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Abstract
We prove existence of weak solutions of a fractional thin film type equation with linear
mobility in any space dimension and for any order of the equation. The proof is based
on a gradient flow technique in the space of Borel probability measures endowed with the
Wasserstein distance.

Mathematics Subject Classification 35A01 · 35R11 · 35G25 · 35K46 · 49K20 · 35B09

1 Introduction

In this paperwe prove existence of non-negative solutions of the following evolution problem:{
∂t u − div(u∇(Lsu)) = 0 in (0,+∞) × R

d ,

u(0, ·) = u0 in R
d ,

(1.1)

where the operatorLs is the s-fractional Laplacian onR
d and s ∈ (0,+∞). Since the order of

the operatorLs is 2s, the order of the equation in (1.1) is formally 2+2s. We assume that the

initial datum u0 ∈ L1(Rd) satisfies u0 ≥ 0,
∫
Rd

u0(x) dx = 1 and
∫
Rd

|x |2u0(x) dx < +∞.

The linear operatorLs , also denoted by (−�)s , can be defined using the Fourier transform
by

L̂su(ξ) := |ξ |2s û(ξ), (1.2)

where the Fourier transform of v ∈ L1(Rd) is defined by v̂(ξ) :=
∫
Rd

v(x)e−i x ·ξ dx . Recall-
ing the link between the Fourier transform and the differentiation, it is immediate to check that
for s = 1, L1 = −� is the classical Laplacian, and for s = 2, L2 = (−�)2 is the classical
bi-Laplacian. The operator Ls is called “fractional Laplacian” usually for s ∈ (0,+∞)\N.
In this paper we use the same terminology also in the case s ∈ N.
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The aim of this paper is to prove an existence result for problem (1.1) using the gradi-
ent flow interpretation in the space of Probability measures endowed with the Wasserstein
distance. This technique has two advantages. The former is to give automatically the conser-
vation of the initial mass and the non-negativity of the solutions: these properties, in general,
are not simple to prove for equations of high order. The latter is that the technique permits
to treat simultaneously all the orders of the equation of this type.

The equation in (1.1), for s ∈ (0,+∞) \ N is a fractional version of a Thin Film type
Equation, namely

∂t u − div(u∇(−�u)) = 0. (1.3)

In general, Thin Film equations are forth order equations of the type

∂t u − div(un∇(−�u)) = 0, (1.4)

where n ∈ (0,+∞), or more generally,

∂t u − div(m(u)∇(−�u)) = 0, (1.5)

where the non-negative function m is the so-called mobility function. These equations arise
in the lubrication approximation theory for a viscous thin film of fluid, driven by surface
tension, which spreads on a solid, where u represents the height of the fluid (see for instance
the survey [35]). See [22] and [21], in the case n = 1, for a mathematical description of the
lubrication approximation for a viscous fluid in a Hele-Shaw cell. See also the references in
[6] for other models where equations of type (1.5) appear.

The first existence result for solutions of Eq. (1.4) was obtained by Bernis and Friedman
[6] in dimension d = 1 and s ∈ N in bounded interval with homogeneous Neumann type
boundary conditions. Precisely, the result is stated for n > 1 but the proof should work
with modifications also for n = 1. Further existence results in dimension 1 were obtained
by Beretta, Bertsch, Dal Passo [4] and Bertozzi, Pugh [7] (periodic conditions). In higher
dimension existence results was proven by Grün [24], Dal Passo, Garcke and Grün [12]
and Bertsch, Dal Passo, Garcke and Grün [8] in bounded domains with Neumann boundary
conditions.

In the case s = 1/2 and d = 1, a first existence result for the Neumann problem in a
bounded interval was obtained by Imbert and Mellet [25] (in this case the model describes
the propagation of a fracture in an elastic material under the pressure of a fluid filling the
fracture). The existence result of [25] was extended to the case s ∈ (0, 1) in the same setting
by Tahrini [39].

In the case s ∈ (0, 1) and any dimension d , a general existence result for the Cauchy
problem (1.1) was obtained by Segatti and Vàzquez [38]. In Section 7 of the same paper
the authors raise the problem of the proof of existence of weak solutions for (1.1) using a
gradient flow technique. In the previous literature, a proof of existence of solutions for the
Cauchy problem using gradient flow technique, in the case s = 1 and arbitrary dimension d ,
was given by Matthes, Mc Cann and Savaré in [34]. In the present paper we give a positive
answer to the problem raised in [38].

In dimension d = 1 and s = 1, the gradient flow structure of the problem related to
Eq. (1.3) was highlighted by Otto in [37] for a different notion of solution with respect to
the solutions considered in the present paper. More precisely, the paper [37] is devoted to
the existence of the so-called “prescribed contact angle solutions”: the problem is seen as a
free boundary problem, where the equation is satisfied in the positivity set P := {(t, x) ∈
(0,+∞) × R : u(t, x) > 0} and the contact angle at the boundary points ∂P(t) = ∂{(x ∈
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R : u(t, x) > 0} is prescribed and strictly positive, precisely π/4 at the points x ∈ ∂P(t).
In particular, when the measure of the set {(x ∈ R : u(t, x) = 0} is positive, these solutions
cannot satisfy u(t, ·) ∈ C1(R) for t ∈ (0,+∞). The solutions obtained in the present paper
are more regular and corresponds (still in the case d = 1 and s = 1) to the so called “zero
contact angle” solutions because the obtained solutions satisfy u(t, ·) ∈ H2(R) for a.e.
t ∈ (0,+∞) and in particular u(t, ·) ∈ C1(R) for a.e. t ∈ (0,+∞). Notice that in [37]
the energy functional has an additional term, with respect to our energy functional, which is
responsible of the fixed contact angle property of the solutions. The gradient flow structure
is also used in [22], still in the case of fixed contact angle solutions in the study of lubrication
approximation of the Hele-Shaw flow as Gamma convergence of the corresponding energy
functionals. Again in the study of lubrication approximation, in [21] the authors obtain
existence of zero contact angle solutions in one dimension.

In the case of higher order, that is when s > 1, general existence theorems for the Cauchy
problem (1.1), to the best of the author knowledge, are not available in the literature. Only the
particular case of dimension d = 1 and s ∈ N is contained in [6] for the Neumann problem
(see also [11] and [17] for the case d = 1 and s = 2). The other objective of the paper is to
give a first existence result for this type of equations of higher order.

In the rest of the introduction we describe the technique and we illustrate the main result
of the paper.

The gradient flow setting and themain result

We denote by P2(R
d) the space of Borel probability measures on R

d with finite second
moment. The space P2(R

d), endowed with the 2-Wasserstein distance W , is a complete
and separable metric space (see Sect. 2.1 for the definition of W and its properties). For
u ∈ P2(R

d) we define the energy functional

Fs(u) := 1

2
‖u‖2

Ḣ s (Rd )

where ‖u‖Ḣ s (Rd ) is the seminorm of the homogeneous Sobolev space Ḣ s(Rd) (see Sect. 2.2)
defined as follows

‖u‖2
Ḣ s (Rd )

:= 1

(2π)d

∫
Rd

|ξ |2s |û(ξ)|2 dξ.

We prove that a solution of the Cauchy problem (1.1) can be obtained using the so-called
minimizing movement approximation scheme (in the terminology introduced by De Giorgi
[14]), applied to the functional Fs in the metric space (P2(R

d),W ). A general theory of
minimizingmovements inmetric spaces and its applications to the space (P2(R

d),W ) is con-
tained in the book ofAmbrosio-Gigli-Savaré [1]. The gradient flowapproach in (P2(R

d),W )

with this approximation schemewas first highlighted by Jordan-Kinderlehrer-Otto in the sem-
inal paper [27] for the Fokker-Planck equation. The first study of a fourth order equation using
this technique was carried out by Gianazza-Savaré-Toscani [23]. The gradient flow approach
to a problem involving fractional laplacian operators is given in [30].

Let us illustrate the strategy in our case: given u0 ∈ Ḣ s(Rd) ∩ P2(R
d) we introduce the

following time discretization scheme: we consider a time step τ > 0, we set u0τ := u0 and
we recursively define

ukτ ∈ Argminu∈P 2(Rd )

{
Fs(u) + 1

2τ
W 2(u, uk−1

τ )

}
, for k = 1, 2, . . . . (1.6)
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The existence and uniqueness of solution for the minimization problem in (1.6) will be
established in Sect. 3.2. If {ukτ }k∈N ⊂ P2(R

d) is a sequence defined by (1.6), we introduce
the piecewise constant interpolation

uτ (t) := ukτ , if t ∈ ((k − 1)τ, kτ ], k = 1, 2, . . . , uτ (0) := u0τ = u0, (1.7)

We refer to uτ as discrete solution. The family of piecewise constant curves {uτ : τ > 0}
admits a limit curve, in a suitable sense, as τ → 0 and a limit curve is a weak solution of the
equation in (1.1).

We state the results in the following Theorem 1.1.
Before state the theorem we point out that the space AC2([0,+∞); (P2(R

d),W )) is
defined in Sect. 3.2. Moreover, we denote by [a] := max{n ∈ Z : n ≤ a}, the integer part of
the real number a.

Theorem 1.1 Let d ≥ 1, s > 0 and u0 ∈ Ḣ s(Rd) ∩P2(R
d). Then the following assertions

hold:

i) Existence and uniqueness of discrete solutions. For any τ > 0, there exists a unique
sequence {ukτ : k = 0, 1, 2, . . .} satisfying (1.6). In particular the discrete solution
uτ : [0,+∞) → P2(R

d) in (1.7) is uniquely defined.
ii) Convergence and regularity. For any vanishing sequence τn there exists a (non rela-

beled) subsequence τn and a curve u ∈ AC2([0,+∞); (P2(R
d),W )) such that:

(1) ∀ r ∈ [0, s), u ∈ C([0,+∞); Hr (Rd)), limt→0+ ‖u(t) − u0‖Hs (R) = 0 and

uτn (t) → u(t) strongly in Hr (Rd) as n → ∞, ∀ t ∈ [0,+∞),

(2) u ∈ C([0,+∞); Hs
w(Rd)), where Hs

w(Rd) denotes the space Hs(Rd) endowed with
the weak topology, and

uτn (t) → u(t) weakly in Hs(Rd) as n → ∞, ∀ t ∈ [0,+∞),

(3) u ∈ L2((0, T ); H1+s(Rd)) for every T > 0, and

uτn → u strongly in L2((0, T ); H1+r (Rd)) as n → ∞, ∀ r ∈ [0, s),
uτn → u weakly in L2((0, T ); H1+s(Rd)) as n → ∞.

iii) Solution of the equation. u satisfies the equation in (1.1) in the following weak form:∫ +∞

0

∫
Rd

u ∂tϕ dx dt +
∫ +∞

0
N (u(t, ·),∇ϕ(t, ·)) dt = 0,

for any ϕ ∈ C∞
c ((0,+∞) × R

d),

(1.8)

where N : H1+s(Rd) × C∞
c (Rd ; R

d) → R is defined by

N (v, η) :=

⎧⎪⎨
⎪⎩

∫
Rd

((Ls−mv)Lm(div(η v)) dx, if s ∈ [2m, 2m + 1],∫
Rd

∇((Ls−m−1v) · ∇(Lm(div(η v))) dx, if s ∈ (2m + 1, 2m + 2),
(1.9)

and m := [s/2] is the integer part of s/2.
iv) Entropy dissipation inequality. Denoting by H (u) :=

∫
Rd

u ln u dx the logarithmic

entropy, the following inequality holds

H (u(T )) +
∫ T

0
‖u(t)‖2

Ḣ s+1(Rd )
dt ≤ H (u0), ∀ T ∈ (0,+∞). (1.10)
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We provide some comments about the statement of Theorem 1.1.
The regularity of the solutions u ∈ L2((0, T ); H1+s(Rd)), given in the point ii), implies

that u(t, ·) ∈ H1+s(Rd) for a.e. t ∈ (0,+∞). In particular, in dimension d = 1, if s > 1
2 ,

then ∂xu(t, ·) is continuous and u is a zero-contact angle solution.
For the sake of clarity, since the weak formulation (1.8) of the equation (1.1) is written in

terms of the nonlinear operator (1.9), we explicit the weak formulation in the case s ∈ (0, 1],
namely∫ +∞

0

∫
Rd

u ∂tϕ dx dt +
∫ +∞

0

∫
Rd

(−�)su div(∇ϕ u) dx dt = 0, ∀ ϕ ∈ C∞
c ((0,+∞) × R

d ).

This formulation and the regularity obtained for u coincide with the one obtained in [38]
without gradient flow technique. In the case s = 1, the weak formulation of the equation can
be rewritten as∫ +∞

0

∫
Rd

u ∂tϕ dx dt −
∫ +∞

0

∫
Rd

(�u �ϕ u + �u ∇ϕ · ∇u) dx dt = 0,

∀ ϕ ∈ C∞
c ((0,+∞) × R

d).

(1.11)

Also in this case the results of Theorem 1.1 are very similar to the existence results obtained
in [34], which makes use of the gradient flow technique.

We give some comments on the strategy of the proof of Theorem 1.1.
The existence of both the discrete solutions and a limit curve is consequence of standard

arguments in the general theory of minimizing movements. This fact is illustrated in Sect. 3.
The minimizers in (1.6), and consequently uτ (t) for any t ≥ 0, belong to Hs(Rd) by
construction. This regularity and a bound on the Hs norms allow to obtain the convergence
in points i i)(1)-(2). In order to obtain the improved regularity in point i i)(3) we make
variations of the minimizers in (1.6) along the heat flow, which is the Wasserstein gradient
flow of the classical logarithmic entropy H , using the flow interchange technique stated
in [34]. This variation provides the regularity H1+s(Rd) of the minimizers of the scheme
and a control of the H1+s(Rd) seminorm in terms of the entropy (see Lemma 4.4). As a
consequence of Lemma 4.4 we obtain a discrete version of the Entropy dissipation inequality
(1.10), which is (4.13), and a uniform bound on the L2((0, T ); Ḣ1+s(Rd)) norm of the
discrete solutions (see Corollary 4.5). Using these properties we obtain the convergence in
point i i)(3) (see Lemma 4.6). Using the regularity H1+s(Rd), we can make variations of
the minimizers of the scheme along the flow generated by a smooth vector field, obtaining
a discrete weak formulation of the equation in terms of the nonlinear operator (1.9) (see
Sect.4.4 and (4.40)). Finally, using the convergence of point i i) we can pass to the limit in
the discrete formulation of the equation obtaining point i i i) (see Theorem 4.9).

The case d = 1 and s = 1 We conclude the introduction analysing the case d = 1 and
s = 1, showing that the solutions given by Theorem 1.1 enjoy some additional properties.

Theorem 1.2 Let d = 1, s = 1, u0 ∈ Ḣ1(R) ∩ P2(R) and u a solution given by Theorem
1.1. Then

u ∈ C1/8,1/2([0,+∞) × R) ∩ L∞([0,+∞) × R), (1.12)

u(t, ·) ∈ H2(R) ∩ C1,1/2(R), for a.e. t ∈ (0,+∞), (1.13)

for a.e. t ∈ (0,+∞) ∂2xxu(t, ·) is differentiable a.e. on the set {x ∈ R : u(t, x) > 0},
(1.14)

u1/2 ∂3xxxu ∈ L2((0,+∞) × R), (1.15)
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where we used the convention u ∂3xxxu = 0 on the set {x ∈ R : u(t, x) = 0}, and the weak
formulation of the equation can be written as∫ +∞

0

∫
R

u(t, x) ∂tϕ(t, x) dx dt +
∫ +∞

0

∫
R

u(t, x) ∂3xxxu(t, x)∂xϕ(t, x) dx dt = 0,

for any ϕ ∈ C∞
c ((0,+∞) × R).

(1.16)

Finally

lim
t→0+ ‖u(t) − u0‖H1(R) = 0. (1.17)

The proof of Theorem 1.2 is given in Sect. 5.

Comparison with other notion of solutionsAlthough the problems studied in [6], [4], [7] in
dimension d = 1 are set in a bounded interval and complemented with Neumann boundary
conditions or with periodic conditions, it is interesting to compare the existence results of
the quoted papers with the one obtained here by the gradient flow technique. In particular,
the solutions obtained in [6] and in [4] as limit of classical solutions of non-degenerate
regularized problems satisfy the analogous property of (1.12), (1.15), the weak formulation
(1.16), and the initial datum is taken in the sense of (1.17). In [6] the non-negativity of
the solutions and the regularity property (1.13) are stated [6, Remark 4.4], but proved in
the case of the mobility un with n > 1 [6, Theorems 4.1 and 4.2]. The solutions in [6],
being obtained by approximation by classical solutions of non degenerate problems, using
parabolic Schauder estimates, satisfy the regularity ∂t u, ∂xu, ∂2xxu, ∂3xxxu, ∂4xxxxu ∈ C(P)

where P := {(t, x) ∈ (0,+∞) × R : u(t, x) > 0}. This last property seems not simple to
obtain with our completely different approximation.

With respect to the solutions in [6], the solutions found in [4] and [7] have an additional
regularity, which is consequence of entropy estimates of power type. In particular in [4] it is
proved that, for any β ∈ (0, 2), u(t, ·)1/β belongs to C1 for a.e. t ∈ (0,+∞), which implies
a zero contact angle condition of the following form:

for a.e. t ∈ (0,+∞) exists C(t) : u(t, x) ≤ C(t)|x − x0|β, ∀ x0 : u(t, x0) = 0,

for any β ∈ (0, 2). A similar contact angle condition follows also by the regularity obtained
in [7] by similar methods. In the present paper we used only the logarithmic entropy in order
to obtain the entropy dissipation estimate (1.10) and the regularity in (3) of Theorem 1.1, and
consequently (1.13). In our framework, we think that it could be possible, with some efforts,
to obtain entropy inequalities similar to the ones in [4] and [7], both at the discrete level and
at the continuous level. The proof and the extension of such inequalities to the fractional case
seem not immediate. The regularity (1.13) implies only a zero contact angle condition of the
following form:

for a.e. t ∈ (0,+∞) exists C(t) : u(t, x) ≤ C(t)|x − x0|3/2, ∀ x0 : u(t, x0) = 0.

Of course, an improvement of the regularity of our solutions can be obtained using suitable
integral estimates. Precisely, thanks to the properties (1.13) and (1.15), we can apply the
Bernis type estimates of [2, Corollary 4.2] obtaining that

∂x (u
1/2) ∈ L6((0,+∞) × R). (1.18)

The property (1.18) implies an improved zero contact angle condition of the following form:

for a.e. t ∈ (0,+∞) exists C(t) : u(t, x) ≤ C(t)|x − x0|5/3, ∀ x0 : u(t, x0) = 0.
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Moreover, since (1.15), (1.12) and (1.16) hold, we also obtain that

∂t u ∈ L2(0,+∞; H−1(R)). (1.19)

The properties (1.19), (1.18) and Theorem 1.2, show that by Theorem 1.2 we obtain the same
notion of solution given in the paper [2] in the case p = 2 (the main results are written for
p > 2 but the proofs could be carried out also in the simpler case p = 2).

Open problems

Qualitative properties The theory related to qualitative properties of solutions of thin film
equations in the case s = 1 is very developed and sharp results are available.

An interesting property is the so-called “finite speed of propagation”: roughly speaking
the solutions preserve the compactness of the support when the initial datum is compactly
supported, and precise rates of expansion of the support are established. In the classical case
see [5] for dimension d = 1. In higher dimension see [8] for solutions in the sense of [12].

It seems natural that these qualitative properties should hold also for the fractional case
(at least for s ∈ (0, 1)). This interesting problem is open. A possible proof could be carried
out in dimension d = 1 using a similar result to Theorem 1.2 and proving additional suit-
able weighted entropy estimates. In [38] special self-similar solutions are exhibited (as the
Barenblatt solutions for the case s = 0) that are compactly supported at any time t and with
a precise speed of propagation of the support. This rate of expansion of the support should
be expected for solutions starting from compact supported initial datum.

Another interesting qualitative property is thewaiting-time phenomenon: it has been firstly
proved in [13] and generalized to a larger class of equations in [18] (see also the results in
[16]). Also this qualitative property should be very interesting to address for the fractional
case.
UniquenessThe uniqueness of the solutions given byTheorem1.1 is an open and challenging
problem. Of course, the problem is still open in the classical case s = 1, since a comparison
principle is not available. Only partial results are available: see [26] and [33]
Free boundary problem In the classical case d = 1 and s = 1 the equation (1.1) has been
studied as a classical free boundary problem (see [20], [19] for the zero-contact angle case
and [28], [29] for the non-zero contact angle case). For the fractional problem in d = 1,
at least for s ∈ (1/2, 1), it could be interesting to state the problem as a free boundary
classical problem, for instance taking an initial datum close to a steady state of the form
u(x) = (C − C |x |2)1+s+ . This problem is completely open.
Gradient flow solutions for non-linear mobilities A system of the type

{
∂t u − div(m(u)∇(Lsu)) = 0 in (0,+∞) × R

d ,

u(0, ·) = u0 in R
d ,

where the mobility functionm : [0,+∞) → [0,+∞) is concave and non-linear, is formally
a gradient flow of the functional Fs in the space of Borel probability measures endowed
with the mobility dependent distance introduced in [15] (see also [31]). This technique was
used in [32] for the Cahn-Hilliard equation with s = 1 and it could be interesting to apply
this technique also to this fractional case. The main difficulties arise from the new distance
that is defined in a dynamical way and it is not linked to a relaxed transport problem as the
classical Wasserstein distance.
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2 Notation and preliminary results

2.1 Probability measures andWasserstein distance

For a detailed treatment of this topic see [1] and [40]. We denote byP(Rd) the set of Borel
probability measures on R

d . The narrow convergence in P(Rd) is defined in duality with
continuous and bounded functions onR

d . Precisely, a sequence {un}n∈N ⊂ P(Rd) narrowly
converges to u ∈ P(Rd) if

∫
Rd φ dun → ∫

Rd φ du as n → +∞ for every φ ∈ Cb(R
d),

where Cb(R
d) is the set of continuous and bounded real functions on R

d .
Given u ∈ P(Rk) andG : R

k → R
n a Borel measurablemap, we define the push forward

(or image measure) of u through G, denoted by G#u ∈ P(Rn), by G#u(B) := u(G−1(B))

for all Borel set B ⊂ R
n , or equivalently,∫
Rn

f (y) dG#u(y) =
∫
Rk

f (G(x)) du(x),

for every Borel positive function f : R
k → R.

Since in this paper we use only measures u ∈ P(Rd) absolutely continuous with respect
to the Lebesgue measure, we identify the measure u with its density, and with abuse of
notation we write du(x) = u(x)dx .

We also recall that,whenu ∈ P(Rd) is absolutely continuouswith respect to theLebesgue
measure and G : R

d → R
d is a diffeomorphism, then v := G#u is absolutely continuous

with respect to the Lebesgue measure and

v(x) = u(G−1(x)) det(∇G−1(x)). (2.1)

We defineP2(R
d) := {u ∈ P(Rd) : ∫

Rd |x |2 du(x) < +∞} the set of Borel probability
measures with finite second moment. The Wasserstein distance W inP2(R

d) is defined as

W (u, v) := min
γ∈P (Rd×Rd )

{(∫
Rd×Rd

|x − y|2 dγ (x, y)

)1/2

: (π1)#γ = u, (π2)#γ = v

}

(2.2)

whereπi , i = 1, 2, denote the canonical projections on the first and second factor respectively.
If u is absolutely continuous with respect to the Lebesgue measure, then the minimum

problem (2.2) has a unique solution γ induced by a transport map T v
u : R

d → R
d by

γ = (I , T v
u )#u, where I denotes the identity map in R

d . T v
u is the unique solution (defined

u-a.e.) of the Monge optimal transport problem

min
S:Rd→Rd

{∫
Rd

|S(x) − x |2du(x) : S#u = v

}
.

of which (2.2) is the Kantorovich relaxed version. In particular

W 2(u, v) =
∫
Rd

|T v
u − I |2 u dx . (2.3)

The function W : P2(R
d) × P2(R

d) → [0,+∞) is a distance and the metric space
(P2(R

d),W ) is complete and separable. The distance W is sequentially lower semi contin-
uous with respect to the narrow convergence, i.e.,

un → u, vn → v, narrowly �⇒ lim inf
n→+∞ W (un, vn) ≥ W (u, v), (2.4)
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and

bounded sets in (P2(R
d),W ) are narrowly sequentially relatively compact. (2.5)

2.2 Fourier transform and fractional Sobolev spaces

We denote byS (Rd) the Schwartz space of smooth functions with rapid decay at infinity and
byS ′(Rd) the dual space of tempered distributions. The Fourier transform of u ∈ S (Rd) is
defined by û(ξ) := ∫

Rd e−i x ·ξu(x) dx . The Fourier transform is an automorphism ofS (Rd)

and can be defined on S ′(Rd) by transposition. Moreover the Plancherel formula holds∫
Rd

û(ξ)ŵ(ξ) dξ = (2π)d
∫
Rd

u(x)w(x) dx, ∀u, w ∈ L2(Rd). (2.6)

We observe that if u is real valued, then

û(ξ) = û(−ξ) ∀ ξ ∈ R
d . (2.7)

Moreover we recall the link between the Fourier transform and the differentiation, valid for
tempered distributions,

∂̂xk u(ξ) = iξk û(ξ), u ∈ S ′(Rd). (2.8)

Let r ∈ R. For every tempered distribution u ∈ S ′(Rd) such that û ∈ L1
loc(R

d), we
define

‖u‖2Hr (Rd )
:= 1

(2π)d

∫
Rd

(1 + |ξ |2)r |û(ξ)|2 dξ

and

‖u‖2
Ḣr (Rd )

:= 1

(2π)d

∫
Rd

|ξ |2r |û(ξ)|2 dξ.

By (2.6) and (2.8) it holds

‖u‖2H1(Rd )
=

∫
Rd

(|u(x)|2 + |∇u(x)|2) dx, ‖u‖2
Ḣ1(Rd )

=
∫
Rd

|∇u(x)|2 dx .

The fractional Sobolev space Hr (Rd) is defined by

Hr (Rd) := {u ∈ S ′(Rd) : û ∈ L1
loc(R

d), ‖u‖Hr (Rd ) < +∞},
and the homogenous fractional Sobolev space Ḣr (Rd) is defined by

Ḣr (Rd) := {u ∈ S ′(Rd) : û ∈ L1
loc(R

d), ‖u‖Ḣr (Rd ) < +∞}.
Using Plancherel’s formula (2.6) and the definition of Ls in (1.2) it is immediate to show
that

‖u‖2
Ḣr (Rd )

= ‖Lr/2u‖2L2(Rd )
, ∀ r > 0. (2.9)

Moreover, it follows from the definition of Ls that

u ∈ Ḣr (Rd) �⇒ Lsu ∈ Ḣr−2s(Rd). (2.10)

In this paper we use the following obvious relations:

‖u‖Hr1 (Rd ) ≤ ‖u‖Hr2 (Rd ), if r1 < r2,
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‖u‖Ḣr (Rd ) ≤ ‖u‖Hr (Rd ), if r > 0,

‖u‖Ḣ0(Rd ) = ‖u‖H0(Rd ) = ‖u‖L2(Rd ),

and the interpolation inequalities

‖u‖Hr1 (Rd ) ≤ ‖u‖1−θ

Hr0 (Rd )
‖u‖θ

Hr2 (Rd )
and ‖u‖Ḣr1 (Rd ) ≤ ‖u‖1−θ

Ḣr0 (Rd )
‖u‖θ

Ḣr2 (Rd )
,

if r0 < r1 < r2 and θ satisfies r1 = (1 − θ)r0 + θr2,
(2.11)

(see for instance [3, Sections 1.3, 1.4]).
The following lemma and its Corollarywill be useful in the sequel for proving convergence

results.

Lemma 2.1 Let s > 0 and {un}n∈N ⊂ Hs(Rd) a sequence such that supn∈N ‖un‖Hs (Rd ) <

+∞ and

sup
n∈N

sup
ξ∈BR(0)

|ûn(ξ)| < +∞, ∀ R > 0. (2.12)

If u is a Borel signed measure such that ûn(ξ) → û(ξ) for every ξ ∈ R
d , as n → +∞, then

u ∈ Hs(Rd), ‖un − u‖Hr (Rd ) → 0 as n → +∞, for any r ∈ [0, s) and un → u weakly in
Hs(Rd) as n → +∞.

Moreover, if h ∈ [0, s/2), then ‖Lhun − Lhu‖Hr (Rd ) → 0 for any r ∈ [0, s − 2h) and
Lhun → Lhu weakly in Hs−2h(Rd). Finally, Ls/2un → Ls/2u weakly in L2(Rd).

Proof We first prove that u ∈ Hs(Rd) and un → u weakly in Hs(Rd).
We defineUn(ξ) := (1+|ξ |2)s/2ûn(ξ). By assumptionwe have supn ‖Un‖L2(Rd ) < +∞ and
Un(ξ) → (1 + |ξ |2)s/2û(ξ) for every ξ ∈ R

d as n → +∞. By the L2 weak compactness
there exists a subsequence of {Un} weakly convergent in L2(Rd) to some U ∈ L2(Rd).
By uniqueness of the weak limit we have that U (ξ) = (1 + |ξ |2)s/2û(ξ). By the lower
semicontinuity of the L2 normweobtain that‖u‖Hs (Rd ) ≤ lim infn→∞ ‖un‖Hs (Rd ). Since the
weak topology is metrizable in bounded sets and the limit is independent of the subsequence,
all the sequence un converges weakly in Hs(Rd).

Let us fix r ∈ [0, s) and we prove that un strongly converges to u in Hr (Rd).
For any R > 0 we write

‖un − u‖2Hr (Rd )
=

∫
Rd

(1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 dξ

=
∫

{|ξ |≤R}
(1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 dξ

+
∫

{|ξ |>R}
(1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 dξ.

(2.13)

Let C be a constant such that ‖un‖2Hs (Rd )
≤ C . Since, as observed in the first part of the

proof, also ‖u‖2
Hs (Rd )

≤ C , we have∫
{|ξ |>R}

(1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 dξ =
∫

{|ξ |>R}
(1 + |ξ |2)s(1 + |ξ |2)(r−s)|ûn(ξ) − û(ξ)|2 dξ

≤ (1 + R2)(r−s)
∫

{|ξ |>R}
(1 + |ξ |2)s |ûn(ξ) − û(ξ)|2 dξ

≤ (1 + R2)(r−s)‖un − u‖2Hs (Rd )
≤ 4C(1 + R2)(r−s).

(2.14)
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On the other hand, since (1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 → 0 for any ξ ∈ R
d and by (2.12)

(1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 ≤ (1 + R2)rC2
R , where CR := supn∈N supξ∈BR(0) |ûn(ξ)|, by

dominated convergence Theorem we have

lim
n→+∞

∫
{|ξ |≤R}

(1 + |ξ |2)r |ûn(ξ) − û(ξ)|2 dξ = 0. (2.15)

Fixing ε > 0, by (2.14) there exists R such that
∫
{|ξ |>R}(1+|ξ |2)r |ûn(ξ)− û(ξ)|2 dξ < ε for

any n ∈ N. Then, by (2.13), (2.14) and (2.15) we obtain that lim supn→+∞ ‖un −u‖2
Hr (Rd )

≤
ε. For the arbitrariness of ε we conclude.

The last assertions are consequence of the proved convergences and the following relation

‖Lhun‖Ḣr (Rd ) = ‖un‖Ḣr+2h (Rd ) ≤ ‖un‖Hr+2h (Rd ).

��
Corollary 2.2 Let s > 0 and {un}n∈N ⊂ Ḣ s(Rd) ∩ P(Rd) a sequence such that
supn∈N ‖un‖Ḣ s (Rd ) < +∞. If u ∈ P(Rd) and un narrowly converges to u, then un, u ∈
Hs(Rd), and all the conclusions of Lemma 2.1 hold.

Proof Weprove that the assumptions of Lemma 2.1 hold. Since un is a density of a probability
measure, then |ûn(ξ)| ≤ 1 for any ξ ∈ R

d . Then (2.12) holds. In order to prove that
supn∈N ‖un‖Hs (Rd ) < +∞, by definition of the Hs(Rd) norm, it is sufficient to prove that
supn∈N ‖un‖L2(Rd ) < +∞. Denoting by B1 the unitary ball in R

d , we have∫
Rd

|ûn(ξ)|2 dξ =
∫
B1

|ûn(ξ)|2 dξ +
∫
Rd\B1

|ûn(ξ)|2 dξ ≤ |B1| +
∫
Rd

|ξ |2s |ûn(ξ)|2 dξ,

and by Plancherel formula we obtain

(2π)d‖un‖2L2(Rd )
≤ |B1| + ‖un‖2Ḣ s (Rd )

. (2.16)

Moreover the narrow convergence of un to u implies the pointwise convergence ûn(ξ) →
û(ξ) for any ξ ∈ R

d . ��

3 Energy functional and first convergence result

3.1 Energy functional

After noticing that aBorel probabilitymeasureu is a tempered distributionwith û in L1
loc(R

d),
we define the energy functional Fs : P2(R

d) → [0,+∞] by

Fs(u) := 1

2
‖u‖2

Ḣ s (Rd )
.

We denote by D(Fs) = {u ∈ P2(R
d) : Fs(u) < +∞}. Using Corollary 2.2, it is immediate

to prove the following Proposition.

Proposition 3.1 The following assertions hold:

• D(Fs) = Hs(Rd) ∩ P2(R
d).

• Fs is sequentially lower semicontinuous w.r.t. the narrow convergence.
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3.2 Wasserstein gradient flow, minimizingmovements

We consider, for k = 1, 2, . . ., the problem

min
u∈P 2(Rd )

Fs(u) + 1

2τ
W 2(u, uk−1

τ ). (3.1)

Proposition 3.2 For every τ > 0 and every u0 ∈ D(Fs) there exists a unique sequence
{ukτ : k = 0, 1, 2, . . .} ⊂ D(Fs) satisfying u0τ = u0 and such that ukτ is a solution to problem
(3.1) for k = 1, 2, . . ..

Proof Let τ > 0 and k ∈ N. By Proposition 3.1 and the properties of the Wasserstein
distance (2.4) (2.5), the functional u �→ Fs(u) + 1

2τ W 2(u, uk−1
τ ) is nonnegative, lower

semicontinuouswith respect to the narrow convergence andwith narrowly compact sublevels.
The existence of minimizers follows by standard direct methods in calculus of variations.
The uniqueness of minimizers follows from the strict convexity of the functional u �→
Fs(u) + 1

2τ W 2(u, uk−1
τ ) with respect to linear convex combinations in P2(R

d). ��
By Proposition 3.2, the piecewise constant curve

uτ (t) := ukτ , if t ∈ ((k − 1)τ, kτ ], k = 1, 2, . . . , uτ (0) := u0τ = u0, (3.2)

is uniquely defined.
We say that a curve u : [0,+∞) → P2(R

d) is absolutely continuous with finite energy,
andwe use the notation u ∈ AC2([0,+∞); (P2(R

d),W )), if there existsm ∈ L2([0,+∞))

such that W (u(t1), u(t2)) ≤ ∫ t2
t1
m(r) dr for any t1, t2 ∈ [0,+∞), t1 < t2.

Theorem 3.3 [First convergence result] Let u0 ∈ D(Fs) and uτ the piecewise constant curve
defined in (3.2). For every vanishing sequence τn there exists a subsequence (not relabeled)
τn and a curve u ∈ AC2([0,+∞); (P2(R

d),W )) such that

uτn (t) → u(t) narrowly as n → ∞, for any t ∈ [0,+∞). (3.3)

Proof The first estimate given by the scheme (3.1), is the following

Fs(u
N
τ ) + 1

2

N∑
k=1

τ
W 2(ukτ , u

k−1
τ )

τ 2
≤ Fs(u

0
τ ) = Fs(u0), ∀ N ∈ N. (3.4)

We show that for any T > 0 the set ÅT := {uN
τ : τ > 0, N ∈ N, Nτ ≤ T } is bounded in

(P2(R
d),W ) and by (2.5) sequentially narrowly compact.

Indeed, recalling that
∫
Rd |x |2 du(x) = W 2(u, δ0) for any u ∈ P2(R

d), using the triangle
inequality for W and Jensen’s discrete inequality we have

∫
Rd

|x |2uN
τ (x) dx = W 2(uN

τ , δ0) ≤
( N∑
k=1

W (ukτ , u
k−1
τ ) + W (u0τ , δ0)

)2

≤ 2
( N∑
k=1

τ
W (ukτ , u

k−1
τ )

τ

)2 + 2W 2(u0τ , δ0)

≤ 2Nτ

N∑
k=1

τ
W 2(ukτ , u

k−1
τ )

τ 2
+ 2W 2(u0τ , δ0).

(3.5)
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Since Fs ≥ 0, from (3.4) and (3.5) it follows that∫
Rd

|x |2uN
τ (x) dx ≤ 2TFs(u0) + 2

∫
Rd

|x |2u0(x) dx, ∀ N ∈ N : Nτ ≤ T (3.6)

and the boundedness of ÅT follows.
We define the piecewise constant function mτ : [0,+∞) → [0,+∞) as

mτ (t) := W (uτ (t), uτ (t − τ))

τ

with the convention that uτ (t − τ) = uτ (0) if t − τ < 0. SinceFs ≥ 0, from (3.4) it follows
that

1

2

∫ +∞

0
m2

τ (t) dt ≤ Fs(u0).

It follows that there exists m ∈ L2(0,+∞) such that mτ weakly converges to m in
L2(0,+∞). Moreover for any t1, t2 ∈ [0,+∞), t1 < t2, setting k1(τ ) = [t1/τ ] and
k2(τ ) = [t2/τ ], by triangle inequality it holds

W (uτ (t1), uτ (t2)) ≤
k2(τ )−1∑
k=k1(τ )

W (ukτ , u
k−1
τ ) ≤

∫ k2(τ )τ

k1(τ )τ

mτ (t) dt .

By the L2 weak convergence of mτ the following equicontinuity estimate holds

lim sup
τ→0

W (uτ (t1), uτ (t2)) ≤ lim
τ→0

∫ k2(τ )τ

k1(τ )τ

mτ (t) dt =
∫ t2

t1
m(t) dt . (3.7)

Applying Proposition 3.3.1 of [1] we obtain the convergence (3.3). Passing to the limit in
(3.7) we obtain

W (u(t1), u(t2)) ≤
∫ t2

t1
m(t) dt, ∀ t1, t2 ∈ [0,+∞), t1 < t2,

and then u ∈ AC2([0,+∞); (P2(R
d),W )). ��

4 Estimates on discrete solutions, convergence and weak solution

In this Section we briefly review the “flow interchange estimate” introduced by Matthes-
McCann-Savaré in [34]. Using this estimate with the entropy functional, we obtain a suitable
regularity estimate for the family of discrete solutions uτ . Moreover, using this estimate with
a family of suitable potential energy functionals, we obtain that uτ satisfies an approximate
weak formulation of the equation in (1.1).

4.1 Flow interchange technique

We say that a lower semi continuous functional V : P2(R
d) → (−∞,+∞], with proper

domain D(V ) = {u ∈ P2(R
d) : V (u) < +∞} �= ∅, generates a λ-flow, for λ ∈ R, if

there exists a continuous semigroup St : D(V ) → D(V ) such that the following family of
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Evolution Variational Inequalities

lim sup
t→0+

W 2(St (u), v) − W 2(u, v)

2t
+ λ

2
W 2(u, v) ≤ V (v) − V (u), ∀u ∈ D(V ),

(4.1)

hold. We recall that a continuous semigroup is a family of maps St : D(V ) → D(V ), t ≥ 0,
such that

St (Sr (u)) = St+r (u), ∀ t, r ≥ 0, lim
t→0+ W (St (u), u) = 0, ∀u ∈ D(V ).

If u ∈ D(Fs) we define the dissipation of Fs along the flow St of V by

DV Fs(u) := lim sup
t→0+

Fs(u) − Fs(St (u))

t
. (4.2)

Proposition 4.1 [Flow interchange] Let {ukτ : k = 0, 1, 2, . . .} be the sequence given by
Proposition 3.2, λ ∈ R and V a functional generating a λ-flow. If ukτ ∈ D(V ) then

DV Fs(u
k
τ ) + λ

2τ
W 2(ukτ , u

k−1
τ ) ≤ V (uk−1

τ ) − V (ukτ )

τ
, k = 1, 2, . . . . (4.3)

Proof For t > 0 and k ≥ 1, by definition of minimizer there holds

Fs(u
k
τ ) + 1

2τ
W 2(ukτ , u

k−1
τ ) ≤ Fs(St (u

k
τ )) + 1

2τ
W 2(St (u

k
τ ), u

k−1
τ ),

that is,

τ
Fs(ukτ ) − Fs(St (ukτ ))

t
≤ W 2(St (ukτ ), u

k−1
τ ) − W 2(ukτ , u

k−1
τ )

2t
.

By using (4.1) and the definition (4.2) we obtain (4.3). ��
The next two propositions summarize well known results (see [1] Theorems 11.2.5 and

11.2.3).

Proposition 4.2 The entropy functional H : P2(R
d) → (−∞,+∞] defined by

H (u) :=
⎧⎨
⎩

∫
Rd

u log u dx if u is absolutely continuous w.r.t. Lebesgue measure,

+∞ otherwise,

generates a 0-flow. The semigroup associated ut := St (ū) is the unique solution of theCauchy
problem for the heat equation{

∂t ut = �ut , in (0,+∞) × R
d

u0 = ū in R
d .

Proposition 4.3 Let ϕ ∈ C∞
c (Rd) and λ ≥ ‖D2ϕ‖∞. The functional V : P2(R

d) → R

defined by

V (u) :=
∫
Rd

ϕ(x) du(x)
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generates a (−λ)-flow St and St (u) = (Xt )#u, where x �→ Xt (x), x ∈ R
d , is the map defined

by the system {
d
dt Xt (x) = −∇ϕ(Xt (x)), t ∈ R

X0(x) = x .
(4.4)

We observe that under the assumptions of Proposition 4.3, Xt is defined also for t < 0.

4.2 Improved regularity and dissipation along the Heat flow

The following result makes use of flow interchange with the choice V = H , the entropy
functional.

Lemma 4.4 Let u0 ∈ D(Fs) and {ukτ : k = 0, 1, 2, . . .} the sequence given by Proposition
3.2. Then ukτ ∈ H1+s(Rd) for any k ≥ 1 and

‖ukτ‖2Ḣ1+s (Rd )
≤ H (uk−1

τ ) − H (ukτ )

τ
, k = 1, 2, . . . . (4.5)

Proof Since ukτ ∈ D(Fs) ⊂ L2(Rd) and (u log u)+ ≤ u2, then ukτ ∈ D(H ) for any k ≥ 0.
Let us fix k ≥ 1. For t ≥ 0, we denote by St the 0-flow generated by the entropy H ,

and we define wt := St (ukτ ). By Proposition 4.2, St coincides with the heat semigroup on
R
d . By uniqueness of the solution of the Cauchy problem for the heat equation, we have the

representation

wt = �t ∗ ukτ , �t (x) := 1

(2π t)d/2 e
−|x |2/(4t), (4.6)

where ∗ denotes the convolution with respect to the space variable x . For the relation with
convolution and Fourier transform, by (4.6) we have

ŵt (ξ) = �̂t (ξ)ûkτ (ξ). (4.7)

We also recall that the Fourier transform of �t has the expression

�̂t (ξ) = e−t |ξ |2 . (4.8)

The Cauchy problem for the heat equation in the Fourier setting can be written as a family
depending on ξ ∈ R

d of Cauchy problems{
∂t ŵt (ξ) = −|ξ |2ŵt (ξ) t ∈ (0,+∞),

limt→0 ŵt (ξ) = ûkτ (ξ).
(4.9)

It is easy to prove that wt ∈ Ḣ1+s(Rd) for any t > 0. Indeed, by (4.7) we have

‖wt‖2Ḣ1+s (Rd )
= (2π)−d

∫
Rd

|ξ |2(1+s)|ŵt (ξ)|2 dξ = (2π)−d
∫
Rd

|ξ |2(1+s)|�̂t (ξ)|2|ûkτ (ξ)|2 dξ
≤ Ct‖ukτ ‖2Ḣ s (Rd )

= 2CtFs(u
k
τ ) < +∞,

where, using (4.8),

Ct := max
ξ∈Rd

|ξ |2|�̂t (ξ)|2 = e−2t−2. (4.10)
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We define the function g : [0,+∞) → R by g(t) := Fs(wt ). We prove that g is
differentiable in (0,+∞), continuous at t = 0, and

g′(t) = −‖wt‖2Ḣ1+s (Rd )
∀ t ∈ (0,+∞). (4.11)

Indeed, taking into account that |ŵt (ξ)|2 = ŵt (ξ)ŵt (ξ) = ŵt (ξ)ŵt (−ξ), by (4.9) we have
that

∂t |ŵt (ξ)|2 = −2|ξ |2|ŵt (ξ)|2 ∀ (t, ξ) ∈ (0,+∞) × R
d .

Since for any ξ ∈ R
d the function t �→ |ŵt (ξ)|2 belongs to C1(0,+∞) and∣∣∣∂t |ξ |2s |ŵt (ξ)|2

∣∣∣ = 2|ξ |2s+2|ŵt (ξ)|2 ≤ 2Ct |ξ |2s |ûkτ (ξ)|2,
we can differentiate under the integral sign obtaining that

g′(t) = 1

2(2π)d

d

dt

∫
Rd

|ξ |2s |ŵt (ξ)|2 dξ

= − 1

(2π)d

∫
Rd

|ξ |2s |ξ |2|ŵt (ξ)|2 dξ = −‖wt‖2Ḣ1+s (Rd )

and (4.11) is proved. Since 0 < �̂t (ξ) ≤ 1 we have |ŵt (ξ)|2 = |�̂t (ξ)ûkτ (ξ)|2 ≤ |ûkτ (ξ)|2
and then Fs(wt ) ≤ Fs(ukτ ), i.e., g(t) ≤ g(0) for any t ∈ (0,+∞). Since Fs is lower
semi continuous with respect to the narrow convergence (Proposition 3.1), we have that
lim inf t→0+ g(t) ≥ g(0) and the continuity of g at t = 0 is proved.

Applying Lagrange’s mean value Theorem to g in the interval [0, t], for any t > 0 there
exists θ(t) ∈ (0, t) such that, recalling the definition of g and (4.11),

Fs(ukτ ) − Fs(St (ukτ ))

t
= ‖Sθ(t)(u

k
τ )‖2Ḣ1+s (Rd )

.

From this equality and the definition (4.2), by the lower semicontinuity of the Ḣ1+s(Rd)

semi-norm with respect to the narrow convergence it follows that

‖ukτ‖2Ḣ1+s (Rd )
≤ DH Fs(u

k
τ ).

Finally, by Propositions 4.1 and 4.2, we obtain the estimate (4.5) and ukτ ∈ H1+s(Rd). ��
Integrating the estimate (4.5) with respect to time, we obtain the following space-time

bound on the discrete solution uτ .

Corollary 4.5 Let u0 ∈ D(Fs), τ > 0, {ukτ : k = 0, 1, 2, . . .} the sequence given by Proposi-
tion 3.2 and uτ the corresponding discrete piecewise constant approximate solution defined
in (3.2). Then uτ (t) ∈ H1+s(Rd) for every t > 0 and there exists C > 0 depending only on
the dimension d such that∫ T

0
‖uτ (t)‖2Ḣ1+s (Rd )

dt ≤ H (u0) + C
(
1 + TFs(u0) +

∫
Rd

|x |2u0(x) dx
)

(4.12)

for any T > 0.

Proof Let T > 0 and N := [T /τ ] + 1. Using (4.5) and the definition of uτ we obtain

∫ T

0
‖uτ (t)‖2Ḣ1+s (Rd )

dt ≤
N∑

k=1

τ‖ukτ‖2Ḣ1+s (Rd )
≤ H (u0) − H (uN

τ ). (4.13)
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Using Jensen’s inequality, it is not difficult to prove that (see for instance [10]),

H (u) ≥ −1

e
− d

2
log(4π) − 1

4

∫
Rd

|x |2u(x) dx, ∀ u ∈ D(H ). (4.14)

By (4.14) and (3.6) we obtain

−H (uN
τ ) ≤ C

(
1 + TFs(u0) +

∫
Rd

|x |2u0(x) dx
)

for C depending only on the dimension d . By the last inequality and (4.13) we have (4.12).
��

4.3 Improved convergence

Thanks to the estimate of Corollary 4.5 we obtain the following result of convergence. This
convergence will be fundamental in order to obtain the weak formulation of the equation in
(1.1).

Lemma 4.6 Let u0 ∈ D(Fs), uτ the piecewise constant curve defined in (3.2) for any τ > 0.
Given a vanishing sequence τn, let uτn be a convergent subsequence (not relabeled) given by
Theorem 3.3 and u its limit curve. Then, for any T > 0 we have u ∈ L2((0, T ); H1+s(Rd))

and

uτn → u strongly in L2((0, T ); H1+r (Rd)) as n → ∞, ∀ r < s. (4.15)

Proof Let r < s. By (3.4) and lower semicontinuity we have

‖uτn (t)‖2Ḣ s (Rd )
≤ 2Fs(u0), ‖u(t)‖2

Ḣ s (Rd )
≤ 2Fs(u0) ∀ t ∈ [0,+∞). (4.16)

By (3.3) and Corollary 2.2 we obtain

lim
n→+∞ ‖uτn (t) − u(t)‖2Hr (Rd )

= 0, ∀t ∈ [0,+∞). (4.17)

By Corollary 4.5 and lower semicontinuity we have∫ T

0
‖u(t)‖2

Ḣ1+s (Rd )
dt ≤ H (u0) + C

(
1 + TFs(u0) +

∫
Rd

|x |2u0(x) dx
)

(4.18)

for any T > 0.
Using the interpolation (2.11), we can write

‖uτ (t) − u(t)‖H1+r (Rd ) ≤ ‖uτ (t) − u(t)‖1−θ

Hr (Rd )
‖uτ (t) − u(t)‖θ

H1+s (Rd )
,

for θ = 1/(1+s−r) ∈ (0, 1) and for a.e. t ∈ (0,+∞). Fixing T > 0, by Hölder’s inequality
we obtain∫ T

0
‖uτn (t) − u(t)‖2H1+r (Rd )

dt

≤
∫ T

0
‖uτn (t) − u(t)‖2(1−θ)

Hr (Rd )
‖uτn (t) − u(t)‖2θH1+s (Rd )

dt

≤
( ∫ T

0
‖uτn (t) − u(t)‖2Hr (Rd )

dt
)1−θ( ∫ T

0
‖uτn (t) − u(t)‖2H1+s (Rd )

dt
)θ

.
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By estimate (4.12) and (4.18) the factor
∫ T
0 ‖uτn (t) − u(t)‖2

H1+s (Rd )
dt is bounded. Finally,

by the previous inequality, (4.17) and (4.16) we obtain (4.15) using dominated convergence.
��

4.4 Weak formulation of the equation for the discrete solution

In order to obtain a sort of weak formulation of the equation for the discrete solution, we
use the flow interchange estimate with the (−λ)-flow generated by a potential energy as in
Proposition 4.3. Preliminarily we compute the derivative of the energy functional Fs along
the flow of a smooth vector field.

Lemma 4.7 Let η ∈ C∞
c (Rd ; R

d) and Xt : R
d → R

d , t ∈ R, be the flow associated to η

defined, for any x ∈ R
d as the unique global solution of the problem{

d
dt Xt (x) = η(Xt (x)), t ∈ R

X0(x) = x .
(4.19)

Let u ∈ H1+s(Rd)∩P2(R
d) and ut := (Xt )#u. Then the map t �→ Fs(ut ) is differentiable

at t = 0 and

d

dt
Fs(ut )|t=0 = −N (u, η), (4.20)

where N : H1+s(Rd) × C∞
c (Rd ; R

d) → R is defined in (1.9).

Proof Since η ∈ C∞
c (Rd ; R

d), then for any t ∈ R, the map Xt is a C∞ diffeomorphism of
R
d and X−1

t = X−t . Moreover if x /∈ supp η, then Xt (x) = x . Since{
d
dt ∇Xt = ∇η(Xt )∇Xt , t ∈ R

∇X0 = I ,

where we used the notation ∇η and ∇Xt for the Jacobian matrices of η and Xt , there exists
a constant L > 0 such that

|Xt (x) − Xt (y)| ≤ L|x − y|, ∀ x, y ∈ R
d , ∀ t ∈ [−1, 1].

Recalling the formula (2.1), ut (x) = u(X−t (x)) det(∇X−t (x)). Observing that the map
x �→ det(∇X−t (x)) belongs to C∞(Rd ; R) and det(∇X−t (x)) = 1 for any x /∈ supp η,
there exists a constant C > 0 such that

‖ut‖H1+s (Rd ) ≤ C‖u‖H1+s (Rd ), ∀t ∈ [−1, 1]. (4.21)

See, for instance, [3, Corollary 1.60 and Theorem 1.62].
Using the formula |a|2 − |b|2 = (ā + b̄)(a − b) + āb − b̄a valid for a, b ∈ C, by (2.7)

we have

Fs(ut ) − Fs(u) = 1

2

1

(2π)d

∫
Rd

|ξ |2s(ût (−ξ) + û(−ξ)
)(
ût (ξ) − û(ξ)

)
dξ, (4.22)

because ∫
Rd

|ξ |2s ût (−ξ)û(ξ) dξ =
∫
Rd

|ξ |2s ût (ξ)û(−ξ) dξ.
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Let m = [s/2]. If s ∈ [2m, 2m + 1], by (4.22), using the Plancherel identity (2.6) and the
definition (1.2), we obtain

Fs(ut ) − Fs(u)

t
= 1

2

1

(2π)d

∫
Rd

|ξ |2(s−m)
(
ût (−ξ) + û(−ξ)

) |ξ |2m(ût (ξ) − û(ξ))

t
dξ

= 1

2

∫
Rd

Ls−m(ut + u)Lm

(
ut − u

t

)
dx .

(4.23)

Analogously, if s ∈ (2m + 1, 2m + 2), we write

Fs(ut ) − Fs(u)

t
= 1

2

1

(2π)d

∫
Rd

ξ |ξ |2(s−m−1)(ût (−ξ) + û(−ξ)
) · ξ

|ξ |2m(ût (ξ) − û(ξ))

t
dξ

= 1

2

∫
Rd

∇Ls−m−1(ut + u) · ∇Lm

(
ut − u

t

)
dx .

(4.24)

Moreover ut → u narrowly as t → 0. Indeed, for ϕ : R
d → R continuous and

bounded, by the definition of (Xt )#u and dominated convergence theorem we have that∫
Rd

ϕ(x)ut (x) dx =
∫
Rd

ϕ(Xt (x))u(x) dx →
∫
Rd

ϕ(x)u(x) dx as t → 0.

Thanks to (4.21) and the narrow convergence of ut to u we can apply Lemma 2.1 obtaining
that

‖Ls−mut − Ls−mu‖L2(Rd ) → 0 if s ∈ [2m, 2m + 1),

Ls−mut → Ls−mu weakly in L2(Rd) if s = 2m + 1,

‖Ls−m−1ut − Ls−m−1u‖H1(Rd ) → 0 if s ∈ (2m + 1, 2m + 2),

(4.25)

as t → 0.
For every ξ ∈ R

d we define gξ : R → R by gξ (t) := ût (ξ). We prove that gξ ∈ C1(R)

and

g′
ξ (t) = − ̂div(ηut )(ξ). (4.26)

Indeed, by definition of image measure, we have

gξ (t) = ût (ξ) =
∫
Rd

e−iξ ·Xt (x)u(x) dx .

Using this expression, by dominated convergence Theorem, we have that

gξ (t + h) − gξ (t)

h
=

∫
Rd

1

h
(e−iξ ·Xt+h (x) − e−iξ ·Xt (x))u(x) dx

→
∫
Rd

e−iξ ·Xt (x)(−iξ · η(Xt (x)))u(x) dx

as h → 0. Moreover, taking into account the definition of image measure and (2.8),∫
Rd

e−iξ ·Xt (x)(−iξ · η(Xt (x)))u(x) dx =
∫
Rd

e−iξ ·x (−iξ · η(x))ut (x) dx = − ̂div(ηut )(ξ).

(4.27)

The continuity of g′
ξ follows from the expression above and the regularity of the maps

t �→ Xt (x), using dominated convergence Theorem.
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Using the fundamental theorem of calculus and Jensen’s inequality we have∥∥∥∥ut − u

t

∥∥∥∥
2

Hs (Rd )

=
∫
Rd

(1 + |ξ |2)s
∣∣∣∣ ût (ξ) − û(ξ)

t

∣∣∣∣
2

dξ

=
∫
Rd

(1 + |ξ |2)s
∣∣∣∣gξ (t) − gξ (0)

t

∣∣∣∣
2

dξ

=
∫
Rd

(1 + |ξ |2)s
∣∣∣∣1t

∫ t

0
g′
ξ (r) dr

∣∣∣∣
2

dξ

≤
∫
Rd

(1 + |ξ |2)s 1
t

∫ t

0

∣∣g′
ξ (r)

∣∣2 dr dξ

= 1

t

∫ t

0

∫
Rd

(1 + |ξ |2)s ∣∣g′
ξ (r)

∣∣2 dξ dr

= 1

t

∫ t

0

∫
Rd

(1 + |ξ |2)s
∣∣∣ ̂div(ηur )(ξ)

∣∣∣2 dξ dr

= 1

t

∫ t

0
‖div(ηur )‖2Hs (Rd )

dr .

(4.28)

From the estimate (4.21) it follows that there exists C > 0, depending on η, such that

‖div(ηur )‖Hs (Rd ) ≤ C̃‖ur‖H1+s (Rd ) ≤ C‖u‖H1+s (Rd ), ∀r ∈ [−1, 1]. (4.29)

By (4.28) and (4.29) it follows that∥∥∥∥ut − u

t

∥∥∥∥
Hs (Rd )

≤ C‖u‖H1+s (Rd ), ∀t ∈ [−1, 1], t �= 0. (4.30)

Moreover, by Lagrange mean value, (4.26) and (4.27) we obtain∣∣∣∣ ût (ξ) − û(ξ)

t

∣∣∣∣ ≤ |ξ |‖η‖∞ ∀ξ ∈ R
d , ∀t ∈ [−1, 1], t �= 0. (4.31)

Since, by (4.26), limt→0
ût (ξ)−û(ξ)

t = −d̂iv(ηu)(ξ) for any ξ ∈ R
d , and (4.30) (4.31)

hold, we can apply Lemma 2.1 and we obtain

Lm

(ut − u

t

)
→ Lm(−div(ηu)) weakly in L2(Rd) if s = 2m,∥∥∥∥Lm

(ut − u

t

)
− Lm(−div(ηu))

∥∥∥∥
L2(Rd )

→ 0 if s ∈ (2m, 2m + 1],
∥∥∥∥∇Lm

(ut − u

t

)
− ∇Lm(−div(ηu))

∥∥∥∥
L2(Rd )

→ 0 if s ∈ (2m + 1, 2m + 2),

(4.32)

as t → 0.
Finally, using (4.25) and (4.32) we pass to the limit in (4.23) and (4.24) and we obtain

lim
t→0

1

t
(Fs(ut ) − Fs(u)) = −

∫
Rd

(Ls−mu)Lm(div(η u)) dx (4.33)

if s ∈ [2m, 2m + 1] and

lim
t→0

1

t
(Fs(ut ) − Fs(u)) = −

∫
Rd

∇((Ls−m−1u) · ∇(Lm(div(η u))) dx (4.34)
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if s ∈ (2m + 1, 2m + 2).
By (4.33) and (4.34) we obtain (4.20). ��
The application of the Flow interchange estimate with the flow generated by a potential

energy yields the following Proposition. We observe that the inequality (4.35) is a sort of
discrete weak formulation of the equation in (1.1) (see (4.40) and (4.41)).

Proposition 4.8 Let u0 ∈ D(Fs), τ > 0, {ukτ : k = 0, 1, 2, . . .} the sequence given by
Proposition 3.2. Let ϕ ∈ C∞

c (Rd) and λ ≥ ‖D2ϕ‖∞. Then

−λ

2
W 2(unτ , u

n−1
τ ) ≤

∫
Rd

ϕ(x)unτ (x) dx −
∫
Rd

ϕ(x)un−1
τ (x) dx − τN (unτ ,∇ϕ)

≤ λ

2
W 2(unτ , u

n−1
τ ), ∀ n ∈ N,

(4.35)

where N is defined in (1.9).

Proof Let us define the functional V : P2(R
d) → R by

V (u) :=
∫
Rd

ϕ(x) du(x).

Let n ∈ N. Since by Lemma 4.4 unτ ∈ H1+s(Rd), by Proposition 4.3 and Lemma 4.7 for
η = −∇ϕ, we have

DV Fs(u
n
τ ) := lim sup

t↓0
Fs(unτ ) − Fs(St (unτ ))

t
= − d

dt
Fs(St (u

n
τ ))|t=0 = N (unτ ,−∇ϕ),

Applying Proposition 4.1 to V and observing that N (unτ ,−∇ϕ) = −N (unτ ,∇ϕ), we obtain

−λ

2
W 2(unτ , u

n−1
τ ) − τN (unτ ,∇ϕ) ≤ V (un−1

τ ) − V (unτ ). (4.36)

Analogously, applying Proposition 4.1 to −V instead of V and observing that −V still
generates a −λ-flow we obtain

−λ

2
W 2(unτ , u

n−1
τ ) + τN (unτ ,∇ϕ) ≤ −V (un−1

τ ) + V (unτ ). (4.37)

Finally, the inequality (4.35) follows by (4.36) and (4.37). ��

4.5 Solution of the problem

In this Section we prove that the limit curve given by Theorem 3.3 is a weak solution of
problem (1.1) and we conclude the proof of Theorem 1.1.

Theorem 4.9 If u ∈ AC2([0,+∞); (P2(R
d),W )) is a limit curve given by Theorem

3.3, then u is a solution of the equation in (1.1) in the following weak form: for any
ϕ ∈ C∞

c ((0,+∞) × R
d)∫ +∞

0

∫
Rd

∂tϕu dx dt +
∫ +∞

0
N (u(t),∇ϕ(t, ·)) dt = 0, (4.38)

where N is defined in (1.9).
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Proof Let ϕ ∈ C∞
c ((0,+∞) × R

d), T > 0 such that ϕ(t, ·) = 0 for any t > T . Let
λ ≥ maxt∈[0,T ] ‖D2ϕ(t, ·)‖∞.

Using the notation uτ (t, x) := uτ (t)(x) and the convention uτ (t) := u0 if t < 0, the
inequality (4.35) can be rewritten as

− λ

2
W 2(uτ (t), uτ (t − τ))

≤
∫
Rd

ϕ(t, x)(uτ (t, x) − uτ (t − τ, x)) dx − τN (uτ (t),∇ϕ(t, ·))

≤ λ

2
W 2(uτ (t), uτ (t − τ)), ∀ t ∈ [0,+∞), ∀ τ > 0.

(4.39)

Dividing the inequality in (4.39) by τ > 0 and integrating in time, we obtain∣∣∣∣
∫ T

0

∫
Rd

ϕ(t, x) − ϕ(t + τ, x)

τ
uτ (t, x) dx dt −

∫ T

0
N (uτ (t),∇ϕ(t, ·)) dt

∣∣∣∣
≤ λ

2τ

∫ T

0
W 2(uτ (t), uτ (t − τ)) dt .

(4.40)

We observe that the inequality (4.40) is a discrete weak formulation of the equation (1.1).
Let τn be a vanishing sequence given by Theorem 3.3.
First of all we show that

lim
n→+∞

λ

2τn

∫ T

0
W 2(uτn (t), uτn (t − τn)) dt = 0. (4.41)

Indeed, by (3.4)

1

2τn

∫ T

0
W 2(uτn (t), uτn (t − τn)) dt ≤ 1

2

[T /τn ]+1∑
k=1

W 2(ukτn , u
k−1
τn

) ≤ τnFs(u0)

and (4.41) follows.
We pass to the limit in the other two terms in (4.40). By the convergence (4.15) and the

regualrity of ϕ it follows that

lim
n→+∞

∫ T

0

∫
Rd

ϕ(t, x) − ϕ(t + τn)

τn
uτn (t, x) dx dt = −

∫ T

0

∫
Rd

∂tϕ(t, x)u(t, x) dx dt .

(4.42)

Let m = [s/2]. For s ∈ [2m, 2m + 1], by definition of N ,∫ T

0
N (uτn (t),∇ϕ(t, ·)) dt =

∫ T

0

∫
Rd

Ls−m(uτn )Lm(div(∇ϕ uτn )) dx dt . (4.43)

Weobserve that‖Ls−m(uτn−u)‖L2(Rd ) = ‖uτn−u‖Ḣ2 s−2m (Rd ). Let s ∈ [2m, 2m+1), defin-
ing r such that 1+r = 2s−2m, it holds r < s. By Lemma 4.6, we haveLs−muτn → Ls−mu
strongly in L2((0, T ); L2(Rd)). If s = 2m + 1 we have Lm+1uτn → Lm+1u weakly
in L2((0, T ); L2(Rd)). By Lemma 4.6, we have also that div(∇ϕ uτn ) → div(∇ϕ u)

strongly in L2((0, T ); Hr (Rd)) for any r < s. Lmdiv(∇ϕ uτn ) → Lmdiv(∇ϕ u) strongly
in L2((0, T ); Hr−2m(Rd)). In particular, for r = 2m we obtain Lmdiv(∇ϕ uτn ) →
Lmdiv(∇ϕ u) strongly in L2((0, T ); L2(Rd)). The convergences above and (4.43) show
that

lim
n→+∞

∫ T

0
N (uτn (t),∇ϕ(t, ·)) dt =

∫ T

0
N (u(t),∇ϕ(t, ·)) dt (4.44)
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when s ∈ [2m, 2m+1). Analogously we can prove (4.44) also in the case s ∈ (2m+1, 2m+
2).

The proof of (4.38) follows by (4.40), (4.42), (4.44) and (4.41). ��
We conclude this Section with the

Proof of Theorem 1.1. The part i) is exactly Proposition 3.2. The part ii) follows by Theo-
rem 3.3, the inequality (4.16), Corollary 2.2 and Lemma 4.6. The limit limt→0+ ‖u(t) −
u0‖Hs (R) = 0 follows by the second inequality in (4.16) which implies that limt→0+
‖u(t, ·)‖2

Ḣ s (R)
= ‖u0‖2Ḣ1(R)

. The part iii) is exactly Theorem 4.9. The inequality (1.10)
in part iv) follows by (4.13) passing to limit by a lower semicontinuity argument. ��

5 The case d = 1 and s = 1

In this Section we use the notation u′ to denote the derivative of u with respect to the one-
dimensional space variable.

Lemma 5.1 Let u ∈ H2(R) such that u ≥ 0 and u u′′ ∈ H1(R). Then u′′ is differentiable
a.e. in P := {x ∈ R : u(x) > 0}, u u′′′ ∈ L2(R), where we use the convention u u′′′ = 0 on
R \ P, and ∫

R

u′′u η′ dx +
∫
R

u′′u′ η dx = −
∫
R

u′′′u η dx ∀ η ∈ C∞
c (R). (5.1)

Proof Let us fix u ∈ C1(R) a representative of u ∈ H2(R). We denote by P = {x ∈ R :
u(x) > 0} the open set of positivity of u. We observe that u(x) = 0 and u′(x) = 0 for each
x ∈ R \ P (since are minimum points of u).

Since u(x)u′′(x) = 0 for each x ∈ R \ P and u u′′ ∈ H1(R) we have that

(uu′′)′(x) = 0 for a.e. x ∈ R \ P. (5.2)

Denoting by f := uu′′ ∈ H1(R), then u′′ = f
u is differentiable in every point of differentia-

bility of f in P . In particular it holds that

(uu′′)′(x) = (u′′′u + u′′u′)(x) for a.e. x ∈ P. (5.3)

Fixing η ∈ C∞
c (R), taking into account (5.2) and (5.3) and using the convention u u′′′ = 0

on R \ P , it holds∫
R

u′′u η′ dx +
∫
R

u′′u′ η dx = −
∫
R

(u′′u)′ η dx +
∫
R

u′′u′ η dx

= −
∫
R

u′′′u η dx −
∫
R

u′′u′ η dx +
∫
R

u′′u′ η dx = −
∫
R

u′′′u η dx .

Finally, by the last equality and the assumptions u ∈ H2(R) and u u′′ ∈ H1(R), it follows
that u u′′′ ∈ L2(R). ��
Proposition 5.2 Let d = 1, s = 1, u0 ∈ Ḣ1(R) ∩ P2(R), τ > 0 and {ukτ : k = 0, 1, 2, . . .}
the sequence given by Proposition 3.2.

Then, for any k ≥ 1, (ukτ )
′′ is differentiable a.e. in {x ∈ R : ukτ (x) > 0}, ukτ (ukτ )

′′′ ∈ L2(R)

and ∫
R

|(ukτ )′′′|2ukτ dx = 1

τ 2
W 2(ukτ , u

k−1
τ ). (5.4)
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Proof Let us fix k ≥ 1 and we denote by T the optimal transport map from ukτ and uk−1
τ .

Fixing η ∈ C∞
c (R), using the flow in (4.19) and defining ut := (Xt )#ukτ , by a standard

computation, see for instance [40] or [1], it holds that

d

dt

1

2
W 2(ut , u

k−1
τ )|t=0 = −

∫
R

(T − I )ukτ η dx . (5.5)

Taking into account that ukτ ∈ H2(R) and it is a minimizer of the functional u �→ Fs(u) +
1
2τ W 2(u, uk−1

τ ), using (5.5) and (4.20), it follows that

1

τ

∫
R

(T − I )ukτ η dx + N (ukτ , η) = 0,

which can be written as

− 1

τ

∫
R

(T − I )ukτ η dx =
∫
R

(ukτ )
′′ukτ η′ dx +

∫
R

(ukτ )
′′(ukτ )′ η dx . (5.6)

Since ∫
R

|T − I |2 ukτ dx = W 2(ukτ , u
k−1
τ ) < +∞ (5.7)

and ukτ is bounded we have that (T − I )ukτ ∈ L2(R). Moreover (ukτ )
′′(ukτ )′ ∈ L2(R) since

also (ukτ )
′ is bounded. Then by (5.6) it follows that (ukτ )′′ukτ ∈ H1(R). We can apply Lemma

5.1 to ukτ obtaining

1

τ

∫
R

(T − I )ukτ η dx =
∫
R

(ukτ )
′′′ukτ η dx . (5.8)

Since (5.8) holds for any η ∈ C∞
c (R), it follows that 1

τ
(T − I )ukτ = (ukτ )

′′′ukτ in L2(R) and
1
τ
(T − I )(x) = (ukτ )

′′′(x) for ukτ -a.e. x ∈ R. Then

1

τ 2

∫
R

|T − I |2ukτ dx =
∫
R

|(ukτ )′′′|2ukτ dx

and by (5.7) we have (5.4).
��

Proof of Theorem 1.2. In this proof we use the notation u′ to denote the partial derivative of
u with respect to the one-dimensional space variable and ∂t u to denote the partial derivative
of u with respect to the time variable.

The property (1.13) follows from property (3) of Theorem 1.1 and the embedding of
H2(R) in C1,1/2(R).

We observe that, from the second inequality of (4.16), it follows that there exists a constant
C depending only on u0 such that

0 ≤ u(t, x) ≤ C ∀ (t, x) ∈ (0,+∞) × R. (5.9)

Denoting by uτ the discrete solution of step τ > 0, from the basic estimate (3.4) and (5.4)
it follows that ∫ +∞

0

∫
R

|(uτ )
′′′|2 uτ dx dt ≤

∫
R

|(u0)′|2 dx . (5.10)
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Let τn be a vanishing sequence given by Theorem 3.3. By Theorem 5.4.4 of [1], thanks to
the bound (5.10), there exists v : (0,+∞) × R → R such that∫ +∞

0

∫
R

|v|2 u dx dt ≤
∫
R

|(u0)′|2 dx (5.11)

and

lim
n→+∞

∫ +∞

0

∫
R

(uτn )
′′′η uτn dx dt =

∫ +∞

0

∫
R

vη u dx dt, ∀ η ∈ C∞
c ((0,+∞) × R; R).

(5.12)

Applying Lemma 5.1 for any t ∈ (0,+∞) to uτ (t) it holds that

−
∫ +∞

0

∫
R

(uτn )
′′′η uτn dx dt

=
∫ +∞

0

∫
R

(uτn )
′′uτn η′ dx dt +

∫ +∞

0

∫
R

(uτn )
′′(uτn )

′ η dx dt . (5.13)

Since (uτn )
′′ weakly converges in L2(0, T ; L2(R)) to u′′, using Lemma 4.6, it follows that

lim
n→+∞

(∫ +∞

0

∫
R

(uτn )
′′uτn η′ dx dt +

∫ +∞

0

∫
R

(uτn )
′′(uτn )

′ η dx dt
)

=
∫ +∞

0

∫
R

u′′u η′ dx dt +
∫ +∞

0

∫
R

u′′u′ η dx dt .
(5.14)

By (5.12), (5.13) and (5.14) it follows that

−
∫ +∞

0

∫
R

v u η dx dt =
∫ +∞

0

∫
R

u′′u η′ dx dt +
∫ +∞

0

∫
R

u′′u′ η dx dt (5.15)

Using test functions η in (5.15) of the form η(t, x) = η̃(x)φ(t) for η̃ ∈ C∞
c (R) and φ ∈

C∞
c ((0,+∞)), it follows that,

−
∫
R

v(t, x) u(t, x) η̃(x) dx =
∫
R

u′′(t, x)u(t, x) η̃′(x) dx +
∫
R

u′′(t, x)u′(t, x) η̃(x) dx

(5.16)

for a.e. t ∈ (0,+∞) and for any η̃ ∈ C∞
c (R). From (5.11) and the boundedness (5.9) of u,

it follows that v(t, ·)u(t, ·) ∈ L2(R) for a.e. t ∈ (0,+∞). By (5.16) and the boundedness of
u′(t, ·)we obtain that u′′(t, ·)u(t, ·) ∈ H1(R) for a.e. t ∈ (0,+∞). Then, taking into account
that u(t, ·) ∈ H2(R) for a.e. t ∈ (0,+∞), we can apply Lemma 5.1 obtaining (1.14) and∫

R

v(t, x) u(t, x) η̃(x) dx =
∫
R

u′′′(t, x)u(t, x) η̃(x) dx (5.17)

for a.e. t ∈ (0,+∞) and for any η̃ ∈ C∞
c (R). By this last relation and (5.11) we obtain

(1.15).
The weak formulation (1.8) in dimension 1 obtained in Theorem 1.1 can be written as

(see (1.11)) ∫ +∞

0

∫
R

u ∂tϕ dx dt −
∫ +∞

0

∫
R

(u′′ ϕ′′ u + u′′ ϕ′u′) dx dt = 0,

∀ ϕ ∈ C∞
c ((0,+∞) × R).

(5.18)
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Using the relations in (5.16) and (5.17) in (5.18) we obtain

∫ +∞

0

∫
R

u ∂tϕ dx dt +
∫ +∞

0

∫
R

u′′′ ϕ′u dx dt = 0,

∀ ϕ ∈ C∞
c ((0,+∞) × R).

(5.19)

which is (1.16).
In order to prove the regularity (1.12) we observe that a uniform, with respect to t , C1/2

Hölder estimate for the space variable follows from the estimate ‖u(t, ·)‖2
Ḣ1(R)

≤ ‖u0‖2Ḣ1(R)

for any t ∈ [0,+∞), see (4.16), and the classical C1/2 embedding; the proof of the uniform,
with respect to x ,C1/8 Hölder estimate for the time variable can be carried out as in the proof
of Lemma 2.1 of [6] using the weak formulation (1.16). ��
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