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Abstract
In this paper we study the existence and properties of ground states for the fractional
Schrödinger–Poisson system with combined power nonlinearities

{
(−�)su − φ|u|2∗

s−3u = λu + μ|u|q−2u + |u|2∗
s−2u, x ∈ R

3,

(−�)sφ = |u|2∗
s−1, x ∈ R

3,

having prescribed mass

∫
R3

|u|2dx = a2

and doubly critical growth, where s ∈ (0, 1), μ > 0 is a parameter, 2 < q < 2∗
s , 2

∗
s := 6

3−2s
is the fractional critical Sobolev exponent and λ ∈ R appears as a Lagrange multiplier.
For a L2-subcritical, L2-critical and L2-supercritical perturbation μ|u|q−2u, respectively,
we prove several existence, and non-existence results. Furthermore, the qualitative behavior
of the ground states as μ → 0+ is also studied. Our results complement and improve the
existing ones in several directions, and this study seems to be the first contribution regarding
existence of normalized ground states for the fractional Sobolev critical Schrödinger–Poisson
system with a critical nonlocal term.
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1 Introduction andmain results

In this paper we study existence and properties of ground states with prescribed mass for the
nonlinear fractional Schrödinger–Poisson system with combined power nonlinearities⎧⎨

⎩i
∂�

∂t
= (−�)s� − φ|�|2∗

s−3� − μ|�|q−2� − |�|2∗
s−2�, x ∈ R

3,

(−�)sφ = |�|2∗
s−1, x ∈ R

3,
(1.1)

where � : R × R
3 → C, μ > 0, 2 < q < 2∗

s . We look for standing wave solutions to (1.1),
namely to solutions of the form (�(t, x) = e−iλt u(x), φ(x)), λ ∈ R. Then the function
(u(x), φ(x)) satisfies the equation{

(−�)su = λu + μ|u|q−2u + φ|u|2∗
s−3u + |u|2∗

s−2u, x ∈ R
3,

(−�)sφ = |u|2∗
s−1. x ∈ R

3.
(1.2)

Here (−�)s is a nonlocal operator defined by

(−�)su(x) = Cs P.V.
∫
R3

u(x) − u(y)

|x − y|3+2s dy, x ∈ R
3,

and P.V. stands for the Cauchy principal value on the integral, and Cs is a suitable normal-
ization constant. It is well-known that, the first equation in (1.2) was used by Laskin (see
[26, 27]) to extend the Feynman path integral, from Brownian-like to Lévy-like quantum
mechanical paths. This class of fractional Schrödinger equations with a repulsive nonlocal
Coulombic potential can be approximated by the Hartree–Fock equations to describe a quan-
tum mechanical system of many particles; see, for example, [17, 18, 32, 34]. It also appeared
inmany different areas, such as financial mathematics, optimization, minimal surfaces, phase
transitions, conservation laws, stratified materials, crystal dislocation and water waves, we
refer to [2, 11] for more applied backgrounds on the fractional Laplacian.

We note that, when the second Poisson equation of the fractional Schrödinger–Poisson
system {

(−�)su + V (x)u + K (x)φu = f (x, u), x ∈ R
3,

(−�)tφ = K (x)u2, x ∈ R
3,

(1.3)

is subcritical growth, (1.3) has been studied extensively and there aremany results available in
the literature. In [44], Zhang et al. studied the existence and the asymptotical behaviors of posi-
tive solutions to system (1.3) for the first time by using a perturbation approach. Ji [25] showed
that (1.3) has a sign-changing ground state solution by means of a quantitative deformation
lemma and the constraint variationalmethod. Teng [41] studied the existence of a ground state
solution to (1.3) when K (x) = 1 and f (x, u) = μ|u|q−1u + |u|2∗

s−2u, q ∈ (1, 2∗
s − 1) by

using global compactness Lemma, the monotonicity trick, Pohozaev–Nehari manifold, and
arguments of Brezis–Nirenberg type. Yang et al. [43] considered (1.3), and proved the exis-
tence of infinitely many solutions (u, λ)with u having prescribed L2-norm. In [35], combing
with the Ljusternik–Schnirelmann category theory and the Nehari manifold method, Murcia
andSiciliano investigated themultiplicity of semiclassical state of the fractional Schrödinger–
Poisson system {

ε2s(−�)su + V (x)u + K (x)φu = f (u), x ∈ R
N ,

εθ (−�)α/2φ = γαu2, x ∈ R
N .

(1.4)
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concentrating on the minima of V (x) for ε > 0 small.
When the second equation of (1.3) is of critical growth, relatively speaking, there are only

few papers in the existing literature. In [19], He studied the fractional Schrödinger–Poisson
system with a critical nonlocal term{

(−�)su + V (x)u − K (x)φ|u|2∗
s−3u = f (x, u), x ∈ R

3,

(−�)sφ = K (x)|u|2∗
s−1, x ∈ R

3,
(1.5)

and proved the existence of a mountain pass solution for (1.5) with f (x, u) = |u|2∗
s−2u +

h(u), and h being subcritical growth, by using the concentration-compactness principle and
mountain pass theorem.Dou andHe [13] investigated (1.5)with f (x, u) = a(x) f (u), and the
potentials V and amay be vanishing at infinity, the authors obtained the existence of a positive
ground state solution by employing the concentration-compactness principle, the mountain
pass theorem and approximation method. In [37], Qu and He considered the semiclassical
state of fractional Schödinger–Poisson system with double critical exponents{

ε2s(−�)su + V (x)u = f (u) + φ|u|2∗
s−3u + |u|2∗

s−2u, x ∈ R
3,

ε2s(−�)sφ = |u|2∗
s−1, x ∈ R

3,
(1.6)

and they established the existence, multiplicity and concentration of positive solutions by the
Ljusternik–Schnirelmann theory. In [15], Feng proved the existence of nonnegative solutions
of (1.6) with f (u) ≡ 0, ε = 1, by using concentration-compactness principle, the mountain
pass theorem and approximation method.

After a bibliography review, the existing results for the fractional Schrödinger–Poisson
system with a nonlocal critical term, are mainly obtained without any constrained conditions
for the L2-norm, and a natural question that arises is whether or not we can obtain the
existence of solutions for the fractional Schrödinger–Poisson system with a nonlocal critical
term, having a desired L2-norm

∫
R3 |u|2dx = a2 for some prescribed a > 0. The main

purpose of this paper is to focuss our attention on this issue and try to establish some existence
results on normalized solutions. Concretely speaking, we shall study the following fractional
Schrödinger–Poisson system with doubly critical growth{

(−�)su − φ|u|2∗
s−3u = λu + μ|u|q−2u + |u|2∗

s−2u, x ∈ R
3,

(−�)sφ = |u|2∗
s−1, x ∈ R

3,
(1.7)

with the prescribed L2−norm ∫
R3

|u|2dx = a2, (1.8)

where μ > 0 is a parameter and μ|u|q−2u is a local perturbation with q ∈ (2, 2∗
s ).

It is easily seen that the fractional Schrödinger–Poisson system (1.7) can be transformed
into a single fractional Schrödinger equation with a nonlocal critical term. Briefly, by the
Lax-Milgram theorem, for any fixed u ∈ Hs(R3), Poisson equation (−�)sφ = |u|2∗

s−1 has
a unique weak solution φu ∈ Ds,2(R3) and φu can be expressed as (e.g. [19])

φu(x) = Cs

∫
R3

|u(y)|2∗
s−1

|x − y|3−2s dy, (1.9)

where Cs = �( 3−2 s
2 )

22 sπ
3
2 �(s)

. In the sequel, we often omit the constant Cs for convenience. So,

substituting (1.9) into the first equation of (1.7), then (1.7) can be transformed into a single
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fractional Schrödinger equation as follows:

(−�)su − φu |u|2∗
s−3u = λu + μ|u|q−2u + |u|2∗

s−2u, ∀u ∈ Hs(R3). (1.10)

When looking for solutions to (1.10), a possible choice is then to fix λ ∈ R and to search for
solutions to (1.10) correspond to critical points of the action functional

Iλ,μ(u) = 1

2

∫
R3

(
|(−�)

s
2 u|2 − λu2

)
dx − 1

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

q

∫
R3

|u|qdx

− 1

2∗
s

∫
R3

|u|2∗
s dx .

In this case, the existence and multiplicity of solutions have been studied in [13, 15, 19,
37] and the references therein. Alternatively, one can search for solutions to (1.10) having a
prescribed L2-norm, and in this case λ ∈ R is part of the unknown. Defining on u ∈ Hs(R3)

the energy functional

Iμ(u) = 1

2

∫
R3

|(−�)
s
2 u|2dx − 1

2(2∗
s − 1)

∫
R3

φu(x)|u|2∗
s−1dx − μ

q

∫
R3

|u|qdx

− 1

2∗
s

∫
R3

|u|2∗
s dx, (1.11)

it is standard to check that Iμ is of C1-class and that a critical point of Iμ restricted to the
(mass) constraint set

Sa =
{
u ∈ Hs(R3) :

∫
R3

|u|2dx = a2
}

,

gives rise to a solution to (1.11) on Sa , satisfying ‖u‖2
L2(R3)

= a2.

Definition 1.1 We say that ua ∈ Sa is a ground state solution to (1.11) it is a solution having
minimal energy among all the solutions which belong to Sa . Namely, if

Iμ(ua) = inf{Iμ(u), u ∈ Sa, (Iμ|Sa )′(u) = 0}.
This definition seems particularly suited in our context, since Iμ is unbounded from below
on Sa, and hence global minima do not exist.

We remark that, the prescribed mass approaches that we shall follow here, have created
an increasing interest in these last years, applied to various related problems. In [29], Luo
and Zhang studied the following fractional Schrödinger equation{

(−�)su = λu + μ|u|q−2u + |u|p−2u, x ∈ R
N ,∫

RN |u|2dx = a2, u ∈ Hs(RN ),
(1.12)

where s ∈ (0, 1) and 2 < q < p < 2∗
s = 2N

N−2s . The authors proved some existence and
nonexistence results about the normalized solutions to (1.12) with combined subcritical
nonlinearities. Li and Zou [30], Zhen and Zhang [45] studied the existence and multiple
normalized solution of (1.12) with p = 2∗

s , and extended the main results of [1], and Soave
[39] to the fractional Laplacian case. For more results about the existence of normalized
solutions of (1.12), we refer to [3, 10, 12, 14, 28] and the references therein. For the results
on the normalized solutions for the Schrödinger equations or systems, we refer the readers
to [4–7, 21–24] and the references therein.
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Motivated by the aforementioned references, in this paper, we shall study the existence of
normalized ground state solutions to the following fractional critical Schrödinger–Poisson
system with the prescribed L2-norm⎧⎪⎨

⎪⎩
(−�)su − φ|u|2∗

s−3u = λu + μ|u|q−2u + |u|2∗
s−2u, x ∈ R

3,

(−�)sφ = |u|2∗
s−1, x ∈ R

3,

u ∈ Hs(R3),
∫
R3 |u|2dx = a2.

(1.13)

Problem (1.13) characteristics doubly critical growth, in the sense that the mixed non-
linearities combined a Sobolev critical term and a critical nonlocal term in view of the
Hardy–Littlewood–Sobolev inequality [33]. We shall restrict our attention on the existence
of normalized ground states to (1.13) for different cases of q. The present paper seems to
be the first work for the existence of normalized solutions for fractional Schröding–Poisson
system with doubly critical nonlinearities.

In order to state our main results, we need to fix some notations. Let Hs(R3) be the Hilbert
space of function in R

3 endowed with the standard inner product and norm

〈u, v〉 :=
∫
R3

((−�)
s
2 u(−�)

s
2 v + uv)dx, ‖u‖2Hs (R3)

= 〈u, u〉,

and Ls(R3), 1 ≤ s ≤ ∞, be the Lebesgue space endowed with the norms

‖u‖s :=
(∫

R3
|u|sdx

) 1
s

.

The Sobolev spaces Ds,2(R3) is defined by

Ds,2(R3) =
{
u ∈ L2∗

s (R3) :
∫∫

R6

|u(x) − u(y)|2
|x − y|3+2s dxdy < +∞

}
,

endowed with the norm

‖u‖2 := ‖u‖2Ds,2(R3)
=
∫∫

R6

|u(x) − u(y)|2
|x − y|3+2s dxdy.

According to Propositions 3.4 and 3.6 of [11], we have that,

‖u‖2 = ‖(−�)
s
2 u‖22 =

∫∫
R6

|u(x) − u(y)|2
|x − y|3+2s dxdy,

by omitting the normalization constant. Let S be the best Sobolev constant defined by

S := inf
u∈Ds,2(R3)\{0}

∫
R3 |(−�)

s
2 u|2dx

(
∫
R3 |u|2∗

s dx)
2
2∗s

, (1.14)

and the threshold value c∗
s by

c∗
s :=

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s , (1.15)

to verify the (PS)c compactness condition in the sequel.
If q ∈ (2, 2∗

s ], we also recall that the fractional Gagliardo-Nirenberg-Sobolev inequality
[36]:

‖u‖qq ≤ Cq,s‖(−�)
s
2 u‖qγq,s

2 ‖u‖q(1−γq,s )

2 , ∀ u ∈ Hs(R3), (1.16)
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65 Page 6 of 50 Y. Meng, X. He

where the optimal constant Cq,s depends on q and s, the number

γq,s := 3(q − 2)

2qs
, ∀q ∈ (2, 2∗

s ],

and it is easy to see that

qγq,s

⎧⎨
⎩

< 2, if 2 < q < 2 + 4s
3 ,

= 2, if q = q := 2 + 4s
3 , and that γ2∗

s
= 1.

> 2, if 2 + 4s
3 < q < 2∗

s ,

(1.17)

Now we summarize our main results of this paper. In the study of problem (1.13) an
important role is played by the so-called L2-critical exponent q := 2 + 4 s

3 . For the L2-
subcritical case: 2 < q < q̄ := 2 + 4s

3 , we have the following conclusion:

Theorem 1.1 Assume that a, μ > 0 and 2 < q < q := 2 + 4s
3 . If there exists a constant

k̃ = k̃(q, s) > 0, such that

μaq(1−γq,s ) < k̃, (1.18)

then Iμ|Sa has a ground state u which is a positive, radially symmetric function and solves
problem (1.13) for some λ < 0. Moreover,

ma,μ := inf
u∈Sa

Iμ(u) < 0 (1.19)

and u is an interior local minimizer of Iμ(u) on the set Ak = {u ∈ Sa : ‖u‖ < k}, for
suitable k small enough, and any other ground state solution of Iμ on Sa is a local minimizer
of Iμ on Ak.

In the L2-critical case: q = q := 2 + 4s
3 , the change of the geometry of Iμ|Sa leads

to the change of the number of critical points of Iμ. The existence of ground states can be
formulated as the following theorem.

Theorem 1.2 Assume that a, μ > 0 and 2 < q = q := 2 + 4s
3 . If

μaq(1−γq,s ) < q̄(2Cq̄,s)
−1, (1.20)

then Iμ|Sa has a ground state ũ which is a positive, radially symmetric function and solves
problem (1.13) for some λ̃ < 0. Moreover, 0 < ma,μ < c∗

s and ũ is a Mountain Pass type
solution, where c∗

s is given in (1.15).

In the L2-supercritical case: 2+ 4s
3 < q < 2∗

s , we can obtain the existence of a Mountain
Pass type ground state as follows.

Theorem 1.3 Assume that a, μ > 0 and 2+ 4s
3 < q < 2∗

s . If one of the following conditions
is satisfied:

(i) 0 < s < 3
4 and μaq(1−γq,s ) < 1

γq,s

(√
5−1
2

)− qγq,s−2
2∗s −2 S

3(2∗s −q)

2 s(2∗s −2) ,

(ii) 3
4 ≤ s < 1,

then Iμ|Sa has a ground state ũ which is a positive, radially symmetric function and solves
problem (1.13) for some λ̃ < 0. Moreover, 0 < ma,μ < c∗

s and ũ is a Mountain Pass type
solution.
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Remark 1.1. Assumption (1.18) has explicit estimates for k̃(q, s) in terms of Gagliardo–
Nirenberg and Sobolev constants according to the fact that q is L2-subcritical, L2-critical,
or L2-supercritical. In the case 2 + 4s

3 < q < 2∗
s , it is remarkable that we can prove that

k̃(q, s) = +∞, so that any a, μ > 0 are admissible; while in the case 2 < q ≤ 2 + 4s
3 ,

Assumptions (1.18) and (1.20) if (q = 2 + 4s
3 ) enters in the study of the geometry of the

constrained functional Iμ|Sa , and used in order to ensure that the ground state level ma,μ is
less than c∗

s , which is an essential ingredient in our compactness argument.
The next two theorems are concerned with the behavior of the ground states found in the

limit case μ = 0, and from Theorems 1.1–1.3 as μ → 0+.

Theorem 1.4 Let a > 0 and μ = 0. Then we have the following assertions:

(1) If 0 < s < 3
4 , then I0 on Sa has a unique positive radial ground state Uε,z defined in

(4.6) for the unique choice of ε > 0 which gives ‖Uε,z‖L2(R3) = a.

(2) If 3
4 ≤ s < 1, then (1.13) has no positive solutions in Sa for any λ ∈ R.

Theorem 1.5 Let uμ be the corresponding positive ground state solution obtained in Theo-
rems 1.1–1.3 with energy level ma,μ. Then the following conclusions hold:

(1) If 2 < q < 2 + 4s
3 , then ma,μ → 0, and ‖uμ‖ → 0 in Ds,2(R3) as μ → 0+.

(2) If 2 + 4s
3 ≤ q < 2∗

s , then ma,μ → c∗
s as μ → 0+.

Remark 1.2. (i) Theorem 1.4 reveals that the functional I0(u) has ground state energy, which
is achieved by the function wε given in Lemma 8.2, which is a new observation for problem
(1.2).

(ii) Theorems 1.1–1.5 are new results not only for the fractional Schrödinger–Poisson
systems with both the nonlocal critical term and the Sobolev critical nonlinearity [19], but
also for the fractional Schrödinger–Poisson systems with only the nonlocal critical term [13,
15].

Finally, we give some comments on the proof for the main results above. Since the two
critical terms |u|2∗

s−2u and φu |u|2∗
s−3u are all L2-supercritical, the functional Iμ is always

unbounded from below on Sa, and this makes it difficult to deal with existence of normalized
solutions on the L2- constraint. One of the main difficulties is that one has to face in such
context is the analysis of the convergence of constrained Palais–Smale sequences; indeed,
the critical growth term in the equation makes the bounded (PS) sequences cannot converge.
Because the problem has a Sobolev critical term and a nonlocal critical convolution term, it
becomes more difficult to estimate the critical value of the mountain pass, and has to consider
how the interaction between the nonlocal term and the nonlinear termwill affect the existence
of solutions of (1.13). Another of the main difficulties is that sequences of approximated
Lagrangemultipliers have to be controlled, sinceλ is not prescribed. For addition, weak limits
of the Palais–Smale sequences could leave a constraint, since the embeddings Hs(R3) ↪→
L2(R3) and Hs

rad(R
3) ↪→ L2(R3) are not compact.

In order to overcome these difficulties, we employ Jeanjean’s theory [20] by showing that
themountain pass geometry of Iμ|Sa allows to construct a Palais–Smale sequence of functions
satisfying the Pohozaev identity. This gives boundedness, which is the first step in proving
strong Hs-convergence. To overcome the loss of compactness caused by the doubly critical
growth, we shall employ the modified concentration-compactness principle, the mountain
pass theorem and energy estimation to obtain the existence of normalized ground states
of (1.13). As naturally expected, the presence of the Sobolev critical term and the critical
nonlocal term in (1.13) further complicates the study of the convergence of Palais–Smale
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sequences. One of the most relevant aspects of our study consists in showing that, suitably
combining some of the main ideas from [19, 38, 40], compactness can be restored also in the
present setting.

The paper is organized as follows: in Sect. 2, we start with some preliminary results
which will be frequently used to prove Theorems 1.1–1.3. In Sect. 3, we show some lemmas
for L2-subcritical perturbation case. In Sect. 4, we give some preliminaries for L2-critical
perturbation case. In Sect. 5, we present some lemmas for L2-supercritical perturbation case.
In Sect. 6, we prove Theorem 1.1. In Sect. 7, we prove Theorems 1.2–1.3. In Sect. 8, we prove
Theorem 1.4. Finally, the proof of Theorem 1.5 will be given in Sect. 9.

1.1 Notation

Throughout this paper, ‖ · ‖q denotes the norm in Lq(R3), 1 < q < ∞. BR(y) denotes the
ball centered at y with radius R. Capital letters C,Ci , i = 1, 2, . . . denote various positive
constants whose exact values are irrelevant, and u± = max{±u, 0}.

2 Preliminaries

In this section, we present various preliminary results which are necessary in the proof of the
main theorems. We first summarize some properties of the function φu given as follows.

Lemma 2.1 ([19, 37]) The function φu has the following properties:

(i) φu ≥ 0 for all u ∈ Hs(R3);
(ii) φtu = |t |2∗

s−1φu for all t > 0 and u ∈ Hs(R3);
(iii) For each u ∈ Hs(R3),

‖φu‖Ds,2(R3) ≤ S−1/2‖u‖2∗
s−1

2∗
s

and ∫
R3

φu |u|2∗
s−1dx ≤ S−1‖u‖2(2∗

s−1)
2∗
s

,

where S is the best Sobolev constant given in (1.14);
(iv) If un⇀u in Hs(R3), un → u a.e. onR3, thenφun⇀φu in Ds,2(R3), andφun −φun−u−

φu → 0 in Ds,2(R3);
(v) If un → u in Hs(R3), then φun → φu in Ds,2(R3), and

∫
R3 φun |un |2∗

s−1dx →∫
R3 φu |u|2∗

s−1dx;
(vi) If un⇀u in Hs(R3) and un → u a.e. on R3, then∫

R3
φun |un |2

∗
s−1dx −

∫
R3

φun−u |un − u|2∗
s−1dx −

∫
R3

φu |u|2∗
s−1dx → 0.

The following Pohozaev identity can be derived from [9, 31].

Proposition 2.1 Let u ∈ Hs(R3) ∩ L∞(R3) be a positive weak solution of problem (1.2),
then u satisfies the equality

3 − 2s

2

∫
R3

|(−�)
s
2 u|2dx = 3λ

2

∫
R3

|u|2dx + 3 − 2s

2

∫
R3

φu |u|2∗
s−1dx

+ 3 − 2s

2

∫
R3

|u|2∗
s dx + 3μ

q

∫
R3

|u|qdx .
(2.1)
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Lemma 2.2 Let u ∈ Hs(R3) be aweak solution of problem (1.13), then we have the Pohozaev
manifold

Na,μ = {u ∈ Sa : Pμ(u) = 0}, (2.2)

where

Pμ(u) = s
∫
R3

|(−�)
s
2 u|2dx − s

∫
R3

φu |u|2∗
s−1dx − s

∫
R3

|u|2∗
s dx − sμγq,s

∫
R3

|u|qdx .

Proof Since u is a solution of problem (1.13), we get∫
R3

|(−�)
s
2 u|2dx = λ

∫
R3

|u|2dx +
∫
R3

φu |u|2∗
s−1dx +

∫
R3

|u|2∗
s dx + μ

∫
R3

|u|qdx .
(2.3)

Combining Proposition 2.1 and (2.3), we infer that

s
∫
R3

|(−�)
s
2 u|2dx = s

∫
R3

φu |u|2∗
s−1dx + s

∫
R3

|u|2∗
s dx + sμγq,s

∫
R3

|u|qdx, (2.4)

and the conclusion follows. ��
For u ∈ Sa and t ∈ R, we set

(t�u)(x) = e
3t
2 u(et x), ∀ x ∈ R

3, (2.5)

then t�u ∈ Sa . For u ∈ Sa, we define the fiber map as

�μ
u (t) : = Iμ(t�u)

= e2st

2
‖u‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

eqγq,s st

q
‖u‖qq − e2

∗
s st

2∗
s

‖u‖2∗
s

2∗
s
.

(2.6)

An easy computation shows that (�
μ
u )′(t) = Pμ(t�u); moreover, we have the following

conclusion.

Proposition 2.2 Let u ∈ Sa. Then t ∈ R is a critical point for�
μ
u (t) if and only if t�u ∈ Na,μ.

In particular, u ∈ Na,μ if and only if 0 is a critical point of �μ
u (t).

In this spirit, we split the manifold Na,μ into the disjoint union

Na,μ = N+
a,μ ∪ N 0

a,μ ∪ N−
a,μ,

where

N+
a,μ : = {u ∈ Na,μ : (�μ

u )′′(0) > 0}
= {u ∈ Na,μ : 2s2‖u‖2 > μqγ 2

q,s s
2‖u‖qq + 2∗

s s
2‖u‖2∗

s
2∗
s
+ 2(2∗

s − 1)s2
∫
R3

φu |u|2∗
s −1dx},

N 0
a,μ : = {u ∈ Na,μ : (�μ

u )′′(0) = 0}
= {u ∈ Na,μ : 2s2‖u‖2 = μqγ 2

q,s s
2‖u‖qq + 2∗

s s
2‖u‖2∗

s
2∗
s
+ 2(2∗

s − 1)s2
∫
R3

φu |u|2∗
s −1dx},

N−
a,μ : = {u ∈ Na,μ : (�μ

u )′′(0) < 0}
= {u ∈ Na,μ : 2s2‖u‖2 < μqγ 2

q,s s
2‖u‖qq + 2∗

s s
2‖u‖2∗

s
2∗
s
+ 2(2∗

s − 1)s2
∫
R3

φu |u|2∗
s −1dx}.

(2.7)
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Lemma 2.3 Let 0 < s < 1, 2 < q < 2∗
s and a, μ > 0. Let {un} ⊂ Sa,r = Sa ∩ Hs

r (R3) be
a Palais–Smale sequence for Iμ|Sa at level ma,μ, where Hs

r (R3) is the subspace of Hs(R3)

consisting of radially symmetric functions. Then {un} is bounded in Hs(R3).

Proof The proof is divided into three cases.
Case 1: 2 < q < q̄ = 2 + 4s

3 . In this case, by (1.17), we have that qγq,s < 2. Since
Pμ(un) → 0, one has

‖un‖2 − μγq,s

∫
R3

|un |qdx −
∫
R3

|un |2∗
s dx −

∫
R3

φun |un |2
∗
s−1dx = on(1). (2.8)

Combining this and (1.16), we get that

Iμ(un) = 1

2
‖un‖2 − 1

2(2∗
s − 1)

∫
R3

φun |un |2
∗
s−1dx − μ

q
‖un‖qq − 1

2∗
s
‖un‖2

∗
s

2∗
s
+ on(1)

≥ 1

2
‖un‖2 − 1

2∗
s

∫
R3

φun |un |2
∗
s−1dx − μ

q
‖un‖qq − 1

2∗
s
‖un‖2

∗
s

2∗
s
+ on(1)

= s

3
‖un‖2 − μ

q

(
1 − qγq,s

2∗
s

)
‖un‖qq + on(1)

≥ s

3
‖un‖2 − μ

q

(
1 − qγq,s

2∗
s

)
Cq,s‖un‖qγq,s aq(1−γq,s ) + on(1).

Since {un} is a Palais–Smale sequence for Iμ|Sa at levelma,μ, we have that Iμ(un) ≤ ma,μ+1
for n large. Thus, we obtain that

s

3
‖un‖2 ≤ μ

q

(
1 − qγq,s

2∗
s

)
Cq,s‖un‖qγq,s aq(1−γq,s ) + ma,μ + 2,

which implies that {un} is bounded in Hs(R3).

Case 2: q = q̄ := 2 + 4s
3 . In this case, by (1.17), we have qγq,s = 2, and Pμ(un) → 0

implies that

‖un‖2 − μγq,s

∫
R3

|un |qdx −
∫
R3

|un |2∗
s dx −

∫
R3

φun |un |2
∗
s−1dx = on(1). (2.9)

Hence,

Iμ(un) = 2s

3 + 2s

∫
R3

φun |un |2
∗
s−1dx + s

3

∫
R3

|un |2∗
s dx + on(1) ≤ ma,μ + 1,

which implies that ∫
R3

φun |un |2
∗
s−1dx ≤ C and

∫
R3

|un |2∗
s dx ≤ C .

Since q = 2 + 4s
3 ∈ (2, 2∗

s ), we have q = 2 + 4 s
3 = τ2 + (1 − τ)2∗

s for some τ ∈ (0, 1),
and by Hölder inequality, we get that∫

R3
|un |qdx ≤

(∫
R3

|un |2dx
)τ (∫

R3
|un |2∗

s dx

)1−τ

≤ C .

Consequently, from (2.9), we know that

‖un‖2 = μγq,s

∫
R3

|un |qdx +
∫
R3

|un |2∗
s dx +

∫
R3

φun |un |2
∗
s−1dx + on(1) ≤ C,
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which implies {un} is bounded in Hs(R3).
Case 3: q̄ := 2 + 4s

3 < q < 2∗
s . In this case, by (1.17), one has qγq,s > 2, and from

Pμ(un) → 0, we obtain that

‖un‖2 − μγq,s

∫
R3

|un |qdx −
∫
R3

|un |2∗
s dx −

∫
R3

φun |un |2
∗
s−1dx = on(1).

Thus, we have that

Iμ(un) = μ

q

(γq,sq

2
− 1

) ∫
R3

|un |qdx + s

3

∫
R3

|un |2∗
s dx + 2s

3 + 2s

∫
R3

φun |un |2
∗
s−1dx + on(1)

≤ ma,μ + 1,

which implies that
∫
R3 |un |qdx ,

∫
R3 |un |2∗

s dx and
∫
R3 φun |un |2∗

s−1dx are both bounded.
Hence

‖un‖2 = μγq,s

∫
R3

|un |qdx +
∫
R3

|un |2∗
s dx +

∫
R3

φun |un |2
∗
s−1dx + on(1) ≤ C,

which completes the proof. ��
Proposition 2.3 Assume that 0 < s < 1, 2 < q < 2∗

s and a, μ > 0. Let {un} ⊂ Sa,r =
Sa ∩ Hs

r (R3) be a Palais–Smale sequence for Iμ|Sa at level ma,μ with

ma,μ <

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s and ma,μ �= 0.

Suppose in addition that Pμ(un) → 0 as n → +∞. Then one of the following alternatives
holds:

(i) either up to a subsequence un⇀u weakly in Hs(R3) but not strongly, with u being a
solution of problem (1.13) for some λ < 0, and

Iμ(u) ≤ ma,μ −
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ;

(ii) or up to a subsequence un → u strongly in Hs(R3), Iμ(u) = ma,μ and u solves problem
(1.13) for some λ < 0.

Proof By Lemma 2.3, we know that the sequence {un} is a bounded sequence of radial
functions in Hs(R3), and by compactness of Hs

r (R3) ↪→ Lq(R3), up to a subsequence, there
exists u ∈ Hs

r (R3) such that un⇀u weakly in Hs
r (R3), un → u strongly in Lq(R3) and

un → u a.e. in R
3. Since {un} is a bounded Palais–Smale sequence for Iμ|Sa , by Lagrange

multipliers rule, there exists {λn} ⊂ R such that∫
R3

(−�)
s
2 un(−�)

s
2 ϕdx −

∫
R3

φun |un |2
∗
s−3unϕdx − μ

∫
R3

|un |q−2unϕdx

−
∫
R3

|un |2∗
s−2unϕdx = λn

∫
R3

unϕdx + on(1)‖ϕ‖
(2.10)

as n → ∞ for everyϕ ∈ Hs(R3). Choosingϕ = un , then from (2.10) and the boundedness of
{un} in Hs(R3), we obtain that {λn} is bounded inR, and up to a subsequence, λn → λ ∈ R.
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Moreover, combining Pμ(un) → 0 with γq,s < 1, we infer to

λa2 = lim
n→∞ λn

∫
R3

u2ndx

= lim
n→∞

(
‖un‖2 −

∫
R3

φun |un |2
∗
s−1dx − μ

∫
R3

|un |qdx −
∫
R3

|un |2∗
s dx

)

= lim
n→∞ μ(γq,s − 1)

∫
R3

|un |qdx = μ(γq,s − 1)
∫
R3

|u|qdx ≤ 0.

(2.11)

Hence, λ = 0 if and only if u ≡ 0. Next, we show that u �≡ 0. Assume by contradiction that
u ≡ 0. Since {un} is bounded in Hs(R3), up to a subsequence, un → 0 strongly in Lq(R3),
then by Pμ(un) → 0, we have

‖un‖2 −
∫
R3

φun |un |2
∗
s−1dx −

∫
R3

|un |2∗
s dx = on(1). (2.12)

Without loss of generality, we may assume

�n = ‖un‖2 → �, an =
∫
R3

φun |un |2
∗
s−1dx → a and bn =

∫
R3

|un |2∗
s dx → b,

(2.13)

as n → ∞. Note that by Young inequality, we infer to∫
R3

|un |2∗
s dx =

∫
R3

(−�)
s
2 φun (−�)

s
2 |un |dx

≤ ε2

2

∫
R3

|(−�)
s
2 |un ||2dx + 1

2ε2

∫
R3

|(−�)
s
2 φun |2dx

= 1

2ε2

∫
R3

φun |un |2
∗
s−1dx + ε2

2

∫
R3

|(−�)
s
2 un |2dx .

Thus, passing to the limit as n → ∞, it follows that b ≤ 1
2ε2

a+ ε2

2 �. Choosing ε2 =
√
5−1
2 ,

and by (2.12), we can infer that a ≥ 3−√
5

2 �. Consequently, by (2.12)–(2.13), we derive that

ma,μ = lim
n→∞ Iμ(un)

= lim
n→∞

{
1

2
‖un‖2 − 1

2(2∗
s − 1)

∫
R3

φun |un |2
∗
s −1dx − 1

2∗
s

∫
R3

|un |2∗
s dx − μ

q

∫
R3

|un |qdx
}

= s

3
� + s(3 − 2s)

3(3 + 2s)
a ≥

s
[
12 + (1 − √

5)(3 − 2s)
]

6(3 + 2s)
� = (2∗

s − 2)(22∗
s + 1 − √

5)

4(2∗
s − 1)2∗

s
�.

(2.14)

From (1.14), (2.12)–(2.13) and Lemma 2.1, we have that

�n = an + bn + on(1)

≤ S−1‖un‖2(2
∗
s−1)

2∗
s

+ bn + on(1)

≤ S−1

(
S− 1

2

[∫
R3

|(−�)
s
2 un |2dx

] 1
2
)2(2∗

s−1)

+ S− 2∗s
2

[∫
R3

|(−�)
s
2 un |2dx

] 2∗s
2 + on(1)

≤ S−2∗
s �

2∗
s−1

n + S− 2∗s
2 �

2∗s
2
n + on(1).

(2.15)
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Taking the limit in (2.15) as n → ∞, we obtain that

� ≤ S−2∗
s �2

∗
s−1 + S− 2∗s

2 �
2∗s
2 .

Therefore, either � = 0, or � ≥
(√

5−1
2

) 2
2∗s −2 S

3
2 s . If � = 0, from the definition of Iμ(un),

we get that ma,μ = 0, which gives a contradiction to the fact that Iμ(un) → ma,μ �= 0. So,

� ≥
(√

5−1
2

) 2
2∗s −2 S

3
2 s and by (2.14) we obtain that

ma,μ ≥ (2∗
s − 2)(22∗

s + 1 − √
5)

4(2∗
s − 1)2∗

s
�

≥
(√

5 − 1

2

) 2
2∗s −2 (2∗

s − 2)(22∗
s + 1 − √

5)

4(2∗
s − 1)2∗

s
S

3
2s

=
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ,

which yields a contradiction to our assumptions. Therefore, u �≡ 0, and by (2.11), we see
that λ < 0.

By (2.10), and a standard argument, we infer that

(−�)su − φu |u|2∗
s−3u − μ|u|q−2u − |u|2∗

s−2u = λu, x ∈ R
3. (2.16)

Indeed, for any ϕ ∈ Hs(R3), it follows by the definition of weak convergence that∫
R3

(−�)
s
2 un(−�)

s
2 ϕdx →

∫
R3

(−�)
s
2 u(−�)

s
2 ϕdx as n → ∞.

Using λn → λ as n → ∞, we easily get that

λn

∫
R3

unϕdx → λ

∫
R3

uϕdx as n → ∞.

Furthermore, since {|un |2∗
s−2un} is bounded in L

2∗s
2∗s −1 (R3) and |un(x)|2∗

s−2un(x) →
|u(x)|2∗

s−2u(x) a.e. in R
3. Then, we obtain that

|un |2∗
s−2un⇀|u|2∗

s−2u in L
2∗s

2∗s −1 (R3),

which yields that ∫
R3

|un |2∗
s−2unϕdx →

∫
R3

|u|2∗
s−2uϕdx as n → ∞.

It follows fromLemma2.1 thatφun⇀φu in Ds,2(R3), which implies thatφun⇀φu in L2∗
s (R3).

Then, we have that ∫
R3

(φun − φu)|u|2∗
s−3uϕdx → 0 as n → ∞. (2.17)
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Since un(x) → u(x) a.e. in R
3 and∫

R3
|φun (|un |2

∗
s−3un − |u|2∗

s−3u)|
2∗s

2∗s −1 dx

≤ C

(
‖φun‖

2∗s
2∗s −1

2∗
s

‖un‖
2∗s (2∗s −2)
2∗s −1

2∗
s

+ ‖φun‖
2∗s

2∗s −1

2∗
s

‖u‖
2∗s (2∗s −2)
2∗s −1

2∗
s

)
≤ C,

we have φun (|un |2∗
s−3un − |u|2∗

s−3u)⇀0 in L
2∗s

2∗s −1 (R3) and thus∫
R3

φun (|un |2
∗
s−3un − |u|2∗

s−3u)ϕdx → 0 as n → ∞,

which together with (2.17) implies∫
R3

φun |un |2
∗
s−3unϕdx →

∫
R3

φu |u|2∗
s−3uϕdx as n → ∞. (2.18)

By the Pohozaev identity, we have Pμ(u) = 0.Now, let vn = un −u, then vn⇀0 in Hs(R3).
By the well-known Brézis–Lieb lemma [8] and Lemma 2.1, we have that

‖un‖2 = ‖vn‖2 + ‖u‖2 + on(1) and ‖un‖2
∗
s

2∗
s

= ‖vn‖2
∗
s

2∗
s
+ ‖u‖2∗

s
2∗
s
+ on(1) (2.19)

and ∫
R3

φun |un |2
∗
s−1dx =

∫
R3

φvn |vn |2
∗
s−1dx +

∫
R3

φu |u|2∗
s−1dx + on(1). (2.20)

Therefore, from Pμ(un) → 0 and un → u in Lq(R3), we deduce by (2.19) and (2.20) that

‖vn‖2 + ‖u‖2 = μγq,s

∫
R3

|u|qdx +
∫
R3

φvn |vn |2
∗
s−1dx +

∫
R3

φu |u|2∗
s−1dx

+‖vn‖2
∗
s

2∗
s
+ ‖u‖2∗

s
2∗
s
+ on(1).

Combining this with Pμ(u) = 0, we conclude that

‖vn‖2 =
∫
R3

φvn |vn |2
∗
s−1dx + ‖vn‖2

∗
s

2∗
s
+ on(1). (2.21)

Without loss of generality, we may assume

‖vn‖2 → l,
∫
R3

φvn |vn |2
∗
s−1dx → ã and

∫
R3

|vn |2∗
s dx → b̃, as n → ∞.

By Young inequality, we have that∫
R3

|vn |2∗
s dx =

∫
R3

(−�)
s
2 φvn (−�)

s
2 |vn |dx

≤ τ 2

2

∫
R3

|(−�)
s
2 |vn ||2dx + 1

2τ 2

∫
R3

|(−�)
s
2 φvn |2dx

= 1

2τ 2

∫
R3

φvn |vn |2
∗
s−1dx + τ 2

2

∫
R3

|(−�)
s
2 vn |2dx,

(2.22)
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passing to the limit as n → ∞, it follows that b̃ ≤ 1
2τ 2

ã + τ 2

2 l. Taking τ 2 =
√
5−1
2 and using

(2.21), we can deduce that

ã ≥ 3 − √
5

2
l. (2.23)

Therefore, (1.14), (2.21) and Lemma 2.1 imply that

‖vn‖2 =
∫
R3

φvn |vn |2
∗
s−1dx + ‖vn‖2

∗
s

2∗
s
+ on(1) ≤ S−1‖vn‖2(2

∗
s−1)

2∗
s

+ ‖vn‖2
∗
s

2∗
s
+ on(1)

≤ S−1

(
S− 1

2

[∫
R3

|(−�)
s
2 vn |2dx

] 1
2
)2(2∗

s−1)

+ S− 2∗s
2

[∫
R3

|(−�)
s
2 vn |2dx

] 2∗s
2 + on(1)

≤ S−2∗
s ‖vn‖2(2∗

s−1) + S− 2∗s
2 ‖vn‖2∗

s + on(1). (2.24)

Passing the limit in (2.24) as n → ∞, we obtain that

l ≤ S−2∗
s l2

∗
s−1 + S− 2∗s

2 l
2∗s
2 .

Thus, we have that

l = 0 or l ≥
(√

5 − 1

2

) 2
2∗s −2

S
3
2s .

Case 1: l ≥
(√

5−1
2

) 2
2∗s −2 S

3
2 s . By (2.21)–(2.24), we have that

ma,μ = lim
n→∞ Iμ(un)

= lim
n→∞

(
Iμ(u) + 1

2
‖vn‖2 − 1

2(2∗
s − 1)

∫
R3

φvn |vn |2
∗
s−1dx − 1

2∗
s

∫
R3

|vn |2∗
s dx

)

= Iμ(u) + s

3
l + s(3 − 2s)

3(3 + 2s)
ã

≥ Iμ(u) +
s
[
12 + (1 − √

5)(3 − 2s)
]

6(3 + 2s)
l

= Iμ(u) + (2∗
s − 2)(22∗

s + 1 − √
5)

4(2∗
s − 1)2∗

s
l

≥ Iμ(u) +
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s .

Thus, the conclusion (i) holds.
Case 2: � = 0. In this case, we can prove that un → u strongly in Hs(R3). In fact, ‖vn‖ =
‖un − u‖ → 0 implies that un → u strongly in Ds,2(R3) and hence in L2∗

s (R3) by the
Sobolev inequality. We also obtain

∫
R3 φvn |vn |2∗

s−1dx → 0 by Lemma 2.1. Next, we show
that un → u strongly in L2(R3). If we test (2.10) with ϕ = un − u, test (2.16) with un − u,
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and subtract, we have that

‖un − u‖2 −
∫
R3

(λnun − λu)(un − u)dx

= μ

∫
R3

(|un |q−2un − |u|q−2u)(un − u)dx +
∫
R3

(|un |2∗
s−2un − |u|2∗

s−2u)(un − u)dx

+
∫
R3

[
φun |un |2

∗
s−3un − φu |u|2∗

s−3u
]
(un − u)dx + on(1).

Now the first, the third, and the fourth integrals tends to 0 by convergence of un to u in
Ds,2(R3), Lq(R3) and L2∗

s (R3), while for the fifth integral, we have by Hölder inequality,

∣∣∣∣
∫
R3

[
φun |un |2

∗
s−3un − φu |u|2∗

s−3u
]
(un − u)dx

∣∣∣∣
≤
(∫

R3

∣∣φun |un |2
∗
s−3un − φu |u|2∗

s−3u
∣∣ 2∗s
2∗s −1 dx

) 2∗s −1
2∗s
(∫

R3
|un − u|2∗

s dx

) 1
2∗s

≤ CS− 1
2 ‖un − u‖Ds,2 → 0

as n → ∞. As a consequence

0 = lim
n→∞

∫
R3

(λnun − λu)(un − u)dx = lim
n→∞ λ

∫
R3

(un − u)2dx,

which implies that un → u strongly in L2(R3) by λ < 0. Thus, the conclusion (i i) holds,
and the proof is completed. ��

We end this section by stating the following variant Proposition 2.3.

Proposition 2.4 Assume that 0 < s < 1, 2 < q < 2∗
s and a, μ > 0. Let {un} ⊂ Sa,r be a

Palais–Smale sequence for Iμ|Sa at level ma,μ, with

ma,μ <

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s and ma,μ �= 0.

Assume in addition that Pμ(un) → 0 as n → +∞, and that there exists {vn} ⊂ Sa and vn
is radially symmetric for every n satisfying ‖un − vn‖ → 0 as n → ∞. Then one of the
alternatives (i) and (ii) in Proposition 2.3 holds.

The proof is similar to the previous one: as in Lemma 2.3, we show that {un} is bounded.
Then also {vn} is bounded, and since each vn is radial, we deduce that, up to a subsequence,
vn⇀u weakly in Hs(R3), vn → u strongly in Lq(R3), and a.e. onR3. Since ‖un−vn‖ → 0,
the same convergence is inherited by {un}, and we can proceed as in the proof of Proposition
2.3.
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3 L2-subcritical perturbation

In the L2-subcritical case 2 < q < q̄ := 2 + 4s
3 , we have 0 < qγq,s < 2. To begin our

argument, we first introduce the following positive constants

K := −(2∗
s − 1)(2∗

s − qγq,s)

2∗
s (2(2∗

s − 1) − qγq,s)

+
√

(2∗
s − 1)2(2∗

s − qγq,s)2 + (2∗
s − 1)(2∗

s )
2(2(2∗

s − 1) − qγq,s)(2 − qγq,s)

2∗
s (2(2

∗
s − 1) − qγq,s)

,

(3.1)

K1 := q
(
2∗
s (2

∗
s − 1) − 2∗

s K
2 − 2(2∗

s − 1)K
)

22∗
s (2

∗
s − 1)Cq,s

K
2−qγq,s
2∗s −2 S

2∗s (2−qγq,s )
2(2∗s −2) , (3.2)

and

K2 := (2∗
s − 2)S

2∗s (2−qγq,s )
2(2∗s −2)

γq,sCq,s(2∗
s − qγq,s)

×
⎛
⎝−(2∗

s − qγq,s) +
√

(2∗
s − qγq,s)2 + 4

(
2(2∗

s − 1) − qγq,s
)
(2 − qγq,s)

2
(
2(2∗

s − 1) − qγq,s
)

⎞
⎠

2−qγq,s
2∗s −2

.

(3.3)

We consider the constrained functional Iμ|Sa . For every u ∈ Sa , by (1.14), the fractional
Gagliardo-Nirenberg-Sobolev inequality (1.16) and Lemma 2.1, we have that

Iμ(u) ≥ 1

2
‖u‖2 − 1

2(2∗
s − 1)

S−2∗
s ‖u‖2(2∗

s−1) − μ

q
Cq,sa

q(1−γq,s )‖u‖qγq,s − 1

2∗
s
S− 2∗s

2 ‖u‖2∗
s .

(3.4)

To better understand the geometry of the functional Iμ(u), we consider the function h :
R

+ → R,

h(t) = 1

2
t2 − 1

2(2∗
s − 1)

S−2∗
s t2(2

∗
s−1) − μ

q
Cq,sa

q(1−γq,s )tqγq,s − 1

2∗
s
S− 2∗s

2 t2
∗
s . (3.5)

From μ > 0 and qγq,s < 2, we have that h(0+) = 0− and h(+∞) = −∞.

Lemma 3.1 Assume that the inequality μaq(1−γq,s ) < K1 holds, then the function h has a
local strict minimum at negative level, a global maximum at positive level, and no other
critical points, and there exist R0 and R1 both depending on a and μ, such that h(R0) =
0 = h(R1) and h(t) ≥ 0 if and only if t ∈ (R0, R1).

Proof For t > 0, we have h(t) > 0 if and only if

ϕ(t) >
μ

q
Cq,sa

q(1−γq,s ), with ϕ(t) = 1

2
t2−qγq,s − 1

2(2∗
s − 1)

S−2∗
s t2(2

∗
s−1)−qγq,s

− 1

2∗
s
S− 2∗s

2 t2
∗
s−qγq,s .
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In view of

ϕ′(t) = 2 − qγq,s

2
t1−qγq,s − 2(2∗

s − 1) − qγq,s

2(2∗
s − 1)

S−2∗
s t22

∗
s−3−qγq,s

−2∗
s − qγq,s

2∗
s

S− 2∗s
2 t2

∗
s−1−qγq,s ,

it is not difficult to check that ϕ(t) has a unique critical point at

t̄ = K
1

2∗s −2 S
2∗s

2(2∗s −2) ,

and ϕ(t) is increasing on (0, t̄) and decreasing on (t̄,+∞). Moreover, the maximum level
is

ϕ(t̄) = 2∗
s (2

∗
s − 1) − 2∗

s K
2 − 2(2∗

s − 1)K

22∗
s (2∗

s − 1)
K

2−qγq,s
2∗s −2 S

2∗s (2−qγq,s )
2(2∗s −2) .

Thus, h is positive on an open interval (R0, R1) if and only if ϕ(t̄) >
μ
q Cq,saq(1−γq,s ), that

is μaq(1−γq,s ) < K1 holds. In view of h(0+) = 0−, h(+∞) = −∞ and h is positive on an
open interval (R0, R1), it is immediate to see that h has a global maximum at positive level
in (R0, R1), and has a local minimum point at negative level in (0, R0). Note that

h′(t) = tqγq,s−1
[
t2−qγq,s − S−2∗

s t2(2
∗
s−1)−qγq,s − μγq,sCq,sa

q(1−γq,s ) − S− 2∗s
2 t2

∗
s−qγq,s

]
= 0

if and only if

ψ(t) = μγq,sCq,sa
q(1−γq,s ) with ψ(t) = t2−qγq,s − S−2∗

s t2(2
∗
s−1)−qγq,s − S− 2∗s

2 t2
∗
s−qγq,s .

Obviously, ψ(t) has only one critical point, which is a strict maximum. Therefore, the above
equation has at most two solutions. Consequently, if maxt>0 ψ(t) ≤ μγq,sCq,saq(1−γq,s ),
then we have a contradiction to the fact that h is positive on the open interval (R0, R1). Thus,
maxt>0 ψ(t) > μγq,sCq,saq(1−γq,s ), which implies that h only has a local strict minimum at
negative level and a global strict maximum at positive level and no other critical points. ��

Lemma 3.2 Assume that μaq(1−γq,s ) < K2, then N 0
a,μ = ∅ and Na,μ is a smooth manifold

of codimension 2 in Hs(R3).

Proof We argue by contradiction that, there exists u ∈ N 0
a,μ. Then, Pμ(u) = 0 with

(�
μ
u )′′(0) = 0, imply that

‖u‖2 = μγq,s‖u‖qq + ‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx (3.6)

and

2‖u‖2 = μqγ 2
q,s‖u‖qq + 2∗

s ‖u‖2∗
s

2∗
s
+ 2(2∗

s − 1)
∫
R3

φu |u|2∗
s−1dx . (3.7)

Therefore, from (1.14), (3.6), (3.7) and Lemma 2.1 we have that

μγq,s(2 − qγq,s)‖u‖qq = (2∗
s − 2)‖u‖2∗

s
2∗
s
+ 2(2∗

s − 2)
∫
R3

φu |u|2∗
s−1dx,
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‖u‖2 = 2∗
s − qγq,s

2 − qγq,s
‖u‖2∗

s
2∗
s
+ 2(2∗

s − 1) − qγq,s

2 − qγq,s

∫
R3

φu |u|2∗
s−1dx

≤ 2∗
s − qγq,s

2 − qγq,s
S− 2∗s

2 ‖u‖2∗
s + 2(2∗

s − 1) − qγq,s

2 − qγq,s
S−2∗

s ‖u‖2(2∗
s−1)

(3.8)

and

‖u‖2 ≤ μγq,s‖u‖qq + ‖u‖2∗
s

2∗
s
+ 2

∫
R3

φu |u|2∗
s−1dx ≤ μγq,s

2∗
s − qγq,s

2∗
s − 2

‖u‖qq

≤ μγq,s
2∗
s − qγq,s

2∗
s − 2

Cq,s‖u‖qγq,s aq(1−γq,s ).

(3.9)

Combining (3.8) with (3.9), we infer that

μγq,s
2∗
s − qγq,s

2∗
s − 2

Cq,sa
q(1−γq,s ) ≥ S

2∗s (2−qγq,s )
2(2∗s −2)

×
⎛
⎝−(2∗

s − qγq,s) +
√

(2∗
s − qγq,s)2 + 4

(
2(2∗

s − 1) − qγq,s
)
(2 − qγq,s)

2
(
2(2∗

s − 1) − qγq,s
)

⎞
⎠

2−qγq,s
2∗s −2

,

that is

μaq(1−γq,s ) ≥ (2∗
s − 2)S

2∗s (2−qγq,s )

2(2∗s −2)

γq,sCq,s(2∗
s − qγq,s)

×
⎛
⎝−(2∗

s − qγq,s) +
√

(2∗
s − qγq,s)2 + 4

(
2(2∗

s − 1) − qγq,s
)
(2 − qγq,s)

2
(
2(2∗

s − 1) − qγq,s
)

⎞
⎠

2−qγq,s
2∗s −2

:= K2,

(3.10)

which leads to a contradiction to our assumption, and so, N 0
a,μ = ∅.

Next, we can check that Na,μ is a smooth manifold of codimension 2 on Hs(R3). To see
this, we note thatNa,μ = {u ∈ Hs(R3) : Pμ(u) = 0,G(u) = 0}, forG(u) = ∫

R3 u2dx−a2,
with Pμ and G being of class C1 in Hs(R3). Thus, it suffices to check that the differential
(dG(u), dPμ(u)) : Hs(R3) → R

2 is surjective, for every u ∈ Na,μ. To this end, we prove
that for every u ∈ Na,μ, there exists ϕ ∈ TuSa such that dPμ(u)[ϕ] �= 0. Once that the
existence of ϕ is established, the system{

dG(u)[αu + βϕ] = x

d Pμ(u)[αu + βϕ] = y
⇐⇒

{
αa2 = x

d Pμ(u)[αu + βϕ] = y,

is solvable with respect to α, β for every (x, y) ∈ R
2, and hence the surjectivity is proved.

Now, suppose by contradiction that for u ∈ Na,μ such a tangent vectorϕ does not exist, i.e.
dPμ(u)[ϕ] = 0 for every ϕ ∈ TuSa . Then u is a constrained critical point for the functional
Iu on Sa , and hence by the Lagrange multipliers rule, there exists a λ ∈ R such that

2s(−�)su = λu + μsqγq,s |u|q−2u + 2∗
s s|u|2∗

s−2u + 2s(2∗
s − 1)φu |u|2∗

s−3u in R
3.

However, by the Pohozaev identity for the last equation, we have

2s2‖u‖2 = μqγ 2
q,ss

2‖u‖qq + 2∗
s s

2‖u‖2∗
s

2∗
s
+ 2(2∗

s − 1)s2
∫
R3

φu |u|2∗
s−1dx,
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that is u ∈ N 0
a,μ, a contradiction. So, for each u ∈ Na,μ there exists ϕ ∈ TuSa such that

dPμ(u)[ϕ] �= 0, and we can easily solve for α, β. The function dPμ(u) : Sa → R is
surjective for each u ∈ Na,μ is proved. Hence N 0

a,μ is a smooth manifold of codimension 2
in Hs(R3). Thus, u ∈ Na,μ is a natural constraint. ��

ThemanifoldNa,μ is then divided into its two componentsN+
a,μ andN−

a,μ, having disjoint
closure.

Lemma 3.3 Let u ∈ Sa, then the function �
μ
u (t) has exactly two critical points αu < tu ∈ R

and two zero points cu < du ∈ R, with αu < cu < tu < du . Furthermore,

(i) αu�u ∈ N+
a,μ, tu�u ∈ N−

a,μ and if t�u ∈ Na,μ, then either t = αu or t = tu;
(ii) ‖t�u‖ ≤ R0 for each t ≤ cu, and

Iμ(αu�u) = min{Iμ(t�u) : t ∈ R and ‖t�u‖ < R0} < 0;
(iii) Iμ(tu�u) = max{Iμ(t�u) : t ∈ R} > 0 and �

μ
u (t) is strictly decreasing and concave

on (tu,+∞). Especially, if tu < 0, then Pμ(u) < 0;
(iv) The maps: u �→ αu ∈ R and u �→ tu ∈ R, ∀u ∈ Sa, are of class C1.

Proof Let u ∈ Sa , then by Proposition 2.2., we have t�u ∈ Na,μ if and only if (�
μ
u )′(t) = 0.

Firstly, we show that �μ
u (t) has at least two critical points. By (3.4), we have

�μ
u (t) = Iμ(t�u) ≥ h(‖t�u‖) = h(est‖u‖),

which implies that theC2 function�
μ
u (t) is positive on

(
s−1 ln(R0‖u‖−1), s−1 ln(R1‖u‖−1)

)
,

�
μ
u (−∞) = 0− and �

μ
u (+∞) = −∞. It follows that �

μ
u (t) has a local minimum point

αu at a negative level in
(
0, s−1 ln(R0‖u‖−1)

)
and has a global maximum point tu at a pos-

itive level in
(
s−1 ln(R0‖u‖−1), s−1 ln(R1‖u‖−1)

)
. Next, we prove that �μ

u (t) has no other
critical points. Indeed, as (�

μ
u )′(t) = 0, we infer to

g(t) = sμγq,s

∫
R3

|u|qdx,
with

g(t) = se(2−qγq,s )st‖u‖2 − se(2(2∗
s−1)−qγq,s )st

∫
R3

φu |u|2∗
s−1dx − se(2∗

s−qγq,s )st‖u‖2∗
s

2∗
s
.

It follows that g(t) has a unique maximum point, hence the above equation has at most two
solutions.

From u ∈ Sa and Proposition 2.2, we have αu�u, tu�u ∈ Na,μ, and t�u ∈ Na,μ implying
t ∈ {αu, tu}. Since αu is a local minimum point of �

μ
u (t), we see that (�

μ
αu�u)

′′(0) =
(�

μ
u )′′(αu) ≥ 0. As N 0

a,μ = ∅, we get (�
μ
αu�u)

′′(0) = (�
μ
u )′′(αu) > 0, which implies that

αu�u ∈ N+
a,μ. Similarly, we have that tu�u ∈ N−

a,μ.
By the monotonicity and recalling the behavior at infinity of �

μ
u (t), we see that �

μ
u (t)

has exactly two zero points cu < du with αu < cu < tu < du , and �
μ
u (t) has exactly two

inflection points. Particularly, �
μ
u (t) is concave on (tu,+∞), and hence, if tu < 0, then

Pμ(u) = (�
μ
u )′(0) < 0.

Finally, we show that u �→ αu ∈ R and u �→ tu ∈ R, ∀u ∈ Sa , are of class C1. Indeed, we
can apply the implicit function theorem on the C1 function �(t, u) := (�

μ
u )′(t). We use that

�(αu, u) = (�
μ
u )′(αu) = 0, that ∂t�(αu, u) = (�

μ
u )′′(αu) < 0, and the fact that N 0

a,μ = ∅
implies that it is not possible to pass with continuity fromN+

a,μ toN−
a,μ. Thus, we know that

u �→ αu ∈ R, ∀u ∈ Sa , is of classC1. Analogously, we can show that u �→ tu ∈ R, ∀u ∈ Sa ,
is of class C1. ��
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For k > 0, we define

Ak = {u ∈ Sa : ‖u‖ < k} and ma,μ = inf
u∈AR0

Iμ(u).

Then, we can conclude the following conclusion from Lemma 3.3.

Corollary 3.1 There holds that the set N+
a,μ ⊂ AR0 = {u ∈ Sa : ‖u‖ < R0} and

sup
u∈N+

a,μ

Iμ(u) ≤ 0 ≤ inf
u∈N−

a,μ

Iμ(u).

Lemma 3.4 The level ma,μ ∈ (−∞, 0), and verifies

ma,μ = inf
Na,μ

Iμ = inf
N+

a,μ

Iμ and ma,μ < inf
AR0\AR0−r

Iμ

for r > 0 sufficiently small.

Proof For each u ∈ AR0 , we have that

Iμ(u) ≥ h(‖u‖) ≥ min
t∈[0,R0]

h(t) > −∞.

Hence, ma,μ > −∞. Moreover, for each u ∈ Sa , we have ‖t�u‖ < R0 and Iμ(t�u) < 0 for
t � −1, and so ma,μ < 0.

From N+
a,μ ⊂ AR0 , we have ma,μ ≤ infN+

a,μ
Iμ. On the other hand, if u ∈ AR0 , by

Lemma 3.3, we see that αu�u ∈ N+
a,μ ⊂ AR0 and

Iμ(αu�u) = min{Iμ(t�u) : t ∈ R and ‖t�u‖ < R0} ≤ Iμ(u),

which implies that infN+
a,μ

Iμ ≤ ma,μ. Since Iμ > 0 on N−
a,μ by Corollary 3.1, we infer to

infN+
a,μ

Iμ = infNa,μ Iμ.

Finally, by the continuity of h there exists r > 0 such that h(t) ≥ ma,μ

2 if t ∈ [R0−r , R0].
Thus, for any u ∈ Sa with R0 − r ≤ ‖u‖ ≤ R0, we have that

Iμ(u) ≥ h(‖u‖) ≥ ma,μ

2
> ma,μ,

and this completes the proof. ��

4 L2-critical perturbation

In this section, we deal with the L2-critical case q = q̄ := 2 + 4 s
3 and a, μ satisfy the

inequality

μa
4s
3 < q̄(2Cq̄,s)

−1. (4.1)

Recalling the decomposition of

Na,μ = N+
a,μ ∪ N 0

a,μ ∪ N−
a,μ,

we have the following assertion.

Lemma 4.1 N 0
a,μ = ∅ and Na,μ is a smooth manifold of codimension 2 in Hs(R3).
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Proof We argue by contradiction that, there exists u ∈ N 0
a,μ. Then, by Pμ(u) = 0 and

(�
μ
u )′′(0) = 0, we have that

‖u‖2 = μγq,s‖u‖qq + ‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx, (4.2)

and

2‖u‖2 = μqγ 2
q,s‖u‖qq + 2∗

s ‖u‖2∗
s

2∗
s
+ 2(2∗

s − 1)
∫
R3

φu |u|2∗
s−1dx . (4.3)

Thus, from (4.2) and (4.3), we infer to ‖u‖2∗
s

2∗
s
+2

∫
R3 φu |u|2∗

s−1dx = 0, which is not possible
since u ∈ Sa , here we used the fact qγq,s = 2. The rest of the proof is similar to that of
Lemma 3.2, and so the details are omitted. ��

Lemma 4.2 Under the condition (4.1), then for each u ∈ Sa, there exists a unique tu ∈ R

such that tu�u ∈ Na,μ, where tu is the unique critical point of the function of �
μ
u and is a

strict maximum point at positive level. Moreover,

(i) Na,μ = N−
a,μ;

(ii) �
μ
u (t) is strict decreasing and concave on (tu,+∞) and tu < 0 implies that Pμ(u) < 0;

(iii) The map u ∈ Sa �→ tu ∈ R is of C1;
(iv) If Pμ(u) < 0, then tu < 0.

Proof Note that qγq,s = 2, we get that

�μ
u (t) = Iμ(t�u)

=
(
1

2
‖u‖2 − μ

q̄
‖u‖q̄q̄

)
e2st − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − e2

∗
s st

2∗
s

‖u‖2∗
s

2∗
s
,
(4.4)

where

1

2
‖u‖2 − μ

q̄
‖u‖q̄q̄ ≥

(
1

2
− μ

q̄
Cq̄,sa

4s
3

)
‖u‖2 > 0,

by the condition (4.1) and the fractional Gagliardo-Nirenberg-Sobolev inequality (1.16).
From (4.4), we know that �

μ
u has a unique critical point tu , which is a strict maximum

point at positive level. Moreover, if u ∈ Na,μ, then tu = 0, and is a maximum point such
that (�

μ
u )

′′
(0) ≤ 0. By virtue of N 0

a,μ = ∅, we have (�
μ
u )

′′
(0) < 0. Thus, Na,μ = N−

a,μ.
The smoothness of the map u ∈ Sa �→ tu ∈ R can be deduced by applying the implicit
function theorem as in Lemma 3.3. Finally, since (�

μ
u )′(t) < 0 if and only if t > tu, we get

Pμ(u) = (�
μ
u )′(0) < 0 if and only if tu < 0. ��

Lemma 4.3 Under the condition (4.1), then ma,μ = infNa,μ Iμ > 0.

Proof Let u ∈ Na,μ, then Pμ(u) = 0, and by (1.14), the fractional Gagliardo–Nirenberg–
Sobolev inequality (1.16) and Lemma 2.1, we derive that

‖u‖2 = μ
2

q̄
‖u‖q̄q̄ + ‖u‖2∗

s
2∗
s
+
∫
R3

φu |u|2∗
s−1dx

≤ μ
2

q̄
Cq̄,sa

4s
3 ‖u‖2 + S− 2∗s

2 ‖u‖2∗
s + S−2∗

s ‖u‖2(2∗
s−1).
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Combining this with (4.1), we have

S
−2∗s
2 ‖u‖2∗

s + S−2∗
s ‖u‖2(2∗

s−1) ≥
(
1 − μ

2

q̄
Cq̄,sa

4s
3

)
‖u‖2 ⇒ ‖u‖ > 0, (4.5)

which implies u �≡ 0. Moreover, by Pμ(u) = 0, we infer to

Iμ(u) = 2∗
s − 2

22∗
s

‖u‖2∗
s

2∗
s
+ 2∗

s − 2

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx > 0,

and hence,

ma,μ = inf
Na,μ

Iμ > 0.

��
Lemma 4.4 There exists k > 0 sufficiently small, such that 0 < supAk

Iμ < ma,μ.Moreover,

u ∈ Ak ⇒ Iμ(u) > 0 and Pμ(u) > 0,

where Ak = {u ∈ Sa : ‖u‖ < k}.
Proof By (1.14), the fractionalGagliardo–Nirenberg–Sobolev inequality (1.16) andLemma2.1,
we have that

Iμ(u) ≥
(
1

2
− μ

q̄
Cq̄,sa

4s
3

)
‖u‖2 − 1

2(2∗
s − 1)

S−2∗
s ‖u‖2(2∗

s−1) − 1

2∗
s
S− 2∗s

2 ‖u‖2∗
s > 0,

and then

Pμ(u) = s‖u‖2 − sμγq̄,s‖u‖q̄q̄ − s
∫
R3

φu |u|2∗
s−1dx − s‖u‖2∗

s
2∗
s

≥ s

(
1 − 2μ

q̄
Cq̄,sa

4s
3

)
‖u‖2 − sS−2∗

s ‖u‖2(2∗
s−1) − sS− 2∗s

2 ‖u‖2∗
s > 0,

having assumed u ∈ Ak with k small enough. By Lemma 4.3, we see that ma,μ > 0, thus if
k is small enough, we also have that

Iμ(u) ≤ 1

2
‖u‖2 < ma,μ.

��
In what follows, we shall use Proposition 2.3 to recover compactness. To this aim, we

need an estimate from above for the valuemr ,a,μ := infNa,μ∩Sr,a Iμ, where Sr ,a is the subset
of the radial functions in Sa .

We recall that the minimizer for S in (1.14) is given by the function

Uε,z(x) := C

(
ε

ε2 + |x − z|2
) 3−2s

2

, (4.6)

where ε > 0, C > 0 and z ∈ R
3 is any fixed point (e.g. [38]).

Lemma 4.5 ([19]) Let A, B,C > 0 and define g : [0,∞) → R by

g(t) = A

2
t2 − B

2(2∗
s − 1)

t2(2
∗
s−1) − C

2∗
s
t2

∗
s .
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Then

sup
t≥0

g(t) =
(√

C2 + 4AB − C

2B

) 2
2∗s −2 (2∗

s − 2)(22∗
s AB + C2 − C

√
C2 + 4AB)

4(2∗
s − 1)2∗

s B
.

Lemma 4.6 Assume that condition (4.1) holds, then

mr ,a,μ <

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s .

Proof Let η(x) ∈ C∞
0 (R3) be a cut-off function with η ∈ [0, 1], η ≡ 1 on B1(0) and η ≡ 0

on R
3\B2(0). We define

uε(x) = η(x)Uε(x), vε = a
uε

‖uε‖2 , (4.7)

where Uε(x) is given in (4.6) by taking z = 0, the origin point. By [38], we can derive the
following estimations:

‖uε‖2 =
∫∫

R6

|uε(x) − uε(y)|2
|x − y|3+2s dxdy ≤ S

3
2s + O(ε3−2s), (4.8)

∫
R3

u2εdx =
⎧⎨
⎩
Cε2s + O(ε3−2s), if 0 < s < 3

4 ;
Cε2s log( 1

ε
), if s = 3

4 ;
Cε3−2s + O(ε2s), if 3

4 < s < 1,
(4.9)

∫
R3

|uε|2∗
s dx = S

3
2s + O(ε3) (4.10)

and ∫
R3

|uε|qdx = Cε3−
3−2s
2 q + O(ε

3−2s
2 q) = O(ε3−

3−2s
2 q), 2 + 4s

3
≤ q < 2∗

s . (4.11)

Since vε ∈ C∞
0 (R3), vε ∈ Sr ,a and Lemma 4.2, we know that

mr ,a,μ = inf
Na,μ∩Sr,a

Iμ ≤ Iμ(tvε �vε) = max
t∈R Iμ(t�vε).

Next, we focus on an upper estimate of

Iμ(tvε �vε) = max
t∈R Iμ(t�vε),

and split the argument into three steps:
Step 1. Consider the case μ = 0 and estimate

max
t∈R �0

vε
(t) = I0(t�vε).

In view of (2.6), we have that

�0
vε

(t) = I0(t�vε) = e2st

2
‖vε‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φvε |vε|2∗
s−1dx − e2

∗
s st

2∗
s

‖vε‖2
∗
s

2∗
s
.

(4.12)
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A direct computation shows that for each vε ∈ Sa the function�0
vε

(t) has a unique critical
point tvε,0, which is a strict maximum point given by

estvε,0 =
⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4‖vε‖2
∫
R3 φvε |vε|2∗

s−1dx

2
∫
R3 φvε |vε|2∗

s−1dx

⎞
⎠

1
2∗s −2

. (4.13)

Applying (4.8)–(4.10) and the definition of vε , we have that

�0
vε

(tvε,0) = 1

2
‖vε‖2

⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4‖vε‖2
∫
R3 φvε |vε|2∗

s −1dx

2
∫
R3 φvε |vε|2∗

s −1dx

⎞
⎠

2
2∗s −2

− 1

2(2∗
s − 1)

∫
R3

φvε |vε|2∗
s −1dx

⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4‖vε‖2
∫
R3 φvε |vε|2∗

s −1dx

2
∫
R3 φvε |vε|2∗

s −1dx

⎞
⎠

2(2∗s −1)
2∗s −2

− 1

2∗
s
‖vε‖2

∗
s

2∗
s

⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4‖vε‖2
∫
R3 φvε |vε|2∗

s −1dx

2
∫
R3 φvε |vε|2∗

s −1dx

⎞
⎠

2∗s
2∗s −2

= 1

2
‖uε‖2

⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s −1dx

2
∫
R3 φuε |uε|2∗

s −1dx

⎞
⎠

2
2∗s −2

− 1

2(2∗
s − 1)

∫
R3

φuε |uε|2∗
s −1dx

⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s −1dx

2
∫
R3 φuε |uε|2∗

s −1dx

⎞
⎠

2(2∗s −1)
2∗s −2

− 1

2∗
s
‖uε‖2

∗
s

2∗
s

⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s −1dx

2
∫
R3 φuε |uε|2∗

s −1dx

⎞
⎠

2∗s
2∗s −2

= sup
t≥0

�0
uε

(t) = �0
uε

(tuε,0),

(4.14)

where �0
uε

(t) and etuε ,0 are given in (4.12) and (4.13), respectively, replacing vε by uε .
Now, we claim that

sup
t≥0

�0
uε

(t) ≤
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + O(ε3−2s). (4.15)

In fact, recalling that (−�)sφuε = |uε|2∗
s−1 there holds

∫
R3

|uε|2∗
s dx =

∫
R3

(−�)
s
2 φuε (−�)

s
2 |uε|dx

≤ 1

2

∫
R3

|(−�)
s
2 |uε||2dx + 1

2

∫
R3

|(−�)
s
2 φuε |2dx

= 1

2

∫
R3

φuε |uε|2∗
s−1dx + 1

2

∫
R3

|(−�)
s
2 uε|2dx .
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Then, thanks to (4.8) and (4.10) we derive that, for ε > 0 sufficiently small,

∫
R3

φuε |uε|2∗
s−1dx ≥ 2

∫
R3

|uε|2∗
s dx −

∫
R3

|(−�)
s
2 uε|2dx = S

3
2s − O(ε3−2s),

(4.16)

from which, together with Lemma 4.5 we derive to

�0
uε

(t) = e2st

2
‖uε‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φuε |uε|2∗
s−1dx − e2

∗
s st

2∗
s

‖uε‖2
∗
s

2∗
s

≤ e2st

2
(S

3
2s + O(ε3−2s)) − e2(2

∗
s−1)st

2(2∗
s − 1)

(S
3
2s − O(ε3−2s)) − e2

∗
s st

2∗
s

(S
3
2s + O(ε3))

≤
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + O(ε3−2s),

for ε > 0 sufficiently small, and the claim is checked.
Step 2.Estimate on tε,μ. Here tε,μ := tvε,μ denotes the uniquemaximumpoint of the function

�μ
vε

(t) = Iμ(t�vε) = e2st

2
‖vε‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φvε |vε|2∗
s−1dx − μ

eq̄γq̄,s st

q̄
‖vε‖q̄q̄

−e2
∗
s st

2∗
s

‖vε‖2
∗
s

2∗
s
.

Since (�
μ
vε )

′(t) = Pμ(tε,μ�vε) = 0, we have

‖vε‖2 − 2μ

q̄
‖vε‖q̄q̄ − e2(2

∗
s−2)stε,μ

∫
R3

φvε |vε|2∗
s−1dx − e(2∗

s−2)stε,μ‖vε‖2
∗
s

2∗
s

= 0,

which implies that

e(2∗
s−2)stε,μ =

−‖vε‖2
∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4
∫
R3 φvε |vε|2∗

s−1dx(‖vε‖2 − 2μ
q̄ ‖vε‖q̄q̄)

2
∫
R3 φvε |vε|2∗

s−1dx

≥
−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4
∫
R3 φvε |vε|2∗

s−1dx
(‖vε‖2 − 2μ

q̄ Cq̄,sa
4s
3 ‖vε‖2

)
2
∫
R3 φvε |vε|2∗

s−1dx
.
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Step 3. Estimate on supt∈R �
μ
vε . By Step 1, Step 2 and the definition of vε, we obtain that

sup
t∈R

�μ
vε

(t) = �μ
vε

(tε,μ) = �0
vε

(tε,μ) − μ

q̄
e2stε,μ‖vε‖q̄q̄

≤ sup
t∈R

�0
vε

(t) − ‖vε‖q̄q̄

× μ

q̄

⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4
∫
R3 φvε |vε|2∗

s−1dx
(‖vε‖2 − 2μ

q̄ Cq̄,sa
4s
3 ‖vε‖2

)
2
∫
R3 φvε |vε|2∗

s−1dx

⎞
⎠

2
2∗s −2

= sup
t∈R

�0
uε

(t) − a
4s
3 ‖uε‖q̄q̄
‖uε‖

4s
3
2

× μ

q̄

⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4
∫
R3 φuε |uε|2∗

s−1dx
(‖uε‖2 − 2μ

q̄ Cq̄,sa
4s
3 ‖uε‖2

)
2
∫
R3 φuε |uε|2∗

s−1dx

⎞
⎠

2
2∗s −2

≤
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + O(ε3−2s) − Ca,μ,s

‖uε‖q̄q̄
‖uε‖

4s
3
2

,

(4.17)

where Ca,μ,s > 0 is a positive constant independent of ε, and we have used the following
estimates:

1

C1
≤ ‖uε‖2 ≤ C1,

1

C2
≤ ‖uε‖2

∗
s

2∗
s

≤ C2,
1

C3
≤
∫
R3

φuε |uε|2∗
s−1dx ≤ C3 (4.18)

and

1

C4
≤

−‖uε‖2
∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s−1dx

2
∫
R3 φuε |uε|2∗

s−1dx
≤ C4, (4.19)

which are deduced from (4.8), (4.10) and Lemma 2.1. Moreover, by (4.9) and (4.11), we see
that

‖uε‖q̄q̄
‖uε‖

4s
3
2

=

⎧⎪⎪⎨
⎪⎪⎩
Cε

4s2
3 − 4s2

3 = C, if 0 < s < 3
4 ;

Cε
4s2
3 − 4s2

3 | ln ε|− 1
2 = C | ln ε|− 1

2 , if s = 3
4 ;

Cε
4s2
3 − 2s(3−2s)

3 = Cε
2s(4s−3)

3 , if 3
4 < s < 1.

In particular, any term of order O(ε) is negligible with respect to this ratio for ε small, and
hence coming back to (4.17) we deduce that

sup
t∈R

�μ
vε

(t) <

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ,

for any ε small enough. Therefore, we have

mr ,a,μ = inf
Na,μ∩Sr,a

Iμ ≤ max
t∈R �μ

vε
(t) <

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ,

which in turn gives the thesis of the lemma. ��
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5 L2-supercritical perturbation

In this section, we deal with the L2-supercritical case q̄ := 2 + 4s
3 < q < 2∗

s . To begin our
argument, we consider once again the Pohozaev manifold Na,μ, which can be decomposed
as

Na,μ = N+
a,μ ∪ N 0

a,μ ∪ N−
a,μ. (5.1)

Lemma 5.1 N 0
a,μ = ∅ and Na,μ is a smooth manifold of dimension 2 in Hs(R3).

Proof Suppose on the contrary that, there exists some u ∈ N 0
a,μ, then

‖u‖2 = μγq,s‖u‖qq + ‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx (5.2)

and

2‖u‖2 = μqγ 2
q,s‖u‖qq + 2∗

s ‖u‖2∗
s

2∗
s
+ 2(2∗

s − 1)
∫
R3

φu |u|2∗
s−1dx, (5.3)

which leads to

(2 − qγq,s)μγq,s‖u‖qq = (2∗
s − 2)‖u‖2∗

s
2∗
s
+ 2(2∗

s − 2)
∫
R3

φu |u|2∗
s−1dx .

Since 2−qγq < 0 and 2∗
s − 2 > 0, we have u ≡ 0, but this is not possible, thanks to u ∈ Sa .

The rest of the proof is similar to that of Lemma 3.2, and we omit the details here. ��
Lemma 5.2 For each u ∈ Sa, there exists a unique tu ∈ R such that tu�u ∈ Na,μ, where tu
is the unique critical point of the function of �

μ
u and is a strict maximum point at positive

level. Moreover,

(i) Na,μ = N−
a,μ;

(ii) �
μ
u (t) is strict decreasing and concave on (tu,+∞), and tu < 0 implies that Pμ(u) <

0;
(iii) The map u ∈ Sa �→ tu ∈ R is of class C1;
(iv) If Pμ(u) < 0, then tu < 0.

Proof In view of

�μ
u (t) = Iμ(t�u) = e2st

2
‖u‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

eqγq,s st

q
‖u‖qq − e2

∗
s st

2∗
s

‖u‖2∗
s

2∗
s
,

and

(�μ
u )′(t) = se2st‖u‖2 − se2(2

∗
s−1)st

∫
R3

φu |u|2∗
s−1dx − μsγq,se

qγq,s st‖u‖qq − se2
∗
s st‖u‖2∗

s
2∗
s
,

it is easy to see that (�μ
u )′(t) = 0 if and only if

‖u‖2 = e2(2
∗
s−2)st

∫
R3

φu |u|2∗
s−1dx + μγq,se

(qγq,s−2)st‖u‖qq + e(2∗
s−2)st‖u‖2∗

s
2∗
s

� g(t).

(5.4)

Clearly, g(t) is positive, continuous and monotone increasing, and g(t) → 0+ as t → −∞
and g(t) → +∞ as t → +∞. Therefore, there exists a unique point tu such that tu�u ∈ Na,μ,
where tu is the unique critical point of �

μ
u (t) and is a strict maximum point at positive
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level. By maximality, we have that (�
μ
u )′′(tu) ≤ 0, and since N 0

a,μ = ∅, we conclude that
tu�u ∈ N−

a,μ, and Na,μ = N−
a,μ since �

μ
u (t) has exactly one maximum point. To show that

the map u ∈ Sa �→ tu ∈ R is of class C1, we can apply the implicit function theorem as in
Lemma 3.3. Finally, since (�

μ
u )′(t) < 0 if and only if t > tu, so Pμ(u) = (�

μ
u )′(0) < 0 if

and only if tu < 0. ��
Lemma 5.3 ma,μ = infNa,μ Iμ > 0.

Proof If u ∈ Na,μ, then by (1.14), the fractional Gagliardo–Nirenberg–Sobolev inequality
(1.16) and Lemma 2.1, we have that

‖u‖2 = μγq,s‖u‖qq + ‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx

≤ μγq,sCq,sa
q(1−γq,s )‖u‖qγq,s + S− 2∗s

2 ‖u‖2∗
s + S−2∗

s ‖u‖2(2∗
s−1).

Dividing by ‖u‖2, we can deduce that

μγq,sCq,sa
q(1−γq,s )‖u‖qγq,s−2 + S− 2∗s

2 ‖u‖2∗
s−2 + S−2∗

s ‖u‖2(2∗
s−2) ≥ 1, ∀u ∈ Na,μ,

which implies that infu∈Na,μ ‖u‖ > 0 and so,

inf
u∈Na,μ

[
μγq,s‖u‖qq + ‖u‖2∗

s
2∗
s
+
∫
R3

φu |u|2∗
s−1dx

]
> 0. (5.5)

Thus, from (5.5), Pμ(u) = 0 and the fact qγq,s > 2, we obtain that

inf
u∈Na,μ

Iμ(u) = inf
u∈Na,μ

[
1

2
‖u‖2 − 1

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

q
‖u‖qq − 1

2∗
s
‖u‖2∗

s
2∗
s

]

= inf
u∈Na,μ

[
μ

q

(qγq,s

2
− 1

)
‖u‖qq + 2∗

s − 2

22∗
s

‖u‖2∗
s

2∗
s
+ 2∗

s − 2

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx

]
> 0.

��
Lemma 5.4 There exists k > 0 sufficiently small, such that 0 < supAk

Iμ < ma,μ.Moreover,

u ∈ Ak ⇒ Iμ(u) > 0 and Pμ(u) > 0,

where Ak = {u ∈ Sa : ‖u‖ < k}.
Proof By (1.14), the fractional Gagliardo–Nirenberg–Sobolev inequality (1.16), Lemma 2.1
and qγq,s > 2, we have that

Iμ(u) ≥ 1

2
‖u‖2 − μ

q
Cq,sa

q(1−γq,s )‖u‖qγq,s − 1

2(2∗
s − 1)

S−2∗
s ‖u‖2(2∗

s−1) − 1

2∗
s
S− 2∗s

2 ‖u‖2∗
s > 0,

and

Pμ(u) = s‖u‖2 − sμγq,s‖u‖qq − s
∫
R3

φu |u|2∗
s−1dx − s‖u‖2∗

s
2∗
s

≥ s‖u‖2 − sμγq,sCq,sa
q(1−γq,s )‖u‖qγq,s − sS−2∗

s ‖u‖2(2∗
s−1) − sS− 2∗s

2 ‖u‖2∗
s > 0,

if u ∈ Ak with k small enough. By Lemma 5.3, we see that ma,μ > 0, thus if necessary
replacing k with a smaller quantity, we also have that
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Iμ(u) ≤ 1

2
‖u‖2 < ma,μ.

��

As in the previous section, the following estimate will play a crucial role in the proof of
existence of a ground state. Let mr ,a,μ := infNa,μ∩Sr,a Iμ, where Sr ,a is the subset of the
radial functions in Sa .

Lemma 5.5 If one of the following conditions is satisfied:

(i) 0 < s < 3
4 and μaq(1−γq,s ) < 1

γq,s

(√
5−1
2

)− qγq,s−2
2∗s −2 S

3(2∗s −q)

2 s(2∗s −2) ;

(ii) 3
4 ≤ s < 1,

then we have mr ,a,μ <
(√

5−1
2

) 3−2s
2s s

(
12+(1−√

5)(3−2s)
)

6(3+2s) S
3
2s .

Proof The structure of the proof is similar to that of Lemma 4.6, but we took advantage of
the fact that qγq,s > 2 in order to make direct computations in several steps. Let us recall
the definition of uε and vε given in Lemma 4.6, we know that uε ∈ C∞

0 (R3, [0, 1]) and
vε ∈ Sr ,a . By Lemma 5.3, we have that

mr ,a,μ = inf
Na,μ∩Sr,a

Iμ ≤ Iμ(tvε,μ�vε) = max
t∈R Iμ(t�vε).

From the Step 1 of Lemma 4.6, we get that

�0
vε

(tvε,0) ≤
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + O(ε3−2s). (5.6)

Step 1. Estimate on tε,μ. Let tε,μ := tvε,μ be the maximum point of

�μ
vε

(t) := Iμ(t�vε)

= e2st

2
‖vε‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φvε |vε|2∗
s−1dx − μ

eqγq,s st

q
‖vε‖qq − e2

∗
s st

2∗
s

‖vε‖2
∗
s

2∗
s
.

By (�
μ
vε )

′(tε,μ) = Pμ(tε,μ�vε) = 0, we have that

e2(2
∗
s−1)stε,μ

∫
R3

φvε |vε|2∗
s−1dx + e2

∗
s stε,μ‖vε‖2

∗
s

2∗
s

= e2stε,μ‖vε‖2 − μγq,se
qγq,s stε,μ‖vε‖qq

≤ e2stε,μ‖vε‖2,

whence it follows that

estε,μ ≤
⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4‖vε‖2
∫
R3 φvε |vε|2∗

s−1dx

2
∫
R3 φvε |vε|2∗

s−1dx

⎞
⎠

1
2∗s −2

. (5.7)
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By virtue of (5.7), Pμ(tε,μ�vε) = 0 and the fact qγq,s > 2, we infer that

e2(2
∗
s−2)stε,μ + e(2∗

s−2)stε,μ
‖vε‖2

∗
s

2∗
s∫

R3 φvε |vε|2∗
s−1dx

= ‖vε‖2∫
R3 φvε |vε|2∗

s−1dx
− μγq,se

(qγq,s−2)stε,μ
‖vε‖qq∫

R3 φvε |vε|2∗
s−1dx

≥ ‖vε‖2∫
R3 φvε |vε|2∗

s−1dx
− μγq,s

⎛
⎝−‖vε‖2

∗
s

2∗
s
+
√

‖vε‖22
∗
s

2∗
s

+ 4‖vε‖2
∫
R3 φvε |vε|2∗

s−1dx

2
∫
R3 φvε |vε|2∗

s−1dx

⎞
⎠

qγq,s−2
2∗s −2

× ‖vε‖qq∫
R3 φvε |vε|2∗

s−1dx
. (5.8)

By the definition of vε , we have that

e2(2
∗
s−2)stε,μ + e(2∗

s−2)stε,μ
‖uε‖2

∗
s−2

2

a2∗
s−2

‖uε‖2
∗
s

2∗
s∫

R3 φuε |uε|2∗
s−1dx

≥ ‖uε‖2(2
∗
s−2)

2

a2(2∗
s−2)

‖uε‖2∫
R3 φuε |uε|2∗

s−1dx
− μγq,s

‖uε‖2(2
∗
s−2)+qγq,s−q

2

a2(2
∗
s−2)+qγq,s−q

‖uε‖qq∫
R3 φuε |uε|2∗

s−1dx

×
⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s−1dx

2
∫
R3 φuε |uε|2∗

s−1dx

⎞
⎠

qγq,s−2
2∗s −2

= ‖uε‖2(2
∗
s−2)

2

a2(2∗
s−2)

[ ‖uε‖2∫
R3 φuε |uε|2∗

s−1dx
− μγq,s

aq(1−γq,s )∫
R3 φuε |uε|2∗

s−1dx

‖uε‖qq
‖uε‖q(1−γq,s )

2

×
⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s−1dx

2
∫
R3 φuε |uε|2∗

s−1dx

⎞
⎠

qγq,s−2
2∗s −2 ]

.

(5.9)

Using the estimates in (4.8)–(4.11) and Lemma 2.1, we can take constants Ci > 0 such that

C1 ≤
∫
R3

φuε |uε|2∗
s−1dx ≤ 1

C1
,

‖uε‖2∫
R3 φuε |uε|2∗

s−1dx
≥ C2,

‖uε‖2
∗
s−2

2 ‖uε‖2
∗
s

2∗
s∫

R3 φuε |uε|2∗
s−1dx

≤ C3

(5.10)

1

C4
≤
⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s−1dx

2
∫
R3 φuε |uε|2∗

s−1dx

⎞
⎠

qγq,s−2
2∗s −2

≤ C4, (5.11)

and

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤

⎧⎪⎪⎨
⎪⎪⎩
C5ε

3− 3−2s
2 q−sq(1−γq,s ) = C5, if 0 < s < 3

4 ;
C5ε

3− 3−2s
2 q−sq(1−γq,s )| ln ε| q(γq,s−1)

2 , if s = 3
4 ;

C5ε
3− 3−2s

2 q− (3−2s)q(1−γq,s )

2 , if 3
4 < s < 1.

(5.12)
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Next, we show that

estε,μ ≥ C
‖uε‖2
a

. (5.13)

under suitable conditions.
Case 1: 0 < s < 3

4 . In this case, it holds that

ε3−
3−2s
2 q−sq(1−γq,s ) = ε0 = 1, (5.14)

and from (5.10)–(5.12) we get

e2(2
∗
s−2)stε,μ (1 + C6) ≥ ‖uε‖2(2

∗
s−2)

2

a2(2∗
s−2)

(
C2 − μγq,sa

q(1−γq,s )
C4

C1

)
,

and we see that inequality (5.13) holds only when μγq,saq(1−γq,s ) ≤ C1C2/C4. Thus, we
have to give amore precise estimate, let us come back to (5.9) and observe that bywell-known
interpolation inequality, we have that

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤
‖uε‖

2(2∗s −q)

2∗s −2

2 ‖uε‖
2∗s (q−2)
2∗s −2

2∗
s

‖uε‖q(1−γq,s )

2

= ‖uε‖
2∗s (q−2)
2∗s −2

2∗
s

. (5.15)

Therefore, by (5.9) and (5.15), we have

e2(2
∗
s−2)stε,μ + e(2∗

s−2)stε,μ
‖uε‖2

∗
s−2

2

a2∗
s−2

‖uε‖2
∗
s

2∗
s∫

R3 φuε |uε|2∗
s−1dx

≥ ‖uε‖2(2
∗
s−2)

2

a2(2∗
s−2)

[ ‖uε‖2∫
R3 φuε |uε|2∗

s−1dx
− μγq,s

aq(1−γq,s )∫
R3 φuε |uε|2∗

s−1dx
‖uε‖

2∗s (q−2)
2∗s −2

2∗
s

×
⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s−1dx

2
∫
R3 φuε |uε|2∗

s−1dx

⎞
⎠

qγq,s−2
2∗s −2 ]

.

(5.16)

From (1.14), (4.8)–(4.10), (4.16) and Lemma 2.1, we see that the right hand side of (5.16) is
positive provided that

μγq,sa
q(1−γq,s ) <

‖uε‖2

‖uε‖
2∗s (q−2)
2∗s −2

2∗
s

⎛
⎝−‖uε‖2

∗
s

2∗
s
+
√

‖uε‖22
∗
s

2∗
s

+ 4‖uε‖2
∫
R3 φuε |uε|2∗

s −1dx

2
∫
R3 φuε |uε|2∗

s −1dx

⎞
⎠

− qγq,s−2
2∗s −2

≤ S
3
2s + O(ε3−2s)(

S
3
2s + O(ε3)

) q−2
2∗s −2

×
⎛
⎜⎝−(S

3
2s + O(ε3)) +

√
(S

3
2s + O(ε3))2 + 4(S(S

3
2s + O(ε3))

2
2∗s )(S

3
2s − O(ε3−2s))

2S−2∗
s (S

3
2s + O(ε3−2s))(2

∗
s −1)

⎞
⎟⎠

− qγq,s−2
2∗s −2

=
(√

5 − 1

2

)− qγq,s−2
2∗s −2

S
3(2∗s −q)

2s(2∗s −2) + O(ε3−2s).
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Therefore, if 0 < s < 3
4 and μaq(1−γq,s ) < K3

γq,s
, we have

estε,μ ≥ C
‖uε‖2
a

.

Case 2: s = 3
4 . In this case we have 3 < q < 4, and

ε3−
3−2s
2 q−sq(1−γq,s )| ln ε| q(γq,s−1)

2 = | ln ε| q2 −2 → 0 as ε → 0. (5.17)

Consequently,

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤ C5ε
3− 3−2s

2 q−sq(1−γq,s )| ln ε| q(γq,s−1)
2 = oε(1).

Therefore, we get

e2(2
∗
s−2)stε,μ (1 + C6) ≥ ‖uε‖2(2

∗
s−2)

2

a2(2∗
s−2)

(
C2 − μγq,sa

q(1−γq,s )
C4

C1
oε(1)

)
≥ C

‖uε‖2(2
∗
s−2)

2

a2(2∗
s−2)

,

that is

estε,μ ≥ C
‖uε‖2
a

.

Case 3: 3
4 < s < 1. By the definition of γq,s and a direct computation, we get that

3 − 3 − 2s

2
q − (3 − 2s)q(1 − γq,s)

2
= 3 − 4s

4s

(
q − 6

3 − 2s

)
(3 − 2s) > 0.

Thus,

ε3−
3−2s
2 q− (3−2s)q(1−γq,s )

2 → 0 as ε → 0,

and so

‖uε‖qq
‖uε‖q(1−γq,s )

2

≤ Cε3−
3−2s
2 q− (3−2s)q(1−γq,s )

2 = oε(1).

Therefore, we get

e2(2
∗
s−2)stε,μ (1 + C6) ≥ ‖uε‖2(2

∗
s−2)

2

a2(2∗
s−2)

(
C2 − μγq,sa

q(1−γq,s )
C4

C1
oε(1)

)
≥ C

‖uε‖2(2
∗
s−2)

2

a2(2∗
s−2)

,

that is

estε,μ ≥ C
‖uε‖2
a

.

123



65 Page 34 of 50 Y. Meng, X. He

Step 2. Estimate on maxt∈R �
μ
vε (t). By Step 1 and (5.6), we have that

max
t∈R �μ

vε
(t) = �μ

vε
(tε,μ) = �0

vε
(tε,μ) − μ

eqγq,s stε,μ

q

∫
R3

|vε|qdx

≤ sup
t∈R

�0
vε

(t) − Cμ

q

‖uε‖qγq,s
2

aqγq,s

aq

‖uε‖q2

∫
R3

|uε|qdx

= sup
t∈R

�0
vε

(t) − Cμaq(1−γq,s )

q

∫
R3 |uε|qdx

‖uε‖q(1−γq,s )

2

≤
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + O(ε3−2s)

− Cμaq(1−γq,s )

q

‖uε‖qq
‖uε‖q(1−γq,s )

2

.

(5.18)

Similarly as in (5.12), we have that

‖uε‖qq
‖uε‖q(1−γq,s )

2

≥

⎧⎪⎪⎨
⎪⎪⎩
Cε3− 3−2s

2 q−sq(1−γq,s ) = C, if 0 < s < 3
4 ;

Cε3− 3−2s
2 q−sq(1−γq,s )| ln ε| q(γq,s−1)

2 , if s = 3
4 ;

Cε3− 3−2s
2 q− (3−2s)q(1−γq,s )

2 , if 3
4 < s < 1.

(5.19)

Finally, by (5.18)–(5.19), we infer to

mr ,a,μ = inf
Na,μ∩Sr,a

Iμ ≤ max
t∈R �μ

vε
(t) <

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ,

for any ε > 0 small enough, which is the desired result. ��

6 Proof of Theorem 1.1

In this section we shall prove that for the L2-subcritical case: 2 < q < q̄ := 2 + 4s
3 ,

Theorem 1.1 holds, for any a, μ > 0 satisfying condition (1.18), i.e.,

μaq(1−γq,s ) < k̃, (6.1)

with k̃ = min{K1, K2, K3}, where K1, K2 are given in (3.2), (3.3), respectively, and

K3 := 2∗
s q

Cq,s(2∗
s − qγq,s)

⎡
⎣
(√

5 − 1

2

) 2
2∗s −2 (2∗

s − 2)(22∗
s + 1 − √

5)

4(2∗
s − 1)2∗

s
S

3
2s

⎤
⎦

2−qγq,s
2

×
[
1

2

(
2∗
s

2∗
s − 2

) qγq,s
2−qγq,s

(qγq,s)
qγq,s

2−qγq,s (2 − qγq,s)

]− 2−qγq ,s
2

.

(6.2)

Let {vn} be a minimizing sequence for inf AR0
Iμ, and we may assume that {vn} ⊂ Sr ,a is

radially decreasing for every n ∈ N. Otherwise, we can replace vn with |vn |∗, the Schwarz
rearrangement of |vn |, and we have another function in AR0 with Iμ(|vn |∗) ≤ Iμ(|vn |).
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Moreover, by Lemma 3.3, for every n we may take αvn�vn ∈ N+
a,μ such that ‖αvn�vn‖ ≤ R0

and

Iμ(αvn�vn) = min{Iμ(t�vn) : t ∈ R and ‖t�vn‖ < R0} ≤ Iμ(vn).

In this way, we obtain a new minimizing sequence {wn = αvn�vn} with wn ∈ Sr ,a ∩ N+
a,μ

radially decreasing for each n. By Lemma 3.4, we have ‖wn‖ ≤ R0 − r for each n and hence
by Ekeland’s variational principle [42] in a standard way, we know that the existence of a
new minimizing sequence {un} ⊂ AR0 for ma,μ with the property that ‖wn − un‖ → 0 as
n → +∞, which is also a Palais–Smale sequence for Iμ on Sa . Thus, from Brezis–Lieb
lemma [8] and Sobolev embedding theorem, we have

‖un‖2 = ‖un − wn‖2 + ‖wn‖2 + on(1) = ‖wn‖2 + on(1),∫
R3

|un |pdx =
∫
R3

|un − wn |pdx +
∫
R3

|wn |pdx + on(1) =
∫
R3

|wn |pdx + on(1),

for p ∈ [2, 2∗
s ]. Now, by ‖un − wn‖ → 0 as n → ∞ and Lemma 2.1, we deduce that∫

R3
φun |un |2

∗
s−1dx =

∫
R3

φun−wn |un − wn |2∗
s−1dx +

∫
R3

φwn |wn |2∗
s−1dx + on(1)

=
∫
R3

φwn |wn |2∗
s−1dx + on(1).

Consequently, we obtain that

Pμ(un) = Pμ(wn) + on(1) → 0 as n → +∞.

Hence, one of the alternative in Proposition 2.3 occurs. We can show that the second alterna-
tive in Proposition 2.3 holds. Suppose by contradiction that, there exists a sequence un⇀u
weakly in Hs(R3) but not strongly, where u �≡ 0 solves problem (1.13) for some λ < 0 and

Iμ(u) ≤ ma,μ −
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s .

Since u is a solution of problem (1.13), by the Pohozaev identity Pμ(u) = 0, one has

‖u‖2 = μγq,s‖u‖qq + ‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx .

Therefore, by the fractional Gagliardo–Nirenberg–Sobolev inequality (1.16), we have that

ma,μ ≥ Iμ(u) +
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s

=
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + 2∗

s − 2

22∗
s

‖u‖2

+ 2∗
s − 2

22∗
s (2

∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

q

(
1 − qγq,s

2∗
s

)
‖u‖qq

≥
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + 2∗

s − 2

22∗
s

‖u‖2

− μ

q

(
1 − qγq,s

2∗
s

)
Cq,sa

q(1−γq,s )‖u‖qγq,s .

(6.3)
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Now, we show that the right side of the above inequality is positive, which shall contradicts
with the fact that ma,μ < 0. To this aim, we define

h(t) := 2∗
s − 2

22∗
s

t2 − μ

q

(
1 − qγq,s

2∗
s

)
Cq,sa

q(1−γq,s )tqγq,s , ∀ t ≥ 0.

Since qγq,s < 2, the function h(t) has a global minimum at negative level

h(tmin) = min
t>0

h(t)

= − 1

2

(
2∗
s

2∗
s − 2

) qγq,s
2−qγq,s

[
μ

q

(
1 − qγq,s

2∗
s

)
Cq,sa

q(1−γq,s )

] 2
2−qγq,s

(qγq,s)
qγq,s

2−qγq,s (2 − qγq,s)

< 0.

(6.4)

By (6.1)–(6.2), we have

μaq(1−γq,s ) <
2∗
s q

Cq,s(2∗
s − qγq,s)

⎡
⎣
(√

5 − 1

2

) 2
2∗s −2 (2∗

s − 2)(22∗
s + 1 − √

5)

4(2∗
s − 1)2∗

s
S

3
2s

⎤
⎦

2−qγq,s
2

×
[
1

2

(
2∗
s

2∗
s − 2

) qγq,s
2−qγq,s

(qγq,s)
qγq,s

2−qγq,s (2 − qγq,s)

]− 2−qγq ,s
2

:= K3.

(6.5)

Combining (6.4) and (6.5), we infer to

h(tmin) > −
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s .

Therefore, coming back to (6.3), we have that

ma,μ ≥
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + h(‖u‖)

≥
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + h(tmin) > 0,

in contradiction with the fact that ma,μ < 0. This means that necessarily un → u strongly in
Hs(R3), Iμ(u) = ma,μ and u solves problem (1.13) for some λ < 0. It remains to show that
any ground state is a local minimizer for Iμ on AR0 . Using the fact that Iμ(u) = ma,μ < 0,
and then u ∈ Na,μ, so by Lemma 3.3 we know that u ∈ N+

a,μ ⊂ AR0 and

Iμ(u) = ma,μ = inf
AR0

Iμ(u) with ‖u‖ < R0.

Finally, we prove that the ground state solution is positive. Let u+ := max{u, 0} and it is
easy to see that all the arguments above can be repeated word by word, replacing Iμ by the
functional

I+
μ (u) = 1

2

∫
R3

|(−�)
s
2 u|2dx − 1

2(2∗
s − 1)

∫
R3

φu+|u+|2∗
s−1dx

−μ

q

∫
R3

|u+|qdx − 1

2∗
s

∫
R3

|u+|2∗
s dx . (6.6)
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Using u− := min{u, 0} as a test function in (6.6), and arguing as in the proof of Proposition
3.1 [37], we have u(x) > 0 in R

3. This completes the proof. ��

7 Proof of Theorems 1.2 and 1.3

We first recall the following useful preliminary results, which are needed in proving Theo-
rems 1.2 and 1.3 below.

Definition 7.1 ([16, Definition 3.1]). Let B be a closed subset of X . We shall say that a class
F of compact subsets of X is a homotopy-stable family with boundary B provided

(i) every set in F contains B;
(ii) for any set A in F and any η ∈ C([0, 1] × X; X) satisfying η(t, x) = x for all (t, x) ∈

({0} × X) ∪ ([0, 1] × B), we have that η({1} × A) ∈ F .

Proposition 7.1 ([16, Theorem 3.2]). Let ψ be a C1 function on a complete connected
C1−Finsler manifold X (without boundary) and consider a homotopy-stable family F of
compact subsets of X with a closed boundary B. Set c = c(ψ,F) = inf A∈F maxu∈A ψ(u)

and suppose that

sup
u∈B

ψ(u) < c.

Then, for any sequence of sets (An)n∈N in F such that limn supAn
ψ = c, there exists a

sequence {un}n∈N ⊂ X such that

lim
n→+∞ ψ(un) = c, lim

n→+∞ ‖dψ(un)‖ = 0 and lim
n→+∞ dist(un, An) = 0.

Moreover, if dψ is uniformly continuous, then un can be chosen to be in An for each n.

Lemma 7.1 ([4, Lemma 3.6]) For u ∈ Sa and t ∈ R the map

Tu Sa → Tt�u Sa, ϕ �→ t�ϕ

is a linear isomorphism with the inverse ψ �→ (−t)�ψ .

Now, we are in a position to prove Theorems 1.2 and 1.3.
Case 1. L2-critical perturbation for q = q̄ = 2 + 4s

3 . We use the strategy firstly introduced
in [20] and consider the functional Ĩμ : R × Hs(R3) → R defined by

Ĩμ(t, u) : = Iμ(t�u)

=
(
1

2
‖u‖2 − μ

q̄
‖u‖q̄q̄

)
e2st − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − e2

∗
s st

2∗
s

‖u‖2∗
s

2∗
s
.

(7.1)

It is easy to see that Ĩμ is of C1-class, and Ĩμ is invariant under rotations applied to u, a
Palais–Smale sequence for Ĩμ|R×Sr,a is a Palais–Smale sequence Ĩμ|R×Sa . We define the
minimax level

σ(a, μ) := inf
γ∈�

max
(t,u)∈γ ([0,1]) Ĩμ(t, u)

among the associated minimax class

� := {
γ = (α, β) ∈ C([0, 1],R × Sr ,a)|γ (0) ∈ (0, Ak), γ (1) ∈ (0, I 0μ)

}
, (7.2)
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where k > 0 be defined by Lemma 4.4 and I cμ := {u ∈ Sa : Iμ(u) ≤ c}. Let u ∈ Sr ,a . Since
‖t�u‖2 → 0+ as t → −∞ and Iμ(t�u) → −∞ as t → +∞, there exist t0 � −1 and
t1 � 1 such that

γu : s ∈ [0, 1] �→ (
0,
(
(1 − s)t0 + st1

)
�u
) ∈ R × Sr ,a (7.3)

is a path in �. Then σ(a, μ) is a real value.
Now, for any path γ = (α, β) ∈ �, we consider the function

Tγ : t ∈ [0, 1] �→ Pμ (α(t)�β(t)) ∈ R.

By Lemmas 4.3 and 4.4 we get Tγ (0) = Pμ(β(0)) > 0. Note that �
μ

β(1)(t) > 0 for every

t ∈ (−∞, tβ(1)) and �
μ

β(1)(0) = Iμ(β(1)) ≤ 0, we have tβ(1) < 0. Thus, by Lemma 4.2, we
have that Tγ (1) = Pμ(β(1)) < 0. Moreover, the map s �→ α(s)�β(s) is continuous from
[0, 1] to Hs(R3), and hence we deduce that there exists sγ ∈ (0, 1) such that Tγ (sγ ) = 0,
i.e., α(sγ )�β(sγ ) ∈ Na,μ, this implies that

max
γ ([0,1]) Ĩμ ≥ Ĩμ(γ (sγ )) = Iμ

(
α(sγ )�β(sγ )

) ≥ inf
Na,μ∩Sr,a

Iμ = mr ,a,μ.

Consequently, we have σ(a, μ) ≥ mr ,a,μ. On the other hand, if u ∈ N−
a,μ ∩ Sr ,a , then

Iμ(u) = max
γu ([0,1])

Ĩμ ≥ σ(a, μ),

where γu defined in (7.3) is a path in �. Thus, we have that mr ,a,μ ≥ σ(a, μ). Combining
this with Lemmas 4.3–4.4, we derive that

σ(a, μ) = mr ,a,μ > sup
(Ak∪I 0μ)∩Sr,a

Iμ = sup
((0,Ak )∪(0,I 0μ))∩(R×Sr,a)

Ĩμ.

According to Proposition 7.1, we know that {γ ([0, 1]) : γ ∈ �} is a homotopy stable family
of compact subsets of R × Sr ,a with extended closed boundary (0, Ak) ∪ (0, I 0μ) and the
superlevel set { Ĩμ ≥ σ(a, μ)} is a dual set for �. Using Proposition 7.1, we can take any
minimizing sequence {γn = (αn, βn)} ⊂ �n for σ(a, μ) with the property that αn ≡ 0
and βn(s) ≥ 0 a.e. in R

3 for every s ∈ [0, 1], then there exists a Palais–Smale sequence
{(tn, wn)} ⊂ R × Sr ,a for Ĩμ|R×Sr,a at level σ(a, μ) satisfying

∂t Ĩμ(tn, wn) → 0 and ‖∂u Ĩμ(tn, wn)‖(Twn Sr,a)
∗ → 0 as n → +∞, (7.4)

with the property that

|tn | + distHs (wn, βn([0, 1])) → 0 as n → +∞. (7.5)

By the definition of Ĩμ(tn, wn) in (7.1) and the first condition in (7.4),we obtain Pμ(tn�wn) →
0. The second condition in (7.4) shows that for every φ ∈ Twn Sr ,a

d Iμ(tn�wn)[tn�φ] = on(1)‖φ‖ = on(1)‖tn�φ‖ as n → +∞, (7.6)

in the last equality, we used that |tn | is bounded from (7.5).
Let then un = tn�wn , by Lemmas 7.1 and (7.6), we can deduce that {un} ⊂ Sr ,a is a Palais–

Smale sequence for Iμ|Sr,a (thus a PS sequence for Iμ|Sa , since the problem is invariant under
rotations) at level σ(a, μ) = mr ,a,μ with Pμ(un) → 0.Hence, by Lemmas 4.3–4.5, we have
that

mr ,a,μ ∈
⎛
⎝0,

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s

⎞
⎠ , (7.7)
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then one of the two alternatives in Proposition 2.3 occurs.
Assume that (i) of Proposition 2.3 occurs, then there exists u ∈ Hs(R3) such that un⇀u

weakly in Hs(R3) but not strongly, where u �≡ 0 is a solution of problem (1.13) for some
λ < 0 and

Iμ(u) ≤ mr ,a,μ −
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s < 0. (7.8)

Moreover, by Pohozaev identity Pμ(u) = 0, which reads as

‖u‖2 − 2μ

q̄
‖u‖q̄q̄ −

∫
R3

φu |u|2∗
s−1dx − ‖u‖2∗

s
2∗
s

= 0,

together with condition (4.1), we have that

Iμ(u) = 1

2

∫
R3

|(−�)
s
2 u|2dx − 1

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

q̄

∫
R3

|u|q̄ dx − 1

2∗
s

∫
R3

|u|2∗
s dx

= 2∗
s − 2

22∗
s

‖u‖2 + 2∗
s − 2

22∗
s (2∗

s − 1)

∫
R3

φu |u|2∗
s−1dx − (2∗

s − 2)μ

2∗
s q̄

‖u‖q̄q̄

≥ 2∗
s − 2

22∗
s

(
1 − 2μ

q̄
Cq̄,sa

4s
3

)
‖u‖2 + 2∗

s − 2

22∗
s (2∗

s − 1)

∫
R3

φu |u|2∗
s−1dx > 0,

a contradiction with (7.8). This shows that necessarily the alternative (i i) of Proposition
2.3 holds, namely there exists a subsequence un → u strongly in Hs(R3), Iμ(u) = mr ,a,μ

and u solves problem (1.13) for some λ < 0. Combining βn(s) ≥ 0 a.e. in R
3 for every

s ∈ [0, 1], (7.5) and the convergence imply that u ≥ 0, and utilizing the same argument as
Sect. 6, we have that u is positive. Finally, we prove that u is a ground state solution. Since
any normalized solution stays on Na,μ and satisfies that

Iμ(u) = mr ,a,μ = inf
Na,μ∩Sr,a

Iμ.

It is sufficient to check that

inf
Na,μ∩Sr,a

Iμ = inf
Na,μ

Iμ = ma,μ.

Suppose by contradiction that there exists a w ∈ Na,μ\Sr ,a such that Iμ(w) <

infNa,μ∩Sr,a Iμ. Then we let v := |w|∗ be the symmetric decreasing rearrangement of w,
which lies in Sr ,a . By standard properties, we have that

‖v‖2 ≤ ‖w‖2, Iμ(v) ≤ Iμ(w) and Pμ(v) ≤ Pμ(w) = 0.

If Pμ(v) = 0, then Pμ(v) = Pμ(w) = 0, a contradiction with the above inequalities and
hence we can assume that Pμ(v) < 0. In this case, by Lemma 4.2, we see that tv < 0. But
then we have again a contradiction in the following way:

Iμ(w) ≤ Iμ(tv�v) = (2∗
s − 2)e2(2

∗
s−1)stv

2(2∗
s − 1)

∫
R3

φv|v|2∗
s−1dx + (2∗

s − 2)e2
∗
s stv

22∗
s

‖v‖2∗
s

2∗
s

≤ e2
∗
s stv Iμ(w) < Iμ(w),

where we use the fact that tv�v,w ∈ Na,μ. Therefore,

ma,μ = mr ,a,μ,

and so u is a ground state solution.
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Case 2: L2−supercritical perturbation for q̄ = 2 + 4s
3 < q < 2∗

s . Proceeding exactly as
in the case q = q̄ = 2 + 4s

3 , we can obtain a Palais–Smale sequence {un} ⊂ Sr ,a for Iμ|Sa
at level σ(a, μ) = mr ,a,μ with Pμ(un) → 0. Hence, by Lemma 5.5, we have that mr ,a,μ

satisfies (7.7), then one of the two alternatives in Proposition 2.3 occurs.
Assume that (i) of Proposition 2.3 occurs, then there exists u ∈ Hs(R3) such that un⇀u

weakly in Hs(R3) but not strongly, where u �≡ 0 is a solution of problem (1.13) for some
λ < 0 and

Iμ(u) ≤ mr ,a,μ −
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s < 0. (7.9)

However, by Pohozaev identity Pμ(u) = 0, we have that

‖u‖2 − μγq,s‖u‖qq −
∫
R3

φu |u|2∗
s−1dx − ‖u‖2∗

s
2∗
s

= 0,

and by virtue of qγq,s > 2, we get that

Iμ(u) = 1

2

∫
R3

|(−�)
s
2 u|2dx − 1

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − μ

q

∫
R3

|u|qdx − 1

2∗
s

∫
R3

|u|2∗
s dx

= μ

q

(qγq,s

2
− 1

) ∫
R3

|u|qdx + 2∗
s − 2

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx + 2∗

s − 2

22∗
s

∫
R3

|u|2∗
s dx > 0,

a contradiction with (7.9). Therefore, the alternative (ii) of Proposition 2.2 occurs. Namely,
there exists a subsequence un → u strongly in Hs(R3), Iμ(u) = mr ,a,μ and u solves problem
(1.13) for some λ < 0. By the convergence, u is also nonnegative, and utilizing the same
argument as Sect. 6, we have that u is positive. It remains to show that u is a ground state.
The rest part of the proof is similar to that of Case 1. The thesis follows. ��

8 Proof of Theorem 1.4

In this section, we focus on problem (1.13) in the limit case μ = 0. In this situation, the
action functional of (1.13) is given by

I0(u) = 1

2
‖u‖2 − 1

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − 1

2∗
s
‖u‖2∗

s
2∗
s
,

and the associated Pohozaev identity reads as

Na,0 =
{
u ∈ Sa : ‖u‖2 −

∫
R3

φu |u|2∗
s−1dx − ‖u‖2∗

s
2∗
s

= 0

}
= {

u ∈ Sa : (�0
u )

′(0) = 0
}
,

where

�0
u (t) := e2st

2
‖u‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − e2

∗
s st

2∗
s

‖u‖2∗
s

2∗
s

and Na,0 can be decomposed as

Na,0 = N+
a,0 ∪ N 0

a,0 ∪ N−
a,0.

Before further studying for problem (1.13), the solutions of the following equations must
be clearly studied. To be specific, we consider, the Euler–Lagrange equation of I0 expressed
as
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(−�)su = φu |u|2∗
s−3u + |u|2∗

s−2u, x ∈ R
3, (8.1)

and the equation

(−�)su = |u|2∗
s−2u, x ∈ R

3. (8.2)

Lemma 8.1 The solutions of problem (8.1) and problem (8.2) are one-to-one correspondence.
Moreover, (8.1) has a positive ground state solution, unique up to translation and scaling.

Proof Assume that w1(x) is a solution of problem (8.2), then w2(x) = Kw1w1(x), solves
problem (8.1), where Kw1 > 0 satisfying

K
2∗
s−2

w1 =
−‖w1‖2 + ‖w1‖

√
‖w1‖2 + 4

∫
R3 φw1 |w1|2∗

s−1dx

2
∫
R3 φw1 |w1|2∗

s−1dx
. (8.3)

For any solutions w1(x) and w2(x) of problem (8.2), if Kw1w1(x) = Kw2w2(x) holds, then

w1(x) = Kw2

Kw1

w2(x).

Since both w1(x) and w2(x) are the solutions of problem (8.2), we have
Kw2
Kw1

= 1 and hence

w1(x) = w2(x).
On the other hand, assume that w2(x) is a solution of problem (8.1), then w1(x) =

Tw2w2(x) solves problem (8.2), where Tw2 > 0 and

T
2∗
s−2

w2 = ‖w2‖2
‖w2‖2

∗
s

2∗
s

. (8.4)

Combining with those, it is easy to see that w1(x)
Kw1−→ w2(x)

Tw2−→ w1(x).
Note that all positive ground state solutions to (8.2) are the functionsUε,z defined in (4.6).

Then ψε,z = KUε,zUε,z is a positive ground state solution of problem (8.1), where KUε,z > 0
and

K
2∗
s−2

Uε,z
=

√
5 − 1

2
. (8.5)

To see this fact, we introduce the following “limit equation"{
(−�)su = φ|u|2∗

s−3u, x ∈ R
3,

(−�)sφ = |u|2∗
s−1, x ∈ R

3.
(8.6)

We claim that: All positive solutions of (8.6) have the form u(x) = φ(x) = Uε,z(x) for any
ε > 0 and z ∈ R

3.

Indeed, assume that (u, φ) is a pair of positive solution to (8.6), then we have that

(−�)s(u − φ) = (φ − u)|u|2∗
s−2, x ∈ R

3. (8.7)

Multiplying both sides of this equation by (u − φ) and integrating by part, we obtain that∫
R3

|(−�)
s
2 (u − φ)|2dx +

∫
R3

|u − φ|2|u|2∗
s−2dx = 0.

Hence, we can conclude u(x) = φ(x) = Uε,z(x) and∫
R3

|(−�)
s
2Uε,z |2dx =

∫
R3

φUε,z |Uε,z |2∗
s−1dx =

∫
R3

|Uε,z |2∗
s dx = S

2∗s
2∗s −2 , (8.8)
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which implies that (8.6) is equivalent to system (8.2).
Now, for any positive solutions w1(x) and w2(x) of problem (8.1), then by (8.4),

u1(x) = Tw1w1(x) and u2(x) = Tw2w2(x)

are the positive solutions of problem (8.2). Combining this with the fact that the positive
solution is of the form Uε,z(x), we then have that ‖u1‖ = ‖u2‖, i.e.

‖w1‖2∗
s

‖w1‖2
∗
s

2∗
s

= ‖w2‖2∗
s

‖w2‖2
∗
s

2∗
s

⇐⇒
∥∥∥∥ w1

‖w1‖2∗
s

∥∥∥∥ =
∥∥∥∥ w2

‖w2‖2∗
s

∥∥∥∥ ,

which implies that ‖w̃1‖ = ‖w̃2‖ with w̃i := wi/‖wi‖2∗
s
, i = 1, 2, in the sense of the

L2∗
s -normalized norm. Hence from the argument aforementioned, we know that any positive

solution of (8.1) is a ground state solution. The uniqueness of the ground state solutions of
problem (8.1) follows from (8.5) and Uε,z . The proof is completed. ��

From the above discussion, we can derive the following conclusion.

Lemma 8.2 The free functional I0 has least energy value

inf
u∈M I0(u) =

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ,

where M = {u ∈ Ds,2(R3)\{0} : I ′
0(u)u = 0} is the Nehari manifold of I0. The infimum is

achieved only by functions wε(x) = kUε,zUε,z(x), where Uε,z is given by (4.6).

Proof From the proof of Lemma 8.1, we see that critical points of I0 correspond to the
positive ground state solutions wε of (8.1), and

wε(x) = kUε,zUε,z(x), with kUε,z =
(√

5 − 1

2

) 1
2∗s −2

,

whereUε,z(x) is the ground states of (8.2). Therefore, by (8.8) and a direct computation, we
obtain that

inf
u∈M I0(u) = I0(wε)

= 1

2
‖wε‖2 − 1

2(2∗
s − 1)

∫
R3

φwε |wε|2∗
s−1dx − 1

2∗
s
‖wε‖2

∗
s

2∗
s

=
k2Uε,z

2
‖Uε,z‖2 −

k
2(2∗

s−1)
Uε,z

2(2∗
s − 1)

∫
R3

φUε,z |Uε,z |2∗
s−1dx −

k
2∗
s

Uε,z

2∗
s

‖Uε,z‖2
∗
s

2∗
s

=
k2Uε,z

2
S

2∗s
2∗s −2 −

k
2(2∗

s−1)
Uε,z

2(2∗
s − 1)

S
2∗s

2∗s −2 −
k
2∗
s

Uε,z

2∗
s

S
2∗s

2∗s −2

=
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s .

��
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Proof of Theorems 1.4. It is easy to see that for every u ∈ Sa , the function

�0
u (t) = e2st

2
‖u‖2 − e2(2

∗
s−1)st

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − e2

∗
s st

2∗
s

‖u‖2∗
s

2∗
s
,

has a unique maximum point tu,0, given by

estu,0 =
⎛
⎝−‖u‖2∗

s
2∗
s
+
√

‖u‖22∗
s

2∗
s

+ 4‖u‖2 ∫
R3 φu |u|2∗

s−1dx

2
∫
R3 φu |u|2∗

s−1dx

⎞
⎠

1
2∗s −2

. (8.9)

By the definition of N+
a,0 and N 0

a,0, we can deduce that N+
a,0 = N 0

a,0 = ∅. Indeed, suppose
that there exists u ∈ Na,0 such that u ∈ N 0

a,0 ∪ N+
a,0, then (�0

u )
′′(0) ≥ 0, that is,

2‖u‖2 ≥ 2∗
s ‖u‖2∗

s
2∗
s
+ 2(2∗

s − 1)
∫
R3

φu |u|2∗
s−1dx .

By u ∈ Na,0, we have that

‖u‖2 = ‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx,

and hence,

‖u‖2∗
s

2∗
s
+
∫
R3

φu |u|2∗
s−1dx ≤ 0,

which implis that u ≡ 0, contradicting to u ∈ Sa . Thus, Na,0 = N−
a,0.

Next, we prove that Na,0 is a smooth manifold of codimension 1 on Sa . Since

Na,0 =
{
u ∈ Sa : ‖u‖2 −

∫
R3

φu |u|2∗
s−1dx − ‖u‖2∗

s
2∗
s

= 0

}
,

Na,0 can be defined by P0(u) = 0,G(u) = 0, where

P0(u) = ‖u‖2 −
∫
R3

φu |u|2∗
s−1dx − ‖u‖2∗

s
2∗
s

and G(u) =
∫
R3

|u|2dx − a2.

Since P0(u) and G(u) are class of C1, it suffices to check that d(P0(u),G(u)) : Hs(R3) →
R
2 is surjective. If this is not true, then dP0(u) must be linearly dependent from dG(u), that

is, there exist some ν ∈ R such that

2s(−�)su = νu + 2∗
s s|u|2∗

s−2u + 2s(2∗
s − 1)φu |u|2∗

s−3u in R
3.

By the Pohozaev identity and the last equation, we obtain that

2s2‖u‖2 = 2∗
s s

2‖u‖2∗
s

2∗
s
+ 2(2∗

s − 1)s2
∫
R3

φu |u|2∗
s−1dx,

that is u ∈ N 0
a,0, a contradiction. Moreover, Na,0 is a natural constraint. Indeed, if u ∈ Na,0

is a critical point of I0|Na,0 , then by the Lagrange multipliers rule there exists λ, ν ∈ R such
that

I ′
0(u)ϕ = λ

∫
R3

uϕdx + νP ′
0(u)ϕ,
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for every ϕ ∈ Hs(R3). That is, u solves the following equation

(1 − 2ν)(−�)su = λu + (
1 − 2(2∗

s − 1)ν
)
φu |u|2∗

s−3u + (1 − 2∗
s ν)|u|2∗

s−2u in R
3.

(8.10)

We have to prove that ν = 0, and to this end we observe that by the Pohozaev identity

(1 − 2ν)(3 − 2s)

2

∫
R3

|(−�)
s
2 u|2dx = 3λ

2

∫
R3

|u|2dx

+
(
1 − 2(2∗

s − 1)ν
)
(3 − 2s)

2

∫
R3

φu |u|2∗
s−1dx + (1 − 2∗

s ν)(3 − 2s)

2

∫
R3

|u|2∗
s dx .

(8.11)

Combining (8.10) and (8.11), we have that

(1 − 2ν)

∫
R3

|(−�)
s
2 u|2dx = (

1 − 2(2∗
s − 1)ν

) ∫
R3

φu |u|2∗
s−1dx + (1 − 2∗

s ν)

∫
R3

|u|2∗
s dx .

Since u ∈ Na,0, this implies that

ν

[
2
∫
R3

|(−�)
s
2 u|2dx − 2(2∗

s − 1)
∫
R3

φu |u|2∗
s−1dx − 2∗

s

∫
R3

|u|2∗
s dx

]
= 0.

But the term inside the bracket cannot be 0, since u /∈ N 0
a,0, and then necessarily ν = 0.

Thus, u is a critical point of I0|Sa . Hence, for every u ∈ Sa , there exists a unique tu,0 ∈ R

such that tu,0�u ∈ Na,0 and tu,0 is a strict maximum point of �0
u (t), if u ∈ Na,0, we have

tu,0 = 0 and

I0(u) = max
t∈R I0(t�u) ≥ inf

u∈Sa
max
t∈R I0(t�u).

On the other hand, if u ∈ Sa , then tu,0�u ∈ Na,0 and

max
t∈R I0(t�u) = I0(tu,0�u) ≥ inf

u∈Na,0
I0(u).

Therefore, we conclude that

inf
u∈Na,0

I0(u) = inf
u∈Sa

max
t∈R I0(t�u).
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Now we show that the infimum of I0 in Na,0 is not achieved. By (8.9) and (4.15), we derive
that

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s

= inf
u∈M I0(u) ≤ inf

u∈Na,0
I0(u)

= inf
u∈Sa

max
t∈R I0(t�u)

= inf
u∈Na,0

[
e2stu,0

2
‖u‖2 − e2(2

∗
s−1)stu,0

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − e2

∗
s stu,0

2∗
s

‖u‖2∗
s

2∗
s

]

= inf
u∈Hs (R3)\{0}

[
e2stu,0

2
‖u‖2 − e2(2

∗
s−1)stu,0

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − e2

∗
s stu,0

2∗
s

‖u‖2∗
s

2∗
s

]

≤ e2stuε,0

2
‖uε‖2 − e2(2

∗
s−1)stuε,0

2(2∗
s − 1)

∫
R3

φuε |uε|2∗
s−1dx − e2

∗
s stuε,0

2∗
s

‖uε‖2
∗
s

2∗
s

= �0
uε

(tuε,0) = sup
t≥0

�0
uε

(t)

≤
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s + O(ε3−2s),

for any ε > 0. By density of Hs(R3) in Ds,2(R3), Lemma 8.2, we infer that the infimum

is
(√

5−1
2

) 3−2s
2s s

(
12+(1−√

5)(3−2s)
)

6(3+2s) S
3
2s , and is achieved if and only if the extremal functions

Uε,z defined in (4.6) when 0 < s < 3
4 and stay in L2(R3). In the case 3

4 ≤ s < 1, we show
that the infimum of I0 on Na,0 is not achieved. Assume by contradiction that there exists a
minimizer u, let v := |u|∗ be the symmetric decreasing rearrangement of u, which lies in
Sr ,a . Then, by the properties of symmetric decreasing rearrangement, we infer to

‖v‖2 ≤ ‖u‖2, I0(v) ≤ I0(u) and P0(v) ≤ P0(u) = 0.

If P0(v) < 0, then tv,0 defined in (8.9) is negative. Hence, by P0(tv,0�v) = 0 and P0(u) = 0,
we derive that

I0(u) ≤ I0(tv,0�v) = e2stv,0

2
‖v‖2 − e2(2

∗
s−1)stv,0

2(2∗
s − 1)

∫
R3

φv|v|2∗
s−1dx − e2

∗
s stv,0

2∗
s

‖v‖2∗
s

2∗
s

= (2∗
s − 2)e2stv,0

22∗
s

‖v‖2 + (2∗
s − 2)e2(2

∗
s−1)stv,0

2(2∗
s − 1)2∗

s

∫
R3

φv|v|2∗
s dx

≤ (2∗
s − 2)e2stv,0

22∗
s

‖u‖2 + (2∗
s − 2)e2stv,0

2(2∗
s − 1)2∗

s

∫
R3

φu |u|2∗
s dx

= e2stv,0

[(
1

2
− 1

2∗
s

)
‖u‖2 −

(
1

2(2∗
s − 1)

− 1

2∗
s

)∫
R3

φu |u|2∗
s−1dx

]

= e2stv,0

[
1

2
‖u‖2 − 1

2(2∗
s − 1)

∫
R3

φu |u|2∗
s−1dx − 1

2∗
s
‖u‖2∗

s
2∗
s

]
= e2stv,0 I0(u) < I0(u),
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which is a contradiction. Thus, it is necessary that P0(v) = 0, that is, v ∈ Na,0, and v is a
nonnegative radial minimizer. Since Na,0 is a natural constraint, we infer that{

(−�)sv − φ|v|2∗
s−3v = λv + |v|2∗

s−2v, x ∈ R
3,

(−�)sφ = |v|2∗
s−1, x ∈ R

3,
(8.12)

for some λ ∈ R, and by the maximum principle [9], v > 0 in R3. By P0(v) = 0, necessarily
λ = 0, and so v solves the equation{

(−�)sv = φ|v|2∗
s−3v + |v|2∗

s−1, x ∈ R
3,

(−�)sφ = |v|2∗
s−1, x ∈ R

3,
(8.13)

Therefore, by Lemmas 8.1 and 8.2, we have that v = kUε,zUε,z . But this is not possible, since
Uε,z /∈ Hs(R3) for 3

4 ≤ s < 1. This completes the proof. ��

9 Proof of Theorem 1.5

This section is devoted to prove Theorem 1.5. We begin with the following two lemmas,
which are necessary to the proof.

Lemma 9.1 Let a > 0, μ ≥ 0 and q̄ = 2 + 4s
3 ≤ q < 2∗

s holds. Then

inf
u∈Na,μ

Iμ(u) = inf
u∈Sa

max
t∈R Iμ(t�u).

Proof By virtue of q̄ = 2+ 4 s
3 ≤ q < 2∗

s andμ ≥ 0, we know from Lemmas 4.2 and 5.2 that
Na,0 = N−

a,0. For every u ∈ Sa , there exists a unique tu,μ ∈ R such that tu,μ�u ∈ Na,μ, and
that tu,μ is a strict maximum point of the functional �μ

u . Thus, if u ∈ Na,μ we get tu,μ = 0
and

Iμ(u) = max
t∈R Iμ(t�u) ≥ inf

v∈Sa
max
t∈R Iμ(t�v).

On the other hand, if u ∈ Sa , then tu,μ�u ∈ Na,μ and so

max
t∈R Iμ(t�u) = Iμ(tu,μ�u) ≥ inf

v∈Na,μ

Iμ(v),

which completes the proof. ��
Lemma 9.2 Let a > 0, μ∗ > 0 and q̄ = 2 + 4 s

3 ≤ q < 2∗
s holds. Then the function

μ : [0, μ∗] �→ ma,μ ∈ R is monotone and non-increasing.

Proof Let 0 ≤ μ1 ≤ μ2 ≤ μ∗, by Lemma 9.1, we have that

ma,μ2 = inf
u∈Sa

max
t∈R Iμ2(t�u) = inf

u∈Sa
Iμ2(tu,μ2�u)

= inf
u∈Sa

[
Iμ1(tu,μ2�u) + μ1 − μ2

q
eqγq,s stu,μ2

∫
R3

|u|qdx
]

≤ inf
u∈Sa

max
t∈R Iμ1(t�u) = ma,μ1 ,

as desired. ��
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Proof of Theorems 1.5. The proof is divided into two cases.
Case 1: 2 < q < q̄ = 2+ 4s

3 .We recall that uμ is a positive ground state solution of Iμ(u)

on {u ∈ Sa : ‖uμ‖ < R0}, where R0(a, μ) is defined in Lemma 3.1 such that h(R0) = 0
and h is given in (3.5), and we can check that R0 = R0(a, μ) → 0 as μ → 0+. Thus,
‖uμ‖ < R0 → 0 as μ → 0+. Moreover, for every u ∈ Sa , according to (1.14), the fractional
Gagliardo–Nirenberg–Sobolev inequality (1.16) and Lemma 2.1, we have that

0 > ma,μ = Iμ(uμ) ≥ 1

2
‖uμ‖2 − 1

2(2∗
s − 1)

S−2∗
s ‖uμ‖2(2∗

s−1)

− μ

q
Cq,sa

q(1−γq,s )‖uμ‖qγq,s − 1

2∗
s
S− 2∗s

2 ‖uμ‖2∗
s → 0

as μ → 0+.

Case 2: q̄ = 2 + 4s
3 ≤ q < 2∗

s . Let a > 0, μ∗ > 0 and in this case (1.20) holds. Firstly,
we show that the family of positive radial ground states {uμ : 0 < μ < μ∗} is bounded in
Hs(R3). If q = q , then by Pμ(uμ) = 0 and Lemma 9.2, we get that

ma,0 ≥ ma,μ = Iμ(uμ) = 2∗
s − 2

22∗
s

‖uμ‖2 + 2∗
s − 2

2(2∗
s − 1)2∗

s

∫
R3

φuμ |uμ|2∗
s−1dx

− (2∗
s − 2)μ

2∗
s q̄

‖uμ‖q̄q̄

≥ 2∗
s − 2

22∗
s

(
1 − 2μ

q̄
Cq̄,sa

4s
3

)
‖uμ‖2.

If q̄ = 2 + 4s
3 < q < 2∗

s , in a similar way, we infer to

ma,0 ≥ ma,μ = Iμ(uμ)

= μ

q

(qγq,s

2
− 1

) ∫
R3

|uμ|qdx + 2∗
s − 2

2(2∗
s − 1)

∫
R3

φuμ |uμ|2∗
s−1dx + 2∗

s − 2

22∗
s

∫
R3

|uμ|2∗
s dx .

Hence, by qγq,s > 2 and Pμ(uμ) = 0, we also have {uμ} is bounded in Hs(R3). Since in
particular {uμ} is bounded in Lq(R3), we have that

λμa
2 = ‖uμ‖2 −

∫
R3

φuμ |uμ|2∗
s−1dx − μ

∫
R3

|uμ|qdx −
∫
R3

|uμ|2∗
s dx

= μ(γq,s − 1)
∫
R3

|uμ|qdx → 0

as μ → 0+. Therefore, we deduce that up to a subsequence uμ⇀u weakly in Hs(R3), in
Ds,2(R3) and in L2∗

s (R3); uμ → u strongly in Lq(R3). Let ‖uμ‖2 → � ≥ 0. If � = 0,
then uμ → 0 strongly in Ds,2(R3), and hence Iμ(uμ) → 0. But, by Lemma 9.2, we get
Iμ(uμ) ≥ ma,μ∗ > 0 for each μ ∈ (0, μ∗), a contradiction. Hence, � > 0. By Pμ(uμ) = 0
we have as μ → 0+,∫

R3
φuμ |uμ|2∗

s−1dx + ‖uμ‖2∗
s

2∗
s

= ‖uμ‖2 − μγq,s‖uμ‖qq → �, (9.1)

Then, we may assume that∫
R3

φuμ |uμ|2∗
s−1dx → a and ‖uμ‖2∗

s
2∗
s

→ b, as μ → 0+. (9.2)
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On the other hand, by Young inequality, we have that∫
R3

|uμ|2∗
s dx =

∫
R3

(−�)
s
2 φuμ(−�)

s
2 |uμ|dx

≤ θ2

2

∫
R3

|(−�)
s
2 |uμ||2dx + 1

2θ2

∫
R3

|(−�)
s
2 φuμ |2dx

= 1

2θ2

∫
R3

φuμ |uμ|2∗
s−1dx + θ2

2

∫
R3

|(−�)
s
2 uμ|2dx .

Thus, passing to the limit as μ → 0+, it follows that b ≤ 1
2θ2

a+ θ2

2 �. Choosing θ2 =
√
5−1
2 ,

and using (9.1), we derive a ≥ 3−√
5

2 �. Consequently, by (9.2) again, we get

ma,μ = lim
μ→0+ Iμ(uμ)

= lim
μ→0+

{
1

2
‖uμ‖2 − 1

2(2∗
s − 1)

∫
R3

φuμ |uμ|2∗
s−1dx − 1

2∗
s

∫
R3

|uμ|2∗
s dx

}

= s

3
� + s(3 − 2s)

3(3 + 2s)
a ≥

s
[
12 + (1 − √

5)(3 − 2s)
]

6(3 + 2s)
�.

(9.3)

From (1.14), (9.1) and Lemma 2.1 we have that

� = a + b + oμ(1) ≤ S−2∗
s �2

∗
s−1 + S− 2∗s

2 �
2∗s
2 + oμ(1). (9.4)

Taking the limit as μ → 0+, we obtain that � ≥
(√

5−1
2

) 2
2∗s −2 S

3
2 s . From (9.4), we infer to

ma,μ ≥
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s . (9.5)

Meanwhile, we have that

lim
μ→0+ Iμ(uμ) ≤ ma,0 =

(√
5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s . (9.6)

Finally, combining (9.5) with (9.6), we obtain that

ma,μ =
(√

5 − 1

2

) 3−2s
2s s

(
12 + (1 − √

5)(3 − 2s)
)

6(3 + 2s)
S

3
2s ,

and the conclusion follows. ��
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18. He, X., Rădulescu, V.D.: Small linear perturbations of fractional Choquard equations with critical expo-
nent. J. Differ. Equ. 282, 481–540 (2021)

19. He, X.: Positive solutions for fractional Schrödinger–Poisson systems with doubly critical exponents.
Appl. Math. Lett. 120, 107190 (2021)

20. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equation. Nonlinear Anal.
TMA 28, 1633–1659 (1997)

21. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger–Poisson–Slater
equation. J. Differ. Equ. 303, 277–325 (2021)

22. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59, 43 (2020)
23. Jeanjean, L., Luo, T.: Sharp nonexistence results of prescribed L2-norm solutions for some class of

Schrödinger–Poisson and quasi-linear equations. Z. Angew. Math. Phys. 64, 937–954 (2013)
24. Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical

Schrödinger equation. J. Math. Pures Appl. 164, 158–179 (2022)
25. Ji, C.:Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system

in R
3. Ann. Mat. Pura Appl. 198(5), 1563–1579 (2019)

26. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(2002), 056108 (2002)
27. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305

(2000)
28. Li, G., Luo, X., Yang, T.: Normalized solutions for the fractional Schrödinger equation with a focusing

nonlocal perturbation. Math. Methods Appl. Sci. 44(13), 10331–10360 (2021)
29. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlin-

earities. Calc. Var. Partial Differ. Equ. 59, 35 (2020)

123

http://arxiv.org/abs/2103.07940
https://doi.org/10.1002/mma.8294


65 Page 50 of 50 Y. Meng, X. He

30. Li, Q., Zou, W.: The existence and multiplicity of the normalized solutions for fractional Schrödinger
equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases. Adv.
Nonlinear Anal. 11, 1531–1551 (2022)

31. Li, X., Ma, S.: Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22, 1950023
(2020)

32. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal.
Geom. 10, 43–64 (2007)

33. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society,
Providence (2001)

34. Lieb, E.H., Simon, B.: The Hartree–Fock Theory for Coulomb Systems. Springer, Berlin (2005)
35. Murcia, E., Siciliano, G.: Positive semiclassical states for a fractional Schrödinger–Poisson system.Differ.

Integr. Equ. 30, 231–258 (2017)
36. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 115–162

(1959)
37. Qu, S., He, X.: On the number of concentrating solutions of a fractional Schrödinger–Poisson system

with doubly critical growth. Anal. Math. Phys. 12, 49 (2022)
38. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math.

Soc. 367, 67–102 (2015)
39. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ.

269, 6941–6987 (2020)
40. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev

critical case. J. Funct. Anal. 279, 43 (2020)
41. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system

with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)
42. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
43. Yang, Z., Zhao, F., Zhao, S.: Existence and multiplicity of normalized solutions for a class of fractional

Schrödinger–Poisson equations. Ann. Fenn. Math. 47(2), 777–790 (2022)
44. Zhang, J., Do, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or

critical nonlinearity. Adv. Nonlinear Stud. 16, 15–30 (2016)
45. Zhen,M., Zhang, B.:Normalized ground states for the critical fractionalNLS equationwith a perturbation.

Rev. Mat. Complut. 35, 89–132 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Normalized ground states for the fractional Schrödinger–Poisson system with critical nonlinearities
	Abstract
	1 Introduction and main results
	1.1 Notation

	2 Preliminaries
	3 L2-subcritical perturbation
	4 L2-critical perturbation
	5 L2-supercritical perturbation
	6 Proof of Theorem 1.1
	7 Proof of Theorems 1.2 and 1.3
	8 Proof of Theorem 1.4
	9 Proof of Theorem 1.5
	Acknowledgements
	References




