(�i j \S)

H
(
y,

(
ci (x, y)− c j (x, y)

)
� ν(y)

)
dζi j

=
∫

�̃×(∪iYi )

H

(
y,

dP

d|P|
)

d|P| +
∑

i �= j

∫

�̃×(�i j \S)

H

(
y,

dP

d|P|
)

d|P|

= Hhom(P),
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which in turn concludes the proof. ��

6 Two-scale quasistatic evolutions

We recall the definition of energy functionals Qhom and Hhom given in (5.19) and (5.20).
The associated Hhom-variation of a function P : [0, T ] →Mb(�̃ × Y;M3×3

dev ) on [a, b] is
then defined as

DHhom (P; a, b) := sup

{
n−1∑

i=1
Hhom (P(ti+1)− P(ti )) : a = t1 < t2 < . . . < tn = b, n ∈ N

}

.

In this section we prescribe for every t ∈ [0, T ] a boundary datum w(t) ∈ H1(�̃;R3) ∩
K L(�̃) and we assume the map t �→ w(t) to be absolutely continuous over [0, T ] with
respect to the H1-norm.

We now give the notion of the limiting quasistatic elasto-plastic evolution.

Definition 6.1 A two-scale quasistatic evolution for the boundary datum w is a function
t �→ (u(t), E(t), P(t)) from [0, T ] into K L(�̃)× L2(�̃×Y;M3×3

sym )×Mb(�̃×Y;M3×3
dev )

which satisfies the following conditions:

(qs1)homγ for every t ∈ [0, T ] we have (u(t), E(t), P(t)) ∈ Ahom
γ (w(t)) and

Qhom(E(t)) ≤ Qhom(H)+Hhom(�− P(t)),

for every (υ, H ,�) ∈ Ahom
γ (w(t)).

(qs2)homγ the function t �→ P(t) from [0, T ] intoMb(�̃×Y;M3×3
dev ) has bounded variation

and for every t ∈ [0, T ]

Qhom(E(t))+DHhom (P; 0, t) = Qhom(E(0))+
∫ t

0

∫

�×Y
C(y)E(s) : Eẇ(s) dxdyds.

Recalling the definition of h-quasistatic evolution for the boundary datum w(t) given in
Definition 3.7, we are in a position to formulate the main result of the paper.

Theorem 6.2 Let t �→ w(t) be absolutely continuous from [0, T ] into H1(�̃;R3)∩ K L(�̃).
Assume (3.4) and (3.6) and that there exists a sequence of triples (uh0, e

h
0 , p

h
0 ) ∈ Ah(w(0))

such that

uh0
∗−⇀ u0 weakly* inBD(�̃), (6.1)

�he
h
0

2−→ E0 two-scale strongly inL2(�̃× Y;M3×3
sym ), (6.2)

�h p
h
0

2−∗−−⇀ P0 two-scale weakly* inMb(�̃× Y;M3×3
dev ), (6.3)

for (u0, E0, P0) ∈ Ahom
γ (w(0)). For every h > 0, let

t �→ (uh(t), eh(t), ph(t))

be a h-quasistatic evolution in the sense of Definition 3.7 for the boundary datum w such
that uh(0) = uh0 , e

h(0) = eh0 , and ph(0) = ph0 . Then, there exists a two-scale quasistatic
evolution

t �→ (u(t), E(t), P(t))
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for the boundary datum w such that u(0) = u0, E(0) = E0, and P(0) = P0, and such that
(up to subsequences) for every t ∈ [0, T ]

uh(t)
∗−⇀ u(t) weakly* inBD(�̃), (6.4)

�he
h(t)

2−⇀ E(t) two-scale weakly inL2(�̃× Y;M3×3
sym ), (6.5)

�h p
h(t)

2−∗−−⇀ P(t) two-scale weakly* inMb(�̃× Y;M3×3
dev ). (6.6)

Proof The proof is subdivided into three steps, in the spirit of evolutionary �-convergence.
Step 1: Compactness.

We first prove that there exists a constant C , depending only on the initial and boundary
data, such that

sup
t∈[0,T ]

∥
∥
∥�he

h(t)
∥
∥
∥
L2(�̃;M3×3

sym )
≤ C and DHh (�h p

h; 0, T ) ≤ C, (6.7)

for every h > 0. Indeed, the energy balance of the h-quasistatic evolution (qs2)h and (3.6)
imply

rc
∥∥∥�he

h(t)
∥∥∥
2

L2(�̃;M3×3
sym )

+DHh (�h p
h; 0, t)

≤ Rc

∥∥∥�he
h(0)

∥∥∥
2

L2(�̃;M3×3
sym )

+ 2Rc sup
t∈[0,T ]

∥∥∥�he
h(t)

∥∥∥
L2(�̃;M3×3

sym )

∫ T

0
‖Eẇ(s)‖L2(�̃;M3×3

sym )
ds,

where the last integral is well defined as t �→ Eẇ(t) belongs to L1([0, T ]; L2(�̃;M3×3
sym )).

In view of the boundedness of �heh0 that is implied by (6.2), property (6.7) now follows by
the Cauchy-Schwarz inequality.

From (6.7) and (3.7), we infer that

rk
∥∥∥�h p

h(t)−�h p
h
0

∥∥∥Mb(�̃;M3×3
dev )

≤ Hh

(
�h p

h(t)−�h p
h
0

)
≤ DHh (�h p

h; 0, t) ≤ C,

for every t ∈ [0, T ], which together with (6.3) implies

sup
t∈[0,T ]

∥∥∥�h p
h(t)

∥∥∥Mb(�̃;M3×3
dev )

≤ C . (6.8)

Next, we note that ‖·‖L1(�̃\�;M3×3
sym )

is a continuous seminorm on BD(�̃) which is also a
norm on the set of rigidmotions. Then, using a variant of Poincaré-Korn’s inequality (see [43,
Chapter II, Proposition 2.4]) and the fact that (uh(t), eh(t), ph(t)) ∈ Ah(w(t)), we conclude
that, for every h > 0 and t ∈ [0, T ],
∥∥∥uh(t)

∥∥∥
BD(�̃)

≤ C

(∥∥∥uh(t)
∥∥∥
L1(�̃\�;R3)

+
∥∥∥Euh(t)

∥∥∥Mb(�̃;M3×3
sym )

)

≤ C

(
‖w(t)‖L1(�̃\�;R3) +

∥∥∥eh(t)
∥∥∥
L2(�̃;M3×3

sym )
+

∥∥∥ph(t)
∥∥∥Mb(�̃;M3×3

dev )

)

≤ C

(
‖w(t)‖L2(�̃;R3) +

∥∥∥�he
h(t)

∥∥∥
L2(�̃;M3×3

sym )
+

∥∥∥�h p
h(t)

∥∥∥Mb(�̃;M3×3
dev )

)
.

In view of the assumption on w, from (6.8) and the former inequality in (6.7) it follows that
the sequences {uh(t)} are bounded in BD(�̃) uniformly with respect to t .
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Owing to (2.3), we obtain that DHh and V are equivalent norms, which immediately
implies

V(�h p
h; 0, T ) ≤ C, (6.9)

for every h > 0. Hence, by a generalized version of Helly’s selection theorem (see [11,
Lemma 7.2]) and Remark 3.10, there exists a (not relabeled) subsequence, independent of t ,
and P ∈ BV (0, T ;Mb(�̃× Y;M3×3

dev )) such that

�h p
h(t)

2−∗−−⇀ P(t) two-scale weakly* inMb(�̃× Y;M3×3
dev ),

for every t ∈ [0, T ], and V(P; 0, T ) ≤ C . By extracting a further subsequence (possibly
depending on t),

uht (t)
∗−⇀ u(t) weakly* inBD(�̃),

�ht e
ht (t)

2−⇀ E(t) two-scale weakly inL2(�̃× Y;M3×3
sym ),

for every t ∈ [0, T ]. From Proposition 4.1, we conclude that u(t) ∈ K L(�̃) for every
t ∈ [0, T ]. According to Proposition 4.14, the above subsequence can be chosen so that there
exists μ(t) ∈ Xγ (ω̃) for which

�h Eu
ht (t)

2−∗−−⇀ Eu(t)⊗ L2
y + Ẽγ μ(t).

Since,�ht Eu
ht (t) = �ht e

ht (t)+�ht p
ht (t) in �̃ for every h > 0 and t ∈ [0, T ], we deduce

that (u(t), E(t), P(t)) ∈ Ahom
γ (w(t)).

Consider now for every t ∈ [0, T ] the maps

σ ht (t) := C

(
x ′
εh t

)
�ht e

ht (t).

For a (not relabeled) subsequence, we have

σ ht (t)
2−⇀ �(t) two-scale weakly inL2(�̃× Y;M3×3

sym ), (6.10)

where �(t) := C(y)E(t). Since σ ht (t) ∈ Kht for every t ∈ [0, T ], by Proposition 5.12 we
obtain that �(t) ∈ Khom

γ for every t ∈ [0, T ].
Step 2: Global stability.

Since from Step 1 we have (u(t), E(t), P(t)) ∈ Ahom
γ (w(t)) with the associated μ(t) ∈

Xγ (ω̃), then for every (υ, H ,�) ∈ Ahom
γ (w(t)) with the associated ν ∈ Xγ (ω̃) we have

(υ − u(t), H − E(t),�− P(t)) ∈ Ahom
γ (0).

From the inclusion C(y)E(t) ∈ Khom
γ , by Corollary 5.16 we infer

Hhom(�− P(t)) ≥ −
∫

ω×I×Y
C(y)E(t) : (H − E(t)) dxdy

= Qhom(E(t))+Qhom(H − E(t))−Qhom(H).

Thus,

Hhom(�− P(t))+Qhom(H) ≥ Qhom(E(t))+Qhom(H − E(t)) ≥ Qhom(E(t)),

hence we deduce (qs1)homγ .
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Now we can prove that limit functions u(t) and E(t) do not depend on the subsequence.
Assume that (υ(t), H(t), P(t)) ∈ Ahom

γ (w(t))with the associated ν(t) ∈ Xγ (ω̃) also satisfy
the global stability condition in the definition of the two-scale quasistatic evolution. By the
strict convexity of Qhom , we find

H(t) = E(t).

Then, by (5.2),

Eυ(t)⊗ L2
y + Ẽγ ν(t) = H(t)L3

x ⊗ L2
y + P(t)

= E(t)L3
x ⊗ L2

y + P(t)

= Eu(t)⊗ L2
y + Ẽγ μ(t).

Identifying Eu(t) and Eυ(t) with elements of Mb(�̃;M2×2
sym ) and integrating over Y , we

obtain

Eυ(t) = Eu(t).

Using the variant of Poincaré-Korn inequality in Step 1, we infer that υ(t) = u(t) on �̃.
This implies that the whole sequences converges without need to extract further t-

dependent subsequences, i.e.

uh(t)
∗−⇀ u(t) weakly* inBD(�̃),

�he
h(t)

2−⇀ E(t) two-scale weakly inL2(�̃× Y;M3×3
sym ).

Step 3: Energy balance.
In order to prove (qs2)homγ , it is enough (by arguing as in, e.g. [11, Theorem 4.7] and [24,

Theorem 2.7]) to prove the energy inequality

Qhom(E(t))+DHhom (P; 0, t)
≤ Qhom(E(0))+

∫ t

0

∫

�×Y
C(y)E(s) : Eẇ(s) dxdyds.

(6.11)

For a fixed t ∈ [0, T ], consider a subdivision 0 = t1 < t2 < . . . < tn = t of [0, t]. In
view of the lower semicontinuity ofQhom andHhom (see (5.24) and (5.25)), from (qs2)h we
have

Qhom(E(t))+
n∑

i=1
Hhom (P(ti+1)− P(ti ))

≤ lim inf
h

(

Qh(�he
h(t))+

n∑

i=1
Hh

(
�h p

h(ti+1)−�h p
h(ti )

))

≤ lim inf
h

(
Qh(�he

h(t))+DHh (�h p
h; 0, t)

)

= lim inf
h

(
Qh(�he

h(0))+
∫ t

0

∫

�

C

(
x ′
εh

)
�he

h(s) : Eẇ(s) dxds

)
.
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By the strong convergence assumed in (6.2) and (6.10), owing to the Lebesgue’s dominated
convergence theorem we obtain

lim
h→0

(
Qh(�he

h(0))+
∫ t

0

∫

�

C

(
x ′
εh

)
�he

h(s) : Eẇ(s) dxds

)

= Qhom(E(0))+
∫ t

0

∫

�×Y
C(y)�h E(s) : Eẇ(s) dxdyds.

Hence, we have

Qhom(E(t))+
n∑

i=1
Hhom (P(ti+1)− P(ti ))

≤ Qhom(E(0))+
∫ t

0

∫

�×Y
C(y)�h E(s) : Eẇ(s) dxdyds

Taking the supremum over all partitions of [0, t] yields (6.11), which concludes the proof. ��
Remark 6.3 We point out that as a Corollary of Theorem 6.2 and of the fact that the limiting
model satisfies an energy equality, we find that strong two-scale convergence in the L2-
topology of the scaled initial elastic strains and weak two-scale convergence in measure of
the scaled initial plastic strains are enough to guarantee the strong two-scale convergence of
the rescaled elastic strains in the L2-topology to the effective one, as well as the convergence
of rescaled dissipations to the limiting one.

Acknowledgements M. Bužančić and I. Velčić were supported by the Croatian Science Foundation under
Grant Agreement no. IP-2018-01-8904 (Homdirestroptcm) and under Grant agreement No. IP-2022-10-
5181 (HOMeOS). The research of E. Davoli was supported by the Austrian Science Fund (FWF) projects
10.55776/F65, 10.55776/V 662, 10.55776/Y1292, and 10.55776/I 4052. All authors are thankful for the sup-
port from the OeAD-WTZ project HR 08/2020.

DataAvailibility Statement Data sharing not applicable to this article as no datasetswere generated or analysed
during the current study.

References

1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.
Courier Corporation, New York (2000)

2. Breit, D., Diening, L., Gmeineder, F.: On the trace operator for functions of bounded A-variation. Anal.
PDE 13(2), 559–594 (2020)

3. Bufford, L., Davoli, E., Fonseca, I.: Multiscale homogenization in Kirchhoff’s nonlinear plate theory.
Math. Models Methods Appl. Sci. 25(09), 1765–1812 (2015)
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