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Abstract

An effective model is identified for thin perfectly plastic plates whose microstructure consists
of the periodic assembling of two elastoplastic phases, as the periodicity parameter converges
to zero. Assuming that the thickness of the plates and the periodicity of the microstructure are
comparably small, alimiting description is obtained in the quasistatic regime via simultaneous
homogenization and dimension reduction by means of evolutionary I"-convergence, two-
scale convergence, and periodic unfolding.

Mathematics Subject Classification 74C05 - 74G65 - 74K20 - 49J45 - 74Q09 - 35B27

1 Introduction

With this paper, we begin the task of identifying reduced models for thin composite elasto-
plastic plates with periodic microstructure. We focus here on the case in which the thickness
h of the plates and their microstructure width &, are asymptotically comparable, namely, we
assume the existence of the limit

h
lim — =: y € (0, +00).
h—0 &p
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This corresponds, roughly speaking, to the situation in which homogenization and dimen-
sion reduction occur somewhat simultaneously and a strong interaction between vanishing
thickness and periodicity comes into play. Different scalings of y (i.e., y = 0 and y = 400)
will be the subject of a forthcoming companion paper.

Finding lower dimensional models for thin three-dimensional structures is a classical task
in the Mathematics of Continuum Mechanics. A rigorous identification of a reduced model
for perfectly plastic plates in the quasistatic regime has been undertaken in [13]. An additional
regularity result for the associated stress has been established in [19]. The case of dynamic
perfect plasticity is the subject of [28, 38], whereas the setting of shallow shells has been
tackled in [37]. A parallel analysis in the presence of hardening has been performed in [35,
36] We further mention the two works [14, 15] in the purview of finite plasticity.

The study of composite elastoplastic materials is a challenging endeavour. In the small
strain regime, limit plasticity equations have been identified in [31, 32, 42] both in the periodic
and in the aperiodic and stochastic settings. The Fleck and Willis model is the subject of [25,
27], whereas gradient plasticity has been studied in [30]. For completeness, we also mention
[9, 10, 16, 18] for an analysis of large-strain stratified composites in crystal plasticity and
[17] for a static result in the finitely plastic setting. The characterization of inhomogeneous
perfectly plastic materials and a subsequent periodic homogenization have been undertaken
in [23, 24].

The novelty of the present contribution consists in the fact that we combine both dimension
reduction and periodic homogenization in order to deduce a limiting description, as the two
smallness scales (thickness and width of the microstructure) converge to zero, for perfectly
plastic thin plates.

To complete our literature overview, we briefly recall the main mathematical contributions
on simultaneous homogenization and dimension reduction. In [6], the author derives a limiting
plate model starting from 3d linearized elasticity, while assuming the material to be isotropic
and the microstructure to be periodic. In [12], the case of linear elastic plates with possible
aperiodic microstructure is tackled by relying on material (planar) symmetries of the elasticity
tensor, and by introducing the notion of H-convergence adapted to dimension reduction. In
[4] an effective plate model is identified in the general case (without further periodicity or
material-symmetries assumptions) by means of I'-convergence (the analysis presented there
also covers some non-linear models). We also mention the book [41] where linear rod and
plate models are obtained by simultaneous homogenization and dimension reduction, and
appropriate estimates are also provided, as well as the recent work [5] on high-contrast elastic
plates. Different non-linear elastic plate models obtained by I'-convergence are discussed in
[3, 8, 33, 40, 45].

To the Authors’ knowledge, this manuscript represents instead the first work on effective
theories for plates undergoing inelastic deformations.

We conclude this introduction by briefly presenting our results. First, after establishing
a general disintegration result for measures in the image of suitable first-order differential
operators, cf. Proposition 4.2, and relying on an auxiliary result related to De Rham cohomol-
ogy, cf. Proposition 4.11, in Theorem 4.14, we identify two-scale limits of rescaled strains.
We point out that the intermediate results in Proposition 4.2 are of independent interest and
apply to a more general setting than that investigated in this contribution. We have chosen
to pursue this avenue because these tools will also be instrumental for the analysis of further
regimes of plastic thin-plates homogenization. We emphasize that for identifying two-scale
limits of rescaled strains we could not rely on the results obtained in the context of elasticity
(see, e.g. [4]), since these results relied on Korn inequalities which are not available in the
plastic setting, hence a new approach needed to be developed.
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For a given boundary datum w, the limiting model that we identify is finite on triples
(u, E, P) € Ai’,"m(w), where the latter denotes the set of limits of plastic triples given by
displacements, elastic, and plastic strains in the sense of two-scale convergence for measures,
cf. Definition 3.9. We refer to Definition 5.7 and to Sect. 5.2 for the precise definition and main
disintegration properties of the class A]}ﬁ”m (w). On such triples, the effective elastic energy
and dissipation potential are homogenized densities depending only on the limiting two-scale
elastic and plastic strain, respectively. Our analysis stems from adapting the approach of [23]
to the setting of dimension reduction problems for composite plates. This is, however, a non-
trivial task: a first hurdle consists in the already mentioned compactness result for rescaled
strains, see Sect.4.3. Further difficulties originate from the fact that the limit problem is of
fourth order, see Sect. 5. Further, analogously to [13], the limiting description is truly three-
dimensional. We refer to [19, Section 5] for a discussion of this issue and an example. Our
effective model is completely characterized in Sect.5.5. After introducing a suitable notion
of stress—strain duality, in Theorem 5.15 we prove a two-scale limiting Hill’s principle. The
lower semicontinuity of the effective energy and dissipation functionals is proven in Theorem
5.17. Key tools are an adaptation of unfolding techniques for dimension reduction (see
Proposition4.17), as well as a technical rank-one decomposition characterization (see Lemma
4.18). Finally, with Theorem 6.2 we prove the main result of this contribution, showing via
evolutionary I'-convergence, cf. [39] the convergence of three-dimensional inhomogeneous
quasistatic evolutions to energetic solutions for our two-scale reduced model.

The paper is organized as follows. Section2 contains some preliminary results on two-
scale convergence, disintegration of Radon measures, B D and B H functions, as well as some
auxiliary claims about stress tensors. In Sect. 3 we specify the setting of the problem and the
main assumptions. We additionally recall the existence results for quasistatic evolution for
general multi-phase materials. The characterization of limiting triples in the sense of two-scale
convergence for Radon measures is the focus of Sect. 4. The effective stress—strain duality is
analyzed in Sect. 5, whereas the convergence of quasistatic evolutions is proven in Sect. 6.

2 Preliminaries

In this section we specify our notation and collect a few preliminary results.

2.1 Notation

We will write any point x € R3asa pair (x/, x3), with x’ € R? and x3 € R, and we will use
the notation V,- to denote the gradient with respect to x’. We denote by y € Y the points on

a flat 2-dimensional torus () = R?/Z?* with quotient topology). We denote by I the open

interval / := (—%, %) In what follows we will also adopt the following notation for scaled

gradients and symmetrized scaled gradients:
Vyv = [fov ‘ %ax3u], Epv :=sym Vv,
%VU = [ Vyv ‘ %Bmv ], Eyv 1= sym %VU, 2.1)

where b,y > 0 and v is a function on the appropriate domain. The scaled divergence
operators divy, and div, are defined in the following way:

1 ~ 1
divyv := 0y, v1 + Oy, 02 + 28“ v3, divyv = 0y v + 0y, + ;8“ v3.
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Analogously, we define the operator a;rTy, for functions taking values in R3 (see (4.21)—
(4.23) below). Note that the operators %V, (ﬁ;/;,,my act on functions that have as (part
of) their domain / x ) (with a slight abuse of notation we write this domain with / on the
first place, despite the fact that the associated differential operators are defined as above).
Furthermore, if y = 1 we will use the shorter notation E s %, cﬁ;f,mfor the corresponding
differential operators.

Ifa, b € RN, we write a-b for the Euclidean scalar product, and we denote by |a| := +/a - a
the Euclidean norm. We write MV *¥ for the set of real N x N matrices. If A, B € MN*N
we use the Frobenius scalar product A : B := Zi’ j A;j Bjj and the associated norm |A| :=

VA 1 A. We denote by MY *¥ the space of real symmetric N x N matrices, and by MY *N

sym dev
the set of real deviatoric matrices, respectively, i.e. the subset of Mﬁ\;,f]N given by matrices
having null trace. For every matrix A € M > we denote its trace by trA, and its deviatoric

part by Agey Will be given by
1
Agey = A — NtrA.

The symmetrized tensor product a ® b of two vector a, b € RV is the symmetric matrix
with entries (a © b);; = M Note that tr(a ©b) = a - b, and that |a © b|> =
HalP1b? + L(a - b)?, so that
1
7|a||b| <la ©b| < lallb|.

/2

Given a vector v € R3, we will use the notation v’ to denote the vector

V= <U1> )
v

The Lebesgue measure in RY and the (N — 1)-dimensional Hausdorff measure are denoted
by £V and HN !, respectively. For U ¢ R¥, U denotes its closure. Given an open subset
U  RY and a finite dimensional Euclidean space E, we use standard notations for Lebesgue
spaces L”(U; E) and Sobolev spaces H LU; E) or WI-P(U; E). The characteristic function
of U will be given by 1p.

We will write C¥(U; E) for the space of k-times continuously differentiable functions
¢ :U — Eand C*(U; E) := ﬂ]fio CK(U; E) for the space of infinitely differentiable
function. We will distinguish between the spaces Cf(U : E) (C* functions with compact
support contained in U) and C(lj(U : E) (C* functions “vanishing on aU"). We will write
C(Y; E) to denote the space of all continuous functions which are [0, 1]2—peri0dic, and set
C*¥(V; E) := CK(R%*; E) N C(Y; E). We will identify C¥(; E) with the space of all C*
functions on the 2-dimensional torus.

We will frequently make use of the standard mollifier p € C*°(RY), defined by

_1 i

otherwise,

where the constant C > 0 is selected so that f]RN p(x)dx = 1, and the associated family
{pe}e=0 C COO(RN) with

Pe(x) = ELNp (f)

€
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Throughout the text, the letter C stands for generic constants which may vary from line
to line.

2.2 Measures

We first recall some basic notions from measure theory that we will use throughout the paper
(see, e.g. [22]).

Given a Borel set U C R" and a finite dimensional Hilbert space X, we denote by
Mp(U; X) the space of bounded Borel measures on U taking values in X, and endowed
with the norm |||l pm, (v x) = [|(U), where || € My (U; R) is the total variation of the
measure u. Forevery u € M (U; X) we consider the Lebesgue decomposition u = u“+u*,
where 11 is absolutely continuous with respect to the Lebesgue measure £V and 11* is singular
with respectto £V . If u* = 0, we always identify 1 with its density with respect to £, which
isafunctionin L1 (U; X). Witha slight abuse of notation, we will write M (U; R) = M (U)
and My, (U; [0, +00)) = M} (V).

If the relative topology of U is locally compact, by Riesz representation theorem the space
Mp(U; X) can be identified with the dual of Cy(U; X), which is the space of all continuous
functions ¢ : U — X such that the set {|¢| > §} is compact for every § > 0. The weak*
topology on M;,(U; X) is defined using this duality.

The restriction of u € Mp(U; X) to asubset E C U is the measure | E € Mp(E; X)
defined by

WLE(B) := n(ENB), forevery BorelsetB C U.

Given two real-valued measures (1, ur € Mp(U) we write 1 > o if n1(B) > ua2(B)
for every Borel set B C U.

2.2.1 Convex functions of measures

Let U be an open set of RV, For every 1 € My (U; X) let dd—ﬁ‘ be the Radon-Nikodym
derivative of u with respect to its variation |u|. Let H : X — [0, 400) be a convex and
positively one-homogeneous function such that

rl§] < H(&) < R|&| forevery& e X, (2.2)

where r and R are two constants, with0 < r < R.
Using the theory of convex functions of measures, developed in [21, 29], we introduce
the nonnegative Radon measure H (i) € MZ(U ) defined by

d
H(u)(A) :=/ H (—“) dlul,
I\

for every Borel set A C U. We also consider the functional H : My (U; X) — [0, +00)
defined by

d
H(w) = H(u)(U)=/ H(—“) dlul.
o T\

One can prove that 7 is lower semicontinuous on My, (U; X) with respect to weak™* conver-
gence (see, e.g., [1, Theorem 2.38]).
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Leta, b € [0, T] with a < b. The total variation of a function u : [0, T] — My (U; X)
on [a, b] is defined by

n—1

V(u; a, b) := sup {Z luGiv)) = w@lpm,.xyia=t < <...<tpy=b, ne N} .
i=1

Analogously, we define the H-variation of a function u : [0, T] - My (U; X) on [a, b] as

n—1

Dy (u; a, b) = sup{ZH(u(t,-H)—,u(t,-)):a =HH<bh<...<ty=b, n GN}.

i=1
From (2.2) it follows that

rV(u; a, b) < Dy(u;a, b) < RV(u; a, b). (2.3)

2.2.2 Disintegration of a measure

Let S and T be measurable spaces and let 1« be a measure on S. Given a measurable function
f S — T, wedenote by fyu the push-forward of p under the map f, defined by

fap(B) == (f_1 (B)) , for every measurable setB C T'.

In particular, for any measurable function g : 7 — R we have

/gOfduzfgd(f#u).
S T

Note that in the previous formula § = £~ 1(T).

Let Sy ¢ RV S, ¢ RM2, for some N, N € N, be open sets, and let € MZ(Sl). We
say that a function x| € S = py, € Mp(S2; RM) is p-measurable if x; € S| — Uy, (B)
is n-measurable for every Borel set B C S».

Given a n-measurable function x1 > ,, such that f s, |y, | dn < +o0, then the gener-

gen. gen.
alized product 1 ® iy, satisfiesn @ py, € Mp(S1 x S2; RM) and is such that

0D iy 0) = / ( / go(xl,mduxl(xz)) dn(xy).
S1 S2

for every bounded Borel function ¢ : §1 x S — R.
Moreover, the following disintegration result holds (c.f. [1, Theorem 2.28 and Corollary
2.29)):

Theorem 2.1 Let it € My(S) x S2; RM) and let proj : S1 x S — S be the projection
on the first factor. Denote by n the push-forward measure 1 := projg||L| € /\/12'(51). Then
there exists a unique family of bounded Radon measures {{ix,}x;cs; C Mp(S2; RM) such
that x1 — [Ly, is n-measurable, and

gen.

H=1 & M.
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For every ¢ € L'(S1 x S», d|ii]) we have
p(x1,) € L' (S2,dlpy ) forn-a.e. x1 € Si,

x1 = | @1, x2) duy, (x2) € LY(Sy, dn),
S

/ ¢(X1,xz)du(X1,xz)=/ (/ w(m,xz)duxl(n)) dn(xy).
S1 xS S1 S

Furthermore,

gen.
il =n & |uxl.

Arguing as in [23, Remark 5.5], we have the following:

Proposition 2.2 With the same notation as in Theorem 2.1, for n-a.e. x1 € Sy

du du
—(x1,) = Ly | — ae on S,.

d|pul iy

Proof Since % € L'(S; x S»,d|u]), from Theorem 2.1 we have %(xl,-) €

L'(S,, d|py,|) for n-ae. x| € Sy. Thus,

gen. del gen. d/L gen. d/L
x| =0 ® poy == ——1Ipnl=n & ——(x1,°) [y |,
dlpg | . d|pl dlpl -
from which we have the claim. O

2.3 BD and BH functions
2.3.1 Functions with bounded deformation

Let U be an open set of RV, The space BD(U) of functions with bounded deformation is
the space of all functions u € L!'(U; RY) whose symmetric gradient Eu := sym Du (in
the sense of distributions) satisfies Eu € My (U; Mévy,le). We point out that BD(U) is a
Banach space endowed with the norm

||u||LI(U;]RN) + ”EMHM;,(U;M?;;(,N)'

We say that a sequence {u}; converges to u weakly* in BD(U) if u¥*—u weakly in
LY(U;RY) and Eu*—~Eu weakly* in M (U, Mé\'y;f\’). As a consequence of compactness,
then necessarily {u}; converges to u strongly in L'. Every bounded sequence in BD(U)
has a weakly* converging subsequence. If U is bounded and has a Lipschitz boundary,
BD(U) can be embedded into LY/N=D (U RN) (the embedding is compact in L”, for
1 < p < N/(N — 1)) and every function u € BD(U) has a trace, still denoted by u, which
belongsto L' (dU; RY). If I is a nonempty open subset of dU, there exists a constant C > 0,
depending on U and I, such that

”u”Ll(U;RN) = C||U||Ll(r) + C”E“”M;,(U;M?}ﬁl’v)' 24

(see [43, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the space
BD(U) we refer to [43].
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2.3.2 Functions with bounded Hessian

The space BH (U) of functions with bounded Hessian is the space of all functions u €
W11 (U) whose Hessian D2u (in the sense of distributions) belongs to My (U; Mg,;;N ). It
is a Banach space endowed with the norm

el 1y + IVul oy + 1D%ull ug, a2z
If U has the cone property, then BH (U) coincides with the space of functions in L'(U)
whose Hessian belongs to M, (U; Mgvy,le ). If U is bounded and has a Lipschitz boundary,
BH (U) can be embedded into W1~/ =D (/) If U is bounded and has a C2 boundary, then
for every function u € BH (U) one can define the traces of u and of Vu, still denoted by u
and Vu; they satisfy u € whl@u), Vu e L'(3U; RN), and g—'; = Vu-7in L'(3U), where
7T is any tangent vector to dU. If, in addition, N = 2, then B H (U) embeds into C (U), which
is the space of all continuous functions on U. The general properties of the space BH (U)
can be found in [20].

2.4 Auxiliary claims about stress tensors
2.4.1 Traces of stresses

We suppose here that U is an open bounded set of class CZ in RN . If o € L?(U; Mé\}l,éN)
and dive € L2(U; RY), then we can define a distribution [cv] on 8U by

[ov](y) = f Y - divo dx +/ o: Eydx, (2.5)
U U

for every ¥ € HY(U; RM). 1t follows that [ov] € H~Y/2U; RY) (see, e.g., [44, Chapter
1, Theorem 1.2]). If, in addition, o € L°°(U; MQ}’,;;N) and dive € LN(U; RN), then (2.5)

holds for ¢ € wLlu; RN). By Gagliardo’s extension theorem [26, Theorem 1.II], in this
case we have [ov] € L®(QU; RY), and

[oxv] = [ov] weakly* inL®(@U; RY),

whenever oy L weakly* in L*°(U, Mﬁ\;gN) and divey — dive weakly in LV (U; RY).

We will consider the normal and tangential parts of [0 v], defined by
[ov]y == ([ov] - V), [av]ﬂ‘ = [ov] — ([ov] - v)v.

Since v € C1(dU; RY), we have that [ov],, [ov]E € H™Y2@QU;RY). If, in addition,

Odev € L*(U; MQL:N), then it was proved in [34, Lemma 2.4] that [av]ﬁ e L®OU;RY)
and

1
€
o], ||L°°(8U;RN) = ﬁ”adCV”Loo(U;MéVejN).

More generally, if U has Lipschitz boundary and is such that there exists a compact set
S C U with H¥~1(S) = 0 such that dU\S is a C2-hypersurface, then arguing as in [24,
Section 1.2] we can uniquely determine [ov]; as an element of L®(3U; RV) through any
approximating sequence {0,,} C C®(U; Mé\}/,;;N ) such that
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op — o strongly in L2(U; Mé\;éN),

dive, — divoe strongly in LZ(U; RM),

||(Gn)deV||L°C(U;M(Ij\Iei,<N) = ||UdeV||Loo(U;M(11\;\>;N)-
2.4.2 [P reqularity

We recall the following proposition from [24] (see also [34]).
Proposition 2.3 Let U C RY be an open, bounded set with Lipschitz boundary. The set

SU) = {o— e L2(U: MY*N) - dive € LY (U: RY), 4oy € L®(U: MNxN)],

sym dev

is a subset of LP (U; MNXN) for every 1 < p < oo, and

sym

1ol o sy = Co (1912, + 1AV Oy ey, + 100 pooqngye, ) -

3 Setting of the problem

We describe here our modeling assumptions and recall a few associated instrumental results.
Unless otherwise stated, @ C R? is a bounded, connected, and open set with C 2 boundary.
Given a small positive number 4 > 0, we assume that the set

Q" = w x (h),

is the reference configuration of a linearly elastic and perfectly plastic plate.

We consider a non-zero Dirichlet boundary condition on the whole lateral surface, i.e. the
Dirichlet boundary of Q" is given by F’b = 0w x (hI).

We work under the assumption that the body is only submitted to a hard device on F% and
that there are no applied loads, i.e. the evolution is only driven by time-dependent boundary
conditions. More general boundary conditions, together with volume and surface forces have
been considered, e.g., in [11, 13, 24] but will, for simplicity of exposition, be neglected in
this analysis.

3.1 Phase decomposition

We recall here some basic notation and assumptions from [23].

Recall that Y = RZ/Z2 is the 2-dimensional torus, let Y := [0, 1) be its associated
periodicity cell, and denote by Z : ) — Y their canonical identification. We denote by C the
set

c:=1'Y). (3.1)
For any Z C ), we define

Z, = {x eR?: g eZz—i—I(Z)}, (3.2)

and to every function F : ) — X we associate the ¢-periodic function F; : R?2 — X, given
by

Fo(x) := F (yo), for = — H —T(y) €Y.
£ &
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With a slight abuse of notation we will also write F, (x) = F ().

The torus ) is assumed to be made up of finitely many phases )); together with their inter-
faces. We assume that those phases are pairwise disjoint open sets with Lipschitz boundary.
Then we have ) = Ui Y; and we denote the interfaces by

r=|Joynay;.
]
Furthermore, the interfaces are assumed to have a negligible intersection with the set C, i.e.
for every i

H' @Y, NC) =0. (3.3)

We will write

.= U F,’ js
i#]
where I';; stands for the interface between ); and ;.

We assume that  is composed of the finitely many phases (), and that Q" U F}l') is a
geometrically admissible multi-phase domain in the sense of [24, Subsection 1.2]. Addition-
ally, we assume that " is a specimen of an elasto-perfectly plastic material having periodic
elasticity tensor and dissipation potential.

We are interested in the situation when the period ¢ is a function of the thickness #, i.e.
& = gy, and we assume that the limit

= lim —
v h—0 &p
existsin (0, +00). We additionally require that I satisfies the following: there exists acompact
set S C ' with H!(S) = 0 such that '\ § is a C2-hypersurface.
We say that a multi-phase torus Y is geometrically admissible if it satisfies the above
assumptions.

Remark 3.1 We point out that we assume greater regularity than that in [23], where the
interface I'\ S was allowed to be a C!-hypersurface. Under such weaker assumptions, in fact,
the tangential part of the trace of an admissible stress [ v]:- at a point x on T" \ S would not
be defined independently of the considered approximating sequence. By requiring a higher
regularity of I" \ S, we will avoid dealing with this situation.

The set of admissible stresses.

We assume there exist convex compact sets K; € Mg:ﬁ associated to each phase );. We
work under the assumption that there exist two constants rx and Rg, with 0 < rx < Rk,
such that for every i

{£ e MY« €l <7k} S Ki € (8 e M3 18] < Ri).

dev dev

Finally, we define
K(y):=K;, forye).

The elasticity tensor.
Forevery i, let (Cgey); and k; be a symmetric positive definite tensor on Mg:ﬁ and a positive
constant, respectively, such that there exist two constants r. and R., with 0 < r. < R,

satisfying
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relél* < (Cev)ik 1 & < Re|E]* forevery & € M} (3.4)

dev °

re < ki < Re. (3.5)

Let C be the elasticity tensor, considered as a map from ) taking values in the set of

symmetric positive definite linear operators, C : ) x ngxn? — Mfyxn? , defined as

C(»)& 1= Caev () Edev + (k(y) tr§) I3x3 forevery y € Y and & € M>*?,

where Cgey(¥) = (Cgey); and k(y) = k; forevery y € ;.
Let Q : Y x M3X3 — [0, +-00) be the quadratic form associated with C, and given by

sym

1
0@, &) = E(C(y)g :& foreveryy € Yand£ € Mfyxn?
It follows that Q satisfies

relél* < O(y,€) < Re|E[* forevery y € Y and & € M3 (3.6)

sym *

The dissipation potential.
For each i, let H; : M3X3 [0, +-00) be the support function of the set K;, i.e

dev

Hi(§) = sup 7 : &.

tek;

It follows that H; is convex, positively 1-homogeneous, and satisfies

rel€l < Hi(§) < Rel€| forevery & € M. (3.7)

dev

3x3

Then we define the dissipation potential H : ) x My’

— [0, +o0] as follows:
i Forevery y € );, we take
H(y,§) := H;(§).

ii Forapointy € I\ S on the interface between ); and )V;, such that the associated normal
v(y) points from ); xI to V; x I, we set

| Hj@ve)  ifE=aovy) e M.
H(y,§) := . 3%3
+00 otherwise on My ",

where fora e R3andv L a € S?,
H;j(a,v) :=inf {Hi(a,- OV)+Hj(—a; Ov):
a=a;—aj, a L v, aqj J_v].
iii For y € S, we define H arbitrarily (e.g. H(y, &) := r¢ |€]).

Remark 3.2 We point out that H is a Borel function on ) x Mg:f. Furthermore, for each
y € Y, the function £ — H(y, &) is positively 1-homogeneous and convex. However, the
function (y, &) — H(y, &) is not necessarily lower semicontinous. This creates additional
difficulties in proving lower semicontinuity of dissipation functional given in Theorem 5.17,

see also [23, Theorem 5.7].
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Admissible triples and energy.
On F’b we prescribe a boundary datum being the trace of a map w” € H'(Q"; R3) of the
following form:

h
forae. z = (7, z3) € Q", (3.8)

wh(z) = <w1<z’> — Zhialuvg(zﬁ, B2(2) — Zopis(2), %M(Z’))

where Wy, € H'(»), @ = 1,2, and w3 € H*(w). The set of admissible displacements and
strains for the boundary datum w” is denoted by A(Q", w") and is defined as the class of
all triples (v, f, q) € BD(Q") x L2(Q" M) x My (Q": M%) satisfying
Ev=f+q inQ",
q = (wh — U) © UthHz on FIZ)
The function v represents the displacement of the plate, while f and ¢ are called the elastic
and plastic strain, respectively.
For every admissible triple (v, f, q) € A(Q", w") we define the associated energy as

/ /7 d
En(v, f,q) 1=/ 0 (i, f(z)) dz—l—/ H (i, i) dlql.
@ \€h ohurh \éen dlql

The first term represents the elastic energy, while the second term accounts for plastic dissi-
pation.

3.2 The rescaled problem

As usual in dimension reduction problems, it is convenient to perform a change of variables
in such a way to rewrite the system on a fixed domain independent of 4. To this purpose, we
consider the open interval I = (—% %) and set

Q:=wxlI, I'p = 0dwx1I.
We consider the change of variables v, : Q- @, defined as
Y (x', x3) = (x, hx3) forevery (x', x3) € Q, (3.9)

and the linear operator Ay, : MS;;; — ngﬁ given by

£ £ i3
ApE = &1 &2 %523 for every £ € Mfyxnf (3.10)
1631 360 hén

To any triple (v, f,q) € A(Q", w") we associate a triple (u,e, p) € BD(Q2) x
L2(2; M3X3) x Mp(Q2U T'p; M3x3) defined as follows:

sym sym
wi= (v, hv) oWy, ei=A foyn  pi= Ayl

Here the measure I/J;f (q) € My(2; M>*3) is the pull-back measure of g, satisfying

/ ‘p:d‘ﬁ(‘l)=/ (9o, ') :dg forevery ¢ € Co(S2U T p; M>?).
QUI'p Qhuth
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According to this change of variable we have

En, f.q) = hQu(Ape) + hHy(App),

where
x/
Qn(Ape) :/ 0 (—, Ahe> dx (3.11)
Q Eh
and
x' dA
Hh<Ahp>=/ H(—, L ) dIAnpl. (3.12)
QuUI)p ep d|App|

We also introduce the scaled Dirichlet boundary datum w € H'(2; R3), given by
wx) = (W1 (x) — x301w3(x)), wa(x') — x30w3(x’), w3(x")) forae. x € Q.

By the definition of the class A(Q", wh) it follows that the scaled triple (u, e, p) satisfies the
equalities

Eu=e+p inQ, (3.13)
p=(w—u)OvyegH* onTp, (3.14)
pu+pn+pin =0 nQUI. (3.15)

We are thus led to introduce the class Aj(w) of all triples (u,e, p) € BD(2) X
L2(2; M3X3) x Mp(Q U T p; M3X%3) satisfying (3.13)—(3.15), and to define the functional

sym sym
TIn(u, e, p) := Qu(Ape) + Hp(Anp) (3.16)

for every (u, e, p) € Aj(w). In the following we will study the asymptotic behaviour of the
quasistatic evolution associated with J, as h — 0 and ¢;, — 0.

Notice that if Wy € H (@), « = 1,2, and w3 € H%(&), where  C @, then we can
trivially extend the triple (u, e, p) to Q=ax1 by

u=uw, e=FEw, p=0 Onﬁ\ﬁ.

In the following we will always denote this extension also by (u, e, p), whenever such an
extension procedure is needed.
Kirchhoff-Love admissible triples and limit energy.

We consider the set of Kirchhoff-Love displacements, defined as

KL(Q) :={u e BD(Q): (Eu)jz=0 fori=1,2,3}.
We note that u € K L(2) if and only if u3 € B H (w) and there exists i € B D(w) such that
Uy = Ug — X30, U3, o =1,2. (3.17)
In particular, if u € K L(S2), then
Eii — x3D%us3 8
00 0

Eu = (3.18)

If, in addition, u € W1P(Q; R3) for some 1 < p < oo, then it € WP (w; R?) and
uz € W>P(w). We call it, uz the Kirchhoff-Love components of u.
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For every w € H'(Q;R?) N KL(Q) we define the class Agy (w) of Kirchhoff-Love
admissible triples for the boundary datum w as the set of all triples (u, e, p) € KL(2) X
L2(2; M3X3) x Mp(Q U T p; M3x3) satisfying

sym sym

Eu=e+p in<, p=(w—u) OvygH? onTp, 3.19)
ei3=0 inQ, p3=0 inQUIlp, i=1,2,3. (3.20)

Note that the space

[ eMy3: &3 =0fori=1,2,3}

sym
is canonically isomorphic to Mg}ﬁ Therefore, in the following, given a triple (u, e, p) €
Ak r(w) we will usually identify e with a function in L*(Q; M) and p with a measure
in Mp(QUTp; ngxn%). Note also that the class Agr (w) is always nonempty as it contains
the triple (w, Ew, 0).
To provide a useful characterization of admissible triplets in Ak, (w), let us first recall

the definition of zero-th and first order moments of functions.

Definition 3.3 For f e L2(Q;MZ2X?) we denote by f, f e L*(w; M2%2) and f1 €

sym sym
L*(2; MZ;3) the following orthogonal components (with respect to the scalar product of
200y VIZX2 :
L2(Q: MZ2)) of f:

& :fo(X’,X3)dX3, fi) = 12/x3f(x/,x3)dX3
1 1
fora.e. x’ € w, and
R = @) = f&) —xfEh)
for a.e. x € Q. We name f the zero-th order moment of f and f the first order moment of
f.

The coefficient in the definition of f is chosen from the computation | I x32 dxz = 1—12 It
ensures that if f is of the form f(x) = x3g(x’), for some g € L*(w; Mfyxn%), then f =g.
Analogously, we have the following definition of zero-th and first order moments of

measures.

Definition 3.4 For i € My (2 U I'p; M2X2) we define ji, i € Mp(w U yp; M2X2) and

sym sym

ut e Mp(Q UT p; M2X2) as follows:

sym

/ (p:dﬁ::/ @ du, / (p:d,&::lZ/ X3¢ du
wUyp QUIp wUyp QUI'p

for every ¢ € Co(w U yp; ngxn%) and
phi=p - A® Ly, — A® XLy,

where ® is the usual product of measures, and ll)lm is the Lebesgue measure restricted to
the third component of R3. We name & the zero-th order moment of p and [i the first order
moment of .
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Remark 3.5 More generally, for any function f which is integrable over 7, we will use the
short-hand notation

f:=/1f<-,x3>dx3, fi= 12/{X3f(-,x3)dx3.

We are now ready to recall the following characterization of Ak (w), given in [13,
Proposition 4.3].
Proposition 3.6 Letw € H'(Q; R*)NK L(Q) and let (u, e, p) € K L(R) x L*(2; Mj:3) x
Mp(QUTp; Mj;?) Then (u, e, p) € Axr(w) if and only if the following three conditions
are satisfied:

1. Eu=e+pinwand p = W — 1) © vy H! on yp;
2. D*us = —(é + p) inw, u3 = w3 on yp, and p = (Vuz — Vwsz) © Ve H! on VD
Lt =_—etinQand p- =00nTp.

W
S

3.3 Definition of quasistatic evolutions

Recalling Sect. 2.2, the Hp-variation of a map w : [0, T] - Mp(Q U 'p; Mi:vg) on [a, b]
is defined as

n—1
Dw, (u; a, b) := sup {ZH;, (ntiy1) —pt):a=tH <t <...<ty=b,ne N} .
i=1
For every ¢t € [0, T] we prescribe a boundary datum w(t) € HY:; R¥ N KL(Q) and
we assume the map ¢ — w(t) to be absolutely continuous from [0, T'] into H ! (2; RY).

Definition 3.7 Let 7 > 0. An h-quasistatic evolution for the boundary datum w(r) is a
function 7 > (u" (1), €" (1), p" (1)) from [0, T] into BD(RQ) x L*(2; MI3) x Mp(Q U
Mg’yxn? ) that satisfies the following conditions:

(gs1);, foreveryt € [0, T] we have (u (1), " (t), p" (1)) € Ap(w(1)) and
Qn(Ane" (1)) < Qu(Ann) + Hu(Apm — App" (1)),

for every (v, n, m) € Ap(w(t)).
(gs2); the function t p(t) from [0, T'] into Mp(QU T p; ngxrg) has bounded variation
and for every ¢ € [0, T']

Qn(Ane (1)) + Dry, (App"; 0.1) = Qp(Ape (0))
t
+ / / C (2‘—) Ape'(s) : Ev(s)dxds.
0 Jo g
The following existence result of a quasistatic evolution for a general multi-phase material
can be found in [24, Theorem 2.7].

Theorem 3.8 Assume (3.4), (3.5), and (3.7). Let h > 0 and let (ul, e}, pl!) € Ay (w(0)) sat-
isfy the global stability condition (qs1),,. Then, there exists a two-scale quasistatic evolution
t = W), " @), (1)) for the boundary datum w(t) such that u(0) = ug, €"(0) = eé’,
and p"(0) = pg.

Our goal is to study the asymptotics of the quasistatic evolution when & goes to zero. The
main result is given by Theorem 6.2.
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3.4 Two-scale convergence adapted to dimension reduction

We briefly recall some results and definitions from [23].
Definition 3.9 Let © C R3 be an open set. Let {1/ };,-0 be a family in M, () and consider
n e Mp(2 x V). We say that

2—
/Lh - u two-scale weakly* in M (2 x ),

if for every x € Co(Q2 x ))

) x’
hm/ X (m—) duh(X)zf x (e, y)du(x, y).
h—0Jg Eh Qxy

The convergence above is called two-scale weak™* convergence.

Remark 3.10 Notice that the family { ,uh} n>0 determines the family of measures {vh}h>0 C
Mp(2 x V) obtained by setting

/ x(x,y)dvh(x,y)zf X (x,x—> du’ (x)
QxYy Q Eh

for every x € Cg(Q x Y). Thus p is simply the weak* limit in M (2 x )) of (V" 0.
We collect some basic properties of two-scale convergence below:

Proposition 3.11 (i) Any sequence that is bounded in M (2) admits a two-scale weakly*
convergent subsequence.

27
(ii) Let D C Y and assume that supp(,uh) C QN (D, x 1). Ifu" i W two-scale weakly*
in Mp(Q2 x ), then supp(u) C Q x D.

4 Compactness results

In this section, we provide a characterization of two-scale limits of symmetrized scaled gra-
dients. We will consider sequences of deformations {v"} such that v € BD(Q") for every
h > 0, their L'-norms are uniformly bounded (up to rescaling), and their symmetrized gradi-
ents Ev" form a sequence of uniformly bounded Radon measures (again, up to rescaling). As
already explained in Sect.3.2, we associate to the sequence {v"} above a rescaled sequence
of maps {1} C BD(S), defined as

h. hooh g h
u" = (v{, vy, hvs) o Y,

where ¥, is defined in (3.9). The symmetric gradients of the maps {v"} and {1} are related
as follows

lEvh—(W) ApEu" 4.1
A = (Yn)a(ApEu™). 4.1

The boundedness of %HE v My (@ ME3) is equivalent to the boundedness of
s Visym
| ApEu™| My (@M We will express our compactness result with respect to the sequence
s Mlsym

{0
We first recall a compactness result for sequences of non-oscillating fields (see [13]).
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Proposition 4.1 Let {u” =0 C BD(R2) be a sequence such that there exists a constant C > 0
for which
" 1 umey + AR Eu" || oy, sy < C-

sym) -

Then, there exist functions u = (ui,u;) € BD(w) and us € BH(w) such that, up to
subsequences, there holds

uZ — Ug — X30y,U3, sStronglyin LI(Q), a € {1,2},
ug — u3, stronglyin LI(Q),

Eu x <El/_t —x3D%u3 0

0 0) weakly* in My (S2; M223).

sym

Now we turn to identifying the two-scale limits of the sequence Ay, Eu”.

4.1 Corrector properties and duality results

In order to define and analyze the space of measures which arise as two-scale limits of scaled
symmetrized gradients of B D functions, we will consider the following general framework
(see also [2]).

Let V and W be finite-dimensional Euclidean spaces of dimensions N and M, respec-
tively. We will consider k™ order linear homogeneous partial differential operators with
constant coefficients A : C°(R"; V) — C°(R"*; W). More precisely, the operator A acts
on functions u : R" — V as

Au = Z Agd%u.

la|=k
where the coefficients A, € WQ® V* = Lin(V; W) are constant tensors, & = (a1, ..., ®,) €
N{j is a multi-index and 9% := 9" - - - ;" denotes the distributional partial derivative of order
la| =y + - + oy,

We define the space

BVAW) = [u e L' (U: V) : Au € My(U; W)]

of functions with bounded A-variations on an open subset U of R”. This is a Banach space
endowed with the norm

lull gy Ay == lullprw,vy + [AulU).
Here, the distributional .4-gradient is defined and extended to distributions via the duality
/ ¢ -dAu = / A -udx, @€ CXU; W),
U U
where A* : C2°(R"; W*) — C(R"; V*) is the formal L?-adjoint operator of A
A* = (=DF Y ARe©.

o=k

The total A-variation of u € Lllo .

(U; V) is defined as

| Au|(U) := sup {/ A*g -udx : 9 € CKU; W), |p| < 1} )
U
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Let {u,} € BVAU) andu € BVAU). We say that {u,} converges weakly* to u in BVA
ifu, - u in LY(U; V) and Au, X Au in Mp(U; W).

In order to characterize the two-scale weak* limit of scaled symmetrized gradients, we
will generally consider two domains 21 C R"', Q, C R"2, for some n1,n; € N, and we
will (just for the purposes of this subsection) denote their points by x; € 1, x2 € Q2. We
will assume that the operator Ay, is defined through partial derivatives only with respect to
the entries of the n;-tuple x». In the spirit of [23, Section 4.2], we will define the space

A4 (Q) = {1 € Mp(®R1 x @23 V) 1 At € Mp(@ x 23 W),
Ww(F x 2) = 0 for every Borel set F € Qi }

We will assume that BV 42 (Q,) satisfies the following weak™* compactness property:

Assumption 1 If {u,} C BVA2 () is uniformly bounded in the BV % -norm, then there
exists a subsequence {u,,} < {u,} and a function u € BVAx (£22) such that {u,,} converges
weakly* to u in BVAn (), 1.e.

U — u in LY(Q: V) and Agyuy — Agu in My(Q2; W).

Funhernﬁre, there exists a countable collection {U*} of open subsets of R"2 that increases
to Q (i.e. Uk ¢ UK for every k € N, and Q» = |, U*) such that BV#n (U*) satisfies
the weak* compactness property above for every k € N.

The following theorem is our main disintegration result for measures in X’ Ax (Q), which
will be instrumental to define a notion of duality for admissible two-scale configurations.
The proof is an adaptation of the arguments in [23, Proposition 4.7].

Proposition 4.2 Let Assumption 1 be satisfied. Let © € X Ay (21). Then there exist n €
M;(Ql) and a Borel map (x1,x2) € Q1 X Q2 +— iy, (x2) € V such that, for n-a.e.
X1 € Q],

1y € BV (), f o () dxrs =0, [Auin (@) 0, (42)
Q2

and

=t (12) 7 ® L2, 4.3)
Moreover, the map x1 +— Ay, iy, € Mp(Q202; W) is n-measurable and

gen.

-Axg/J« =n ® szl/«xl-

Proof By assumption, we have u € Mp(21 x Q2; V) and A := Ay, € Mp(21 x Q25 W).
Setting

n = projglul + projslA| € M (Q),

where proju is the push-forward by the projection of Q1 x £, on €1, we obtain as a
consequence of Theorem 2.1:

gen. gen.
=0 @ [y and A =1 ® Ay, 4.4)
with ty, € Mp(22; V) and Ay, € M;(R202; W). Further, if we set § 1= {x1 € Qi :
gen.
[Ax, [(R22) £ 0}, then A = 1S ® Ay, .
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For every 91 e C2° (1) and 0? € C(Q22; W*) we have

/ w(”(xl)</txl,A§2¢(2>>~dn(xo=/
Q) Q2

gen.
:<,, ® MX17¢<1>AZ¢(2)>:<M,A;2 ((pa)(p(z)»

gen.
=<«4xzu,<ﬂ(”</>(2)>=<nLS ® Axpw“)w(z)>

(/Q oW AL (x2) - dpy, (xz)> ~dn(x)
2

= / (/ go“)(xl)(p(”(xz)-dAx.(xz>) Ls(x1) - dn(xy)
Q Q>

=/ §0<1)(x1)<]ls(X1))»x1,(p(2)>~d77(x1).

Q

From this we infer that for n-a.e. x; € €2 and for every ¢ € C°(S22; W¥)

(txrs AL @) = (Ls(x1)Ay; . 0) . (4.5)

We can consider p,, and A,, as measures on R"2 if we extend the measure 1 by zero on
the complement of €2,. Then, using the standard mollifiers {pc}e=0 on R"2, we define the
functions /L;] = Ly, * pe and A;l = Ay, * pe, wWhich are smooth and uniformly bounded
in L'(€»; V) and LY(Q; W), respectively. For every ¢ € C'(S22; W*) (where m is taken
to be the order of the partial differential operator A}, ), supp(¢) C U K for k large enough.
Furthermore, the support of ¢ p is contained in €2, provided e is sufficiently small (smallness
depending only on k), and thus from (4.5) we have

(s, > A%, 0) :/R (1x; * pe) - A 0 dxa :/R (AL * pe) - dpiy,
ny ny
= /R AL (@ % pe) - diny, = (o, AY, (9 % pe))
112
= (Ls(¥1) ;> @ % pe) =/R (@ % pe) - Ls(x1) diny,
’12

:/ Ls(x1) (Ax, * pe) - @ dxa
R™
= (Ls(x1)A,» ¢)-

Hence, for n-a.e. x; € €2 the sequence {/qu} is eventually bounded in BVAn U". By

Assumption 1, this implies strong convergence in L' (U¥; V) up to a subsequence. As € — 0,
we have both ¢ % p. — ¢ and Ajz Ok Pe — Aj2<p uniformly, so by the Lebesgue’s dominated
convergence theorem we obtain, for n-a.e. x; € Qp,

(1S5 ALP) = (1, AL @) and (Ls(xD)AS, @) = (Ls(x1)Ay,, @)
From the convergence above, we conclude for n-a.e. x; € € that u§, — p,, strongly in

L'(U*; V) (the convergence holds for the whole sequence since every subsequence has a
subsequence converging in n L' to the same limit). Since 1 x; has bounded total variation,
we have that p,, € LY (§2; V) for n-a.e. x; € Q1. This, together with (4.5), implies

Mx, € BVA2(Q) and A e, = Ls(x1)hy,.

From (4.4) we now have that 1 is absolutely continuous with respect to n®£ﬁ§ . Consequently,
for n-a.e. x; € Q1 there exists a Borel measurable function which is equal to i, for L‘f@ -a.e.
X3 € Q2, so that (4.3) immediately follows.
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Finally, since u(F x 22) = 0 for every Borel set F' C Q, we have

f(x1) (/ My (X2) dxz) dn(x1) :/ S dp(xr, x2) =0
Q) Q) Q1 xQ2

for every f € C.(f21), from which we obtain the second claim in (4.2). This concludes the
proof. O

Lastly, we give a necessary and sufficient condition with which we can characterize the
A,,-gradient of a measure, under the following two assumptions.

Assumption 2 Forevery x € Co(21 x 22; W) with Aﬁzx = 0 (in the sense of distributions),
there exists a sequence of smooth functions {x,} C C°(21 x Q2; W) such that Ajz Xxn =0
for every n, and x, — x in L°(21 x Q,; W).

Assumption 3 The following Poincaré-Korn type inequality holds in B VA (22):

u—/ udxy
197)

Proposition 4.3 Let Assumption 1, 2 and 3 be satisfied. Let . € Mp(21 x Q2; W). Then,
the following items are equivalent:

< ClAnul(R). Yu e BVA2(Q)).
LY (:V)

(1) Forevery x € Co(21 x Q2; W) with A;ZX = 0 (in the sense of distributions) we have
/ X (x1, x2) - dA(x1, x2) = 0.
Q] XQZ

(i) There exists L € xAx (21) such that . = Ay, 1.

Proof Let x € Co(21 x Q0; W) with A7, x = 0 (in the sense of distributions) and let {x}
be an approximating sequence of x as in Assumption 2. Assume that (ii) holds. Then, we
have

/ x(x1, x2) - dA(xy, x2) = / X (x1, x2) - d Ay, pu(x1, x2)
Q1 x2

Q1 xQ0

= lim KXn (X1, x2) - d Ay, iu(x1, X2)
n leﬂz

= lim AL xn(x1, x2) dp(xy, x2) = 0.
n Q1 xQ

So we have (i).
Let us prove that the space

e = {dop e X (@)

is weakly* closed in M (€21 x Q2; W). By the Krein-Smulian theorem it is enough to show
that the intersection of £ with every closed ball in My (21 x Q9; W) is weakly* closed.
This implies, since the weak* topology is metrizable on any closed ball of M, (21 x Q22; W),
that it is enough to prove that £ Ax s sequentially weakly* closed.

Let {An}nen C £ and A € M, () x 2; W) be such that

An > A in My (21 X Q0: W).
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By the definition of the space 4% there exist measures Un € Mp(21 x Q22; V) such that
An = Ay, n. By Proposition 4.2, for every n € N we have that there exist n, € M;(Ql)

and u,f’(l € BVAx (£22) such that, for n,-a.e. x; € Q1,

gen.
= W G ® LR A = © Al
Additionally, Y, satisfies sz WY, (x2) dxa = 0O for every n € N. Then, by Assumption 3,
there is a constant C independent of n such that

1 l(R1 x Q) = / ln o1, x2)] dxydxs = /Q ( fg mzl(xz)mxz) din(x1)
1 2

Q]XQZ

SC/ | Ay iy, 1 (€22) dip (x1) =C/ (/ dlezﬂﬁll(xz)) dny(x1)
Q Q 1953

gen.
—cf (nn ® |szu§1|) = ClAgunl(Q1 X ) < C.
Ql XQz
Hence there exists a subsequence of {1, }, notrelabeled, and an element © € My, (21 xQ22; V)
such that
* .
Mp = o in Mp(21 X Q0; V).
Then, for every ¢ € C2°(21 x Q2; W*) we have
(2 @) =lim {4y, ¢) = lim( A, pn, @)
= lim{pn, Ay, 0) = (1, Ay, 9).
From the convergence above we deduce that A = A, € £ Av  This implies that £ A s
weakly* closed in My (21 x 25; W) = (Co(R2 x Q2; WH))'.

Assume now that (i) holds. If A ¢ SAXZ, by Hahn-Banach’s theorem, there exists x €
Co(21 x 7; W*) such that

/ x-dr=1, (4.6)
Q]XQQ
and, for every u € BVAx (21 x 27),
/ x -dAqgu =0. 4.7
QI xQ

In particular, choosing u to be a smooth function, (4.7) implies that Aj;2 x = 0 (in the sense
of distributions). As a consequence, (4.6) contradicts (i). Thus, A € £ Ax | O

4.1.1 Compactness result for scaled maps with finite energy

If we consider Ay, = Ey, Ajz = (ﬁ;/y, Q] = w with points x; = x’, and Q, = I x ) with
points x» = (x3, ), then we denote the associated spaces from the previous section by:

BD,(I x V) i= {u e L'(I x Vi R3) : Eyu € My(I x V; Mf;n?)],
X, (w) = {,u e Mp(Q x VR : Eyu e Mp(Q xY; ngxn?),

w(F x I xY) =0 for every Borel set F C a)}.
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Despite the fact that ) is a flat torus, Proposition 4.2 and Proposition 4.3 are satisfied if we
establish the validity of Assumption 1, 2 and 3, which will be done below.

Remark 4.4 To eachu € BD,, (I x ))), we can associate a function

1 1
vi=|—ui, —uy,uz). 4.8)
14 14
Then
lEvu/ (D uz + — 8X3u>
Ev = T s
(D us + = ax;bt ) ax3u3

from which we can see that v € BD(I x V). Here Eyu’ denotes the symmetrized gradient in
y of the field u’, which is a 2 x 2 matrix. Furthermore, the L'-norms of u and v are always
within a constant factor of one another, whose magnitude depends on a fixed estimate of y
and 1. The same holds true for the Mp-norms of E yuand Ev.

Alternatively, we can define the change of variables ¥ : (yI) x Y — I x ) given by
Y(x3,y) = (ng, ) and consider the function w := u o . Thenw € BD((y 1) x ) and
we have

~ 1 ~
Eyu = —yu(Ew).
14
Using any one of these scalings, we obtain that BD,, (I x ) satisfies the weak* compactness
property Assumption 1.

The following lemma establishes the validity of Assumption 2.

Lemma4.5 Forany x € Co(Q2 x V; M3X3) with (ii;/},x(x, v) = 0 (in the sense of distribu-

sym
tions), we can construct an approximating sequence which satisfies Assumption 2.

Proof We take x € Co(2 x V; MB3X3), extend it by zero outside 2 and define

sym
X, y) == Atgex (@°(xNx', (1 +€)x3,y),

where Aj4¢ is the linear operator described in (3.10), and ¢¢ : @ — [0, 1] is a contin-
uous function that is zero in a neighbourhood of dw and equal to 1 for x’ € w such that
dlst(x dw) > €. Notice that € € Co(2 x Y; M3X3), ¢ — x ase — 0in L™ and

sym
ley X € = 0 (in the sense of distributions). The C*°-regularity of the approximating sequence
follows by convolving {x €} with a standard sequence of mollifiers. O

The following claim establishes the validity of Assumption 3.

Theorem 4.6 There exists a constant C > 0 such that

u—/ u
I1xY

for each functionu € BD,, (I x ))). The constant C can be chosen uniformly in y in a fixed
interval [y1, y2], for 0 < y1 < y» < 00 (depending then on y1, y2).

< ClEyul(I x V)

L1(IxY;R3)
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Proof In view of the first part Remark 4.4, it is enough to show the claim for the case y = 1.
Namely, if we prove it for arbitrary u and y = 1 by applying it to v defined by (4.8) and
y € [y1, 2], we obtain the claim. In order to prove the claim for y = 1, we argue by
contradiction. If the thesis does not hold, then there exists a sequence {u,}, C BD(I x )
such that

/ lun| dxsdy > n|Eun|(l x Y), with f u, dxzdy = 0.
Ixy Ixy

We can normalize the sequence such that
~ 1
/ lupy|dxsdy =1, and |Eu,|(I xQY) < —.
IxYy n

In particular the sequence {u,} is bounded in BD(I x ))).
By Assumption 1, there exists a subsequence {u,,} < {u,} and a functionu € BD(I x)))
such that {u,, } converges weakly* to u in BD(I x ))), i.e.

um = u in L'(I x V;RY), and Eu, — Eu in My(I x Y; M),

sym

It’s clear that the limit satisfies

/ lu|dxzdy =1, with / udxzdy = 0. 4.9)
Ixy Ixy

Also, by the weak™* lower semicontinuity of the total variation of measures, we have
|Eu|(I x V) =0, (4.10)

which implies Eu = 0. As a result, the limit u is a rigid deformation, i.e. is of the form

V1
u(xs,y) =A |y | +b, where A e MY beR.
X3

Further, (4.10) implies that « has no jumps along C! hypersurfaces contained in / x ). Thus
u should be [0, l]z-periodic in the y variable, and a simple calculation shows that the only
function of the above form must satisfy A = 0. Hence, u must be a constant vector. However,
this contradicts with (4.9). O

Remark 4.7 1If one doesn’t assume periodicity, then the following version of the Poincaré-
Korn inequality can be proved, using the arguments in the proof of Assumption 4.6: There
exists a constant C > 0 such that

X1
u—Al x| =» < CIE,ul((0, 1)* x I)

Y3 L1((0.1)2xI;R3)

for each functionu € BD,, ((0, D% x I)and suitably chosen A € Mkaea b eR3, depending
on u. Again, the constant C can be chosen independently of y in a fixed interval [yy, y2], for

0<y <y <oo.

The following two propositions are now a consequence of Proposition 4.2 and Proposition
4.3, respectively.
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Proposition 4.8 Let i € X, (w). Then there exist r] € /\/l+(a)) and a Borel map (x', x3, y) €
QXY uye(x3,y) eR3 such that, for n-a.e. x' € w,

Ky € BDy(I X ), / Jy (x3,y)dxsdy =0, |Eypy|(I x Y) #0, (4.11)
IxYy

and

1= je (3, )N ® LY ® L. 4.12)

3x3
sym

Moreover, the map x' — Eyux/ € Mp(I x Y; M5Y) is n-measurable and

Proposition 4.9 Let A € My(Q x V; M2%3). The following items are equivalent:

sym
(i) For every x € Co(Q x Y; M) with div, x (x, y) = 0 (in the sense of distributions)
we have
/ x(x,y) 1 dr(x,y) =0.
QxYy

(ii) There exists u € X, (w) such that . = yu

Additionally, we state the following property, which will be used in the proof of Lemma
4.18. The proof is analogous to [23, Proposition 4.7. item (b)].

Proposition 4.10 Let u € X, (w). For any C'-hypersurface D C Y, if v denotes a continuous
unit normal vector field to D, then

E,ul@ x D =alx,y) 0 v(y) n® (H2, LI x D),

X3,

where a : Q@ x D+ R3 is a Borel function.

4.2 Auxiliary results

We will need the following result, which is connected with the compactly supported De Rham

cohomology. Recall the definitions of 6},, &R/y, and/c_ﬁfl/y. In the next proposition, we will
consider the case y = 1.

Proposition 4.11 (a) Let Y be a flat torus in R3 and let x € C®YP; R3) be such that
divy = 0and fy(g) x = 0. Then there exists F € C®°(Y®; R3) such that curl F = .

(b) Let Y be a flat torus in R? and let x € CX(I x Y, R3) be such that leX = 0 and
f,xy x = 0. Then there exists F € C°(I x Y; R3) such that

curl F = y.
Proof The first claim is standard and can be easily proved by, e.g. Fourier transforms. For
the second claim, observing that x is also periodic on V3, by the first part of the statement

we obtain F € C®(Y®; R3) such that curl F = x on YP. Since x has compact suppon
in/ x ), there exists 0 < § < 5 L such that curl F = 0 on 15 x ), where 15 {(2 ) U
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(=1, =1 +8)}. Let now § € C(Ss), where S5 = I x (0, 1)%, be such that F = V on
Ss. For e € {1, 2}, let

Z a (x3, yp)e* ik
keZ

be the exponential Fourier series of Fy = dy, ¢ with respect to the variable y;. Note that the
coefficients {a} (x3, ¥2)}kez are smooth functions and periodic with respect to the variable
y2 and x3. Additionally, the Fourier series of smooth functions converges uniformly, and the
result of differentiating or integrating the series term by term will converge to the derivative
or integral of the original series. Hence, we infer that

1
- a (X3, ¥2) 5.
Px3, y) = ag(xz, y)y1 + Y 7"%,{ AT L pl(xs, y2) on S5, (4.13)
keZ\{0}

for a suitable smooth function b' (x3, y). Then, differentiating with respect to y; and y,, we
have that

13y @(x3, y) = dyya9(x3, y2) + Z dy,ap (x3, y2)e*™ ™1 on S;.
keZ\{0)

However, since

Dyn@(x3, y) = By, Falxs, y) = Y 2mikaj(x3, y2)e™™ ™" on S5,
keZ\{0)

by the uniqueness of the Fourier expansion we have that 9y, aé (x3,y2) =0, 1i.e.
ag(x3, y2) = c1(x3), (4.14)
for some ¢y € C*® (f(;). Further, differentiating (4.13) with respect to y,, we have that
3 dypa} (X3, ¥2) i
8y2</)(X3, y) = Z )ZSTQZTUICH + ayzb] (x3, y2) on Ss.
keZ\ {0}

Since 9y, = F, is periodic, we conclude that Byzbl is also periodic with respect to the
variable y, and we can consider its Fourier series. Let ¢c; € C OO(IZ;) be the corresponding
zero-th term. Then the antiderivative of Byzb] — ¢ with respect to y; is a periodic function.
Combining this fact with (4.13) and (4.14), we deduce that there exists a smooth function
Q€ C>®(Is; C*°())) such that @ can be rewritten as

$(x3,¥) = ¢(x3, ¥) + c1(x3) y1 + c2(x3) y2 on Iy x V.
From this, differentiating with respect to x3, we have that
F3(x3, ) = 09 (x3, y) 4 ¢} (x3) y1 + ¢5(x3) y2 on Iy x V.

As a consequence of the periodicity of 153 and 9, ¢ in the variables y; and y,, we conclude
that c’1 = 0 and c/2 = 0. Since I5 x ) is a union of two disjoint open sets, we have that ¢y, ¢;
are constant on each connected component. Using the fact that, for o € {1, 2},

By, §(x3,y) = 0y, §(x3, ¥) + Ca(x3) onl5 x I, (4.15)
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the periodicity of ﬁa = 0y, ¢ implies that cy, ¢ are in fact constant. This can be seen by

integrating the equation (4.15) over the plane x3 = —% and x3 = % Thus we conclude that
~ ~ Cl ~
F(x3,y) =V@(x3,y)+ | ca | onls x Y. (4.16)
0

Consider now the exponential Fourier series of F3 with respect to the x3 variable, such that
- 3 . -
F3(r3, ) =) ap(»)e”™™* on Iy x V.
keZ

Integrating the third component in (4.16) with respect to x3, we have that there exists a smooth
function b3 (x3, v), which has values bi (y) and b (y) on each of the two parts of I5 x Y,
such that

3

R ay(y) oqi ~

o(x3,y) = ag(y)x3 + E 72’;”,]( 2Tk 4 p3 (x5, y) on s x Y.
keZ\{0}

From this and (4.15) we have, for o € {1, 2},

, Iyg @} (V) i -
Fo(x3,y) = ca = 0y a3(Dx3 + ) = L= 49y bixs, y) on dy x .
keZ)\{0} !
Considering the continuity and periodicity in x3 of the above terms, evaluating in x3 = —%

and x3 = % gives dy, ag (y) =9, b3 (y) — 9y, bﬁ_ (y). From this we have that there exists a
constant ¢3 and amap ¢ € C®°(Y x I5) such that ¢ and all its derivatives are periodic in the
x3 variable, and for which
$(x3,y) = @(x3,y) + c3x3 on Is x .
From this and (4.16) we conclude that
c

F(x3,9) =Vous,y)+ [ e | onls x Y.
3

Finally, we consider a smooth function k : I — R that is zero on the set [—% +4,5 — 8]
1

and one in a neighbourhood of x3 = —5, x3 = % By taking
~ ~ Cl
F:=F—-Vkop)—| onl x ),
3
we have the claim. o

Remark 4.12 By considering functions scaled by y in the third component and by % in the
direction x3, one can apply the proof item (b) in Proposition 4.11 so that the statement is
valid for maps in the space CZ°((y 1) x Y; R3).

Consequently, for x € C°(I x V; R?) such that dTva =0and flxy x = 0 there exists

F € CX®(I x Y; R?) such that/c_JrTyF = x, which can be easily seen by rescaling in the
direction x3.

@ Springer



Effective quasistatic evolution models for perfectly... Page 27 of 56 93

Remark 4.13 1If x € C°(2 x V; M3%3Y is such that (fidvy)( =0, then for a.e. x’ € w

sym

/ Xx3i(x, y)dxsdy =0, i=1,2,3.
IxYy

Indeed, by putting

2y x3c1(x")
@) =2y x3c2(x’) |,
y x3¢3(x’)

for c € C°(w; R3), we infer that

" 00C1
Eyp=100c¢|,
Cl1 C2C3

and the conclusion results from testing x with Ey<p on [ x ), and by the arbitrariness of the
maps ¢;, i =1,2,3.

4.3 Two-scale limits of scaled symmetrized gradients
We are now ready to prove the first main result of this section.

Theorem 4.14 Let {u"},~0 C BD(Q) be a sequence such that there exists a constant C > 0
for which

h h
[lu ||L1(Q;R3) + 1A Eu ||M[,(Q;M3X3 <C.

sym) -

Then there exist u = (i1, u2) € BD(w), u3 € BH(w), u € X, (w), and a subsequence of
{uh}h>0, not relabeled, which satisfy:

2% (Eb_t —x3D%u3 0

ApEu" — 0 O) ® Ei + Eyu two-scale weakly* inMp (2 x Y; Mz’;n‘:’)

Proof Owing to [43, Chapter II, Remark 3.3], we can assume without loss of generality that
the maps «” are smooth functions for every & > 0. Further, the uniform boundedness of the
sequence { Ev"} implies that

/ | u + 0pyul | dx < Ch, fora =1,2, (4.17)
Q
/ |dyut| dx < Ch?. (4.18)
Q
In the following, we will consider A € M (2 X V; M:yxn?) such that
h 2% o 3%3
ApEu" — ) two-scale weakly* in M (2 x V; Msym).

By using Proposition 4.1 we have that there exist (i1, u2) € BD(w), uz € BH (w) such
that

| _ _
(EuM)ap = 2 (Onglig + uylle) = X30ugttz, @ f=1,2.
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Let x € C°(2 x Vs M3%3) be such that &\i;/yx = 0. We have

sym
f x(x,y) rdi(x,y)
QxY
_ g Ay heoy) — 1 By X
_Jinofgx(x’ ) d (ApEul)) Jim [ ) - div (nnx(x 2)) ax
. h 4
——Jim 3 [ ) Gyt + o) (5, ) o
a=1,2
= Jim o [0 Guyan + duaxa2) (v &) d
h—0h Jo 3 ! Eh

. 1 ; ,
- Jin%;z P fQ ulh () Oy Xt + Dy xa2) (. 57 ) dx

. 1 ,
— lim —/Quél(x) @y, x31 + 8)72)(32)()(, f—h) dx

h—0 hey,
— lim Z L I (x X—’) dx — lim = | hxya (x x—') dx
=0 = hJo ¢ w3 X3 &y o n2 Jo 13V AT &

- _hli—r>n0 _21: / U+ (O Xal +8X2Xa2)< /) dx

— hm / uy - (Ox; X31 +8x2X32)< > sh) dx

[ h L[,
+hlin0<5_l) Z / - By Xa3 ,gl)dx—i—h /Qu3.ax3x33(,sh)dx ,

(4.19)

where in the last equality we used that - o O xit+ o 8y2 Xi2+ 7 8x3 Xi3 = (l — 5}3)/) O3 Xi3-
From Proposition 4.1 we know that we have the following convergences:

Uy, — g — X30y,u3, strongly in LI(Q), a=1,2,

=R =

u3 — u3, strongly in LI(Q).

Notice that

fim 3 [ ) Gt + ) (5, ) i

a=1,2
Z /(Mot_x33xau3) < x1/ Xa1(x, y)dy+3xz/ X2 (X, y)dy>
a=1,2
v — 2 ’
_ _/ (G y) 1 d ((Eu(x) 3(6)3D uz(x’) 8) ®£§). (4.20)
QxYy

Next, in view of Remark 4.13, we can use item (b) in Proposmon 4.11, i.e. Remark 4.12 to

conclude that there exists F € C2°(22 x V; RS) such that curl F = (x3i)i=1,2.3- Thus we
have
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1
X31 = 0y, F3 — ;% P, 4.21)
1
X32 = ;3)53 Fy — 0y, F3 (4.22)
X33 = 0y, F2 — 0y, F1. (4.23)

Next we compute
1 o
lim — [ wh(x) Bxly2F3(x, z )dx - hm()/ uh (x) B, <8X1F3( ))dx
Q
~Jim | W (x) By F3<x, §7) dx. (4.24)
Notice that
lim/ué'(x) 8xlx2F3(x,%> dx :/ u3 0y, x, F3(x, y)dxdy
h—0 Q QxYy
:f Oy xa U3 / F3(x, y)dydx. (4.25)
Q Y

Recalling (4.17), we find
. h ’ . h ’
}}E})/Q%(x) B, (BXIF3<x, ;‘7)) dx = —I}%/Qam%(x) BXIF3(x, 27) dx
. h !
f]z]—rpo/;z DxsUy 8xlF3(x, ;Lh) dx

_ h
=~ im, J P 5

—/ (U — x30x,U3) Oy x5 F3(x, y)dxdy
QxYy

=/3x1x21/l3/ F3(x, y)dydx. (4.26)
Q y

From (4.24), (4.25), (4.26) we infer

I ,
lim — / Wb 01y F3(x, ) dx = lim —/ Wb By, F(x. &) dx

h—0 epy
= 0. (4.27)

In a similar way for ué’ (recalling (4.18)), we deduce

lim 1/ Ul (x) B F2<x, x—/) dx = — lim l/ eyt (x) By Fz(x, Xi) dx
h—0 h Q 143 Eh h—0 h Q 3 ! h

=0. (4.28)
From (4.21), (4.27), (4.28) we conclude that
.1 h /
;113})%/9“3(")8“ X31(x, ;7) dx =0. (4.29)
Analogously, we obtain
.1 h /
lim — /Q ul (x) 5, X32(x, ;7) dx =0. (4.30)

@ Springer



93 Page 30 of 56 M. BuzZancic et al.

Lastly, using similar arguments as above, we compute

' X
}%1_1;% Shy (QXI:Z / u (X) aszot? s 8/> dx + — 2 / MG(X) 8X3X33<x’ S;,) dx)
] ’
( Z / Qpalt a(x) Xa3( X, S/) dx + 7 / u;(x) 3x3X33(X, ;ﬁ) dx)
a= 12

= lim <— — 1)
h—0 \ epy
+(W + 1) ﬁ/ M3(x) aMX33< e ) dX)

—0. (4.31)
From (4.19), (4.20), (4.29), (4.30), (4.31) we have that

2
/ x(x,y):d (A(x, y) — (E“(x ) —)(6)3D uz(x’) o) ®£2>
QxYy

From this and Proposition 4.9 we find that there exists i € X, (w) such that

__ 2 ~
5 _ (Eu x3Du3 0) ®£§ =E, 1.

ug(x) @01 + B x32) (¥, ) dx

0 0
This, in turn, yields the claim. O
4.4 Unfolding adapted to dimension reduction

We proceed along the lines of [23, Section 4.3].
Forevery ¢ > Oandi € 72, let

i 2 X —él
O, = 1x R €Y.
&

Given an open set w C R2, we will set
L(w) == {i eZ?: 0l ¢ a)}.
Given u, € Mp(w x I) and Qé C w, we define ué e Myp(I x ) such that

. 1 /
¥ (xs, y) dpl (x3, y) = ?/Q R <x3, a ) die(x). ¥ e CU x V).

IxYy

Definition 4.15 For every ¢ > 0, the unfolding measure associated with . is the measure
Ae € Mp(w x I x Y) defined by

fei= )0 (€210 @ul.

iel.(w)
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The following proposition provides the relationship between the two-scale weak* conver-
gence and unfolding measures. The proof is analogous to [23, Proposition 4.11.].

Proposition 4.16 Letw C R2 be an open set and let {1} C Mp(w x I) be a bounded family
such that

27
e - o two-scale weakly* inMp(w x I x V).

Let {5»5} C Mp(w x I xY) be the family of unfolding measures associated with {1 }. Then

Ae X no weakly* inMp(w x I X Y).

To analyze the sequences of symmetrized scaled gradients of B D functions in the context
of unfolding, we will need to consider the following auxiliary spaces

sym

BDu(I x V) i={ue L' x iR : Fuue Myl x M |,

BD; ((0,1)*x I) := {u e L'((0. 1> x I} R3) : Eyu e M, ((o, 1?2 x I M3X3> }

sym

where E » and E; denote the distributional symmetrized scaled gradients, cf. (2.1). Similarly

& &
as in Remark 4.4, scaling in the the first two components shows that these auxiliary spaces
are equivalent to the usual B D space on the appropriate domain.

Proposition 4.17 Let o C R? be an open set and let B € Y be an open set with Lipschitz
boundary. Let yy € (0, 1] and let h, ¢ > 0 be such that

h 1
< —.

Yo < —
& Yo

Ifus € BD(w x I), the unfolding measure associated with Ap Eug| (Be\Ce) X I is given by

> (2100) @ Euity L1 x B\ O), (4.32)

ielg(w)

where C has been introduced in (3.1) and 122 e € BDiw(I x Y) is such that

/ |itf, .| dx3 dy +/ |l | dH? + |Evit | (I x (BNC))
IxB Ix0B e
c N
< S |AnEue| (lnt(QE) x 1), (4.33)
&
Sfor some constant C independent of i, h and ¢.

Proof Since B, has Lipschitz boundary, u;15,x1 € BDjoc(w x I) with
Eug|Be x I = E (uelp,x1) + [us|8Bs x I © v H*[3B, x I,

where u, |08, x I denotes the trace of u;15,x; on 0B, x I, while v is the exterior normal
to 0B, x I. We note that the third component of v is equal to zero.
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Remark that C; = (U;3 Q') N w. Accordingly, fori € I, (w) and ¥ € C'(I x Y; Mg’yﬁ)

f v (xs, al ) d (ApEue | (B: \ Co) x 1) (x)
QSXI

x3

); ) “d (A Eug|Be x 1) (x)

= 14
mz(Q’)xI

1nt(Q’)><[ <

x/
X3, — ) tdARE (uelp, x1) (x)
!
+/ v <x3, x—) - Ap (e |9Be x 1 O v] dH2[9B: x 1(x).
int(QLyx1I &
We set vj, ,(x) = diag (1,1, ) uc(ei + ex’,x3) for x € (0,1)%> x I. Then v} , €

BD ((0,)? x I), and Ey vh o(x) = eApEug(ei + ex’, x3). Performing a change of vari-

ables we find
x/
/_ 14 <X3, *) sd (ApEug [(Be \ Ce) x 1) (x)
QixI &
=£/ ¥ (x3,x") :dEn (v;l’gllz(g)xl) (x)
0,1)2x1 €
+5/ v (X3,x’) Ay [diag(l, 1, h) v;, JZOB) x 10O v] de(x)
0,1)2x1 ’
=5/ w(m,x’) :dE (v;l’gllz(g)“) (x)
0,1)2x1 €
n s/ ¥ (x5, x') [u;‘, Z(BB) x 1 O u] dH (x).
0,1)2x1 ’

Notice that we can assume that

f vi . ldx +/ [vi . 18(0, 1)? x I|dH?
0,12x1 9(0,1)2x1

IA

CIEwv) | ((0, D x 1)

C .
A Eug| (im(Q;) x 1),
&

for some constant C independent of i, & and ¢. This can be achieved by using Remark 4.7

since subtracting a rigid deformation to u, on Qf x I corresponds to subtracting an element

of the kernel of E; to v;l > Which does not modify the calculations done thus far. Hence,
- )

by the trace theorem and Poincaré-Korn’s inequality in B D ((0, D2 x 1 ), we get the desired
inequality. .
Defining @), ,(x3, y) := év}q . (Z(¥), x3), we obtain

\Eyit), | (I x V) / . ity LI % CldH? + |Evdily | (I x (V\ C))
& 1>< &

IA

1 : 1 .
f/ V), 130, D* x I|dH* + ~|Exv), | ((0, )? x I)
30,1)2x1 & &

C+1 C+
T|E;,u,”| (0.1)* x 1) = —

(inr(Qf;) x 1).
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Furthermore,

8/ v dEn (v;;,gllz(lg)xI) = 82/ v dEg (I/At;l’allgx1)
0,1)2x1 € Ix(Y\C) ¢

and

o[ wilhemes <iov] e = [ iU o8 0 0v] o,
(0,1)2x1 Ix(V\C) ’

So we have

i/ 14 (X3, x*) td (ApEug[(Be \ Ce) x I) (x)
oL xI &

g2
=/ Wiz ) dEu (i) st ) 0, %5)
Ix(\C) ¢
+ f Yy s [ L x 0B\O) O v] dH(xs, v)
Ix(V\C)

=/ yw(xa,w:digﬁﬁ,,gu x (B\ )3, ).

from which (4.32) follows. It remains to prove (4.33). Again, up to adding an affine trans-
formation to ﬁlh . (cf. Remark 4.7) on I x B, we can assume

/ \it}, .| dx3dy +f |t} | dH? + |Enidly | (I x (BNC))
IxB Ix3B e
< C|Ewit), | (I x B) + |Exit), | (I x (BNC)) < C|Ewity | (I x V)
c o
< S1AnEu;] (mt(Qg) x 1).
This concludes the proof of the theorem. O

As a consequence of Proposition 4.17, we deduce the following lemma, which in turn will
be used in the proof of the lower semicontinuity of H"*" in Sect. 5.5.

Lemma4.18 Let B C Y be an open set with Lipschitz boundary, such that 3B\ T is a C'-
hypersurface, for some compact set T with H' (T) = 0. Additionally, assume that 9BNC C T.
Let v € BD(2) be such that

ot Ay weakly* inB D(S2)
and
AhEvh 2N (B, x I) 2 T two-scale weakly* inMp(2 X V; ngf;)
Then 7 is supported in Q x B and
T[22 x (@B\T) =a(x,y) ©v(y){, (4.34)

where { € MZ‘(Q X (0B\7)),a: Q2 x (dB\T) — R3 is a Borel map, and v is the exterior
normal to 0B.
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Proof Denote by 7 € Mp(2 x V; ngxlg) the two-scale weak* limit (up to a subsequence)
of

AREV" Q20 ((Be, \ Cep) x 1) € Mp(2; M),

sym

Then it is enough to prove the analogue of (4.34) for 7. Indeed, the two-scale weak™® limit
(up to a subsequence) of

AREV QN ((Bg, NCey) x I) € Mp(2; M)

sym

is supported on 2 x B N C. Since by assumption 83N C € 7, we have that dB\7 and 5N C
are disjoint sets, which implies

T|Q2x @OB\T)=7|2x O@B\T).

By Proposition 4.17, the unfolding measure associated with Aj, Ev” L(Bg, \C¢,) x I is given
by

> (€210L) @ Bt L x B\ O), (4.35)

i€l (©) h
where 0 € BD(I x Y) is such that
/ |ﬁ§h|dx3dy+/ 108 |dH* +|E w 0L, | (I x (BNC))
IxB Ix0B h
C o
< gh—z|AhEu"| (mz(Q;h) x 1). (4.36)

Further, by Proposition 4.16, the family of associated measures in (4.35) converge weakly*
to 7T in Mp (2 x V; M?;n?) Then, for every x € C°(Q2 x Y; szxn?) with dlvyx(x y) =0,
we get

/ x(x,y) 1 dm(x,y)
QxYy

= lim / x(x,y) :d Z (ﬁi/LQih> End U x (B\C)

h—0 QxY £p

iely, (@)
= lim Z / (/ X(x,y): dEhU)
h%oielgh () Q{?h Ix(B\C)
= lim / </ X(x y) dEh Ué‘}; / X(x’y) . dgiﬁéh> dx/.
h_)oiagh ()Y @k, \IxB Ix(BNC) o

(4.37)
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By the integration by parts formula for B D functions over / x B we have
f x(x,y) 2 dat(x, y)
QxYy

—jim > [ (—/ GV a1 (e 90 - 8L, (3, ) dxady
IxB h

i€l () Q;"Ix

+[ X9 s [, a0 0 v] dH s, ) —f X,y dfﬂé,,)df
Ix0B8 1 £

i ¥,

iel,, @) * %

x(BNC)

&n 1 i
) s O X (X, y) - U, (v, x3) dx3dy

+/ Xy s [0, 000 0] dH2<y,x3>—f X, y) :di«:‘mg'h>dxa
Ix3B Ix h

(BNC)

Owing to (4.36), we conclude that the the sum

2/ / B, X (x, ¥) - Oy, (v, x3) dxsdy
IxB

iely, (@) " %o

is finite. Further, in view of (4.36) we can rewrite the above limit as

f x(x,y) 1 d7t(x,y) = lim (/ x(x,y>:dx’;(x,y>+/ X(x,y>:dx’5<x,y>),
QxY h—0 \Joxy Qxy
(4.38)

with k’l', )\g € Mp(2 x V; M3%3) such that (up to a subsequence)

sym

M S and A8 S ay weakly® inMy(Q x Vs M%)

sym

for suitable A, Ar € Mp(2xY; Mg’yXIS). Then, we have supp(r1) € Q2 x dB and supp(rz) <
Q x (BNC).

By the density argument described in Lemma 4.5, we conclude that (4.38) holds for every
x € Co( x Y; M223) with div, x = 0. The definition of A1 and A, then yields

sym

/ x(x,y):d (@ —x —X) (x,y) =0.
QxYy

Thus, from Proposition 4.9 we conclude that there exists 1 € &), (@) such that
=k == Eyp.
Recalling the assumption that 98N C € 7 and using the same argument as above, we obtain
LR x OB\ T) =11[Q x B\ T) + E, u|2 x B\ T).

In view of Proposition 4.10 and recalling the assumption that 353 \ 7 is a C'-hypersurface,
we are left to prove the analogue of (4.34) for A;.
We consider

o= Y g (N0, (5.9,

i€l ()
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so that ¥ (x, y) = [ (x3, y) © v] £2, ® (H2, , LI x 9B). Then {"} is bounded in L' (2 x
9B; R3) by (4.36). Up to a subsequence,
0" L2, @ (H2, L x 0B) = i weakly* inM,(Q x 0B; R?)

X3,y

for a suitable n € My (22 x 9B; R?). Since v is continuous on 48 \ T, we infer

Al x 0B\ T) = “Z*l(& y) ©v(y) In|l2 x 0B\ 7T),
n

which concludes the proof, since il is a Borel function. O

5 Two-scale statics and duality

In this section we define a notion of stress—strain duality and analyze the two-scale behavior
of our functionals.

5.1 Stress-plastic strain duality on the cell

Definition 5.1 Let y € (0, +-00). The set K,, of admissible stresses is defined as the set of
all elements X € L2(1 x Y; M3X3) satisfying:

sym
(i) div, £ =0in1 x ),
(ii)) Ze3 =00ndl x Y,
(iii) Taev(x3, y) € K(y) for £}, ® L3-ae. (x3,y) € [ x V.
Since condition (iii) implies that Xgey € LI X Y; Mg’yxn?), forevery X € K, we deduce

from Proposition 2.3 that ¥ € L (I x Y; M3X3) forevery 1 < p < oo.

sym

Definition 5.2 Let y € (0, +00). The family A, of admissible configurations is given by
the set of triplets

ueBD,(IxY), EeL*IxY;MY3), PeMy(xy; M,

sym dev

such that
Eju=EL,®@L,+P inlx).

Definition5.3 Let X € IC, and let (u, E, P) € A,. We define the distribution [Zgey : P]
onR x ) by

[Zdev : Pl(p) := _/

¢ % : Edxsdy —/ 2 (o V,e)dady, (5.1
IxYy

IxYy
forevery ¢ € C°(R x ).

Remark 5.4 Note that the second integral in (5.1) is well defined since B D (I x)’) is embedded
into L3/2(1 x Y; R3). Moreover, the definition of [Sgey : P] is independent of the choice of
(u, E), so (5.1) defines a meaningful distribution on R x Y.

The following results can be established from the proofs of [24, Theorem 6.2] and [24,
Proposition 3.9] respectively, by treating the relative boundary of the “Dirichlet” part as
empty, the “Neumann” part as 9/ x ), and considering approximating sequences which
must be periodic in ).
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Proposition 5.5 Let ¥ € Ky, and (u, E, P) € A,. Then [Xgey : P] can be extended to a
bounded Radon measure on R x ), whose variation satisfies

[Zdev : Pl < ”EdCV”Loc(IXy;ngﬁ)lpl in Mp(R x ).

Proposition 5.6 Let © € K, and (u, E, P) € A,. If YV is a geometrically admissible multi-
phase torus, then

dP .
H (y, m) |P| > [Zgev : P] in Mp(I x ).

5.2 Disintegration of admissible configurations

Let @ € R? be an open and bounded set such that @ C @ and @ N dw = yp. We also denote
by Q = @ x I the associated reference domain.

In order to make sense of the duality between the two-scale limits of stresses and plastic
strains, we will need to disintegrate the two-scale limits of the kinematically admissible fields
in such a way to obtain elements of A, for y € (0, +00).

Definition 5.7 Let w € H! (?2; R» N KL(EZ). We define the class Aﬁom (w) of admissible
two-scale configurations relative to the boundary datum w as the set of triplets (u, E, P)
with
ue KLQ)., EeLl*QxY:iMID)., PeMy@xy:MZD).
such that
u=w, E=Ew, P=0 on(Q\Q) x,

and also such that there exists € X, (@) with

Eu®Ll+En=ELI@LI+P inQx). (52)

Lemma5.8 Let (u, E, P) € Afﬁ"m (w) with the associated . € X, (@), and let it € BD(®)
and u3 € BH (®) be the Kirchhoff-Love components of u. Set

n = L2 + (projs| P)* € M ().

Then the following disintegrations hold true:

A1 (x") + x3A2(x") 0
Eu®£§,:< 1(x) 03 2( )O)”®£}‘3®£§’ (5.3)
ELI®L=CU)Ex y)n® Ll ® L], (5.4)
gen.
P=1nQ® Py (5.5)

Above, Ay, Ar : & — M2 and C : @ — [0, +00] are Radon-Nikodym derivatives of

sym
Eii, —D%u3 and Li, with respect to n, E(x,y) is a Borel representative of E, and P, €
Mp(I x Y, Mgexv3)for n-a.e. x' € @. N
Furthermore, we can choose a Borel map (x', x3,y) € Q X Y = uy(x3,y) € R3 such
that, for n-a.e. x' € @,

gen. ~

=pe(a NN®LL®LE, E,u=n® E,ue, (5.6)

where py € BDy, (I X Y), f,xy ey (x3, ) dxzdy = 0.
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Proof The proof is analogous to [23, Lemma 5.4]. The only difference is the statement and

argument for the disintegration of Eu ® L‘y, that we detail below.

First we note that proj (EV“)aﬂ = proji (E)'M)aﬁ = 0 for a, B = 1, 2. Then, from
(5.2) we get

(Eﬁ)aﬂ = projy (Eu ® L‘,f,)aﬁ = (/ Eqp(x,y) dxgdy) EJZC,
I1xYy

+ proji(P)ag
1
< elg () L2 + (projul Py
where we set eV = f,xy |E(, x3, y)|dx3dy + (projs| P)* € L*(@; M23). Similarly,

sym
after multiplying equation (5.2) by x3, we have that

1 1
2 ; 2 2
(—D u3)m3 = T proji (X3Eu ®£y>aﬁ = - (/;XymEuﬁ(x, y) dx3dy> L

1 )
+ — PrOJ#(xaP)

@(x )L+ 5 L (projisles PDS,

where we set e® = {5 [} 3, [X3EC, x5, )| dxady + 15 (projslxs P € L*(@; My).

Consequently, the measures Eii and —D’us3 are absolutely continuous with respect to 1, so
we find

Ei®L3=A(x)n® Ly, ® L2,
D*us ® L3 = Ay (x')n ® L}, ® L3,

for suitable A, Ay : @ — ngxn% such that (5.3) hold true. u]

Remark 5.9 From the above disintegration, we have that, for n-a.e. x’ € @,

~ A1 (x’ Ar(x") 0 .
Eyﬂx/ _ |:C(x/)E(x,y) _ < 1(x") +0x3 2(x) 0>:| ‘C)lcg ®£§ + Py inl x .

Thus, the triple

<qu [C(x/)E(x, 3 — (Al(X’) +OX3A2(X’) 8)] ’ P)(/)

is an element of A, .
5.3 Admissible stress configurations and approximations

sym

For every el e LZ(Q; M3x%3) we define ah(x) = (C( )Ahe (x). Then, in view of [24,
Theorem 3.6], we introduce the set

sym

K = {oh € L2(Q; M23) 1 divyo =0in Q, o"v=0in9Q\Tp,

!
X

oé‘ev(x’,x3) ek <8—> forae. x' ew, x3 € I},
h
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which is the set of stresses for the rescaled / problems. Next we introduce the set of two-scale
limiting stresses.

Definition 5.10 The set ICﬁ‘”” is the set of all elements ¥ € L?(2 x V; M2X3) satisfying:

sym

(i) div, Z(x’,-) =0in I x Y forae.x’ € o,
(ii)) Z(x’,-)é3 =00ndl xY forae. x’ € w,
(i) Zqev(x, y) € K(y) for L] ® L2-ae. (x,y) € 2 x D,
(iv) oi3(x) =0 fori =1,2,3,
(v) divys =0in o,
(vi) divydivye = 0in o,

where o := fy S, y)dy,and &, 6 € L (w; ngxrr%) are the zero-th and first order moments
of the 2 x 2 minor of o.

Remark 5.11 Notice that as a consequence of the properties (iii) and (iv) in the Definition
5.10 we can actually conclude that o, 6 € L™ (w; Mfyxn%). Namely, the uniform boundedness
of sets K (y) implies that the deviatoric part of the weak limit, i.e. ogey = 0 — % troI3x3, 18

bounded in L (2; M3*%3). Thus we have that

sym

o11 012 0 | (o toxn 0 0

o200 0) =3 0 on+on O is bounded in L (2 M ).
0 00 0 0 o1+ o

Hence, the components o, are all bounded in L*°(£2).

In the following proposition we show that the set IC]h,"m characterizes weak two-scale limits
of sequences of elastic stresses {o"}.

Proposition 5.12 Let {o"'} be a bounded family in L*(£2; ngxrg) such that " € Ky, for every
h, and

2
o = % two-scale weakly inL* (2 x V; Mg;(n?).

Then T € /c’;‘”".

Proof Consider a sequence {ah} c LA(Q; Mz’yxn% ) such that o, € Kp, for every h, and assume

that o' —o weakly in L2(; ngxn? ). We first establish the macroscopic properties (iv), (v),

(vi). To obtain (iv), let v € C°(Q; R?) and V € C*(Q; R?) be defined by

X3
V(x', x3) 12/ 1 v(x’, $)d¢.
-2

From the condition divhah = 01in , forevery ¢ € H! (2; RS) with ¢ = 0 on I'p we have

/ o"(x) : Enp(x)dx = 0. (5.7
Q
Setting
2h Vi (x)
p(x)=| 2hV2(x) |,
h V3(x)
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and passing to the limit as # — 0, we find

0 0 v 0 0 9,Vi(x)
/ o(x): 0 0 wvx) | dx= / o(x): 0 0 Oy Va(x) | dx =0.
& 1 (x) v2(x) v3(x) s Bx3 Vi (x) 33 Va(x) 3y Va(x)

Consequently, from the arbitrariness of v, we infer that ;3 = 0.
To obtain (iv) and (v) let ¢ € C2°(w; R3) and choose the test function

P1(x") — x3 9%, @3 (x")
p(x) = | @2(x") — x3 0y, @3 (x")
5 @3
We deduce from (5.7) that

=) 2~ /
/ah(x) : <E<P(x)—)(€)3D <.03(x)3> dx — 0.
Q

Passing to the limit, we conclude that
divyy,6 =0inw, and divydivye = 0in .

Next we prove the microscopic properties (i), (ii) and (iii). Consider test functions
en @ (x, g) for ¢ € C2°(w; C®(I x Y; R?)) in (5.7). We first observe that the sequence

x’ x’ x/ & x’
Vi <8h¢ <x» *)) = |:5h V¢ (x! *> + V¢ <x7 *) — 03P <X, *) ]
&n &n &n h &n

converges strongly two-scale in L?(Q2 x J; M3*3). Hence, passing to the limit as & — 0,
we find

[ 2y By dudy=o.
QxYy

Suppose now that ¢ (x, y) = ¥ D (") ¥ @ (x3, y) for ¢V € C®(w) and @ € C®(I x
Y; R3). Then

f ARIED) ( / T(x,y): Eyw(z)(x.%,y)dx?,dy) dx' = 0.
w IxY
Thus, for a.e. x’ € w,
ozf S(x, ) Eyy® (a3, y) dxsdy
IxYy

=—/ dTvVE(x,y)'w<2><x3,y>dx3dy+/ 20, ) v s, y) dH (43, y)
IxYy 0(IxY)

z_/ (nyE(x,y)‘w<2><x3,y>dx3dy+/ S(x,y) &3 - v P a3, y) dH (3, y),
IxY aIxYy

from which we infer cfi;/yE(x’, J)=0in] xYand 2(x’,-)é3 =00ndl x .
Finally, we define

e = Y L (Dol (eni +enZ(y).x3), (5.8)

i€l ()
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and consider the set

S={EeL*(QxY: M) : Bgev(x,y) € K(y) for L] ® L}-ae. (x,y) € 2 x V}.

sym

The construction of X" from " € Kj ensures that £ € S and that ©* —
¥ weakly in L2(Q x ); M:yxn?) Since the compactness of K (y) implies that S is is convex
and weakly closed in L?(Q x V; ngxnf), we have that ¥ € S, which concludes the proof. O

Conversely, under additional star-shapedness assumptions on @, we now provide an
approximation result for elements of IC';,"m.

Lemma 5.13 Let w C R? be an open bounded set that is star-shaped with respect to one of
its points and let ¥ € ICﬁ‘”". Then, there exists a sequence %, € L>*(R* x I x Y; ngxn*?)
such that the following holds:

(@) T, € C®(R? L2(I x ; Mg’yxrg)) and %, — X strongly in L*(w x I x Y; Msyxn%),
(b) &i\{/y S,(x', ) =00n1 x Y forevery x' € R?,

(©) Tu(x’,)é3 =00ndI x Y forevery x' € R?,

(d) (Z,(x, Y)dev € K(y) for every x' € R? and L}m ® Ei-a.e. (x3,y) el x .

2x2
sym

Further, if we set oy, (x) := fy Sa(x, y)dy, and 6y, 6, € L*(w; M
first order moments of the 2 x 2 minor of o, then:

) are the zero-th and

(e) o, € C®°[R?2 x I; ngxn?) and o, — o strongly in L*(w x I; ngxn?),
) divyo, =0in w,
(g) divyediveo, = 0in w.

Proof After a translation we may assume that w is star-shaped with respect to the origin.
Thus, in particular,

w Coaw, foralla > 1. 5.9

We extend & to RZ x [ x ) by setting ¥ = 0 outside 2 x ). Let p be the standard
mollifier on R? and define the planar dilation d, (x') = (n"?x’ ) for every n € N. Owing to

(5.9), there exists a vanishing sequence €, > 0 such that for every map ¢ € C°(w; R?)
supp(pe, * ¢) CC %a) = d”_1 (w) implies supp ((,Oe,, * @) o dn_]) CCw. (5.10)
We then set
T (', x3,9) = (T ody) (-, x3, ¥) * pe, ) (). (5.11)
With a slight abuse of notation, we have

on(x', x3) = ((0 0 dy) (-, x3) * pe, ) (x),
on(x') = ((6 ody) * pe,) (x),
6n(x/) = ((6' Odn) * pe,,)(x/)~

Items (a) and (e) are immediate consequences of the above construction, while item (d)
follows from Jensen’s inequality since K (y) is convex. Next, for x’ € R?

div, Z,(x', ) = div, (T ody) * pe, =0in I x I,

which proves item (b).
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To prove item approximation of stresses (f) - regime gamma, we observe that, for every
map ¢ € C°(w; R2) there holds

(divy o, @) = —/

- o Vepdx' = _/]RZ(& ody) : (pe, * Vyo)dx'

= —/Rz«} ody) : Vii(pe, ¥ 9) dx' = —("51)? /R 5 : [V (pe, % 9) o dy ' dx'
= —<",%‘>/Rz G : Vul(pe, ¥ @) o dy ' 1dx" = ("ED)(diveG, (pe, % ¢) 0 dy ') =0,

where in last equation we used that div,»6 = 0 in w and (5.10).
Similarly for item approximation of stresses (g) - regime gamma, for every map ¢ €
C2°(w) we have

(divyedivydy, o) = /

- On - Vf,godx/ = /Rz([r ody) : (pe, * Vf,(p) dx’'

= /}RZ(& ody) : Vi(pe, ¥ @) dx’ = ("nilf/Rz& L [VZ(pe, % @) ody ' 1dx’
= /}R L6 Vil # ) 0 dy 1dx' = (divydived, (pe, ) 0dy ') =0,

where in last equation we used that div,/div,y6 = 0 in @ and (5.10). O

5.4 The principle of maximum plastic work

The aim of this subsection is to prove an inequality between two-scale dissipation and plastic
work, which in turn will be essential to prove the global stability condition of two-scale
quasistatic evolutions. The claim is given in Corollary 5.16 below.

The proof of the following proposition and consequently Theorem 5.15 relies on the
approximation argument given in Lemma 5.13 and on two-scale duality, which can be estab-
lished only for smooth stresses by disintegration and Definition 5.3, see also [23, Proposition
5.11]. The problem is that the measure n defined in Lemma 5.8 can concentrate on the points
where the stress (which is only in L?) is not well-defined. The difference with respect to [23,
Proposition 5.11] is that one can rely only on the approximation given by Lemma 5.13 which
is given for star-shaped domains. To prove it for general domains we use the localization
argument (see the proof of Step 2 of Proposition 5.14 and the proof of Theorem 5.15).

Proposition5.14 Let X € IC)}ﬁ”m and (u, E, P) € Aiﬁom (w) with the associated u € X, (®).
There exists an element A € Mb(ﬁ X V) such that for every ¢ € Cg (@)

1
(k,(p):—/ go(x’)E:dedy—i—/(p&:Elbdx/——/go8:D2w3dx’
QxYy w 12

w

—/6:((12—1@)@V(p)dx’—é/6:(V(u3—w3)®V<p)dx’

w
— i/(143 —w3)6 : Vidx
12 J, ' '
Furthermore, the mass of A is given by

~ 1
A(Qxy)z—/ E:dedy—i—/&:Eu')dx/——

/ 6 : D*w3dx’. (5.12)
QxYy w 12 w
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Proof The proof is subdivided into two steps.
Step 1. Suppose that w is star-shaped with respect to one of its points.
Let {Z,} € C®(R2; L2(I x Y; M3%3)) be the sequence given by Lemma 5.13. We set

sym

=1 @ [(Sn)aer (6. ) : Pl € My(@ x V).

where the duality [(Z,,)gev(x’, -) : Py/]is a well defined bounded measure on I x Y for n-a.e.
x" € @ and n is defined in Lemma 5.8. Further, in view of Remark 5.9, Definition 5.3 gives

1pd[(zn)dev(x/a ) Pyl
RxY

- —f Y3, 3) Bnlx, ) - [C(x’)E(x,y) - (Al(" ) A 8)} dxsdy
IxYy

_[1 y B, y) (ke (3, 9) © Vot (x3, y)) dasdy,

for every ¥ € CI(R x )), and
v ) Pell = ICEaer &' M e sy Pl < C 1P,
where the last inequality stems from item (d) in Lemma 5.13. This in turn implies that
gen. , gen.
Aol =1 @ [[(Ep)dev(x", ) : Prll =Cn @ |Pe|=C|P],

from which we conclude that {A,} is a bounded sequence.

Let now I O I be an open set which compactly contains /. Let £ be a smooth cut-off
function with & = 1 on I, and with support contained in /. Finally, consider a test function
@ (x,y) = @px)E(x3), for ¢ € C°(@). Since V,, ¢ (x, y) = 0, we have

(An, @)

/~< : y¢(x,y)d[(2n)dev(x’, OE Px’]) dn(x")

[ e men: [C(x/)E(m) - (A‘(“*O“AZ(“ 8)] d(neLlerl)
QxYy

—f~ (") Zp(x, y) : E(x, y)dxdy
QxYy

+/~¢<x’) on(x) (Al(x ) At 8) d(n®L)
Q

= —/N y(p(x’) Ta(x,y): E(x, y)dxdy + [~ o) on(x) 1 dEu(x). (5.13)
Qx Q

Since u € KL(SNZ), we infer

/;cﬂ(X’) on(x) : dEu(x) = f o(x) 6, (x") - dEu(x") — %/- @(x") 6,(x") : dD*u3(x"),
Q @ @
(5.14)
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where u € BD(®) and u3 € BH () are the Kirchhoff-Love components of u. From the
characterization given in Proposition 3.6, we can thus conclude that

/?z‘ﬂ(x’) on(x) : dEu(x) :_/~€0(x') on(x') s e(x)) dx’ +/;</J(x/) on(x')  dp(x")
- 117 ;U P(x') 6, (x') 1 é(x) dx’ + 113 . e(x') 6u(x") + dp(x)
= /Nw(x’) Gn(x) re(x'ydx" + /Nw(x/)d[c‘rn £ pIE")
- é /5 o(x") &, (x) s e(x) dx’ + é /;J p(x)d[6, 1 PI(XN),
(5.15)

where in the last equality we used that &, and &, are smooth functions. Notice that, since
p =0and p = 0 outside of w U yp, there holds

ﬁwd[énﬁ]:/ <Pd[<_7nil3]’ ﬁwd[&nﬁ]:/ (pd[&n:pl
® wUyp @ @Uyp

Since e = E = Ew — x3D?wj3 on EZ\Q, we deduce, using (5.13)-(5.15),that

1
(An,¢):—/ w(x’)E,,:dedy—i—/(p&n:édx’—l——/(p&”:édx’
Gxy & 12 J5

L 1
+/ wd[an:p]JrE/ @d[6, : p]
wUyp wUyp

1
=—f (p(x’)En:dedy—i—/(p&n:édx’—l——/go&nzédx
Qxy 12 J,

w

_ 1 JA
+/ pdlo, : p]+ E/ pd[o, : pl. (5.16)
wUyp ®Uyp

Using that div, 0, = 0 in w, by applying an integration by parts (see also [13, Proposition
7.2]) we obtain for every ¢ € C L(@)

/ god[&n:]3]—1—/(,06,,:(E—Eﬁ))dx/—i-/&n:((ﬁ—lb)@V(p) dx' =0. (5.17)
wUyp w

w

Likewise in view of the fact that div,-div,/6,, = 0 in @ and u3 = w3 on yp, by integration
by parts (see also [13, Proposition 7.6]) we find that for every ¢ € Ci(w)

/ §0d[&n3ﬁ]+/<ﬂ5ni(é+D2w3)dx/
®Uyp

+ 2/ 6t (V(uz — w3) © Vo) dx' + / (u3 — w3) 6, : Vipdx' = 0. (5.18)
w w
Let now A € /\/l;,(fi x Y) be such that (up to a subsequence)

An — A weakly* inM,, (S x V).
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By items (a) and (e) in Lemma 5.13, owing to (5.16)-(5.18) we obtain
(h @) = Tim (3, )

1
= lim [—/ (p(x’)En:dedy—l—fgo&n:Eﬁ)dx’——/(p&n:Dzw3dx’
n Qxy ® 12 J,

—/5,,:((&—@)@%) dx’—é/&,,:(V(u3—w3)OV<p)dx/

—i/(u —w3) 6, 'qu)dx’]
12 3 3)0n -

w

1
=—/ (p(x’)Z:dedy—i—/ga&:Eu')dx’——/(p&:Dzwgdx'
QxYy w 12 w

—/6:((&—&))@V¢)dx/—é/6:(V(u3—w3)OV<p)dx/

w
1
— —/(u3 —w3) 6 : Viedx'
12/,

Taking ¢ ' 1, we deduce (5.12).
Step 2. If w is not star-shaped, then since w is a bounded C? domain (in particular, with
Lipschitz boundary) by [7, Proposition 2.5.4] there exists a finite open covering {U;} of @
such that w N U; is (strongly) star-shaped with Lipschitz boundary.

Let {y; } be a smooth partition of unity subordinate to the covering {U;},i.e. ¥; € C*®(w),
with 0 < ; < 1, such that supp(y/;) C U; and ) ; ¥; = 1 on w.

For each i, let

S(x,y) ifx ewnU;,

! X, =
(. ) 0 otherwise.

Since ¥! € IC’;”’", the construction in Step 1 yields that there exist sequences {Efl} -
C®(R?; L>(I x Y; M3%3)) and

sym

M= @ (S ) : Pl € My((@ N Up) x T x V),

where again 7 is defined in Lemma 5.8 such that

Al Y weakly* inM,((w N U;) x I x )),
with

1

()\i,(p):—/ w(x’)E:dedy—l—/ w&:Eﬁ)dx'——/ ¢6 : D*wsdx'
(@MU XIxY wNU; 12 Jonu,

1
—/ 6:((12—11))®V(p)dx/—7‘/ 61 (V(uz — w3) © Vo) dx'
wNU; 6 wNU;
1

- — (uz —w3) 6 : Vedx',
12 wNU;

for every ¢ € C?(@ N U;). This allows us to define measures on QxY by letting, for every
¢ € Co(2 x ),

(ons @) 1= (M, Vi () @),

i
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and

() ==Y (M i (x) @)

i

From the above computations, A, X weakly* in Mb(§~2 x ), and A satisfies all the
required properties. O

The next theorem allows us to compare the density of the dissipation due to the limiting
two-scale plastic strain and that of the measure A.

Theorem 5.15 Let % € K" and (u, E, P) € AL (w) with the associated v € Xy, ().

Then
dP
Hly,— ) IP|>A
d|P|

where A € Mb(SNZ x Y) is given by Proposition 5.14.

Proof Let {X}}, {Al} and A’ be defined as in Step 2 of the proof of Proposition 5.14. Item
(d) in Lemma 5.13 implies that

(Z1)dev(x, y) € K(y) forevery x' € wand £}, ® L}-ae. (x3,y) € I x ).

By Proposition 5.6, we have for n-a.e. x’ € @

dPy
H (y Py |) | Pyr| > [(Z,Z)dev(x -) : Py/] as measures on I x ).

Since %(x, y) = lei:l()@, y) for |Py/]-a.e. (x3,y) € I x Y by Proposition 2.2, we can
conclude that

H( dp>|P| g%’?'H(y,d—P) |Px/|=ng§l'H( dPy )|P|
d[P| d[P] d[Py]
gen. dPy
=) vin ® H( dP |> [Pyl
: gen. .
> Yin ® [(Ehae(x', ) : Pol
l

= Zl//ix; = .
i

By passing to the limit, we have the desired inequality. O

As a direct consequence of the previous theorem and (5.12), we are now in a position to
state a principle of maximum plastic work in our setting. For (u, E, P) € A,}ﬁ”m (w) we now
define

Q'm(E) = i yQ(y,E) dxdy (5.19)

and

H'om(p) :=/ H( dp ) d|P|. (5.20)
axy d|P|
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Corollary 5.16 Let y € (0, +00). Then
Hh"’"(P)z—/ E:dedy+/&:E1I)dx’— /6:D2w3dx’,
QxY w 12 w
forevery ¥ € IC;}”’” and (u, E, P) € Ag"m(w).

5.5 Liminf inequalities under weak two-scale convergence

For (u, e, p) € Aj(w), we recall the definition of energy functionals Qp and H; given in
(3.11) and (3.12). The next result shows that Q""" and H"o™ provide lower bounds for the
asymptotic behavior of our elastic energies and dissipation potential with respect to weak
two-scale convergence of elastic and plastic stresses.

Theorem 5.17 Let y € (0, +00). Let (uh, e, ph) € Ap(w) be such that

WP 2w weakly* inBD(S3), (5.21)
2 ~

Ape = E two-scale weakly inL*(Q x Y Mg’;n?), (5.22)
2— ~

Ahph NP two-scale weakly* inMp (2 x Y; Mi:f), (5.23)

with (u, E, P) € A?,”m (w). Then,
ohom(gy < limh inf O, (Aje™) (5.24)

and

Hhom(py < lim inf 145, (A . (5.25)

Proof Letgp € C°(Q2 x ), ngxn? ). From the coercivity condition on the quadratic form Qp,
we obtain

0< lf C <x—,> <Aheh(x) —@ (x, i)) : (Aheh(x) —@ (x, x—/>> dx.
2 Q &n En En

/ 2
Since C (g;) Apel(x) = C(y)E(x, y) weakly two-scale in L2(Q x Y; M3%3), we can

sym

apply the lim inf to the above inequality and we find

1
/ COME,y) @ (x,y) dxdy — 5/
QxY

QxY

Cy)e(x,y) ¢ (x,y) dxdy < limhinf Qn(Ape).

Choosing ¢ such that ¢ — E strongly in L2(2 x V; M3X%3) yields (5.24).

sym
To prove (5.25), we can assume without loss of generality that

lim inf 745 (A P < 0. (5.26)

We write

=Y P> pl (5.27)
i i%i
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where pf’ = ph [N (Vi)e, x I) and pf; = ph |_§ N ((T;j\S)e, x 1). Up to a subse-
quence,

A p 2% ] ¥ ~ . w3x3
np; — Pi two-scale weakly™® in M, (2 x V; M),

dev

2— ~
Ahpihj - P;j two-scale weakly* inAM;, (2 x Y M3X3),

dev

Clearly,

P=ZPi+ZPij,

i i#]
with supp(P;) C Q x Y; and supp(P;;) € Q x ['jj. In view of (5.22), we infer
AREu" Q0 ((V)e, x N2t E Ig,y, £ ® L3+ P; two-scale weakly* inM,(Q x V; M.

Recalling (3.3), we can additionally assume that I';; N C € S. Then, with a normal v on I';;
that points from )); to ); for every j # i, Lemma 4.18 implies that

P2 x (T3 \ S) = aij(x, y) © v(y) 1 (5.28)

for suitable n;; € M;(fl x (I'j;\S)) and a Borel map a;; : Q x Ti\S) — R? such that
ajj L vforn;j-ae. (x,y) € Q x Tij\S).

Using a version of Reshetnyak’s lower semicontinuity theorem adapted for two-scale
convergence (see [23, Lemma 4.6]), we deduce

Ny
liminf/ H L’Lpzh d|AhP,h|
h QU en d|Appy|
dA dpP;
—llmmf/ i d|Appt| Z/N H; ( l ) d|Pi
heoJg d|Appl| GxY d|Pi
dP; dPp;
= H(-—)dPl+ | H d| P
Qxy, d| P IxT d|P;|
dP; dP;
H(, ’>d|P|+Z/ ( >d|Pi|
szxy d| Pl Bx(Mj\9) d| P

dP;
(. d\P + f —ay(x. ) O () dnyj. (5.29)
(y d|P1> Z QX(F,j\S) At ») -

I vV

I \%

QXyI

Next, we have
Anply = A [(u? ~uj)Ov (j—h)} HALQN (T3 \ S)ey, x 1)
= |:diag (1 1, ) (u — uh) Ov <8 )] H21SN ((TCij \ S)e, x 1),
h

where ulh and u?’ are the traces on § N ((T';j\S)¢, x I) of the restrictions of u' to Videy x 1

and (V;)e, x I respectively, such that uf‘ — u’; is perpendicular to v. Then, since the infimum
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in the inf-convolution definition of H on I" \ § is actually a minimum, we obtain
X dAnpl,
f (S, S0 gy ph
QUIp eén d|Anpjl
X dAnpl
=/~ g R TNy
QN(Tj\S)e, 1) én d|Anpj;
/ /
=/ H (x—, [diag (1 1, 7> (" —uh)®v< )D dH(x)
QN(Tij\S)ey, xI) En Eh
: 1 h X! 2
= H;j | diag (1,1, — (u —u; ) v dH"(x)
SN \S)e, x 1) h &
- / |:H,- (bi Ty ov (—)) + H; (—bj’” (xX)Ov (—))} dH?(x)
QN(Tij\S)ey, xI) €h en

(5.30)
for suitable Borel functions bf”ij, b?’ij QN ((Tij\S)e, x I) — R3 which are orthogonal
to v for H2-a.e. x € (T'ij\S)e;, x I and such that

iy iy 1
B ph — diag (1,1, — ) uh —u")  for HEae.x € (Ti; \ ), x 1.
i J h i J J h

From the coercivity condition of the dissipation potential H and (5.26), we conclude that

/~ [bﬁ'”’m ov (x)‘ + e (’C)H dH(x) < C,
Qﬂ((Fi_/\S)gh x1) En &n

for some constant C > 0, which implies the boundedness of b, and 5" in L'. We can now
argue as in Step 2 of the proof of [23, Theorem 5.7] or [24, Proposmon 2.3], using also (5.28),
and mfer the existence of suitable measures ¢;; € /\/l+(§2 x (T'i;\S)), and Borel functions
¢t el Q x Tij\S) — R3 which are orthogonal to v for ¢;;-a.e. (x, y) € Q x (T'ij\S), and
such that

h,ij h,ij .

PL& x T\ 8) = (<) = ¢/ (6, 1) ©@v() &3
Thus, by (5.29), we have

lim inf 45, (A, )
dP
Z/ H( ) d|P|
Qx(U;) d|P|
+ Z/; [H,— (Ci(ﬁh »o v(y)) + H; (—cj(x, A2JO) v(y))] dgij
i#j QX(F,‘]\S)
dP ) . .
= H diP|+ / H(y, ('x.y) —cd(x,y) Ov(y) dg;
‘/;‘ZX(Uiyi) ( d|P| ; ﬁx(r[j\s) ( ( ) ) t
dp dP
Zﬁ H( )dIPIJrZ/~ H( )d|P|
Qx(; Vi) d|P| oy Qx(Tij\S) d|P|
=HhOWL(P)’
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which in turn concludes the proof. O

6 Two-scale quasistatic evolutions

We recall the definition of energy functionals Q"™ and H"*™ given in (5.19) and (5.20).
The associated 7"°" -variation of a function P : [0, T] — Mp(R2 x Y, Mg:f) on [a, b] is
then defined as

n—1
Dyghom (P a, b) := sup ZHh”m (P(tiy1) — Pt)):a=t1 <th <...<tpb=b, n e N}.
i=1
In thi5 section we prescribe for every ¢t € [0, T] a boundary datum w(t) € H ! (SNZ; RH N
K L(2) and we assume the map ¢ — w(?) to be absolutely continuous over [0, T'] with
respect to the H'-norm.
We now give the notion of the limiting quasistatic elasto-plastic evolution.

Definition 6.1 A rwo-scale quasistatic evolution for the boundary datum w is a function
t > (u(0), E(t), P(1)) from [0, T]into K L(€2) x L2(2 x Vs M) x My (@ x Y M%)
which satisfies the following conditions:

(qsl)ﬁ‘”" forevery t € [0, T] we have (u(t), E(t), P(t)) € Agj‘”” (w(r)) and
QMM (E(1) < Q"™ (H) +H"" (I — P(1)),

for every (v, H,I1) € Aﬁ"m(w(t)).
(qs2)§’,"m the function ¢t — P(¢) from [0, T'] into Mb(ﬁ xV; Mi:f ) has bounded variation
and for every t € [0, T]

t
QMM (E (1)) 4 Dypgron (P; 0, 1) = Q"M (E(0)) + / / C(y)E(s) : Ew(s) dxdyds.
0 JOxY
Recalling the definition of #-quasistatic evolution for the boundary datum w(#) given in
Definition 3.7, we are in a position to formulate the main result of the paper.

Theorem 6.2 Let t — w(t) be absolutely continuous from [0, T] into H! (?2; R3N KL(?Z).
Assume (3.4) and (3.6) and that there exists a sequence of triples (ug, eg, p{)’) e An(w(0))
such that

ug A ug weakly* inBD(ﬁ), 6.1)

Ahe(})’ i> Eo two-scale strongly inL2(§ X )V, ngxn?), (6.2)
ho 2 £ P~ L 3x3

Appy — Py two-scale weakly* inMp (2 x J; My7”), (6.3)

Jor (uo, Eo, Py) € A}}ﬁ"m (w(0)). For every h > 0, let

t @), @), p" (1))

be a h-quasistatic evolution in the sense of Definition 3.7 for the boundary datum w such
that u" (0) = ug, ) = eg, and ph 0) = pg. Then, there exists a two-scale quasistatic
evolution

1= (u(r), E(1), P(1))
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for the boundary datum w such that u(0) = ug, E(0) = Eq, and P(0) = Py, and such that
(up to subsequences) for every t € [0, T]

W (1) 2 u(r) weakly* inBD(S), (6.4)
Ane (1) 2 E(t) two-scale weakly inL*(& x V; MESD), 6.5)
Ay, ph (1) 2 P(t) two-scale weakly* in/\/lb(ﬁ X V; Mgex\?). (6.6)

Proof The proof is subdivided into three steps, in the spirit of evolutionary I'-convergence.
Step 1: Compactness.

We first prove that there exists a constant C, depending only on the initial and boundary
data, such that
< C and Dy, (Axp";0,T) < C, (6.7)

sup HAheh(t)‘
1€[0,T]

L2 M)
for every h > 0. Indeed, the energy balance of the h-quasistatic evolution (gs2), and (3.6)
imply

2

Ape' (1) + Dy, (A p"; 0, 1)

e ~
L2 M)

2

< Rc || Ane(0)

T
Lz(ﬁlMsfﬁ?) /(; ”EW(S)”LZ(SN)!M%;;S) ds,

~ +2R. sup HAhe”(t)
L2@MES) ©relo.1]

where the last integral is well defined as t — Ew(¢) belongs to L0, T1; Lz(ﬁ; ngxrg)).
In view of the boundedness of A heé‘ that is implied by (6.2), property (6.7) now follows by
the Cauchy-Schwarz inequality.

From (6.7) and (3.7), we infer that

Tk

| A" ©) = Anpl = M (Anp" ) = Mapl) = Do, (Anp; 0.0 < C,

My E@EM3)

dev

for every t € [0, T, which together with (6.3) implies

sup HAh P H (6.8)

te[0,T]

Mp@MG)
Next, we note that ||-||, , @@MLS) is a continuous seminorm on BD(S~2) which is also a

> Wlsym
norm on the set of rigid motions. Then, using a variant of Poincaré-Korn’s inequality (see [43,

Chapter II, Proposition 2.4]) and the fact that W @), " (1), ph (1)) € Ap(w(t)), we conclude
that, for every 4 > O and ¢ € [0, T],

e

BD(Q) —

|«

Eu(t H -
+ H u(1) M, (M)

rJprol

LU(Q\:R3)

<C t S\O- ” " ’ o
< (”w( rr@ngrs) + e @ My @MY

LM

+ Ao

<c <||w(l‘)||L2(§;R3) + |ane )

L2(SME) ‘Mb@;Mﬁ:f)) ’

In view of the assumption on w, from (6.8) and the former inequality in (6.7) it follows that
the sequences {u" ()} are bounded in BD() uniformly with respect to ¢.
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Owing to (2.3), we obtain that D3y, and V are equivalent norms, which immediately
implies

V(ARp";0,T) < C, (6.9)

for every h > 0. Hence, by a generalized version of Helly’s selection theorem (see [11,
Lemma 7.2]) and Remarli3.10, there exists a (not relabeled) subsequence, independent of ¢,
and P € BV (0, T; Mp(2 x V; M%) such that

dev

By 2% o S L 3x3
App"(t) — P(t) two-scale weakly* inM (2 x V; M7 ~),

dev

for every t € [0, T], and V(P;0,T) < C. By extracting a further subsequence (possibly
depending on ?),

uP (1) 2 u(r) weakly* inBD(),
2 ~
Ap e (t) = E(t) two-scale weakly inL?(Q2 x V; M>3),

sym
for every t € [0, T]. From Proposition 4.1, we conclude that u(t) € K L(SNZ) for every
t € [0, T]. According to Proposition 4.14, the above subsequence can be chosen so that there
exists (1) € X, (@) for which
h 2—x% 2 ~
ApEu™(t) — Eu(t) ® ,Cy + E, u().

Since, Ay, Eul (1) = Ay, e (1) + Ap, p" () in Q forevery h > Oand 1 € [0, T], we deduce
that (u(t), E(t), P(1)) € AL (w(t)).
Consider now for every ¢ € [0, T'] the maps

o(1) = C (g) An el (1)
For a (not relabeled) subsequence, we have

h 2 205 3x3
o (t) = X(t) two-scale weakly inL=(2 x V; M3/ ~), (6.10)

Sym

where 2 (¢) := C(y)E(t). Since oli(t) e Kp, for every t € [0, T'], by Proposition 5.12 we
obtain that X (¢) € ICJ}j‘”” forevery t € [0, T].
Step 2: Global stability.

Since from Step 1 we have (u(¢), E(t), P(t)) € A]}j"’" (w(t)) with the associated w(t) €
X, (@), then for every (v, H, II) € Ai’,"m (w(r)) with the associated v € X, (@) we have

(v —u(t), H—E@),T1— P(t)) € A" (0).

From the inclusion C(y)E(t) € Kﬁ”m, by Corollary 5.16 we infer

HOm (T~ P(1) > — / | COE® : (1~ E@) dxdy

= Q"™(E®) + Q""" (H — E(1)) — Q"™ (H).
Thus,
H'OM (T — P (1)) + Q""™(H) > Q"™ (E(1)) + Q""" (H — E(1)) > Q""" (E(1)),

hence we deduce (gs l)ﬁom.
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Now we can prove that limit functions u(¢) and E(¢) do not depend on the subsequence.
Assume that (v(t), H(t), P(t)) € A?”m (w(r)) with the associated v(¢) € X, (@) also satisfy
the global stability condition in the definition of the two-scale quasistatic evolution. By the
strict convexity of Qhom e find

H(t) = E(1).
Then, by (5.2),
Ev(t) ® L3+ Eyv(t) = Ht) L3 ® L3+ P(1)
=E@) L} ® L + P(1)

= Eu(t) ® L3 + Eypu(t).

Identifying Fu(t) and Ev(t) with elements of Mb(ﬁ; Mfyxn%) and integrating over ), we
obtain

Ev(t) = Eu(t).

Using the variant of Poincaré-Korn inequality in Step 1, we infer that v(t) = u(¢) on Q.
This implies that the whole sequences converges without need to extract further ¢-
dependent subsequences, i.e.

W (1) 2 u(r) weakly* inBD(),

2 ~
Ape' (1) = E(r) two-scale weakly inL?($2 x J; M2X3).

sym

Step 3: Energy balance.
In order to prove (qs2)i‘,”’", itis enough (by arguing as in, e.g. [11, Theorem 4.7] and [24,
Theorem 2.7]) to prove the energy inequality

Q"™ (E(1)) + Dagon (P; 0, 1)

i f 6.11)
< Q"™M(E(0)) +/ / C(y)E(s) : Ew(s)dxdyds.
0 Jaxy

For a fixed ¢t € [0, T'], consider a subdivision 0 = t; <t < ... < t, =t of [0,¢]. In
view of the lower semicontinuity of Qhom and Hhom (see (5.24) and (5.25)), from (gs2); we
have

QMM(E() + Y H'™ (P(tiy1) — P(1))

i=1

< lim inf (Qh(Aheh ) + ; Hi (Mnp" i) = Anp” (m))

< liminf (Q4(Ane” (1) + Dy, (Anp":0,1))

t
— liminf (Qh(Aheh(O))+/ /(C(L’) Aheh(s):Eu')(s)dxds>.
h 0o Jo \
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By the strong convergence assumed in (6.2) and (6.10), owing to the Lebesgue’s dominated
convergence theorem we obtain

t
lim (Qh(Aheh(O))—i—f / C(X—’) Ape'(s) : Ezi;(s)dxds)
h—0 0 Jo Eh

t
_ Qhom(E(O)) _|_/ / C(y)ARE(s) : Ew(s)dxdyds.
0 Jaxy

Hence, we have

QMMEW) + Y H™ (Pti1) — P(1)
i=1

t
< Q"™M(E(0)) + / / C()AKE(s) : Eu(s)dxdyds
0 JOQxY
Taking the supremum over all partitions of [0, ¢] yields (6.11), which concludes the proof. O

Remark 6.3 We point out that as a Corollary of Theorem 6.2 and of the fact that the limiting
model satisfies an energy equality, we find that strong two-scale convergence in the L>-
topology of the scaled initial elastic strains and weak two-scale convergence in measure of
the scaled initial plastic strains are enough to guarantee the strong two-scale convergence of
the rescaled elastic strains in the L2-topology to the effective one, as well as the convergence
of rescaled dissipations to the limiting one.
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