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Abstract
Using the ABP-method as in a recent work by Brendle (Commun Pure Appl Math 76:2192–
2218, 2022), we establish some sharp Sobolev and isoperimetric inequalities for compact
domains and submanifolds in a complete Riemannian manifold with asymptotically nonneg-
ative Ricci/sectional curvature. These inequalities generalize those given by Brendle in the
case of complete Riemannian manifolds with nonnegative curvature.

Mathematics Subject Classification 35R45 · 53C21

1 Introduction

It is known that Sobolev inequalities, as an important analytic tool in geometric analysis, have
close connections with isoperimetric inequalities. The classical isoperimetric inequality for
a bounded domain D in R

n says that

nn |Bn ||D|n−1 ≤ |∂D|n
where Bn denotes the unit ball in R

n , and the equality holds if and only if D is a ball. There
have been numerous works generalizing this inequality to different settings (cf. [14, 15, 33]).
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The isoperimetric inequalities on minimal surfaces or minimal submanifolds have a long
history. For example, [13, 14, 22, 29, 35–37] investigated the isoperimetric inequality onmin-
imal surfaces under various conditions, while the famous Michael-Simon Sobolev inequality
for general dimensions [5, 32] implies an isoperimetric inequality for minimal submanifolds,
but with a non-sharp constant. It is conjectured that any n-dimensional minimal submanifold
� ofR

N satisfies the classical isoperimetric inequality: nn |Bn ||�|n−1 ≤ |∂�|n with equality
holds if and only if � is a ball in an n-plane of R

N . Recently, S. Brendle [9], inspired by
the ABP method as in [11] and [38], established a Michael-Simon-Sobolev type inequality
on submanifolds of arbitrary dimension and codimension, which is sharp if the codimension
is at most 2. In particular, his result implies a sharp isoperimetric inequality for minimal
submanifolds in Euclidean space of codimension at most 2. Later, Brendle [10] also gener-
alized his results in [9] to the case that the ambient space is a Riemannian manifold with
nonnegative curvature. In [23], F. Johne gave a sharp Sobolev inequality for manifolds with
nonnegative Bakry-Émery Ricci curvature, which generalizes Brendle’s results in [10]. In
[7], Balogh and Krisály proved a sharp isoperimetric inequality in metric measure spaces
satisfying CD(0, N ) condition which implies the sharp isoperimetric inequalities in [10] and
[23].Moreover, they also obtained a sharp L p-Sobolev inequality for p ∈ (1, n) onmanifolds
with nonnegative Ricci curvature and Euclidean volume growth. In a recent preprint [6], the
authors also investigated sharp and rigid isoperimetric comparison theorems in RCD(K , N )

metric measure spaces.
In this paper, we generalize Brendle’s results in [10] to the case that the ambient space has

asymptotically nonnegative curvature. The notion of asymptotically nonnegative curvature
was first introduced by U. Abresch [1]. Some important geometric, topological and analysis
problems have been investigated for this kind of manifolds (cf. [2, 3, 8, 21, 24, 25, 30, 31,
40, 41], etc). Now we recall its definition as follows. Let λ : [0,+∞) → [0,+∞) be a
nonnegative and nonincreasing continuous function satisfying

b0 :=
∫ +∞

0
sλ(s)ds < +∞, (1.1)

which implies

b1 :=
∫ +∞

0
λ(s)ds < +∞. (1.2)

A complete noncompact Riemannian manifold (M, g) of dimension n is said to have asymp-
totically nonnegative Ricci curvature (resp. sectional curvature) if there is a base point o ∈ M
such that

Ricq(·, ·) ≥ −(n − 1)λ(d(o, q))g (resp. Secq ≥ −λ(d(o, q))), (1.3)

where d(o, q) is the distance function of M relative to o. Clearly, this notion includes the
manifolds whose Ricci (resp. sectional) curvature is either nonnegative outside a compact set
or asymptotically flat at infinity. In particular, if λ ≡ 0 in (1.3), then this becomes the case
treated in [10].

Let h(t) be the unique solution of

{
h′′(t) = λ(t)h(t),

h(0) = 0, h′(0) = 1.
(1.4)
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By ODE theory, the solution h(t) of (1.4) exists for all t ∈ [0,+∞). According to [41] (see
also Theorem 2.14 in [34]), the function

|{q ∈ M : d(o, q) < r}|
n|Bn | ∫ r

0 hn−1(t)dt

is a non-increasing function on [0,+∞) and thus we may introduce the asymptotic volume
ratio of M by

θ := lim
r→+∞

|{q ∈ M : d(o, q) < r}|
n|Bn | ∫ r

0 hn−1(t)dt
, (1.5)

with θ ≤ 1. In particular, we have |{q ∈ M : d(o, q) < r}| ≤ |Bn |e(n−1)b0rn .
First, by combining the method in [10] with some comparison theorems, we establish a

Sobolev type inequality for a compact domain in a Riemannian manifold with asymptotically
nonnegative Ricci curvature as follows.

Theorem 1.1 Let M be a complete noncompact n-dimensional manifold of asymptotically
nonnegative Ricci curvature with respect to a base point o ∈ M. Let � be a compact domain
in M with boundary ∂�, and let f be a positive smooth function on �. Then

∫
∂�

f +
∫

�

|Df | + 2(n − 1)b1

∫
�

f ≥ n|Bn | 1n θ
1
n

( 1 + b0
e2r0b1+b0

) n−1
n

( ∫
�

f
n

n−1

) n−1
n

,

where r0 = max{d(o, x)|x ∈ �}, θ is the asymptotic volume ratio of M given by (1.5) and
b0, b1 are defined in (1.1) and (1.2).

The following result characterizes the case of equality in Theorem 1.1:

Theorem 1.2 Let M be a complete noncompact n-dimensional manifold of asymptotically
nonnegative Ricci curvature with respect to a base point o ∈ M. Let � be a compact domain
in M with boundary ∂�, and let f be a positive smooth function on �. If

∫
∂�

f +
∫

�

|Df | + 2(n − 1)b1

∫
�

f = n|Bn | 1n θ
1
n

( 1 + b0
e2r0b1+b0

) n−1
n

( ∫
�

f
n

n−1

) n−1
n

,

where r0 = max{d(o, x)|x ∈ �}, θ is the asymptotic volume ratio of M given by (1.5) and
b0, b1 are defined in (1.1) and (1.2). Then b0 = b1 = 0, M is isometric to Euclidean space,
� is a ball, and f is constant.

Taking f = 1 in Theorem 1.1, we obtain a sharp isoperimetric inequality:

Corollary 1.3 Let M,�, r0, θ, b0, b1 be as in Theorem 1.1. Then

|∂�| ≥
(
n|Bn | 1n θ

1
n

( 1 + b0
e2r0b1+b0

) n−1
n − 2(n − 1)b1|�| 1n

)
|�| n−1

n .

Furthermore, the equality holds if and only if M is isometric to Euclidean space and � is a
ball.

Remark 1.4 If M has nonnegative Ricci curvature, then b0 = b1 = 0 and Corollary 1.3
becomes

|∂�| ≥ n|Bn | 1n θ
1
n ,

which was first given by V. Agostiniani, M. Fogagnolo, and L. Mazziari [4] in dimension
3 and obtained by S. Brendle [10] for any dimension, see also [18] for related results in
3 ≤ n ≤ 7.
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Similarly, we may establish a Sobolev type inequality for a compact submanifold (pos-
sibly with boundary) in a Riemannian manifold with asymptotically nonnegative sectional
curvature as follows.

Theorem 1.5 Let M be a complete noncompact (n + p)-dimensional manifold of asymp-
totically nonnegative sectional curvature with respect to a base point o ∈ M. Let � be
a compact n-dimensional submanifold of M (possibly with boundary ∂�), and let f be a
positive smooth function on �. If p ≥ 2, then∫

∂�

f +
∫

�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f

≥ n
( (n + p)|Bn+p|

p|B p|
) 1

n
θ

1
n

( 1 + b0
e2r0b1+b0

) n+p−1
n

( ∫
�

f
n

n−1

) n−1
n

,

where r0 = max{d(o, x)|x ∈ �}, H is the mean curvature vector of �, θ is the asymptotic
volume ratio of M given by (1.5) and b0, b1 are defined in (1.1) and (1.2).

Note that (n + 2)|Bn+2| = 2|B2||Bn |. Hence, we obtain the following Sobolev type
inequality for codimension 2:

Corollary 1.6 Let M be a complete noncompact (n + 2)-dimensional manifold of asymp-
totically nonnegative sectional curvature with respect to a base point o ∈ M. Let � be
a compact n-dimensional submanifold of M (possibly with boundary ∂�), and let f be a
positive smooth function on �. Then∫

∂�

f +
∫

�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f

≥ n|Bn | 1n θ
1
n

( 1 + b0
e2r0b1+b0

) n+1
n

( ∫
�

f
n

n−1

) n−1
n

,

where r0 = max{d(o, x)|x ∈ �}, H is the mean curvature vector of �, θ is the asymptotic
volume ratio of M given by (1.5) and b0, b1 are defined in (1.1) and (1.2).

The following result characterizes the case of equality in Corollary 1.6:

Theorem 1.7 Let M, �, f , r0, H , θ, b0, b1 as in Corollary 1.6. If∫
∂�

f +
∫

�

√
|Df |2 + f 2|H |2 + 2nb1

∫
�

f

= n|Bn | 1n θ
1
n

( 1 + b0
e2r0b1+b0

) n+1
n

( ∫
�

f
n

n−1

) n−1
n

.

Then b0 = b1 = 0 and M is isometric to Euclidean space, � is a flat ball, and f is constant.

Letting f = 1 in Corollary 1.6, we obtain a sharp isoperimetric inequality for minimal
submanifolds of codimension 2 as follows.

Corollary 1.8 Let M be a complete noncompact (n + 2)-dimensional manifold of asymptoti-
cally nonnegative sectional curvature with respect to a base point o ∈ M. Let� be a compact
n-dimensional mininal submanifold of M (possibly with boundary ∂�). Then

|∂�| ≥ n
(
|Bn | 1n θ

1
n
( 1 + b0
e2r0b1+b0

) n+1
n − 2b1|�| 1n

)
|�| n−1

n ,

where r0 = max{d(o, x)|x ∈ �}, θ is the asymptotic volume ratio of M given by (1.5) and
b0, b1 are defined in (1.1) and (1.2). Furthermore, the equality holds if and only if M is
isometric to Euclidean space and � is a flat ball.
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It is obvious that the above inequalities are nontrivial only when θ > 0. We say that
a complete Riemannian manifold with asymptotically nonnegative (Ricci) curvature has
maximal volume growth if θ > 0. Examples of such manifolds may be found in [1, 12, 19,
26, 27], and the first case of Theorem 1.2 in [39], etc.

2 The case of domains

Let (M, g) be a complete noncompact n-dimensionalRiemannianmanifold of asymptotically
nonnegative Ricci curvature with respect to a base point o ∈ M . Let � be a compact domain
in M with smooth boundary ∂� and f be a smooth positive function on �. Without loss of
generality, we assume hereafter that � is connected.

By scaling, we may assume that∫
∂�

f +
∫

�

|Df | +
∫

�

2(n − 1)b1 f = n
∫

�

f
n

n−1 . (2.1)

Due to (2.1) and the connectedness of �, we can find a solution of the following Neumann
boundary problem{

div( f Du) = n f
n

n−1 − 2(n − 1)b1 f − |Df |, in �,

〈Du, ν〉 = 1, on ∂�,
(2.2)

where ν is the outward unit normal vector field along ∂�. By standard elliptic regularity
theory (see Theorem 6.31 in [20]), we know that u ∈ C2,γ for each 0 < γ < 1.

As in [10], we set

U := {x ∈ � \ ∂� : |Du(x)| < 1}.
For any r > 0, let

Ar = {x̄ ∈ U : ru(x) + 1

2
d(x, expx̄ (r Du(x̄)))2 ≥ ru(x̄) + 1

2
r2|Du(x̄)|2, ∀x ∈ �}.

Define a transport map 	r : � → M for each r > 0 by

	r (x) = expx (r Du(x)), ∀x ∈ �.

Since exp : T M → M is smooth on any complete Riemannian manifold (see Proposition
5.7 in [28]), we known that the map 	r is of class C1,γ , 0 < γ < 1.

Lemma 2.1 Assume that x ∈ U. Then we have

1

n

u ≤ f

1
n−1 − 2

(n − 1

n

)
b1.

Proof Using the Cauchy-Schwarz inequality and the property that |Du| < 1 for x ∈ U , we
get

−〈Df , Du〉 ≤ |Df |.
In terms of (2.2), we derive that

f 
u = n f
n

n−1 − 2(n − 1)b1 f − |Df | − 〈Df , Du〉
≤ n f

n
n−1 − 2(n − 1)b1 f .

This proves the assertion. �
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The proofs of the following three lemmas are identical to those for Lemmas 2.2−2.4 in
[10] without any change for the case of asymptotically nonnegative Ricci curvature. So we
omit them here.

Lemma 2.2 The set

{q ∈ M : d(x, q) < r , ∀x ∈ �}
is contained in 	r (Ar ).

Lemma 2.3 Assume that x̄ ∈ Ar , and let γ̄ (t) := expx̄ (t Du(x̄)) for all t ∈ [0, r ]. If Z is a
smooth vector field along γ̄ satisfying Z(r) = 0, then

(D2u)(Z(0), Z(0)) +
∫ r

0

(|Dt Z(t)|2 − R(γ̄ ′(t), Z(t), γ̄ ′(t), Z(t))
)
dt ≥ 0.

Lemma 2.4 Assume that x̄ ∈ Ar , and let γ̄ (t) := expx̄ (t Du(x̄)) for all t ∈ [0, r ]. Moreover,
let {e1, . . . , en} be an orthonormal basis of Tx̄ M. Suppose that W is a Jacobi field along γ̄

satisfying

〈DtW (0), e j 〉 = (D2u)(W (0), e j ), 1 ≤ j ≤ n.

If W (τ ) = 0 for some τ ∈ (0, r), then W vanishes identically.

Now,we give two comparison results for later use. The proofs of the following two lemmas
are inspired by the proofs of Lemma 2.1 and Corollary 2.2 in [34].

Lemma 2.5 Let G be a continuous function on [0,+∞) and let φ,ψ ∈ C2([0,+∞)) be
solutions of the following problems

{
φ′′ ≤ Gφ, t ∈ (0,+∞),

φ(0) = 1, φ′(0) = b,

{
ψ ′′ ≥ Gψ, t ∈ (0,+∞),

ψ(0) = 1, ψ ′(0) = b̃,

where b, b̃ are constants and b̃ ≥ b. If φ(t) > 0 for t ∈ (0, T ), then ψ(t) > 0 in (0, T ) and

φ′

φ
≤ ψ ′

ψ
and ψ ≥ φ on (0, T ).

Proof Set β = sup{t : ψ(t) > 0 in (0, t)} and τ = min{β, T }, so that φ and ψ are both
positive in (0, τ ). The function ψ ′φ − ψφ′ is continuous on [0,+∞), nonnegative at t = 0,
and satisfies

(ψ ′φ − ψφ′)′ = ψ ′′φ − ψφ′′ ≥ G(t)ψφ − G(t)ψφ = 0,

in (0, τ ). Thus ψ ′φ − ψφ′ ≥ 0 on [0, τ ), which implies

ψ ′

ψ
≥ φ′

φ
in [0, τ ). (2.3)

Integrating (2.3) between 0 and t (0 < t < τ) yields

φ(t) ≤ ψ(t), in [0, τ ).

Since φ > 0 in [0, τ ) by assumption, this forces τ = T . �
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Lemma 2.6 Let G be a nonnegative continuous function on [0,+∞) satisfying∫ +∞
0 G dt < +∞. Let h1, h2 ∈ C2([0,+∞)) be solutions of the following problems

{
h′′
1 = Gh1, t ∈ (0,+∞),

h1(0) = 0, h′
1(0) = 1,

{
h′′
2 = Gh2, t ∈ (0,+∞),

h2(0) = 1, h′
2(0) = 0.

(2.4)

Then we have

lim
t→∞

h2
h1

= lim
t→∞

h′
2

h′
1

≤
∫ +∞

0
G dt < ∞.

Proof From (2.4), we derive

(h2h
′
1 − h1h

′
2)

′(t) ≡ 0,

and thus

(h2h
′
1 − h1h

′
2)(t) ≡ 1 (2.5)

in view of the initial values for h1 and h2. By derivation, one can find

(h2
h1

)′ = h′
2h1 − h′

1h2
h21

= −1

h21
< 0,

which implies that limt→+∞ h2(t)
h1(t)

exists. It is easy to show that

0 ≤
(h′

2

h′
1

)′ = G(h2h′
1 − h1h′

2)

(h′
1)

2 ≤ G

(1 + ∫ t
0 sG(s)ds)2

≤ G,

so we get

h′
2(t)

h′
1(t)

≤
∫ +∞

0
G dt .

ByLemma2.13 in [34],wehave h1(t) ≥ t . Consequently, using (2.5) and h′
1 = 1+∫ t

0 Gh1ds,
we obtain

h2
h1

= h′
2

h′
1

+ 1

h1h′
1

≤
∫ +∞

0
G dt + 1

t
, t ∈ (0,∞). (2.6)

Letting t → ∞, we have

lim
t→∞

h2
h1

= lim
t→∞

h′
2

h′
1

≤
∫ +∞

0
G dt .

�

The next result is useful to study the growth of various balls onM when their radii approach

to infinity.

Lemma 2.7 Let h be the solution of (1.4). Then

lim
t→+∞

h(t − C)

h(t)
= 1 and lim

t→+∞
h(tC)

h(t)
= C,

where C is any positive constant.
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Proof From Lemma 2.13 in [34], we know t ≤ h(t) ≤ eb0 t , and thus

h′(t) = 1 +
∫ t

0
λh dt ≤ 1 + b0e

b0 . (2.7)

Clearly (2.7) means that h′ is nondecreasing and bounded from above. Consequently we
have

lim
t→+∞

h(t − C)

h(t)
= lim

t→+∞
h′(t − C)

h′(t)
= 1

and

lim
t→+∞

h(tC)

h(t)
= lim

t→+∞
Ch′(tC)

h′(t)
= C .

�


We are now turning to the proof of Theorem 1.1.

Proof of Theorem 1.1 For any r > 0 and x̄ ∈ Ar , let {e1, . . . , en} be an orthonormal basis of
the tangent space Tx̄ M . Choosing the geodesic normal coordinates (x1, . . . , xn) around x̄ ,
such that ∂

∂xi
= ei at x̄ . Let γ̄ (t) := expx̄ (t Du(x̄)) for all t ∈ [0, r ]. For 1 ≤ i ≤ n, let Ei (t)

be the parallel transport of ei along γ̄ . For 1 ≤ i ≤ n, let Xi (t) be the Jacobi field along γ̄

with the initial conditions of Xi (0) = ei and

〈Dt Xi (0), e j 〉 = (D2u)(ei , e j ), 1 ≤ j ≤ n.

Let P(t) = (Pi j (t)) be a matrix defined by

Pi j (t) = 〈Xi (t), E j (t)〉, 1 ≤ i, j ≤ n.

From Lemma 2.4, we known det P(t) > 0,∀t ∈ [0, r). Obviously, | det D	t (x̄)| =
det P(t) > 0 for t ∈ [0, r). Let S(t) = (Si j (t)) be a matrix defined by

Si j (t) = R(γ̄ ′(t), Ei (t), γ̄
′(t), E j (t)), 1 ≤ i, j ≤ n,

where R denotes the Riemannian curvature tensor of M . By the Jacobi equation, one can
obtain {

P ′′(t) = −P(t)S(t), t ∈ [0, r ],
Pi j (0) = δi j , P

′
i j (0) = (D2u)(ei , e j ).

(2.8)

Let Q(t) = P(t)−1P ′(t), t ∈ (0, r). Using (2.8), a simple computation yields

d

dt
Q(t) = −S(t) − Q2(t),

where Q(t) is symmetric. The assumption of asymptotically nonnegative Ricci curvature
gives

d

dt
[trQ(t)] + 1

n
[trQ(t)]2 ≤ d

dt
[trQ(t)] + tr[Q2(t)]

= −trS(t)

≤ (n − 1)|Du(x̄)|2λ(d(o, γ̄ (t))),

(2.9)
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where o is the base point. Using triangle inequality and the definition of Ar , it is easy to see
that

d(o, γ̄ (t)) ≥ ∣∣d(o, x̄) − d(x̄, γ̄ (t))
∣∣ = ∣∣d(o, x̄) − t |Du(x̄)|∣∣. (2.10)

Set

g = 1

n
trQ,

�x̄ (t) = (n − 1)

n
|Du(x̄)|2λ(

∣∣d(o, x̄) − t |Du(x̄)|∣∣).
Noting that λ is nonincreasing, it follows from (2.8), (2.9), (2.10) that⎧⎨

⎩
g′(t) + g(t)2 ≤ �x̄ (t), t ∈ (0, r),

g(0) = 1

n

u(x̄).

If we take φ = e
∫ t
0 g(τ )dτ , then φ satisfies⎧⎨

⎩
φ′′ ≤ �x̄ (t)φ, t ∈ (0, r),

φ(0) = 1, φ′(0) = 1

n

u(x̄).

(2.11)

Next, we denote by ψ1, ψ2 the solutions of the following problems{
ψ ′′
1 = �x̄ (t)ψ1, t ∈ (0, r),

ψ1(0) = 0, ψ ′
1(0) = 1,

{
ψ ′′
2 = �x̄ (t)ψ2, t ∈ (0, r),

ψ2(0) = 1, ψ ′
2(0) = 0.

(2.12)

Similar to the proof of (2.6), it is easy to verify that

ψ2

ψ1
(r) ≤

∫ +∞

0
�x̄ (t) dt + 1

r
≤ 2

(n − 1

n

)
b1|Du(x̄)| + 1

r
.

Since |Du(x̄)| < 1, we obtain

ψ2

ψ1
(r) ≤ 2

(n − 1

n

)
b1 + 1

r
. (2.13)

Using Lemma 2.13 in [34] and (2.12), we deduce that

ψ1(t) ≤
∫ t

0
e
∫ s
0 τ�x̄ (τ )dτds

≤ te
∫ ∞
0 τ�x̄ (τ )dτ

= te
n−1
n

∫ ∞
0 wλ(|d(o,x̄)−w|)dw

≤ te
n−1
n (2r0b1+b0),

(2.14)

where r0 = max{d(o, x)|x ∈ �}.
Let ψ(t) = ψ2(t) + 1

n
u(x̄)ψ1(t). Using Lemma 2.5, one can get

1

n
trQ(t) = φ′

φ
≤ ψ ′

ψ
, ∀t ∈ (0, r).

Thus,

d

dt
log det P(t) = trQ(t) ≤ n

ψ ′

ψ
. (2.15)
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110 Page 10 of 18 Y. Dong et al.

Consequently, (2.15) implies

| det D	t (x̄)| = det P(t) ≤ ψn(t) = (ψ2(t) + 1

n

u(x̄)ψ1(t))

n

for all t ∈ [0, r ]. This gives

| det D	r (x̄)| ≤
(ψ2(r)

ψ1(r)
+ 1

n

u(x̄)

)n
ψn
1 (r)

for any x̄ ∈ Ar . Note that 0 ≤ φ ≤ ψ . Using (2.13), (2.14) and Lemma 2.1, we derive that

| det D	r (x̄)| ≤ e(n−1)(2r0b1+b0)
(
2
(n − 1

n

)
b1 + 1

r
+ 1

n

u(x̄)

)n
rn

≤ e(n−1)(2r0b1+b0)
(1
r

+ f
1

n−1 (x̄)
)n
rn

(2.16)

for any x̄ ∈ Ar . Moreover, by (1.4), we obtain h(t) ≥ t and

lim
t→∞ h′(t) = 1 +

∫ ∞

0
h(s)λ(s) ds ≥ 1 +

∫ ∞

0
sλ(s) ds = 1 + b0. (2.17)

Combining Lemma 2.2, (2.16) with the formula for change of variables in multiple integrals,
we find that

|{q ∈ M : d(x, q) < r for all x ∈ �}|
≤

∫
Ar

| det D	r |

≤
∫

�

e(n−1)(2r0b1+b0)(
1

r
+ f

1
n−1 )nrn .

(2.18)

For r > r0, the triangle inequality implies that

Br−r0(o) ⊂ {q ∈ M : d(x, q) < r for all x ∈ �} ⊂ Br+r0(o). (2.19)

From (1.5), (2.19) and Lemma 2.7, it is easy to show that

|Bn |θ = lim
r→+∞

Br−r0(o)

n
∫ r−r0
0 h(t)n−1dt

∫ r−r0
0 h(t)n−1dt∫ r
0 h(t)n−1dt

≤ lim
r→+∞

|{q ∈ M : d(x, q) < r for all x ∈ �}|
n

∫ r
0 h(t)n−1dt

≤ lim
r→+∞

Br+r0(o)

n
∫ r+r0
0 h(t)n−1dt

∫ r+r0
0 h(t)n−1dt∫ r
0 h(t)n−1dt

=|Bn |θ.

(2.20)

Dividing (2.18) by n
∫ r
0 h(t)n−1dt and sending r → ∞, it follows from (2.17) and (2.20)

that

|Bn |θ ≤ e(n−1)(2r0b1+b0)
∫

�

f
n

n−1 lim
r→∞

rn

n
∫ r
0 h(t)n−1dt

= e(n−1)(2r0b1+b0)
∫

�

f
n

n−1 lim
r→∞

1

h′(t)n−1

≤
(e2r0b1+b0

1 + b0

)n−1
∫

�

f
n

n−1 .
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Hence we obtain∫
∂�

f +
∫

�

|Df | + 2(n − 1)b1

∫
�

f ≥ n|Bn | 1n θ
1
n

( 1 + b0
e2r0b1+b0

) n−1
n

( ∫
�

f
n

n−1

) n−1
n

.

�

Proof of Theorem 1.2 Suppose the equality of Theorem 1.1 holds. Then we have equalities in
(2.13) and (2.17) which force λ ≡ 0. Thus M has nonnegative Ricci curvature. The assertion
follows immediately from Theorem 1.2 in [10]. �


3 The case of submanifolds

In this section, we assume that the ambient space M is a complete noncompact (n + p)-
dimensional Riemannian manifold of asymptotically nonnegative sectional curvature with
respect to a base point o ∈ M . Let� ⊂ M be a compact submanifold of dimension n with or
without boundary, and f be a positive smooth function on �. Let D̄ denote the Levi-Civita
connection of M and let D� denote the induced connection on �. The second fundamental
form B of � is given by

〈B(X , Y ), V 〉 = 〈D̄XY , V 〉,
where X , Y are the tangent vector fields on �, V is a normal vector field along �. The mean
curvature vector of � is defined by H = trB.

We only need to treat the case that � is connected. By scaling, we can assume that∫
∂�

f +
∫

�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f = n
∫

�

f
n

n−1 . (3.1)

By the connectedness of � and (3.1), there exists a solution of the following Neumann
boundary problem⎧⎨

⎩
div�( f D�u) = n f

n
n−1 − 2nb1 f −

√
|D� f |2 + f 2|H |2, in �,

〈D�u, ν〉 = 1, on ∂�,

(3.2)

where ν is the outward unit normal vector field of ∂� with respect to�. Note that if ∂� = ∅,
then the boundary condition in (3.2) is void. By standard elliptic regularity theory (see
Theorem 6.31 in [20]), we know that u ∈ C2,γ for each 0 < γ < 1.

As in [10], we define

U : = {x ∈ � \ ∂� : |D�u(x)| < 1},
E : = {(x, y) : x ∈ U , y ∈ T⊥

x �, |D�u(x)|2 + |y|2 < 1}.
For each r > 0, we denote by Ar the set of all points (x̄, ȳ) ∈ E satisfying

ru(x) + 1

2
d(x, expx̄ (r D

�u(x̄)) + r ȳ)2 ≥ ru(x̄) + 1

2
r2(|D�u(x̄)|2 + |ȳ|2)

for all x ∈ �. Define the transport map 	r : T⊥� → M for each r > 0 by

	r (x, y) = expx (r D
�u(x) + ry)

for all x ∈ � and y ∈ T⊥
x �. The regularity of u implies that 	r is of class C1,γ , 0 < γ < 1.
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Lemma 3.1 Assume that (x, y) ∈ E. Then we have

1

n
(
�u(x) − 〈H(x), y〉) ≤ f

1
n−1 (x) − 2b1.

Proof Combining |D�u(x)|2 + |y|2 < 1 with Cauchy-Schwarz inequality, we obtain

− 〈D� f (x), D�u(x)〉 − f (x)〈H(x), y〉
≤

√
|D� f (x)|2 + f (x)2|H(x)|2

√
|D�u(x)|2 + |y|2

≤
√

|D� f (x)|2 + f (x)2|H(x)|2.
(3.3)

In terms of (3.2) and (3.3), one derives that

f (x)
�u(x) − f (x)〈H(x), y〉
= n f (x)

n
n−1 − 2nb1 f −

√
|D� f (x)|2 + f (x)2|H(x)|2

− 〈D� f (x), D�u(x)〉 − f (x)〈H(x), y〉
≤ n f (x)

n
n−1 − 2nb1 f .

The proof is completed. �

The following three lemmas are due to Brendle (Lemmas 4.2, 4.3, 4.5 in [10]). Their

proofs are independent of the curvature condition of ambient space too.

Lemma 3.2 For each 0 ≤ σ < 1, the set

{q ∈ M : σr < d(x, q) < r , ∀x ∈ �}
is contained in the set

	r ({(x, y) ∈ Ar : |D�u(x)|2 + |y|2 > σ 2}).
Lemma 3.3 Assume that (x̄, ȳ) ∈ Ar , and let γ̄ (t) := expx̄ (t D

�u(x̄)+ t ȳ) for all t ∈ [0, r ].
If Z is a smooth vector field along γ̄ satisfying Z(0) ∈ Tx̄� and Z(r) = 0, then

((D�)2u)(Z(0), Z(0)) − 〈B(Z(0), Z(0)), ȳ〉
+

∫ r

0

(|D̄t Z(t)|2 − R̄(γ̄ ′(t), Z(t), γ̄ ′(t), Z(t))
)
dt ≥ 0.

Lemma 3.4 Assume that (x̄, ȳ) ∈ Ar , and let γ̄ (t) := expx̄ (t D
�u(x̄)+ t ȳ) for all t ∈ [0, r ].

Let {e1, . . . , en} be an orthonormal basis of Tx̄�. Suppose that W is a Jacobi field along γ̄

satisfying W (0) ∈ Tx̄� and 〈D̄tW (0), e j 〉 = ((D�)2u)(W (0), e j ) − 〈B(W (0), e j ), ȳ〉 for
each 1 ≤ j ≤ n. If W (τ ) = 0 for some τ ∈ (0, r), then W vanishes identically.

Now we begin the proof of Theorem 1.5.

Proof of Theorem 1.4 For any r > 0 and (x̄, ȳ) ∈ Ar , let {ei }1≤i≤n be any given orthonormal
basis in Tx̄�. Choose a normal coordinate system (x1, · · · , xn) on � around x̄ such that
∂

∂xi
= ei at x̄ (1 ≤ i ≤ n). Let {eα}n+1≤α≤n+p be an orthonormal frame field of T⊥�

around x̄ such that
(
(D�)⊥eα

)
x̄ = 0 for n + 1 ≤ α ≤ n + p, where (D�)⊥ denotes the

normal connection in the normal bundle T⊥� of �. Any normal vector y around x̄ can
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be written as y = ∑n+p
α=n+1 y

αeα , and thus (x1, · · · , xn, yn+1, · · · , yn+p) becomes a local
coordinate system on the total space of the normal bundle T⊥�.

Let γ̄ (t) := expx̄ (t D
�u(x̄) + t ȳ) for all t ∈ [0, r ]. For each 1 ≤ A ≤ n + p, we denote

by EA(t) the parallel transport of eA(x̄) along γ̄ . For each 1 ≤ i ≤ n, let Xi be the Jacobi
field along γ̄ with the following initial conditions

Xi (0) = ei ,

〈D̄t Xi (0), e j 〉 = ((D�)2u)(ei , e j ) − 〈B(ei , e j ), ȳ〉, 1 ≤ j ≤ n,

〈D̄t Xi (0), eβ〉 = 〈B(ei , D
�u(x̄)), eβ〉, n + 1 ≤ β ≤ n + p.

(3.4)

For each n + 1 ≤ α ≤ n + p, let Xα be the Jacobi field along γ̄ satisfying

Xα(0) = 0, D̄t Xα(0) = eα. (3.5)

Using Lemma 3.4, we known that {XA(t)}1≤A≤n+p are linearly independent for each t ∈
(0, r).

Let P(t) = (PAB(t)) and S(t) = (SAB(t)) be the matrices given by

PAB(t) = 〈XA(t), EB(t)〉,
SAB(t) = R̄(γ̄ ′(t), EA(t), γ̄ ′(t), EB(t))

for 1 ≤ A, B ≤ n + p and t ∈ [0, r ], where R̄ denotes the Riemannian curvature tensor of
M . Using the Jacobi equation and the initial conditions (3.4), (3.5), we have

P ′′(t) = −P(t)S(t),

PAB(0) =
[
δi j 0
0 0

]
,

P ′
AB(0) =

[
((D�)2u)(ei , e j ) − 〈B(ei , e j ), ȳ〉 〈B(ei , D�u(x̄)), eβ〉

0 δαβ

]
.

(3.6)

Set Q(t) = P(t)−1P ′(t), t ∈ (0, r). By (3.6), a simple computation yields

d

dt
Q(t) = −S(t) − Q2(t), (3.7)

where Q(t) is symmetric. For the matrices P(t), Q(t), it is easy to derive their following
asymptotic expansions (cf. [10])

P(t) =
[
δi j + O(t) O(t)

O(t) tδαβ + O(t2)

]
,

Q(t) =
[
(D�)2u(ei , e j ) − 〈B(ei , e j ), ȳ〉 + O(t) O(1)

O(1) 1
t δαβ + O(1)

] (3.8)

as t → 0+. In terms of (3.7) and the curvature assumption for M , we deduce

d

dt
QAA(t) + QAA(t)2 ≤ d

dt
QAA(t) +

n+p∑
B=1

QABQBA(t)

= −SAA(t)

≤ (|D�u(x̄)|2 + |ȳ|2 − 〈D�u(x̄) + ȳ, eA〉2)λ(d(o, γ̄ (t)))

≤ (|D�u(x̄)|2 + |ȳ|2 − 〈D�u(x̄) + ȳ, eA〉2)λ(
∣∣d(o, x̄) − t |D�u(x̄) + ȳ|∣∣)

(3.9)
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for 1 ≤ A ≤ n + p, where the last inequality follows from the following triangle inequality

d(o, γ̄ (t)) ≥ ∣∣d(o, x̄) − d(x̄, γ̄ (t))
∣∣ = ∣∣d(o, x̄) − t |D�u(x̄) + ȳ|∣∣.

For 1 ≤ A ≤ n + p, we set

�x̄,A(t) = (|D�u(x̄)|2 + |ȳ|2 − 〈D�u(x̄) + ȳ, eA〉2)λ(
∣∣d(o, x̄) − t |D�u(x̄) + ȳ|∣∣).

Then we have {
Q′

i i (t) + Qii (t)
2 ≤ �x̄,i (t), t ∈ (0, r),

lim
t→0+ Qii (t) = λi ,

where λi = P ′
i i (0). Let φi be defined by

φi (t) = e
∫ t
0 Qii (τ )dτ .

Then φi satisfies {
φ′′
i ≤ �x̄,iφi , t ∈ (0, r),

φi (0) = 1, φ′
i (0) = λi .

(3.10)

Next, we denote by ψ1,i , ψ2,i solutions to the following problems{
ψ ′′
1,i = �x̄,iψ1,i , t ∈ (0, r),

ψ1,i (0) = 0, ψ ′
1,i (0) = 1,

{
ψ ′′
2,i = �x̄,iψ2,i , t ∈ (0, r),

ψ2,i (0) = 1, ψ ′
2,i (0) = 0.

(3.11)

Similar to the proof of (2.6), (2.13) and (2.14), we obtain

ψ2,i

ψ1,i
(r) ≤

∫ +∞

0
�x̄,i (t) dt + 1

r

≤ 2b1
|D�u(x̄)|2 + |ȳ|2 − 〈D�u(x̄) + ȳ, ei 〉2√|D�u(x̄)|2 + ȳ2

+ 1

r

≤ 2b1

√
|D�u(x̄)|2 + ȳ2 + 1

r

(3.12)

and

ψ1,i (t) ≤ te
|D�u(x̄)|2+ȳ2−〈D�u(x̄)+ȳ,ei 〉2

|D�u(x̄)|2+ȳ2
(2r0b1+b0)

, t ∈ (0, r), (3.13)

where r0 = max{d(o, x)|x ∈ �}. Using Lemma 2.5, one can find from (3.10) and (3.11)
that

Qii (t) = φ′
i

φi
(t) ≤ ψ ′

2,i + λiψ
′
1,i

ψ2,i + λiψ1,i
(t). (3.14)

Similarly we obtain from (3.8) and (3.9) that⎧⎨
⎩

Q′
αα(t) + Qαα(t)2 ≤ �x̄,α(t), t ∈ (0, r),

Qαα(t) = 1

t
+ O(1), as t → 0+

for n + 1 ≤ α ≤ n + p. Set φα(t) = te
∫ t
0 (Qαα(τ )− 1

τ
)dτ . Then φα satisfies{

φ′′
α ≤ �x̄,αφα, t ∈ (0, r),

φα(0) = 0, φ′
α(0) = 1.
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Next, we denote by ψ1,α the unique solution to the following problem{
ψ ′′
1,α = �x̄,αψ1,α, t ∈ (0, r),

ψ1,α(0) = 0, ψ ′
1,α(0) = 1.

(3.15)

Similar to (2.14), we derive that

ψ1,α ≤ e
|D�u(x̄)|2+ȳ2−〈D�u(x̄)+ȳ,eα 〉2

|D�u(x̄)|2+ȳ2
(2r0b1+b0)

t, (3.16)

for t ∈ (0, r). By Lemma 2.1 in [34] we have

Qαα(t) = φ′
α

φα

(t) ≤ ψ ′
1,α

ψ1,α
(t). (3.17)

From (3.14) and (3.17), it follows that

d

dt
log det P(t) = tr(Q(t)) ≤

∑
i

ψ ′
2,i + λiψ

′
1,i

ψ2,i + λiψ1,i
(t) +

∑
α

ψ ′
1,α

ψ1,α
(t). (3.18)

Combining (3.11), (3.15) with the asymptotic properties in (3.8), we conclude that

lim
t→0+

det P(t)∏
i (ψ2,i (t) + λiψ1,i (t))

∏
α ψ1,α(t)

= 1. (3.19)

Integrating (3.18) over [ε, t] for 0 < ε < t and using (3.19) by letting ε → 0+, it is easy to
show that

| det D̄	t (x̄, ȳ)| = det P(t) ≤
∏
i

(ψ2,i (t) + λiψ1,i (t))
∏
α

ψ1,α(t).

Note that 0 ≤ φi ≤ (ψ2,i + λiψ1,i ) and ψ1,i ≥ 0 (1 ≤ i ≤ n). Combining (3.13), (3.16)
with arithmetric-geometric mean inequality, we obtain

| det D̄	t (x̄, ȳ)| ≤
(1
n

∑
i

ψ2,i (t)

ψ1,i (t)
+ 1

n
(
�u(x̄) − 〈H(x̄), ȳ〉)

)n ∏
A

ψ1,A(t)

≤
(1
n

∑
i

ψ2,i (t)

ψ1,i (t)
+ 1

n
(
�u(x̄) − 〈H(x̄), ȳ〉)

)n
tn+pe(n+p−1)(2r0b1+b0)

which yields by (3.12) that

| det D̄	r (x̄, ȳ)| ≤ (2b1

√
|Du(x̄)|2 + ȳ2 + 1

r
+ 1

n
(
�u(x̄)

− 〈H(x̄), ȳ〉))nrn+pe(n+p−1)(2r0b1+b0)
(3.20)

for all (x̄, ȳ) ∈ Ar . Noting that
√|Du(x̄)|2 + ȳ2 < 1, we derive by Lemma 3.1 and (3.20)

that

| det D̄	r (x̄, ȳ)| ≤ (
1

r
+ f

1
n−1 (x̄))nrn+pe(n+p−1)(2r0b1+b0) (3.21)

for all (x̄, ȳ) ∈ Ar . Using Lemma 3.2 and (3.21), one may find in a similar way as the proof
of Theorem 1.4 in [10] that

|{p ∈ M : σr < d(x, p) < r ,∀x ∈ �}|
≤ p

2
|B p|(1 − σ 2)e(n+p−1)(2r0b1+b0)

∫
�

(
1

r
+ f

1
n−1 (x̄))nrn+p,

(3.22)
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for all r > 0 and all 0 ≤ σ < 1. Similar to the proof of (2.20), one can obtain by using
Lemma 2.7 that

lim
r→+∞

|{p ∈ M : σr < d(x, p) < r ,∀x ∈ �}|
(n + p)

∫ r
0 hn+p−1dt

= |Bn+p|θ lim
r→+∞(1 − σ

hn+p−1(σr)

hn+p−1(r)
)

= |Bn+p|(1 − σ n+p)θ.

(3.23)

Dividing (3.22) by (n + p)
∫ r
0 h(t)n+p−1dt and sending r → +∞, we deduce by using

(2.17) and (3.23) that

= |Bn+p|(1 − σ n+p)θ

≤ p

2
|B p|(1 − σ 2)e(n+p−1)(2r0b1+b0)

∫
�

f
n

n−1 lim
r→+∞

rn+p

(n + p)
∫ r
0 h(t)n+p−1dt

≤ p

2
|B p|(1 − σ 2)

(e2r0b1+b0

1 + b0

)n+p−1
∫

�

f
n

n−1 .

(3.24)

for all 0 ≤ σ < 1. Now, if we divide (3.24) by 1 − σ and let σ → 1, we have

(n + p)|Bn+p|θ ≤ p|B p|
(e2r0b1+b0

1 + b0

)n+p−1
∫

�

f
n

n−1 . (3.25)

Hence (3.1) and (3.25) imply that
∫

∂�

f +
∫

�

√
|D� f |2 + f 2|H |2 + 2nb1

∫
�

f

≥ n
( (n + p)|Bn+p|

p|B p|
) 1

n
θ

1
n

( 1 + b0
e2r0b1+b0

) n+p−1
n

( ∫
�

f
n

n−1

) n−1
n

.

�

Proof of Theorem 1.6 Suppose the equality of Theorem 1.5 holds. Then we have equality
in both (2.17) and (3.12) and either one forces λ ≡ 0. Thus M has nonnegative sectional
curvature. The assertion follows immediately from Theorem 1.6 in [10]. �


Finally we would like to mention that we have established a Sobolev type inequality for
manifolds with density and asymptotically nonnegative Bakery-Émery Ricci curvature in
[16] and a logarithmic Sobolev type inequality for closed submanifolds in manifolds with
asymptotically nonnegative sectional curvature in [17].
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