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Abstract
In this paper we study the existence and properties of ground states for the fractional
Schrodinger—Poisson system with combined power nonlinearities

(=AY u — lul> u = ru + pwlul?2u + [u>2u, x € R3,
(—A)¢p = [u]>~1, x e R3,

having prescribed mass

f |u|2dx =d?
R3

and doubly critical growth, where s € (0, 1), u > 0 is a parameter, 2 < g < 2}, 2¥ = %
is the fractional critical Sobolev exponent and A € R appears as a Lagrange multiplier.
For a L2-subcritical, L?-critical and L2-supercritical perturbation s |u|?2u, respectively,
we prove several existence, and non-existence results. Furthermore, the qualitative behavior
of the ground states as i — 07 is also studied. Our results complement and improve the
existing ones in several directions, and this study seems to be the first contribution regarding
existence of normalized ground states for the fractional Sobolev critical Schrodinger—Poisson

system with a critical nonlocal term.
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1 Introduction and main results

In this paper we study existence and properties of ground states with prescribed mass for the
nonlinear fractional Schrodinger—Poisson system with combined power nonlinearities

B\IJ * *
i = (AW - PIWH W — p W12 — W2, x e RY, wn
(=D = |W|xT, x € R,

where W :RxR3 - C,u>02<gqg < 2%k, We look for standing wave solutions to (1.1),
namely to solutions of the form (W (¢, x) = e~ My(x), ¢(x)), . € R. Then the function
(u(x), ¢ (x)) satisfies the equation

(=AY u = hu+ wlult2u + ¢lul® u+ u>2u, xeR3, (12)
(=AY = |5 x e R3. '

Here (—A)* is a nonlocal operator defined by

u(x) —u(y) 3
———dy, e R7,
3 |x _ y|3+Zs y X

(—A)’u(x) = C; P.V./
R
and P.V. stands for the Cauchy principal value on the integral, and Cj is a suitable normal-
ization constant. It is well-known that, the first equation in (1.2) was used by Laskin (see
[26, 27]) to extend the Feynman path integral, from Brownian-like to Lévy-like quantum
mechanical paths. This class of fractional Schrédinger equations with a repulsive nonlocal
Coulombic potential can be approximated by the Hartree—Fock equations to describe a quan-
tum mechanical system of many particles; see, for example, [17, 18, 32, 34]. It also appeared
in many different areas, such as financial mathematics, optimization, minimal surfaces, phase
transitions, conservation laws, stratified materials, crystal dislocation and water waves, we
refer to [2, 11] for more applied backgrounds on the fractional Laplacian.
We note that, when the second Poisson equation of the fractional Schrodinger—Poisson
system

(=AY u+V@u+ Kx)pu = f(x,u), xeR3,

(=AY ¢ = K (x)u?, x € R3, (1.3)

is subcritical growth, (1.3) has been studied extensively and there are many results available in
the literature. In [44], Zhang et al. studied the existence and the asymptotical behaviors of posi-
tive solutions to system (1.3) for the first time by using a perturbation approach. Ji [25] showed
that (1.3) has a sign-changing ground state solution by means of a quantitative deformation
lemma and the constraint variational method. Teng [41] studied the existence of a ground state
solution to (1.3) when K (x) = 1 and f(x, u) = plul?'u 4 [u|>2u,q € (1,2 — 1) by
using global compactness Lemma, the monotonicity trick, Pohozaev—Nehari manifold, and
arguments of Brezis—Nirenberg type. Yang et al. [43] considered (1.3), and proved the exis-
tence of infinitely many solutions («, A) with « having prescribed L2-norm. In [35], combing
with the Ljusternik—Schnirelmann category theory and the Nehari manifold method, Murcia
and Siciliano investigated the multiplicity of semiclassical state of the fractional Schrédinger—
Poisson system

1.4)

X (=AY u+V@u+ Kx)pu = fu), x RN,
e/ (=N = yuu?, x e RN,
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concentrating on the minima of V (x) for & > 0 small.

When the second equation of (1.3) is of critical growth, relatively speaking, there are only
few papers in the existing literature. In [19], He studied the fractional Schrodinger—Poisson
system with a critical nonlocal term

(=AY u+V@u — K@lul™ 3u= fx,u), xeR, 15
(—A)Y¢ = K@)u>", x e R, '
and proved the existence of a mountain pass solution for (1.5) with f(x, u) = |u|2~7’2u +
h(u), and h being subcritical growth, by using the concentration-compactness principle and
mountain pass theorem. Dou and He [13] investigated (1.5) with f (x, u) = a(x) f (1), and the
potentials V and a may be vanishing at infinity, the authors obtained the existence of a positive
ground state solution by employing the concentration-compactness principle, the mountain
pass theorem and approximation method. In [37], Qu and He considered the semiclassical
state of fractional Schodinger—Poisson system with double critical exponents

(1.6)

X (=AY U+ Vu= fu)+¢lul> 3u+u>2u, xeR3,
e (=0)'¢ = |u>~", x e R?,

and they established the existence, multiplicity and concentration of positive solutions by the
Ljusternik—Schnirelmann theory. In [15], Feng proved the existence of nonnegative solutions
of (1.6) with f(u) = 0, ¢ = 1, by using concentration-compactness principle, the mountain
pass theorem and approximation method.

After a bibliography review, the existing results for the fractional Schrodinger—Poisson
system with a nonlocal critical term, are mainly obtained without any constrained conditions
for the L2-norm, and a natural question that arises is whether or not we can obtain the
existence of solutions for the fractional Schrodinger—Poisson system with a nonlocal critical
term, having a desired L%-norm ng lu |2dx = a? for some prescribed @ > 0. The main
purpose of this paper is to focuss our attention on this issue and try to establish some existence
results on normalized solutions. Concretely speaking, we shall study the following fractional
Schrodinger—Poisson system with doubly critical growth

(=A)u —¢|u|2j73u =+ plul?%u + lul>2u, x eR3, (1.7)
(=AY = |ul>~", x e R?, '
with the prescribed L —norm
/ lul?dx = a2, (1.8)
R3

where p > 0 is a parameter and p|u|? 2y is a local perturbation with ¢ € (2, 2¥).

It is easily seen that the fractional Schrodinger—Poisson system (1.7) can be transformed
into a single fractional Schrédinger equation with a nonlocal critical term. Briefly, by the
Lax-Milgram theorem, for any fixed u € H® (R3), Poisson equation (—A)¢ = |u|2-f ~! has
a unique weak solution ¢, € D*2(R3) and ¢, can be expressed as (e.g. [19])

()~
Pu(x) = Cs /% md% (1.9)
B3 |x — :
() . .
where C; = ———3——. In the sequel, we often omit the constant C for convenience. So,
22521 (s)

substituting (1.9) into the first equation of (1.7), then (1.7) can be transformed into a single

@ Springer



65 Page4of50 Y. Meng, X. He

fractional Schrodinger equation as follows:
(=AY u — ¢ulul> 3w = du 4 plul?2u + u)>2u, VYue H®R>.  (1.10)

When looking for solutions to (1.10), a possible choice is then to fix A € R and to search for
solutions to (1.10) correspond to critical points of the action functional

! 50 2 1 21 M/
= — — 2 — e — s —_ q
L) 2/Rs (I=8)3u = 2?) dx TerY /M Bulul v = 2 | ultdx

- — |u|23* dx

%
In this case, the existence and multiplicity of solutions have been studied in [13, 15, 19,
37] and the references therein. Alternatively, one can search for solutions to (1.10) having a
prescribed L?-norm, and in this case A € R is part of the unknown. Defining on u € H*(R?)
the energy functional

Iu<u>=1/ (= A)SuPdx — /¢u(x>|u|2 gy - f|u|‘fdx
2 Jgrs3 2(2*—1) q Jr3
1

—— | ludx, (1.11)
2% Jr3

it is standard to check that I, is of C I_class and that a critical point of I, u restricted to the

(mass) constraint set

Sa={ueHS(]R3): / |u|2dx=a2},
R3

gives rise to a solution to (1.11) on S, satisfying ||u ”LZ(]I@) =a’.
Definition 1.1 We say that u, € S, is a ground state solution to (1.11) it is a solution having

minimal energy among all the solutions which belong to S,,. Namely, if

I;t(ua) = inf{]//,(u), u € Sq, (I/l.'Sa)/(u) =0}.

This definition seems particularly suited in our context, since ,, is unbounded from below
on S, and hence global minima do not exist.

We remark that, the prescribed mass approaches that we shall follow here, have created
an increasing interest in these last years, applied to various related problems. In [29], Luo
and Zhang studied the following fractional Schrodinger equation

(—=A)u = au + p|u|92u + |ulP2u, x RV, 1.12)

f]RN lu|?dx = a2, u € H'(RN), 1.
where s € (0,1) and 2 <gq < p <2} = N 2 . The authors proved some existence and
nonexistence results about the normalized solutions to (1.12) with combined subcritical
nonlinearities. Li and Zou [30], Zhen and Zhang [45] studied the existence and multiple
normalized solution of (1.12) with p = 2§, and extended the main results of [1], and Soave
[39] to the fractional Laplacian case. For more results about the existence of normalized
solutions of (1.12), we refer to [3, 10, 12, 14, 28] and the references therein. For the results
on the normalized solutions for the Schrodinger equations or systems, we refer the readers
to [4-7, 21-24] and the references therein.
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Motivated by the aforementioned references, in this paper, we shall study the existence of
normalized ground state solutions to the following fractional critical Schrodinger—Poisson
system with the prescribed L2-norm

(=AY u — ¢lul® 3u = du+ plu)?2u + Ju|>2u, x e RS,
(—A)'¢p = |ul=7", x € R3, (1.13)
ue€ H R,  [ps luldx = a®.

Problem (1.13) characteristics doubly critical growth, in the sense that the mixed non-
linearities combined a Sobolev critical term and a critical nonlocal term in view of the
Hardy-Littlewood—Sobolev inequality [33]. We shall restrict our attention on the existence
of normalized ground states to (1.13) for different cases of ¢g. The present paper seems to
be the first work for the existence of normalized solutions for fractional Schroding—Poisson
system with doubly critical nonlinearities.

In order to state our main results, we need to fix some notations. Let H* (R?) be the Hilbert
space of function in R? endowed with the standard inner product and norm

)= [ () b+ s, Tl e, = G,

and LS (R3), 1 <s < 00, be the Lebesgue space endowed with the norms

1
ulls = (f |u|~‘dx> .
R3

The Sobolev spaces D*%(R3) is defined by

_ 2
D2 (R?) = {u e L% RY): // dedy < +00} ;
RO

|x _ y|3+2s

endowed with the norm

() — u(y)P
= — " dxdy.
el = s g5, = //RG S dsdy

According to Propositions 3.4 and 3.6 of [11], we have that,

_ 2

by omitting the normalization constant. Let S be the best Sobolev constant defined by

—A)Iul?d
Si= inf M (1.14)
ueD**(R)\{0} (f]R3 u|%dx)%
and the threshold value ¢} by
e 12 1-— 3-2
oo (B ( HA- S)) S3, (1.15)
2 6(3 + 2s)

s

to verify the (PS),. compactness condition in the sequel.
If ¢ € (2,2}], we also recall that the fractional Gagliardo-Nirenberg-Sobolev inequality
[36]:

s (I=yq.s)
lulld < Cysl(=A) 2l )37, Vu e H (R, (1.16)

@ Springer



65 Page 6 0of 50 Y. Meng, X. He

where the optimal constant C, s depends on g and s, the number

3(g—2)
Yq.s ‘= 2517s’ Vg € (2, 2?]7

and it is easy to see that

<2, if2<qg<2+%,
qves =2, if g=q:=2+%, andthaty, = 1. (1.17)
> 2, if 2+%<q<2§‘,
Now we summarize our main results of this paper. In the study of problem (1.13) an

important role is played by the so-called L?-critical exponent § := 2 + %. For the L>-
subcritical case: 2 < g < q :=2+ %, we have the following conclusion:

Theorem 1.1 Assume that a,u > Oand?2 < g < q =2+ %. If there exists a constant
k =k(q,s) > 0, such that

pad1=ves) <k, (1.18)

then 1,|s, has a ground state u which is a positive, radially symmetric function and solves
problem (1.13) for some . < 0. Moreover,

map = inf () <0 (1.19)

and u is an interior local minimizer of 1, (u) on the set Ay = {u € S, : |lu|l < k}, for
suitable k small enough, and any other ground state solution of 1, on S, is a local minimizer
of I, on Ay.

In the L2-critical case: ¢ = g := 2 + %, the change of the geometry of I, |s, leads
to the change of the number of critical points of I,,. The existence of ground states can be
formulated as the following theorem.

Theorem 1.2 Assume thata, i > 0and?2 < q =q :=2+ 43—3. If
pa?1-72.) < q_(ZCq,s)_l, (1.20)

then I,|s, has a ground state i which is a positive, radially symmetric function and solves
problem (1.13) for some A < 0. Moreover, 0 < mg,,, < c and W is a Mountain Pass type
solution, where c is given in (1.15).

In the Lz—supercritical case: 2 + % < g < 2}, we can obtain the existence of a Mountain

Pass type ground state as follows.

Theorem 1.3 Assume that a, u > 0 and 2 + % < q < 2%. If one of the following conditions
is satisfied:

_avgs—2  30%_g)

. _ — *_
i) 0<s < %and wa?=ves) < yl (—‘/32 1) SR SR
q.s

(i) 3 <s <1,

then 1,|s, has a ground state i which is a positive, radially symmetric function and solves
problem (1.13) for some A < 0. Moreover, 0 < mg,, < ¢ and U is a Mountain Pass type
solution.
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Remark 1.1. Assumption (1.18) has explicit estimates for Z(q, s) in terms of Gagliardo—
Nirenberg and Sobolev constants according to the fact that ¢ is L2-subcritical, L2-critical,

or L2-supercritical. In the case 2 + % < g < 2%, it is remarkable that we can prove that
E(q, s) = 400, so that any a, © > 0 are admissible; while in the case 2 < ¢ < 2 + %,
Assumptions (1.18) and (1.20) if (¢ = 2 + %) enters in the study of the geometry of the
constrained functional /,]s,, and used in order to ensure that the ground state level m, ,, is
less than ¢}, which is an essential ingredient in our compactness argument.

The next two theorems are concerned with the behavior of the ground states found in the
limit case . = 0, and from Theorems 1.1-1.3 as u — 0.

Theorem 1.4 Leta > 0 and pu = 0. Then we have the following assertions:

(D) If0 <s < %, then Iy on S, has a unique positive radial ground state U, ; defined in

(4.6) for the unique choice of ¢ > 0 which gives ||Ug ;|| 123y = a-
2) If% <s < 1, then (1.13) has no positive solutions in S, for any A € R.

Theorem 1.5 Let u,, be the corresponding positive ground state solution obtained in Theo-
rems 1.1-1.3 with energy level m, . Then the following conclusions hold:

M If2<qg<2+ %, then mg , — 0, and |lu, || — 0in DS 2(R3) as u — 0F.
2) If2+ %S <q <2} thenmg, — ciasj — 0t.

Remark 1.2. (i) Theorem 1.4 reveals that the functional Io(«) has ground state energy, which
is achieved by the function w, given in Lemma 8.2, which is a new observation for problem
(1.2).

(ii) Theorems 1.1-1.5 are new results not only for the fractional Schrodinger—Poisson
systems with both the nonlocal critical term and the Sobolev critical nonlinearity [19], but
also for the fractional Schrédinger—Poisson systems with only the nonlocal critical term [13,
15].

Finally, we give some comments on the proof for the main results above. Since the two
critical terms |u|25* 24 and ¢, |u|2§ =3y are all L2—supercritical, the functional I, is always
unbounded from below on S, and this makes it difficult to deal with existence of normalized
solutions on the L2- constraint. One of the main difficulties is that one has to face in such
context is the analysis of the convergence of constrained Palais—Smale sequences; indeed,
the critical growth term in the equation makes the bounded (PS) sequences cannot converge.
Because the problem has a Sobolev critical term and a nonlocal critical convolution term, it
becomes more difficult to estimate the critical value of the mountain pass, and has to consider
how the interaction between the nonlocal term and the nonlinear term will affect the existence
of solutions of (1.13). Another of the main difficulties is that sequences of approximated
Lagrange multipliers have to be controlled, since X is not prescribed. For addition, weak limits
of the Palais—Smale sequences could leave a constraint, since the embeddings H* (R3) —
L*(R?) and H ., (R?) — L2(R?) are not compact.

In order to overcome these difficulties, we employ Jeanjean’s theory [20] by showing that
the mountain pass geometry of /,|s, allows to construct a Palais—Smale sequence of functions
satisfying the Pohozaev identity. This gives boundedness, which is the first step in proving
strong H*-convergence. To overcome the loss of compactness caused by the doubly critical
growth, we shall employ the modified concentration-compactness principle, the mountain
pass theorem and energy estimation to obtain the existence of normalized ground states
of (1.13). As naturally expected, the presence of the Sobolev critical term and the critical
nonlocal term in (1.13) further complicates the study of the convergence of Palais—Smale
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sequences. One of the most relevant aspects of our study consists in showing that, suitably
combining some of the main ideas from [19, 38, 40], compactness can be restored also in the
present setting.

The paper is organized as follows: in Sect.2, we start with some preliminary results
which will be frequently used to prove Theorems 1.1-1.3. In Sect. 3, we show some lemmas
for L2-subcritical perturbation case. In Sect.4, we give some preliminaries for L2-critical
perturbation case. In Sect. 5, we present some lemmas for L2-supercritical perturbation case.
In Sect. 6, we prove Theorem 1.1. In Sect. 7, we prove Theorems 1.2—1.3. In Sect. 8, we prove
Theorem 1.4. Finally, the proof of Theorem 1.5 will be given in Sect.9.

1.1 Notation

Throughout this paper, || - ||, denotes the norm in L4 (R?), 1 < g < 0o. Br(y) denotes the
ball centered at y with radius R. Capital letters C, C;,i = 1,2, ... denote various positive
constants whose exact values are irrelevant, and u* = max{zu, 0}.

2 Preliminaries

In this section, we present various preliminary results which are necessary in the proof of the
main theorems. We first summarize some properties of the function ¢, given as follows.
Lemma 2.1 ([19, 37]) The function ¢, has the following properties:
(i) ¢u > 0 forallu € H*(R%);
(i) ¢y = |t|% Y forallt > 0 and u € H* (R3);
(i) For eachu € H(R?),

~1/2 2¥—1
1ull o2y < S71/2ully:

and
2% 1 -1 2(25-1)
/¢>u|u|s dx < 57 2D,
RB s

where S is the best Sobolev constant given in (1.14);

Gv) Ifu,—uin H* (R, u, — ua.e.onR3, then Gu,—Pu in DS 2(R3), and ¢y, — Pu,—u —
$u — 0in DS2(R3);

~) Ifu, — uin HY(R3), then Gu, —> Qu in D% 2(R3), and ng ¢un|un|2f’ldx —
Jro Gulul®~"dx;

i) Ifu,—uin H* (R3) and u, — u a.e. on R3, then

[ ductiaPx = [ gu s = uP x| guluax - o,
R3 R3 R3
The following Pohozaev identity can be derived from [9, 31].

Proposition 2.1 Ler u € H*(R3) N L®(R3) be a positive weak solution of problem (1.2),
then u satisfies the equality

3-2 , 31 3.2 .
S/ |(—A)7u|2dx:—/ u2dx + S/ dulul®dx
2 R3 2 R3 2 R3

3-2 .3
+ S/ |u|2sdx+—“/ u|7dx.
2 R3 q R3

@2.1)
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Lemma 2.2 Letu € HS(R3) be a weak solution of problem (1.13), then we have the Pohozaev
manifold

Nay={u€S;: Py(u) =0}, (2.2)

where

P, (u) :s/ |(—A)%u|2dx—s/ ¢,,|u|2?*‘dx—s/ |u|2?dx—myq,3/ lul?dx.
R3 R3 R3 R3

Proof Since u is a solution of problem (1.13), we get
f [(—A)Zuldx :Af |u|2dx+/ ¢u|u|2§‘—‘dx+/ |u|2?dx+uf lu|?dx.
R3 R3 R3 R3 R3
(2.3)

Combining Proposition 2.1 and (2.3), we infer that

s /Ra I(—=A)3ul’dx = s /R3 dulul™ldx +s /R3 % dx 4 spyy s /R} lul?dx, (2.4)
and the conclusion follows. O
Foru € S, andr € R, we set
(t%u)(x) = e u(e'x), VxeR3, 2.5)
then txu € S,. For u € S,, we define the fiber map as

W) - = I, (txu)

2st 2(2 —1)st qYq.sSt 2%st «

e 2 q- q es 2

= u u u — Ull~x.

> flull® — 20— 1) / bulul® p llullg 2 l[uell
(2.6)

An easy computation shows that (W) (1) = Py, (txu); moreover, we have the following
conclusion.

Proposition 2.2 Letu € S,. Thent € Risa critical point for Wl (t) ifand only if txu € Nap
In particular, u € Ny, if and only if 0 is a critical point of wh(@).

In this spirit, we split the manifold NV, , into the disjoint union
— At —
Napw =N UND L UN, .
where

N o=1{u € Noy : (919" (0) > 0}
= {0 € Naye 1 252 ull® > gy s*lullf + 2552 ul3; +2(25 — Ds? /}R} ululdx},
J\/’C?_M c={u € Ny - (WH(0) =0}
= {1 € Naye 1 25 lul® = g2 52l + 2557 ul3: + 225 = Ds? fR Gulu® ' dx),
Nyt = € Noy s (W)"(0) < 0}
= i N 25201 < a5l + 2057 25 = 05 [ gulul®lan),
2.7)
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Lemma23 Let0 <s < 1,2 <gq <2fanda, > 0. Let {up} C Sap = Sa N Hf(R3) be
a Palais—Smale sequence for I, |s, at level mq ;,, where H} (R3) is the subspace of H® (R?)
consisting of radially symmetric functions. Then {u,} is bounded in H* (R?).

Proof The proof is divided into three cases.
Case 1:2 <q <qg =2+ %. In this case, by (1.17), we have that gy, ; < 2. Since
Py (u,) — 0, one has

||un||2—wq,s/ |un|‘fdx—/ |un|21‘dx—/ Guy lun)> " ldx = 0,(1).  (2.8)
R3 R3 ]R3
Combining this and (1.16), we get that

1 1 . n 1 2
I, (uy) = ~lun|* = 20— 1) /R3 ¢u,,|un|25 ldx — g“un la — E””‘n“z% +0,(1)
s A

2
1
2

v

1 *_ M 1 ok
lanll® = o /R Pu, lun |~ dx — o el = 3 lunly; + 0 (1)
s s

s 2 M qVq.s q
7 lunll —*<1— >|Iu llg + on(1)
3 n q 2? nllg n

N

124 qYq., : Vs
g||Mn ”2 _ g <1 _ q 5> Cq,s””l’l ”‘IVq,.\a‘I(I Vt],.s) + On(l).
A

A%

Since {u, } is a Palais—-Smale sequence for /,, |, atlevel m, ,,, we have that 1, (u,) < mg ; +1
for n large. Thus, we obtain that
"

s K _
Slunl? < " (1 - q;i’f) Cys lunl|sa?=709) 4 my 42,
5

which implies that {u,} is bounded in H* (RY).
Case2:q =q =2+ 475. In this case, by (1.17), we have gy, ; = 2, and P, (u,) — 0
implies that

el = 0y [ unltx = [ uaPix = [ gl dx 0,0 @9)

Hence,

RO p— /¢>| 2l +S/| Pdx + on(1) < my + 1
ulUn _3+2S o2 un |Un X 3 Jos Up X T Op = Mg, s

which implies that
/ bu, lun|* 'dx < C and / lun| > dx < C.
R3 R3

Since g =2 + %s € (2,25, wehave g =2 + % =12+ (1 — 7)2} for some t € (0, 1),
and by Holder inequality, we get that

T I-t
[ wnttar = ([ waax) ([ war) - <c.

Consequently, from (2.9), we know that

lunll® = g, fR lun|?dx + fR lun | % dox + /R buy lunl® "dx +0,(1) < C,
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which implies {u, } is bounded in H*(R?).
Case 3: q := 2+ % < g < 2%. In this case, by (1.17), one has gy, s > 2, and from
Py (u,) — 0, we obtain that

il = ey [ tunltax = [ hunPiax = [ lun P x = 0,00,

Thus, we have that

“ (Vq,s9 s
I/L(un) = - ( 2% 1)/ |Mn|qu + 5/ |un| dx + / ¢un|un| ~ldx +on(1)
q R R3

2 3+2

<mgyu+1,

which implies that [ [unl?dx, [ps |un|*dx and [3 ¢u, |un|* ~'dx are both bounded.
Hence

il = s [ unttax+ [t [ ol +ou) < €.
R3 R3 R3
which completes the proof. O

Proposition 2.3 Assume that 0 < s < 1,2 < q < 2} anda,pu > 0. Let {u,} C S, =
Sqe N H} (R?) be a Palais—Smale sequence for 1,|s, at level m, ;, with

(ﬁ_1>323“'s(12+(1—ﬁ)(3—2s)) .
mg, < | ———

S% and 0.
2 6(3 + 25) and ma.. 7

Suppose in addition that Py (u,) — 0 as n — +o00. Then one of the following alternatives
holds:

() either up to a subsequence u,—u weakly in H*(R3) but not strongly, with u being a
solution of problem (1.13) for some A < 0, and

Go\ T s(2ra-veHe-2)
I,(u) <mg — 5 6G 129 S

(ii) orup to a subsequence u, — u strongly in H*(R3), 1,,(u) = mg,; and u solves problem
(1.13) for some A < 0.

Proof By Lemma 2.3, we know that the sequence {u,} is a bounded sequence of radial
functions in H* (R?), and by compactness of H (R3) < L4(R3?), up to a subsequence, there
exists u € H; (R?) such that u,—u weakly in H R, u, > u strongly in L4 (R3?) and
up — u a.e.in R3. Since {u,} is a bounded Palais-Smale sequence for /,,|s,, by Lagrange
multipliers rule, there exists {A,} C R such that

/ (—=A)2uy (—A)2 pdx — / buy l1n|* “Punpdx — f |t |9 21 pdx
R R R (2.10)

- / 0 Pt pddx = / ungdx + on(Dllol
R3 R3

asn — ooforeveryp € H® (R3). Choosing ¢ = u,,, then from (2.10) and the boundedness of
{u,} in H*(R3), we obtain that {%,,} is bounded in R, and up to a subsequence, 1, — A € R.
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Moreover, combining P, (u,) — 0 with y, s < 1, we infer to

n—oo

lim (||un||2—/ ¢un|un|2?—‘dx—uf |un|‘1dx—f |un|23‘dx) @.11)
n—oo R3 R3 R3

= lim p(yys — 1)/ lun|?dx = wgs — 1)/ lul?dx < 0.
n—00 R3 R3

ra® = lim )»,,/ udx
R3

Hence, A = 0 if and only if # = 0. Next, we show that # # 0. Assume by contradiction that
u = 0. Since {u,} is bounded in H* (R3), up to a subsequence, u, — 0O strongly in L4 (RY),
then by P, (u,) — 0, we have

sl = [ Guglun e = [P = 00 @.12)
R3 R3
Without loss of generality, we may assume

o=l = € ar= [ ol Ndx >0 and b= [ x> b,
R3 R3

(2.13)
as n — 00. Note that by Young inequality, we infer to
/ Jun | dx =/ (—A) ¢y, (—A) 2 |uy|dx
R3 R3
52 s 2 1 s 2
<= [(=A)2 unll"dx + 5— [(—A)2 ¢y, |7dx
2 R3 28 R3
- L/ bu lu |2§‘—1dx+82/ [(—A)2u,|2dx
282 R3 tn 2 R3 " '
Thus, passing to the limitasn — oo, itfollows thatb < ﬁa—i—%[ Choosing 2 = @,

and by (2.12), we can infer that a > 372‘56. Consequently, by (2.12)—(2.13), we derive that

Mg, = nlggo 1 (uy)

; 1 2 ! 251 ! 2 M q
nlggo{illu”” - m/ﬂ@%,,lunl dx — g - lun|™dx — 7 ) [t |9dx

s, sB-29) ¥ [12 +(1 =503 - 25)] f_ B0 +1-V5)

333120 6(3 + 29) 42 — D2

L.

(2.14)
From (1.14), (2.12)—(2.13) and Lemma 2.1, we have that
Ly = ay + by + 0,(1)

_ 2(2%—1
< 7 a1 + by + 0 (1)

<s! (S% [/ |(_A)§un|2dx]2>
R3

s

Y A ERRCAL)
+8577 |:/3 [(=A)2up| dx:| +ou(1)
R
z

*_ 2
<S5 BT s30T 4o,
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Taking the limit in (2.15) as n — 0o, we obtain that
< SEE f 5T T

_2
Therefore, either £ = 0, or £ > (@) 2 SZ% If £ = 0, from the definition of 1, (u,),
we get that m, , = 0, which gives a contradiction to the fact that I, (u,) — mg4,, # 0. So,

_2
£> (@) 52 9% and by (2.14) we obtain that
L =22+ —/5)
o= 42 — 12

2
(Y5 \ET @ -2 +1-V5)
= 2 4(2F — 1)2¢

14

3
SQS

Go\ T s(2+a-veHe-2)
“\ 2 6(3 + 25) o

which yields a contradiction to our assumptions. Therefore, # #% 0, and by (2.11), we see
that A < 0.
By (2.10), and a standard argument, we infer that

(=AY u = ulul™ u — plul?u — Ju>"2u = du, x e R (2.16)
Indeed, for any ¢ € H*(R?), it follows by the definition of weak convergence that
/]1@3(_A)%u”(_A)%(pdx — /R3(—A)%u(—A)%(pdx as n — oo.
Using A, — X as n — 00, we easily get that

)»n/ u,ﬂ)dx—))»/ updx as n — oo.
R3 R3

2
Furthermore, since {|u,|% 2u,} is bounded in L% (R3) and |u,(x)|% 2u,(x) —
* . .
l(x)|% ~2u(x) a.e. in R3. Then, we obtain that

2
¥ 2= Jul 2w in LT (RY),
which yields that
/ |un|2§_2un(pdx —>/ |u|2;_2u<pdx as n — oQ.
R3 R3

Itfollows from Lemma 2.1 that ¢,,, —¢,, in D*2(R3), which implies that ¢,,, — ¢, in L% (R3).
Then, we have that

/R3(¢un — ¢)|ul® Pupdx — 0 as n — oo. 2.17)
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Since u, (x) — u(x) a.e. in R3 and

2%

253 25-3, \2F o1
/ |¢un(|“n| ST up — lul"s u)|2§‘ Tdx
R3
2 2k (2¥-2) 2F 252k -2)
251 251 ¥ 21
< C|l¢u, ”2? ””n”Q;ﬁ + [l ¢u, ||2}« ||”||2»€ <C,

we have ¢y, (Jun|> “2u, — |u|> 3u)—0in L% (R3) and thus
/R} bu, (utn) > Sup — [u> Su)pdx — 0 as n — oo,
which together with (2.17) implies
/R3 buy ltn % P unpdx — /ﬂ@ Gulul® updx as n — oco. (2.18)

By the Pohozaev identity, we have P, (1) = 0. Now, let v, = u, —u, then v,—0in H’ (RY).
By the well-known Brézis-Lieb lemma [8] and Lemma 2.1, we have that

2% 2% 2%
luenll? = llvall® + el +0u (1) and flunllyt = llvallz} + lully: + o0, (1) (2.19)

and
[ dutialax = [ o tar s [ g dx o, @20)
R3 R3 R3
Therefore, from P, (u,) — 0 and u, — u in L9 (R?), we deduce by (2.19) and (2.20) that
IonlP 1l = s [ttt o+ [ ool [ g lax
R3 R3 R3
28 28
+||Un||2:_< + ||”||2?< + op (D).
Combining this with P, (1) = 0, we conclude that
*_ 2%
lvall® = f3¢vn|vn|2s Ydx + [[oa 52 + o (1). 2.21)
R s
Without loss of generality, we may assume
v ll? = 1, / ¢y, |vn|> 'dx — @ and f lon|¥dx — b, as n — oo.
R3 R3
By Young inequality, we have that

/ |vn|2~’v‘dx=/ (—A)2 ¢y, (—A) 2 v, |dx
R3 ]R3

IA

'L'2 s 1 s
= / (=D olPdx + 5= | [(=A)3¢y, Pdx  (2.22)
2 R3 2T R3

1

2
*_ T s
= ﬁ/R* ¢vn|vn|25 Ydx + 7/11%3 |(_A)2Un|2dx7
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passing to the limit as n — oo, it follows that b< %5 o 1. Taking 2 ‘[ ! and using
(2.21), we can deduce that

3-4/5
2

a>

L. (2.23)

Therefore, (1.14), (2.21) and Lemma 2.1 imply that

22—

*_ 2% 2%
o =/M Gu 10n x4 110135 + 00(1) < ST walles™ ™ + I3} + 0a (1)

1\ 2025=1) %
1 1 s 2 2 l K s 2 2
<S5 $72 |:f |(_A)2vn| dx:| + 572 |:/ |(_A)2vn| dx] +On(l)
3 R3
< S 2 0 P30 1 5 F 0,1 4 0a(1). (2.24)

Passing the limit in (2.24) as n — 00, we obtain that

5

I< S BE L5515

Thus, we have that

_2
—1\%2
1=0 0rlz<ﬁz ) S,

2
Case 1: 1 > (f ‘)2?‘2 §7. By (2.21)~(2.24), we have that

M = i )

= lim (7 (u)+1||vn||2—¥f oo |vn|2§“1dx—i/ |va % dx
n—oco \ 2 202 —1) Jps ™ 2¢ Jrs

s(3—2s)

:’““‘”*”m

s [12+ (1-vV53 - 2s)]
= Tu) + 6(3 +25) l

2F —2)22F +1—+/5)
=L+ = 4(2*41)2* !

Go\ T s (R+0-v96-29)
S 6(3 +25) S

Thus, the conclusion (i) holds.

Case 2: £ = 0. In this case, we can prove that u, — u strongly in H* (R3). In fact, |jv,| =
lluy, — u|| — O implies that u, — u strongly in D%2(R3) and hence in L% (R3) by the
Sobolev inequality. We also obtain fR3 b, lua % ~'dx — 0 by Lemma 2.1. Next, we show
that u,, — u strongly in L2(R3). If we test (2.10) with ¢ = uy, — u, test (2.16) with u,, — u,
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65 Page 16 of 50 Y. Meng, X. He

and subtract, we have that

lup — ull® — /g()\,,u,, — au)(uy — u)dx
]R‘
= M/M(quqq—zun — |l 2u) (uy — w)dx + /Rg(lunlz‘t’zun 20y — w)dx

+ / [0, l0a = = Gl 0] (0 = wdx + 041,
R

Now the first, the third, and the fourth integrals tends to 0 by convergence of u, to u in
DS 2(R?), L9(R3) and L2 (R3), while for the fifth integral, we have by Holder inequality,

‘ fR [funlien® 0 = gl ] 0, - wax

21 |

ERENS o \E
I-ldx |up —ul=sdx
R3

2¥%-3 2%-3
S(/3|¢un|un|5 Uy — Gylul™u
R‘

1
< CS_7||un - M”DS.Z -0

asn — 00. Asa consequence

0= lim (Apuy — Au)(uy, —u)dx = lim A/ (U, — u)zdx,
3 R3

n—oo R3 n—oo

which implies that u, — u strongly in LZ(R3) by A < 0. Thus, the conclusion (i) holds,
and the proof is completed. O

We end this section by stating the following variant Proposition 2.3.

Proposition 2.4 Assume that0 <s < 1,2 < q < 2Yand a, u > 0. Let {up,} C Sq4,r be a
Palais—Smale sequence for 1,|s, at level my_,,, with

V35— 1 = s<12+(1—\/§)(3—2s)) B
Mg < 5 63 +25) Sz and mg, #0.

Assume in addition that P, (u,) — 0 as n — 400, and that there exists {v,} C Sq and v,
is radially symmetric for every n satisfying ||\u, — v,|| — 0 as n — oo. Then one of the
alternatives (i) and (ii) in Proposition 2.3 holds.

The proof is similar to the previous one: as in Lemma 2.3, we show that {u,} is bounded.
Then also {v, } is bounded, and since each v, is radial, we deduce that, up to a subsequence,
v,—u weakly in H (R?), v, — u strongly in L9 (R3), and a.e. on R3. Since ||u, — v, || — 0,
the same convergence is inherited by {u, }, and we can proceed as in the proof of Proposition
2.3.
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3 L2-subcritical perturbation

In the L2-subcritical case 2 < g < § = 2 + %, we have 0 < gy, s < 2. To begin our
argument, we first introduce the following positive constants

_ —2F D@~ qv.)
L2 - D =)

J@ =122 — gy 07 + @ - DEDPREE - D)~ 4rg.0@ — q74.0)
222~ 1) — qvgs)

(3.1)

_|_

’

*(yk _ kg2 * 2—qyg,s  28Q—qyq.s)
K, oo 1B D - K2 207~ DK) | e Eagn 3.2)
22525 = 1)Cy

and
2?(2*511/11,3')
2% —2)§ &2
Ky im (25 )
)/q,qu,s(Z}k - qu,s)
2—qyq,s
22
—(2F —qvg.s) + \/(2}‘ = q7g.)* + 422 = 1) = qv4.5) 2 = q¥y.s)
X
2225 = 1) — qvq.s)
(3.3)

We consider the constrained functional /,,|s,. For every u € S,, by (1.14), the fractional
Gagliardo-Nirenberg-Sobolev inequality (1.16) and Lemma 2.1, we have that
12 .
5557 ul®.

*

1 1 _ 9% *_ M _ ) .
1, (u) > 5||u||2 e A |71 i v Cy @170 ||y || 9705 —
s

22— 1)
(3.4)

To better understand the geometry of the functional I, (u), we consider the function & :
Rt - R,

h(t) = 1

_ % *_ M o ) 1 _K 2%
[ — 23 [2(2: D _ -C, . q(1 Vq,A\)[qVq..x — STt 35
2 T 22— g x (35

s

From > 0 and gy, s < 2, we have that h(0T) =0~ and h(+00) = —o0.

Lemma 3.1 Assume that the inequality pa?'=Yes) < Ky holds, then the function h has a
local strict minimum at negative level, a global maximum at positive level, and no other
critical points, and there exist Ry and Ry both depending on a and ., such that h(Ry) =
0=~h(Ry) and h(t) > 0 ifand only if t € (Ro, Ry).

Proof Fort > 0, we have A(¢) > 0 if and only if

1

- 72? t2(2§7 l)*qu.s
20 — 1)

1
go(t) > ﬁcq“va‘[(l*)/q,s)’ Wlth QD(I) — Etzfqu.s —
q

2*
_is_%lzﬁ_q}’q.s .

2*

S
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In view of

— * J— —
(ﬂ/(f) — Q'Zﬂtlffﬂ/q,s _ MSQQHFFMJ

22 —=1)
_2:‘ —4Ya.s S7§t2:717‘”/q.:,
%
it is not difficult to check that ¢(¢) has a unique critical point at
1 2

f=KE25®D

and ¢(¢) is increasing on (0, 7) and decreasing on (7, +00). Moreover, the maximum level
is

252 — 1) — 2FK? —2(2F — DK Kﬁggs 872?;f§jg;>
22¢(2% — 1) '

o) =

Thus, & is positive on an open interval (Rg, R}) if and only if ¢(f) > %Cq,xaq(l_yq-»“), that

is na?1=ves) < K| holds. In view of £(0T) = 0™, h(400) = —oo and A is positive on an
open interval (Rg, Rp), it is immediate to see that 4 has a global maximum at positive level
in (Rp, R1), and has a local minimum point at negative level in (0, Rp). Note that

h/([) — lqu‘xfl |:t27qu,.v _ S*Z;lz(zﬁfl)*‘”/q,s _ ,uyq ch Sa‘](lfyq,x) _ S*%tzzﬂfq)’q,x] =0
if and only if
* 2* *

1//(1) — Myq,scq,saq(l_yq,.\') with w(t) — tz_‘“’q,x _ S_zs tz(zi_l)_IIVq,x _ S_TS [23 —4Yq.s .
Obviously, ¥ (¢) has only one critical point, which is a strict maximum. Therefore, the above
equation has at most two solutions. Consequently, if max;~o ¥ () < uy, sCq, a?d=vas)
then we have a contradiction to the fact that & is positive on the open interval (Rg, R1). Thus,
max;~o V() > wyg,s Cq,sa‘f(l_yq-s), which implies that 4 only has a local strict minimum at

negative level and a global strict maximum at positive level and no other critical points. O

Lemma 3.2 Assume that pa?'=ves) < K, then Nt?,u = 0 and Ny, is a smooth manifold
of codimension 2 in H® (RY).

Proof We argue by contradiction that, there exists u € ./\/‘? u Then, P,(u) = 0 with
(W/)(0) = 0, imply that

Bl = eyl + i+ [ b (.6)
and
20ull® = gyl lull§ + 25l +225 - 1>/R3 Pulul* " dx. 3.7
Therefore, from (1.14), (3.6), (3.7) and Lemma 2.1 we have that

2% *_
a2 = qvg )l = @5 = 2lully; +2@F —2) /R Gulul~dx,
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25 —qyy, 2 22 —=1)—qyy. .
ful)? = 28 2 25— 2 TS g X
2—-qvy.s s 2—qVys R3 s
25— 2 « 2025 —1) — - . :
< 37%5—7 ||u||25 + MS—ZS HMHZ(ZS—I)

2—qvy.s 2 —qvys

and

2 q % 25 -1 25 —qvqs q
Il = vl + el +2 [ gulul® 1 < s =220
2 N ' (3.9)
< g S gt 00,
2k -2
Combining (3.8) with (3.9), we infer that
25 — qYq.s - HCarg.5)
.uyq,sszzfi_ch’saq( Yas) > § 205-2)
2—qvq,s
* * 2 * %2
=2 —qvq.s) + \/(2x —qYqs)"+ 4(2(2s -1 - qu,s)(z = 4Yq,s)
>< b
2(2(2? -1-= qu,x)
that is

2?(2**41/([»)
q(1=vgs) > (25 =28 ==
pna = -
Vq,scq,s(zzﬂ - qVq,s)

> (3.10)

2%

—2F = qY) + @~ aye? +42C — 1) = vy C—av0) |
2225 =D —qyg.s)

X = K>,

which leads to a contradiction to our assumption, and so, NL(I) W= @.

Next, we can check that AV ,, is a smooth manifold of codimension 2 on H* (R3). To see
this, we note that N, , = {u € H(R?) : P (u) =0, G(u) = 0}, for G(u) = [ps u’dx—a?,
with P, and G being of class C Lin H*(R3). Thus, it suffices to check that the differential
(dG(u),dPy(u)) : H*(R®) — R? is surjective, for every u € N, . To this end, we prove
that for every u € N, there exists ¢ € T,S, such that d P, (u)[¢] # 0. Once that the
existence of ¢ is established, the system

dGu)[au 4+ Be] = x aa’ = x
dP,(uw)au+ Bl =y dP,(u)au + Bel =y,

is solvable with respect to o, B for every (x, y) € R?, and hence the surjectivity is proved.

Now, suppose by contradiction that for u € N, such a tangent vector ¢ does not exist, i.e.
dP,(u)[p] = 0 for every ¢ € T,S,. Then u is a constrained critical point for the functional
I, on S,, and hence by the Lagrange multipliers rule, there exists a . € R such that

25(—= A u = hu + pusqyg slul?2u + 255 |u)> 2u + 2525 — Dy lu> Su in R

However, by the Pohozaev identity for the last equation, we have

2% *_
257 ull* = nqyy s lullg + 2557 uly: +225 = Ds® fR Gulul~dx,
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thatis u € /\/(9#, a contradiction. So, for each u € N, there exists ¢ € T,S, such that
dP,(u)[¢] # 0, and we can easily solve for «, 8. The function dP,(u) : S, — R is
surjective for each u € N , is proved. Hence (9’ «« 18 a smooth manifold of codimension 2

in H*(R?). Thus, u € N, is a natural constraint. ]

The manifold AV, is then divided into its two components A" x and N, having disjoint
closure.

Lemma3.3 Letu € S,, then the function W (1) has exactly two critical points o, < t, € R
and two zero points ¢, < d, € R, witha,, < ¢, < t, < dy. Furthermore,

(i) oy € ./\fa"'u tuxu € N, and if t«u € Ny ., then either t = o, ort = t,;

(ii) |[txu|| < Ro foreacht < c,, and

I (ayxu) = min{l,(txu) : t € R and ||txul < Ro} < 0;

(iii) I, (ty*u) = max{l, (txu) : t € R} > 0 and Wk (1) is strictly decreasing and concave
on (ty, +00). Especially, if t, <0, then P, (u) < 0;
(iv) The maps: u+ ay, € Randu +— t, € R, Yu € S,, are of class cl.

Proof Letu € S,, then by Proposition 2.2., we have txu € N, if and only if (¥/) (1) = 0.
Firstly, we show that W/ (¢) has at least two critical points. By (3.4), we have

Wi (1) = T (txu) = h(lloxul) = h(e™ ul)),

which implies that the C? function W}/ () is positive on (s ™' In(Ro [lu [ =), s 7' In(Ry lu ]| 1),
W (—o0) = 0~ and W) (+00) = —oo. It follows that W, (¢) has a local minimum point
o, at a negative level in (0, s~ In(Rg||u ||_1)) and has a global maximum point ¢, at a pos-
itive level in (s_l In(Rollu| =), s~ In(R; ||u||_1)). Next, we prove that W/ (¢) has no other
critical points. Indeed, as (WY (1) = 0, we infer to

g(t):sm/q,sf lu|?dx,
R3
with
_ *_ 1V *_ *_ 2%
g(1) = se 1N |2 — 5PN f Gulu|® ™ dx — eI a3
R3 s

It follows that g(¢) has a unique maximum point, hence the above equation has at most two
solutions.

From u € S, and Proposition 2.2, we have a, *u, t,*u € Ny, and txu € N, ,, implying
t € {ay, t,}. Since o, is a local minimum point of W} (t), we see that (¥}, ,,)"(0) =
(WY () = 0. As Nt?,u = 0, we get (W )" (0) = (V)" (er,) > 0, which implies that
axu € NF, . Similarly, we have that #,xu € N,

By the monotonicity and recalling the behavior at infinity of W (1), we see that WL (1)
has exactly two zero points ¢, < d, withe, < ¢, < t, < d,, and WH(#) has exactly two
inflection points. Particularly, W/ (¢) is concave on (z,, +0o0), and hence, if 7, < 0, then
Pp(u) = (W) (0) < 0.

Finally, we show thatu +— o, € Randu +— t, € R, Vu € S,, are of class C I Indeed, we
can apply the implicit function theorem on the C! function ® (7, u) := (V) (r). We use that
D (ay, u) = (Vi) () = 0, that 8, D (e, u) = (V}i)"(er,) < 0, and the fact that V), = @
implies that it is not possible to pass with continuity from A j 10 N, 2,0~ Thus, we know that
ur a, €R, Yu € S,,isof class C'. Analogously, we can show thatu — #, € R, Yu € S,,
is of class C1. m]
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For k > 0, we define

Ar={ueSs:|lull <k} and mg, = ug}tf I, (u).
Ry

Then, we can conclude the following conclusion from Lemma 3.3.
Corollary 3.1 There holds that the set Njﬂ C Agy, =1{u € Sy : lull < Ro} and

sup I, (u) <0< inf I,(u).
ueN, ueNg

Lemma 3.4 The level m, ,, € (—00,0), and verifies

Mg = inf Iy, = inf I, and mg, < ___inf I,
Nan i ARy \ARy—r

forr > 0 sufficiently small.
Proof For each u € Ag,, we have that

Iy(u) = h(llu]) = min h(t) > —oo.
1[0, Ro]

Hence, m,,;, > —o0. Moreover, for each u € S,, we have |[txu| < Ro and I, (txu) < O for
t K —1,andsomg, , <O0.
From NIM C Ag,y, we have m, ;, < ian;rﬂ I,,. On the other hand, if u € Ag, by

Lemma 3.3, we see that o, i € N;# C Ag, and
I (ayxu) = min{l,(t*xu) : t € R and |[txull < Ro} < 1, (u),

which implies that inf Nifu I, < mgy. Since I, > 0 on N, .« by Corollary 3.1, we infer to
ianf,u I, =infp;,, 1.

Finally, by the continuity of 4 there exists » > 0 such that h(z) > m“—z“ ift € [Ro—r, Ro].
Thus, for any u € S, with Ry — r < ||u|]| < Rp, we have that

m
L) > h(l|ull) > % > Mg

and this completes the proof. O

4 L2-critical perturbation

In this section, we deal with the L2-critical case ¢ = § := 2 + %S and a, u satisfy the
inequality

pa® < §@2C55)7" @.1)
Recalling the decomposition of
Naw = NaJ,ru UNaO,;L U Nt;u’
we have the following assertion.

Lemma 4.1 Nt?,/t = @ and Ny,,, is a smooth manifold of codimension 2 in H* (RY).
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Proof We argue by contradiction that, there exists u € /\/(? .- Then, by P, (u) = 0 and
(W;)"(0) = 0, we have that

2 *_
lul® = nyg.sllullg + “””%*/Ra Gulul*~dx, 4.2)
and

2% *
2Nl = pqyg Nullg + 2 lullz: +2(25 = 1>/Rz Gulul*~dx. 4.3)

Thus, from (4.2) and (4.3), we infer to ||u||§§: +2 3 ¢ulul>~'dx = 0, which is not possible
since u € Sy, here we used the fact gyz ; = 2. The rest of the proof is similar to that of
Lemma 3.2, and so the details are omitted. O

Lemma 4.2 Under the condition (4.1), then for each u € S,, there exists a unique t, € R
such that t,xu € Ny, where t, is the unique critical point of the function of W and is a
strict maximum point at positive level. Moreover,

) Na,p. = J\/:;W'

(i) Wi (r)is strict decreasing and concave on (t,, +00) andt, < 0impliesthat P, (u) < 0;
(ili) Themapu € Sy — t, € Risof C';
(iv) If Py(u) <O, thent, < 0.

Proof Note that gy, = 2, we get that

Wi (t) = 1, (tu)

1 w _ 2(2*—1)31 2 st 2 4.4)
= <§||u||2 - 5||u||§) e — @ =D / ulul™ ||u||2*,

Lo Hog 1 n 4 2
—lull” = =ull; >z —=Cs5sa3 |llu
5 lul éll lg =17 7 Ci fJul

by the condition (4.1) and the fractional Gagliardo-Nirenberg-Sobolev inequality (1.16).
From (4.4), we know that \IJ,'f has a unique critical point f,, which is a strict maximum
point at positive level. Moreover, if u € N, ,, then #, = 0, and is a maximum point such

that (W£)"(0) < 0. By virtue of ND =0, we have (W) (0) < 0. Thus, N, = Nou
The smoothness of the map u € S, — t, € R can be deduced by applying the implicit
function theorem as in Lemma 3.3. Finally, since Ty () < 0if and only if r > 1,,, we get

P, (u) = (V) (0) < 0if and only if #, < 0. O

where

Lemma 4.3 Under the condition (4.1), then mg ;, = infn;, , 1, > 0.

Proof Letu € Ny ,, then P,(u) = 0, and by (1.14), the fractional Gagliardo-Nirenberg—
Sobolev inequality (1.16) and Lemma 2.1, we derive that

2 g ok *_
Il = o+ 3+ [ gl
q s R3

2 4 I P .
fMgCéysa3 ||u||2+S 2 ||u||2~“ +S SHMHZ(ZS )
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Combining this with (4.1), we have

*zik * _ % *_ 2 4s
ST ul® + ST u)*E D > (1 —Mgcq,sa 3 ) lul® = flull > 0, 4.5)
which implies u # 0. Moreover, by P, (1) = 0, we infer to
2% -2 2% 2% -2 *
I — S i S 2S—1d 07
) = Z W+ s [ dutuiax >

and hence,

Mg zﬁ}lf I, > 0.
au

]
Lemma 4.4 There exists k > O sufficiently small, such that 0 < supz, 1y, < mq,,. Moreover,
ueAr=I,u)>0 and Py(u) >0,
where Ay ={u € S, : |lu| < k}.
Proof By (1.14),the fractional Gagliardo—Nirenberg—Sobolev inequality (1.16) and Lemma 2.1,

we have that

1 M 4s 1 _ 9k *_ 1 _K *
INOE (5 — 5 Casa ) luel)* — 350" EulPBD = 257 ul® > 0,
s

k
s

and then
2 q 2% 1 25
Pu(u) = slul® = spyg slullf - s/z Gulul™ " dx = s|ully;
]R‘
2 4 25 *
> s (1 - f“c,;,xa%) ful? = sS85 ul?E D — 5877 Ju|> > 0,
q

having assumed u € A; with k small enough. By Lemma 4.3, we see that n,, p > 0, thus if
k is small enough, we also have that

1 2
Ip,(u) =< 5””“ < Mga,pu-.
[m}

In what follows, we shall use Proposition 2.3 to recover compactness. To this aim, we
need an estimate from above for the value m; 4, := inf A, uNSra Lits where S, , is the subset
of the radial functions in S,,.

We recall that the minimizer for S in (1.14) is given by the function

3-2s
& 2
U =C|—5———— , 4.6
e,z(x) <E2+|x—z|2> ( )
where ¢ > 0,C > Oand z € R3 is any fixed point (e.g. [38]).

Lemma4.5 ([19]) Let A, B, C > 0 and define g : [0, co) — R by

A B *_ C
)= 22— 2 _pe-h _ =
2 22 —=1) 2%
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Then
_2
o VCZ+4AB - C\ %52 (2;*—2)(22;*AB+C2—C«/C2+4AB)
su = .
tzgg 2B 42% = 1D2*B

Lemma 4.6 Assume that condition (4.1) holds, then

(ﬁ_ 1)352 s(12+(1 —ﬁ)(3—2s)) .
My a g < S2 .,
2 6(3 + 2s)

Proof Let n(x) € C(‘)’o (R3) be a cut-off function with nel0,1],n=1onB;(0)andn =0
on R3\ B»(0). We define
u
e (x) = N Up(x), ve =a——, 4.7
lluell2
where U, (x) is given in (4.6) by taking z = 0, the origin point. By [38], we can derive the
following estimations:

e (x) — ue (y)]? 3 o
e // | SR Caxdy < 5% + 0(), )
Ce® +0(37%), if 0<s < 3;
2 .
A@ ugdx = Cszvlog( ), if s = 2, 4.9)

Ce3~ 25+0(s23) if 3 <s<1,

/ lue| > dx = S5 + 0(s%) (4.10)
R3

and

3_'5 2s

4s
/ ue9dx = Ce37 721 4 0(e™7°9) = 03~ 29), 24 T S4<2 @I

Since v, € Cgo (R3), v, € S« and Lemma 4.2, we know that

m = inf I, <I,(t, *v;) = max I, (txvg).
R A D AU TR e

Next, we focus on an upper estimate of

I, (ty, %ve) = max I, (txvg),
teR

and split the argument into three steps:
Step 1. Consider the case © = 0 and estimate

max W0 (1) = Io(1ve).
teR €

In view of (2.6), we have that

o o2t Q22— st . o2 2
W, (1) = Io(rxve) = ||v£ I / ¢vylvs| dx — ||U8||2*~
22— 1) 2%

(4.12)
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A direct computation shows that for each v, € S, the function \1182 (#) has a unique critical
point ,, o, which is a strict maximum point given by

1

oo _ — e 3¢ Jr\/llvg||§§if Al fos oy el %N\ 5
o 2 [g3 bu, lve|%tdx (4.13)
Applying (4.8)—(4.10) and the definition of v,, we have that
2
W0 (10) = ~lve ] el 4y vl + 4ol fs by loelE 1 ) 7
o : 2 [ o, lve |5 ~dx
205-1)
! 21 _”vb“”;ft + \/Ilvallif Ve )12 fs b lve B )
_ m /]Rz Gu v dx Y RTTRE=
%
L —””sllg +\/Hve||§? + A10e 12 fos o, v\ T
_ 2—?||vg||2: 2 Jos o 0% T
2
1 ) —Hugllii +\/|W@H§§f Al |2 [ b, e |51l Fra) (4.14)
= 5 lluel YRR
202§ -1
! 21 —||M5||§ + \/Husllﬁf  Huel? fos Pu, lue %~ dx %2
_ m]w bu e~ dx 2 oo G s 5Tl

2% 22% _
D (el 137+ el s e %~ dx

— oz luelly;
2 2 o uc e~ dx

= sup W) (1) = W) (tu,.0).
t>0

where \IJ,?‘g () and e’ are given in (4.12) and (4.13), respectively, replacing v, by u.
Now, we claim that

sup W, (1) <

3-2s
N Ts(12+(1—«/§)(3—2s)> N HS
=0 ( 2 ) 6(3 +25) §E 4+ 0ET). 15

In fact, recalling that (—A) ¢, = |u, |2§ ~! there holds

/ |u8|2?dx=/ (—A)2 ¢y, (—A) 2 ugldx
R3 R3

1 s 1 s
< —/ |(_A)z|us||2dx+,/ (=A)E g, P
2 ]Rfé 2 ]Rfé

1 * 1 s
= ff ¢u£|us|2f1dx+ff [(—A)2ug|*dx.
2 ]R3 2 ]R3
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Then, thanks to (4.8) and (4.10) we derive that, for ¢ > 0 sufficiently small,

/ Gulue N dx = 2/ s % dx —/ (—A)buPdx = §F — 032,
R3 R3 R3
(4.16)

from which, together with Lemma 4.5 we derive to

0 eZst ) —1)st . 2 st 2
v, (1) = 5 lluell 2(2*_ /%Eluslf dx — ”ue”z*

2st € —1)st 2%st

S 3—2s\y _ v 3-2s
(52 +0@E™) 2(2?_ )(S 0™ ™) - 2

<ﬁ_1>K s(2+0-v5HE-29) |

£ (87 +0@Y)

IA

S35 0 3-2s ,
2 603 + 29) +O0E)

for ¢ > 0 sufficiently small, and the claim is checked.
Step 2. Estimate on #, ,,. Here t; ,, := 1, denotes the unique maximum point of the function

eZst ) 2(2 —1)st . equ §8t _
W) = wo) = Sl = S / . 10e % dx el
S

Since (\IJ ) (t) = Pu(te u*ve) = 0, we have

2/.L g * * * 2%

2 2(2%—=2)st,, 2%—1 2% —2)st, 3

lvell” — — ||Us||g — @2 Dslen G Vel dx — e )m‘“”Ue”z; =0,
q R3 ¢

which implies that

2% 22% s 2 q
~lvel3E + y/uelsy +4 s o loel = dx (el — 2 o 1)
ZIR3 ¢v5|va ‘7ldx
2% 22% s 2 4s
—lvellz: + \/Ilvsllzéﬁ“ + 4 [g3 Do, [ve|% " dx (Jvel|> — #Cq‘,sa 3 lvell?)
> .
sz3 ¢v5|va|2jildx

o 2E=2)stey
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Step 3. Estimate on sup,.p Wi, . By Step 1, Step 2 and the definition of v, we obtain that

" ]
wpwaa)=uﬁxau>=4ﬁx&u)—5f%%uwa@
teR

0 q
< sup W (1) — [lve |2
teR

2

2 2% . % =2
o (105 IS 44 fis o lve e (o2 = 2 C 0¥ o)
X = *
F 2 [ps b, lve|® ~ldx
4s q
a’s |uglll
= sup W0 (1) — ——— @17
teR ||Ms||23
2
2 27 5 S 52
o (=Ml + 157 44 fir e (P = 2 Cgsa ¥ e )
X = - - *
q 2fR3 ¢u£|u5|2s71dx
3=2s q
\/5_1 o s(12+(1—\f5)(3—2~9)) 3 ||M.‘3||(Z
- S35 +0(83_25)—Caus7q’
= 2 6(3 + 25) " i3
[luee ”2

where C, ;¢ > 0 is a positive constant independent of ¢, and we have used the following
estimates:

1 2 1 i 1 2%
— < <C, —=< Y <C, — < sTdx < C 4.18
c = luell” < C G = lluells < Ca G /R3 Bu |ucl x=C (418)

and

2% 22% _
1 _””5”2% + \/HMSHZTS +4||us||2 fRB ¢u‘g|’/‘s|2}F ldx
Cy — 2fR3 ¢ug|ua|2§_ldx

which are deduced from (4.8), (4.10) and Lemma 2.1. Moreover, by (4.9) and (4.11), we see
that

< Cy, (4.19)

452 452

p Ce3~ 73 =C, if0<S<%;
||”s||g 452 452 1 I 3

s — ) Ce3 73 |Ine| 2 =C|lneg|72, if s = g

3 2
u 452 25(3-25) 25(4s—3) .
lluell; Ce™s T = CeT if 2 <5<l

In particular, any term of order O (¢) is negligible with respect to this ratio for ¢ small, and
hence coming back to (4.17) we deduce that

sup Wi (1) < (ﬁ_ 1)

3-2s

2 s (12 +(1-V5H3- 2s)> N
6( + 25) 5%,

teR 2

for any ¢ small enough. Therefore, we have

3-2s
G\ T s (240 -VHG-29) |
= inf [, < Wk (1 S,
Mrap = i Do maxl, @ < | 6 + 25)
which in turn gives the thesis of the lemma. O
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5 L2-supercritical perturbation

In this section, we deal with the L2-supercritical case § := 2 + 4Y < q < 2}. To begin our

argument, we consider once again the Pohozaev manifold N, ,, Wthh can be decomposed
as

N =N, UND L UN, . (5.1)
Lemma 5.1 NB’M = (@ and Ny, is a smooth manifold of dimension 2 in H* (R?).

Proof Suppose on the contrary that, there exists some u € NV, then

b
luall® = pygslually + ull3: + /M Bulul™ " dx (5.2)

and
20l = pgy?lull§ + 25 ull3; +2025 — 1) /R ulul* ' dx, (5.3)

which leads to
2% *_
2= qvg Invgslullg = 25 = 2)lully; +225 —2) A bulu® T dx

Since 2 — gy, < 0and 2} —2 > 0, we have u = 0, but this is not possible, thanks tou € S,.
The rest of the proof is similar to that of Lemma 3.2, and we omit the details here. O

Lemma5.2 For each u € S, there exists a unique t, € R such that t,xu € Ny ,, where t,
is the unique critical point of the function of Wl and is a strict maximum point at positive
level. Moreover,

) Na,p, = N(ZM;
(i) W (r) is strict decreasing and concave on (t,, +00), and t, < 0 implies that P, (u) <
0;

(ili) Themap u € S, — t, € Ris of class C';
Giv) If Py(u) <O, thent, < 0.

Proof In view of

eZst 2(2 —1)st 2 Ya.sSt eZ}‘xt 2
V(1) = 1, (txu) = 5 fl? BT / Gulul>"dx — p flull§ — 2 5 Ml

and

*_ *_ * 2%
(W' (@) = se® u]]? — s> D / Gulul> T dx — psyg se® g — e ull,
R
it is easy to see that (W)’ (r) = 0 if and only if

lull? = 2% 2’”/ Gulul 7 dx + g 5@l 4 6D 2 g(r),
5.4

Clearly, g(¢) is positive, continuous and monotone increasing, and g(t) — 0% ast — —oo
and g(t) — +ooast — +o0. Therefore, there exists a unique point #, such that ¢, xu € Ny ,,
where 1, is the unique critical point of W/ (¢) and is a strict maximum point at positive
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level. By maximality, we have that (¥;/)"(t,) < 0, and since NV .. = ¥, we conclude that

tuxu € N,

the map u € S, — 1, € Ris of class C!, we can apply the implicit function theorem as in
Lemma 3.3. Finally, since (W},)’(t) < 0 if and only if # > #,, so P, (u) = (¥}/)'(0) < 0 if
and only if #, < 0. O

and NV, = Nafu since W/ (1) has exactly one maximum point. To show that

Lemma5.3 m, , = infy/

a,p

I, > 0.

Proof If u € N ,, then by (1.14), the fractional Gagliardo-Nirenberg—Sobolev inequality
(1.16) and Lemma 2.1, we have that

2 23 251
lull® = wygsllulld + lluell 2 + /3 Gulul>""dx
R
2% *
< 1qs s 70 a0 4 ST F Jull 4 572 u P37
Dividing by |lu 12, we can deduce that

. _ 7& * __ 0¥ *__
11Vg,5Cq.s@? Y0 0| 9Y05 72 4§72 |52 4+ STHulPE T > 1, Yu e Ny,

which implies that inf, e, , |#]| > 0 and so,

a,pu
. q 25 21
inf H)/q,s”””q + ”M”z* + dulul=""dx | > 0. (5.5)
ueNg s R3

Thus, from (5.5), P, (u) = 0 and the fact gy, s > 2, we obtain that

. . Lo 1 21 woovg 1 25
inf 1,(u) = 1/1\1[f |:§||M|| - m/ﬂ@ Gulul>""dx — ;”M”q - *”“”2‘»;

*
UeNa,n UENa,u 25
*

. K (qYq.s 28 —2 o 2% -2 .
= inf [ S ( T )l + 2l ulu|® " dx
weNo, g \ 2 20% 52025 — 1) Jps

> 0.

O
Lemma 5.4 There exists k > O sufficiently small, such that 0 < supz, 1, < mg . Moreover,
ueAr=I,u)>0 and Py(u) >0,
where Ay, ={u € S, : |lul| < k}.

Proof By (1.14), the fractional Gagliardo—Nirenberg—Sobolev inequality (1.16), Lemma 2.1
and gy, s > 2, we have that

) = Sl =2 ¢y a0 s — L2 ) - L g > o,
=3 PRt 22— 1) 2

s

and
2 2% 25
Pu(u) = sllull® = spygsllulld —s | ¢ulul>dx — sllull3
R3 s

2% *
> slull? = spyg,sCqsa? 0 u || 705 — 5§75 ul?E 7D — 5577 Jul® > 0,

if u € Ay with k small enough. By Lemma 5.3, we see that m, , > 0, thus if necessary
replacing k with a smaller quantity, we also have that
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1 2
Ip,(u) =< 5””“ < Mga,pu-.
O

As in the previous section, the following estimate will play a crucial role in the proof of
existence of a ground state. Let m, 4, := inf;, wNSra s where S, , is the subset of the
radial functions in S,.

Lemma 5.5 If one of the following conditions is satisfied:

rgs=2 30f-q)

. _ - F —_—
@) 0 <s <3 and pat-rs) < L (@) BRI
q.s

(i) 3 <s<1,

3-2s
i) 22 s(1240-v)(3-29)) 3
then we have m, 4, < ( 5 ) 53T 3 .
Proof The structure of the proof is similar to that of Lemma 4.6, but we took advantage of
the fact that gy, s > 2 in order to make direct computations in several steps. Let us recall
the definition of u, and v, given in Lemma 4.6, we know that u, € C0°°(R3, [0, 1]) and
Vg € Sy 4. By Lemma 5.3, we have that

My g = N inf I, < I, (ty, uxve) = Igaﬂé( I, (txvg).

a,umsrﬁ

From the Step 1 of Lemma 4.6, we get that

3-2s

fs_1> s (12+a-vHG-29) |

0 35 3-2s
\Ijvg(tvg_o)§< 5 G ST+ 0E). (5.6

Step 1. Estimate on £, ,. Let ;. ,, := t,_ , be the maximum point of

WE (1) 1= 1, (1xv)

2st 62(2;‘—1)”

= el -
o2 2025 — 1)

)
el — e
p vellg o Ve ll 53

%=1,
¢Ug|v8| ? X — M

R3
By (W{.)/(te,11) = Pyu(te,u*ve) = 0, we have that

_ _ 2%
R / o0l o B g = @0 e P — g st e
R
< e¥lenjy, ||,

whence it follows that

1
%2

2% 22%F *_
_”Ué?”z% + \/”Ue ”2_;53 + 4||U8||2 fR3 ¢v5|v£|2‘ ldx
2fR3 ¢Ug|v£|2?_ldx

eSlen <

(5.7)
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By virtue of (5.7), P, (t¢,,xve) = 0 and the fact gy, s > 2, we infer that

2*
[lve ”2%
fRz v, |U£|2§f71dx

(q Yq.s _Z)st.p.

22 Dstep 4 p2E=D)ste

l[ve |12 l[vellg

= T o, MVq.s€ R —
Jas boclve5"Tdxe 7T s bo. 0|5~ 1dx
2% 227 qg{i“v;z
*_ ;.
||Us||2 —||ve||2% + \/”vs ”2{ + 4|l ||2fR3 ¢UE|U£|25 ldx *
Z T a5, MVq.s —
Jps bu vl ~Tdx 7 2 fs b, lve 5~ dx
y llvelld (5.8)
Jrs bo.lve|% ~dx '
By the definition of v., we have that
252 28
22 -Dstep 4 25-Dsten lluelly’ ”u8”2§‘
¢ ¢ %2 21
ass fRfs d’us lue|™s~'dx
2(25-2) 225-2)+qvq.5—4
luelly, ™ llue 1 oy luell, ™ " llue 1
a2(2§_2) I]R3 ¢ug |M5 |2f71dx q,s 02(2§—2)+qu_x—q fRS d)ug |u5 |2;<71dx
2 2 e
* _ 22
_”“6”2% +\/||”£||2ﬂ;s +4||”£||2/R3 ¢u5|”8|2§ﬂ ldx )
% :
2 fs Gu lue |~ dx (3-9)
2(25-2) _
el [ luee )2 » a1 =ve.0) llueellg
= = — UVq.s = -
a2@-2) fR3 ¢us |u8|2;‘ ldx fR3 ¢M€ |ME|2;F ldx e ”g(l Yq.5)
2 22 e
* _ 22
_”’/{5”2% +\/||”£||2?S +4||”£||2/R3 ¢ug|”a|2? ldx ' ]
X : ‘ .
2fR3 Du, |u8|2§f—1dx

Using the estimates in (4.8)—(4.11) and Lemma 2.1, we can take constants C; > 0 such that

) 22 2
c / bulueZ1d 1 flue | lluelly” ~lue ll c
lf u uS $ X S ) *__ - 25 *_ ; S 3
R Gi f]R3 Pue lue |5~ dx fRS Du, lue| %~ dx
(5.10)
* qvg,s =2
2 22F . %2
D (el 5+ Al S e % x|
N = 2 o b e 5 1d <C4, (5.11)
4 r3 Pu luel™s X
and
q C553_3722S‘1_S‘1(1_V‘1v“') =Cs, if 0 <s < %;
”u£” 3-2s q(ygs—D |
iy S Csed T T Ing T if s = 3 (5.12)
u ’ 3-2 (B3=25)q(1-yq,s) .
e lz Cse3~ 74~ 2 , if 2 <s<L.
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Next, we show that

elen > C (5.13)
a
under suitable conditions.
Casel: 0 <s < %. In this case, it holds that
3=y sq(1— 0
g3 asaU-vgs) — g0 — 1, (5.14)

and from (5.10)—(5.12) we get

lue 155 C
el _ q(lfyq,s) 4
22D (CZ Hrq.sa C ) ’

and we see that inequality (5.13) holds only when Myq,saq(l_yflv“’) < C1C2/Cy4. Thus, we
have to give a more precise estimate, let us come back to (5.9) and observe that by well-known
interpolation inequality, we have that

62(2::72)3‘[8",'(1 + C6) Z

20¢-9) %62
%52 %2 o
llue g lleell, ™ © Mo ll s’ ECa)
qfl qy ) = PRy )S = ||us||2*25 : (5.15)
s —Vq.s S
el ™ luee 57
Therefore, by (5.9) and (5.15), we have
22 2
62(2j_2)”&/t + 6(2;*—2)3'[5,“ ||u8||2: ”ué‘”z;k
a®i 72 [os b, lue |5 dx
R3 Pugl®e
*__ o
||Lt8||§(25 Y ”u€”2 aq(lfl/q.x) ” ” 252%‘4_22)
- S ——— |
a225-2) fRz ¢u£|u8|2?—1dx q YIR3 ¢u€|u€|2;‘_1dx ellox (5.16)
qvq,s—2

%2

2% 22% *_
luell3; e 137 + 4l I fos b, e %~ dx
2 [as u lue % Tdx

X

From (1.14), (4.8)—(4.10), (4.16) and Lemma 2.1, we see that the right hand side of (5.16) is
positive provided that

_qvgs—2

2% 22k _ 2¥ 2
e |2 (—||us|23+\/||us|25+4||ug|2fR3¢ug|us|2? ‘dx) 3

q(1=yq.s5)
HYq.sa < Fa- "
P 2 fgs Pu, lue >~ dx

PR
H"‘a”zjx

S% + 0(8372A‘)
= I I
272

(S% n 0(53))

(5% 4+ 06 + V(ST + 0E) + 4SS + 06N TH(SF - 0(3))
2572 (ST + 0 (e3-25)) @D

_avgs—2

51 252 3(2§;—q)
_ ([2 ) sy 4 0(8372S).

@ Springer



Normalized ground states for the fractional Schrodinger... Page 33 0f50 65

Therefore, if 0 < 5 < % and uaq(l”"%f) < f—% we have
q.s

Iz,

eSlen > C

Case 2: s = %. In this case we have 3 < g < 4, and

325 o1 q(yg,s =1 q_
7747990V Ing|~ 2 =|Ing|272 >0 as £ — 0. (5.17)
Consequently,
||ug||z 3320 o=y ) a(rg.s=1
— < Cs5e>7 2 178UV ) | Ing|T 2 = o0.(1).
||Ll ”q(l_yqs)
ella

Therefore, we get

2(2%-2) 2(25-2)
||”5||2 * g ”1'48”2 .

eZ(ZYfZ)sts,u(l + Ce) > W <C2 - vaq,xa‘i(l—)/qx) , 08(1)) > CW’

that is

lluell2

eSlen > C
a

Case 3: % < s < 1. By the definition of y, ; and a direct computation, we get that

3-2 3-2 1-— 3—-4 6
3 372, B2y -4/ (3 —25) > 0.
2 2 4s 3—2s
Thus,
3225 (3=25)g(1=yg,s)
83_¥’1_ . — 0 as ¢ > 0,
and so
lluee & < ot BRg- SR
” q(l_}’q,s) =te _08( )
us”z
Therefore, we get
2(25-2) 2(25-2)

||“£||2 ||ua||2

*_ _, 1Cs
82(2; 2)sts,u(1 + Ce) > 0 (C2 _M)/q,saq(l Vq,.\)aoa(1)> >C =T

that is

llzee N2
—

eSlen > C
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Step 2. Estimate on max;cR \Ilﬁi (¢). By Step 1 and (5.6), we have that

qVq,sSle,
max Wl (1) = WL (1) = WO, (1) — S [ |ve|9dx
teR ¢ e e q R3

qVq,s
Cu |lu al
< supw? ) — S Melly [ twetrax
R;

teR g ai%s ||u£||[21
Cua?=vas) [o3|us|9dx
=sup W (1) — Je q(iy ;
teR q el 7 (5.18)
3-2s
N s(12+(1 —ﬁ)(3—2s)> .
< S% 4+ 0(%)
2 6(3 + 2s)
Cpat=72)  Jugllg
B A=y
T ully
Similarly as in (5.12), we have that
4 Ce3— P a—sa(-v) — C, if 0<s < %;
% > 1 e300 1n g if 5 = 3, (5.19)
q.s 29 (1=yg s
luellz C.53_%q—(3 2y M“), if % <s <1
Finally, by (5.18)—(5.19), we infer to
3-2s
SGo\ s<12+(1 —ﬁ)(3—2s)) .
= inf I, <max WX (¢ S,
Mrap = A T < maxwy, (1) < | — 6 + 29)
for any ¢ > 0 small enough, which is the desired result. O
6 Proof of Theorem 1.1
In this section we shall prove that for the L2-subcritical case: 2 < ¢ < § = 2 + %S,
Theorem 1.1 holds, for any a, u > 0 satisfying condition (1.18), i.e.,
pad1=ves) <k, (6.1)

with k = min{K, K>, K3}, where K, K, are given in (3.2), (3.3), respectively, and

2—qyq,s
) 2aygs
© 2q V5-1\F 2 2 —2)22F + 1 - \/5)52.;
3= s
Cqs25 —qvq.s) 2 42F — D2}

(6.2)

qvq.s 72_‘172”1‘
1 2;‘ 2—qvq,s 227%3
X 5 2? —5 (qu,s) qvq,s (2 _ qu,s)

Let {v,} be a minimizing sequence for ianR0 I,,, and we may assume that {v,} C S, is
radially decreasing for every n € N. Otherwise, we can replace v, with |v,|*, the Schwarz
rearrangement of |v,|, and we have another function in Ag, with I,,(|v,|*) < I,(lval).
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Moreover, by Lemma 3.3, for every n we may take o, xv,, € /\/'jﬂ such that ||ory, *v, || < Ro
and

I (oty, xv,) = min{l, (txv,) : t € R and [[txv,|| < Ro} < I, (vy).

In this way, we obtain a new minimizing sequence {w, = ay,*v,} with w, € S, , N ./\/a"'ﬂ
radially decreasing for each n. By Lemma 3.4, we have |w, || < Ry — r for each n and hence
by Ekeland’s variational principle [42] in a standard way, we know that the existence of a
new minimizing sequence {u,} C Ag, for m, , with the property that |w, — u,| — 0 as
n — +00, which is also a Palais—-Smale sequence for I, on §,. Thus, from Brezis-Lieb
lemma [8] and Sobolev embedding theorem, we have

Il = Ntn — wall® + lwa 1?4+ 04 (1) = [lw,lI* + 0, (1),
/ Iunl”dx:/ Iun—wnlpder/ Iwnlpdx+0n(1)=/ lwy |Pdx + 0,(1),
]R3 R3 R3 ]R3

for p € [2, 2§]. Now, by [lu, — wy| — 0asn — oo and Lemma 2.1, we deduce that

2% -1 2%—1 2%—1
/2 u, lun|™ " dx = /‘5 Dy —wy [ Un — wy|™ " dx + /2 S, |wu|™ ™ dx + 0,(1)
RR- R RR-

=/ B, w5 dx + 0, (1),
R3
Consequently, we obtain that
P, (up) = Py(wy) +0,(1) - 0 as n — +o0.

Hence, one of the alternative in Proposition 2.3 occurs. We can show that the second alterna-
tive in Proposition 2.3 holds. Suppose by contradiction that, there exists a sequence u, —u
weakly in H*(R?) but not strongly, where u # 0 solves problem (1.13) for some A < 0 and

Ao\ s(12+(1—f5)<3_2s)) 3
IM(M) < My — T 6(3"’25) S,

Since u is a solution of problem (1.13), by the Pohozaev identity P, («) = 0, one has

Nl = wygsluld + lullse + [ gulul® 'dx
q q 2t 5
; R

Therefore, by the fractional Gagliardo—Nirenberg—Sobolev inequality (1.16), we have that

ﬁ_l) (24 0-V9HE-29) |

> S35
Mape 2 1) + ( 2 6( + 25)

3-2s
G\ T s (240-V9G-29) , p_n
- S35
2 6G + 29) 5 Ul
22 .
L5 /¢M|u|zj_1dx ( cn/qs al (6.3)
2252 — 1) Js
St %s(lu(l—fs)@—zs)) . 2t_o
> S5 4+ = lul?
2 6(3 + 25) 227

2*

s

— g <1 — %) Cq,saq(l_y“)||u||qu’f.
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Now, we show that the right side of the above inequality is positive, which shall contradicts
with the fact that m, ;, < 0. To this aim, we define

* J—
2S 212 _ ﬁ (1 _ qu’s> Cq,saq(l_yq,x)[qu,x’ VYt > 0.

h(t) =
O="m 2

Since gy,,s < 2, the function h(¢) has a global minimum at negative level
h(tmin) = min k()
t>0

qvq.s

2
1 2% Tavgs [ qVq.s _ 2=qvq.s _avq.s
——5 ()7 B (1= ) a0 | T r0 ™ 2 -

%-2 q 2;
< 0.
(6.4)
By (6.1)—(6.2), we have
2 2-47g.5
patl-rs) o %4 V-1 EP Q-2 +1-V5) s
Cqs (25 = q74.5) 2 42 — 1)2:
(6.5)
qvq.s — 2—q2yq i
1 2% =qrq.s K
x 2 ) (9Yq.9) > 705 (2 — qVq.s) = K3.

Combining (6.4) and (6.5), we infer to
N 1)352 s(1240-VHB-29) |

h(tmi — S .
(tmin) > ( B 6(3 + 25)

Therefore, coming back to (6.3), we have that

3-2s
. J5—1\ > s(12+(1—\/§)(3—25))s%+h(”u“)
“n = 2 6(3 + 25)
3—2s
N s(12+(1—\/§)(3—25)) .
> ( ) ) 6(3 125 S2s +h(1min) > 0,

in contradiction with the fact that m, ;, < 0. This means that necessarily u, — u strongly in
H*(R3), I, (u) = mg,, and u solves problem (1.13) for some A < 0. It remains to show that
any ground state is a local minimizer for I, on Ag,. Using the fact that 1, (1) = m4 , <0,
and then u € Na,u_’ so by Lemma 3.3 we know that u € /\/af# C Ag, and

In(u)y=mg = i‘nf I, (u) with |lul| < Rp.
Ro

Finally, we prove that the ground state solution is positive. Let u™ := max{u, 0} and it is
easy to see that all the arguments above can be repeated word by word, replacing I, by the
functional

1 s 1 *
It () = — AV ulPdx — ——— +12Zi -1
) 2/]1@'( Vuldr — 5o /R3¢u+|u [ dx

1 *
Bt dy — — [t dx. (6.6)
q Jr3 2% Jr3
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Using u~ := min{u, 0} as a test function in (6.6), and arguing as in the proof of Proposition
3.1 [37], we have u(x) > 0 in R3. This completes the proof. O

7 Proof of Theorems 1.2 and 1.3

We first recall the following useful preliminary results, which are needed in proving Theo-
rems 1.2 and 1.3 below.

Definition 7.1 ([16, Definition 3.1]). Let B be a closed subset of X. We shall say that a class
F of compact subsets of X is a homotopy-stable family with boundary B provided

(i) every setin F contains B;
(ii) for any set A in F and any n € C([0, 1] x X; X) satisfying n(¢, x) = x for all (¢, x) €
({0} x X) U ([0, 1] x B), we have that n({1} x A) € F.

Proposition 7.1 ([16, Theorem 3.2]). Let ¥ be a C' function on a complete connected
C'—Finsler manifold X (without boundary) and consider a homotopy-stable family F of
compact subsets of X with a closed boundary B. Set ¢ = c({¥, F) = inf gcr max,ca ¥ (1)
and suppose that

sup ¥ (u) < c.

ueB

Then, for any sequence of sets (Ay)uen in F such that lim, sup, ¥ = c, there exists a
sequence {up}neN C X such that

lim ¥ (uy)=c, lim |dyu,)|| =0 and lim dist(u,, A,) =0.
n——+o0o n——+00

n— 00

Moreover; if dyr is uniformly continuous, then u, can be chosen to be in A, for each n.
Lemma 7.1 ([4, Lemma 3.6]) Foru € S, and t € R the map

TuSa = TrsuSas @ > tx@
is a linear isomorphism with the inverse ¥ +— (—t)x\.

Now, we are in a position to prove Theorems 1. 2 and 1.3.
Case 1. L?-critical perturbation for q= q=2 + . We use the strategy firstly introduced
in [20] and consider the functional I R x H* (R3) — R defined by

FIVM(Z, u) i = I, (txu)

5 2(2* 1)st 2 62 st %
<*|l I = = ||M||q) - 20— 1) / Gulul™" dx — ||M||2*~
(7.1)

It is easy to see that Iu isof C I_class, and T, u 18 invariant under rotations applied to u, a
Palais—Smale sequence for Iﬂle S, 18 a Palais—Smale sequence IuthSu We define the
minimax level

o(a,p) ;= inf  max I, u)
yel (Luey (0.1

among the associated minimax class

Fi={y =8 eCU0,ILR x S.)ly©) € 0,40, y(D € 0.1)}.  (7.2)
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where k > 0 be defined by Lemma 4.4 and IfL ={ueS;:I,(u) <c} Letu € S, 4. Since
lrxu)> = 01 asr — —oo and I, (txu) — —oo0 ast — oo, there exist 1p <« —1 and
t1 > 1 such that

Yu: s €[0,11 (0, (1 —s)t0 + st1)xu) € R x Sy 4 (7.3)

is a path in I'. Then o (a, ) is a real value.
Now, for any path y = («, B) € I', we consider the function

T, : t €0, 1]~ P, (a(t)*B(1)) € R,

By Lemmas 4.3 and 4.4 we get T),(0) = P, (8(0)) > 0. Note that \Ilg(l)(t) > 0 for every
t € (=00, 1g(1)) and \Ilg(l)(O) = I1,(B(1)) <0, we have 15(1) < 0. Thus, by Lemma 4.2, we
have that 7), (1) = P,(B(1)) < 0. Moreover, the map s + a(s)*B(s) is continuous from
[0, 1] to H*(R3), and hence we deduce that there exists sy € (0, 1) such that T, (s,,)) =0,
i.e., a(sy)*B(sy) € Ny, this implies that

max7>7 Ky =1, (ax(s,)*xB(s > inf I, =m )
y(o.1p " = ur ) = L(alsy)eplsy) = NayNSpa 7 7 00H

Consequently, we have o (a, 1) > m; 4 .. On the other hand, if u € 'Ma_u NS4, then

I, (1) = max T > o(a, 1),

" ya0.17) " o
where y, defined in (7.3) is a path in I". Thus, we have that m, , , > o (a, ). Combining
this with Lemmas 4.3—4.4, we derive that

o(a, ) =my g, > sup I, = sup 1.
(ARVIDNS; o ((0,A) U0, I9DNMRX Sy 4)
According to Proposition 7.1, we know that {y ([0, 1]) : y € I'} is a homotopy stable family
of compact subsets of R x S, , with extended closed boundary (0, Ap) U (0, 13) and the
superlevel set {T# > o(a, )} is a dual set for I". Using Proposition 7.1, we can take any
minimizing sequence {y, = (ay, B,)} C '), for o(a, u) with the property that o, = 0
and B,(s) > 0 a.e. in R3 for every s € [0, 1], then there exists a Palais—Smale sequence
{(ty, wy)} CR x S, 4 for INMRxSr,a atlevel o (a, ) satisfying

3 (1, wy) — 0 and 18, T, (6, w) (7, 5,00+ — O as n — +00, (74)
with the property that
[t,| + distys (wy, B, ([0, 1])) - 0 as n — +o0. (7.5)

By the definition of T, u(tn, wy) in(7.1) and the first condition in (7.4), we obtain P, (#,*w,) —
0. The second condition in (7.4) shows that for every ¢ € T, Sy 4

A1 (tpxwp)[tp*@] = on (D@l = 0n (D lltaxpll as n — +oo, (7.6)

in the last equality, we used that |z, | is bounded from (7.5).

Letthenu, = t,*xw,, by Lemmas 7.1 and (7.6), we can deduce that {u, } C S, , is a Palais—
Smale sequence for 1, s, , (thus a PS sequence for 1, |5, , since the problem is invariant under
rotations) at level o (a, u) = m; 4, with P, (u,) — 0. Hence, by Lemmas 4.3-4.5, we have
that

3-2s
A\ = s(124+ (0 —=+53-2s)
Mrau € |0, (ﬁ 1) ( )S% , 7.7
2 6(3 + 25)
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then one of the two alternatives in Proposition 2.3 occurs.

Assume that (i) of Proposition 2.3 occurs, then there exists u € H® (R3) such that u, —u
weakly in H* (R?) but not strongly, where « # 0 is a solution of problem (1.13) for some
A < 0and

5 s (124 (1 = V33 —2s) \
Iu(u) =Mragpu— (fz ) ( 6( 1 29) )SZ < 0. (7.8)

Moreover, by Pohozaev identity P, (u) = 0, which reads as

2 G X 2%

2 251

lull® — = Ilullg / Gulul™ " dx — |lull3: =0,
q R3 s

together with condition (4.1), we have that

1 s 0 1 2%_1 “w ~ 1 2%
IM(M)ZE,/R,?K_A)ZM dx_iZ(Z*—l)/ Dy || dx—gv/ |u|qu—¥/R3 [u]=dx
-2 / por,  2F 2)1‘ q
= d
o Il + 50 (2* 5 |, gl S 2

-2 ( 2p J) 2, 2i-1
> l—qu,scﬂ [Jue] 7/ Gulul”"dx >0,
22% q 22% (2%
a contradiction with (7.8). This shows that necessarily the alternative (ii) of Proposition
2.3 holds, namely there exists a subsequence u,, — u strongly in H*(R3), I,(u) =mrq
and u solves problem (1.13) for some A < 0. Combining B,(s) > 0 a.e. in R3 for every
s € [0, 1], (7.5) and the convergence imply that # > 0, and utilizing the same argument as
Sect. 6, we have that u is positive. Finally, we prove that u is a ground state solution. Since
any normalized solution stays on N, , and satisfies that

In(u)y=m; 4, = N inmfs 1.
a,u! Vr.a

It is sufficient to check that

inf I, =inf I, =m
m i a, -
'/\/u-l/- Sr.a -N.a,u

Suppose by contradiction that there exists a w € AN ,\Srq such that [,(w) <
inf a7, ,ns,, {u- Then we let v := |w|* be the symmetric decreasing rearrangement of w,
which lies in S, ,. By standard properties, we have that

Iol? < lwl® 1,(v) < I,(w) and P,(v) < P,(w) = 0.

If P,(v) = 0, then P,(v) = P,(w) = 0, a contradiction with the above inequalities and
hence we can assume that P, (v) < 0. In this case, by Lemma 4.2, we see that #, < 0. But
then we have again a contradiction in the following way:

2* 2 225 —1)sty 2 2%sty «
( 2(2)*6_ /¢v|v|2_1d 4 & D 2216 lvll3;

<e SY“1 (w) < I, (w),

Iu(w) = Ip.(tv*U)

where we use the fact that 7,xv, w € Ny ,,. Therefore,

Ma,p = Mr.a,u,

and so u is a ground state solution.
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Case 2: L?—supercritical perturbation for g = 2 + 475 < g < 2}. Proceeding exactly as
inthecaseq =g =2+ 43—5, we can obtain a Palais—Smale sequence {u,} C S, 4 for I,]s,
at level o (a, ) = my 4, with P, (u,) — 0. Hence, by Lemma 5.5, we have that m, , ,
satisfies (7.7), then one of the two alternatives in Proposition 2.3 occurs.

Assume that (i) of Proposition 2.3 occurs, then there exists u € H* (R3) such that u,, —u
weakly in H*(RR?) but not strongly, where u # 0 is a solution of problem (1.13) for some
A < 0and

3-2s
59\ % s(124+0-v53-2s)
Iu(u) = My a,p — (fz ) ( 6(3 T 2S) )S% < 0. (79)

However, by Pohozaev identity P, (u) = 0, we have that

2 2F—1 25
flull= — M)/q,sllullg - /3 Gulul™ " dx — IIuIIZ} =0,
R

and by virtue of gy, y > 2, we get that

1 5 1 *_ “w 1 *
R =5 [ teiutar— o [ tae= [ rdx- o [ wias
S

_ KH(q¥qs _ q -2 -1 2 -2 2
_q( : 1)/ lu| dx+2(2*_1)/ dulu>dx + o | lufdx >0,

a contradiction with (7.9). Therefore, the alternative (ii) of Proposition 2.2 occurs. Namely,
there exists a subsequence u,, — u strongly in H* (R, I (W) = m; 4, and u solves problem
(1.13) for some A < 0. By the convergence, u is also nonnegative, and utilizing the same
argument as Sect. 6, we have that u is positive. It remains to show that « is a ground state.
The rest part of the proof is similar to that of Case 1. The thesis follows. O

8 Proof of Theorem 1.4

In this section, we focus on problem (1.13) in the limit case u = 0. In this situation, the
action functional of (1.13) is given by

To) =~ - L/ pulul 1 dx — o ul,
2 2(2;< —1) Jrs 2*

and the associated Pohozaev identity reads as

*_ 2%
Nao = {u €St llul?®— /3¢u|u|2f Ydx — Jlully; = 0} ={ueS,: (¥ =0},
R s

where
2st

0 e 5 —1)st 2 6231
w0 = ol = S o R

2%

||u||2;

and N o can be decomposed as
Nao =NJGUND g UN .

Before further studying for problem (1.13), the solutions of the following equations must
be clearly studied. To be specific, we consider, the Euler—Lagrange equation of Iy expressed
as
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(—=A)u = gulul® u+ u> 2u, x e R, 8.1)
and the equation
(=AY u = |u>2u, xeR. (8.2)

Lemma 8.1 The solutions of problem (8.1) and problem (8.2) are one-to-one correspondence.
Moreover, (8.1) has a positive ground state solution, unique up to translation and scaling.

Proof Assume that wi(x) is a solution of problem (8.2), then wy(x) = K, wi(x), solves
problem (8.1), where Ky,, > 0 satisfying

2 *__
o il il w112 + 4 fis du, lun 2 dx
wy = — .
szS ¢w1 |wl|2‘if ldx

For any solutions w (x) and wz (x) of problem (8.2), if Ky, w(x) = Ky, w2(x) holds, then

(8.3)

K,

wi(x) = wa (x).

wi
Since both w1 (x) and w» (x) are the solutions of problem (8.2), we have % = 1 and hence
U)l
wi(x) = wa(x).
On the other hand, assume that w»(x) is a solution of problem (8.1), then w;(x) =
T, w2 (x) solves problem (8.2), where T,,, > 0 and

w2 Jlwa?
Ty, = . (8.4)

2*
a3

Ky Ty
Combining with those, it is easy to see that wy(x) — wo (x) Y wi(x).

Note that all positive ground state solutions to (8.2) are the functions U, ; defined in (4.6).
Then e ; = Ky, U ; is a positive ground state solution of problem (8.1), where Ky, . > 0
and

252 V5—-1

Ky =5 (8.5)

To see this fact, we introduce the following “limit equation”

AN, — 2¥-3 3
{( A)Y'u = ¢lu| u, x €R’, 8.6)

(=AY =u>"", xeR.

We claim that: All positive solutions of (8.6) have the form u(x) = ¢(x) = U, . (x) for any
e>0andz € R3.
Indeed, assume that (u, ¢) is a pair of positive solution to (8.6), then we have that

(=AU —¢) = —wu>2 xR (8.7)

Multiplying both sides of this equation by (# — ¢) and integrating by part, we obtain that
f [(—=A)2 (u — ¢)Pdx +/ lu — ¢ |u|> 2dx = 0.
R3 R3

Hence, we can conclude u(x) = ¢ (x) = U, ;(x) and
2§
[ iemivean = [ g 0P n = [ ear =575 68)
R3 R3 R3
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which implies that (8.6) is equivalent to system (8.2).
Now, for any positive solutions wj(x) and wy(x) of problem (8.1), then by (8.4),

u(x) = Ty, wi(x) and wuz(x) = Ty, w2(x)

are the positive solutions of problem (8.2). Combining this with the fact that the positive

solution is of the form U, ;(x), we then have that |lu| = [luz]|, i.e.
* *
lwi % flwall® H H
2% = 2%
lwillys llwall: llwll; w2l
s
which implies that [[w;] = [[w2] with w; := w;/|lw;l2:,i = 1,2, in the sense of the

L% -normalized norm. Hence from the argument aforementioned, we know that any positive
solution of (8.1) is a ground state solution. The uniqueness of the ground state solutions of
problem (8.1) follows from (8.5) and Ug .. The proof is completed. ]

From the above discussion, we can derive the following conclusion.

Lemma 8.2 The free functional Iy has least energy value

ﬁ—l)l“ s(2+a-V3H3-29) |

inf [ = S2s,
nf foG) ( 2 6(3 + 25)

where M = {u € D>2(R3)\{0} : Ié(u)u = 0} is the Nehari manifold of ly. The infimum is
achieved only by functions we(x) = ky, Uy ;(x), where U, ; is given by (4.6).

Proof From the proof of Lemma 8.1, we see that critical points of Iy correspond to the
positive ground state solutions w, of (8.1), and

1
V5 — 1)2}‘2

we (x) = ky, Ue o (x), with ky, = ( 2

where U, ;(x) is the ground states of (8.2). Therefore, by (8.8) and a direct computation, we
obtain that

inf I = I
Jnf o(u) = Ip(w,)

— L ||2—¥/ G we P dx — e
2" 202F — 1) Jps M F 26N

) 2E-D 2z

k k *
Ush Ue,; 2% -1 Uez
Us.; _— U, sThdx — Ue ;|l>x
U2 1I* — 20— 1) s ¢u, . |Us ;| x 2 U, ||2
2 * 2(2j€71) * s *
_ k. Uer o5 ky, . 5 _ kUp e o3
2 22 —-1) 2%
N s<12+(1 —ﬁ)(s—zs))sl
= 2s
2 6(3 + 2s)
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Proof of Theorems 1.4. 1t is easy to see that for every u € S, the function

o o251 - Q22— D)st » s
W (1) = ) [lze]| 2(2*_ / bulul? g dx— IIMIIQ*,

has a unique maximum point 7, o, given by

1
72

2 22% 2 251
—||M||2§+ ||14||2; + 4 lull? [gs dulul*1dx
2 [ps Gulul*~tdx

eS’”O —

(8.9)

By the definition of A/ +0 and NO 0> We can deduce that A/ +0 = ./\/0 ‘0 = V. Indeed, suppose
that there exists u € A o such thatu € /\/0 0, then (\I/O)”(O) > 0, that is,

2% *_
2P = 20t +225 =) [l lax

By u € N0, we have that

2 25 2k—1
lleell= = [luel +f Gulul™s " dx,
s R3

28 261
||M||2* + Qulul=""dx <0,
s R3

and hence,

which implis that u = 0, contradicting to u € S,. Thus, N 0 = N, .

a,
Next, we prove that NV, ¢ is a smooth manifold of codimension 1 on S,. Since

*_ 2%
Nao = {u € Sat lul* - /R Gulul™~dx — llully: = 0},
N0 can be defined by Py(u) = 0, G(u) = 0, where
*_ 2%
Ao = fulP = [ bl dx = i and G = [ wPdx -
R3 s R3
Since Py(u) and G (u) are class of C!, it suffices to check that d(Py(u), G(u)) : H*(R?) —

R2is surjective. If this is not true, then d Py(¢) must be linearly dependent from d G (u), that
is, there exist some v € R such that

25(—A)u = vu + 255 |u| > 2u 4 2525 — D ul> Su in R3.
By the Pohozaev identity and the last equation, we obtain that
2000112 201,128 2 251
257 |lull” = 2%s ||u||2§f +22F = Ds /R? Gulu|="'dx
thatisu € N ao o- a contradiction. Moreover, Ny o is a natural constraint. Indeed, if u € N o
is a critical point of Ip| s, o, then by the Lagrange multipliers rule there exists A, v € R such

a,0?
that

Ii(w)e = 1 /3 updx + v Pj(u)g,
R
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for every ¢ € H*(R3). That is, u solves the following equation

(1= 20) (=AY u = da + (1 =225 — D) Bulul®> Pu+ (1 = 250)|ul>*2u in R
(8.10)

We have to prove that v = 0, and to this end we observe that by the Pohozaev identity

1-2 -2 s A
w/ |(—A)7u|2dx= 37/ |u|2dx
2 R3 2 R3

N (1—22 —21)11)(3 —25) /3 Sulultdx + -2 v;(3 —25)

(8.11)
Iulzfdx.
R3

Combining (8.10) and (8.11), we have that

(1—2\))/ I(—A)2udx = (1 —22F — 1)v)/ Gulul>dx + (1 —2;%)/ lul® dx.
R3 R3 ’ R3

Since u € N o, this implies that

u[zf |(—A)%u|2dx—2(2j—1)/ ¢u|u|2f*1dx—2;‘/ |u|2?dx] =0.
R3 R3 R3

But the term inside the bracket cannot be 0, since u ¢ /\/(?0, and then necessarily v = 0.
Thus, u is a critical point of Iy|s,. Hence, for every u € §,, there exists a unique #, 0 € R
such that #, gxu € Ny o and t,.¢ is a strict maximum point of W0 (¢), if u € N, we have
t,,0 =0and

Io(u) = max To(t*u) > inf max Io(t*u).
ueS, teR

On the other hand, if u € S, then 1, g*u € Ny o and

max lo(txu) = Io(t, oxu) > mf Io(u).
teR ueNgo

Therefore, we conclude that

inf  Io(u mf max Io(txu
ueNgo o) = ueS, teR o )-
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Now we show that the infimum of I in N ¢ is not achieved. By (8.9) and (4.15), we derive
that

S5
2 6(3 4 2s)

= inf I < inf [
inf To(u) < ME]R/(LO o(u)

(\/§_1>Zx (12+(1—f)(3—2s)) .

ueM
= inf max Io(t*u)
ueS, teR
) eZSlu,() 5 eZ(Zj—l)slu 0 . €2 Sty,0 2
= inf lull® = ———— ¢u|u| dx — lluell
ueN0 2 22k -1 2%
22510 22— st o e2istu0 2
_ P — & / pulul® %
ue H (R3)\{0} 2 2(2
. 25t 0 5 22—ty 0 oy o255hue 0
= ) ||Ma|| W ¢u5|u$| X — ||Mp||2*

=0 (1,0 = sup \1/35 (1)

<<ﬁ_1> s (12+a-veHe-29) |

SZ 0 3—2S ,
2 6(3 + 25) +0E)

for any ¢ > 0 By density of H*® (R3) in D*2(R?), Lemma 8.2, we infer that the infimum
([ 1) 32 5(1240-v9)6-29)) 3

6372 S2¢, and is achieved if and only if the extremal functions

U; ; defined in (4.6) when 0 < s < % and stay in L%(R3). In the case % <s < 1, we show
that the infimum of /Iy on N, ¢ is not achieved. Assume by contradiction that there exists a
minimizer u, let v := |u|* be the symmetric decreasing rearrangement of u, which lies in
S;.a- Then, by the properties of symmetric decreasing rearrangement, we infer to

vl < llull®>, Io(v) < Io(u) and Py(v) < Py(u) = 0.

If Py(v) < O, then ¢, o defined in (8.9) is negative. Hence, by Py(t, oxv) = 0 and Py(u) = 0,
we derive that

25ty.0 —Dsty0 2%sty,0
e 2 _ S %
1) = Io(p) = =l = G f bl ol
_ BB o B DEE D [ ouvbia
T o v 2(2*—1)2* vivirax
(2* _ 2)62””*0 2)825 1.0
< B2 e+ ¢ 2(2* b / fulul¥ dx
s
1 1 _
= (3= g ) = (= ) [t
— 2tv —1
= [ el 2(2*_1)/ bulul® dx—z—*nunz*}

= B0 Iy (u) < Ip(u),
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which is a contradiction. Thus, it is necessary that Py(v) = 0, thatis, v € N, 9, and v is a
nonnegative radial minimizer. Since A, o is a natural constraint, we infer that

[(—A)Sv—d)IvIz?_%=Av+|v|2?_zv’ x e R, (8.12)

(=D = [v|>7, x € R3,

for some A € R, and by the maximum principle [9], v > 0 in R3. By Po(v) = 0, necessarily
A = 0, and so v solves the equation

(8.13)

(—A)Yv = o[> Pv+ /571, x eR?,
(=D = |57, x € R3,

Therefore, by Lemmas 8.1 and 8.2, we have that v = ky, _ U ;. But this is not possible, since
Ug, ¢ H® (R3) for % < s < 1. This completes the proof. O

9 Proof of Theorem 1.5

This section is devoted to prove Theorem 1.5. We begin with the following two lemmas,
which are necessary to the proof.

Lemma9.1 Leta >0, u>0andg =2+ %S < g < 2% holds. Then

inf I,(u) = inf max[ (2}
ueNy M( )= ues, M( )-

Proof By virtueofg =2+ 475 < g < 2¥and pu > 0, we know from Lemmas 4.2 and 5.2 that

Na,o =N, . Forevery u € S, there exists a unique #,,, € R such that 1, *xu € Ny ,, and

that #,,,, is a strict maximum point of the functional W};". Thus, if u € N, we getf, , =0
and

I,(u) = max I, (txu) > inf max I, (txv).
veS, teR

On the other hand, if u € S,, then 1, ,*u € N, , and so

mzlléc Iy (txu) = 1, (ty, o%xu) > 1nf 1, (v),
te

au

which completes the proof. O

Lemma9.2 Leta > O, u* > Oand g = 2 + 4S < q < 2F holds. Then the function
i [0, = mg . € Ris monotone and non- zncreasing.

Proof Let0 < pu; < upy < u*, by Lemma 9.1, we have that

Mg, = inf max I, (txu) = 1nf Ly, (ty, iy %u)
ueS, teR

= inf |:1ul(fu,u2*”) p Mzeq}’q*s”“w/ |u|"dx:|
Sa q R3

ue

A

inf max /[, (txu) = m ,
ues, ek M @

as desired. O
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Proof of Theorems 1.5. The proof is divided into two cases.

Casel:2 <q <q=2+ %. We recall that u,, is a positive ground state solution of 7, (1)
on{u € S;: |luyull < Ro}, where Ro(a, 1) is defined in Lemma 3.1 such that 2(Rp) = 0
and £ is given in (3.5), and we can check that Ry = Rg(a, ) — 0 as u — 0T. Thus,
lu,ll < Rp — Oas pu — 0. Moreover, for every u € S,, according to (1.14), the fractional
Gagliardo—Nirenberg—Sobolev inequality (1.16) and Lemma 2.1, we have that

1 _ * *_
0> mg = L,(u,) > Enuun2 - STy | *E D

22x—1)

I
— ST up > — 0

1 Vs :
_ icq,saq(l Vq,.\)”uﬂ||qu,.s _
q s

as u — Ot.

Case2:q =2+ % <g < 2. Leta > 0, u* > 0 and in this case (1.20) holds. Firstly,
we show that the family of positive radial ground states {u,, : 0 < u < w*} is bounded in
H*(R3).If ¢ = g, then by P, (u,) = 0 and Lemma 9.2, we get that

22, 22 .
mao > Mg, = I, (u,) = sznuun + m - Guy luy ™" dx

25 —2u 7

- SZ#IIMMIIZ

54
252 2 N
> 22 (11— g™ ) ul

22% q

Ifg=2+ %5 < ¢ < 2%, in a similar way, we infer to

Mg 0 = Mgy = I}L(Mpl.)

2 2 . 2 2 .
=F (% - 1)/ Iuﬂ|qu+57/ |5V dx + 22 / | % dx.
q 2 R3 228 =1 Jps " 22%  Jrs

Hence, by gy,,s > 2 and P, (u,) = 0, we also have {u,} is bounded in H* (R?). Since in
particular {u,} is bounded in L4 (R3?), we have that

A 2 2% 1 2%
Fud® = | —/ B dx—u/ |uu|‘1dx—/ 0y 2 dx
]R3 R3 R3

= s — 1)/ lyl?dx — 0
R3

as 1 — O07T. Therefore, we deduce that up to a subsequence u p—~u weakly in H* (R?), in
D*2(R3) and in L% (R3); u,, — u strongly in LI(R3). Let [lu,||> — € > 0.1f £ = 0,
then u, — 0 strongly in D*2(R?), and hence I, (u,) — 0. But, by Lemma 9.2, we get
1, (uy) = mg v > 0 for each € (0, u*), a contradiction. Hence, £ > 0. By P, (u,) =0
we have as © — 07T,

2% 28 2
/3 ¢u“|uu| sThdx + ”uM”z}k = ”uM” - Myq,s”uung — L, 9.1
R
Then, we may assume that

/ b 15 dx —> a and fuy |3 — b, as u— 0%, 9.2)
R3 ¢
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On the other hand, by Young inequality, we have that
/ s dx = / (—A)2 ¢y, (—A) 2 uy|dx
R3 R3

62 s 1 s oo
< 7/]1@3 [(—=A)2 fuyl| dx+ﬁ - [(=A)2¢y, |7dx
L bu |u |2§‘—1dx+ﬁ [(—A)Zu, |*dx
202 Jgs M 2 Jrs ph =

Thus, passing to the limit as u — 0, it follows that b < 2}751 + %E. Choosing 6% = @,

and using (9.1), we derive a > 3%6& Consequently, by (9.2) again, we get

m = lim 7,(u
a,pu O+ u( ;L)

= lim l||u ||2—¥/ bu. |u |23‘—1dx—i i, |5 dx
i 202F — 1) Ja T 2 Jps M 9.3)
o sGo2 S[1240-VHE-29)]

=—{+ a > l.
37 3(3+2s) 6(3 +2s)

From (1.14), (9.1) and Lemma 2.1 we have that

o 2% 2
C=a+b+o,(1) <S55 4577407 40,(1). (9.4)

2
Taking the limit as u — 0T, we obtain that £ > (@) 52 S%. From (9.4), we infer to

(ﬁ_ 1>7 s (12+(1 —fS)(3—2s)) .
Mg, = S, 9.5
2 6(3 + 25)

Meanwhile, we have that

|

\/§_1>3532X s(2+0-VH3-29) |

lim 7y, (uy) < mao = ( 7 63 129 Sz, (9.6)

n—0
Finally, combining (9.5) with (9.6), we obtain that

o 32 s(12+(1—ﬁ)(3_25)) 3
Mg, = 5 6(3 +2s) S35,

and the conclusion follows. O
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