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Abstract
We establish sufficient conditions for the existence of globally Lipschitz transport maps
between probability measures and their log-Lipschitz perturbations, with dimension-free
bounds. Our results include Gaussian measures on Euclidean spaces and uniform measures
on spheres as source measures. More generally, we prove results for source measures on
manifolds satisfying strong curvature assumptions. These seem to be the first examples
of dimension-free Lipschitz transport maps in non-Euclidean settings, which are moreover
sharp on the sphere. We also present some applications to functional inequalities, including
a new dimension-free Gaussian isoperimetric inequality for log-Lipschitz perturbations of
the standard Gaussian measure. Our proofs are based on the Langevin flow construction of
transport maps of Kim and Milman.

Mathematics Subject Classification Primary 39B62; Secondary 49Q22 · 49R05 · 35P15

1 Introduction

This work concerns the problem of transporting a probability measure dμ = e−V d Vol on
a Riemannian manifold (M, g) onto a measure dν = e−(V +W )d Vol which is an L-log-
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Lipschitz perturbation of μ, i.e., |∇W | ≤ L . We will show that the Langevin transport
map (also known as the heat flow transport map of Kim and Milman) between μ and ν is
Lipschitz in various Euclidean and manifold settings. This construction of transport maps
was introduced in [1]. Ourmain results are Theorem 1 in the Euclidean setting and Theorem 3
in the Riemannian setting (with sharp results in the special case of the sphere, Theorem 2).
We shall also discuss applications to functional inequalities and optimal transport.

The question of proving Lipschitz bounds for transport maps goes back to the seminal
work of Caffarelli [2], who proved that the quadratic optimal transport map (or Brenier
map) from a standard Gaussian measure onto a uniformly log-concave measure on R

n is
globally Lipschitz, with a dimension-free bound (see [3, 4] for alternative proofs based on
entropic optimal transport and [5] for Sobolev bounds). The existence of such maps allows
to transfer various functional, isoperimetric, and concentration inequalities from the source
measure to the target measure [2, 6, 7]. For example, Caffarelli’s result immediately recovers
the classical results of Bakry and Émery on sharp functional inequalities for uniformly log-
concavemeasures.Moreover,Milman [8] showed that such Lipschitz estimates imply bounds
on higher eigenvalues of certain differential operators, for which no non-transport proofs are
known at this time. What is crucial for many applications, such as the correlation inequalities
[7] and quantitative central limit theorems [9], is to ensure that the Lipschitz estimates are
dimension-free.

Several extensions of Caffarelli’s theorem on the Brenier maps have been proven since
then, such as [10],which showed that the optimal transportmap fromaGaussianmeasure onto
any log-compactly-supported perturbation is globally Lipschitz. Beyond these extensions not
much is known about theLipschitz properties of the optimal transportmap, and there aremany
remaining questions [11]. However, for most applications, it is not particularly important that
the map is optimal and any globally Lipschitz map will suffice. An emerging line of research
has focused on the construction and analysis of Lipschitz transport maps beyond the setting
of optimal transport. Our starting point is the paper [1], in which Kim andMilman introduced
a new construction of transport maps and recovered, as well as extended, Caffarelli’s result.
The construction is based on a time reversal of an overdamped Langevin (or drift-diffusion)
SDE, and we shall call it the Langevin transport map in the sequel. As shown by Tanana
[12], this construction does not coincide with the Brenier map in general (although they do
coincide in dimension one), see also [13]. It is on this construction that the present work is
based.

More recently, there have been several works investigating Lipschitz properties of the
Langevin transport map in the Euclidean setting when the target measure satisfies certain
convexity conditions [14–17]. Our focus here is on a different class of target measures, with
a first-order condition on the target rather than a second-order condition (but still using
strong convexity assumptions on the source measure). As a general motivation for relaxing
regularity assumptions, we mention that reversing diffusion processes to construct transport
maps has recently gained a lot of traction in the machine learning community [18, 19], where
such constructions are used to generate samples from unknown distributions.

The study of the Langevin transport map led to new results that were previously unattain-
able for the optimal transport map. However, all results mentioned above are limited to
measures on Euclidean spaces, while the question of Lipschitz transport maps is also inter-
esting for non-Euclidean geometries. Indeed, for Riemannian manifolds there are some
motivating questions of E. Milman [8] and of Beck and Jerison [20]. In light of this, an
additional goal in this work is to establish sufficient conditions on weighted Riemmnanian
manifolds to ensure the existence of Lipschitz transport maps. While the existence of a Lips-
chitz optimal transport map can be established in some manifold settings [21, Theorem 3.1],
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the bounds are dimension-dependent and the necessary assumptions are highly restrictive. In
contrast, under the first-order condition described above, our results yield, for the first time,
a construction of globally Lipschitz transport maps with explicit dimension-free bounds in a
general manifold setting.

Main results

As explained above, our results concern Lipschitz estimates for the Langevin transport map
between a source measure (on Rn or on a Riemannian manifold) and a target measure on the
same space, whose density with respect to the original measure is log-Lipschitz.

Euclidean spaces

Our main result in the Euclidean setting, which shall be proved in Sect. 3, is

Theorem 1 Let κ > 0 and suppose that V : Rn → R is a thrice-differentiable function such
that

∇2V (x) � κI ∀ x ∈ R
n and |∇3V (x)(u, u)| ≤ K ∀ u ∈ S

n−1.

Let dμ = e−V dx and dν = e−(V +W )dx with

|∇W (x)| ≤ L ∀ x ∈ R
n .

Then, the Langevin transport map between μ and ν is Lipschitz with constant

exp
(
10
[

L√
κ

+ L2

κ
+ L K

κ2

])
.

Remark 1 The log-Lipschitz assumption implies similar results formeasures ν whose relative
densitywith respect toμ is Lipschitz and strictly bounded frombelow. Indeed, if |∇e−W | ≤ C
and e−W > c > 0, then |∇W | ≤ L := C

c .

The dependence on L in Theorem 1 is sharp as can be evidenced by the standard Gaussian.
Indeed, if μ is the standard Gaussian measure on R, then κ = 1 and K = 0. We now choose
W (x) = L|x | + log Z , where Z is a normalizing constant, and suppose that there is an
M-Lipschitz transport map from μ to ν. Then, as in [6, 11], the Gaussian isoperimetric
inequality can be transported to ν, up to a factor of 1

M . More precisely, given a set A ⊂ R

satisfying ν(A) = 1
2 , we have that ν

+(A) ≥ 1√
2π M

where ν+(A) := limε↓0 ν(Aε)−ν(A)
ε

with

Aε standing for the ε-neighborhood of A. We now take A = [0,∞) and note that ν(A) = 1
2 ,

by symmetry, and that ν+(A) = dν
dx (0). We have

Z =
∫

eL|x |dμ ≥
∫

e−Lx dμ = e
L2
2

so

dν

dx
(0) = e−W (0) dμ

dx
(0) = 1

Z

1√
2π

≤ e− L2
2√

2π
.

It follows that M ≥ e
L2
2 .
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Riemannian manifolds

We now discuss the manifold setting in which our first result applies to the uniform measure
on the round sphere S

n−1, with radius scaled as
√

n − 2. In this case, we obtain a sharp
estimate, similar to Theorem 1.

Theorem 2 Let n ≥ 3. Then, the Langevin transport map from the uniform measure
on S

n−1(
√

n − 2) onto a measure with L-log-Lipschitz density is Lipschitz with constant
exp
(
35(L + L2)

)
.

The scaling in
√

n of the radius is essentially sharp for dimension-free behavior, as well
as the behavior in exp(L + L2) of the Lipschitz constant, since if we let n go to infinity, the
distribution of a single coordinate converges to a standard Gaussian measure, so we should
recover the same type of estimates as in the Gaussian case in the limit, which is indeed the
case with our estimate. When compared to Theorem 1, one may see that the convexity term κ

is replaced by the Ricci curvature of the sphere, which is of order 1 when the diameter scales
like

√
n. The other difference is the existence of the regularity parameter K , which does not

appear in Theorem 2. Indeed, the source measure is uniform and its density is constant.
In Sect. 5 we shall consider a more general setting of weighted Riemannian manifolds and

our bounds will be given both in terms of the regularity of the density and the curvature of the
manifold, as in Theorem 2. In particular, our results shall apply to manifolds that satisfy the
Bakry-Émery curvature-dimension condition, see [22, Chapter 1.6], as well as some extra
conditions. We state here an informal version of the theorem and defer the exact statement
and definitions to Theorem 5 in Sect. 5.

Theorem 3 Let (M, g, μ) be a weighted Riemannian manifold with μ = e−V dVol, and let
ν = e−W dμ, with W an L-Lipschitz function. Then, under appropriate assumptions on the
curvature of M and on V , the Langevin transport map from μ onto ν is Lipschitz with constant

eecL2

for large L, where c can be made explicit, and depends on the curvature and on V , but
not on the dimension.

The estimate of Theorem 3 is still dimension-free, although significantly worse than what
we derived in Theorem 1 and Theorem 2. We believe that the estimate of Theorem 3 is
suboptimal and that the double exponential can be omitted, as in the sphere.

As far as we know, in the Riemannian setting, the above-mentioned results are the first
results about Lipschitz transport maps with a dimension-free behavior (under appropriate
scaling). The existence of such maps paves the way to several applications of interest. In
Sect. 7, we prove new functional inequalities, both in the Euclidean and Riemannian settings,
and we shall also discuss open problems on optimal transport maps.

The inverse map

In all of the examples above, we have taken a well-conditioned weighted manifold that
satisfies some desirable combination of convexity and curvature assumptions. In these cases,
we showed that log-Lipschitz perturbations can be realized as push-forward by Lipschitz
mappings. We also investigate the analogous question in the reverse direction. Namely, we
show that there exists a Lipschitz transport map from the perturbation, which is often not as
well-behaved, back to the source measure.

Theorem 4 In all of the above settings, the inverses of the Langevin transport maps are
Lipschitz with dimension-free constants.
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The exact value of the Lipschitz constants turn out to be comparable to the Lipschitz
constants of the Langevin transport maps. In Sect. 6 we give the exact dependence of the
Lipschiz constants on all parameters. Theorem 4 has an additional interesting consequence:
since maps can be composed, the theorem implies the existence of Lipschitz maps from one
log-Lipschitz perturbation onto any other.

2 Preliminaries

Before explaining the construction of the Langevin transport map, we introduce the Langevin
dynamics onRn . Let dμ = e−V dx be a probability measure onRn with V : Rn → R twice-
differentiable. The Langevin dynamics, associated to μ, starting at x ∈ R

n is the solution of
the stochastic differential equation

d X x
t = −∇V (X x

t )dt + √
2dωt , X x

0 = x, (1)

where (ωt ) is a standard Brownianmotion inRn .We denote by (Pt ) the Langevin semigroup,

Pt f (x) := E[ f (X x
t )],

for any f : Rn → R for which the above is defined. It is well known that under appropriate
regularity assumptions (Pt ) is ergodic.Consequently, for any x ∈ R

n , the lawof X x
t converges

weakly to μ as t → ∞.
The definition of the Langevin dynamics can readily be extended to Riemannianmanifolds

(see [22, 23] for in-depth discussions). Let (M, g) be a complete n-dimensional Riemannian
manifold, and let O(M) be its orthonormal frame bundle. Let (Bt ) be a standard Brownian
motion in R

n and let (�t ) be the horizontal Brownian motion on O(M) defined by

d�t =
n∑

i=1

Hi (�t ) ◦ d Bt ,

where {Hi }i∈[n] are the horizontal lifts of the standard basis {ei }i∈[n], and ◦ stands for the
Stratonovitch integral. We assume that (�t ) does not explode in finite time. The process (ωt )

given by ωt = π�t , where π : O(M) → M is the canonical projection, is what we refer to
as the Brownian motion on M .

Now, as in the Euclidean case, given a probability measure dμ = e−V dVol on M , where
dVol is the volume measure on M and V : M → R is twice-differentiable, we define the
Langevin dynamics starting at x ∈ M as the solution of the stochastic differential equation

d X x
t = −∇M V (X x

t )dt + √
2 ◦ dωt , X x

0 = x, (2)

where ∇M is the gradient in M . Note that the use of the Stratonovitch integral instead of the
Itô integral is immaterial in our setting because the coefficient of the Brownian motion is a
constant.

The Langevin transport map

We now briefly explain the construction of the Langevin transport map. The reader is referred
to [14] for further details on the constructions introduced in this section. Let dν = e−W dμ

be a probability measure on M and consider the Langevin dynamics, associated to μ, and
starting at ν,
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Xt := X x
t with x ∼ ν. (3)

The flow of probability measures (ρt ) := (Law(Xt )) forms an interpolation between ρ0 = ν

and ρ∞ = μ. In particular, it satisfies the transport equation

∂tρt = −∇M · (ρt∇M log Pt e
−W ),

with ∇M standing for the gradient in M . We define a flow of diffeomorphisms {St }t≥0 as a
solution to the following integral curve equation

∂t St = −∇M log Pt e
−W (St ), S0(x) = x ∀x ∈ M . (4)

It turns out that for any t ≥ 0, St transports ν to ρt . Setting Tt := S−1
t , and letting

T := lim
t→∞ Tt ,

we see that T transports μ to ν. This is the Langevin transport map between μ and ν.1

The particular form of the equation in (4) is particularly amenable to establishing Lipschitz
properties of T from estimates of ∇2

M log Pt e−W , where ∇2
M is the Hessian in M , since

differentiating (4) yields

∂t∇M St = −∇2
M log Pt e

−W (St )∇M St , ∇M S0 = I.

This is the content of the following Lemma. The proof is an adaption of [14, Lemma 3] and
[15, Lemma 3.2] which only consider Euclidean spaces.

Proposition 1 If for all t ≥ 0,

∇2
M log Pt e

−W � θt g,

then T is exp
(∫∞

0 θt dt
)
-Lipschitz.

Proof Consider Ft : M −→ R a time-dependent family of smooth functions on (M, g), such
that for any t > 0 we have

∇2
M Ft ≥ −θt g.

As is classical (e.g., [25, Proposition 16.2 (iv’)]), this is equivalent to saying that for any
t > 0, x, y ∈ M and constant speed geodesic α : [0, 1] −→ M connecting x to y, we have

〈α̇(1),∇M Ft (y)〉 − 〈α̇(0),∇M Ft (x)〉 ≥ −θt d(x, y)2.

Therefore, if xt and yt are time-dependent gradient flows of Ft with different initial data,
and αt is a constant-speed geodesic connecting xt to yt , we have (with d standing for the
distance induced by the Riemannian metric),

d

dt
d(xt , yt )

2 = 2
(〈ẏt , α̇

t (1)〉 − 〈ẋt , α̇
t (0)〉)

= 2
(〈∇M F(yt ), α̇

t (1)〉 − 〈∇M F(xt ), α̇
t (0)〉)

≥ −2θt d(xt , yt )
2.

The rest of the proof proceeds as in the proof of [15, Lemma 3.2], with the manifold setting
making no difference. ��
1 The existence of solutions to the above equations, and of the limits, is non-trivial in general. These issues are
discussed in length in [1, 14, 24] for the various settings we consider. In particular, the convexity and curvature
assumptions we shall enforce in the coming proofs are enough to guarantee that all maps under consideration
are well-defined.
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As is clear from Proposition 1, our goal will be to estimate the Hessian along the Langevin
dynamics. Such estimates have previously been studied in the literature, in particular by
Elworthy and Li [26]. We also mention [27], which contains a pedagogical exposition of sec-
ond derivative computations and estimates in the manifold setting. For the general manifold
setting, our results will be based on the recent work of Cheng, Thalmaier, and Wang [28].
However, for the Euclidean and Sphere setting, our sharp results require new Hessian esti-
mates, which we shall provide. All of the above methods are based on Bismut’s integration
by parts formula [29].

3 Euclidean spaces

This section is devoted to the proof of Theorem 1. For the rest of this section, we fix two
probabilitymeasuresμ = e−V (x)dx and ν = e−W (x)dμ onRn .We require thatμ, the source,
satisfies the assumptions of Theorem 1,

∇2V (x) � κI ∀ x ∈ R
n and |∇3V (x)(u, u)| ≤ K ∀ u ∈ S

n−1,

for some κ > 0 and K ≥ 0. We also require that ν, the target, is an L-log-Lipschitz
perturbation of μ,

|∇W (x)| ≤ L ∀ x ∈ R
n .

Further, as in Sect. 2, we let Xt stand for the Langevin dynamics, associated toμwith X0 ∼ ν,
and Pt is its semigroup. As suggested by Proposition 1 we shall require the following global
bound of ∇2 log Pt e−W (x).

Proposition 2 For every t ≥ 0 and x ∈ R
n,

∇2 log Pt e
−W (x) � Le−κt

[
5L + 5√

t
+ K t

2

]
I.

The proof of Proposition 2 will be the main focus of this section. Before delving into the
proof, let us show how Theorem 1 follows.

Proof of Theorem 1 Using
∫ ∞

0
e−κt dt = 1

κ
,

∫ ∞

0

e−κt

√
t

dt =
√

π

κ
,

∫ ∞

0
te−κt dt = 1

κ2 ,

the combination of Proposition 1 and Proposition 2 yields that T , the Langevin transport

map, is Lipschitz with constant exp
(
5 L2

κ
+ 5

√
π L√
κ

+ L K
2κ2

)
≤ exp

(
10
[

L√
κ

+ L2

κ
+ L K

κ2

])
. ��

3.1 Stochastic representation of the Hessian

In order to establish Lipschitz properties of the Langevin transport map our main task will
be to derive global bounds on ∇2 log Pt e−W . Toward this goal, our main technical tool is a
stochastic representation of∇2Pt , known asBismut’s formula. Before stating the formula, we
first define the Jacobi flow of the Langevin dynamics as (∇ X x

t )t≥0, where ∇ X x
t : Rn → R

n

is the derivative of (the random function) X x
t with respect to the initial condition x ,

∇u X x
t := lim

ε↓0
X x+εu

t − X x
t

ε
∈ R

n, ∀u ∈ R
n .
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The Jacobi flow (∇ X x
t )t≥0 appears naturally when applying the chain rule in the differenti-

ation of Pt f (x) with respect to x , formally,

∇ Pt f (x) = ∇E[ f (X x
t )] = E[∇ f (X x

t )∇ X x
t ].

The process (∇ X x
t ) satisfies the differential equation

∂t∇ X x
t = −∇2V (X x

t )∇ X x
t , ∇ X x

0 = I, (5)

which can be seen by differentiating (1) and noting that (ωt ) does not depend on x . Since we
require Hessian estimates of Pt f , we also consider the second variation of (X x

t ),

∇2
u,v X x

t := lim
ε↓0

∇v X x+εu
t − ∇v X x

t

ε
∈ R

n, ∀u, v ∈ R
n

(which is symmetric with respect to u and v). The equation for the process (∇2X x
t ) can be

obtained by differentiating (5),

∂t∇2
u,v X x

t = −∇3V (X x
t )(∇u X x

t ,∇v X x
t ) − ∇2V (X x

t )∇2
u,v X x

t , ∇2X x
0 = 0, (6)

where, for x ∈ R
n and u, v ∈ R

n ,

[∇3V (x)(u, v)]i =
n∑

j,k=1

∂3i jk V (x)u jvk = ∇u∇v(∇V )i (x) ∀ i ∈ [n].

With these definitions, and the following notation,

∇v f (x) := 〈 f (x), v〉 and ∇2
v,u f (x) = 〈v,∇2 f (x)u〉

(the definition is extended naturally for vector-valued functions), the stochastic formula now
reads:

Lemma 1 ([26, p. 8 in arXiv version]) For any x ∈ R
n, u, v ∈ R

n, and f : R
n → R

twice-differentiable,

∇2
u,v Pt f (x) = 1

t
√
2
E
[∇v[ f (X x

t )]Mx,u
t
]+ 1

t

∫ t

0
E
[〈∇ Pt−s f (X x

s ),∇2
u,v X x

s 〉] ds

where

Mx,u
t :=

∫ t

0
〈∇u X x

s , dωs〉 x ∈ R
n , u ∈ R

n .

In our setting, f = e−W and we need to bound the various quantities appearing in
Lemma 1. The first derivative of Pt e−W can be controlled by the log-Lipschitz assumption.
The first variation ∇ X x

t is controlled by the κ-log-concavity assumption, and the second
variation ∇2X x

t is controlled by the κ-log-concavity assumption and the bound on the third
derivative of V .

3.2 Estimates

The purpose of this section is to provide the requisite estimates for the proof of Proposition 2.
We start with the first variation.
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Lemma 2 (First variation estimate) Suppose that ∇2V (x) � κI for every x ∈ R
n. Then, a.s.,

for any fixed v ∈ Sn−1,

|∇v X x
t | ≤ e−κt ∀ t ≥ 0.

Consequently, for any differentiable f : Rn → R,

|∇[ f (X x
t )]| ≤ e−κt |∇ f (X x

t )|.
Proof By the Cauchy-Schwarz inequality, for any v ∈ R

n ,

|∇v[ f (X x
t )]| = |〈∇ f (X x

t ),∇v X x
t 〉| ≤ |∇ f (X x

t )||∇v X x
t |.

Hence, taking the supremum over v ∈ S
n−1 it suffices to show that |∇v X x

t | ≤ e−κt . To see
the latter bound fix v ∈ S

n−1 and let βv : R≥0 → R≥0 be given by βv(t) := |∇v X x
t |. Then,

by (5) and the convexity assumption on V ,

∂tβv(t) = 〈∇v X x
t ), ∂t∇v X x

t 〉
βv(t)

= −〈∇v X x
t ,∇2V (X x

t )∇v X x
t 〉

βv(t)
≤ −κ

|∇v X x
t |2

βv(t)
= −κβv(t).

Since βv(0) = 1, Grönwall’s inequality yields |∇v X x
t | ≤ e−κt . ��

We now move to the second variation.

Lemma 3 (Second variation estimate) Suppose that

∇2V (x) � κI ∀ x ∈ R
n and |∇3V (x)(u, u)| ≤ K ∀ u ∈ S

n−1.

Then, a.s., for any t ≥ 0 and v ∈ S
n−1,

|∇2
v,v X x

t | ≤ K te−κt .

Proof Fix v ∈ S
n−1 and let βv : R≥0 → R≥0 be given by βv(t) := |∇2

v,v X x
t |. By (6) and

Lemma 2,

∂tβv(t) = 〈∇2
v,v X x

t , ∂t∇2
v,v X x

t 〉
βv(t)

= 〈∇2
v,v X x

t ,−∇3V (X x
t )(∇v X x

t ,∇v X x
t ) − ∇2V (X x

t )∇2
v,v X x

t 〉
βv(t)

≤ K
|∇2

v,v X x
t ||∇v X x

t |
βv(t)

− κ
|∇2

v,v X x
t |2

βv(t)
= K |∇v X x

t | − κβv(t) ≤ K e−κt − κβv(t).

The solution to the differential equation

∂tξ(t) = K e−κt − κξ(t), ξ(0) = 0

is ξ(t) = K te−κt so by Grönwall’s inequality

|∇2
v,v X x

t | = βv(t) ≤ K te−κt .

��
We will also use a reverse Hölder inequality for log-Lipschitz functions under a κ-log-

concavity assumption:
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Lemma 4 Let dμ = e−V dx and suppose that ∇2V (x) � κI for every x ∈ R
n. Then, for

every L-log-Lipschitz function f : Rn → R,

Pt ( f 2) ≤ exp

(
L2 1 − e−2κt

κ

)
(Pt f )2.

Proof It is well-known (e.g., [30, Eq. (1.3)]) that if a measure η satisfies a log-Sobolev
inequality with constant C then it satisfies a reverse Hölder inequality for L-log-Lipschitz
functions,

‖ f ‖L p(η) ≤ exp

(
C

2
L2(p − q)

)
‖ f ‖Lq (η) ∀ 0 ≤ q < p.

Since the measure η := P∗
t δx satisfies a log-Sobolev inequality with constant C = 1−e−2κt

2κ
[22, Eq. (5.5.5)], and since

Pt ( f 2)(x) = ‖ f ‖2L2(η)
and (Pt f )2 = ‖ f ‖2L1(η)

,

we get

Pt ( f 2) ≤ exp

(
1

4
L2 1 − e−2κt

κ

)
(Pt f )2 ≤ exp

(
L2 1 − e−2κt

κ

)
(Pt f )2.

��

Remark 2 The statement, and proof, of Lemma 4 can be extended verbatim to the manifold
setting by requiring that the measure satisfies the so-called curvature-dimension condition
CD(κ,∞). In particular, the statement is for the uniform measure on the unit sphere Sn−1,
with κ replaced by n − 2.

We shall also make use of the following classical lemma about martingales:

Lemma 5 Let Mt be a continuous martingale, with M0 = 0, and whose quadratic variation
is almost surely bounded, that is, 〈M〉t ≤ ϕ(t) for all t ≥ 0. Then

P[|Mt | ≥ δ] ≤ 2 exp

(
− δ2

2ϕ(t)

)
.

Proof From Novikov’s condition, for any σ ∈ R we have

E[exp(σ Mt − σ 2〈M〉t/2)] = 1,

so

E[exp(σ Mt )] ≤ exp(σ 2ϕ(t)/2).

We then apply the Chernoff bound,

P[Mt ≥ δ] ≤ inf
σ≥0

exp(−σδ)E[exp(σ Mt )]

to conclude. ��
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3.3 Proof of Proposition 2

By Lemma 1,

∇2
u,v Pt f (x) = 1

t
√
2
E
[∇v[ f (X x

t )]Mx,u
t
]+ 1

t

∫ t

0
E

[
(∇ Pt−s f (X x

s ))�∇2
u,v X x

s

]
ds,

and we will apply this identity with f = e−W . We start by analyzing the first term.

Lemma 6 For any v ∈ S
n−1,

1

t
√
2
E

[
∇v[e−W (X x

t )]Mx,u
t

]
≤ 5e−κt

[
L2 + L√

t

]
Pt e

−W (x).

Proof For any δ ≥ 0 and f differentiable,

|E [∇v[ f (X x
t )]Mx,u

t
] |

≤ E
[|∇v[ f (X x

t )]||Mx,u
t |]

= E

[
1|Mx,u

t |<δ|∇v[ f (X x
t )]||Mx,u

t |
]

+ E

[
1|Mx,u

t |≥δ|∇v[ f (X x
t )]||Mx,u

t |
]

≤ δE
[|∇v[ f (X x

t )]|]+ E
[|∇v[ f (X x

t )]|2]1/2 E
[
1|Mx,u

t |≥δ|Mx,u
t |2

]1/2

≤ δE
[|∇v[ f (X x

t )]|]+ E
[|∇v[ f (X x

t )]|2]1/2 E [|Mx,u
t |4]1/4 P[|Mx,u

t | ≥ δ]1/4.
We will now analyze the terms above one-by-one. For v ∈ S

n−1, Lemma 2 yields

|∇v[ f (X x
t )]| ≤ |∇[ f (X x

t )]| ≤ e−κt |∇ f (X x
t )| = e−κt | f (X x

t )||∇ log f (X x
t )|,

so taking f = e−W yields

|∇v[e−W (X x
t )]| ≤ Le−κt e−W (X x

t ). (7)

It follows that

E[|∇v[e−W (X x
t )]|] ≤ Le−κt Pt e

−W (x). (8)

For the second term, (7) gives

E[|∇v[e−W (X x
t )]|2]1/2 ≤ Le−κt

(
Pt (e

−W (x))2
)1/2

,

so applying Lemma 4 yields

E[|∇v[e−W (X x
t )]|2]1/2 ≤ L exp

(
L2 1 − e−2κt

2κ
− κt

)
Pt e

−W (x). (9)

Next we turn to analyze the martingale (Mt ). By Lemma 2, |∇u X x
t | ≤ e−κt a.s. for any

u ∈ S
n−1 so the quadratic variation of (Mt ) satisfies

〈Mx,u〉t =
∫ t

0
|∇u X x

s |2ds ≤ 1 − e−2κt

2κ
. (10)

On the other hand, the Burkholder-Davis-Gundy inequalities yield that, for any 0 < p < ∞,

E[|Mx,u
t |p] ≤ C pE[〈Mx,u〉p/2

t ], (11)
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61 Page 12 of 25 M. Fathi et al.

for a constant C p depending only on p. Combining (10) and (11), with p = 4, and using
C4 ≤ 360 (see [31, proof of Proposition 3.26]), yields

E[|Mx,u
t |4]1/4 ≤ 5

√
1 − e−2κt

2κ
. (12)

Moreover, applying Lemma 5, we have

P[|Mx,u
t | ≥ δ] ≤ 2 exp

(
−δ2

κ

1 − e−2κt

)
.

It follows that

P[|Mx,u
t | ≥ δ]1/4 ≤ 21/4 exp

(
−δ2

4

κ

1 − e−2κt

)
. (13)

Combining (8), (9), (12), (13) yields

1

t
√
2
|E [∇v[ f (X x

t )]Mx,u
t
] |

≤ 1

t
√
2

⎡
⎣δLe−κt + L exp

(
L2 1 − e−2κt

2κ
− κt

)
5

√
1 − e−2κt

2κ
21/4 exp

(
− δ2

4

κ

1 − e−2κt

)⎤
⎦ Pt e−W (x)

= Le−κt

t
√
2

⎡
⎣δ + 5 · 21/4

√
1 − e−2κt

2κ
exp

(
L2 1 − e−2κt

2κ

)
exp

(
− δ2

8

2κ

1 − e−2κt

)⎤
⎦ Pt e−W (x).

We choose δ so that the term eL2
vanishes. In particular, we take

δ := 2
√
2L

1 − e−2κt

2κ

to get

1

t
√
2
|E [∇v[ f (X x

t )]Mx,u
t
] | ≤ Le−κt

t
√
2

⎡
⎣2√2L

1 − e−2κt

2κ
+ 5 · 21/4

√
1 − e−2κt

2κ

⎤
⎦ Pt e

−W (x)

≤ Le−κt

t
√
2

[
2
√
2L

2κt

2κ
+ 5 · 21/4

√
2κt

2κ

]
Pt e

−W (x)

=
[
2L2e−κt + 5 · 2−1/2 · 21/4 Le−κt

√
t

]
Pt e

−W (x)

≤ 5e−κt
[

L2 + L√
t

]
Pt e

−W (x).

��

We now analyze the second term.

Lemma 7

1

t

∫ t

0

∣∣∣E
[
〈∇ Pt−se−W (X x

s ),∇2
u,u X x

s 〉
]∣∣∣ ds ≤ L K t

e−κt

2
Pt e

−W (x).
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Proof By [22, Eq. (5.5.4)], for any y ∈ R
n ,

|∇ Pt−se−W (y)| ≤ e−κ(t−s) Pt−s

(
|∇e−W (y)|

)
= e−κ(t−s) Pt−s

(
|∇W |e−W (y)

)

≤ Le−κ(t−s) Pt−se−W (y) (14)

so by (14) and Lemma 3,

1

t

∫ t

0

∣∣∣E
[
〈∇ Pt−se−W (X x

s ),∇2
u,u X x

s 〉
]∣∣∣ ds

≤ 1

t

∫ t

0
E

[
|∇ Pt−se−W (X x

s )||∇2
u,u X x

s |
]

ds

≤ 1

t

∫ t

0
E

[
e−κ(t−s)L(Pt−se−W (X x

s ))K se−κs
]

ds = L K
e−κt

t
Pt e

−W (x)

∫ t

0
sds

= L K t
e−κt

2
Pt e

−W (x).

��
We can now complete the proof of Proposition 2. By Lemma 6 and Lemma 7,

∇2
u,u log Pt e

−W (x) = ∇2
u,u Pt e−W (x)

Pt e−W (x)
− |∇u log Pt e

−W (x)|2 ≤ ∇2
u,u Pt e−W (x)

Pt e−W (x)

≤ 5e−κt
[

L2 + L√
t

]
+ L K t

2
e−κt

= Le−κt
[
5L + 5√

t
+ K t

2

]
.

4 The round sphere

This section is devoted to the proof of Theorem 2. Throughout this section, we let μ stand
for the uniform probability measure on S

n−1, the unit sphere in R
n , and let ν = e−W (x)dμ

be an L-log-Lipschitz perturbation of μ. In other words, if ∇S is the spherical gradient, then
for almost every x ∈ S

n−1,

|∇S W (x)| ≤ L.

As before, X x
t is the Langevin process associated with μ, with semigroup (Pt ). Since μ is

uniform, X x
t takes a particularly simple form X x

t = ωt , where ωt is a standard Brownian
motion on S

n−1, with ω0 = x . We also write Xt when X0 ∼ ν.
As suggested by Proposition 1, the proof of Theorem 2 will require bounding

∇2
S log Pt e−W (x). The bound of∇2

S log Pt e−W (x) will be obtained, as in the Euclidean setting,
by using a stochastic representation via Bismut’s formula. The main result of this section is
the following result.

Proposition 3 For every t ≥ 0 and x ∈ S
n−1,

∇2
S log Pt e

−W (x) � 12

(
L + L2

√
n − 2

)
e−(n−2)t

(
1√
t

+ 1

)
g.

Before delving into the proof of Proposition 3, let us show how Theorem 2 follows.
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Proof of Theorem 2 Using
∫ ∞

0
e−(n−2)t dt = 1

n − 2
,

∫ ∞

0

e−(n−2)t

√
t

dt =
√

π

n − 2
,

the combination of Proposition 1 and Proposition 3 yields that T , the Langevin trans-

port map, is Lipschitz with constant exp
(
12
(

L√
n−2

+ L2

n−2

) (
1√
n−2

+ √
π
))

≤ exp(
35
(

L√
n−2

+ L2

n−2

))
. The result now follows by re-scaling the sphere. ��

4.1 Stochastic representation of the Hessian

The proof of Proposition 3 will rely on a stochastic representation of the Hessian of the heat
semigroup on the sphere, analogous to Lemma 1. Before introducing the particular form of
this representation, we recall a few facts about the curvature of the sphere. Let g be the metric
on Sn−1 induced from R

n . Given vector fields X , Y , Z , the Riemannian curvature tensor on
the sphere is given by

RiemS(X , Y )Z = g(Y , Z)X − g(X , Z)Y , (15)

and its trace, the Ricci curvature, is given by

RicS(Y , Z) = (n − 2)g(Y , Z).

For t ≥ 0 and x ∈ S
n−1, we use //t : TxS

n−1 → TX x
t
S

n−1 for the (random) parallel
transport operator between the tangent spaces at x and at X x

t . The role of the Jacobi flow
will be played by the operators Qt : TxS

n−1 → TX x
t
S

n−1 defined as,

Qt := e−(n−2)t//t . (16)

An elementary calculation using the above formula for RicS shows that

∂t Qt = −Ric�
S Qt ; Q0 = id,

which is analogous to (5) for the Jacobi flow with a curvature term. Here, Ric�
S is defined by

the canonical isomorphism g(Ric�
S(u), v)x = RicS(u, v) for all x ∈ M , and u, v ∈ Tx M .

Lemma 8 ([28, Lemma 2.6]2) Let f : Sn−1 → R and t > 0. For any continuously differ-
entiable k : [0, t] → R such that k(0) = 1 and k(t) = 0, we have, for any x ∈ S

n−1 and
v, u ∈ TxS

n−1,

∇2
S Pt f (v, u) = −√

2E

[
g(∇S f (X x

t ), Qt (v))

∫ t

0
g(Qs(k̇(s)u), //sd Bs)

]

+ √
2E

[
g

(
∇S f (X x

t ), Qt

∫ t

0
Q−1

s RiemS(//sd Bs, Qs(v))Qs(k(s)u)

)]
,

where Bs is a standard Brownian motion on TxS
n−1.

Lemma 8 allows for some flexibility with the choice of the function k. For our use, we fix
the following specific choice

k(s) := 1 − s

t
∀s ∈ [0, t]. (17)

2 We rescale the generator of the heat equation so our t corresponds to 2t in [28].
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4.2 Proof of Proposition 3

As in the Euclidean setting, we need to bound the first and second terms of Lemma 8 sep-
arately. The first term is analogous to the first term of Lemma 1 where we need to bound
the martingale

∫ t
0 〈Qs(k̇(s)w), //sd Bs〉. The second term of Lemma 1 is absent in the sphere

setting since μ is the uniform measure. However, due to the curvature of the sphere, we get
the second term in Lemma 8. As we will show, this term also involves a martingale. More
precisely, the term

Qt

∫ t

0
Q−1

s RiemS(//sd Bs, Qs(v))Qs(k(s)v)

is a martingale, which is a feature of the constant curvature of the sphere, absent in the
general manifold setting. In light of this, to bound ∇2

S Pt e−W , we shall require the following
martingale argument, which extends the bounds obtained in the Euclidean setting.

Lemma 9 Let f : Sn−1 → R be an L-log-Lipschitz function and let (Mt ) be a martingale on
TxS

n−1, for some x ∈ S
n−1. Assume that almost surely, Mt has bounded quadratic variation,

that is

〈M〉t ≤ ϕ(t) a.s.,

for some ϕ(t) > 0. Then

E[|g(∇S f (X x
t ), //t Mt )|] ≤

(
6L + 2

L2

√
n − 2

)√
ϕ(t)E[ f (X x

t )].

Proof Since μ is the uniform measure on S
n−1, Lemma 4 and Remark 2 yield

E[|∇S f (X x
t )|2] ≤ L2

E[ f (X x
t )2] ≤ L2 exp

(
L2 1 − e−2(n−2)t

n − 2

)
E[ f (X x

t )]2,

where the first inequality is the L-log-Lipschitz condition coupled with the chain rule. As in
the Euclidean setting, we have, for any δ > 0,

E[|∇S f (X x
t )||Mt |] ≤ δE[|∇S f (X x

t )|] + E[|∇S f (X x
t )|2]1/2E[|Mt |4]1/4P[|Mt | ≥ δ]1/4,

as well as the bound E[|Mt |4]1/4 ≤ 5ϕ(t)1/2 which follows from the Burkholder-Davis-
Gundy inequality [31, Proposition 3.26] and the bound on the quadratic variation. Moreover,

using Lemma 5, P[|Mt | ≥ δ] ≤ 2 exp
(
− δ2

2ϕ(t)

)
. It follows that

E[|∇S f (X x
t )||Mt |] ≤ δE[|∇S f (X x

t )|]

+
(
5 · 21/4L exp

(
L2 1 − e−2(n−2)t

2(n − 2)

)
ϕ(t)1/2

(
− δ2

8ϕ(t)

))
E[ f (Xt )]

≤
(

δL + 5 · 21/4L exp

(
L2 1 − e−2(n−2)t

2(n − 2)

)
ϕ(t)1/2

exp

(
− δ2

8ϕ(t)

))
E[ f (Xt )],
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where the second inequality used E[|∇S f (X x
t )|] ≤ LE[ f (X x

t )] since f is L-log-

Lipschitz. We choose δ so that the term eL2
vanishes. In particular, we take δ =

2
√
2L

√
ϕ(t)

√
1−e−2(n−2)t

2(n−2) , we get

E[|∇S f (X x
t )||Mt |] ≤ √ϕ(t)

⎛
⎝2√2L2

√
1 − e−2(n−2)t

2(n − 2)
+ 5 · 21/4L

⎞
⎠E[ f (X x

t )]

≤
(
6L + 2

L2

√
n − 2

)√
ϕ(t)E[ f (X x

t )].

��

We now bound the two terms appearing in Lemma 8 using Lemma 9. For brevity, let us
use f := e−W . We start by analyzing the first term.

Lemma 10 Fix x ∈ S
n−1. For every unit vectors v, u ∈ TxS

n−1 and t > 0,

∣∣∣∣E
[

g(∇S f (X x
t ), Qt (v))

∫ t

0
g(Qs(k̇(s)u), //sd Bs)

]∣∣∣∣

≤ 6
e−(n−2)t

√
t

(
L + L2

√
n − 2

)
Pt f (x).

Proof Using (16) we see that the term E

[
g(∇S f (X x

t ), Qt (v))
∫ t
0 g(Qs(k̇(s)u), //sd Bs)

]

can be written as e−(n−2)t
E[g(∇S f (X x

t ), //t Mt )] where

Mt =
(∫ t

0
g(Qs(k̇(s)u), //sd Bs)

)
v

is a martingale. The quadratic variation of Mt is equal to, using (17),

∫ t

0
e−2(n−2)s k̇(s)2ds = 1

t2

∫ t

0
e−2(n−2)s = 1

t2
1 − e−2(n−2)t

2(n − 2)
≤ 1

t
=: ϕ(t)

where the inequality follows from 1 − e−2(n−2)t ≤ 2(n − 2)t . The proof is complete by
Lemma 9. ��

We now analyze the second term where we take v = u.

Lemma 11 Fix x ∈ S
n−1. For every unit vector v ∈ TxS

n−1 and t > 0,

∣∣∣∣E
[

g

(
∇S f (X x

t ), Qt

∫ t

0
Q−1

s RiemS(//sd Bs, Qs(v))Qs(k(s)v)

)]∣∣∣∣

≤ 6e−(n−2)t
(

L + L2

√
n − 2

)
Pt f (x).
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Proof We use the expressions (15) and (16) to write

Q−1
s RiemS(//sd Bs, Qs(v))Qs(k(s)v)

=
(

e−(n−2)s
)−1

//−1
s RiemS(//sd Bs, e−(n−2)s//sv)e−(n−2)sk(s)//sv

= e−(n−2)sk(s)//−1
s RiemS(//sd Bs, //sv)//sv

= e−(n−2)sk(s)//−1
s [g (//sv, //sv) //sd Bs − g (//sd Bs, //sv, ) //sv]

= e−(n−2)sk(s)//−1
s [//sd Bs − g (//sd Bs, //sv) //sv]

= e−(n−2)sk(s) [d Bs − g (d Bs, v) v] ,

where in the last equation we used that //s is a linear isometry. The term d Bs − g (d Bs, v) v

is a Brownian motion in the hyperplane orthogonal to v inside TxS
n−1, so it follows that∫ t

0 Q−1
s RiemS(//sd Bs, Qs(v))Qs(k(s)v) is a martingale in TxS

n−1 whose quadratic varia-
tion is bounded from above by (using 0 ≤ k(s) ≤ 1 for all s ∈ [0, t]),

(n − 2)
∫ t

0
e−2(n−2)sk(s)2dr ≤ (n − 2)

∫ t

0
e−2(n−2)sdr ≤ n − 2

2(n − 2)
= 1

2
,

Therefore, we can view the term

E

[
g

(
∇S f (X x

t ), Qt

∫ t

0
Q−1

s RiemS(//sd Bs, Qs(v))Qs(k(s)v)

)]

as of the form

e−(n−2)t
E[g(∇S f (X x

t ), //t Mt )],
where Mt is a martingale on TxS

n−1 with quadratic variation bounded by 1
2 . The proof is

complete by Lemma 9. ��
We can now complete the proof of Proposition 3. By Lemma 10 and Lemma 11,

∇2
S log Pt e

−W (x)(u, u) = ∇2
S Pt e−W (x)(u, u)

Pt e−W (x)
− g(∇S log Pt e

−W (x), u)2

≤ |∇2
S Pt e−W (x)(u, u)|

Pt e−W (x)

≤ 12

(
L + L2

√
n − 2

)
e−(n−2)t

(
1√
t

+ 1

)
.

5 General manifolds

Let (M, g, μ) with μ = e−V d Vol be a weighted Riemannian manifold, with tangent bundle
T M . We start by introducing the relevant concepts from Riemannian geometry.

Notions from Riemannian geometry

• If S is a symmetric tensor on T M , we denote S# : T M −→ T M the operator such that
g(S#(u), v)x = S(u, v), ∀x ∈ M , u, v ∈ Tx M where we suppress the dependence of S
on x .
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• Riem denotes the Riemannian curvature 4-tensor on (M, g). Its norm is defined as

||Riem ||∞ := sup

{
d∑

i=i

g(Riem(x)(ei , u)v, S#(ei )), x ∈ M, |u|, |v| ≤ 1, |S|op ≤ 1

}

where u, v ∈ Tx M , {ei } is any basis of Tx M , and S is a symmetric 2-tensor.
• Ric denotes the Ricci curvature tensor on (M, g).
• d∗ Riem is defined as

g(d∗ Riem(u, v), w) = g((∇w Ric#)(u), v) − g((∇v Ric
#)(w), u).

• RicV denotes the weighted Ricci curvature tensor of Bakry-Émery on (M, g, μ), that is,

RicV := Ric+∇2
M V

where ∇M and ∇2
M are, respectively, the gradient and Hessian on the manifold M .

The manifold (M, g, μ) satisfies the CD(κ,∞) curvature-dimension, for κ ∈ R, if

RicV � κg.

With these definitions, we state our main result, which is the precise form of Theorem 3.

Theorem 5 Let (M, d, μ) be a weighted Riemannian manifold with μ = e−V dVol, and
let ν = e−W dμ be another measure on M, with W an L-Lipschitz function. Assume that
||Riem ||∞ < ∞, RicV � κg with κ > 0, and that

β := ||∇ Ric#V +d∗ Riem+Riem(∇V )||∞ < ∞.

Then, the Langevin transport map from μ onto ν is Lipschitz with constant exp(
L

(
e

L2
2κ√
κ

+ e
L2
2κ

‖Riem ‖∞
κ
3
2

+ β

κ2

))
.

On the assumptions, the lower bound on the Ricci curvature tensor is the natural analogue
of the uniform convexity assumption in the Euclidean setting, while a bound on ∇ Ric#V is
the natural counterpart to the third derivative bound on V in the Euclidean setting. The other
terms we have to control are purely geometric and vanish if we consider a Euclidean space
or the uniform measure on the sphere.

As in the previous section, we shall require a bound on the Hessian along the Langevin
semigroup. The following result is the analog of Proposition 2 and Proposition 3 but for
general manifolds. The estimate of Proposition 4 is not strong enough to yield the sharp
results of Theorem 1 and Theorem 2 which necessitate Proposition 2 and Proposition 3. It
is this estimate which leads to the double-exponential estimate on the Lipschitz constant of
the transport maps.

Proposition 4 For every t ≥ 0 and x ∈ M,

∇2
M log Pt e

−W (x) � e−κt L

(( √
κ√

eκt − 1
+ ‖Riem ‖∞√

κ

)
e

L2
(
1−e−2κt

2κ

)
+ β

κ

)
g.

Proof By Lemma 4 and Remark 2, if f is positive and L-log-Lipschitz then

Pt (|∇M f |2) ≤ exp

(
L2 1 − e−2κt

κ

)
(Pt |∇M f |)2 ≤ L2 exp

(
L2 1 − e−2κt

κ

)
(Pt f )2. (18)

123



Transportation onto log-Lipschitz perturbations Page 19 of 25 61

Hence, by [28, Theorem 2.5]3 and (18),

∇2
M Pt e

−W (x) � e−κt
(( √

κ√
e2κt − 1

+ ‖Riem ‖∞√
κ

)
(Pt |∇M e−W |2)1/2 + β

κ
Pt |∇M e−W |

)
g

� e−κt
(( √

κ√
e2κt − 1

+ ‖Riem ‖∞√
κ

)
Le

L2
(
1−e−2κt

2κ

)
Pt e

−W + βL

κ
Pt e

−W
)

g

(19)

so (19) yields

∇2
M log Pt e

−W (x) = ∇2
M Pt e−W (x)

Pt e−W (x)
−
(
∇M log Pt e

−W (x)
)⊗2 � ∇2

M Pt e−W (x)

Pt e−W (x)

� e−κt L

(( √
κ√

e2κt − 1
+ ‖Riem ‖∞√

κ

)
e

L2
(
1−e−2κt

2κ

)
+ β

κ

)
g.

��
Proof of Theorem 5 Proposition 4 implies, for every x ∈ M and unit vector u ∈ Tx M ,

∞∫

0

∣∣∣∇2
M log Pt e

−W (x)(u, u)

∣∣∣ dt

≤
∞∫

0

e−κt L

(( √
κ√

e2κt − 1
+ ‖Riem ‖∞√

κ

)
e

L2
2κ + β

κ

)
dt

= L

⎛
⎝√

κe
L2
2κ

∞∫

0

e−κt

√
e2κt − 1

dt +
(

e
L2
2κ

‖Riem ‖∞√
κ

+ β

κ

) ∞∫

0

e−κt dt

⎞
⎠

= L

⎛
⎝e

L2
2κ√
κ

+ e
L2
2κ

‖Riem ‖∞
κ

3
2

+ β

κ2

⎞
⎠ .

The proof is complete by Proposition 1. ��

6 The inverse of the Langevin transport map

In this section, we focus on the inverse of the Langevin transport map. Recall, from (4), that
(St )t≥0 stands for forward maps along the Langevin flow. Thus we have that S := lim

t→∞ St =
T −1, when T is the Langevin transport map. We shall prove the following precise form of
Theorem 4.

Theorem 6 1. Let μ and ν be as in Theorem 1. Then S is Lipschitz with constant

exp
(
21
2

L2

κ
+ 5

√
π L√
κ

+ L K
2κ2

)

2. Letμandν be as in Theorem 2. Then S is Lipschitz with constant exp
(
35 L√

n−2
+ 71

2
L2

n−2

)
.

3. Let μ and ν be as in Theorem 5. Then S is Lipschitz with constant exp(
L

(
e

L2
2κ√
κ

+ e
L2
2κ

‖Riem ‖∞
κ
3
2

+ β

κ2

)
+ L2

2κ

)
.

3 We rescale the generator of the heat equation so our t corresponds to 2t in [28].
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The proof of Theorem 6 is analogous to the proofs of the Lipschitz properties of the
Langevin transport map T from μ to ν. With the same argument as in the proof of Proposi-
tion 1, without reversing the map, we get:

Proposition 5 If for all t ≥ 0

∇2
M log Pt e

−W � −�t g,

then S is exp
(∫∞

0 �t dt
)
-Lipschitz.

The next result shows how to combine log-Lipschitz properties together with Hessian
estimates to get a lower bound on the Hessian as in Proposition 5.

Proposition 6 Let (M, g, μ) be weighted Riemannian manifold with the associated Langevin
semigroup (Pt ) and let | · | := g(·, ·). Suppose that we have:

1. There exists κ > 0 such that for every test function f ,

|∇M Pt f | ≤ e−κt Pt |∇M f |.
2. There exists α : [0,∞) × [0,∞) → R such that for every L-log-Lipschitz nonnegative

function f ,

∇2
M Pt f

Pt f
� −α(t, L)g.

Then, for every L-log-Lipschitz function f ,

∇2
M log Pt f � −(α(t, L) + L2e−2κt )g.

Proof Item 1 implies that

|∇M log Pt f | = |∇M Pt f |
|Pt f | ≤ e−κt Pt |∇M f |

|Pt f | = e−κt Pt | f ∇M log f |
|Pt f | ≤ Le−κt

so, by item 2, for every tangent vector u,

∇2
M log Pt f (u, u) = ∇2

M Pt f (u, u)

Pt f
− g(∇M log Pt f , u)2 ≥ (α(t, L) + L2e−2κt ).

��
We can now complete the proof of Theorem 6.

1. The assumption∇2V (x) � κI together with the classical Bakry-Émery gradient estimate
[22, Eq. (5.5.4)] shows that item 1 of Proposition 6 holds with κ . As for item 2, it follows
from the proof of Proposition 2 that it holds with

α(t, L) = Le−κt
[
5L + 5√

t
+ K t

2

]
.

Hence, the condition in Proposition 5 is satisfied with

�t = Le−κt
[
5L + 5√

t
+ K t

2

]
+ L2e−2κt ,

which completes the proof by integration from t = 0 to t = ∞ (see the proof of
Theorem 1).
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2. The sphere S
n−1 satisfies the curvature-dimension condition CD(n − 2,∞) so the

Bakry-Émery gradient estimate [22, Eq. (5.5.4)] can be applied to show that item 1 of
Proposition 6 holds with n − 2. As for item 2, it follows from the proof of Proposition 3
that it holds with

α(t, L) = 45

(
L + L2

√
n − 2

)
e−(n−2)t

(
1√
t

+ 1

)
.

Hence, the condition in Proposition 5 is satisfied with

�t = 35

(
L + L2

√
n − 2

)
e−(n−2)t

(
1√
t

+ 1

)
+ L2e−2(n−2)t ,

which completes the proof by integration from t = 0 to t = ∞ (see the proof of
Theorem 2).

3. By assumption, M satisfies the curvature-dimension condition CD(κ,∞) so the Bakry-
Émery gradient estimate [22, Eq. (5.5.4)] can be applied to show that item 1 of
Proposition 6 holds with κ . As for item 2, it follows from the proof of Proposition 4
that it holds with

α(t, L) = e−κt L

(( √
κ√

e2κt − 1
+ ‖Riem ‖∞√

κ

)
e

L2
(
1−e−2κt

2κ

)
+ β

κ

)
.

Hence, the condition in Proposition 5 is satisfied with

�t = e−κt L

(( √
κ√

e2κt − 1
+ ‖Riem ‖∞√

κ

)
e

L2
(
1−e−2κt

2κ

)
+ β

κ

)
+ L2e−2κt ,

which completes the proof by integration from t = 0 to t = ∞ (see the proof of
Theorem 5).

7 Applications

As is classical, Lipschitz transport maps can be used to prove functional inequalities, by
transferring them from the source measure to the target measure. In this section, we discuss
some results on functional inequalities for Lispchitz perturbations that appear to be new.

7.1 Dimension-free Gaussian isoperimetric inequalities

One of the strongest functional inequalities for the Gaussian measure is the Gaussian isoperi-
metric inequality, which states that among all sets with given Gaussian mass, the minimal
Gaussian perimeter is achieved for half-spaces. The general functional inequality is defined
as follows:

Definition 7 Letμ be a probability measure on ametric space. Given a Borel set A, we define
its t-enlargement as {x; d(x, A) ≤ t} and its boundary measure (or Minkowski content) as

μ+(A) := lim inf
t→0

t−1μ(At\A).

The probability measure μ is said to satisfy a Gaussian isoperimetric inequality with
constant α > 0 if for any Borel set we have

μ+(A) ≥ α I (μ(A)), I = ϕ ◦ φ−1
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where ϕ(x) = (2π)−1/2 exp(−x2/2) and φ(x) = ∫ x
−∞ ϕ(t)dt .

The function I corresponds to the perimeter of a half-space with the right Gaussian mass,
and the Gaussian measure satisfies this inequality with constant 1 in all dimensions. This
inequality was generalized to uniformly log-concave measures in [32]. The functional form
of the Gaussian isoperimetric inequality is Bobkov’s inequality [33]. It is immediate that
Gaussian isoperimetric inequalities can be transferred by Lipschitz transport maps (see [6]),
so we get the following as a corollary of Theorem 1:

Theorem 8 If μ is a log-Lipschitz perturbation of a standard Gaussian measure on R
d , then

it satisfies a Gaussian isoperimetric inequality with a dimension-free constant.

The same result holds in the general context of Theorems 1, 2 and 5. For the sphere, we
can transport the sharp isoperimetric inequality on the sphere, which contains a dimensional
improvement compared with the Gaussian isoperimetric inequality.

To our knowledge, this is the first result on dimension-free isoperimetric inequalities for
log-Lipschitz perturbations. A result of Miclo (see [34, Lemma 2.1]) states that Lipschitz
perturbations of uniformly log-concave measures can be recast as bounded perturbations,
allowing to use the Holley-Stroock lemma to deduce functional inequalities. However, the
constants obtained in thatway are dimension-dependent. Some of the results of [35, Section 5]
can be used to prove functional inequalities for Lipschitz perturbations of uniformly-convex
measures, but the constants depend on exponential moments of the unperturbed measure,
and are hence dimensional.

Gaussian isoperimetric inequalities imply other functional inequalities, including in par-
ticular logarithmic Sobolev inequalities:

Definition 9 A probability measure μ on a manifold is said to satisfy a logarithmic Sobolev
inequality if for any locally Lipschitz function f such that |∇ f | ∈ L2(μ), we have

∫
f 2 log f 2dμ −

(∫
f 2dμ

)
log

(∫
f 2dμ

)
≤ 2CL SI

∫
|∇ f |2dμ.

The standard Gaussian satisfies a logarithmic Sobolev inequality, with sharp constant
CL SI = 1. This inequality, which is the sharpest possible analogue of Sobolev inequalities
for theGauss space, implies for example dimension-free concentration bounds, and has found
many applications in statistics and statistical physics. We refer to [22] for an overview.

For logarithmic Sobolev inequalities, Aida and Shigekawa [36] showed that suchLipschitz
perturbations satisfy them, with a dimension-free constant that has not been made explicit.
Gaussian isoperimetric inequalities are strictly stronger than logarithmicSobolev inequalities.

As a corollary, we recover functional inequalities for Gaussian mixtures with compactly
supported mixing measures, which can be rewritten as Lipschitz perturbations of a Gaussian
measure (see the discussion at the end of [34, Section 2]).

There are some other estimates for which it is difficult to provide direct proofs, but that
can easily be extended from one measure to another via Lipschitz transport maps, including
general eigenvalue estimates for diffusion generators [8] and sharpened integrability bounds
for non-Lipschitz functions [37, 38].

7.2 A growth estimate for optimal transport maps

Our argument does not apply to quadratic optimal transport maps. Nonetheless, it would be
natural to expect similar Lipschitz estimates for them. As a hint towards such a result, we
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remark that the Gaussian concentration inequality implied by our Lipschitz estimate for non-
optimal maps, combined with the sub-Gaussian case of [39, Theorem 1.1], implies controlled
linear growth for optimal transport maps, in the following way:

Proposition 7 Let μ be a centered and L-log-Lipschitz perturbation of a standard Gaussian
measure on R

d . Then the quadratic optimal transport map ∇ϕ sending γ onto μ satisfies

|∇ϕ(x)| ≤ C1 exp(C2 max(L, L2))
√

d + |x |2

where C1 and C2 are universal constants.

In view of our results, it is natural to expect that Lipschitz estimates hold for optimal
transport maps. Even the Gaussian case is open at this time:

Conjecture 1 The Brenier map from the standard Gaussian measure onto a log-Lipschitz
perturbation of it is globally Lipschitz, and its norm can be bounded independently of the
dimension.

Note that such a statement would already significantly extend the Gaussian sub-case of
[10, Theorem 1.1] when the perturbation is smooth. Similar questions can be raised for more
general measures, as well as in the Riemannian setting, but the Gaussian case seems like
a good starting point. Since the heat flow map and the Brenier transport map coincide in
dimension one, this conjecture does hold on R.

Let us conclude with some comments on what is missing to prove this conjecture. The
optimal transport map is the unique weak solution to the Monge-Ampère equation

e−V = e−V (∇ϕ)−W (∇ϕ) det∇2ϕ

among convex functions. This is a fully nonlinear second-order PDE. One can start by inves-
tigating the linearized equation. If we replace W by a small perturbation εW − cε, with cε a
constant to enforce unit mass for the target distribution, and look for a solution of the form
∇ϕ = x + ε∇h, the linearized equation as ε goes to zero is

�h − ∇V · ∇h = W −
∫

W e−V dx . (20)

The operator on the left-hand side is precisely the generator of the diffusion process (1). This
linearization highlights the connection between quadratic optimal transport and the heat flow
map investigated here: the linearization of both constructions gives rise to the same PDE.

To prove a regularity estimate for a nonlinear PDE, it is natural to start from a proof
for the linearized equation. Regularity for solutions to Poisson equations such as (20) was
investigated in [40–42] using the stochastic representation of solutions, Malliavin calculus
and Bismut’s formula. These are precisely the kind of tools we used in this work.

Since optimal transport maps do not admit a similar stochastic representation, it would be
natural to start by looking for a PDE proof of the regularity estimates of [40] on (20). To our
knowledge, this has not been successfully investigated and is at this point a barrier to proving
Conjecture 1. The problem is of course a variant of many well-studied elliptic regularity
problems. The main difficulties are that we work in a non-compact setting, allowing for
unbounded solutions, and seek explicit dimension-free estimates. This last point in particular
has rarely been investigated with PDE methods.
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