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Abstract

In this article we study convex non-autonomous variational problems with differential forms
and corresponding function spaces. We introduce a general framework for constructing coun-
terexamples to the Lavrentiev gap, which we apply to several models, including the double
phase, borderline case of double phase potential, and variable exponent. The results for the
borderline case of double phase potential provide new insights even for the scalar case, i.e.,
variational problems with O-forms.

Mathematics Subject Classification 35J60 - 46E35 - 35120 - 35J60

1 Introduction

In this article we study variational problems and corresponding function spaces associated
with the integral functionals of the form

Fop() :=/<I>(x, |dw|)dV+fbAdw (1.1)
Q Q

where € is a bounded domain in R" (later we will only consider the case of a cube or
ball) with @ : @ x Ry — R, is a generalized Orlicz function, w a differential k-form,
b e L‘D*(‘)(Q, AN’k’l), and dV = dx!'...dx". For 0-forms the problem reduces to the
classical problem of calculus of variations with dw replaced by Vw. Further we refer to the
case of O-forms (functions) as the scalar case.
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The classical results on differential forms are collected, for example, in the books by
Cartan [17], Spivak [54], Arnold [7], Flanders [33], Abraham et al. [6]. Iwaniec and Luto-
borski [39], Iwaniec and Martin [40], Scott [49], Iwaniec et al. [41], Schwarz [48], Mitrea et
al. [44] and Troyanov [57] studied Sobolev spaces of differential forms, Gaffney inequalities,
and related problems of Hodge theory. More recent results in the framework of Calculus of
Variations could be found in books by Csato et al. [18] and Agarwal et al. [1]. Recent con-
tributions in the direction of the transportation of closed differential forms were obtained by
Dacorogna and Gangbo [25, 26]; the optimal constant in Gaffney inequality was studied by
Csato et al. [19].

We study calculus of variations for the non-autonomous models with general “nonstan-
dard” growth and differential forms. To our knowledge no regularity results are known for
such classes. The focus of the present paper is on the conditions separating the case with
the energy gap from the regular case (density of smooth functions) for the integrands with
nonstandard growth, in particular, for the variable exponent and double phase models.

In the present paper we study variational problems for the integral functional (1.1) with
convex integrands @ (x, t) that satisfy general “nonstandard” growth conditions of the type

—co+cilt|Pm < @(x, 1) < c2lt|* + co, (1.2)

where 1 < p_ < py <00,¢c0>0,c1,c2 >0.
The class of “non-standard” integrands satisfying (1.2) includes for example the p(x)-
integrand

P, ) =tP® 1< p_<px)<py<oo, xe, (1.3)

studied for the scalar case in many papers and several books, see [20, 27, 42, 60-62]. For
the variable exponent model the Holder regularity of solutions, a Harnack type inequality
for non-negative solutions, and boundary regularity results were obtained by Alkhutov [3,
4] and Alkhutov and Krasheninnikova [2] under some suitable assumptions on the variable
exponent of the log-Holder type. Gradient regularity for Holder exponent was obtained by
Coscia and Mingione [24] and for the log-Holder exponents by Acerbi and Mingione [5].

Another classical example of non-standard growth conditions is given by double-phase
variational problems which correspond to the functional (1.1) with

Q(x, 1) =¢@)+alx)y(), a=0, (1.4)

where ¢ and ¢ are Orlicz functions with different growths rates at infinity. Two notable
examples are the “standard” double phase model with

o) =1t, y@)=11, 1<p<gqg<oo, (1.5)
and the “borderline” double phase model
o) =t"log Ple+1), V() =1"log"(e+1). (1.6)

Colombo and Mingione [23] obtained Holder regularity results for double-phase potential
model @ (x,t) = t? +a(x)t? if g < p(d + a)/d and a € C*(£2). Moreover, bounded
minimizers are automatically Wha(Q)ifa € C*(Q) and g < p + «, see the paper [10] by
Baroni et al. As it was shown in [11] those results in the scalar case are sharp in terms of the
counterexamples on the Lavrentiev gap.

The special case of the model (1.4) with ¢(¢) = t? and ¥ (¢) = t” log(e + t) was studied
by Baroni et al. [9]. In particular they obtained the Cf;c regularity result for the minimizers
provided that the weight a(x) is log-Holder continuous (with some y) and more strong
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result (any y € (0, 1)) for the case of vanishing log-Holder continuous weight. Skrypnik
and Voitovych recently proved continuity and Harnack inequality for solutions of a general
class of elliptic and parabolic equations with nonstandard growth conditions, see [56]. The
results on generalized Sobolev—Orlicz spaces are collected in the book by Harjulehto and
Histo [37] and for anisotropic Musielak—Orlicz setting in the book by Chlebicka et al. [21].
In the general framework of problems with nonstandard growth and nonuniform ellipticity
recent results are due to Mingione and Réadulescu [46] and to De Filippis and Mingione, see
[28-30]. Recent contributions for such energies include new results on density of smooth
functions and absence of Lavrentiev gap by Bulicek et al. [12], Koch [43], and Borowski et
al. [8].

An essential feature of the nonautonomous models with nonstandard growth is the presence
of the Lavrentiev gap phenomenon. The energy F¢ 5 defines the corresponding generalized
partial Sobolev—Orlicz spaces of differential forms W% ® () (Q, A¥) (the natural energy space
for Fo ) described in Sect.2.5. The Lavrentiev gap in this case is the inequality

inf Fo p(WHPO(Q, AF)) < inf Fp , (CSO(R2, A)). (1.7)

where ch’(p(')(fl, A¥) is the set of W4®O(Q, A¥) forms compactly supported in Q. A
similar phenomenon for boundary value problems can be expressed as the inequality

inf o 0(wo + W P(Q, AY) < inf Fp o(wo + CGO(2, AY)) (1.8)

for some wy € C1(Q, AX).

A closely related problem is density of smooth functions in the natural energy space of
the functional. Denote the closure of smooth forms from W% (Q, A¥) in this space by
H®0O(Q, A*). If any function from the domain of Fg j, can be approximated by smooth
functions with energy convergence (equivalently, if Hd*‘p(')(Q, A") = Wd'¢(‘)(Q, Ak),
which is abbreviated to H = W) then the Lavrentiev gap is obviously absent. In the
autonomous case, when the integrand @ = @(¢) is an Orlicz function independent of x,
the Lavrentiev phenomenon is absent (H = W).

In the scalar case (for functions = O-forms) the study of such models goes back to
Zhikov [61, 62], who constructed the first examples on Lavrentiev phenomenon for variable
exponent model and double phase model in dimension N = 2. Esposito et al. [31] general-
ized this example to any dimension (for the standard double phase model); Fonseca et al. [34]
constructed examples of minimizers for the standard double phase model with large (fractal)
sets of discontinuity. All these examples required the dimensional restriction p~ < N < p™T.
This restriction was overcome by the authors of the present paper with Diening in [11] using
fractal contact sets for scalar variable exponent, double phase and weighted model. In [16]
the authors of the present paper studied the Lavrentiev gap property for the borderline double
phase model (1.4) with one saddle point (that is, an example constructed as in [31, 61, 62])
with p = N, a, 8 > 0.

In the present paper we study variational problems with differential forms. The study of
the p-harmonic forms goes back to Uhlenbeck [58], who obtained classical results on the
Holder continuity (for the scalar equation this reads as C“ property of the gradient). These
results were extended by Hamburger [36]. Beck and Stroffolini [15] considered partial reg-
ularity for general quasilinear systems for differential forms. Sil [51-53] studied convexity
properties of integral functionals with forms and regularity estimates for inhomogeneous
quasilinear systems with forms. Let us mention, that results by Sil for nonautonomous inte-
grands are concerned with "standard growth" p~ = p™, as opposed to the "nonstandard
growth" problems treated in this paper.
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In this paper we extend the approach of [11] to variational problems with differential forms
and refine the construction by using the generalized Cantor sets which have an additional
tweaking parameter. This allows for fine tuning of the singular set, while keeping the formal
Hausdorff dimension. We construct examples of the Lavrentiev gap for the p(x)-integrand
(1.3) and both “standard” double phase (1.4), (1.5) and “borderline” double phase (1.4), (1.6)
integrands (the last results are new even for the case of scalar functions 0-forms). For the
latter model the fine tuning of the Cantor set is crucial.

Now we state the main results of this paper. We work with three models: classical double
phase potential, borderline double phase potential, and variable exponent. For each of these
cases we construct examples for the Lavrentiev gap. However, the construction presented in
this paper is not limited to these models. For instance, it can be also used to treat the weighted
energy similar to [11, Section 4.3]. Let 2 be a ball in RY and k € {0,..., N —2}. The
definitions of the functional spaces can be found in Sect.2.5.

TheoremA Let p > 1, @ > 0, and g > p +amax((k + D7, (p — DN —k — D7
Then there exists an integrand @ (x,t) = t” 4+ a(x)t9 where nonnegative weight a = a(x)
is bounded, a € C%(Q) ifa > 0, such that Hd’cb(')(SZ, Ak) #~ Wd'q)(')(Q, Ak). Moreover,
there exists b € L(D*(SZ, AN=F=1y such that (1.7) holds and wy € C®(, A¥) such that
(1.8) holds.

TheoremB Let pg > 1, o, B € R, 3¢ > 0 such that « + B > po + ». Let ¢ and  be two
Orlicz functions such that (t) ~ tP°In"P ¢t and W (t) ~ tP2In® ¢ for large t. Then there
exists an integrand @ (x,t) = @(t) + a(x)y¥(t) where a = a(x) is a nonnegative function
with the modulus of continuity CIn=*(1/t) such that H>®O (2, AF) £ WP0O(Q, AK).
Moreover;, there exists b € L‘p*(Q, AKY such that (1.7) holds

Theorem C Let | < p_ < p4. There exists a variable exponent p : Q — [p_, p+] with
the modulus of continuity ko(Int=H VInlns=1, 30 = s0(p_, P+, N, k) > 0, such that
for ®(x,1) = P9 there holds H-®O(Q, A¥) £ WEPO(Q, AX). Moreover, there exists
b e L (Q, AN K1Y such that (1.7) holds and wy € C*® (2, A¥) such that (1.8) holds.

Theorems A, B, C follow from Theorems 31, 33, 35, which are proved in Sect. 5. The weight
a = a(x) in Theorems A and B and the exponent p = p(x) in Theorem C (as well as the
forms providing the examples of non-density and competitors used to show the Lavrentiev
phenomenon) are regular outside of a singular set of Cantor type which lies on a proper
subspace of R". The dimension of this subspace is either k + 1 or N — k — 1 depending
on the parameters. Compare this to [11] where for the scalar case k = 0 the singular set
was either a Cantor set € on a line (“superdimensional” setup, which was used to construct
the examples with variable exponent taking values greater than the space dimension N) or
a Cantor set ¢V ! on a hyperplane (“subdimensional” setup, which was used to construct
the examples with variable exponent taking values less than the space dimension N). For
k-forms in the variable exponent setting the value of exponent separating these two cases is
N /(k + 1) — for exponent taking values greater than N /(k + 1) the singular set will be of
the form ¢*+1 x {0}V —*~1 and for exponent taking values less than N /(k + 1) the singular
set is of the form €N =K~ x {0}k+1.

Our setting can be called “semivectorial”, or generalized Uhlenbeck structure, since the
integrand is isotropic. In this respect it has substantially more rigid structure than the fully
vectorial problems (say, of elasticity theory) with quasi-convex integrands. Note that in the
“fully” vectorial setting the situation is more delicate, and the Lavrentiev phenomenon is
possible even for “standard” growth conditions in the autonomous (but anisotropic!) case,
see Ball and Mizel [13] and Foss et al. [32] in the context of non-linear elasticity.
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The models with Lavrentiev phenomenon are also challenging to study numerically since
the standard numerical schemes fail to converge to the W-minimiser of the problem. For the
scalar case the problem could be solved using non-conforming methods, see Balci et al. [14].
The vectorial setting remains open.

Structure of the paper. In Sect.2 we recall some basic definitions related to the theory of
differential forms and Sobolev—Orlicz spaces. In Sect. 3 we study the existence of minimizers
of the functional (1.1). In Sect.4 we describe the general framework for construction of
examples using the fractal Cantor barriers. In Sect.5 we apply this general construction to
different problems. We obtain the examples of Lavrentiev gap and non-density of smooth
functions for the classical double phase in Sect. 5.1, for the borderline double phase model
in Sect. 5.2, and for the variable exponent model in Sect. 5.3. The results for the borderline
double phase model are new even in the scalar case.

2 Differential forms and Sobolev-Orlicz spaces

Here we recall some basic facts and definitions from the theory of differential forms. In
general we follow definitions and notations from [18][Chapters 1.2;2.1;3.1—3.3], but the
Hodge codifferential is the formal adjoint of the exterior derivative d (as in [35, 39]).

2.1 Exterior algebra

The Grassman algebra of exterior k-forms (i.e. skew-symmetric k-linear functions) over RV
is denoted by A*(R™), or for brevity just by A¥. The exterior product of f € A¥ and g € Al
is an element f A g of AT defined by

(ARG - Ex) = Y sign (i, ooy iks oo i G ED8 G 0 E)

where the summation is over permutations (iy, ..., ix, ji, ..., ji) of (1,2,...,k 4+ 1) such
that iy < --- < ig, j1 < --- < Jj;. This operation is linear in both arguments, associative,
and for f € A¥ and g € Al there holds f A g = (=D g A f.

Let e; be an orthonormal basis {e j}jy:] in RV and {e/ }?’:1 be its dual system in Al
el (e) = 8 j;. The monomials eV AL A€k i] <ip < - < ii form a basis in A¥. Denote
fir.ir. = f(ei;,...,e;). Thenthesetof f;, ;, withi; <ip < --- < iy gives the coordinates

of f:
f= Z fi[...ikeil /\"'/\eik-

1<ij<--<ix<N

The scalar product of f, g € AK with coordinates fi1..ip and g;, ., is given by

<fv g) = Z ﬁl--~ikgi1,...ik~
1<ij<--<ix<N

The scalar product does not depend on the particular choice of the orthonormal basis {e} jy: I
We denote | f| = (f, f)!/2.
The Hodge star operator % : A¥x — AN~k is definedby f Ag = (xf,g)e! A---Ae

forany g € AN7K, or equivalently by f Axg = (f,g)e! A---neN forall £, g € A¥. The

N
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Hodge star operator # is an isometry between A¥ and A¥ % and for f € A there holds
w(f) = (DO T = (MO f
Forany f € AF and shuffle Ji, ., jn there holds Gk f) ;.\ ..jy = sign (ji, ..., jN) fir.ji-
The interior product (contraction) of f € A¥ and g € A! defined by
gif = (DN OED 5 (g A ()
is the adjoint of the wedge product:
(g Aa, f) = (a, gof) forany ae ATl Fenak genl

There holds x(g_f) = (—1)® Dlg A xfand x(g A f) = (—D¥ g% f.
Ifl =0then guf = gf.Ifl > kthen guf =0,if | =k then g.f = fug = (f.g). If
| < k then

©af)jrje = Z Givoviy Jiv it 1o jis -

1<ii<--<ij<N

There holds #f = fi(e! A--- A eN), which can be taken as the definition for the Hodge
dual.
For w, v € A! there holds

wiw A f)+vA(waf)={(w,v)f. 2.1

For a vector X the operator 1y : A* — A1 js defined by (xf)Er, ..., &—1) =

F(X. &1 ..., &-1). There holds 1,(f A g) = (f) A g+ (=D%S f A (1,8), and
Lylw = —lwly, Iply = 0. For a vector v € RN and the 1-form v" € A! with the same

coordinates there holds v”_ f = 1, f.

2.2 Differential forms

A differential form is a mapping from Q C R to A¥. Further € will be a bounded contractible
domain with sufficiently regular boundary. Using the canonical basis dx'' A. . .Adx'* ak-form
can be represented as

f= Y fradx A adxi 2.2)
1§i1 <~~'<ik§N
Then | f2(x) == Y12, cocipen [firooig 2.
For two differential forms f and g of order k their scalar product in the sense of L3(Q, A
is
(f, e =/fA>kg=/(f,g)dV, dV =dx' A+ ndxV.
Q Q
We shall also use this notation for a more general case when (f, g) € LY(Q).

The operation of exterior differentiation d is a unique mapping from k-forms to (k 4 1)-
forms such that df coincides with the differential of f for O-forms (functions), d o d = 0,
dlaAB) =danp+ (—D*a AndB forany o € CH(Q2, A¥) and B € C1(Q2, A)). For a
k-form f,

k+1

AfEr ) =Y DT WEIEL LB, EnL e € RY.

j=1

@ Springer



The Lavrentiev phenomenon in calculus of variations with ... Page7of44 62

The interior derivative (Hodge codifferential) of a k-form f is
Sf=(=DN6DH yguw f=(=DF s« Tdx 1.
There holds d? = 0, §2 = 0. On k-forms
%8 =(—Dfd* and xd=(—DF"sx. (2.3)
For a k-form f and [-form g there holds
d(f Ag) =df Ag+ (=D f ndg, 8(fag) = (=DM df g+ (=1 fosg.
Formally one can write df = VA f,§f = —V_f, and in coordinates, for the form (2.2),

using the Einstein convention of summation over repeated indices we have

(df)i1.~-ik+1 = (_l)lilaxilﬁl~..il~..ik+l’ (Sf)ilmik—l = _axj f/i1-~~[k—l‘ (2.4)

Let v, = (v,...,vy) be the unit outer normal to  and introduce the 1-form v =
vidx! + -+ vydx"N. For a differential k-form f the standard Gauss theorem reads as (see

(2.4))
/ @f)iy. i dV = f A Piroiens o, / Py dV = / W f)ir i do
Q a2 Q a2

foreachl <iy <--- <iy < N,wheredV = dx!...dx" is the standard volume form and
do is the surface area element. The integration-by-parts formula is

/(df,g)dV — f(f,ég)dV = / (vA f,g)do = / (f,voug)do. (2.5)
Q Q 90 80

In the sense of forms, the surface element do is connected to the volume formdV by do =
1,d V. The orientation of d€2 is chosen such that the integral of do over any “substantial”
boundary part is positive.

The operators d and § are adjoint on compactly supported forms. By direct computation
(use (2.1) withv = V, w = —V), d§ + 8d = —A, where the Laplace operator is applied
componentwise.

A form f satisfying df = 01is closed. A form f satisfying § f = Ois coclosed. If f = dg
then f is exact, and if f = §g then f is coexact. If both df = 0 and § f = O the form is
called harmonic (or harmonic field).

The pullback of the form f under the mapping ¢ is defined by ¢* f,

(@ x5 €1, 8 = fle(x): @' (&1, ..., @' (0)&).

This operation satisfies ¢* (o A B) = ¢*a A ¢*B and ¢p*d = d¢*. In coordinates, for the
form (2.2),

@HE = D fiale@)de AL Adg*
1<ij<--<ix<N
= > @ Njg@dx] . dxT,
I<ji<-<jk<N
where
AP, ..., @ik
@ Hpa= Y @) ), 26)

A(x/n, ..., xJk
1<ij<--<ig<N @/t X0
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2.3 Tangential and normal part of a form

Recall that by v, = (v1, ..., vy) we denote the unit outer normal to 92 and v = vidx! +
.-~ 4 vydx". For a differential form w define its tangential part

to(€r, ..., 5) = 0@ —v(EDvy, ..., & — v(E) V)

and its normal part nw = @ — tw. Then

tf =va@Af), nf=vAa@if), f=tf+nf,
vALf =vAf, vatf =0, tf =0 vAf=0,
vAanf =0, vonf=vaf, nf=0&vf=0.

That is, setting ¢ f is equivalent to setting v A f and setting nf is equivalent to setting v_ f.

While integrating over d€2, the tangential part of a form coincides with its pullback under
the inclusion j : 9Q — €, thatis fw = j*w, and the normal part of the form vanishes.

The decomposition of a form into the tangential and normal parts can be also done using
coordinates in a “collar” neighbourhood of 9€2, by choosing (locally) an “admissible” coor-
dinate system (map) ¢ : U — V, U,V C RY, suchthat dQNV C {¢(y',0) : (y/,0) C U}
and (@y; ', 0), Oyy (y',0)) = 8in, 1 <i < N (see [45, Chapter 7, Lemma 7.5.1]). In this
coordinate system for

w= Z a)il_“ikdyi‘ Ao A dyi“

1<ii<--<ix<N

we have w = tw + nw, where

tw = Z a)ilmikdyil VANIAVAN dyik,
1<ij<--<ig<N
no = Z w,‘]”_,-kdy"‘ A.../\dy""*‘ /\dyN.

1<ij<--<ifp_1<N

If w is a function (0-form) we set tw = w and nw = 0. If w is an N-form we set tw = 0,
nw = w. The decomposition ® = t® + nw is invariant on €2 and we have

tx =%*n, nx==xt, td=dt, nd=én.

In particular, fw = 0 on 92 implies tdw = 0 on 92 and nw = 0 on 2 implies néw = 0 on
aL2.

In terms of the Stokes theorem, integration-by-parts formula (2.5) reads as follows: by
(2.3) for a k-form f and a (k + 1)-form g there holds d(f A xg) = df Axg — f A %xdg,
therefore

df. 9 — (f,89)a = f (df Axg— f Axdg) = f d(f A *g)

Q Q

:/f/\*g:/tf/\*ng. @.7)
0Q2

aQ
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2.4 Orlicz functions setup

We say that ¢ : [0,00) — [0, oo] is an Orlicz function if ¢ is convex, left-continuous,
$(0) = 0, lim ¢ '¢(r) = 0 and lim r~'¢(r) = oco. The conjugate Orlicz function ¢* is
t—0 1—>00
defined by
@*(s) == sup (st — P (1)).

t>0

In particular, st < ¢(t) + ¢*(s).

In the following we assume that @ : Q x [0,00) — [0, oc] is a generalized Orlicz
function, i.e. @(x, -) is an Orlicz function for every x € Q and @ (-, t) is measurable for
every ¢ > 0. We define the conjugate function @* point-wise, i.e. ®*(x, -) := (@ (x, -))*.

We assume that @ satisfies the “nonstandard” growth condition

—co+cilt|’m = @(x, 1) < e2lt]™* + co, (2.8)

where 1 < p_ < py < 00,¢c9 >0, c1, c2 > 0, and the following properties:
(a) @ satisfies the Ar-condition, i.e. there exists ¢ > 2 such that for all x € Q and allz > 0
D(x,2t) <cP(x,1). (2.9)

(b) @ satisfies the V,-condition, i.e. @* satisfies the A,-condition. As a consequence, there
exists > 1 and ¢ > O such that for all x € 2,¢ > 0 and y € [0, 1] there holds

D(x,yt) <cy® d(x,1). (2.10)

(c) @ and @* are proper, i.e. for every ¢ > 0 there holds

/@(x,t)dV < oo and /(D*(x,t)dV < 00.
Q Q

2.5 Sobolev-Orlicz spaces of differential forms

Let @  R" be a bounded domain in RY . In our applications this will always be a ball or a
cube.

Different functional spaces like Lebesgue spaces L?(2) and Lebesgue—Orlicz spaces
L?O)(Q), Sobolev spaces WLP () and Sobolev—Orlicz spaces wLeO(Q), spaces of k times
continuosly differentiable functions C k (2) are defined in the usual way (see, for example,
[37D.

The Lebesgue-Orlicz space L? ) () is the set of all measurable functions in £ with finite
Luxemburg norm

IfllLeo @) = inf{)‘ >0: /‘P(X, IfIx"Hav < 1}-
Q

The Sobolev—Orlicz space wh®O(Q) is the set of functions f € Wh1(Q) such that
IV ] € L?O(Q), endowed with the norm || f [l yy1.00 ) = I fll 1) + IV fllLe0q)-

For a generalized Orlicz function @ (x,t) we define the Lebesgue-Orlicz space
LPO(Q, A¥) as the space of measurable differential k-form such that |f]| € LPO(Q).
The norm in this space is the norm of | f| in L?O(Q). For constant @ = p > 1 we get the
standard Lebesgue space L? (2, A).
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Let r € NU{0}. For E = Q or E = Q the space C"(E, AX) is the space of all differ-
ential k-forms for which all partial derivatives D% f up to the order r are continuous in E.
By C§°(<2, A¥) we denote the space of smooth k-forms with compact support in €.

Definition 1 (Full Sobolev—Orlicz Space) We say that a k-form f e WLPO(Q, AF)
if fi..ip € wLe0(Q) for every 1 < i < --- < iy < N. The norm is defined compo-
nentwise:

Ifllwreo@an = .  Ifiilwieg:-

1<ij<--<ix<N

If Q is of class C? then for f € W11($2, A¥) the boundary trace of f exists, belongs to
L1(3€), and the Stokes theorem holds (see [48], [47, Theorem 6.4]):

[
19 Q

We say that u € L}OC(Q, A¥) has a weak differential du e L}OC(Q, AFF1Y if for any
£ € C5°(Q, A*F1) there holds

/(u,éE)dV:/(du,S)dV,

Q Q

or equivalently
/uAds = (—1)’<+1/dms
Q Q

forany £ € C§°(Q, ANF=1),
We say that u € L}OC(Q, A¥) has a weak codifferential Su € L}OC(Q, AR if for any

£ € C5°(, A*~1) there holds

/(u,d%‘)dV = /(5u,§‘)dV,

Q Q
or equivalently
/umsg = (—1)k/5uAg
Q Q

for any & € CJ°(Q, AN7F+1),
Both weak differential and codifferential are unique.

Definition 2 (Partial Sobolev—Orlicz Space) For 0 < k < N — 1 we define the partial
Sobolev—Orlicz space W20 (Q, A¥) as the set of forms w € L1 (Q, A¥) with weak differ-
ential dw € L9V (2, Ak), endowed with the norm

||Cl)||Wd,<D(»)(Q’Ak) = ”a)”Ll(Q,Ak) + ”da)”Ld)(-)(Q’AkH).

The space H%20(Q, A¥) is the closure of smooth forms from W ®O) (2, AX) in this space.
For 1 < k < N we define the space W20 (Q, A¥) as the set of forms w € L1(Q2, A¥)
with weak codifferential 8w € L?(Q, A¥) endowed with the norm

loll W20 (Q,Ak) = ||w||L1(Q,Ak) + ||8w||L¢(-)(Q,Ak*l)-
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The space H320(Q, AF) is the closure of smooth forms from W32 (Q, A¥) in this space.

If Qis abounded C? domain (or a polyhedral domain), then the following Green’s formulas
hold [18, Theorem 3.28]. Let 0 <k < N —landlet p > 1.If f € WP(Q2, AF), g €
Whri(Q, AR, then

[asrav— [ we.rrav= [wns o

Q Q Q2

If feWlP(Q, A", ge WP (Q, AFt!), then

/ df.g)dV / (5. ) dV = f (. vag) do.

Q Q Q2

The boundary traces v A f and v_g in these formulas are given by bounded lin-
ear mappings from WP (Q, AF) to W=1/P-P3Q, A1) and from W7 (Q, A¥1) to
w-Yrr g, AR, respectively. These mappings are generated by these very integration-
by-parts formulas. If f belongs to the full Sobolev space W7 (2, A¥), then both tangential
and normal components of its boundary trace ¢f and nf are from W!'=1/?-7(3Q, A*). An
extensive treatment of the boundary trace problem for spaces of differential forms can be
found in [44].

Let Wf’¢(')(9, A¥) be the set of forms from W20 (Q, A¥) with compact support in 2.

Definition 3 (Spaces with zero tangential component)
For0 < k < N — 1 we define the space W;l’q)(')(Q, A¥yasthe set of w € WPO(Q, AF)
such that

/<dw,ﬂ>dvzf<w,d5>dv

Q Q

for all B € C1(Q2, A¥t1), endowed with the norm of W& 20 (Q, AK).
The space W2 (R, A¥) is the closure of W ?® (2, A%) in W20 (Q, A¥).
The space H¥’¢(')(Q, A¥) is the closure of Co(, ARy in w420 (@, AF).

Clearly, HX?O(Q, Ab) ¢ WHPO(@, AF) ¢ wi?Y(Q, Ak). A smooth k-form w

belongs to H;I’¢(')(Q, A¥) if and only if its tangential component e is zero on <.
Let WO?O(Q, A%) be the set of forms from WO (Q, A*) with compact support in €.

Definition 4 (Spaces with zero normal component)
For 1 < k < N we define the space W;i;‘p(‘)(Q, Ak) as the set of w € W‘S*‘p(')(Q, Ak)
such that

/(dw,ﬂ)dV:/(w,dﬂ)dV
Q Q

forall B € Cl(ﬁ, Ak_l), endowed with the norm of W‘S*‘p(')(Q, Ak).
The space Wf]’(p(')(ﬂ, A¥) is the closure of Wf’(p(')(Q, ARy in WE20(Q, AK).
The space H;z,’dj(')(Q, AK) is the closure of (e, ARy in WE2O (@, K.
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Clearly, Hy* (@, A%) ¢ W5%0 @, a%) ¢ wi?0 (@, A%). A smooth k-form w
belongs to H;z,'d)(') (2, A%) if and only if its normal component component nw is zero on dS2.
The following proposition is straightforward.

Proposition 5 All the spaces introduced in Definitions 2, 3 and 4 are Banach spaces.

For @(-) = p € [1, oo] we get the classical partial Sobolev spaces W;l’p(Q, A¥) and
Wi,’p (2, A%) with vanishing tangential (correspondingly normal) component on the bound-
ary. The spaces Wﬁ’p(Q, A¥) and W,f,’p(Q, AFK) coincide with the closures of C§°(2, A¥)
in WP (Q, A%y and Wo-P(Q, AY), respectively (see [39]). In this case there is no difference
between between H and W spaces.

If Q@ € €/, a form from Wd"p(')(Q, A") or W‘S"p(')(Q, Ak) belongs to W¥’¢(')(Q, Ak)
or Wf\,‘(p(') (2, A¥), respectively, iff its extension by zero to '\  produces an element from
WP Q! AF) or WE2O(Q, A¥), respectively.

3 Minimization problem for non-autonomous functionals with
differential forms

3.1 Gauge fixing

Recall (for instance, [18, Theorem 6.5]) the following facts regarding the harmonic forms
with vanishing tangential or normal components at the boundary. Let H7 (2, A¥) be the
set of harmonic forms from W}’z(Q, AF)y and Hy (2, A¥%) be the set of harmonic forms
from Wﬁ,’z(Q, A¥). The spaces Hr (€2, A¥) and Hy (2, A¥) are finite dimensional, closed
in L2(2, A%), for contractible domains H7 (2, A¥) = {0} for 0 < k < N — 1 and
Hn (2, A¥) = {0} for 1 < k < N. The space Hr (2, AV) is the span of dx' A ... A dxV
and the space Hy (2, A?) is the span of 1.

We need the following result on the solvability of the Cauchy-Riemann type systems for
differential forms. This result is a particular case of theorems [18, Theorem 7.2] for p > 2
and [50, Theorems 2.43] for any p > 1, and triviality of the set of harmonic forms with zero
tangential component at the boundary. See also [48, Chapter 3, Theorem 3.2.5].

Corollary 6 Let Q2 be a bounded contractible C3 domaininRY, 0 <k < N —1, p > 1,
wy € WP(Q, A), and B € wy + WP (2, AK). The problem

do=dB, so=0 in Q,
VAW =VAwy on 0%

has a unique solution w € WLr(Q, A% with

lollwip ar < C (||CU0||WI-1?(Q,A/<) + ||d,3||Lp(Q,Ak+l)) .

with C = C(N, p, ).

3.2 Existence of minimizers

In this section 0 < k < N — 1, € is a bounded contractible C3 domain in RV,
D : Q x [0,4+00) — [0,400) is a generalized Orlicz function satisfying (2.8), b €
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L2OQ, ANF1) we study the existence of solutions to the following two variational
problems.

(W-minimization) Let wog € Wl"p(')(Q,Ak) and minimize F¢ , over the set wo +
w0 @, A%):

Fop(®) =/<I>(x, ldw|) dV +/b/\da) - min, o € wy+ WY@, AF). G.1)
Q Q
(H-minimization) Let wy € HY®O(Q, A¥) and minimize Fp, over the set wy -+
HEPO(Q, AF:
Fop(w) — min, o€ wy+ Hp?(@, Ab). (3.2)

Theorem 7 The variational problem (3.1) has a minimizer w € woy + W?’¢(')(Q, AR) with
dw =0.

Proof Let wg be a minimizing sequence, clearly
”de”L“)(')(Q,AkJrI) <ec.
Due to the coercitivity condition (1.2) we have
ldows|l Lo a1y < c.

By Corollary 6 there exists oy € wg + W;’p‘ (2, A% satisfying doy = dw; and oy = 0 in
2 such that

”as”WI-P—(Q,Ak) =c.
Clearly a5 € W?0(Q, A*) and
”aS”Wd«(D(‘)(Q,Ak) <ec.

The sequence o is bounded in the space WE2O(Q, A% N whP-(Q, A¥) endowed with
the norm which is the sum of norms in W% ?O(Q, A¥) and W-P-(Q, A¥). Its dual space is
separable, therefore there exists

@ € wy+ WY@, Aby nwhr-(Q, Ak
such that da = 0 and up to the subsequence,

oy —> a in LP-(Q, AN,
doas—da in LPO(Q, AF.

From the convexity of @ (x, -) and Mazur’s lemma, we have the lower semicontinuity:

1iminf/<P(x, ldas|) dV > /CD(x, lda|)dV.
§—>00
Q Q

Since in the linear part we have convergence, the proof is complete. O

Theorem 8 Let wg in H®O(Q, AK(RN)). Then the problem (3.2) has a minimizer @ €
wo + HE PO (@, AF) with sw = 0.
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Proof We keep the notation from the proof of Theorem 7. Let wy = wo+vs, ys € C3 (L2, AR,
be a minimizing sequence, clearly

”de”Lq)(')(Q,AkH), ”dyS”L‘P(‘)(Q’Ak+1) <c.

Due to the coercitivity condition (1.2) we have
||dws||L1’—(Q,Ak+l)» ”dyS”LI’—(Q'Ak-H) <ec.

By Corollary 6 there exists o5y € wo + W;’p (R, Ak) satisfying doy = dwg and oy = 0 in
2 such that

llees Ml yi.p— (Q,Ak) = C-

Writing oy = wo + Bs, one gets s € W;’p’ (2, AN satisfying dBs = dys, 88s = —dwo.
Extend g to RV \ 2 by zero.
Clearly ay € W4®0(Q, A¥) and

”aS”deq)(')(S'LAk)v ”ﬁS”Wd«q)(')(Q’Ak) <c.

Letp : Q x (0,1] — RN be a C? mapping such that ¢(x, 1) = x for all x € €, and set
or(x) = p(x,t). Let go,_l Q € Qforevery t € (0, 1]. If Q is a ball centered at the origin, one
takes ¢;(x) = x/t. Consider the pullbacks ¢;B;. These forms have compact support in €2,
with de; B¢ uniformly converging to df; = dy; € C°(R, A*F1y and 8¢/ Bs converging to
—8wo in L{, (2, A¥"Y) ast — 1 — 0. Moreover, ¢;* 8; converges to B, in WIL’C”‘ (€2, AF
ast — 1 — 0. This is easily seen using (2.6).

Mollifications (¢} Bs)e(x) = [ xe(x — Y)@fBs(y) dy, where xo(x) = & x(x/e),
x € CPlx| < 1}) with fx dx = 1, converge to ¢, in LP-(, AR, d(¢] Bs)e con-
verges uniformly to do;f By, (¢f Bs)e = ¢ Bs in WIL’CP’ (€2, AY), and 8(¢f Bs)e — 8¢f Bs in
Lﬁ; (€2, A¥ 1 ase — 0. Clearly, (@] Bs)e € Cg (2, A¥) for sufficiently small ¢.

Therefore, keeping the same notation for 8, while replacing it by (¢; Bs), for appropriate
t and &, we can assume that the new minimizing sequence has the form oy = wg + S5, where
Bs € C°(L2, AR, By is uniformly bounded in W20 (@, A%) and in WLP—(Q/, A¥) for
all Q' € Q. Moreover §(wy + B5) — 0 fors — oo in Lﬁ); (22, Ab).

Therefore there exists

B e WO, AYy nwl- (@, Ak
such that § (wo + B) = 0 and up to the subsequence,
. Lp . _
B—B in WL (. AY)., By— B in L (Q. A"),
dBs—dB in L%V, Ak,
Due to the convexity of @ (x, -) and Mazur’s lemma, we have 8 € H;{"p(')(Q, A¥) and for

o = wo + B there holds

§—>00
Q Q

1iminf/¢(x,|das|)d\/ > /¢(x,|da|)dv.

Since in the linear part we have convergence, the proof is complete.
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Remark If one drops the Coulomb gauge condition w = 0 in Theorem 8 then its proof
can be somewhat simplified. Instead of o take &5 € W;’pf (22, A¥) satisfying da@, = dys,
dag = 0. Extend &, by zero to RN \5, For sufficiently small ¢ the mollifications of the
pullbacks (¢} ay), are smooth forms with compact supportin €2, (¢;d¢s)s — @5 in WIL’CP (),
and (d¢;d;s). uniformly converge to dys ast — 1 — 0 and ¢ — 0. Then taking appropriate
t and € we pass to the minimizing sequence wo + (¢;'@;).. The rest goes as above.

Alternatively one could use [48, Chapter 3, Theorem 3.3.3] to establish the existence of
Qg € w(}"’-(sz, A¥) with dé; = dys and [|&s lly1p- gy < clldysllr- (g ak+1)- Then the
above argument repeats, moreover the “loc” subscript can be dropped since the extension of
a WO1 P~ (Q) function by zero produces a function from wL-P=(D) for any bounded domain
D c RY. Or use the Bogovskii type operator constructed in the paper by Costabel and
Mclntosh [22].

4 Lavrentiev gap and non-density

In this section we design the general framework for the construction of the examples on
Lavrentiev gap. We introduce the set of assumptions for the examples in the Sect. 4.1 and show
how to obtain non-density of smooth functions and the special type of the non-uniqueness
of the minimisers under these assumptions. In Sect. 4.3 we introduce basic forms which will
be building blocks of our examples. These building blocks correspond to the one saddle-
point geometry of the classical checkerboard Zhikov example and are then used in Sects. 4.4
and 4.5 to construct more advanced examples using fractal Cantor barriers. The results are
summarised in the Sect. 4.6

4.1 Separating pairs of forms and separating functionals

Here we present some “conditional” statements. We shall use two assumptions. Let 2 be
a domain in RV with sufficiently regular boundary, k € {1,...,N —1},and & C Q be a
closed set of zero Lebesgue N-measure. Our argument will be based upon defining a suitable
set G and (k — 1)-form u and (N — k — 1)-form A, which are smooth in Q \ & and give
a “counterexample” to the Stokes theorem. The regularity of 92 is assumed to be such that
the classical Stokes theorem holds. Further 2 will be either cube of ball in R .

Let @ : Q x [0, +00) — [0, 400) be a generalized Orlicz function.

Definition 9 We say that a pair of (k — 1)-form and (N — k — 1)-form (u, A) defined in 2 is
(@, k)- separating if there exists a closed set & C 2 of zero Lebesgue N-measure such that

(1) u and A are regular outside G;
(i) u e Wh(Q, Ak and A € Wh1I(Q, ANF=1y;
(i) [AAdu=1,
Q2
@iv) |du|-|dA|=0 in Q\G;
(v) [P(x,|dul)dV < coand [ P*(x,|dA])dV < oo.
Q Q

When invoking a pair of (@, k)-separating forms we assume that the set S comes from this
definition and when necessary denote it by &(u, A).
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The essential property of (@, k)-separating forms is that A A du “contradicts” the Stokes
theorem. Indeed, disregarding the singular set X we would arrive at

0=/dAAdu=/d(A/\du)=/A/\du=1.
Q Q Q2

Definition 10 Let u and A be a pair of (&, k)-separating forms and n € C3°(2) with n =1
in a neighbourhood of &. Set

u® =nu, u? = (1 —nu,
A° = A, A = (1 - pA.
On W20 (Q, A¥—1) we define the functionals S, S°, and S by
S(w) := /dA/\dw, S (w) = /dA" Adw, S(w):= /dAa Aduw.
Q Q Q
Proposition 11 (Separating functional) The following holds

(a) S,S°, S define linear functionals on w20 (Q, Ak,
(b) Forallw € HH®O(Q, A¥~1) we have §°(w) = 0.
(c) For the functions u, u®, u° it holds:

Sw) =0, Sw’ =1, Sw°) =-1,
Sw=1, SuH=1, Sw) =0,
Sw=-1, Su’)=0, Swu°) =-1.

Proof The first claim follows from dA € L®" (2, A¥=%). Due to the Stokes theorem and by
approximation for all w € H4?0(Q, A¥~1) it holds

/dAO/\da):/AO/\dw:O.
Q 3Q

Now du A dA = 0 almost everywhere, therefore S(u) = 0. Since u? € C®(Q, AF1)
and A? € C®(Q, AN F=1(R")), we can use the Stokes theorem and the third property of
(@, k)-separating pair to obtain

Sf’(uf’):/dAaAdua:/AaAdu*’:/AAduzl.
Q 1] aQ

Since A° A du? belongs to C3°(2, AV™1), and d(A° A du®) = dA° A du®, again by the
Stokes theorem we get

S°(u3)=fdA°Adu3 =0.
Q

Analogously, we obtain S? (u°) = 0. Now,
Sw)=8uw) -8 u) -8u?) -w)=0-1-0-0=—1.

This proves the claim. O
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Corollary 12 If there exists a pair of (D, k)-separating forms then
HEPO(Q, ARy 2 wh PO, Ak,

Proof By Proposition 11, & = 0 on Hd’d)(')(Q,Ak_l). On the other hand, u €
WO (Q, AF1) and 8°(u) = —1. O

Corollary 13 If there exists a pair of (@, k)-separating forms then
H?!¢() (Q’ Ak—l) ;é W?q(p() (Q, Ak—] ).
Proof For any ¢ € C3°(L, A*=1) by the Stokes theorem we have
S((p):/dA/\d(p:/A/\d(p:O.
Q 80

On the other hand, u° € W?’d’(')(ﬂ, AF1yand by Proposition 11 we have S(u°) = —1. O

Theorem 14 (Lavrentiev gap) If there exists a pair (u, A) of (D, k)-separating forms then
for b = dA° the functional

Fo.p(w) :/@(x,|dw|)dV+S°(w) :/fp(x, |dw|)dV+/b/\dw
Q Q Q

satisfies
inf Fo p (WEPO(Q, A1) < inf Fp 1, (CO (R, A1)
and as a corollary
inf Fop (WP (@, A1) < inf Fo p (HEO (@, A7), A.1)

Proof By Proposition 11 and nonnegativity of @, F¢ ,(w) > Oforallw € H'T“p(‘) (Q, Ak,
On the other hand, for ¢ > 0, using Propositions 11 and (2.10), we have

Fop(tu®) = / D(x,t|ldu®)dV —t <ct’ —t
Q

with some s > 1. This implies Fo 5 (tu®) < O for sufficiently small 7. m}

4.2 Separating pairs and BVPs

Closely related to the Lavrentiev phenomenon is a special type of nonuniqueness for boundary
value problems. In the simplest form this can be expressed as (1.8) and for minimization
problems this reads as

w; # h; and Fo o(w;) < Fo,o0(h;) where
w; = arg min .7:45,0(600 + W}i’(p(')(Q, Ak_l)), (4.2)
hy = argmin Fg o(wo + Hir®O (2, A1)

for some boundary data wq € HL20(Q, Ak,
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First, we repeat a certain result from [11]. Let

Flw) = Fo,0(@) = / D(x, [do)dV, F(g) = Foro(®) = / D" (x, gD dV.
Q Q

Let (u, A) be a (@, k)-separating pair. Denote b = d A.
Assumption 15 There exist s, ¢ > 0 such that F(tu) + F*(sb) < ts.

Theorem 16 (H-harmonic # W-harmonic)
Under Assumption 15, for wg = tu® there holds (1.8) and (4.2).

Proof Setb = dA. We have ru = 1 + tu® € tu® + WO (@, A1), Thus,
F(wy) < F(tu). (4.3)
By the properties of the Hodge dual and the Young inequality,
sb ANdhy = s(xb,dhy) < s|xD| - |dh;| = s|b| - |dhy| < ®(x, |dh]) + D*(x, 5|D]).

Hence
Fhy) = / @ (x, |dh;|)dx > s/ bAdh; — / ®*(x, s|b])dx = s S(h;) — F*(sb).
Q Q Q

See [38] for estimates of exterior product submultiplication constant.
Since i, — tu’ € HE®(Q), we have S(h, — tu®) = 0 by Proposition 11. This and
S(u?) = 1 by the same Proposition imply

Fhe) = 5 S(tu®) — F*(sb) = ts — F*(sb). (4.4)
Combining (4.3) and (4.4) we get
F(hy) — Fwy) > ts — F(tu) — F*(sb)

forall ¢, s > 0. By Assumption 15 the right hand-side of last inequality is positive, and thus
F(h;) > F(wy). This proves the claim. O

4.3 Basic forms

In this section we introduce differential forms which will be building blocks of our exam-
ples. We do necessary calculations in the cubic setting, where the boundary orientation is

straightforward.
Let k € {1,..., N — 1}. Define two groups of variables X = (x,...,x;) and X =
(Xk+1s---,xn). Let T (x), x € R/, denote the fundamental solution of the Laplace equation

in R! with pole at the origin:

3lxl, I=1,
1 1 _
Ii(x) = —ﬁllnm, =2,
—m|x|27l, [ > 2.
Here and below o7 denotes the surface area ((/ — 1)-volume) of the unit sphere in R', and [x]
denotes the standard Euclidian norm of x.
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Let 6 : R — R be a smooth increasing function such that

1 1
0()=1 for IZE’ () =0 for tsz, 10| < 4.
Let n : R — R be a smooth increasing function such that
@) =1t f z<1 ) ! f t>3 ") <0
=1t for =, =— for t>—, <0.
n =7 n ) 4 n
Our basic forms are
u=0 (Wﬂ> k: dTN 4 (2). (45)
n(lx
A=0 <¢N X1 > s ATy (%), (4.6)
n(Ix))

Here *; and *; are applied only within respective variables, that is

N

R 1 o X —

#pdl N (X) = —— Z (-1’ k=1 A]\?—kdxk"'] A.ondxj Ao N dxy,
oN-k 51, x|

k

1 . ; —_—

$5dTp(X) = G—}{Z(—l)’”%d}q A ANdxp AL N dXg.
j=1

Further for (N — k — 1)-form u from (4.5) and (k — 1)-form A from (4.6)we use the
notation u = Py(k, N — k,0,0) and A = P,(k, N — k, 0, 0). Also, in this case we denote
¢ = {0} C R¥, & = {0} x {0}¥—* c RV, and this pair of forms is denoted by ug, Ag.

The following facts are straightforward.

Proposition 17 Both *;dU y_;(X) and *3dTy (X) are harmonic
d(:d Ty ($) =0, 8(x;dTy_x(#)) =0,
d(*:dTk (X)) =0, d(xzdTi(x)) =0
outside X = 0 and X = 0 correspondingly. For cubes (—e¢, )Nk ¢ RN and (—e, &) C
Rk, & > 0, there holds
[ wirvam =1 [ wdne =1,
d(—e,e)N-k d(—e,e)k
where the natural induced orientations of the boundary are assumed.
Proposition 18 For the forms u and A given by (4.5) and (4.6)
(a) There holds
{u #0) C {151 > n(FD/@GVN)}, (A # 0} C (5] > n(2D/@V/N)).
(b) The forms u and A are smooth outside the origin,
Vul SIRIN, VAl S 1R175
(IVul #0) C (1] > n(IEh/ @V N)), 4.7
{IVA] # 0} C {1Z] > n(I1£)/ @4V N)}.
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For any bounded domain Q C RN there holds u € WLL(Q, AN*1) A €
whl(@Q, Ak=1), and

du=do («/ﬁﬂ> AsxpdTn_i(R), dA=do <Jﬁ "ZA' > A #5d Tk (X).
n(lx)) n(lx))

ldu| SRV, 1A S 1x17F
{ldu| # 0} C {n(1X))/Q2VN) > 1£] > n(I%)/ @V N)},
{ldA] # 0} C {n(2)/VN) > |Z] > n(I2])/ @V N)}. (4.8)
(c) There holds |du| - |dA| =0 in ]RN\{O}.
(d) For a nonnegative function F = F(-,-) with nonnegative arguments, satisfying Ay—
condition in the second argument and F (-, 0) = 0,

JN
/ F(|)2|,|du|)dV§/F(t,tk’N) Nlar, 4.9)
0

[—1,1¥

(e) For a nonnegative function G = G(-, -) with nonnegative arguments, satisfying Nr—
condition in the second variable and G(-,0) =0

JN
/ G(|)2|,|dA|)dV§/G(t,t‘k)tN_ldt. (4.10)
[-1,1]¥ 0

Proof The first two statements follow from the definition of u# and A. Assume that Q C
{lx] < R}. Using polar coordinates and estimates (4.7), we evaluate

R
/|Vu|dV</kNNk1k /tkldt<oo

0 0

R R
/|VA|dV§/t_ktk_1tN_kdt=/tN_k_1dt < oo.
Q 0 0

Thus the coefficients of the forms u and A belong to the Sobolev space W'!(). Since
the coefficients of the exterior derivative are linear combinations of derivatives of form
coefficients, this implies u € WoL(Q, AN*=1), 4 € W% 1(Q, A¥"!) and their exterior
derivatives are as above together with estimates (4.8).

To prove that |du| - |dA| = 0in ]RN\{O}, we note that |dA| # 0 implies |x| < |)€|/(2«/N)
and du # 0 implies |x| < |)‘c|/(2\/ﬁ) (recall that n(z) < 1t).

The last two statements immediately follows from the above estimates for |[Vu| and [V A|

and using polar coordinates. O
Let Q = [—1,11%. For x = (x1,...,x) € R! the norm [x|se = max{|xi],..., x|},
while the standard Euclidian norm is denoted by |x| = x12 4+ 4 x, Recall that for

x € R there holds |x|oo < [x] < VI|X|so-
Proposition 19 For the form A given by (4.6) on d Q N{|X|co < 1} there holds dA = 0. Thus
{dA#0}N0Q C{|X|loo =1}, u=x%;dTNy_r(X) on {dA#0}N3Q,

(4.11)
dA = dOQVN|x|) A #zdTi(¥) on {dA #0}N3JQ.
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Proof Note that
{dA # 0} C {IX] < n(XD/Q2VN)} C {IF] < 121/2VN)} C {If]00 > 2IF o).

Then for x € {dA # 0} N {|x|co = 1} there holds |%|s > 2, which implies the first claim.
Thus,

{dA#0}N3Q C {IX]oo = 1} N{1/(8VN) < [%| < 1/(4V/N)).

On the set {dA # 0} N 9Q we have |X|oo = 1, |x| > 1 and |x| < 1/4, n(|x]) < 1/4, so
O(VN|x|/n(x)) = 1, n(X]) = 1, dn(|X]) = 0, and we get (4.11) by Definitions (4.5) and
(4.6) of u and A. O

The following statement is central in our considerations. Let d[—1, 11V be the boundary
of the cube Q = [—1, 1]V with the natural induced orientation.

Lemma 20 For the forms u and A given by (4.5) and (4.6) there holds
/ undA = (—D)kN=0, / AAdu=1. (4.12)
a—1,11¥ a[—-1,11V
Proof Below we use the notation of integration on cubic chains see [54, Chapter 4]. Let
o' L1 >R, Q') =x,

be the standard /-cube and 3 Q' its boundary with the natural induced orientation.
Denote the boundary faces of QO as

=LV - RY,
I]#(xl,...,xj_l,xj+1,...,xN) = (xl,...,xj_l,:izl,xj+1,...,xN).
Then 8QV = Zyzl(—l)Hu}“ - 1}‘)).
By ON—*[%] we denote the (N — k)-dimensional cubes with centers at (¥, 0),
ON=FR: =1, 1IN *F S RY, OV MR (ksts - oo, XN) = (B, Xkl - - -5 XN)-
The faces i;i) [x] of these cubes are
IPE: =1L 0V S RY, TR G X X XD
= ()E,xk+1 ...,xj_l,:izl,xjH,...,xN),
and the boundary of QN ~¥[¥]is QN ¥ [¥] = YN, | (1)) *1 AP [x] - 117 [E)).
By (4.11) we have '

/uAdA: / *);dFN_k()?)/\dA

QN QN
N
= Z (-1)/'—1< / — />*X dTN—k(£) A dO(2V/N|%|) A #zdTk(¥)
j=k+1 1o o

N
= (—HNRE R (—1)/’*"*'( [ - /)d@(Z«/ﬁ\il)/\*;dFk()E)/\*_;dFN_k()?)

Jj=k+1 ) =)
I I
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N
= (==K / dOQVN|x|) #z dTk(X)) Y (—l)j’k"< / - / )* ATy k(%)
ok J=k+l P 100
= (=N —0k / d(OQVNI|Z|) *z dTi (%)) = (=N Pk / 0NN |%|) 5 dTy(¥)
ok a0k
= (=DWIk / #ed (@) = (=1L,
a Ok
Thus we get the first relation in (4.12). Since

AAdu — (—DKN=0y A dA =do, o= (1) DN=Ky, A 4

we have
/ <A Adu — (—=1)FN=Ry A dA) =0.
a[—1,11¥
This yields the second relation in (4.12). The proof of Lemma 20 is complete. O

To summarize the results of this section, we have shown that the pair of forms u and A
given by (4.5) and (4.6) is (@, N — k)-separating in Q = [—1, 1y provided that the integral
(4.9) converges for F > @ and the integral (4.10) converges for G > @*.

4.4 Generalized Cantor sets and their properties

In this section we construct (generalized) Cantor sets.
Letl;, j =0, 1,2, ...beadecreasing sequence of positive numbers starting from /p = 1:

l=l()>11>12>--~

such that/; 1 > 2[; for all j € N. We start from Iy | = [—1/2, 1/2]. On each m-th step we

we remove the open middle third of length /; —2[; | from the interval 1, ;, j = 1,...,2" to
obtain the next generation set of closed intervals I,,41,;, j =1, ..., 2+l The union of the
closed intervals I,,, ; = [am,j, bm,;jl, j = 1,...,2" of length [,, from the same generation

forms the pre-Cantor set C;,, = Ui’ll I, j. The Cantor set € = ﬂ;‘fzo C,, is the intersection
of all pre-Cantor sets C,,.

On each mth step we define the pre-Cantor measure as i, = |Cy, |-t 1c,,, where |Cy,| =
2", is the standard Lebesgue measure of C,, and the weak limit of the measures w,, is the
Cantor measure corresponding to €.

We require further that

3y — L1

Im—1 =2l > Ly = 2bp41 & g1 > f’

at least for all sufficiently large m.

If the sequence /; satisfies the conditions above only for sufficiently large j > jo, then
we modify it by taking the sequence l~j = lj+j0(lj0)_1, j=0,1,2,...

For k € N by ¢k and ¥ we denote the Cartesian powers of k copies of € and its
corresponding Cantor measure, respectively.
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Definition (Generalized Cantor sets). Let l; = Al JjV, 2 € (0,1/2), y € R. We denote the
corresponding Cantor set by € ,,, the Cartesian product of its k copies is (’Zﬁ,y. For QZI){J, we

denote ® = —k1In2/In A, so that A® = 2. We denote the Cantor measure corresponding
to €, , by uy,, and its k-th Cartesian power by u’i’y.

Definition (Meager Cantor sets). Let [; = exp(—2//7), y > 0. Denote the corresponding
Cantor set by € ,, and its Cartesian products by @’(‘W. For these sets we denote ® = 0. We

denote the corresponding Cantor measures by ,ul(‘) "

Denote ¢; = {dist(x, &) < t}, where € is one of Q:I;,V or GS’V defined above. Denote by

doso(x, €) the distance from x to € in the maximum norm and let €, ; = {doo (X, €) < t}. It
is clear that &, C €yr. Let | F|g denote the standard Lebesgue k-measure of F C R¥. In the
following lemma B} is the open ball in RF with center at ¥ and radius 7.

Lemma 21 We have
1@ )il SE2n e, (BY) S Pt T7R, (4.13)
and

(€0, )il S 4 ne™)7%, o, (BY) S (neH77k, (4.14)

Proof Let I; be the sequence of interval lengthes defining the corresponding Cantor set. Let
t€(j/2—1j41,1j-1/2 —1;). The set €, consists of 2%/ identical cubes of the form

l.
- = J
X — X sloo < 5+t.

So
€k < 280D 420k,

First consider the case € = Q’;,V with A > 0. Thenl; + 2t <1[; | —I; < ct with some
constant ¢ independent of j, so

1€k < 1€aile S 296K,
Recalling that ® = —kIn2/In 2 and A° = 2%, we get
M =270 =172 70 5 (1)) = 2 ()P,

Thus we arrive at the first inequality in (4.13).
Now consider the case &€ = Qﬁ'(;’y (ultrathin Cantor sets). Then we get

) 1 vk 1 vk
2k = (m 7) ~ (m 7>
lj t

and this yields the second inequality from (4.13).

Now let us estimate M(Bf). Any interval of length 2t witht € (1;/2 —1;41,1;-1/2—1;)
can intersect at most one interval forming the j-th iteration of the pre-Cantor set. Since Bf
lies within a cube with edge 2¢, then ,u])‘hy(Bf) < 2k, Using the above estimates for 27k
we arrive at (4.14). The proof of Lemma 21 is complete.

O
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4.5 From one singular point to fractal sets

Letke{l,...,N},A€(0,1/2)andy € R,or A = 0and y > 0be given. Let Q2 be the ball
of radius /N in R" centered at the origin.
Now let € = Ql)‘hy be the generalized Cantor set with the given parameters and pu = ,uf{y y

be the Cantor measure corresponding to Qli v Our construction will be based on the singular
(or fractal contact/ barrier) set & = 6’; y X {0}V =% Recall that for generalized Canter sets

@ﬁ,y we set © = —kIn2/In A (equivalently, A = 27%/®) and for meager Cantor sets Qé’y
we set ® = 0.

Letd(x, €) be the generalized distance, see [55, Chapter VI, §2] from x to €. In particular,
d(x, €) € C¥(RK\@),

édist(f, @) <d(x, ©) < Cdist(x,©), |V/d(F, ©) < C;(distF, €)'/, j eN, (4.15)

where C, C; > 1 and dist(x, €) is the standard Euclidian distance from x to €. Without
loss, we assume that C > 4.

Let & : R — R be a smooth nondecreasing function such that 8(¢) = 1 for ¢t > 1/2,
0() =0forr < 1/4,|0’| <4.Letn: R — R be a smooth nondecreasing concave function
such that n(t) =t fort < 1/4 and n(¢t) = 1/2 fort > 3/4.

For & = € x {O}N_k, ¢ = ¢* | we define the (N — k — 1)-form ug, the (k — 1)-form

As, and the function pe by
ug =0 (Wc%) e dTN_i(£), (4.16)
As(X, %) = / Ao(E — 7, )du(3), Ae =06 («/ﬁ%) w; dTp(X),  (4.17)
ps =6 (CL) : (4.18)
3nd(, €)

Here the constant C is from (4.15). The integral is understood as integrating the coefficients
of the form.In € there holds |V/ pg(x)| < C(j)|X|~/, j € N.

Further the (N — k — 1)-form ug defined by (4.16) and (k — 1)-form Ag defined by
(4.17) corresponding to the space dimension N and the Cantor set €, ,, will be denoted
by Pi(tk, N — k,®D,y) and Pa(k, N — k,®, y). That is, ug = Pi(k, N — k,®, y) and
Ag = Pak, N — k, D, y). The function pg defined in (4.18) will be also denoted by
Potk, N —k, D, y).

Lemma 22 There holds u € Wh1(Q2, AN =k=1y n Cc®(Q\&, AV *=1y and

N ~1k—N
IVul(x, 3) S Lysyoaise e.oy/sczymp 0 “.19)

S N A k=N
|dul(x, X), [8ul(x, %) S ]l{dist(i,e)/(8c2ﬁ)<\;e|<dist(;,@)/(zm)}|x| .

For a nonnegative function F = F (-, -) with nonnegative arguments, satisfying A,-condition
in the second argument and F(-,0) = 0,

JN
/F(|)2|,|Vu|)dV§ / F(t,tk_N>tN_k_]|¢,|kdt. (4.20)
Q 0
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Proof Clearly, u is smooth in € \ &, and in particular its coefficients have ACL property.
Immediately from the definition of u, (4.15) and Proposition 17 we obtain (4.19). Then using
polar coordinates in R" ~* we obtain (4.20). In particular, for F (s, 7) = t by Lemma 21
we get |Vu| € LY(Q). By [63, Theorem 2.1.4] we conclude that the coefficients of u are in
wiiQ). a]

Lemma 23 There holds A € W41(Q2, A¥="1) N C®(Q\&, Ak,

dA(x,x) = /bo(i — 3, X)du(y), where bs =dAs,
and

A ~—k % - A
[dA|(x, %) S IX] M(B\)iﬂ)]l{dist(i,¢)<\)?|/(2\/ﬁ)}(x’x)' 4.21)

For anonnegative function G = G(-, -) with nonnegative arguments, satisfying Ar—condition
in the second variable and G (-,0) = 0,

JN

/G(|£|,|dA|)dV < / G(t, 1™ sup u(BY)|€, |tV L ar. (4.22)
X

Q 0

Proof Clearly, A is smooth outside the contact set &. Denote
b0 = [ bl = 5 D).
Then
|b(x, %) < / lbo|(X — 7, H)du(y) S / ‘)2|_k]l(‘§|/(8ﬂ)<‘;|<‘f|/(2ﬁ)}()E =y, X)du(y)

a—k - - - ~—k ¢ A
S IX] /ﬂ{|;‘<|g‘/(2ﬁ)}(x_yax)dﬂ(y)flxl M(B‘);ﬂ/(z\/ﬁ))]l{dist(X.€)<\J?|/(2ﬁ)}(x’ X).

Using polar coordinates in RV ~* we evaluate

/ G, IbhdV < f G(IR1, 1R (B ) Ldist .0y < iy (B, D Td %

Q Q
< f G(1%I, 157 sgpu(B,él))Hdist (&, ©) < [%]}|e di
{1§1=VN)
JN
= / G(t. t™" sup (B} )|, tN* " dr.
X
0

In particular, using G(s, f) =  and Lemma 21 we get b € L'(Q).
For any ¢ € C3°(2, AX) using A € Wh1(Q, A¥) we have

(A, 8¢) = /(/ Ao(x —iaf)du(i)) A%
Q

_ /du(y) / Ao(F — 5. 8) Axdp = /du(y) / bo(E — 5. 8) A xg
Q Q
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:/bA*ga:(b,(p).

Q

By definition, this implies dA = b, and as a consequence (4.21) and (4.22). The proof of
Lemma 23 is complete. O

Proposition 24 There holds |du| - |dA| = 0 a.e. in Q.

Proof By Lemmas 22 and 23,
{ldu| > 0} C {|£] < dist (X, €)/2VN)}, {|dA| > 0} C {|£] = 2+/N dist (%, ©)}.

Thus |du| - |dA] = 0 in Q\&. The claim follows since & has N-dimensional Lebesgue
measure zero. O

Proposition 25 The function pg € COO(RN\G), 0 < ps <1, pg = 1 on the support of d A
and pg = 0 on the support of du.

Proof The first two properties are immediate from the definition of ps. From the definition
of u,

suppdu C {|%] < n(d(x, ©))/(vV'NC)}.
On this set, pg = 0 (recall that 6(¢) = 0 if ¢+ < 1/4). On the other hand,
suppd A C {|£] > 2v/Ndist(x, ©)} C {|Z] = 2V NC~'n(d(x, ©))}.
On this set, pg = 1 (recall that 6(t) = 1 if t > 1/2). ]
Proposition 26 On the boundary of Q = [—1, 11V there holds

@) uAdA=00nd[—1, 11 N{|&]e < 1};
(b) Ond0 N{|X|co = 1} there holds

u=+;dTy_g, dA= /d(@(NNpE — D)) A %zd Tk (X — 7)) du(3).

Proof By construction,
{|[dA| # 0} C {dist(x, €) < |£]/(2VN)} C {dist(F, €) < |£]oo/2}.

If |X|oo = 1, then dist(x, €) > 1/2 (recall that € C [—1/2, 1/2]"), sodA(x, X) # 0 implies
|X]oo > 1. Thus

{[dAl #0}N0Q C{|fleo =1} N3O.

Then in the definition of u for the argument of 6 for |X|s < 1, |X|co = 1 we have

e By N

>
n(d(x, ) — dist (x, &) —
This implies 6 («/NCW) = 1, and therefore u = *;dI"y_; on d[—1, 1Y N {|R]oo =
1}.
The formula for d A follows then from 7 (|x|) = 1/2 for x in aneighbourhood of [—1, 11N
{|X]oo = 1} and smoothness of the integrand in the definition of A for |x| > 0. ]
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Lemma 27 For the forms u and A given by (4.16) and (4.17) there holds
/ undA = (—D)kN=0, f AAdu=1. (4.23)
a[—1,1]¥ a[-1,11¥

Proof Using Proposition 26 and the notation of integration on cubic chains similar to
Lemma 20 we obtain

N
/u/\dA: > (=it /—f x; dTN_k(X) A

aoN j=k+1 VA

/ dOQVNIE = 7)) #5 dT(E — $)du(F)

N
= (1R 3 (ke /_/

j=k+1 L
o

X (d / 0Q2VN|X — 3|) x¢ dTk (X — y)du@)) A #:dTy_k (%)

= (—DKV=R / /dw(zﬁw — 1) #5 dTk(X — 3))
_Qk

N
> (=it / - f *; AUy 1 (R) | dp(3)

j=k+1 O
@ 0@

— (_l)k(ka)/dM(y) — (_1)k(N7k).

Here we used that

N
/d(e(zfmf — )i dTe(E —3) Y (17! / - f *g AUy (R)
0* j=k o @
= /d(e(zﬁvpz — 5D #z dTk (X — 3)) = / OQVN|X — 3|) #3 dTx (X — 7)
ot 90k
= / #zdTi (X —y) =1
aQk
forall y € [—1/2,1/2]F C R,

To calculate the second integral we use the same argument as in Lemma 20: the form
A Adu — (=D =0y A dA is exact, therefore its integral over d[—1, 11V is zero. ]

@ Springer



62 Page 28 of 44 A.Kh. Balci, M. Surnachev

4.6 Work-tool

Here we gather the results of Sect.4.5, namely of Lemmas 22, 23, 27 and Propostion 24.
Recall that a pair of (k — 1)-form u and (N —k — 1)-form A is (@, k)-separating if # and A are
regular outside a closed set & C Q2 of zero Lebesgue N-measure, u € Wd’d’(')(Q, Ak_l),
A e WEPTO(Q, AN==1) |du| - |dA| = 0 ae.in ©, and [, A A du = 1. The form of the
following statement represents the duality between u and A. The function @ = @ (x,t) is a
generalized Orlicz function, as in Sect. 2.4. The following lemma gives the general work-tool
to construct a (@, k)-separating pair. Let 2 = [—1, 11V or Q@ = {|x| < +/N}.

Lemma28 (i)Letu = Py(N —k,k,®D,y)and A = Pr(N —k, k,®, y). Let @ be such that
@ (x,1) < Fi(|X|, 1) on the support of du and ® (x,t) > F>(|x|, t) on the support of dA. If

JN
T, = / Fi(t, 179)|€ | vtV dr < oo,
0
4.24
Uy 4.24)
I = / Fy <t, *N sup (Bf)) € | vkt 1 dt < o0,
X
0

then the pair (u, A) is (D, k)-separating.

(ii) Letu = Py(k, N —k,®,y) and A = (—1D)*NOPy(k, N —k, D, y). Let ® be such
that ®(x,t) < Fi(|x|, t) on the support of du and ®(x,t) > F>(|x|, t) on the support of
dA. If

Fy <t, 1k sup [ (Bf)) [} N ar < oo,
¥

)
i
O"\év

(4.25)

T = / F (6, V)€ eV T dr < oo,
0

then the pair (u, A) is (D, k)-separating.
Moreover, in both cases there holds
/d)(x, |dul)dV < C(N, k)1, /@*(x, |[dA))dV < C(N, k)I,. (4.26)
Q Q

Proof The forms u and A are regular outside & by construction. By Lemmas 22,23 we have
ue whl(Q, A¥yand A € W% 1(Q, AN=¥=1). By Proposition 24, |du|-|d A| = 0 outside
G. Since d(A AN du) = dA A du = 0 outside S, Lemma 27 implies

/A/\du: / Andu=1.

Q2 A[—1,11V

From estimates (4.20) and (4.22) by the assumptions of the lemma we get (4.26), which
completes the proof of the lemma. O

In view of Sect.4, to construct an example for the Lavrentiev gap, it is sufficient to check
the conditions of Lemma 28. In the following section we do this for the “standard” and
“borderline” double phase models and for the variable exponent.
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4.7 Example setups

Two cases of Lemma 28 and different choices of the fractal contact set give us several variants
of example setup. Further py > 1 will be the threshold parameter. Depending on the value
of the threshold parameter py, we design 5 different setups:

(a) critical or one saddle point setup corresponds to the classical Zhikov checkerboard exam-
ple [61] (N =2,k = 1) and its development by [31] (N > 1,k = 1);

(b) supercritical setup corresponds to the case pp > N /k, in the scalar settting (k = 1) of
[11] this corresponds to the superdimensional case pg > N with singular set on a line;

(c) subcritical case corresponds to the case 1 < pg < N /k, in the scalar settting (k = 1)
of [11] this corresponds to the subdimensional case 1 < pg < N with singular set on a
hyperplane;

(d) right limiting critical case corresponds to the situation when pg = N /k + O (that is, for
the critical value pg = N /k we use the supercritical construction);

(e) left limiting critical case corresponds to the situation when pg = N /k — O (that is, for
the critical value pg = N /k we use the subcritical construction).

Each of these setups includes the fractal set € (see Sect.4.4, in the “critical” case it is just
one point), the barrier fractal set G, the pair of the forms u# and A, and the function p which
separates the supports of du and d A: it is equal to O on the support of du and 1 on the support
of dA. The construction of the forms u, A and the function p is described in 4.3 (for one
singular point case) and in 4.5 (for the rest of cases).

One can easily verify (this is done in Sect.5.1, take there @ = 0) that du € LP(Q, AF)
for any p < pp and dA € L9 (Q, AN¥) for any g > po which explains why we call this
parameter “threshold”. The function p is then used to construct the function @ for which the
pair (u, A) is (@, k)-separating.

The second free parameter of the construction — the shrinking fractal parameter y —
plays an important role later in refining our examples to the limiting case and in treating the
borderline double phase and the log-log-Holder exponents.

Setup 1 (Critical or one saddle point) Let pg = N /k and set
c={" 7, s=", p = ps = Po(N — k. k,0,0),
u=uec =Pi(N—k,k,0,0), A=Ag ="Pr(N —k,k,0,0).
Setup 2 (Supercritical) Let pg > N /k. Define ® = (pok — N)/(po — 1) from py =
(N —D)/(k — D) and set » = 27%/2,

C=¢},. &=Cx(O¥ p=1-ps=1-Potk,N—kD.y)

u=Ag =Pk, N—k.D,y), A= (-D'"Pyg=D*"OPk N-k D, ).

Setup 3 (Subcritical) Let 1 < pg < N /k.Define ® = N — pok from po = (N —®)/k and
set A =2~ (N-K)/D

c=elk e=ex (0, p=ps=Po(N—kkD.y),
u=ug=PiN-kkDy), A=Ag=PyN—k.k.D.y).

Setup 4 (Right limiting (critical+0)) Let po = N /k and set
e=¢,. 6=¢5, x {0V p=1—ps=1—Pyk,N—k,0,y),
u=As=Pyk.N -k 0,y), A=(-D""Pug==DNOPk, N-k0,y).
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Setup 5 (Left limiting (critical-0)) Let pop = N /k and set

C=¢ " e=ex{of p=ps=Po(N ~k.k0.y).
u=us =P(N—kk,O01y), A=Ag =P2(N —k,k,0,y).

Setup 1, Setup 3, Setup 5 correspond to Lemma 28 (ii). Setup 2 and Setup 4 correspond
to Lemma 28 (i).

5 Applications

In this section we show the presence of the Lavrentiev gap for the following models

(a) double phase;
(b) borderline double phase;
(c) variable exponent.

To this end we use the framework defined in Sect.4 and the Cantor set-based construction
from Sect.4.5. That is, we have to show that the pair of forms u and A build as in Sect.4.5
is (@, k)-separating and satisfies the conditions of Assumption 15 (the latter one for the
Dirichlet problem) for the generalized Orlicz functions

(@) @(x,t) =t +a(x)t9;
(b) ®(x,1) =1t log P (e + 1) + a(x)t? log¥(e + 1);
(c) @(x,1) =P,

Further in this section 2 = {|Jx| < VN} c R¥, k e {1,.... N -1}, ¢ = @’M is a
generalized Cantor set as in Sect.4.4, and & = & x {0}~ is the singular contact set, where
I =korl =N — k. As above, by ¢; we denote the t-neighbourhood of the set €.

Recall that the parameter A of the fractal set €}’ is connected to its “fractal dimension” ©
by® =—-mn2/InAif ® >0and A =0if ® =0, and the forms u and A defined in (4.16)
and (4.17), based on the contact set QT,;/ (or (4.5) and (4.6) for ® = y = 0) are denoted
by Pi(m, N —m, D, y)and P,(m, N —m, D, y). Thatis, the forms P;j(m, N —m, D, y),
j = 1,2, together with the function Py(m, N — m,®, y) are constructed using the singular
set €' x {0}V ™" with A =27/ if D > Oand A = 0if D = 0.

Before passing on to the examples we make the following observation.

Lemma29 Let p be a function on Q2 such that p < C and |Vp(x)| < C|2|™" with C > 1.
Then the function ag(|x])p(x) has the modulus of continuity 5Cag(-).

Proof For x = (x,x) and y = (¥, y) we evaluate

r(x,y) = lao(I¥)p(x) —ao(P)p (M = lao(IX]) — ao(IFD]p(x) + ao(IFDIp(x) — p(¥)]
< ao(IX = 3D + ao(I¥DIp(x) — p(¥)I.

If [x — y| > |9|/2 we evaluate ag(|¥|) < 2ap(]x — y|) using the concavity of ag, and
lo(x) — p(¥)| < 2C, therefore 7 (x, y) < 5Cap(|x — y|).

If |x — y| < [$]/2 then |$]/2 < |%]| < 3|3/2. therefore [p(x) — p(y)| < 2C|H|~!|x —yI.
Now,

a0 WID e = y—2 acag(x — i)

ao(I3D1p(x) — p(M)| < 2C——
19 ao(lx — y)
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since the concavity of ag implies that a(s)s~! < a(t)t~! for s > t. Therefore, for |x — y| <
[91/2 we getr(x, y) < (2C + Dao(|x — yl).
Thus in both cases we have r(x, y) < 5Cap(|x — y|).

5.1 Standard double phase model

Letl < p<g<+4ooanda > 0,
o) =1P, () =19, (5.1

Denote

ap(t) =1%, a(x) = pao(IX) = pOIE|", @ (x, 1) =) +ax)P (1)
=1’ +a(). (5.2)

where p is a nonnegative function which will be described in Lemma 30 (it comes from the
Setup used in Lemma 30, along with the pair of forms (u, A)).

Lemma30 (a) Let po = N/k and p < N/k < q — ak™'. Use one saddle point Setup 1.

- 1. 1—
(b) Let po > N/kand p < po < q—aR=. Takey > (pok—N)""if p = po, ¥ < 5725
po—1

ifg=po+«a Pok=N" and any y otherwise. Use supercritical Setup 2.
(c) Let 1 < pg < NJkand p < pg < q —ak™'. Take y < (pok — N)"L if p = po,
vy > (g — 1)/(N = pok) if g = po + ak™', and any y otherwise. Use subcritical Setup
3.
(d) Let po=N/kand p < po < g —ak™' . Takey > (N —k)~'if p = po, andany y > 0
otherwise. Use right limiting critical Setup 4.
(e) Letpo=N/kandp < po <qg—ak™ . Takey > (g — 1)(N —k)~' ifqg = po + ak™!
and any y > 0 otherwise. Use left limiting critical Setup 5.
Then for ®@ given by (5.2), the pair of forms u and A is a (@, k)-separating pair.

Proof We use Lemma 28 with
Fi(s,7) =(t) =1", F(s, 1) =ao®)Y(r) =577
and the estimates provided by Lemma 21. Clearly,

T
ap(s)

We treat the five cases according to Definition 30.

Fi(s,7) = ap(s)y* ( ) = cqs“(rsfa)ql.

(a) Case pg = N/k, p < N/k < g —ak™!. We estimate
JN

/¢(|du|)dV < / PN g < 00
Q 0
provided that p < N /k. Also,
JN
/ ao(IRDY*(1dAl/ao(t) dV < / 4 N ZOFEN =L gy < oo
Q 0

. N+
provided that ¢ > =%,
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(b) Case po > N /k. In this case

N-9 k—N N —k
M=o D= T kmR=
We use case (ii) of Lemma 28. For the first integral in (4.25), we get
VN < VN
/‘ 0 <supx tlz(B; )) 1€ e VR dr < / £P@) (I 4=1)=PYD k=D (1 = 1yyD N—k=1 g,
0
JN
— / 1 (Po=P)k=D) (1 ~1)7D(1=p) ? - .
0

For the second integral in (4.25) we have

N N

/ao(;)w* (;’;(:;) StV ar < / tq’(k—N_a)+atk—®(lnt—l)yz)tzv—k—ldt
0 0
VN
=c / 14 k= N=)+N=De qpp ,~1yrD dt .
0 t
Here one notes that
g k=N-a)+N-D+a>0 ¢ ¢’ < 1;(]__73]3:2‘ &q> N]:_i@g“ — o+ ﬁ

Then by Lemma 28 (ii) the pair of forms (u, A) is (@, k)-separating.

(c) Case pg < N /k. In this case ©® = N — pok. We use case (i) of Lemma 28. For the first
integral in (4.24), we have

VN VN
/ga(fk)|¢,|,v_kr’<*1dt§ /fﬁktN*k*@(lnf‘)V@tk*Idt
0 0
JN
(po—pk (1 17D 91
=c |t (Int™)” — <oo.
0

For the second integral in (4.24) we get

VN ()
Supz U5y k—1
ag(OY* | 52— ) | € vkt dt
0
VN
< /tq’(@+k7Nfa)+Ol(lnt*l)fq/)/gthk7®(lnt*l)ygtkfl dt
0
VN
—e / 14/ @ +k=N—a)tN=Da (g -~/ 4 _
t
0
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Here one notes that

Gd@+k-N-a)+N-D+a>0&q < =505 ©q

N+a—2
=Tk

=po+ %
By Lemma 28 i), the pair (u, A) is (@, k)-separating.

(d) Case pg = N/k + 0. We use case (ii) of Lemma 28. For the first integral in (4.25), we
get

N : VN
/ 0 (supgtﬂk(B, )) & e VR dr < f 1Pk (In 1= 1)=PYk gk (1 =1y N =K1 gy
0 0
VN
. / (o= (1 ~1yrk(i=p) 4 _
] t
For the second integral in (4.25) we have
VN fN VN
/ao(l)llf* (;) Nk ar < /tq’(k—N—a)+atk(lnt—l)ykZN—k—l dt
J ao(t) J
VN
—¢ / tq/(k—N—a)+N+a(1nt—l)yk ﬂ < 00,
/ t
Here one notes that
Jdk—N—-a)+N+a>0sq < T:“_k sq> N:a =po+%.

By Lemma 28 (ii), the pair (u, A) is (@, k)-separating.

(e) Case pp = N /k —0. We use case (i) of Lemma 28 For the first integral in (4.24), we have

VN VN
/<p(t‘k)|eit|N,ktk‘ldt§ ft‘PktN‘k(lnt‘l)V(N"‘)t"‘ldt
0 0
N
=c / 1 (Po=Pk (1 4= 1yy (N=K) ? < 0.
0

For the second integral in (4.25), we get

W (B})
Supz {5y k-1
W = ) & Iy—kt" " dt
0
JN
5 / t(k*N*O[)q/+0t(lnt*l)fq/ythk(]nt*l))/(ka)tkfl dt
0
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VN
—c / tq’(k—N—ot)+N+ot(1n[—l)y(N—k)/(l—q)# < 00,
0

By Lemma 28 (i), the pair of forms (u, A) is (@, k)-separating.
m]

Theorem 31 Let p < N/k and g > p + ak™'. Then there exists po € (1, N /k) such that
p < po < q—ak™L (one can also take p = pg and choose y < (pok — N)~1) and therefore
a (@, k)-separating pair of forms (u, A) for @ defined by (5.2), and p from Lemma 30.

Letq > p+a(p—1)/(N —k) and q > N,'{"“. Then there exists po > N /k satisfying
p < po<q—a(py—1)/(N —k) (one can also take p = py and choose y > (pok —N)™!)
and therefore a (@, k)-separating pair of forms (u, A) for @ defined by (5.2), and p from
Lemma 30.

In these cases HE®O(Q, AF1 £ WaPO(Q, A1), Let € C3°(R) be such that
n = lin aneighbourhood of & = G(u, A), A° = nA, and b = d A°. Then for the functional
Fo pthereis Lavrentiev gap (4.1). For sufficiently larget > 0 and wp = tu? € C®(Q, Ak_l)
there holds (1.8) and (4.2).

Proof We have only to check Assumption 15. Indeed, since p = 0 on the support of du and
p = 1 on the support of b = dA,

Foo(tu) = tP Fo o), Fio(sb) < 57 Fiy o(b).
Take s = tP/4" Then for sufficiently large ¢ there holds
1+4

Fo.0(tu) + Fp o(sb) < tP(Foolu) + Fp o)) <ts=t ¢

sincep<1+§ifp<q. ]

Note that here @ (x,t) = t? 4+ a(x)t? where a € C%(Q) (by Lemma 29). This proves
Theorem A.

5.2 Borderline double phase

Let po > 1, @, B € R, ¢ > 0 such that
o+ B > po+ . (5.3)
Let ¢ and ¢ be two Orlicz functions such that
¢S o) S Pledn, YR S om0 e ) (5.4)
for large ¢. Denote
ap(t) =In"*(1/1), a(x) = p(x)ao(IX]), P(x,1) = @(t) +a(x)¥ (@), (5.5)

where p is a nonnegative function to be defined later (it is generated by the corresponding
Setup in Lemma 32 together with the forms « and A).

Lemma 32 (a) Let po = N /k and assume that B > 1 and a + 1 > k + pg. Use one saddle
point Setup 1.
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(b) If po > N/k, define ® from pg = (N —D)/(k —2) and take y satisfying (1 —B)/(po—
1) < y® < (@ —3— po+ 1)/(po — 1). Use supercritical Setup 2.
(©) If1 < po < N/k, define ® from po = (N —D)/k and take y satisfying p+»x—a—1 <
y® < B — 1. Use subcritical Setup 3.
(d) If po = N /k and additionally « > po— 1+ 2, take y > 0 satisfying (1 —8)/(po—1) <
vk < (o — 22— po+1)/(po — 1). Use right limiting critical Setup 4.
(e) If po = N/k and additionally B > 1, take y > 0 satisfying po + x —a —1 < y >
O(N — k) < B — 1. Use left limiting critical Setup 5.
Then for @ given by (5.5), the pair of forms u and A is a (@, k)-separating pair.

Proof To shorten notation we write here p instead of py. We use Lemma 28 with
Fits, ) =7’ In e+ 1), Fals, 1) = ap()¥(x)

and the estimates provided by Lemma 21. We have

F(s,7) =ao(s>w*< i )

ao(s)
We treat the five cases according to Definition 32.
(a) Case p = N /k. We estimate

JN
/qb(x, \du|)dV :/(p(|du|)dV < / 17PN B e 41 Y dr
Q Q 0

JN
= / ln’ﬂ(e+t’1)£ < 00,

s 1

JN

/Cb*(x, ldA)dV < /ao(|£|)w*(|dA|/a0(z))dv < /ln(“*”/("*‘)(eﬂf')? < 0.
Q Q 0

Therefore the pair of forms (u, A) is (P, k)-separating.
(b) Case p > N /k. We use case (ii) of Lemma 28. For the first integral in (4.25), we get

N .
/(p (7&11);;:( ’)> 1€k N * 1 dr < 00

JN
/ (A L A
0

A

JN
cft_](lnt_l)yg(]_p)_ﬁdt < 00.
0

For the second integral in (4.25), using p’ = (N — ®)/(N — k) we have

VN

a LN N—k—1
oY o® |€s |kt dt
0

@ Springer



62 Page 36 of 44 A. Kh. Balci, M. Surnachev

VN
< / (P k=N (1 = 1y2p =/ (p=1) k=D (1) = 1)y D=3, N—k~1 4,

0
JN
=c / t~HaneHr@—@=/=D gt ~ oo,
0

Then by Lemma 28 (ii) the pair of forms (u, A) is (@, k)-separating.
(c) Case p < N /k. We use case (i) of Lemma 28 for the first integral in (4.24), we have

N VN
/(p(t_k)|€,|1v_ktk_]dt§ / P An Y AN TR (TP gy
0 0
VN
=cft_1(lnt_1)7”®_ﬁdt < 0.
0

For the second integral in (4.24), using p’ = (N — D)/(N — k — D) we get

o (BY)
sup; u(B; k-1
Y| ——L2 ) |8 | v—kt dt
fao()lﬁ (tN—kao(t) )l tIN—k
0
VN
< /tp’(@-ﬁ-k—N)(ln[—l)p’;f—p’y©+ot/(l—p)tN—k—©(lnt—l)yD—%tk—ldt
0
VN
=c / 1 (n e~ HP+e=/0=0) gy 0.
0

By Lemma 28 (i), the pair (u, A) is (P, k)-separating.

(d) Case p = N/k,a > p — 1. We use case (ii) of Lemma 28. For the first integral in (4.25),
we get

VN (5 VN
supiz U —k— _ s —pyk— _ —k—
/go(xtk’) 1€ e tN % ar < fz Pk =1y =PYh=B ik g~ 1yrk N=k=1 g,
0 0
VN
=c / t~Lan~HrkU=p=F gt < co.
0

For the second integral in (4.25), using p’ = N /(N — k) we have

JN
/ a0 (Y (ﬂ) 1€tV de
0 0
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VN
< / tp’(k—N)(ln[—l)p’%—a/(p—l)lk(ln t—l)yk—%tN—k—l dt
0
N
=c / t~(n e~ Hrk=@=a/=D gy < o0,
0

By Lemma 28 (ii), the pair (u, A) is (P, k)-separating.
(e) Case p = N/k, B > 1. We use case (i) of Lemma 28 For the first integral in (4.24), we
have

N N
/go(t—k)mm,ktk—‘dr 5/t—P"(lnt—l)—ﬁr"’—"(lnt—l)V<N—’<>t’<—1dz
0 0
JN
=c[t—1(1nz—1)V(N—k>—ﬁdt < 0.
0

For the second integral in (4.25), we get

w (BY)
Supy n(b; k—1
Y| ———= ) 1€ v_it™ dt
fao( W (lN_kao(t) >| tIN—k
0
JN
< /[—(N—k)p/(lnt—l)p/%—p’y(N—k)+a/(1—p)lN—k(lnt—l)y(N—k)—%tk—l dt
0
JN
. / =1 (n =) N=R+a=9/0=p) g1 _ oo
0
By Lemma 28 (i), the pair of forms (u, A) is (@, k)-separating. ]

Theorem 33 Under condition (5.3), foranyk = 1,..., N — 1 and any p > 1 there exists p
and a (@, k)-separating pair of forms (u, A) for @ defined by (5.4) and (5.5). Therefore in
these cases HH®O (2, AF—1) #* WEPO(Q, AK1Y. Let n e Cgo(Q) be such thatn =1 in
a neighbourhood of & = G(u, A), A° = nA, and b = dA°. For the functional F¢ p there
is Lavrentiev gap (4.1).

Note that here we have @ given by @ (x, 1) = ¢(t) + a(x)¥ (1), with a € C*O(RQ),
w(t) < Cln~*(1/t) for some C > 1 (see Lemma 29). This proves Theorem B.

5.3 Variable exponent model

A classical example of an integrand from the class (1.2) is the variable exponent model

D(x, 1) ="M, (5.6)

@ Springer



62 Page 38of44 A. Kh. Balci, M. Surnachev

where p : Q — [p_, p+]is a variable exponent. Let pg € (p—, p+),

lnln%
T

t

o(t) =«

(5.7

with ¥k > 0 and p be a function to be defined later (see Lemma 34). Let & € C°(R) be
a positive nondecreasing function such that £(r) = ¢ if t € [(p— + po)/2, (p+ + po)/2),
§()=§&(p-) = Bp-+po)/4ift < p_, &) =&(py) = Bp+ + po)/4ift > py. Set

p(x) =§&(po+ 0o (X256 — 1)), (5.8

and let @ be defined by (5.6).

Recall that due to the well-know result from [59] if the exponent p has the modulus of
continuity (5.7) with sufficiently small « then smooth functions are dense in corresponding
Sobolev—Orlicz space and the Lavrentiev phenomenon is absent. On the other hand, the
example with one saddle point provided in [59] (k = 0, N = 2, p_ < 2 < p4) shows
that for sufficiently large « the Lavrentiev gap occurs, while for the scalar case (k = 0) the
smallness of x gives H = W. We construct examples of the Lavrentiev phenomenon for
p(x)-integrand in arbitrary dimension and forany 1 < p_ < p4 < oo.

Lemma34 (a) Let pg = N/k and k > k=2 max(k, N — k). Use one saddle point Setup 1.
(b) Let po > N/k,

po(po — 1) N —k N -k
——, and 1—« < ylkpo—N) <k —(po — 1D.(5.9)
2(N — k) po—1 po—1
Use supercritical Setup 2.
(c) Let1 < pg < N/k,
K > % and po—1—«kk <y(N — pok) < «k — 1. (5.10)
Use subcritical Setup 3.
(d) Let po = N/k,
_ k2 _ 2
K>max<i,N k) and max(k wk ,0><yk<wA (5.11)
2k27 k2 N—k N—k

Use right limiting critical Setup 4.
(e) Let po = N/k,

N k N —k — «k?
k >max | —, — |, and max 716,0 <yk <xk—1. (5.12)
2k2’ k2 k
Use left limiting critical Setup 5.

Then for @ given by (5.6) and (5.8), the pair of forms u and A is a (@, k)-separating pair.
Proof We use Lemma 28 with Fi(s,t) = tP07°®) and Fy(s,7) = tPoto®), Clearly,
F3(s,7) < c(p—, p1)rP0t76)" Note that 7@ = (Inr~")~*.

(a) Case pg = N /k. We evaluate
VN
/ ®(x, |dul)dV < / du|Po=oED gy < / N1k po=o () gy
Q Q
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VN
< /(lnt_l)_k'(t_ldt < 00
0

provided that kx > 1. Also

p/@*u,mADdV:g/}¢M@mﬂ@wdv
Q

Q
N JN
< /t(k—N)(P0+G(f))/(po+<T(t)—1)tN—l dr — /(ln,—l)rm,—l dt
0 0

where r(t) = —Kkz/(N — k + ko (t)). Since limor(t) < —1, the last integral converges.
t—+

{V, po = %, and the conditions (5.9) on x and y

(b) Case pg > N/k. Wehave © = p;;(])‘:
can be rewritten as

N N-—9 Zmik—Q (k — D)? ©<K@—©ﬂ_
2k — D)2 v

_ e OB E
N—k “N=k * N—k (5.13)

K

We use case (ii) of Lemma 28. For the first integral in (4.25), we get

VN

/Fl(t’t_k SUPM(B;E))|¢;|/( N—k=1yy

0 X
JN

= /(t_ksuppL(Bf))Po—ﬂ(t)|¢l|k (N—k=1 gy
0 X
VN

S /(tikfg(ln(l‘71)77/9))%’0(’)%*@(]n(tfl)))/@tN—kﬂ
0
JN

(k=D (1) (ln(fl))(%“’(’))”@ dt
t

Il
o

ln(fl))r(z)?, r(t) = (% + cr(t)) YD —k(k — D).

"5

Since (5.13) implies that limor(t) < —1, the last integral converges.
—+

For the second integral in (4.25), we get

N
/ Fr(t, V)& itV ar
0
VN
_ /(tka)(%+a(t))’tk7®(h](tfl))y@thkfldt
0
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VN dr (k — D)2
_ —1yr(n 4t =D — —
_fanr O O =YD K e
0

Since (5.13) implies that limo r(t) < —1, the last integral converges.
t—+

By Lemma 28 (ii) the pair (u, A) is (P, k)-separating.
(c) Case pg < N /k. We have ® = N — pok and the conditions (5.10) on « and y can be
rewritten as

K>N2;2© and N_kg_k—xk<y©</ck—l. (5.14)
We use case (i) of Lemma 28 for the first integral in (4.24), we have
VN VN
/ Fi(t, t 7)€ |yt L dt = / (t=K)yPo—o O N=k=D (1 4 =1y k=1 gy
0 0

v d
= /(lnt’l)’@”‘k% < 00
0

since (5.14) implies y® — kk < —1.
For the second integral in (4.24), using p’ = (N — D)/(N — k — D) we get

N
/ F (t, =N sup (Bf)) € |v_x " dt
o x

VN O\ (oo ()
= / (tk_N sup p (Bf)) 1€ | v_kt* L dt
0 X
VN VN
< /(tk—NID(lnt—1)—y9))(po+o(t))’tN—k—®(ln[—l)yQIk—ldt _ [(lnt—l)r(t)ﬂ7
0 0 !
where r(t) = wek? ky®

N—-D—k+ko(t)

Since (5.14) implies that lgn_gor(t) < —1, the last integral converges.
By Lemma 28 (i), the pair (u, A) is a (@, k)-separating.

(d) Case pg = N /k + 0. For the first integral in (4.25), we get

VN

/ F (t, 1K sup (B,")) 1€ 1k Ny
X
0

_\ Po—o(t)
(fk sup it (Bf)) 1€ etV d
X

Il
5o =%

N
S/ / (tik(]n(til)7yk))%7a(t)tk(ln(t*1))yktN—k?

[=}
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JN

— f (ln([—l))y(k—N-'rkU(t))—Kk? < 00
0
since (5.11) implies y(k — N) —kk < —1.
For the second integral in (4.25) we have

VN VN
/ 3 (6, 4N )1€ Ve = / G G N
0 0

JF
— /(lnt_l)r(t)ﬂ
P

0

Kk?
N —k+ko(t)

Since (5.11) implies that limo r(t) < —1, the last integral converges.
—+

r(t) =yk —

(e) Case pg = N /k — 0. We use case (i) of Lemma 28 for the first integral in (4.24), we have

VN VN
/Fl(t,t‘k)|¢,|N,ktk‘ldt: /(t_k)po_g(’)tN_k_g(lnt_l)yktk_ldt
0 0

v d
= /(lnt_l)yk_Kth < 0
0

since (5.12) implies yk — kk < —1.
For the second integral in (4.24), using p(/) = N/(N — k) we get

VN
/ F} (t, *=Nsup (B,")) € | n_xt*dt
X

0

VN “\ (oo )

= / (;k—N sup (Bf)) 1€ vt dr
) X
VN

< /(tk—N(lnt—l)7yk))(P0+o(t))’thk(lnt—l)yktkfldt
0
VN

o dt —kk? — yk?
= | (It )"V — r@t) = —mmm—.
t N —k+ko()
0
Since (5.12) implies that limor(t) < —1, the last integral converges. O
t—+

Theorem35 Let 1 < p~ < pt < oo. Then there exists a variable exponent p : Q —
[p~, pT] (defined b)L(S.S) and (2.7)) and (@, k)-separating pair (u, A) for @ (x, 1) = tPX,
Moreover, p € C*(Q\6)NC(RQ), where © = &(u, A) is a closed set of Lebesgue measure
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zero. Forthis ® there holds H®O (2, A1) £ Wa-PO(Q, AF=1). Lety € C5° () be such
that n = 1 in a neighbourhood of © = G(u, A), A° = nA, b = dA°. Then for the functional
Fo pthereis Lavrentiev gap (4.1). For sufficiently larget > 0and wp = tu® e C®(Q, AF 1)
there holds (1.8) and (4.2).

Proof We have to check only the last statement (different solutions of the Dirichlet problem).
By Theorem 16, it remains to show that for our (@, k)-separating pair (u#, A) there holds

Foo(tu) + Fiy o(sdA) < Lst

for suitable large s, . The argument repeats that given in the proof of Theorem 32 in [11]
and we omit it. o

In this construction by Lemma 29 the variable exponent p(-) has the modulus of continuity
C(In fl)_l InIn¢~'. This proves Theorem C.
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