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Abstract

Extensions of Huber’s Theorem to higher dimensions with L 7 bounded scalar curvature have
been extensively studied over the years. In this paper, we delve into the properties of conformal
metrics on a punctured ball with [|R]| 2 < +o0, aiming to identify necessary geometric
constraints for Huber’s theorem to be applicable. Unexpectedly, such metrics are more rigid
than we initially anticipated. For instance, we found that the volume density at infinity is
precisely one, and the blow-down of the metric is R". Specifically, in four dimensions, we
derive the L2—integrability of the Ricci curvature, which directly leads to the conclusion that
the Pfaffian 4-form is integrable and adheres to a Gauss-Bonnet-Chern formula. Additionally,
we demonstrate that a Gauss-Bonnet-Chern formula, previously verified by Lu and Wang
under the assumption that the second fundamental form belongs to L*, remains valid for
R € L?. Consequently, on an orientable 4-dimensional manifold conformal to a domain in
a closed manifold, Huber’s Theorem holds when R € L2, if and only if the negative part of
the Pfaffian 4-form is integrable.

Mathematics Subject Classification 53C21 - 58J05

1 Introduction

In the famous paper [17], Huber proved a remarkable result concerning the structures of
complete surfaces: every complete surface with the integrable negative part of the Gauss
curvature is conformally equivalent to a compact surface with a finite number of points
removed. Regrettably, this result does not extend straightforwardly to higher dimensions.
For instance, the manifold T2 x R is flat but not conformal to any closed manifold with
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finite points removed. Therefore, a variety of generalizations of Huber’s Theorem have been
established under certain supplementary curvature and other geometric assumptions, as seen
in [8, 9, 13, 16, 21], and related references.

In this paper, our focus will be on a complete manifold that conforms to adomain of a closed
manifold with | v IR(@)] id V, < +o00. There are very few results available regarding Huber’s
Theorem in this particular direction. The only known sufficient and necessary condition is
the combination of Theorem 2.1 in [9] with Theorem 1.2 in [2], which can be summarized
as follows:

Theorem 1.1 (Carron-Herzlich, Aldana-Carron-Tapie) Let Q2 be a domain of (M, go), a
compact Riemannian manifold of dimension n > 2. Assume 2 is endowed with a complete
Riemannian metric g which is conformal to gy. Then M \ Q is a finite set if and only if
vol(B§ (xp), g) = O(r") for some point xq in Q.

The primary objective of this paper is to identify more geometric constraints for Huber’s
Theorem. We will investigate the geometric characteristics of a metric g defined on the
punctured n-dimensional closed ball B \ 0, which conforms to a smooth metric go (defined on
B) with finite || R(g)| i Contrary to our expectations, such a metric exhibits a considerably
higher degree of rigidity than previously anticipated. We demonstrate that the volume density
of g atinfinity equals 1, and the manifold blows down to an n-dimensional space. Specifically,
we can state the following:

Theorem 1.2 Let go be a smooth metric defined on the closed unit n-ball B, withn > 3.

4 _
Let g = un=2gqy be a conformal metric on B \ {0}. Assuming ”R(g)”L%(B 2 < 400 and

vol(B \ {0}, g) = oo. Then, as r — 400, the volume ratio

vol(Bf (x), 8)
— H

]"
V,rht

and (E\ {0}, r%, x) converges to (R",0) in the Gromov-Hausdorff distance, where x is
a fixed point in B and V,, represents the volume of the unit Euclidean ball. Additionally,
G lue Wz*”(B%)for any p < 5, where G is the Green function defined by

—AgyG =389, Glyp =0.

Remark 1.3 Based on Proposition 2.8 and Corollary 3.3, the assumption that vol(B \ 0, g) =
oo is equivalent to the completeness of (B \ 0, g), when || R(g)llL% Bg) < o0 is satisfied.

The theorem above includes lots of unexpected pieces of information. Firstly, it implies
that when (M, g) is conformal to a domain of a closed manifold, Huber’s result holds if and
only if the volume density at infinity equals the number of ends. In addition, each end of such
a manifold is asymptotically euclidean, which is a useful property for verifying Wh(ither a

manifold has a finite point conformal compactification. For instance, by setting g = u -2 geyc

on M = R"\R""‘, where u = (Zle(xi)2) : , we find R(g) = 0, and (M, g) remains
noncompact forn > k > % +1. Nonetheless, (M, g) does not satisfy Huber’s Theorem, since
its blow-down is not R”. This contrasts with cases where the total Q-curvature is finite [7, 12,
24]. For instance, when g is the Euclidean metric and u = r*, the Q-curvature of g is 0, yet
the volume density at infinity can vary widely. Secondly, it appears that when || R || L4 < +oo,
conforming to a domain of a closed manifold is a quite strong assumption. For example, if
we further assume Ric(g) > 0, such a manifold must be R” (see Corollary 3.6).
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A plausible intuitive explanation for these unusual phenomena is as follows: Firstly, we
n—z

2
can find sequences rx — 0 and ¢x such that cr;, 2 u(ryx) converges weakly in WP (R"\ 0)
to a positive function u’ for any p < 5. The function u’ is harmonic since the limit metric

4
8oo = U’ "2 gy is scalar flat. Moreover, (R” \ 0, goo) should be extendable to a cone since it
can be seen as ablow-down of (B\0, g). However, a positive harmonic function on R\ 0 must

be in the form of a + br2~". When a and b are both non-zero, (R” \O, (a+ br2—n) = Zeuc)
4

becomes a complete manifold with 2 ends, and is not a cone. When b = 0, (R"\ 0, a2 g,,,¢)
is not complete near 0. Therefore, we conclude that u’ = b|x |2_” with b > 0, which implies
that g is a flat metric defined on R” \ 0.

Theorem 1.2 has a number of interesting corollaries. First, we examine a conformal map
from (E\ {0}, go) into R"**_ We show that if the second fundamental form A is in L" and
the image is noncompact, then the mapping near the origin closely resembles ﬁ, and the

intrinsic distance is asymptotically equivalent to the distance in R"+*:

Theorem 1.4 Let (B, go) be as in Theorem 1.2. Let F : (B \ {0}, go) — R"** be a con-
formal immersion with finite || A|| p». Suppose the volume is infinite. Then after changing the
coordinates 0fR”+k,for any ry — 0 and xo € B, there exists Ay € R and yg € R such
that a subsequence of

M(F (rex) — F(rixo)) + yo (L.1)

n

converges weakly in Wlicp (R™\ {0}) to Foo(x) = (ﬁ, 0) for any p < 5. Consequently,

|F(x) = F(xo)| _

lim =1, (1.2)

x—0 dgF (x0, x)
where g is the induced metric.

Note that, if we use the coordinates change: x — ﬁ, the limit of Ax (F (rgx) — F (rgxo)) + yo
is simply the identity map of R” under the new coordinates. Therefore, Theorem 1.4 can be
viewed as a higher-dimensional extension of a result by S. Miiller and V. Sverak [22, Corollary
4.2.5], except that F does not have branches in our case.

Next, we will prove some Gauss-Bonnet-Chern formulas in 4-dimensional cases. Since
the asymptotic behavior of (B \ {0}, g) at infinity is clear and simple, we can get the exact
values of the error terms.

First, we discuss the formula for Q-curvature. For the Q-curvature, we use the definition
in [10]. Since R(g) € L? is not strong enough to ensure the integrability of Q-curvature (see
Example 6.3), our first formula is stated as follows:

Theorem 1.5 Let (My, go) be a compact 4-dimensional orientable manifold without bound-
ary and let (M, g) be conformally equivalent to (My, go) with a finite number of points
removed. We assume (M, g) is complete and R(g) € L*(M, 8). Then there exist domains
Q) CC Qp CC Q3---, such that

Qr =M,

(@

k=1

and

tin [ 0wavi = [ Qv - sxm.
Qe My

k—+00

where m is the number of the ends.
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Under the assumptions in the above theorem, it is evident that the integrability of O~ (or
Q™) implies the integrability of Q. When Q is integrable, the theorem above can be viewed
as an intrinsic version of Theorem 1.5 in [20], where |A|;4 < +00 was assumed. It may seem
a bit unusual at first glance that such a formula is solely concerned with intrinsic properties.

As an application of the above theorem, we obtain the following:

Corollary 1.6 Let (M, g) be as in Theorem 1.5. Then Riem(g) € L2, where Riem(g) is the
curvature tensor.

We denote by Pf(g) the standard Pfaffian of the Riemannian metric g. For a closed
4-dimensional manifold (Mo, go), the Chern-Gauss-Bonnet formula can be expressed as

/ Pf(go) = 4m* x (My).
My

where x (Mp) is the Euler characteristic of M. It is well-known that
1 , o1, 1,
Pf(g) = gIW(g)I +ER (g)—ZIRlC(g)I dv, (1.3)

where W is the Weyl tensor. Then the integrability of the Pfaffian form is deduced from
L2-integrability of Ricci curvature and scalar curvature, along with the conformal invariance
of the Weyl tensor. Furthermore, we obtain the following result:

Theorem 1.7 Let (M, g) and m be as in Theorem 1.5. Then the Pfaffian of the curvature is
integrable, and

f Pf(g) =4m*x(Mo) — 8mm?,
M
or equivalently
/ Pf(g) = 4n’x (M) — 4mn>.
M

We set Pf(g) = PdV,, where dVy is the volume form of g, and define ®~dV, to be
the negative part of Pf(g). From the equation (1.3), we deduce that Ric(g) € L*(M, g)
whenever @ is integrable. Together with Theorem 1.4 in [14], we can establish the following

Theorem 1.8 Let (M, go) be a 4-dimensional oriented compact Riemannian manifold with-
out boundary and let Q be a domain of M. Assume Q2 is endowed with a complete Riemannian
metric g which is conformal to go with R(g) € L*(2, ). Then M \ S is a finite set if and
only if the negative part of Pf(g) is integrable.

This paper is organized as follows. Section 2 reviews some regularity results of the scalar
curvature equation and establishes the 3-circle Theorem. In Sect. 3 we establish the asymptotic
behaviors of the metric at infinity. Then, we prove Theorem 1.4 and Theorem 1.5, 1.7, 1.8.
in Sects. 4 and 5 respectively. In the last section, we provide several examples of complete
metric on the 4-dimensional punctured ball with R € L.

2 Preliminaries

First, we introduce some notations that will be used throughout the remainder of the paper.
We always assume n > 3 and denote by (B, xb X2, ... , x") the n-dimensional unit ball,
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and by B, the n-dimensional ball of radius r centered at 0 in R”. We assume gq is a smooth

metric defined on B. For simplicity, we always assume x!, --- , x” are normal coordinates

of go at 0, then we have

dgy(0,x) = |x|, and |go;; — 8ij| < clx|*. 2.1)

2.1 Regularity

In this section, we let v be a weak solution of
—div(a’v;) = fu, (2.2)
where
0<ri =d’, llalcoy + Va7 lcogsy < Ao (2.3)
We have the following:

Lemma 2.1 Suppose that v € W'2(By) is positive and satisfies (2.2) and (2.3). We assume

/ F1% < AL
B

rz_"/ |[Vlogv|?> < C, VB.(x)C B.
By (x)

Then

Lemma 2.2 Suppose v € W'2(By) is positive and satisfies (2.2) and (2.3). Then for any
q € (0, %), there exists €g = €o(q, A1, A2) > 0, such that if

n
/ [f1? < eo,
B,

Viogvllwiqpy < C(A1, A2, €0),

then

and

1
o THI log v

1 1 _
T8yl ) + BT IE OV 0= s ) < C O, Ao, €0).

For the proofs of the above two lemmas, one can refer to [15].

Corollary 2.3 Suppose v € WL2(By) is positive and satisfies (2.2) and (2.3). Assume

/v2<A.
B

Then for any q < 5 and p > 2, there exists Cy and Ca, such that

2
oz < Croand [ o7 <10l p, + Callollzq,
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Proof Note that for any E C B,

/(log v)* :f logv 5/ v < C. (2.4)
E EN{v>1} E

Utilizing (2.2), we obtain that ||[v||y24p) < C.
Select g < %, such that W249(B) can be embedded into L2”(B). Since
=108 < [ 2
B
we have

1
2
/U‘DS/ v2+</ v2P> l{v>1}N B|?
B w<1}nB (w=1)NB

1

S/Bv%r(va"‘P)z(/sz)é 5/BU2+C||U||5VZJ,(B) (/BUZY.

2.2 Convergence of distance functions

The distance between two points x and y on a manifold (M, g) is defined as the infimum of
the lengths of piecewise smooth curves joining them. We will use the following proposition:

Proposition 2.4 Let ay — 0V and g = gk,,-jdx" ® dx’ be a smooth metric defined on

B 1 \ By,. Assume gy and gk_1 converge to geyc in Wllo’cp (R™\ {0}) forany p € (n — 1, n).
ak
Then after passing to a subsequence, dg, converges to dg,,. in CO%((B,\B1) x (B:\B1)) for

euc

anyr > 1.

Proof The arguments in [15, Section 3] use properties of complete metrics, so they can not

be applied here directly. For this reason, we let 7 > 1 and take nonnegative ¢, € C®°(R),

which satisfies: 1). ¢, is 1 on [%, t] and O on (—o0, %] U [2t, +00); 2). |¢p'| < 2t. Define
8k = ¢ (IxDgk + (1 — ¢ (IxD)geuc-

Obviously, gk, is complete on R”.
We have

/ |V(§k,t - geuc)|pdx = Ctp/ lgx — geuc|pdx + C/ |V (gr — geuc)|pdx
B/ \B; B\ B; Bor\ By

< CONIgk = eucliy1pg,05,)-

A similar estimate can be obtained on B; \ B 1 using the same argument.
1 2t
Note that

det(@i gk + (1= ¢)geuc) = [ [(Brai + (1 = ¢1).

i=1

where ay, - - -, a, are eigenvalues of g;. Then

1
det(@igr + (1 = d)geuc) Z 57 min{der(gi), 1},
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which implies that

ca+

det ) — dergy) = €U +det(& ).

Since g, converges in Wlocp (R™\{0}) forany p € (n—1, n), (g,:l) isboundedin LY (B,\B1)
forany g. Then 1/det (g.;) is bounded in L7 (B, ) forany g. Recall that the inverse of a matrrix
is just the ad]ugate matrix divided by the determinant. Then g 8. t is bounded in W7 (B,).
Note that gk s = gecu ON B3,. It is not difficult to check that for any fixed r, there exists
’, such that any geodesic between two points x, y € B, must lie in B,. Then, using the
arguments in [15, Section 3], a subsequence of dg, , converges to dg,,. in CO(B x B;) for

any r. Thus, after passing to a subsequence, we can ﬁnd fx = +00, such that dg, , converges

tody,,. in CY(B, x B,) for any r. For simplicity, we set g = g, and assume dg, converges
in C%(B, x B,) for any r.

Now, we start to prove that d,, converges to dg,, . in CO((B/\B1) x (B:\B1)).

euc

Let Lx(x) be the lowest eigenvalue of g,i(j. Since |kadgk (x, y)| <1 for a.e. x, we have

1
|Vidg (X, NP < —— < CY grij ()],
X% g }"k(-x) IXJ: 3]

which implies that dg, is bounded Wl’q((Br\Bl) X (Br\Bl)) for any r and ¢ > 0. Then,

we may assume dg, converges to a function d in CO((B \B 1 ) X (B, \B 1)) for any r. By the
trace embedding theorem, for any x, y € B, \ 81 we have

d(x,y) <dg,.(x,y).

Next, we show d(x, y) > d,, (x,y).Let y; be acurve from x to y in R" \ {0}, such that

euc

1
Lo, (yx) <dg (x,y) + T

Let A > d(x,y) +r + 1. We claim that y, C B; when £ is sufficiently large. Suppose
that yx N 0B # ¥. Itis easy to check that

1
dg (0B, 0By) < Lg (yk) < dg (x,y) + i d(x,y).
However, d, (0B;., dB;) = d3, (0B;., dB;) when k is sufficiently large, and
lim dg (3B, 0B,) =dg,, (0B),3B,) = A —,
k—+00

which leads to a contradiction.

The rest of the proof can be divided into 2 cases. Case 1, we assume yx NdB1 = . In
T
this case,

Lo (vk) = Lg (i) = dg, (x, ).

Case 2, we may assume x; and yy to be the first and the last point in y; N d B 1 respectively.
I
Then

Lo (7)) = L (Vklix,xi) + Lgi Vil iye,v1)
= Lgk (ykl[x,xk]) + Lgk (Vk|[yk,y])
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> dg, (x, xk) + dg, Yk, ¥)
> dg (x, y) — dg (xk, yi)-

Thus, for both cases, we have

d(x,y) = kEToodgk (x,y) = kEToodgk (x,y) =dg,, (x, ).

2.3 Three circles theorem

In this section, we present the Three Circles Theorem. It is convenient to state and prove this
theorem on pipes. We let Q = [0, 3L] x s and

0;=[G—-DL,iL]x S, i=1,2,3.

Set gp = dr* + ggn-1and dVg = dVy,.
We first state this theorem for the case of g = gpand R = (n — 1)(n — 2):

Lemma 2.5 Let u # 0 solve the following equation on Q:

(n—2)
—Au+ ——u=0.
4
Then there exists Lo, such that for any L > L, we have

1) le udeQ <e L sz udeQ implies fQ2 udeQ <e L ng uZdVQ;
2) ng u?dvg < et sz u*dVy implies sz u?dvg < et fQ1 u?dVy;
3) either sz uldvg < et le u*dVy or sz u?dvg < et fQ3 u?dvy.

For the proof, one can refer to [6, 19]. Next, we discuss the general case.
Theorem 2.6 Let go be a metric over Q and u € W>P which solves the equation
—Agou +c(n)R(go)u = fu.

Then for any L > L, there exist €, T, such that if

g0 — gollcro) < T /Q|f|7dvgo <, 25)
then
1) le udegO <e L sz udegO implies sz udegO <e L fQ3 uza’VgO;
2) fo, u?dVy, < e’L/Q u*dVy, implies Jo, u?dVy, < e L Jo, u?dVy,;
2

3) either [, u?dVy, < et Jo, u?dVy, or Jo, u?dVy, < e L Jos u?dVy,.

Proof If the statement in 1) is false for an L > L, we can find g, uy and f, s.t.

gk — g0 in C2(0Q). /Q ilddVy, — 0,

—Ag g + c(n)R(gr)uk = frug,
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and
/ udegk §e_L/ udegk, / udegk >e_L/ u%dng.
01 O [} 03
Let
Uk
V= .
Ikl 20, 01)
We have
/ v,%dng Se_L/ v,%dng, f v,%dng < eLf v,%dng,
01 02 03 02
and
/ vidVe, = 1.
[}
Thus

/ vidV,, < C.
o
vy, satisfies
—Ag vk + c(M)R(gr)vk = fruk.

By Corollary 2.3 and Sobolev embedding theorem, v converges to a function v in Wllo’cz,
where v satisfies:

n —2)>2
—Av+ w2 0, and f lw|2dVg = 1.
4 02
Thus v # 0.
Moreover,
2 . 2 —L 2
v°dVp = lim v;dV, <e lim vidV,, ,
/[‘G’L]Xsn—l 0 k—+o00 [G,L]XS"_I k 8k k—+o00 0 k &k

letting e — 0 gives

/ vdeQ fefL/ vdeQ.
0 02

Similarly, there holds

/ vdeQ §eL/ vdeQ,
03 02

which contradicts Lemma 2.5. Hence, the statements in (1) are proved. Using the same
arguments, we can easily carry out the proof of (2) and (3). ]

Theorem 2.7 Let g =u = g0 be a smooth metric defined on B \ {0} with

/ IR(g)|3dV, < +00, vol(B\ {0}, g) = +o0.
B

@ Springer



86 Page 100f29 Y.Li, Z.Wang

Then for any © > el0 there exists ro, such that for any r < rq, there holds

2 2
u 1 u
L av,, < —/ X v, 2.6)
/Br\Brﬁ] |x|2 go o Brﬂ*]\Brﬁ’z |x|2 *

Moreover, we have

2
. u . 2n_
lim / —5dVg =+00 and  lim / un=2dVy, = +00.
By, \By—i—1, |XI By, \By—i1,

k—+00 k—+00
2.7)
Proof Put
P(1,0)=(e7",0),
and
/ ok _ % A
g, 0)=¢7(g) =vr2g(,0),
where g(z,0) = e2’¢*(go), which converges to dr* + gsn-1 ast — +oo. Then
4
Vil (1, 0) =ui (e, 6)e Y,
n+2
— Agu+ cR@v = cmRG 2 = fu,
[ intave=c | IR()I3aV,,
S!x[a,b] B,—a\B,—p
and
2
/ S— :f v2dV;.
B \B:/y x| §n=1x[~logr,—logr+log®]
Without loss of generality, we assume
||£’ - gQ||C2(Sn71><[O7+oo)) <T, / |R|7dVg < 6(/). (28)
§1=1%[0,400)
Suppose (2.6) is not true, i.e., we can find rx — 0, such that
/ LT / “ v 2.9)
— > — — . .
B\ X2 T 0 Jp p, 62

We set
Qim = sl % [—logry — (my —m + 1) log ¥, —logry — (my — m)log v],

—log rg
log v

2 1 2
/ v dVg < 7/. v dVg.
Qb my, 4 Qb my—1

wherem =1, ---, m; = [ ] Then (2.9) is equivalent to

By Theorem 2.6, we get

2 1 2
v dVg, < — v dVg,.
Qk,mk—l 4 Qk,mk—Z
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Step by step, we get
/ v?dV; < 19_(’”_1)/ v?dV; < 19—“"—‘)/ vdV; < CoT
Qk.m Q1 §1=1%[0,21log ¥

By Corollary 2.3,

2n m
/ vi2dVy < CO™ +977),
Qk,m

hence
my
2n_ 2n_ 2n_ 2n_
/ un*2dVg0§C/ un*deSC/ un*Za’x—i—CZ‘/ un-2dx
B\By, B\By, B\B,_ et Y Brom\B, g1
C
<Y 5 <CO),
m vz

where C(¥) is independent of k. Letting k — oo, we get a contradiction.
Thus, we get (2.6), which implies from Theorem 2.6 that

2
u
/ —5d Vg = CO™.
B.y—m\B,y—m—1 x|
Since
2
u 2 2n_ n—2
f —3dVy, < Cllogd)? (/ ur2dVe,) m,
B,ly—m \Bw—m—l |.X| B,ly—m \Bw—m—l
we get

. 2n
lim un=2dVy, = 00.
k——+00
B’.19—m \Brﬂ’m’l

Proposition 2.8 Let g = u = go be a smooth metric defined on B \ {0} with
/ IR(g)|2dV, < +00, vol(B\ {0}, &) < +0o0.
B

Then (B \ {0}, g) is bounded.

Proof We need to_show that there exist » and C, such that for any x sufficiently close to 0,
we can find x” € Bi\B,, such have d, (x, x") < C.
Let g/, g, v be as in the proof of Theorem 2.7 and assume (2.8) holds. Set

Qn =51 x[—logrg+ (m — 1)log ¥, —log ro + m log 91,

where —logrg € [0, log#) such that x = (— log rg + mglog ¥, 0) for some my € Z* and
6 e sl
: : 2 - 2
By Theorem 2.6, if there exists m, such that me v2dVy <0 1 me+1 v>dV;, then

/ vdeg > com 400,
Q

m+m’
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which is impossible, since

/ v2dV§§C</
Q Q

/ uzdvggﬁ”/ v3dV;,
Q1 m

n—2
n

vﬂzndeg,) < C(vol(B\ {0}, 2))" " < +o0.

‘m+m’ ‘m+m’

Then

which implies that
/ vdV < Co™
QYII

By Corollary 2.3, |[v|lLr(q,) < C(p)z?f’"/(zm for any p, hence, for any ¢ < %,
lAzvllLe(@,) < C(q)z?’“(")’" for some a(g) > 0. By the standard elliptic estimate, we get
Ivllw2a(q,) < CO @™ Itfollows from the Sobolev inequality that forany ¢’ € (n—1, n),

2n ’
the inequality [[v"=2 ||y 1q g ) < C (g")9 =)™ holds for some positive constants C(g’) and

/
a(q’).
For convenience, we set

tm = —logrg +mlog?d, x, = (ty,0).

By the classical trace embedding theorem (cf. [1, Theorem 4.12]), we have

log ¥ log ¥ on

dg(xm,xmmsc/ vﬁ(rwm,e)dtsa/ V(1 4 b, O))F
0

0
Clo i

< pn—2 < n

< ™20 <

Then

mo

d(x,x0) < ) d (i, xm-1) < C.

m=1

3 Asymptotic properties

4

In this section, we always assume that (2.1) holds and g = u =4 go denotes a smooth metric
on B\ {0} with

vol(B \ {0}, g) = oc.
First of all, we prove the following lemma:

Lemma3.1 Let rp — 0. After passing to a subsequence, we can find c; > 0, such
n—2

that ckrk2 u(rex) converges to |x|>~" weakly in WZZO’CP(R” \ {0}) for any p € [1, %).
in CO((Br\Bl) X (B;\B1)) for any r > 1, where

Moreover, dg, converges to d‘ X geue

4
k.ij = i (Cru(rx)) =2 go i (rex).
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Proof Define
n—2
up(x) =ry> u(rex)cy.

Choose cj such that faBl log updS" = 0. It is easy to check that —Ag ux = frug, where

n—=2
fe = —c)r Ry (rex) + e R(x) (1, 7 1rx)) 2,

and for sufficiently large k,

n 2n .
”fk”L% BB §Cr,§+C / |R|Zun—2dx §m1n{eo,66}.
( r\ rl) Brrk\B';k
X

By Lemma 2.1 and the Poincaré inequality ( c.f. [3, Theorem 5.4.3]), log u; is bounded in
w2 (By\B1).Then uy is bounded in wp (B, \ B1) by using Lemma 2.2. Thus uj converges

weakly to a positive harmonic function u’ locally on R” \ {0} with fa 5, log u'dS = 0.
According Corollary 3.14 in [5], u’ is written as

W =a+blx)*",
where a and b are nonnegative constants. Applying Theorem 2.7, we get

2 2
u 1 u
—dVy < — —dV,,,
|x|2 80 5 |x|2 80
Brkr\B Brkrﬁ’l \Brkrﬁ*z

rkrﬁ’I

which implies that

2 2
u 1 u
k k
Jyva, %o =5 | e Vs
B"\Brﬁ*] Brﬂ’l \Brﬁfz

where go.x = go,ij (rex)dx' @ dx/. Taking the limit, we obtain

14/2 1 u/2
72dx < — 72(1')6.
BB, X O Jp, 1\B,, |XI

Letting r be sufficiently large, we get a = 0. Since faBl logu' =0,b=1.

_4_ .. . .
By changing coordinates: x — -, we see that u’ "2 1s just in the new coordi-
‘X 2 euc euc

nates. The convergence of dg, follows from Proposition 2.4 directly. O

In the preceding lemma, we did not express ¢, in terms of r;, which limits our under-
standing of the behavior of u(rix). Nonetheless, the lemma is sufficiently strong to derive
the following decay properties:

Corollary 3.2 For any t € (0, 1), there exists § such that for any r < 8, the following hold:

1 1(By \ By, 1
2" 7 vol(By \ Byp2, 8) — 2"
vol(Ba; \ Br,g)

- =<
Vu(dg (2rxo, rxo))

fBr\Br/Z |)‘7|I3 [Veou|*d Vg,
fBZr\Br |x|A [Vgou|*d Vg,

(1—1)2" <@ =D +71), Yxoe€dB; (32

< z(n—l)a—n—ﬁ(l + 1), Ya e[l,n), BeR, 3.3)
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fBr\Br/z |x|ﬂu“dVgO
.fBg,\B, xlPuvd Ve,
|V, log uldS
1__[)5/33, g0 108 goS =
faBz, [V, loguldSg, ~— 2"

<20 Demn=B(1 4 1) Vo e[l,+00), BeR; (3.4)

( (I+71); (3.5)

2n—2

dg(2rxg, rxo)

27l -7y < T oo .V 9B: 3.6
( r)_dg(rxo’rx()/z) < (I+71), Vxo € (3.6)
d OB
(1= < %20 3B80) ) v e B 3.7)
dg(rxo, 2rxp)
_ diam(0By,) B
27— < — " <271l : 3.8
(I-7)=< diam(@B,) < I+7) (3.8)
— dy(0Byr, B;) -
2711 —7) < 20T <l 4 (3.9)
dy(0B,. 9B, 2)
diam(By, \ B,
401 — iam(Byr \ Br) _ 4 4. (3.10)

)< =<
dg(aBZra aBr)

n=2
Proof Let uy = cyry, > u(rgx) be as in the proof of Lemma 3.1, which converges to u’ =

|x |2 weakly in lev’f (R™ \ {0}) for any p < 5. Then we may assume Vuy converges in

5
L;’OC(R” \ {0}) for any ¢ < n, and u; converges in L;’OC (R™\{0}) for any ¢ > 0. By the trace
inequality, we can also assume log u; converges in L!(3B,).

Now, we prove the right-hand side inequality of (3.1): assume it is not valid, then there

exists rp — 0, such that

VOI(BZrk \Brk» g) > i(l +1),
VOI(Brk \ Brk/Z» g) 2"
which means that
1(B, \ B 1
vol(Ba \ Bi, gk) > La+o,
vol(Bg \ B12, gk) n

4

where g ;j = u,:”z 80,ij (rex). Letting k — 400, we get

vol(B> \ Bj, 1
(B2 \ B1, g0) > Lato,
vol(B1 \ Biy2, 80) ~ 2

where goo = |x 2" Zeuc- A contradiction.
Since the proofs of other inequalities are almost the same, we omit them. O

The inequalities (3.1)—(3.10) will be used to estimate quantities on By, \ B,. For instance,
using (3.1), we have

1+1 k—1
vol(Byk, \ Bpk-1,, ) < o vol(Bar \ By, g),
which implies
vol(B \ By, g) < Cvol(By, \ By, g). (3.11)

We provide several additional applications.

Corollary 3.3 The manifold (B \ {0}, g) is complete.
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Proof Consider a sequence {x;} that does not contain a convergent subsequence. Then xj
converges to 0. Let xo € 0B be fixed. To show completeness, it suffices to prove that
dg (xg, x9) — —+00.

By (3.6) and (3.7), we have dg (xi, 2x;) — +00, and

dg(x0, xk) > dg(xk, B2y ) = (1 — T)dg (xk, 2x) — +00.

Corollary 3.4 Let ry, ci be as in Lemma 3.1. Let x" € 9B and py = dg(x’, ryx"). Then

2
lim ¢/ pp = 1.
k——+o00 k

Proof Let u; and g be as in Lemma 3.1. Set goo = |x|_4gem.. By Lemma 3.1, for any
o = 2", we have

dg, (x',0x") = dy (x',0x") =1—1/0.

Thus

2
e Pdg(nx' rox’) =dg (x', ox') = 1—1/o0.
Using (3.6), we get

2 2 ¢
¢/ P dy(reox’, x') < ¢/ Cdy(rxox’, 2rgox’) — Cdg, (0x', 20x") = 3
o

The proof is completed by applying triangle inequality. O
Corollary 3.5 We have

vol(B§ (x0), )
p—>+00 Vup" B

1

and (B \ {0}, p2 g, xo) converges to (R, 0) in the Gromov-Hausdorff distance for any x.

Proof First, we prove the convergence of volume ratio. It suffices to prove that for any
vol(Bj, (x0),8)
Vaor"
Let py — +o00, and x; = axo for some a; € RT, such that

px — +00, a subsequence of converges to 1.

dg(x0, Xr) = k.
Put y;y = oxi, where o = 2" is sufficiently large. We denote
T = dg(Xk, Yi)-

We will first approximate Bj, (xo) with B (yx), and subsequently approximate BS (i) by
its intersection with By, that is, Bfk (yk) N Byy,|. The reason for doing this is that after
rescaling, B‘Tgk (V&) N By, exhibits very good convergence properties.

By (3.6),

1
dg(x0, yk) < 3dg Yk, Eyk) = O%,
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hence
Tk — Ok = Pk = Tk + Ok. (3.12)
Since
dg(x, x0) < dg(x, yi) + dg(x0, Yk),
for any x € BTgk—Z(Tk k),
dg(x, x0) < 1% — 204 + 0k < px.
Similarly, for any x € Bf;k (x0)

dg(x, yr) < dg(x, x0) + dg(x0, yr) < pr + 0o < % + 20%.

Then
BY 55, () C B (x0), BS, (x0) C B 5, (i) (3.13)
Let up = u(rkx)r%ck, where r; = |xi| and ¢ is as in Lemma 3.1. By Lemma 3.1, uy
converges to |x|>~", and
3
ELIN . (3.14)
T o—1
Then, by choosing o sufficiently large, for a fixed € and sufficiently large «,
Bzgl—é)rk ) C ng (x0) C Bfl—}—e)rk On)- (.15)
Next, we estimate
vol(By, (i), 8)
(A"
By (3.11), (3.2) and (3.6), we have
V01(B,\gfk(yk) N Byys &) - V01(B,\gfk(yk),g)
(ATe)" B ()"
_ V01(Bfrk (k) N By, &) + VOl(Bf,k )\ Bly» &)
B (A"
- vol(By, (y&) N Byy,, g) + vol(B \ Byy,], g)
- (A"
- vol(Bf, (&) N Bly|, §) + Cvol(Bajy| \ By, 8)
- (ATi)"
- VOI(B,\gIk k) N By, &) dy 2y, yi)
- (A" (A"
- V01(B,\gfk (k) N By, 8) ol
- (A" gl

It is easy to check that

ATk

)" (1 —o=hH)"

vol(Bf, (vi) N By . g) VOB i (0x0/Ix0]) N By, goc)
—
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To calculate vol(Bf]oo - 1)(crxo /1x0]) N By, gc0), We use the coordinates change

B—R"'"\B: x—)zzi.
|x|?
In the new coordinates, goo = geuc, and
By 1) (0x0/10) N By = Byy_o-1)(0'x0/Ix0]) \ Byt
Thus
VOI(BE 1 (0%0/1%0) N By, o) = Va((A(1 =0~ 1)" = 00",
Then we can select o to be sufficiently large and let . = 1 + €, such that

VOl(B oy, %), ) VOI(BE ). (31), &)

l—e< , <(+e)
V(1 + €))" V(1 — €))"
when k is sufficiently large. By (3.15) and (3.12),
1(B
1= ce < YWBRGD o
Vnpk

when k is sufficiently large, we complete the proof of the ratio convergence.

Next, we prove the Gromov-Hausdorff convergence. It suffices to prove that a subsequence

2 JR—
of (Bf/p" (x0), dg/p%, x0) converges to (B, 0).
By (3.12), (3.13), and (3.14),

2 2
lim  tim _den ((Bf/pk (x0), dy 2. %0), (B (), dy 2. yk>> =0

0—>+00 k—

Combining (3.9) with (3.10), we have

‘ d(0Byy,|, 0By 2.8) _C
diam(By \ By, 8) < Cd(dB)y|, 0By 2, 8) < Ctx l)dk(‘x,( ylzg‘/ = o
d@By,1,0By1/2,8) — 1/C9 Then

since dGir,y0) -1/o"

0—>+00 k—+

lim lim dey ((Bl/k(yk) dye2 i) (Bl/k()’k)ﬂB|yk| g2, yk)>

Note that

4
( )
(Blg/ “ (k) N By, dg2, Yk) = (ng/ @ (/1K) N By jry)s d /TR
g/ (7 T)
2 2
Since dg, (xk, yx) — 1 —1/0 anddy, = ¢/ d we have ¢/~ =2 7 — 1 —1/0, which implies

that

lim lim dGH( /"(yk)ﬂBbkpdg/fz Yi)» (BY (i /r1) 0 By dgk,yk/l’k)> =0.

0—>+00 k—+

However, we have

(B (v /1) N Bly, yry s dg s i/ 16) = (B{® (0x0/1x01) N By, dg... 0 x0/|x0l),
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Yp = oxy, = 2"y,
pr = dg(xo, Tx)
Te = dg(Tk, Yr)

Fig. 1 Brgk (yk) is the whole region filled with small dots. The shaded region is B?k (k) N Byy,|. We use

Bflf (¥k) N By, | to approximate Bi’;,’; (x0)

and the limit is isometric to
= —1
(Bi(o = x0/Ix0) \ By-1, dg,.. 0 x0/|x0]).

Letting 0 — o0, we complete the proof. O

Corollary 3.6 Assume (M, g) is conformally equivalent to a domain of a compact manifold
without boundary. If || R ||L% < 4+ooand Ric > 0, and if (M, g) is complete and noncompact,
then (M, g) = R".

Proof By the Bishop-Gromov Theorem, vol(BE (x), g) < V,r".Then, by aresultin [9], there
exists a compact manifold (Mo, go) and a finite set A C M, such that (M, g) is conformal
to (Mo \ A, go). By Corollary 3.5, A contains a single point, so the corollary follows from
the Bishop-Gromov Theorem. O

Next, we derive a stronger version of Lemma 3.1 and finish the proof of Theorem 1.2:

Proposition3.7 w = G~ 'u isin W2P(B) forany p € [1, 5), where G is the Green function
defined by

—Ag,G =380, Glap =0.
Proof By direct computation,
Agott = GAgyw + 2V, GVgow = —c(n)Run 2 + c(n) R(go)u.
Then
—Agw = ()G Ru? + 2V, log GVyw — c(n) R(g0)w
= c(n)Rum2 w + 2V log GVgyw — c(n) R(go)w
= f.
It is well known (cf. [4]) that G = 2~ (1 + O(1)) near 0 and

C
|Vgo log G|(x) < m
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when x is small.
First, we show w € LY for any ¢. Indeed, applying (3.4)toa = g, 8 = (n — 2)q, we get

/ lw|? < CZ/ X9 Pul? < €Y (A +71)27") < o0,
B; i VB, i

Next, we show w € WL-7(B) for any p < n. Since
IVgow| < G~ [Vggul +uG ™! |Vg, log G| < C(Ix|" | Vgyul + |x|" ),
we may apply (3.4)tow = pand B = (n — 3) p to get
(" lul)? < +oo
B;

and (3.3)toa = p and B = (n — 2) p to obtain
/ Ix|""2|Vu|? < +o0.
B;

Then th |[Vw|? < +4o0 forany p < n. Let ¢ € D(B), and 1, be a cutoff function which
is 1in B\ By, 0 in B, and satisfies |Vn¢| < % It is easy to check that . w is bounded in
WLP(B), hence a subsequence of n.w converges weakly in wLp(B). Obviously, w is the

limit, hence w € WL-P(B).
Next, we show f € L? for any p < 5 and w solves the equation —Ag w = f weakly in
B. Since

_4 _
If] < CURIum2 w + |x| ™! [Vgyw| + w),

4 n
by the fact that |[R|u"—2 € L2, w € L9 forany ¢ > 0 and Vw € L? forany p < n,itis
easy to check that f € L? forany p < 5. Then

/VgotpvgodegO = lim/ Veoe@Vgowd Vg, = lim/ negof:/ of,
B e—~0Jp e—~0Jp B

hence w is a weak solution.
The proof can be completed without difficulty using the theory of elliptic equations. O

4 Conformally immersed submanifolds in R"k

In this section, we consider a conformal immersion F : (B\O0, gg) — Rr+k satisfying
|A|Ln < 400, where A represents the second fundamental form. We define

4

g = F*(geuc) = un-2go.
Obviously

/ IR|2dV, < +o0.
B

For the purposes of this section, we assume vol(#(B\0)) = +00. As a consequence of
Corollary 3.3, the space (B ! \0, g) is complete. The goal of this section is to prove Theo-
rem 1.4.
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n=2
Proof of Theorem 1.4 First of all, we can find ¢y, such that CkTy 2 u(rgx) converges to |x |2_”

weakly in W, (R" \ {0}) forany p < 2. Set

2

Fy = ¢ > (F(rix) — F(rexo)) + Yo,
where yo will be defined later. Since

2 4
n—2
4 -

e 4 4
=ricy ()2 = (cry” u(rgx)) =2,

d Fy
axt

|V Fy| is bounded in W2P(B, \ B1) by Lemma 3.1. Thus, we may assume Fj converges
weakly in W3’p(R" \ {0}) to a map F which satisfies Fo (R" \ {0}) C R" and

loc

0Fs 0F
axt 9xJ

—4
= |x| 51’ j.
For convenience, we transition to new coordinates

X
X—>y=—.
TP

In these coordinates,

800 (Y) = Zeuc(y)-

Then F, can be considered as an isometric map from R” \ {0} to R".

Lety(t) = ty, where y € §"~!. Since y () is a geodesic in R” \ {0}, £ (y (¢)) must be aray
of R". In addition, it is easy to check that as y’, y” approach 0 dy_ (Fso (¥'), Foo (")) — O.
Then }hir}) Foo () exists. Select yg such that the limit is }hE}) Foo(y) = 0. Then Foo (v (1)) =

tFso ().
Since F is isometric, for any X € ToB; = s with |X| =1, it holds

d
Foo,*(X)J—Foo,*(E), |Foo,*(X)| =1

Hence, the restriction Fo|gn-1 is an isometric map from $"~! to itself. Since "~ is simply
connected, Foo|gn—1 is @ homeomorphism, as follows from the fact that an isometric map is
a covering map. Therefore, we may assume Foo(y) = y.

In the original coordinates, this translates to

X

Xk

Proceeding, we consider a sequence x; — 0. Assuming @ = |x¢| and setting x,/( =ap,

rr = |xx| and o = 2™, we find that
dy (o xi, 20x;) 1
% 9
dg(xk, o x1) 200 — 1)

dg(axk,x,/() < Cdg(oxy, 20x;), and

thus we can choose m, such that for large k,

l—€e< g Cxk, o). <l+e.
dg (xk, o xp)
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By arguments as in the proof of Lemma 3.2, for any t € (0, 1),

1—1 _ |F(rx) — F(rx/2)| _ 1+t
2 T |F(rx/2)—F@x/4)| — 2

for any x € 9B and sufficiently small r. Then we can choose m, such that for sufficiently
large k,
|F (xi) — F(x0)l

l—-e< ————— < 1+e.
|F(xx) — F(ox)|

Since
|F(xx) — Floxi)l | F e/ 1xel) — Fi(oxg/|xg])| o
dg (xi, o x) dg, (xi/1xk ], 0 Xk /1K) '
it follows that
F —F
1—Ce < M <1+ Ce
dg (xx, x0)
when k is sufficiently large. O

5 4 Dimensional Gauss-Bonnet-Chern formulas

In this section, we assume n = 4 and discuss Gauss-Bonnet-Chern formulas.
For our purpose, we set d Sy, = O(r, 0)d S3 and define ¢ = logu and

Fl(r):/ R(r,0)u’(r,0)0(r, 6)dS>, le—/ R(r,e)i(uz(r,9)®(r,9))ds3
§3 $3 ar

Fz(r)zf (Mg (r,0)) O(r,0)dS*, H> =—/ (Ag(,qs)i@(r,e)ds?
s3 s3 or

Let ng 5, be the unit normal vector of d B, with respect to g. If we choose x 1 ... x"tobe
normal coordinates of gg, then B, = BE(0), ng B, = u! %,and
2 dR 3 /
ngap, (R)dSs = \ u a—rG)dS’ = F|(r) + Hi(r). 5.1
3 N
Moreover, we have
A4,
/ 807 dSe, = F3(r) + Ha(r). (5.2)
0B, al‘

Equations (5.1) and (5.2) will help us to calculate || p, AgRdVg and /, B, A§0 logudVy,. For
example, by

/ AgRAV, = riiLnO(Ff + Hi ()7,

if we can find a sequence r; — 0, such that the limit of Fi’ (rt) + H;(ry) is known, then we
will get the exact value of [ AgRdV,.
The following lemma will play a vital role in the following discussions.
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Lemma5.1 Let f € Cl[%o, 2rol, h € CO[%O, 2ro] and by, by are constants. Assume

2rg 3
/ fdi — 5blrg

ro

0]

2 3 5
/i) fdt - ﬁb]ro
4
Then there exists & € [ro/4, 2rg] such that

Lf'(€) + h(E) — by — ba| < 12a.

2rg
+ farg, ﬁo |h — by| < arg.

4

Proof Since we can replace f with f — byr and h with h — by, it suffices for our aim to
prove the case when b1 = by = 0. By The Mean Value Theorem for Integrals, there exists
& € [ro/4, ro/2] and & € [rg, 2rp], such that

ro '70 2ro
Dpen= [ swan nre= [ s,
s ro
which yields that
FED] < daro. |fE)] < aro.
Then
& & 2ro
V (f'+h) s|f<sl>—f(sz>|+/ |h|55ar0+/ Ih| < 6aro.
& 131 ro/4

Using the Mean Value Theorem for Integrals again, we can find £ € [£, &], such that

(&2 = EDIS'(E) + h(&)| < 6ary.

Noting that rg/2 < & — &, we complete the proof. O

Lemma 5.2 For any sufficiently small r, we have

2r
/ Fi(t)dt

2r
/ F>(t)dt + 6wsr?
g

2r
< a()r?, / |H;|(D)dt < a(r)r,

and

2r
<a(r)r?, / |Hy — 12w3|(1)dt < a(r)r,
i

where lin}) a(r) =0, and 3 = 272 is the volume of the 3-dimensional sphere.
r—

Proof We have

2r 2r
/ Fi(ndt| < / / IR(9)|u*©dS3dr = / IR(g)|udVy,
r r s3 B\ By

2,2 % %
< (f IR(g)u’] dvg0> (/ dVgo>
By \ By B\ By

2
= ClIRlI 2By, 07"

2r 2r
/ |H1(r)|dr52/ fssm(g)wz

@ Springer

and

91
# 0dS d




Manifolds for which Huber’s Theorem holds Page230f29 86

2r
+ f / IR(g) I
r $3

1
= CUIRIN 2By ) IVOI 2B\ B, g0) +/}; . |R(c‘>’)|“2;dvgo)

2r

< ClRI 2B, .9 IVOI 2By \B, o) T CTIR(D N L2(B,,.6)-

310g O(1, 0
OgT()‘ (©dS3dr)

By Lemma 2.1,
IVl 2By By g0) = Cr|Ru* + R8O 128, \B,,g0) = CUIRN 12(,\B,.0)" T ),
hence
2r )
[ 1@t < CURIa g, +
r
Next, we discuss F>. Since

—Ago® — |Vgo¢* = c(m)Ru* — c(n)R(go),

we obtain
2r
/ F(t)dt = / Agy@dVy,
r Boy\ By
= [ VaePav e [ (R - RV,
By \B, By \B,
Note that

/ |R(2)u” — R(20)|dVgy < CUIRI 125, \5,.007" + 7
BZr\Br

To get the estimate of frzr F>, we only need to show that

1
lim — Vo d|2dV,, = 6ws.
e ) /BZr\Br| 2091"d Vg, = 603

Assume there exists r; — 0, such that

1
lim 7/ Ve 2d Vg, = A # 603
BZrk\Brk

k— o0 rk

Set uy = cyrru(rrx), where ¢ is chosen such that faB] loguy = 0. By the arguments in

Section 3, log u (x) converges to log |x|~2 weakly in leo’cp (R*\ {0}). Then, after passing to
a subsequence, | Bo\B, | Veo(rix) log ux |? converges to 6w;3, hence

. 1 .
lim 7/ |Vgo¢|2dVg0 = lim [Veo () log “k|2dVgo(rkx) — 6.
k—+00 Ty J Bay \By, k—+00 Jp,\ B,

This leads to a contradiction.
Lastly, we calculate frzr |Hy — 12w3]:

2r
/ Ha (1) — 1231d1 < /
r B\ By

1
+C / IR(g)u* — R(g0)|—d Vg, .
BZr\Br r

20log® 12

\Y
Vo9 or &)

dVy,
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The same argument as above shows that

dlog® 12
lim — VP e —‘dvgo -0
r=>07r JpB,\B, ar ®
This completes the proof. O

We will provide several applications here. First, we calculate f B, AgR:

Lemma 5.3 There exists ry — 0 such that

IR
/ AgR(g)dVy —>/ —dS,.
Bi\By, aB, Or
2 b
Proof We have

/ z&R@mvg=/' %ﬁm(RM&F—/ ng.o5, (R)AS,.
Bi\B, IB| 2 3
2

'

Applying Lemma 5.1 to by = b, = 0 and f = F, h = Hj, we deduce this lemma from
(5.1). O

We recall some basic properties of Q-curvatures, cf. [10, 11]. On a 4-dimensional mani-
fold, the Paneitz operator is defined as follows:

2 0
=Ry Voo — 2chgo(p,8 7

Py = Mgy + divg, <3

The Q-curvature of g satisfies the following equations:
1 1 2
Q(8) = — 5 8¢ R(8) — flRw(g)I t R
m¢+2Q@m=2Q@w“.

For simplicity, we define

¢ . a
T(p) = Rgo o — Ricg, (Vg 0, 5).
Lemma 5.4 There exists riy — 0, such that

A
lim 0(g)dV, :/ Q(go)dVg0—4w3+/ (L s0? +T(¢>)).
B dB 2 3"
2

k——+00 B \Brk
2

(=]

Proof We have

1
/ QedV, = / Qgod Vg, + 5/ Py (#)d Vg,
B1\B, B1\B, B%\Br

= / Qgd Vg
BL\Br
2

+1/ aAg°¢+ Ry 2P _opi ) i’) ds
_ — ic s .
2 (B \B, or 3 80 or 80 80 or 80
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By (3.5),
rli_r)% ./BB, [Vgo@ldSg, = 0.
Then
/ (gRgoa—q> —2Ricgy (Vg 9, 3)) dSey — 0. 5.3)
3B, \3 ar ar

By applying Lemma5.1to f = F»/2,h = H>/2 and (b1, by) = (—2w3, 6w3), we deduce
from (5.2) that there exists r, such that

1 A,
7/ ‘go(pngO — 4ws.
2 3Brk 8)”

Therefore, we complete the proof. O

Next, we discuss the relationship between || R||;2 and ||Riem||2:

Lemma5.5 We have

/ |Riem(g)|*dV, < +o0.
By

Proof Tt is well-known that
. | 1
Riem(g) = W(g) + E(Rlc(g) - 5R(g)g) Dg:

where W is the Weyl tensor and ®is the Kulkarni-Nomizu product. Since |W|%d V, is
conformally invariant, we only need to check Ric(g) € L? here.
Recall that Q(g) = —ﬁAgR(g) — %|Ric(g)|2 + ﬁRz, which means that

1 1
/ |Ric(g)’dV, = 7/ R%dV, — f/ AgR(g)dV, —4/ 0(g)dV,
B \B, 3JB\5, 3 JB\B, B1\B,
2 2 2 2

1
— / R%dV, — 4 / 0(g0)d Vg,
3JB\5, B1\B:

2 2

1 3R IA
_7/ 2as, - 2/ os? sy,
3 ABy\By) or 9By \By) or

Applying Lemma 5.1 to f = _%Fl +2F, h = _%H] + 2H3, (b1, by) = (—8ws, 24w3), we
can find r; — 0, such that

1 oR A,
7/ LT 2/ 28?4 or(g)) - 160s.
3 aBrk 3}’ agrk 8]‘

Lastly, we consider the formula for Pfaffian form:

Lemma 5.6 We have

1 I
Pf(g) = —4ws3 + Pf(go) + = ——d Sy,

By By 2 Jop, Or
2 2

2
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dB
2 2 2

1 LR i
— —dSy, — — Ay R dv, T(¢$)dS,,-
+12 /{;Bl u ar 80 12 /;1 80 (80) 80 +f (¢) 80

Proof Recall that

1 2y b L n
Pf(g)=§|W(g)| + R~ IRic@I%

where W is the Weyl tensor. Since

[ weirav, = [ wigoPavy, < +x.
B B
Pf(g) is integrable. Recall that (c.f. [11])

1 1
Pf(g) = gIW(g)Ideg +0(@)dVe + 5 AgR(8)dVy.

1 1
Pf(80) = gIW(80)I*d Vg + 0(80)dVgy + 15 Mgy R(g0)d Vs,
and

Poyd +20(g0) = 20(g)e*,

where g = u2gy = €?? gy, we have

1
/ Pf(g) =/ Pf(g())"‘i[ Pgo¢dvgo
Bi\B, Bi\B, B1\B,
2

1 1
2 2

1 1
— AgR(g)dV, — —/ A gy R(20)d Ve,
12 B \B, 12 B \B,
2 2
1 IA 4 &
= [ pren+s [ w? s
/B.\Br 2 Jaspy or

2 2
1 IR 1

ur——ds

- - A R(g0)dY,
12 9(B1\B,) ar 80 12 /;I\Br 80 80
2 2

+1/ <R 99 o Ricy (Vo 2 ))dS

- 0 — LCy 00 P, 00 -

2 3(B1\B,) 80 r 80\ 7 80 r 80
2

Apply Lemma 5.1 to f = 5Fy + 4 Fp, and h = 5 Hy + 3 Ha, (b1, b) = (—2w3, 6w3),
which suffices to complete the proof. O

Theorem 1.5, 1.7 and 1.6 can be deduced from Lemma 5.4, 5.6 and 5.5 easily.

6 Examples

In the last section, we provide examples of metrics on Bf 1 \ {0} that are conformal to ge;.

and satisfy |R(g)]l ;2 < +o00. We will set
u=r"2e, ¢ =logu, and g= uzgeuc,

where v = v(r) is radial.
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‘We have
A
R 2dVg = (c=)2dx, |QgldV, = |A2pldx,
u

where c is a constant. We observe that
Au

u
Recall that (cf. [23, Ch. 5])

///| |U//| |v/|

|v
+ P +r73)' 6.1)

/
=v' = 4 )2 A2 = A% < C() +
;

(o) = —(ozid) i+ + Loz ud): (log i) — & 2 22 y
le(g) = —(logu ),z] + 2(10g“ )i(logu )j Z(A(logu )+ | Viogu~| )(geuc)z]-
Note that the Hessian tensor of log 2 in the euclidean metric is
Hess(logu®, geue) = (logu®)"dr @ dr + r(logu®) ggs.

It follows that
1 1
Ric(g) = <—(1og u?)" + J(logu?)'|* = ~(Adlogu?) + |(1ogu2>’|2)) dr @ dr
1
- (r(log u?) + 5 (Aog u?) + |(log uz)’|2)r2) g5
3 2\ 1 2N/
= —5 (logu“)” + —(logu®)" | dr @ dr
r
5 2 2
—(2rtogu®y + S logu®)” + L jlogu®)1? ) g5
2 2 2
_ 7 1 1 ’ 2.1 n2.2
=-3(v'+-() |dr®dr— (—3rv + rev” 4 210 r )g53,
r
leading to
. 2 72 |v/|2
[Ric(@I"VIgl = C(v"|" + rT)- (6.2)

2(2—r%)logr

Example 6.1 Consider v =r?logr, g = e~ Zeuc- We have

A
22 = 292 qlogr + 1)2 + 2@ logr — 2alogr + 2a — 2).
u
Then, R(g) € L? if and only a > 0. In this setting, it is easy to verified that Ric(g) € L?
and Q(g) € L' from (6.1) and (6.2).
Example 6.2 Letv = —alog(—logr), g = mijﬁ. We find

Au a(l +a) 2a

u  r2log’r = r?logr’

Then, R(g) € L? for any a. We can check that Ric(g) € L? and Q(g) is integrable.
This example extends the metric

|dz|*
8= 1 210122
|z]“[log |z||
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constructed by Hulin-Troyanov [18] on a 2 dimensional disk, which has finite total Gauss
curvature. Depending on the value of a, their metric can be either bounded or unbounded,
finite area or infinite area. However, in our case, the metric is always unbounded and of
infinite volume.

Note that r?u = ¢¥ = |logr|~® does not belong to W22 when a > —%. This indicates

that the conclusion ‘G~'u € W>? for any p < % in Theorem 1.2 can not be extended to

p=73.

. . 4 2phgin L
Example 6.3 Consider v = r* sin %, g =r"%¥"s"7g,... We observe that
1

sin - 1
V' =0(), V/irP=0(1), Av=—"+0().
r r

Consequently, the scalar curvature R(g) and the Ricci curvature Ric(g) are in L2. Since

| sin(L)] 3 ysin(hy | sin(7)| © |
fB r4r dx:/o T’r dr:/2 p dt>;kn/( | sin(?)|dt = +o0,

1 k=D
2

the Q-curvature Q(g) is not integral in this case.
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