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Abstract
Extensions of Huber’s Theorem to higher dimensions with L

n
2 bounded scalar curvature have

been extensively studied over the years. In this paper,wedelve into the properties of conformal
metrics on a punctured ball with ‖R‖

L
n
2

< +∞, aiming to identify necessary geometric
constraints for Huber’s theorem to be applicable. Unexpectedly, such metrics are more rigid
than we initially anticipated. For instance, we found that the volume density at infinity is
precisely one, and the blow-down of the metric is Rn . Specifically, in four dimensions, we
derive the L2-integrability of the Ricci curvature, which directly leads to the conclusion that
the Pfaffian 4-form is integrable and adheres to a Gauss-Bonnet-Chern formula. Additionally,
we demonstrate that a Gauss-Bonnet-Chern formula, previously verified by Lu and Wang
under the assumption that the second fundamental form belongs to L4, remains valid for
R ∈ L2. Consequently, on an orientable 4-dimensional manifold conformal to a domain in
a closed manifold, Huber’s Theorem holds when R ∈ L2, if and only if the negative part of
the Pfaffian 4-form is integrable.

Mathematics Subject Classification 53C21 · 58J05

1 Introduction

In the famous paper [17], Huber proved a remarkable result concerning the structures of
complete surfaces: every complete surface with the integrable negative part of the Gauss
curvature is conformally equivalent to a compact surface with a finite number of points
removed. Regrettably, this result does not extend straightforwardly to higher dimensions.
For instance, the manifold T

2 × R is flat but not conformal to any closed manifold with
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finite points removed. Therefore, a variety of generalizations of Huber’s Theorem have been
established under certain supplementary curvature and other geometric assumptions, as seen
in [8, 9, 13, 16, 21], and related references.

In this paper, our focuswill be on a completemanifold that conforms to a domain of a closed
manifoldwith

∫
M |R(g)| n2 dVg < +∞. There are very few results available regardingHuber’s

Theorem in this particular direction. The only known sufficient and necessary condition is
the combination of Theorem 2.1 in [9] with Theorem 1.2 in [2], which can be summarized
as follows:

Theorem 1.1 (Carron-Herzlich, Aldana-Carron-Tapie) Let � be a domain of (M, g0), a
compact Riemannian manifold of dimension n > 2. Assume � is endowed with a complete
Riemannian metric g which is conformal to g0. Then M \ � is a finite set if and only if
vol(Bg

r (x0), g) = O(rn) for some point x0 in �.

The primary objective of this paper is to identify more geometric constraints for Huber’s
Theorem. We will investigate the geometric characteristics of a metric g defined on the
punctured n-dimensional closed ball B \0, which conforms to a smoothmetric g0 (defined on
B) with finite ‖R(g)‖

L
n
2
. Contrary to our expectations, such a metric exhibits a considerably

higher degree of rigidity than previously anticipated.We demonstrate that the volume density
of g at infinity equals 1, and themanifold blows down to an n-dimensional space. Specifically,
we can state the following:

Theorem 1.2 Let g0 be a smooth metric defined on the closed unit n-ball B, with n ≥ 3.

Let g = u
4

n−2 g0 be a conformal metric on B \ {0}. Assuming ‖R(g)‖
L

n
2 (B,g)

< +∞ and

vol(B \ {0}, g) = ∞. Then, as r → +∞, the volume ratio

vol(Bg
r (x), g)

Vnrn
→ 1,

and (B \ {0}, g
r2

, x) converges to (Rn, 0) in the Gromov-Hausdorff distance, where x is
a fixed point in B and Vn represents the volume of the unit Euclidean ball. Additionally,
G−1u ∈ W 2,p(B 1

2
) for any p < n

2 , where G is the Green function defined by

−�g0G = δ0, G|∂B = 0.

Remark 1.3 Based on Proposition 2.8 and Corollary 3.3, the assumption that vol(B \0, g) =
∞ is equivalent to the completeness of (B \ 0, g), when ‖R(g)‖

L
n
2 (B,g)

< +∞ is satisfied.

The theorem above includes lots of unexpected pieces of information. Firstly, it implies
that when (M, g) is conformal to a domain of a closed manifold, Huber’s result holds if and
only if the volume density at infinity equals the number of ends. In addition, each end of such
a manifold is asymptotically euclidean, which is a useful property for verifying whether a

manifold has a finite point conformal compactification. For instance, by setting g = u
4

n−2 geuc

on M = R
n\Rn−k , where u =

(∑k
i=1(x

i )2
) 2−k

2
, we find R(g) = 0, and (M, g) remains

noncompact for n > k > n
2 +1. Nonetheless, (M, g) does not satisfyHuber’s Theorem, since

its blow-down is notRn . This contrasts with cases where the total Q-curvature is finite [7, 12,
24]. For instance, when g0 is the Euclidean metric and u = rα , the Q-curvature of g is 0, yet
the volume density at infinity can varywidely. Secondly, it appears that when ‖R‖

L
n
2

< +∞,
conforming to a domain of a closed manifold is a quite strong assumption. For example, if
we further assume Ric(g) ≥ 0, such a manifold must be Rn (see Corollary 3.6).
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A plausible intuitive explanation for these unusual phenomena is as follows: Firstly, we

can find sequences rk → 0 and ck such that ckr
n−2
2

k u(rk x) converges weakly inW 2,p(Rn \0)
to a positive function u′ for any p < n

2 . The function u′ is harmonic since the limit metric

g∞ = u′ 4
n−2 geuc is scalar flat. Moreover, (Rn \0, g∞) should be extendable to a cone since it

can be seen as a blow-downof (B\0, g). However, a positive harmonic function onRn\0must

be in the form of a + br2−n . When a and b are both non-zero, (Rn \ 0, (a + br2−n)
4

n−2 geuc)

becomes a complete manifold with 2 ends, and is not a cone.When b = 0, (Rn \0, a 4
n−2 geuc)

is not complete near 0. Therefore, we conclude that u′ = b|x |2−n with b > 0, which implies
that g∞ is a flat metric defined on Rn \ 0.

Theorem 1.2 has a number of interesting corollaries. First, we examine a conformal map
from (B \ {0}, g0) into R

n+k . We show that if the second fundamental form A is in Ln and
the image is noncompact, then the mapping near the origin closely resembles x

|x |2 , and the

intrinsic distance is asymptotically equivalent to the distance in R
n+k :

Theorem 1.4 Let (B, g0) be as in Theorem 1.2. Let F : (B \ {0}, g0) → R
n+k be a con-

formal immersion with finite ‖A‖Ln . Suppose the volume is infinite. Then after changing the
coordinates of Rn+k , for any rk → 0 and x0 ∈ B, there exists λk ∈ R and y0 ∈ R

n+k , such
that a subsequence of

λk(F(rk x) − F(rk x0)) + y0 (1.1)

converges weakly in W 3,p
loc (Rn \ {0}) to F∞(x) = ( x

|x |2 , 0) for any p < n
2 . Consequently,

lim
x→0

|F(x) − F(x0)|
dgF (x0, x)

= 1, (1.2)

where gF is the induced metric.

Note that, if we use the coordinates change: x → x
|x |2 , the limit of λk(F(rk x)−F(rk x0))+ y0

is simply the identity map of Rn under the new coordinates. Therefore, Theorem 1.4 can be
viewed as a higher-dimensional extension of a result by S.Müller andV. Šverák [22, Corollary
4.2.5], except that F does not have branches in our case.

Next, we will prove some Gauss-Bonnet-Chern formulas in 4-dimensional cases. Since
the asymptotic behavior of (B \ {0}, g) at infinity is clear and simple, we can get the exact
values of the error terms.

First, we discuss the formula for Q-curvature. For the Q-curvature, we use the definition
in [10]. Since R(g) ∈ L2 is not strong enough to ensure the integrability of Q-curvature (see
Example 6.3), our first formula is stated as follows:

Theorem 1.5 Let (M0, g0) be a compact 4-dimensional orientable manifold without bound-
ary and let (M, g) be conformally equivalent to (M0, g0) with a finite number of points
removed. We assume (M, g) is complete and R(g) ∈ L2(M, g). Then there exist domains
�1 ⊂⊂ �2 ⊂⊂ �3 · · · , such that

∞⋃

k=1

�k = M,

and

lim
k→+∞

∫

�k

Q(g)dVg =
∫

M0

Q(g0)dVg0 − 8π2m,

where m is the number of the ends.
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Under the assumptions in the above theorem, it is evident that the integrability of Q− (or
Q+) implies the integrability of Q. When Q is integrable, the theorem above can be viewed
as an intrinsic version of Theorem 1.5 in [20], where |A|L4 < +∞was assumed. It may seem
a bit unusual at first glance that such a formula is solely concerned with intrinsic properties.

As an application of the above theorem, we obtain the following:

Corollary 1.6 Let (M, g) be as in Theorem 1.5. Then Riem(g) ∈ L2, where Riem(g) is the
curvature tensor.

We denote by P f (g) the standard Pfaffian of the Riemannian metric g. For a closed
4-dimensional manifold (M0, g0), the Chern-Gauss-Bonnet formula can be expressed as

∫

M0

P f (g0) = 4π2χ(M0).

where χ(M0) is the Euler characteristic of M0. It is well-known that

P f (g) =
(
1

8
|W (g)|2 + 1

12
R2(g) − 1

4
|Ric(g)|2

)

dVg (1.3)

where W is the Weyl tensor. Then the integrability of the Pfaffian form is deduced from
L2-integrability of Ricci curvature and scalar curvature, along with the conformal invariance
of the Weyl tensor. Furthermore, we obtain the following result:

Theorem 1.7 Let (M, g) and m be as in Theorem 1.5. Then the Pfaffian of the curvature is
integrable, and

∫

M
P f (g) = 4π2χ(M0) − 8mπ2,

or equivalently
∫

M
P f (g) = 4π2χ(M) − 4mπ2.

We set P f (g) = 
dVg , where dVg is the volume form of g, and define 
−dVg to be
the negative part of P f (g). From the equation (1.3), we deduce that Ric(g) ∈ L2(M, g)
whenever
− is integrable. Together with Theorem 1.4 in [14], we can establish the following

Theorem 1.8 Let (M, g0) be a 4-dimensional oriented compact Riemannian manifold with-
out boundary and let� be a domain of M. Assume� is endowedwith a complete Riemannian
metric g which is conformal to g0 with R(g) ∈ L2(�, g). Then M \ � is a finite set if and
only if the negative part of P f (g) is integrable.

This paper is organized as follows. Section2 reviews some regularity results of the scalar
curvature equation and establishes the 3-circleTheorem. InSect. 3we establish the asymptotic
behaviors of the metric at infinity. Then, we prove Theorem 1.4 and Theorem 1.5, 1.7, 1.8.
in Sects. 4 and 5 respectively. In the last section, we provide several examples of complete
metric on the 4-dimensional punctured ball with R ∈ L2.

2 Preliminaries

First, we introduce some notations that will be used throughout the remainder of the paper.
We always assume n ≥ 3 and denote by (B, x1, x2, · · · , xn) the n-dimensional unit ball,
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and by Br the n-dimensional ball of radius r centered at 0 in Rn . We assume g0 is a smooth
metric defined on B. For simplicity, we always assume x1, · · · , xn are normal coordinates
of g0 at 0, then we have

dg0(0, x) = |x |, and |g0,i j − δi j | ≤ c|x |2. (2.1)

2.1 Regularity

In this section, we let v be a weak solution of

− div(ai jv j ) = f v, (2.2)

where

0 < λ1 ≤ ai j , ‖ai j‖C0(B2) + ‖∇ai j‖C0(B2) < λ2. (2.3)

We have the following:

Lemma 2.1 Suppose that v ∈ W 1,2(B2) is positive and satisfies (2.2) and (2.3). We assume
∫

B2
| f | n2 ≤ �.

Then

r2−n
∫

Br (x)
|∇ log v|2 < C, ∀Br (x) ⊂ B.

Lemma 2.2 Suppose v ∈ W 1,2(B2) is positive and satisfies (2.2) and (2.3). Then for any
q ∈ (0, n

2 ), there exists ε0 = ε0(q, λ1, λ2) > 0, such that if

∫

B2
| f | n2 < ε0,

then

‖∇ log v‖W 1,q (B) ≤ C(λ1, λ2, ε0),

and

e− 1
|B|

∫
B log v‖v‖W 2,q (B) + e

1
|B|

∫
B log v‖v−1‖W 2,q (B) ≤ C(λ1, λ2, ε0).

For the proofs of the above two lemmas, one can refer to [15].

Corollary 2.3 Suppose v ∈ W 1,2(B2) is positive and satisfies (2.2) and (2.3). Assume
∫

B
v2 < �.

Then for any q < n
2 and p > 2, there exists C1 and C2, such that

‖v‖W 2,q (B) < C1, and
∫

B
v p ≤ ‖v‖2L2(B)

+ C2‖v‖L2(B).
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Proof Note that for any E ⊂ B,
∫

E
(log v)+ =

∫

E∩{v>1}
log v ≤

∫

E
v2 < C . (2.4)

Utilizing (2.2), we obtain that ‖v‖W 2,q (B) < C .

Select q < n
2 , such that W

2,q(B) can be embedded into L2p(B). Since

|{v ≥ 1} ∩ B| ≤
∫

B
v2,

we have
∫

B
v p ≤

∫

{v≤1}∩B
v2 +

(∫

{v≥1}∩B
v2p

) 1
2 |{v ≥ 1} ∩ B| 12

≤
∫

B
v2 +

(∫

B
v2p

) 1
2
(∫

B
v2

) 1
2 ≤

∫

B
v2 + C‖v‖p

W 2,q (B)

(∫

B
v2

) 1
2

.

�

2.2 Convergence of distance functions

The distance between two points x and y on a manifold (M, g) is defined as the infimum of
the lengths of piecewise smooth curves joining them. We will use the following proposition:

Proposition 2.4 Let ak → 0+ and gk = gk,i j dxi ⊗ dx j be a smooth metric defined on

B 1
ak

\ Bak . Assume gk and g−1
k converge to geuc in W 1,p

loc (Rn \ {0}) for any p ∈ (n − 1, n).

Then after passing to a subsequence, dgk converges to dgeuc in C
0((Br\B 1

r
) × (Br\B 1

r
)) for

any r > 1.

Proof The arguments in [15, Section 3] use properties of complete metrics, so they can not
be applied here directly. For this reason, we let t > 1 and take nonnegative φt ∈ C∞(R),
which satisfies: 1). φt is 1 on [ 1t , t] and 0 on (−∞, 1

2t ] ∪ [2t,+∞); 2). |φ′| < 2t . Define

ĝk,t = φt (|x |)gk + (1 − φt (|x |))geuc.
Obviously, ĝk,t is complete on Rn .

We have
∫

B2t\Bt
|∇(ĝk,t − geuc)|pdx ≤ Ct p

∫

B2t\Bt
|gk − geuc|pdx + C

∫

B2t\Bt
|∇(gk − geuc)|pdx

≤ C(t)‖gk − geuc‖p
W 1,p(B2t\Bt ).

A similar estimate can be obtained on B 1
t
\B 1

2t
using the same argument.

Note that

det(φt gk + (1 − φt )geuc) ≥
n∏

i=1

(φt ai + (1 − φt )),

where a1, · · · , an are eigenvalues of gk . Then

det(φt gk + (1 − φt )geuc) ≥ 1

2n
min{det(gk), 1},
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which implies that

1

det(ĝk,t )
≤ C(1 + 1

det(gk)
) = C(1 + det(g−1

k )).

Since g−1
k converges inW 1,p

loc (Rn\{0}) for any p ∈ (n−1, n), (g−1
k ) is bounded in Lq(Br\B 1

r
)

for any q . Then 1/det(ĝk,t ) is bounded in Lq(Br ) for any q . Recall that the inverse of amatrix
is just the adjugate matrix divided by the determinant. Then ĝ−1

k,t is bounded in W 1,p(Br ).
Note that ĝk,t = gecu on Bc

2t . It is not difficult to check that for any fixed r , there exists
r ′, such that any geodesic between two points x , y ∈ Br must lie in Br ′ . Then, using the
arguments in [15, Section 3], a subsequence of dĝk,t converges to dgeuc in C0(Br × Br ) for
any r . Thus, after passing to a subsequence, we can find tk → +∞, such that dĝk,tk converges

to dgeuc inC
0(Br × Br ) for any r . For simplicity, we set g̃k = ĝk,tk and assume dg̃k converges

in C0(Br × Br ) for any r .
Now, we start to prove that dgk converges to dgeuc in C

0((Br\B 1
r
) × (Br\B 1

r
)).

Let λk(x) be the lowest eigenvalue of g
i j
k . Since |∇gk

x dgk (x, y)| ≤ 1 for a.e. x , we have

|∇xdgk (x, y)|2 ≤ 1

λk(x)
≤ C

∑

i j

|gk,i j (x)|,

which implies that dgk is bounded W 1,q((Br\B 1
r
) × (Br\B 1

r
)) for any r and q > 0. Then,

we may assume dgk converges to a function d in C0((Br\B 1
r
) × (Br\B 1

r
)) for any r . By the

trace embedding theorem, for any x , y ∈ Br \ B 1
r
, we have

d(x, y) ≤ dgeuc (x, y).

Next, we show d(x, y) ≥ dgeuc (x, y). Let γk be a curve from x to y in Rn \ {0}, such that

Lgk (γk) ≤ dgk (x, y) + 1

k
.

Let λ > d(x, y) + r + 1. We claim that γk ⊂ Bλ when k is sufficiently large. Suppose
that γk ∩ ∂Bλ �= ∅. It is easy to check that

dgk (∂Bλ, ∂Br ) ≤ Lgk (γk) ≤ dgk (x, y) + 1

k
→ d(x, y).

However, dgk (∂Bλ, ∂Br ) = dg̃k (∂Bλ, ∂Br ) when k is sufficiently large, and

lim
k→+∞ dg̃k (∂Bλ, ∂Br ) = dgeuc (∂Bλ, ∂Br ) = λ − r ,

which leads to a contradiction.
The rest of the proof can be divided into 2 cases. Case 1, we assume γk ∩ ∂B 1

tk
= ∅. In

this case,

Lgk (γk) = Lg̃k (γk) ≥ dg̃k (x, y).

Case 2, we may assume xk and yk to be the first and the last point in γk ∩ ∂B 1
tk
respectively.

Then

Lgk (γk) ≥ Lgk (γk |[x,xk ]) + Lgk (γk |[yk ,y])
= Lg̃k (γk |[x,xk ]) + Lg̃k (γk |[yk ,y])
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≥ dg̃k (x, xk) + dg̃k (yk, y)

≥ dg̃k (x, y) − dg̃k (xk, yk).

Thus, for both cases, we have

d(x, y) = lim
k→+∞ dgk (x, y) ≥ lim

k→+∞ dg̃k (x, y) = dgeuc (x, y).

�

2.3 Three circles theorem

In this section, we present the Three Circles Theorem. It is convenient to state and prove this
theorem on pipes. We let Q = [0, 3L] × Sn−1, and

Qi = [(i − 1)L, i L] × Sn−1, i = 1, 2, 3.

Set gQ = dt2 + gSn−1 and dVQ = dVgQ .
We first state this theorem for the case of g = gQ and R = (n − 1)(n − 2):

Lemma 2.5 Let u �= 0 solve the following equation on Q:

−�u + (n − 2)2

4
u = 0.

Then there exists L0, such that for any L > L0, we have

1)
∫
Q1

u2dVQ ≤ e−L
∫
Q2

u2dVQ implies
∫
Q2

u2dVQ < e−L
∫
Q3

u2dVQ;
2)

∫
Q3

u2dVQ ≤ e−L
∫
Q2

u2dVQ implies
∫
Q2

u2dVQ < e−L
∫
Q1

u2dVQ;
3) either

∫
Q2

u2dVQ < e−L
∫
Q1

u2dVQ or
∫
Q2

u2dVQ < e−L
∫
Q3

u2dVQ .

For the proof, one can refer to [6, 19]. Next, we discuss the general case.

Theorem 2.6 Let g0 be a metric over Q and u ∈ W 2,p which solves the equation

−�g0u + c(n)R(g0)u = f u.

Then for any L > L0, there exist ε′
0, τ , such that if

‖g0 − gQ‖C2(Q) < τ,

∫

Q
| f | n2 dVg0 < ε′

0, (2.5)

then

1)
∫
Q1

u2dVg0 ≤ e−L
∫
Q2

u2dVg0 implies
∫
Q2

u2dVg0 ≤ e−L
∫
Q3

u2dVg0 ;
2)

∫
Q3

u2dVg0 ≤ e−L
∫

Q2

u2dVg0 implies
∫
Q2

u2dVg0 ≤ e−L
∫
Q1

u2dVg0 ;
3) either

∫
Q2

u2dVg0 ≤ e−L
∫
Q1

u2dVg0 or
∫
Q2

u2dVg0 ≤ e−L
∫
Q3

u2dVg0 .

Proof If the statement in 1) is false for an L > L0, we can find gk , uk and fk , s.t.

gk → gQ in C2(Q),

∫

Q
| fk | n2 dVgk → 0,

−�gk uk + c(n)R(gk)uk = fkuk,
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and
∫

Q1

u2kdVgk ≤ e−L
∫

Q2

u2kdVgk ,

∫

Q2

u2kdVgk > e−L
∫

Q3

u2kdVgk .

Let

vk = uk
‖uk‖L2(Q2,gk )

.

We have
∫

Q1

v2k dVgk ≤ e−L
∫

Q2

v2k dVgk ,

∫

Q3

v2k dVgk < eL
∫

Q2

v2k dVgk ,

and
∫

Q2

v2k dVgk = 1.

Thus
∫

Q
v2k dVgk ≤ C .

vk satisfies

−�gkvk + c(n)R(gk)vk = fkvk .

By Corollary 2.3 and Sobolev embedding theorem, vk converges to a function v in W 1,2
loc ,

where v satisfies:

−�v + (n − 2)2

4
v = 0, and

∫

Q2

|v|2dVQ = 1.

Thus v �= 0.
Moreover,

∫

[ε,L]×Sn−1
v2dVQ = lim

k→+∞

∫

[ε,L]×Sn−1
v2k dVgk ≤ e−L lim

k→+∞

∫

Q2

v2k dVgk ,

letting ε → 0 gives
∫

Q1

v2dVQ ≤ e−L
∫

Q2

v2dVQ .

Similarly, there holds
∫

Q3

v2dVQ ≤ eL
∫

Q2

v2dVQ,

which contradicts Lemma 2.5. Hence, the statements in (1) are proved. Using the same
arguments, we can easily carry out the proof of (2) and (3). �

Theorem 2.7 Let g = u
4

n−4 g0 be a smooth metric defined on B \ {0} with
∫

B
|R(g)| n2 dVg < +∞, vol(B \ {0}, g) = +∞.
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Then for any ϑ > eL0 there exists r0, such that for any r < r0, there holds
∫

Br \Brϑ−1

u2

|x |2 dVg0 ≤ 1

ϑ

∫

Brϑ−1\Brϑ−2

u2

|x |2 dVg0 . (2.6)

Moreover, we have

lim
k→+∞

∫

B
ϑ−k r \Bϑ−k−1r

u2

|x |2 dVg0 = +∞ and lim
k→+∞

∫

B
ϑ−k r \Bϑ−k−1r

u
2n
n−2 dVg0 = +∞.

(2.7)

Proof Put

φ(t, θ) = (e−t , θ),

and

g′(t, θ) = φ∗(g) = v
4

n−2 ĝ(t, θ),

where ĝ(t, θ) = e2tφ∗(g0), which converges to dt2 + gSn−1 as t → +∞. Then

v
4

n−2 (t, θ) =u
4

n−2 (e−t , θ)e−2t ,

− �ĝv + c(n)R(ĝ)v = c(n)R(g′)v
n+2
n−2 := f v,

∫

S1×[a,b]
| f | n2 dVĝ = c

∫

Be−a \Be−b

|R(g)| n2 dVg,

and
∫

Br \Br/ϑ
u2

|x |2 dVg0 =
∫

Sn−1×[− log r ,− log r+logϑ]
v2dVĝ.

Without loss of generality, we assume

‖ĝ − gQ‖C2(Sn−1×[0,+∞)) < τ,

∫

Sn−1×[0,+∞)

|R| n2 dVg < ε′
0. (2.8)

Suppose (2.6) is not true, i.e., we can find rk → 0, such that
∫

Brkϑ2\Brkϑ

u2

|x |2 dVg0 >
1

ϑ

∫

Brkϑ\Brk

u2

|x |2 dVg0 . (2.9)

We set

�k,m = Sn−1 × [− log rk − (mk − m + 1) logϑ,− log rk − (mk − m) logϑ],
where m = 1, · · · , mk =

[− log rk
logϑ

]
. Then (2.9) is equivalent to

∫

�k,mk

v2dVĝ ≤ 1

ϑ

∫

�k,mk−1

v2dVĝ.

By Theorem 2.6, we get
∫

�k,mk−1

v2dVĝ ≤ 1

ϑ

∫

�k,mk−2

v2dVĝ.

123



Manifolds for which Huber’s Theorem holds Page 11 of 29 86

Step by step, we get
∫

�k,m

v2dVĝ ≤ ϑ−(m−1)
∫

�k,1

v2dVĝ ≤ ϑ−(m−1)
∫

Sn−1×[0,2 logϑ]
v2dVĝ ≤ Cϑ−m .

By Corollary 2.3,
∫

�k,m

v
2n
n−2 dVĝ ≤ C(ϑ−m + ϑ−m

2 ),

hence

∫

B\Brk
u

2n
n−2 dVg0 ≤ C

∫

B\Brk
u

2n
n−2 dx ≤ C

∫

B\B
ϑ−1

u
2n
n−2 dx + C

mk∑

m=1

∫

Brkϑm \Brkϑm−1

u
2n
n−2 dx

≤
∑

m

C

ϑ
m
2

< C(ϑ),

where C(ϑ) is independent of k. Letting k → ∞, we get a contradiction.
Thus, we get (2.6), which implies from Theorem 2.6 that

∫

Brϑ−m \Brϑ−m−1

u2

|x |2 dVg0 ≥ Cϑm .

Since
∫

Brϑ−m \Brϑ−m−1

u2

|x |2 dVg0 ≤ C(logϑ)
2
n (

∫

Brϑ−m \Brϑ−m−1

u
2n
n−2 dVg0)

n−2
n ,

we get

lim
k→+∞

∫

Brϑ−m \Brϑ−m−1

u
2n
n−2 dVg0 = ∞.

�
Proposition 2.8 Let g = u

4
n−4 g0 be a smooth metric defined on B \ {0} with

∫

B
|R(g)| n2 dVg < +∞, vol(B \ {0}, g) < +∞.

Then (B \ {0}, g) is bounded.
Proof We need to show that there exist r and C , such that for any x sufficiently close to 0,
we can find x ′ ∈ B̄1\Br , such have dg(x, x ′) < C .

Let g′, ĝ, v be as in the proof of Theorem 2.7 and assume (2.8) holds. Set

�m = Sn−1 × [− log r0 + (m − 1) logϑ,− log r0 + m logϑ],
where − log r0 ∈ [0, logϑ) such that x = (− log r0 + m0 logϑ, θ) for some m0 ∈ Z

+ and
θ ∈ Sn−1.

By Theorem 2.6, if there exists m, such that
∫
�m

v2dVĝ ≤ ϑ−1
∫
�m+1

v2dVĝ , then

∫

�m+m′
v2dVĝ ≥ Cϑm′ → +∞,
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which is impossible, since

∫

�m+m′
v2dVĝ ≤ C

(∫

�m+m′
v

2n
n−2 dVĝ

) n−2
n

≤ C(vol(B \ {0}, g)) n−2
n < +∞.

Then
∫

�m+1

v2dVĝ ≤ ϑ−1
∫

�m

v2dVĝ,

which implies that
∫

�m

v2dVĝ < Cϑ−m .

By Corollary 2.3, ‖v‖L p(�m ) < C(p)ϑ−m/(2p) for any p, hence, for any q < n
2 ,

‖�ĝv‖Lq (�m ) < C(q)ϑ−a(q)m for some a(q) > 0. By the standard elliptic estimate, we get
‖v‖W 2,q (�m ) < Cϑ−a(q)m . It follows from the Sobolev inequality that for any q ′ ∈ (n−1, n),

the inequality ‖v 2n
n−2 ‖W 1,q′

(�m )
< C(q ′)ϑ−a(q ′)m holds for some positive constantsC(q ′) and

a(q ′).
For convenience, we set

tm = − log r0 + m logϑ, xm = (tm, θ).

By the classical trace embedding theorem (cf. [1, Theorem 4.12]), we have

dĝ(xm, xm+1) ≤ C
∫ logϑ

0
v

2
n−2 (t + tm, θ)dt ≤ C(

∫ logϑ

0
v

2n
n−2 (t + tm, θ))

1
n

≤ C‖v 2n
n−2 ‖

1
n

W 1,q′
(�m )

≤ Cϑ− a(q′)m
n .

Then

d(x, x0) <

m0∑

m=1

d(xm, xm−1) < C .

�

3 Asymptotic properties

In this section, we always assume that (2.1) holds and g = u
4

n−4 g0 denotes a smooth metric
on B \ {0} with

vol(B \ {0}, g) = ∞.

First of all, we prove the following lemma:

Lemma 3.1 Let rk → 0. After passing to a subsequence, we can find ck > 0, such

that ckr
n−2
2

k u(rk x) converges to |x |2−n weakly in W 2,p
loc (Rn \ {0}) for any p ∈ [1, n

2 ).
Moreover, dgk converges to d|x |−4geuc in C0((Br\B 1

r
) × (Br\B 1

r
)) for any r > 1, where

gk,i j = r2k (cku(rk x))
4

n−2 g0,i j (rk x).
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Proof Define

uk(x) = r
n−2
2

k u(rk x)ck .

Choose ck such that
∫
∂B1

log ukdSn−1 = 0. It is easy to check that −�gk uk = fkuk , where

fk = −c(n)r2k Rg0(rk x) + c(n)R(rk x)(r
n−2
2

k u(rk x))
4

n−2 ,

and for sufficiently large k,

‖ fk‖L n
2 (Br \B 1

r
)
≤ Cr2k + C

⎛

⎝
∫

Brrk \B rk
r

|R| n2 u 2n
n−2 dx

⎞

⎠

2
n

≤ min{ε0, ε′
0}.

By Lemma 2.1 and the Poincaré inequality ( c.f. [3, Theorem 5.4.3]), log uk is bounded in
W 1,2(Br \B 1

r
). Then uk is bounded inW 2,p(Br \B 1

r
) by usingLemma2.2. Thus uk converges

weakly to a positive harmonic function u′ locally on R
n \ {0} with ∫

∂B1
log u′dSn−1 = 0.

According Corollary 3.14 in [5], u′ is written as

u′ = a + b|x |2−n,

where a and b are nonnegative constants. Applying Theorem 2.7, we get
∫

Brkr \Brkrϑ−1

u2

|x |2 dVg0 ≤ 1

ϑ

∫

Brkrϑ−1\Brkrϑ−2

u2

|x |2 dVg0 ,

which implies that
∫

Br \Brϑ−1

u2k
|x |2 dVg0,k ≤ 1

ϑ

∫

Brϑ−1\Brϑ−2

u2k
|x |2 dVg0,k ,

where g0,k = g0,i j (rk x)dxi ⊗ dx j . Taking the limit, we obtain

∫

Br \Brϑ−1

u′2

|x |2 dx ≤ 1

ϑ

∫

Brϑ−1\Brϑ−2

u′2

|x |2 dx .

Letting r be sufficiently large, we get a = 0. Since
∫
∂B1

log u′ = 0, b = 1.

By changing coordinates: x → x
|x |2 , we see that u

′ 4
n−2 geuc is just geuc in the new coordi-

nates. The convergence of dgk follows from Proposition 2.4 directly. �
In the preceding lemma, we did not express ck in terms of rk , which limits our under-

standing of the behavior of u(rk x). Nonetheless, the lemma is sufficiently strong to derive
the following decay properties:

Corollary 3.2 For any τ ∈ (0, 1), there exists δ such that for any r < δ, the following hold:

(1 − τ)
1

2n
≤ vol(B2r \ Br , g)

vol(Br \ Br/2, g)
≤ 1

2n
(1 + τ); (3.1)

(1 − τ)(2n − 1) ≤ vol(B2r \ Br ,g)

Vn(dg(2r x0, r x0))n
≤ (2n − 1)(1 + τ), ∀x0 ∈ ∂B; (3.2)

∫
Br \Br/2 |x |β |∇g0u|αdVg0

∫
B2r \Br |x |β |∇g0u|αdVg0

< 2(n−1)α−n−β(1 + τ), ∀α ∈ [1, n), β ∈ R; (3.3)
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∫
Br \Br/2 |x |βuαdVg0

∫
B2r \Br |x |βuαdVg0

< 2(n−2)α−n−β(1 + τ), ∀α ∈ [1,+∞), β ∈ R; (3.4)

1

2n−2 (1 − τ) ≤
∫
∂Br

|∇g0 log u|dSg0∫
∂B2r

|∇g0 log u|dSg0
≤ 1

2n−2 (1 + τ); (3.5)

2−1(1 − τ) ≤ dg(2r x0, r x0)

dg(r x0, r x0/2)
≤ 2−1(1 + τ), ∀x0 ∈ ∂B; (3.6)

(1 − τ) ≤ dg(r x0, ∂B2r )

dg(r x0, 2r x0)
≤ (1 + τ), ∀x0 ∈ ∂B; (3.7)

2−1(1 − τ) ≤ diam(∂B2r )

diam(∂Br )
≤ 2−1(1 + τ); (3.8)

2−1(1 − τ) ≤ dg(∂B2r , ∂Br )

dg(∂Br , ∂Br/2)
≤ 2−1(1 + τ); (3.9)

4(1 − τ) ≤ diam(B2r \ Br )

dg(∂B2r , ∂Br )
≤ 4(1 + τ). (3.10)

Proof Let uk = ckr
n−2
2

k u(rk x) be as in the proof of Lemma 3.1, which converges to u′ =
|x |2−n weakly in W 2,p

loc (Rn \ {0}) for any p < n
2 . Then we may assume ∇uk converges in

Lq
loc(R

n \ {0}) for any q < n, and uk converges in Lq
loc(R

n\{0}) for any q > 0. By the trace
inequality, we can also assume log uk converges in L1(∂Bt ).

Now, we prove the right-hand side inequality of (3.1): assume it is not valid, then there
exists rk → 0, such that

vol(B2rk \ Brk , g)

vol(Brk \ Brk/2, g)
>

1

2n
(1 + τ),

which means that

vol(B2 \ B1, gk)

vol(B1 \ B1/2, gk)
>

1

2n
(1 + τ),

where gk,i j = u
4

n−2
k g0,i j (rk x). Letting k → +∞, we get

vol(B2 \ B1, g∞)

vol(B1 \ B1/2, g∞)
≥ 1

2n
(1 + τ),

where g∞ = |x |2−ngeuc. A contradiction.
Since the proofs of other inequalities are almost the same, we omit them. �
The inequalities (3.1)–(3.10) will be used to estimate quantities on B2r \ Br . For instance,

using (3.1), we have

vol(B2kr \ B2k−1r , g) ≤
(
1 + τ

2n

)k−1

vol(B2r \ Br , g),

which implies

vol(B \ Br , g) ≤ Cvol(B2r \ Br , g). (3.11)

We provide several additional applications.

Corollary 3.3 The manifold (B \ {0}, g) is complete.
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Proof Consider a sequence {xk} that does not contain a convergent subsequence. Then xk
converges to 0. Let x0 ∈ ∂B be fixed. To show completeness, it suffices to prove that
dg(xk, x0) → +∞.

By (3.6) and (3.7), we have dg(xk, 2xk) → +∞, and

dg(x0, xk) ≥ dg(xk, ∂B2|xk |) ≥ (1 − τ)dg(xk, 2xk) → +∞.

�
Corollary 3.4 Let rk , ck be as in Lemma 3.1. Let x ′ ∈ ∂B and ρk = dg(x ′, rk x ′). Then

lim
k→+∞ c

2
n−2
k ρk = 1.

Proof Let uk and gk be as in Lemma 3.1. Set g∞ = |x |−4geuc. By Lemma 3.1, for any
σ = 2m , we have

dgk (x
′, σ x ′) → dg∞(x ′, σ x ′) = 1 − 1/σ.

Thus

c
2

n−2
k dg(rk x

′, rkσ x ′) = dgk (x
′, σ x ′) → 1 − 1/σ.

Using (3.6), we get

c
2

n−2
k dg(rkσ x

′, x ′) ≤ c
2

n−2
k Cdg(rkσ x

′, 2rkσ x ′) → Cdg∞(σ x ′, 2σ x ′) = C

2σ
.

The proof is completed by applying triangle inequality. �
Corollary 3.5 We have

lim
ρ→+∞

vol(Bg
ρ (x0), g)

Vnρn
= 1

and (B \ {0}, ρ−2g, x0) converges to (Rn, 0) in the Gromov-Hausdorff distance for any x0.

Proof First, we prove the convergence of volume ratio. It suffices to prove that for any

ρk → +∞, a subsequence of
vol(Bg

ρk (x0),g)
Vnρk n

converges to 1.

Let ρk → +∞, and xk = akx0 for some ak ∈ R
+, such that

dg(x0, xk) = ρk .

Put yk = σ xk , where σ = 2m is sufficiently large. We denote

τk = dg(xk, yk).

We will first approximate Bg
ρk (x0) with Bg

τk (yk), and subsequently approximate Bg
τk (yk) by

its intersection with B|yk |, that is, B
g
τk (yk) ∩ B|yk |. The reason for doing this is that after

rescaling, Bg
τk (yk) ∩ B|yk | exhibits very good convergence properties.

By (3.6),

dg(x0, yk) < 3dg(yk,
1

2
yk) := σk,
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hence

τk − σk ≤ ρk ≤ τk + σk . (3.12)

Since

dg(x, x0) ≤ dg(x, yk) + dg(x0, yk),

for any x ∈ Bg
τk−2σk

(yk),

dg(x, x0) ≤ τk − 2σk + σk ≤ ρk .

Similarly, for any x ∈ Bg
ρk (x0)

dg(x, yk) ≤ dg(x, x0) + dg(x0, yk) ≤ ρk + σk ≤ τk + 2σk .

Then

Bg
τk−2σk

(yk) ⊂ Bg
ρk

(x0), Bg
ρk

(x0) ⊂ Bg
τk+2σk

(yk). (3.13)

Let uk = u(rk x)r
n−2
2 ck , where rk = |xk | and ck is as in Lemma 3.1. By Lemma 3.1, uk

converges to |x |2−n , and

σk

τk
→ 3

σ − 1
. (3.14)

Then, by choosing σ sufficiently large, for a fixed ε and sufficiently large k,

Bg
(1−ε)τk

(yk) ⊂ Bg
ρk

(x0) ⊂ Bg
(1+ε)τk

(yk). (3.15)

Next, we estimate

vol(Bg
λτk

(yk), g)

(λτk)n
.

By (3.11), (3.2) and (3.6), we have

vol(Bg
λτk

(yk) ∩ B|yk |, g)
(λτk)

n ≤ vol(Bg
λτk

(yk), g)

(λτk)
n

= vol(Bg
λτk

(yk) ∩ B|yk |, g) + vol(Bg
λτk

(yk) \ B|yk |, g)
(λτk)n

≤ vol(Bg
λτk

(yk) ∩ B|yk |, g) + vol(B \ B|yk |, g)
(λτk)n

≤ vol(Bg
λτk

(yk) ∩ B|yk |, g) + Cvol(B2|yk | \ B|yk |, g)
(λτk)n

≤ vol(Bg
λτk

(yk) ∩ B|yk |, g)
(λτk)n

+ C
dng (2yk, yk)

(λτk)n

≤ vol(Bg
λτk

(yk) ∩ B|yk |, g)
(λτk)n

+ C
σ n
k

λnτ nk
.

It is easy to check that

vol(Bg
λτk

(yk) ∩ B|yk |, g)
(λτk)n

→
vol(Bg∞

λ(1−σ−1)
(σ x0/|x0|) ∩ Bσ , g∞)

(λ(1 − σ−1))n
.
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To calculate vol(Bg∞
(1−σ−1)

(σ x0/|x0|) ∩ Bσ , g∞), we use the coordinates change

B → R
n \ B : x → z = x

|x |2 .

In the new coordinates, g∞ = geuc, and

Bg∞
λ(1−σ−1)

(σ x0/|x0|) ∩ Bσ = Bλ(1−σ−1)(σ
−1x0/|x0|) \ Bσ−1 .

Thus

vol(Bg∞
λ(1−σ−1)

(σ x0/|x0|) ∩ Bσ , g∞) = Vn((λ(1 − σ−1))n − O(σ−n)).

Then we can select σ to be sufficiently large and let λ = 1 ± ε, such that

1 − ε ≤ vol(Bg
(1+ε)τk

(yk), g)

Vn((1 + ε)τk)n
,

vol(Bg
(1−ε)τk

(yk), g)

Vn((1 − ε)τk)n
≤ (1 + ε)

when k is sufficiently large. By (3.15) and (3.12),

1 − Cε ≤ vol(Bg
ρk (x0))

Vnρn
k

≤ 1 + Cε

when k is sufficiently large, we complete the proof of the ratio convergence.

Next, we prove theGromov-Hausdorff convergence. It suffices to prove that a subsequence

of (B
g/ρ2

k
1 (x0), dg/ρ2

k
, x0) converges to (B, 0).

By (3.12), (3.13), and (3.14),

lim
σ→+∞ lim

k→+∞ dGH

(

(B
g/ρ2

k
1 (x0), dg/ρ2

k
, x0), (B

g/τ 2k
1 (yk), dg/τ 2k

, yk)

)

= 0.

Combining (3.9) with (3.10), we have

diam(B1 \ B|yk |, g) < Cd(∂B|yk |, ∂B|yk |/2, g) ≤ Cτk
d(∂B|yk |, ∂B|yk |/2, g)

d(xk, yk)
≤ C

σ
τk,

since
d(∂B|yk |,∂B|yk |/2,g)

d(xk ,yk )
→ 1/(2σ)

1−1/σ . Then

lim
σ→+∞ lim

k→+∞ dGH

(

(B
g/τ 2k
1 (yk), dg/τ 2k

, yk), (B
g/τ 2k
1 (yk) ∩ B|yk |, dg/τ 2k , yk)

)

= 0.

Note that

(B
g/τ 2k
1 (yk) ∩ B|yk |, dg/τ 2k , yk) = (B

gk/(c
4

n−2
k τ 2k )

1 (yk/rk) ∩ B|yk/rk |, d
gk/(c

4
n−2
k τ 2k )

, yk/rk).

Since dgk (xk, yk) → 1−1/σ and dgk = c
2

n−2
k dg , we have c

2
n−2
k τk → 1−1/σ , which implies

that

lim
σ→+∞ lim

k→+∞ dGH

(

B
g/τ 2k
1 (yk) ∩ B|yk |, dg/τ 2k , yk), (B

gk
1 (yk/rk) ∩ B|yk/rk |, dgk , yk/rk)

)

= 0.

However, we have

(Bgk
1 (yk/rk) ∩ B|yk/rk |, dgk , yk/rk) → (Bg∞

1 (σ x0/|x0|) ∩ Bσ , dg∞ , σ x0/|x0|),
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Fig. 1 Bg
τk (yk ) is the whole region filled with small dots. The shaded region is Bg

τk (yk ) ∩ B|yk |. We use

B
gk
τk (yk ) ∩ B|yk | to approximate B

gk
ρk (x0)

and the limit is isometric to

(B1(σ−1x0/|x0|) \ Bσ−1 , dgeuc , σ
−1x0/|x0|).

Letting σ → ∞, we complete the proof. �

Corollary 3.6 Assume (M, g) is conformally equivalent to a domain of a compact manifold
without boundary. If ‖R‖

L
n
2

< +∞ and Ric ≥ 0, and if (M, g) is complete and noncompact,
then (M, g) = R

n.

Proof By theBishop-GromovTheorem, vol(Bg
r (x), g) ≤ Vnrn . Then, by a result in [9], there

exists a compact manifold (M0, g0) and a finite set A ⊂ M0, such that (M, g) is conformal
to (M0 \ A, g0). By Corollary 3.5, A contains a single point, so the corollary follows from
the Bishop-Gromov Theorem. �

Next, we derive a stronger version of Lemma 3.1 and finish the proof of Theorem 1.2:

Proposition 3.7 w = G−1u is in W 2,p(B) for any p ∈ [1, n
2 ), where G is the Green function

defined by

−�g0G = δ0, G|∂B = 0.

Proof By direct computation,

�g0u = G�g0w + 2∇g0G∇g0w = −c(n)Ru
n+2
n−2 + c(n)R(g0)u.

Then

−�g0w = c(n)G−1Ru
n+2
n−2 + 2∇g0 logG∇g0w − c(n)R(g0)w

= c(n)Ru
4

n−2 w + 2∇g0 logG∇g0w − c(n)R(g0)w

:= f .

It is well known (cf. [4]) that G = r2−n(1 + O(1)) near 0 and

|∇g0 logG|(x) ≤ C

|x |
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when x is small.
First, we show w ∈ Lq for any q . Indeed, applying (3.4) to α = q , β = (n − 2)q , we get

∫

Bt
|w|q ≤ C

∑

i

∫

B2−i t

|x |q(n−2)|u|q < C
∑

i

((1 + τ)2−n)i < +∞.

Next, we show w ∈ W 1,p(B) for any p < n. Since

|∇g0w| ≤ G−1|∇g0u| + uG−1|∇g0 logG| ≤ C(|x |n−2|∇g0u| + |x |n−3u),

we may apply (3.4) to α = p and β = (n − 3)p to get
∫

Bt
(|x |n−3|u|)p < +∞

and (3.3) to α = p and β = (n − 2)p to obtain
∫

Bt
|x |n−2|∇u|p < +∞.

Then
∫
Bt

|∇w|p < +∞ for any p < n. Let ϕ ∈ D(B), and ηε be a cutoff function which

is 1 in B \ B2ε , 0 in Bε , and satisfies |∇ηε | < C
ε
. It is easy to check that ηεw is bounded in

W 1,p(B), hence a subsequence of ηεw converges weakly in W 1,p(B). Obviously, w is the
limit, hence w ∈ W 1,p(B).

Next, we show f ∈ L p for any p < n
2 and w solves the equation −�g0w = f weakly in

B. Since

| f | ≤ C(|R|u 4
n−2 w + |x |−1|∇g0w| + w),

by the fact that |R|u 4
n−2 ∈ L

n
2 , w ∈ Lq for any q > 0 and ∇w ∈ L p for any p < n, it is

easy to check that f ∈ L p for any p < n
2 . Then

∫

B
∇g0ϕ∇g0wdVg0 = lim

ε→0

∫

B
∇g0ηεϕ∇g0wdVg0 = lim

ε→0

∫

B
ηεϕ f =

∫

B
ϕ f ,

hence w is a weak solution.
The proof can be completed without difficulty using the theory of elliptic equations. �

4 Conformally immersed submanifolds inR
n+k

In this section, we consider a conformal immersion F : (B\0, g0) → R
n+k satisfying

|A|Ln < +∞, where A represents the second fundamental form. We define

g = F∗(geuc) = u
4

n−2 g0.

Obviously
∫

B
|R| n2 dVg < +∞.

For the purposes of this section, we assume vol(F(B\0)) = +∞. As a consequence of
Corollary 3.3, the space (B 1

2
\0, g) is complete. The goal of this section is to prove Theo-

rem 1.4.
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Proof of Theorem 1.4 First of all, we can find ck , such that ckr
n−2
2

k u(rk x) converges to |x |2−n

weakly in W 2,p
loc (Rn \ {0}) for any p < n

2 . Set

Fk = c
2

n−2
k (F(rk x) − F(rk x0)) + y0,

where y0 will be defined later. Since

∣
∣
∣
∣
∂Fk
∂xi

∣
∣
∣
∣

2

= r2k c
4

n−2
k (u(rk x))

4
n−2 = (ckr

n−2
2

k u(rk x))
4

n−2 ,

|∇Fk | is bounded in W 2,p(Br \ B 1
r
) by Lemma 3.1. Thus, we may assume Fk converges

weakly in W 3,p
loc (Rn \ {0}) to a map F∞ which satisfies F∞(Rn \ {0}) ⊂ R

n and

∂F∞
∂xi

∂F∞
∂x j

= |x |−4δi j .

For convenience, we transition to new coordinates

x → y = x

|x |2 .

In these coordinates,

g∞(y) = geuc(y).

Then F∞ can be considered as an isometric map from R
n \ {0} to R

n .
Let γ (t) = t y, where y ∈ Sn−1. Since γ (t) is a geodesic inRn \{0}, f (γ (t))must be a ray

of Rn . In addition, it is easy to check that as y′, y′′ approach 0 dg∞(F∞(y′), F∞(y′′)) → 0.
Then lim

y→0
F∞(y) exists. Select y0 such that the limit is lim

y→0
F∞(y) = 0. Then F∞(γ (t)) =

t F∞(y).
Since F∞ is isometric, for any X ∈ T ∂B1 = Sn−1 with |X | = 1, it holds

F∞,∗(X)⊥F∞,∗(
∂

∂r
), |F∞,∗(X)| = 1.

Hence, the restriction F∞|Sn−1 is an isometric map from Sn−1 to itself. Since Sn−1 is simply
connected, F∞|Sn−1 is a homeomorphism, as follows from the fact that an isometric map is
a covering map. Therefore, we may assume F∞(y) = y.

In the original coordinates, this translates to

F∞(x) = x

|x |2 .

Proceeding, we consider a sequence xk → 0. Assuming a = |x0| and setting x ′
k = a xk|xk | ,

rk = |xk | and σ = 2m , we find that

dg(σ xk, x
′
k) ≤ Cdg(σ xk, 2σ xk), and

dg(σ xk, 2σ xk)

dg(xk, σ xk)
→ 1

2(σ − 1)
,

thus we can choose m, such that for large k,

1 − ε ≤ dg(xk, x0)

dg(xk, σ xk)
≤ 1 + ε.
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By arguments as in the proof of Lemma 3.2, for any τ ∈ (0, 1),

1 − τ

2
≤ |F(r x) − F(r x/2)|

|F(r x/2) − F(r x/4)| ≤ 1 + τ

2

for any x ∈ ∂B and sufficiently small r . Then we can choose m, such that for sufficiently
large k,

1 − ε ≤ |F(xk) − F(x0)|
|F(xk) − F(σ xk)| < 1 + ε.

Since

|F(xk) − F(σ xk)|
dg(xk, σ xk)

= |Fk(xk/|xk |) − Fk(σ xk/|xk |)|
dgk (xk/|xk |, σ xk/|xk |)

→ 1,

it follows that

1 − Cε <
|F(xk) − F(x0)|

dg(xk, x0)
≤ 1 + Cε

when k is sufficiently large. �

5 4 Dimensional Gauss-Bonnet-Chern formulas

In this section, we assume n = 4 and discuss Gauss-Bonnet-Chern formulas.
For our purpose, we set dSg0 = �(r , θ)dS3 and define φ = log u and

F1(r) =
∫

S3
R(r , θ)u2(r , θ)�(r , θ)dS3, H1 = −

∫

S3
R(r , θ)

∂

∂r
(u2(r , θ)�(r , θ))dS3

F2(r) =
∫

S3

(
�g0φ(r , θ)

)
�(r , θ)dS3, H2 = −

∫

S3

(
�g0φ

) ∂

∂r
�(r , θ)dS3.

Let ng,∂Br be the unit normal vector of ∂Br with respect to g. If we choose x1, · · · , xn to be
normal coordinates of g0, then Br = Bg0

r (0), ng,∂Br = u−1 ∂
∂r ,and

∫

∂Br
ng,∂Br (R)dSg =

∫

S3
u2

∂R

∂r
�dS3 = F ′

1(r) + H1(r). (5.1)

Moreover, we have
∫

∂Br

∂�g0φ

∂r
dSg0 = F ′

2(r) + H2(r). (5.2)

Equations (5.1) and (5.2) will help us to calculate
∫
Br

�g RdVg and
∫
Br

�2
g0 log udVg0 . For

example, by
∫

Br
�g RdVg = lim

rk→0
(F ′

1 + H1(r))|rrk ,

if we can find a sequence rk → 0, such that the limit of F ′
i (rk) + Hi (rk) is known, then we

will get the exact value of
∫
Br

�g RdVg .
The following lemma will play a vital role in the following discussions.
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Lemma 5.1 Let f ∈ C1[ r04 , 2r0], h ∈ C0[ r04 , 2r0] and b1, b2 are constants. Assume
∣
∣
∣
∣
∣

∫ r0
2

r0
4

f dt − 3

32
b1r

2
0

∣
∣
∣
∣
∣
+

∣
∣
∣
∣

∫ 2r0

r0
f dt − 3

2
b1r

2
0

∣
∣
∣
∣ ≤ ar20 ,

∫ 2r0

r0
4

|h − b2| < ar0.

Then there exists ξ ∈ [r0/4, 2r0] such that
| f ′(ξ) + h(ξ) − b1 − b2| ≤ 12a.

Proof Since we can replace f with f − b1r and h with h − b2, it suffices for our aim to
prove the case when b1 = b2 = 0. By The Mean Value Theorem for Integrals, there exists
ξ1 ∈ [r0/4, r0/2] and ξ2 ∈ [r0, 2r0], such that

r0
4

f (ξ1) =
∫ r0

2

r0
4

f (t)dt, r0 f (ξ2) =
∫ 2r0

r0
f (t)dt,

which yields that

| f (ξ1)| ≤ 4ar0, | f (ξ2)| ≤ ar0.

Then
∣
∣
∣
∣

∫ ξ2

ξ1

( f ′ + h)

∣
∣
∣
∣ ≤ | f (ξ1) − f (ξ2)| +

∫ ξ2

ξ1

|h| ≤ 5ar0 +
∫ 2r0

r0/4
|h| ≤ 6ar0.

Using the Mean Value Theorem for Integrals again, we can find ξ ∈ [ξ1, ξ2], such that

(ξ2 − ξ1)| f ′(ξ) + h(ξ)| ≤ 6ar0.

Noting that r0/2 < ξ2 − ξ1, we complete the proof. �
Lemma 5.2 For any sufficiently small r , we have

∣
∣
∣
∣

∫ 2r

r
F1(t)dt

∣
∣
∣
∣ < α(r)r2,

∫ 2r

r
|H1|(t)dt < α(r)r ,

and
∣
∣
∣
∣

∫ 2r

r
F2(t)dt + 6ω3r

2
∣
∣
∣
∣ < α(r)r2,

∫ 2r

r
|H2 − 12ω3|(t)dt < α(r)r ,

where lim
r→0

α(r) = 0, and ω3 = 2π2 is the volume of the 3-dimensional sphere.

Proof We have
∣
∣
∣
∣

∫ 2r

r
F1(t)dt

∣
∣
∣
∣ ≤

∫ 2r

r

∫

S3
|R(g)|u2�dS3dt =

∫

B2r \Br
|R(g)|u2dVg0

≤
(∫

B2r \Br
|R(g)u2|2dVg0

) 1
2
(∫

B2r \Br
dVg0

) 1
2

≤ C‖R‖L2(B2r ,g)r
2.

and
∫ 2r

r
|H1(t)|dt ≤ 2

∫ 2r

r

∫

S3
|R(g)|u2

∣
∣
∣
∣
∂ log u

∂t

∣
∣
∣
∣ �dS3dt
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+
∫ 2r

r

∫

S3
|R(g)|u2

∣
∣
∣
∣
∂ log�(t, θ)

∂t

∣
∣
∣
∣ (�dS3dt)

≤ C(‖R‖L2(B2r ,g)‖∇φ‖L2(B2r \Br ,g0) +
∫

B2r \Br
|R(g)|u2 1

r
dVg0)

≤ C‖R‖L2(B2r ,g)‖∇φ‖L2(B2r \Br ,g0) + Cr‖R(g)‖L2(B2r ,g).

By Lemma 2.1,

‖∇φ‖L2(B2r \Br ,g0) ≤ Cr‖Ru2 + R(g0)‖L2(B2r \Br ,g0) ≤ C(‖R‖L2(B2r \Br ,g)r + r2),

hence
∫ 2r

r
|H1(t)|dt ≤ C(‖R‖L2(B2r \Br ,g)r + r2).

Next, we discuss F2. Since

−�g0φ − |∇g0φ|2 = c(n)Ru2 − c(n)R(g0),

we obtain
∫ 2r

r
F2(t)dt =

∫

B2r \Br
�g0φdVg0

= −
∫

B2r \Br
|∇g0φ|2dVg0 − c(4)

∫

B2r \Br
(R(g)u2 − R(g0))dVg0 .

Note that
∫

B2r \Br
|R(g)u2 − R(g0)|dVg0 ≤ C(‖R‖L2(B2r \Br ,g)r

2 + r4).

To get the estimate of
∫ 2r
r F2, we only need to show that

lim
r→0

1

r2

∫

B2r \Br
|∇g0φ|2dVg0 = 6ω3.

Assume there exists rk → 0, such that

lim
k→∞

1

r2k

∫

B2rk \Brk
|∇g0φ|2dVg0 = λ �= 6ω3.

Set uk = ckrku(rk x), where ck is chosen such that
∫
∂B1

log uk = 0. By the arguments in

Section 3, log uk(x) converges to log |x |−2 weakly in W 2,p
loc (R4 \ {0}). Then, after passing to

a subsequence,
∫
B2\B1 |∇g0(rk x) log uk |2 converges to 6ω3, hence

lim
k→+∞

1

r2k

∫

B2rk \Brk
|∇g0φ|2dVg0 = lim

k→+∞

∫

B2\B1
|∇g0(rk x) log uk |2dVg0(rk x) = 6ω3.

This leads to a contradiction.
Lastly, we calculate

∫ 2r
r |H2 − 12ω3|:

∫ 2r

r
|H2(t) − 12ω3|dt ≤

∫

B2r \Br

∣
∣
∣
∣|∇g0φ|2 ∂ log�

∂r
− 12

�

∣
∣
∣
∣ dVg0

+C
∫

B2r \Br
|R(g)u2 − R(g0)|1

r
dVg0 .
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The same argument as above shows that

lim
r→0

1

r

∫

B2r \Br

∣
∣
∣
∣|∇g0φ|2 ∂ log�

∂r
− 12

�

∣
∣
∣
∣ dVg0 = 0.

This completes the proof. �
We will provide several applications here. First, we calculate

∫
Br

�g R:

Lemma 5.3 There exists rk → 0 such that
∫

B 1
2
\Brk

�g R(g)dVg →
∫

∂B 1
2

∂R

∂r
dSg.

Proof We have
∫

B 1
2
\Br

�g R(g)dVg =
∫

∂B 1
2

ng,∂B 1
2
(R)dSg −

∫

∂Br
ng,∂Br (R)dSg.

Applying Lemma 5.1 to b1 = b2 = 0 and f = F1, h = H1, we deduce this lemma from
(5.1). �

We recall some basic properties of Q-curvatures, cf. [10, 11]. On a 4-dimensional mani-
fold, the Paneitz operator is defined as follows:

Pg0ϕ = �2
g0ϕ + divg0

(
2

3
Rg0∇g0ϕ − 2Rici jg0ϕi

∂

∂x j

)

.

The Q-curvature of g satisfies the following equations:

Q(g) = − 1

12
�g R(g) − 1

4
|Ric(g)|2 + 1

12
R2,

Pg0φ + 2Q(g0) = 2Q(g)e4φ.

For simplicity, we define

T (φ) = 1

3
Rg0

∂φ

∂r
− Ricg0(∇g0φ,

∂

∂r
).

Lemma 5.4 There exists rk → 0, such that

lim
k→+∞

∫

B 1
2
\Brk

Q(g)dVg =
∫

B 1
2

Q(g0)dVg0 − 4ω3 +
∫

∂B 1
2

(
1

2

∂�g0φ

∂r
+ T (φ)

)

.

Proof We have
∫

B 1
2
\Br

QgdVg =
∫

B 1
2
\Br

Qg0dVg0 + 1

2

∫

B 1
2
\Br

Pg0(φ)dVg0

=
∫

B 1
2
\Br

Qg0dVg0

+1

2

∫

∂(B 1
2
\Br )

(
∂�g0φ

∂r
+ 2

3
Rg0

∂φ

∂r
− 2Ricg0(∇g0φ,

∂

∂r
)

)

dSg0 .
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By (3.5),

lim
r→0

∫

∂Br
|∇g0φ|dSg0 = 0.

Then
∫

∂Br

(
2

3
Rg0

∂φ

∂r
− 2Ricg0(∇g0φ,

∂

∂r
)

)

dSg0 → 0. (5.3)

By applying Lemma 5.1 to f = F2/2, h = H2/2 and (b1, b2) = (−2ω3, 6ω3), we deduce
from (5.2) that there exists rk , such that

1

2

∫

∂Brk

∂�g0φ

∂r
dSg0 → 4ω3.

Therefore, we complete the proof. �
Next, we discuss the relationship between ‖R‖L2 and ‖Riem‖L2 :

Lemma 5.5 We have
∫

B 1
2

|Riem(g)|2dVg < +∞.

Proof It is well-known that

Riem(g) = W (g) + 1

2
(Ric(g) − 1

6
R(g)g) ©∧ g,

where W is the Weyl tensor and ©∧ is the Kulkarni-Nomizu product. Since |W |2dVg is
conformally invariant, we only need to check Ric(g) ∈ L2 here.

Recall that Q(g) = − 1
12�g R(g) − 1

4 |Ric(g)|2 + 1
12 R

2, which means that
∫

B 1
2
\Br

|Ric(g)|2dVg = 1

3

∫

B 1
2
\Br

R2dVg − 1

3

∫

B 1
2
\Br

�g R(g)dVg − 4
∫

B 1
2
\Br

Q(g)dVg

= 1

3

∫

B 1
2
\Br

R2dVg − 4
∫

B 1
2
\Br

Q(g0)dVg0

−1

3

∫

∂(B 1
2
\Br )

∂R

∂r
dSg − 2

∫

∂(B 1
2
\Br )

(
∂�g0φ

∂r
+ 2T (φ))dSg0

Applying Lemma 5.1 to f = 1
3 F1 + 2F2, h = 1

3H1 + 2H2, (b1, b2) = (−8ω3, 24ω3), we
can find rk → 0, such that

1

3

∫

∂Brk

∂R

∂r
dSg + 2

∫

∂Brk

(
∂�g0φ

∂r
+ 2T (φ)) → 16ω3.

�
Lastly, we consider the formula for Pfaffian form:

Lemma 5.6 We have
∫

B 1
2

P f (g) = −4ω3 +
∫

B 1
2

P f (g0) + 1

2

∫

∂B 1
2

∂�g0φ

∂r
dSg0
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+ 1

12

∫

∂B 1
2

u2
∂R

∂r
dSg0 − 1

12

∫

B 1
2

�g0 R(g0)dVg0 +
∫

∂B 1
2

T (φ)dSg0 .

Proof Recall that

P f (g) = 1

8
|W (g)|2 + 1

12
R2 − 1

4
|Ric(g)|2,

where W is the Weyl tensor. Since
∫

B
|W (g)|2dVg =

∫

B
|W (g0)|2dVg0 < +∞,

P f (g) is integrable. Recall that (c.f. [11])

P f (g) = 1

8
|W (g)|2dVg + Q(g)dVg + 1

12
�g R(g)dVg,

P f (g0) = 1

8
|W (g0)|2dVg0 + Q(g0)dVg0 + 1

12
�g0 R(g0)dVg0 ,

and

Pg0φ + 2Q(g0) = 2Q(g)e4φ,

where g = u2g0 = e2φg0, we have
∫

B 1
2
\Br

P f (g) =
∫

B 1
2
\Br

P f (g0) + 1

2

∫

B 1
2
\Br

Pg0φdVg0

+ 1

12

∫

B 1
2
\Br

�g R(g)dVg − 1

12

∫

B 1
2
\Br

�g0 R(g0)dVg0

=
∫

B 1
2
\Br

P f (g0) + 1

2

∫

∂(B 1
2
\Br )

∂�g0φ

∂r
dSg0

+ 1

12

∫

∂(B 1
2
\Br )

u2
∂R

∂r
dSg0 − 1

12

∫

B 1
2
\Br

�g0 R(g0)dVg0

+1

2

∫

∂(B 1
2
\Br )

(

Rg0
∂φ

∂r
− 2Ricg0(∇g0φ,

∂

∂r
)

)

dSg0 .

Apply Lemma 5.1 to f = 1
12 F1 + 1

2 F2, and h = 1
12H1 + 1

2H2, (b1, b2) = (−2ω3, 6ω3),
which suffices to complete the proof. �

Theorem 1.5, 1.7 and 1.6 can be deduced from Lemma 5.4, 5.6 and 5.5 easily.

6 Examples

In the last section, we provide examples of metrics on B4
1/2 \ {0} that are conformal to geuc

and satisfy ‖R(g)‖L2 < +∞. We will set

u = r−2ev, φ = log u, and g = u2geuc,

where v = v(r) is radial.
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We have

|Rg|2dVg = (c
�u

u
)2dx, |Qg|dVg = |�2φ|dx,

where c is a constant. We observe that

�u

u
= v′′ − v′

r
+ (v′)2, |�2φ| = |�2v| ≤ C(|v′′′′| + |v′′′|

r
+ |v′′|

r2
+ |v′|

r3
). (6.1)

Recall that (cf. [23, Ch. 5])

Ri j (g) = −(log u2),i j + 1

2
(log u2)i (log u

2) j − 1

2
(�(log u2) + |∇ log u2|2)(geuc)i j .

Note that the Hessian tensor of log u2 in the euclidean metric is

Hess(log u2, geuc) = (log u2)′′dr ⊗ dr + r(log u2)′gS3 .

It follows that

Ric(g) =
(

−(log u2)′′ + 1

2
|(log u2)′|2 − 1

2
(�(log u2) + |(log u2)′|2)

)

dr ⊗ dr

−
(

r(log u2)′ + 1

2
(�(log u2) + |(log u2)′|2)r2

)

gS3

= −3

2

(

(log u2)′′ + 1

r
(log u2)′

)

dr ⊗ dr

−
(
5

2
r(log u2)′ + r2

2
(log u2)′′ + r2

2
|(log u2)′|2

)

gS3

= −3

(

v′′ + 1

r
(v)′

)

dr ⊗ dr − (−3rv′ + r2v′′ + 2|v′|2r2) gS3 ,

leading to

|Ric(g)|2√|g| ≤ C(|v′′|2 + |v′|2
r2

). (6.2)

Example 6.1 Consider v = ra log r , g = e−2(2−ra) log r geuc. We have

�u

u
= r2a−2(a log r + 1)2 + ra−2(a2 log r − 2a log r + 2a − 2).

Then, R(g) ∈ L2 if and only a > 0. In this setting, it is easy to verified that Ric(g) ∈ L2

and Q(g) ∈ L1 from (6.1) and (6.2).

Example 6.2 Let v = −a log(− log r), g = geuc
r4| log r |2a . We find

�u

u
= a(1 + a)

r2 log2 r
+ 2a

r2 log r
.

Then, R(g) ∈ L2 for any a. We can check that Ric(g) ∈ L2 and Q(g) is integrable.
This example extends the metric

g = |dz|2
|z|2| log |z||2a .
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constructed by Hulin-Troyanov [18] on a 2 dimensional disk, which has finite total Gauss
curvature. Depending on the value of a, their metric can be either bounded or unbounded,
finite area or infinite area. However, in our case, the metric is always unbounded and of
infinite volume.

Note that r2u = ev = | log r |−a does not belong to W 2,2 when a > − 1
2 . This indicates

that the conclusion ‘G−1u ∈ W 2,p for any p < n
2 ’ in Theorem 1.2 can not be extended to

p = n
2 .

Example 6.3 Consider v = r4 sin 1
r , g = r−4e2r

4 sin 1
r geuc. We observe that

v′′ = O(1), v′/r2 = O(1), �2v = sin 1
r

r4
+ O(

1

r3
).

Consequently, the scalar curvature R(g) and the Ricci curvature Ric(g) are in L2. Since

∫

B 1
2

| sin( 1r )|
r4

dx =
∫ 1

2

0

| sin( 1r )|
r4

r3dr =
∫ ∞

2

| sin(t)|
t

dt >

∞∑

k=2

1

kπ

∫ kπ

(k−1)π
| sin(t)|dt = +∞,

the Q-curvature Q(g) is not integral in this case.
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