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Abstract
We consider the harmonic map heat flow for maps R2 → S

2, under equivariant symmetry.
It is known that solutions to the initial value problem can exhibit bubbling along a sequence
of times—the solution decouples into a superposition of harmonic maps concentrating at
different scales and a body map that accounts for the rest of the energy. We prove that this
bubble decomposition is unique and occurs continuously in time. The main new ingredient
in the proof is the notion of a collision interval from Jendrej and Lawrie (J Amer Math Soc).
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1 Introduction

1.1 Setting of the problem

Consider the harmonic map heat flow (HMHF) for maps � : R2 → S
2 ⊂ R

3, that is, the
heat flow associated to the Dirichlet energy

E(�) := 1

2

∫
R2

|∇�(x)|2 dx .

The initial value problem for the HMHF is given by

∂t� − �� = � |∇�|2
�(0, x) = �0(x).

(1.1)

We say a solution to (1.1) is k-equivariant if it takes the form

�(t, reiθ ) = (sin u(t, r) cos kθ, sin u(t, r) sin kθ, cos u(t, r)) ∈ S
2 ⊂ R

3,

where k ∈ N and (r , θ) are polar coordinates on R
2. In this case the HMHF reduces to a

scalar equation for the polar angle u = u(t, r),

∂t u = ∂2r u + 1

r
∂r u − k2

r2
sin 2u

2
,

u(0) = u0,
(1.2)

and the energy E = E(u) reduces to

E(u(t)) = 2π
∫ ∞
0

1
2

(
(∂r u(t, r))2 + k2 sin

2(u(t,r))
r2

)
r dr ,

and formally satisfies

d
dt E(u(t)) = −2π

∫ ∞
0 (∂t u(t, r))2 r dr = −2π‖T (u(t))‖2

L2 ,

where in the k-equivariant setting T (u) := ∂2r u + 1
r ∂r u − k2

2r2
sin(2u) is called the tension

of u. Integrating in time from t0 to t gives,

E(u(t)) + 2π
∫ t

t0
‖T (u(s))‖2L2 ds = E(u(t0)). (1.3)

The natural setting in which to consider the initial value problem for (1.2) is the space
of initial data u0 with finite energy, E(u) < ∞. This set is split into disjoint sectors, E�,m ,
which for �,m ∈ Z, are defined by

E�,m := {
u | E(u) < ∞, lim

r→0
u(r) = �π, lim

r→∞ u(r) = mπ
}
.
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These sectors, which are preserved by the flow, are related to the topological degree of the
full map � : R2 → S

2: if m − � is even and u ∈ E�,m , then the corresponding map � with
polar angle u is topologically trivial, whereas for odd m − � the map has degree k.

The sets E�,m are affine spaces, parallel to the linear space E := E0,0, which we endow
with the norm,

‖u0‖2E :=
∫ ∞

0

(
(∂r u0(r))

2 + k2
(u0(r))2

r2

)
rdr .

We make note of the embedding ‖u0‖L∞ ≤ C‖u0‖E .
The unique k-equivariant harmonic map is given explicitly by

Q(r) := 2 arctan(rk).

Here uniquenessmeans up to scaling, sign change, and adding amultiple ofπ , i.e., every finite
energy stationary solution to (1.2) takes the form Qμ,σ,m(r) = mπ +σQ(r/μ) for someμ ∈
(0,∞), σ ∈ {0,−1, 1} and m ∈ Z. The map Q and its rescaled versions Qλ(r) := Q(λ−1r)
for λ > 0, are minimizers of the energy E within the class E0,1; in fact, E(Qλ) = 4πk.

1.2 Statement of the results

We prove the following theorem.

Theorem 1 (Bubble decomposition) Let k ∈ N, let �,m ∈ Z, and let u(t) be the solution
to (1.2) with initial data u(0) = u0 ∈ E�,m, defined on its maximal interval of existence
[0, T+).

(Global solution) If T+ = ∞, there exist a time T0 > 0, an integer N ≥ 0, continuous
functions λ1(t), . . . , λN (t) ∈ C0([T0,∞)), signs ι1, . . . , ιN ∈ {−1, 1}, and g(t) ∈ E defined
by

u(t) = mπ +
N∑
j=1

ι j (Qλ j (t) − π) + g(t), (1.4)

such that

‖g(t)‖E +
N∑
j=1

λ j (t)

λ j+1(t)
→ 0 as t → ∞,

where above we use the convention that λN+1(t) = √
t .

(Blow-up solution) If T+ < ∞, there exist a time T0 < T+, integers m∞,m�, a mapping
u∗ ∈ E0,m∞ , an integer N ≥ 1, continuous functions λ1(t), . . . , λN (t) ∈ C0([T0, T+)), signs
ι1, . . . , ιN ∈ {−1, 1}, and g(t) ∈ E defined by

u(t) = m�π +
N∑
j=1

ι j (Qλ j (t) − π) + u∗ + g(t),

such that

‖g(t)‖E +
N∑
j=1

λ j (t)

λ j+1(t)
→ 0 as t → T+,

where above we use the convention that λN+1(t) = √
T+ − t .
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Remark 1.1 Asymptotic decompositions of solutions to (1.2) (in fact for solutions to the
Eq. (1.1) without symmetry assumptions) were proved along a sequence of times tn → T+,
in a series of works by Struwe [28], Qing [24], Ding-Tian [9], Wang [33], Qing-Tian [25],
and Topping [31]. The main contribution of this paper is to show that the decomposition can
be taken continuously in time for k-equivariant solutions.

Remark 1.2 In the non-equivariant setting, i.e., for (1.1), Topping [29, 30] made important
progress on a related question in the global case, showing the uniqueness of the locations
of the bubbling points under restrictions on the configurations of bubbles appearing in the
sequential decomposition. His assumption, roughly, is that all of the bubbles concentrating
at a certain point have to have the same orientation. We can contrast this assumption with
the equivariant setting, where in the decomposition (1.4) subsequent bubbles have opposite
orientations.

Remark 1.3 Given Theorem 1, it is natural to askwhich configurations of bubbles are possible
in the decomposition. Van der Hout [32] showed that there can only be one bubble in the
decomposition in the case of equivariant finite time blow-up; see also [2]. In contrast, in the
infinite time case, it is expected that there can be equivariant bubble trees of arbitrary size
(see recent work of Del Pino, Musso, and Wei [8] for a construction in the case of the critical
semi-linear heat equation).

Remark 1.4 There are solutions to the HMHF that develop a bubbling singularity in finite
time, the first being the examples of Coron and Ghidaglia [5] (in dimension d ≥ 3) and
Chang, Ding, Ye [4] in the 2d case considered here. Guan, Gustafson, and Tsai [12] and
Gustafson, Nakanishi, and Tsai [14] showed that the harmonic maps Q are asymptotically
stable in equivariance classes k ≥ 3, and thus there is no finite time blow up for energies
close to Q in that setting. This asymptotic stability result was improved to energies up to
3E(Q) by Gustafson and Roxanas in [13] in equivariance classes k ≥ 4. For k = 2, [14] gave
examples of solutions exhibiting infnite time blow up and eternal oscillations. Raphaël and
Schweyer constructed a stable blow-up regime for k = 1 in [26] and then blow up solutions
with different rates in [27]. Recently, Davila, Del Pino, and Wei [7] constructed examples of
solutions simultaneously concentrating a single copy of the ground state harmonic map at
distinct points in space.

1.3 Summary of the proof

We give an informal description of the proof of Theorem 1 starting with a summary of the
sequential bubbling results as in, e.g., [24, 31], adapted to our setting. A crucial ingredient is
a sequential compactness lemma, which says that a sequence of maps with vanishing tension
must converge (at least locally in space) to a multi-bubble, which we define as follows.

Definition 1.5 (Multi-bubble configuration) Given M ∈ {0, 1, . . .}, m ∈ Z, �ι =
(ι1, . . . , ιM ) ∈ {−1, 1}M and an increasing sequence �λ = (λ1, . . . , λM ) ∈ (0,∞)M , a
multi-bubble configuration is defined by the formula

Q(m,�ι, �λ; r) := mπ +
M∑
j=1

ι j
(
Qλ j (r) − π

)
.

Remark 1.6 If M = 0, it should be understood that Q(m,�ι, �λ; r) = mπ for all r ∈ (0,∞),
where �ι and �λ are 0-element sequences, that is the unique functions ∅ → {−1, 1} and
∅ → (0,∞), respectively.
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With this definition, we define a localized distance function tomulti-bubble configurations
by

δR(u) := inf
m,M,�ι,�λ

(
‖u − Q(m,�ι, �λ)‖2E(r≤R) +

M∑
j=1

( λ j

λ j+1

)k) 1
2

(1.5)

where the infimum is taken over all m ∈ Z, M ∈ {0, 1, 2, . . . }, all vectors ι ∈ {−1, 1}M ,
�λ ∈ (0,∞)M , and we use the convention that the last scale λM+1 = R.

The localized sequential compactness lemma (see Lemma 3.1) says the following: given
a sequence of maps un with bounded energy, a sequence ρn ∈ (0,∞) of scales, and tension
vanishing in L2 relative to the scale ρn , i.e., limn→∞ ρn‖T (un)‖L2 = 0, there exists a
subsequence of the un that converges to a multi-bubble configuration up to large scales
relative to ρn , i.e., limn→∞ δRnρn (un) = 0 for some sequence Rn → ∞. An analogous
result with no symmetry assumptions was proved by Qing [24] using the local bubbling
theory of Struwe [28] together with a delicate elliptic analysis showing that no energy can
accumulate on the “neck” regions between the bubbles. Here we give a mostly self-contained
proof of this compactness result in the simpler equivariant setting using the theory of profile
decompositions of Gérard [11] and an approach in the spirit of Duyckaerts, Kenig, and
Merle’s work on nonlinear waves [10]. To control the energy on the neck regions we use a
virial-type functional adapted from Jia and Kenig’s proof of sequential soliton resolution for
equivariant wave maps [19].

With the compactness lemma in place, we now consider the heat flow. To fix ideas, let u(t)
be a solution to (1.2) defined globally in time, i.e., T+ = ∞. By the energy identity (1.3),

∫ ∞

0
‖T (u(t))‖2L2 dt < ∞, (1.6)

and thus we can find a sequence of times tn → ∞ so that limn→∞
√
tn‖T (u(tn))‖L2 = 0.

From the compactness lemma we deduce that after passing to a subsequence of the tn , u(tn)
converges to an N -bubble configuration up to the self-similar scale r = √

tn . In the exterior
region r �

√
t , we prove that u(t) has vanishing energy (continuously in time) using a

localized energy inequality due to Struwe [28]; see Proposition 4.3.
Letd(t) denote the distance to the particular N -bubble configuration obtained via the com-

pactness lemma (which is defined analogously to (1.5), exceptwithout the spatial localization;
see Definition 5.1). We have so far proved that

lim
n→∞d(tn) = 0.

Theorem 1 follows from showing that in fact limt→∞ d(t) = 0. We assume that continuous-
in-time convergence of d(t) fails. To reach a contradiction we study time intervals on which
bubbles come into collision (i.e., whered(t) grows), adapting the notion of a collision interval
from our paper [17].

We say that an interval [a, b] is a collision interval with parameters 0 < ε < η and N −K
exterior bubbles for some 1 ≤ K ≤ N , if d(a) ≤ ε, d(b) ≥ η, and there exists a curve
r = ρK (t) outside of which u(t) is within ε of an N − K -bubble (in the sense of a localized
version of d(t)); see Defintion 5.4. We now define K to be the smallest non-negative integer
for which there exists η > 0, a sequence εn → 0, and sequences an, bn → ∞, so that
[an, bn] are collision intervals with parameters εn, η and N − K exterior bubbles, and we
write [an, bn] ∈ CK (εn, η); see Sect. 5.1 for the proof that K is well-defined and ≥ 1, under
the contradiction hypothesis.
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264 Page 6 of 36 J. Jendrej, A. Lawrie

Consider a sequence of collision intervals [an, bn] ∈ CK (εn, η). Near the endpoint an ,
u(t) is close to an N -bubble configuration and we denote the interior scales, which will
come into collision, by �λ = (λ1, . . . , λK ) and the exterior scales, which stay coherent, by
�μ = ( �μK+1, . . . , �μN ). The crucial point is that the minimality of K allows us to relate the
scale of the K th bubble λK to the lengths of the collision intervals bn − an . We prove,
roughly, that for sufficiently large n the collision intervals [an, bn] contain subintervals
[cn, dn] on which (1) inf t∈[cn ,dn ] d(t) ≥ α for some α > 0, (2) the scale λK (t) stays roughly
constant on [cn, dn], and (3) the lower bound dn − cn � n−1λK (cn)2 holds. The compact-
ness lemma and the lower bound d(t) ≥ α together yield a lower bound on the tension
inf t∈[cn ,dn ] λK (cn)2‖T (u(t))‖2

L2 � 1 where the scale λK appears again due to the definition
of K . The last two sentences lead to an immediate contradiction from the boundedness of
the integral (1.6), i.e.,

C ≥
∫ ∞

0
‖T (u(t))‖2L2 dt ≥

∑
n

∫ dn

cn
‖T (u(t))‖2L2 dt �

∑
n

n−1,

which proves that limt→∞ d(t) = 0.

1.4 Notational conventions

The energy is denoted E , E is the energy space, E�,m are the finite energy sectors. We use the
notation E(r1, r2) to denote the local energy norm

‖g‖2E(r1,r2) :=
∫ r2

r1

(
(∂r g)

2 + k2

r2
g2

)
rdr ,

By convention, E(r0) := E(r0,∞) for r0 > 0. The local nonlinear energy is denoted
E(u0; r1, r2). We adopt similar conventions as for E regarding the omission of r2, or both r1
and r2.

Given a function φ(r) and λ > 0, we denote by φλ(r) = φ(r/λ), the E-invariant re-
scaling, and by φλ(r) = λ−1φ(r/λ) the L2-invariant re-scaling. We denote by � := r∂r
and � := r∂r + 1 the infinitesimal generators of these scalings. We denote 〈· | ·〉 the radial
L2(R2) inner product given by,

〈
φ | ψ

〉 :=
∫ ∞

0
φ(r)ψ(r) r dr .

We denote k the equivariance degree and f (u) := 1
2 sin 2u the nonlinearity in (1.2). We let

χ be a smooth cut-off function, supported in r ≤ 2 and equal 1 for r ≤ 1.
We call a “constant” a number which depends only on the equivariance degree k and

the number of bubbles N . Constants are denoted C,C0,C1, c, c0, c1. We write A � B if
A ≤ CB and A � B if A ≥ cB. We write A � B if limn→∞ A/B = 0.

For any sets X , Y , Z we identify Z X×Y with (ZY )X , which means that if φ : X ×Y → Z
is a function, then for any x ∈ X we can view φ(x) as a function Y → Z given by
(φ(x))(y) := φ(x, y).
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2 Preliminaries

2.1 Well-posedness

The starting point for our analysis is the following result of Struwe [28], which says that the
initial value problem for the harmonic map flow is well-posed for data in the energy space.

Lemma 2.1 (Local well-posedness)[28, Theorem 4.1] For each �,m ∈ Z and u0 ∈ E�,m

there exists a maximal time of existence T+ = T+(u0) and a unique solution u(t) ∈ E�,m

to (1.2) on the time interval t ∈ [0, T+) with u(0) = u0. The maximal time is characterized
by the following condition: if T+ < ∞, there exists ε0 > 0 such that

lim sup
t→T+

E(u(t); 0, r0) ≥ ε0, (2.1)

for all r0 > 0. If there is no such T+ < ∞, we say T+ = ∞ and the flow is globally defined.
The energy E(u(t)) is absolutely continuous and non-increasing as a function of t ∈ [0, T ]

for any T < T+, and for any t1 ≤ t2 ∈ [0, T+), there holds,

E(u(t2)) + 2π
∫ t2

t1

∫ ∞

0
(∂t u(t, r))2 r drdt = E(u(t1)).

In particular,
∫ T+

0

∫ ∞

0
(∂t u(t, r))2 r drdt ≤ E(u0). (2.2)

Remark 2.2 Local well-posedness is proved by Struwe for the HMHF without symmetry
assumptions in the case of maps from a closed Riemann surface M → S

2. For the case of
maps from R

2 we refer the reader to Lin and Wang [20, Theorem 5.2.1] for the short time
existence of regular solutions. As equivariant symmetry is preserved by the flow, we obtain
regular equivariant solutions to (1.2) by taking equivariant initial data. Solutions with finite
energy initial data are then obtained as limits of smooth solutions, and in [28] Struwe proved
these solutions are regular, e.g., C2, on any compact time interval [τ, T ] ⊂ (0, T+). We note
that in the equivariant case the energy can only concentrate at the origin r = 0, giving the
form of the blow-up criterion in (2.1).

2.2 Basic estimates

Lemma 2.3 Fix integers �,m. For every ε > 0 and R0 > 1, there exists a δ > 0 with the
following property. Let 0 ≤ R1 < R2 ≤ ∞ with R2/R1 ≥ R0, and u ∈ E�,m be such that
E(u; R1, R2) < δ. Then, there exists �0 ∈ Z such that |u(r) − �0π | < ε for almost all
r ∈ (R1, R2).

Moreover, there exist constants C = C(R0), α = α(R0) > 0 such that if E(u; R1, R2) <

α, then

‖u − �0π‖E(R1,R2) ≤ CE(u; R1, R2). (2.3)

Proof By an approximation argument we can assume u ∈ E�,m is smooth. First, we show
that for any ε0 > 0, there exists r0 ∈ [R1, R2] such that |u(r0) − �0π | < ε0 for some
�0 ∈ Z as long as E(u; R1, R2) is sufficiently small. If not, one could find ε1 > 0, 0 <

R1 < R2, and a sequence un ∈ E�,m so that E(un; R1; R2) → 0 as n → ∞ but such that
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infr∈[R1,R2],�∈Z |un(r) − �π | ≥ ε1. The latter condition gives a constant c(ε1) > 0 such that
infr∈[R1,R2] | sin(un(r))| ≥ c(ε1). But then

E(un; R1; R2) ≥ k2

2

∫ R2

R1

sin2(un(r))
dr

r
≥ k2

2
c(ε1)

2 log(R2/R1),

which is a contradiction. Next define the function, G(u) = ∫ u
0 |sin ρ| dρ, and for r1 ∈

(R1, R2) note the inequality,

|G(u(r0)) − G(u(r1))| =
∣∣∣
∫ u(r0)

u(r1)
|sin ρ| dρ

∣∣∣ ≤
∫ r0

r1
|sin u(r)| |∂r u(r)| dr � E(u; R1, R2).

We conclude using that G is continuous and increasing that |u(r) − �0π | < ε for all r ∈
(R1, R2). As long as ε > 0 is small enough we see that in fact, sin2(u(r)) ≥ 1

2 |u(r) − �0π |2
for all r ∈ (R1, R2) and (2.3) follows. ��

Given a mapping u : (0,∞) → R we define its energy density,

e(u(r), r) := 1

2

(
(∂r u(r))2 + k2

r2
sin2(u(r))

)
.

Lemma 2.4 (Localized energy inequality) Let I ⊂ [0,∞) be a time interval, and let φ :
I × (0,∞) → [0,∞) be a smooth function. Let u(t) ∈ E�,m be a solution to (1.2) on I .
Then, for any t1 < t2 ∈ I ,
∫ t2

t1

∫ ∞

0
(∂t u(t, r))2φ(t, r)2 r drdt +

∫ ∞

0
e(u(t2, r), r)φ(t2, r)

2 r dr

=
∫ ∞

0
e(u(t1, r), r)φ(t1, r)

2 r dr − 2
∫ t2

t1

∫ ∞

0
∂t u(t, r)∂r u(t, r)φ(t, r)∂rφ(t, r) r drdt

+ 2
∫ t2

t1

∫ ∞

0
e(u(t, r), r)φ(t, r)∂tφ(t, r) r dr dt

(2.4)

If φ(t, r) satisfies, ∂tφ(t, r) ≤ 0 for all t ∈ [t1, t2] then,∫ ∞

0
e(u(t2), r)φ(t2, r)

2 r dr + 1

2

∫ t2

t1

∫ ∞

0
(∂t u(t, r))2φ(t, r)2 r drdt

≤
∫ ∞

0
e(u(t1), r)φ(t1, r)

2 r dr + 2
∫ t2

t1

∫ ∞

0
(∂r u(t, r))2(∂rφ(t, r))2 r drdt,

(2.5)

and, ∫ ∞

0
e(u(t2), r)φ(t2, r)

2 r dr +
∫ t2

t1

∫ ∞

0
(∂t u(t, r))2φ(t, r)2 r drdt

≤
∫ ∞

0
e(u(t1), r)φ(t1, r)

2 r dr + 2
√
E(u(t1))(t2 − t1)

1
2

( ∫ t2

t1

∫ ∞

0
(∂t u(t, r))2(∂rφ(t, r))2(φ(t, r))2 r drdt

) 1
2
.

(2.6)

Proof By an approximation argument wemay assume that u is smooth. Then (2.4) is obtained
for smooth solutions to (1.2) by multiplying the equation by ∂t uφ2 and integrating by parts.
The subsequent inequalities follow from Cauchy-Schwarz. ��
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2.3 Profile decomposition

Westate a profile decomposition in the sense ofGérard [11], adapted to sequences of functions
in the affine spaces E�,m ; see also [1, 3, 21–23]. We use the analysis of sequences in E�,m by
Jia and Kenig in [19], which synthesized Côte’s analysis in [6].

Lemma 2.5 (Linear profile decomposition)Let �,m ∈ Z and let un be a sequence in E�,m with
lim supn→∞ E(un) < ∞. Then, there exists K0 ∈ {0, 1, 2, . . . }, sequences λn, j ∈ (0,∞)

for j ∈ {1, . . . , K0}, σn,i ∈ (0,∞) for i ∈ N, as well as mappings ψ j ∈ E� j ,m j with
E(ψ j ) < ∞, and mappings vi ∈ E0,0 such that for each J ≥ 1,

un = mπ +
K0∑
j=1

(ψ j
( ·

λn, j

) − m jπ) +
J∑

i=1
vi

( ·
σn,i

) + w J
n (·)

so that,

• the parameters λn, j satisfy

λn,1 � λn,2 � · · · � λn,K0 as n → ∞;
and for each j one of λn, j → 0, λn, j = 1 for all n, or λn, j → ∞ as n → ∞, holds;

• for each i either σn,i → 0, σn,i = 1 for all n, or σn,i → ∞ as n → ∞;
• for each i ∈ N,

λn, j

σn,i
+ σn,i

λn, j
→ ∞ as n → ∞ ∀ j = 1, . . . , K0;

• the scales σn,i satisfy,

σn,i

σn,i ′
+ σn,i ′

σn,i
→ ∞ as n → ∞;

• the integers � j and m j satisfy,
∣∣� j − m j

∣∣ ≥ 1, and,

� = m +
K0∑
j=1

(� j − m j );

• the error term w J
n satisfies,

w J
n (λn, j ·)⇀0 ∈ E as n → ∞

w J
n (σn,i ·)⇀0 ∈ E as n → ∞

for each J ≥ 1, each j = 1, . . . , K0, and i ∈ N, and vanishes strongly in the sense that

lim
J→∞ lim sup

n→∞
‖w J

n ‖L∞ = 0; (2.7)

• the following pythagorean decomposition of the nonlinear energy holds: for each J ≥ 1,

E(un) = ∑K0
j=1 E(ψ j ) + ∑J

i=1 E(v j ) + E(w J
n ) + on(1)

as n → ∞.

Proof (Sketch of Proof) We follow Jia and Kenig’s argument [19, Proof of Lemma 5.5] to
first extract the profiles ψ j ∈ E� j ,m j at the scales λn, j , see [19, Pages 1594–1600]. Since
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264 Page 10 of 36 J. Jendrej, A. Lawrie

these all have energy ≥ E(Q), there can only be finitely many of them, which defines the
non-negative integer K0. The conclusion of their argument yields a sequence,

hn := un − mπ −
K0∑
j=1

(ψ
j
λn, j

− m jπ) ∈ E0,0

with lim supn→∞ ‖hn‖E < ∞. Setting Hn := r−khn we see that lim supn→∞ ‖Hn‖Ḣ1(Rd ) <

∞ for d = 2k + 2 (here we view Hn as a sequence of radially symmetric functions on Rd ).
Thus we may apply Gérard’s profile decomposition [11, Theorem 1.1] for sequences in
Ḣ1(Rd) to the sequence Hn obtaining sequences of scales σn,i and profiles V i so that for
W J

n defined by

Hn =
J∑

i=1

σ
− d

p∗
n,i V

( ·
σn,i

)
+ W J

n

we have

lim
J→∞ lim sup

n→∞
‖W J

n ‖L p∗ = 0,

along with the usual orthogonality of the scales and the pythagorean expansion of the Ḣ1

norm. Note that here p∗ := 2d
d−2 is the critical Sobolev exponent. We set vi (r) := rkV i (r)

and w J
n (r) := rkW J

n (r) for each i, n, J . Note that w J
n ∈ E and

lim
J→∞ lim sup

n→∞

∫ ∞

0
(w J

n (r))p
∗ dr

r
= 0. (2.8)

We conclude by observing the inequality

sup
r>0

|w(r)| p∗
2 +1 ≤ C(p∗)

(∫ ∞

0
(w(r))p

∗ dr

r

) 1
2
(∫ ∞

0
(∂rw(r))2 r dr

) 1
2

,

which holds for all w ∈ E . Thus (2.8) combined with the above gives the vanishing of the
error as in (2.7). ��

2.4 Multi-bubble configurations

We study properties of finite energy maps near a multi-bubble configuration as in
Definition 1.5. We record here several lemmas proved in [17].

The operator LQ obtained by linearization of (1.2) about an M-bubble configuration
Q(m,�ι, �λ) is given by,

LQ g := D2 E(Q(m,�ι, �λ))g = −∂2r g − 1

r
∂r g + k2

r2
f ′(Q(m,�ι, �λ))g,

where f ′(z) = cos 2z. Given g ∈ E ,
〈
D2 E(Q(m,�ι, �λ))g | g〉 =

∫ ∞

0

(
(∂r g(r))

2 + k2

r2
f ′(Q(m,�ι, �λ))g(r)2

)
rdr .

An important instance of the operatorLQ is given by linearizing (1.2) about a single harmonic
map Q(m, M,�ι, �λ) = Qλ. In this case we use the short-hand notation,

Lλ :=
(

−� + k2

r2

)
+ k2

r2
(
f ′(Qλ) − 1

)
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We write L := L1. For each k ≥ 1,

�Q(r) := r∂r Q(r) = k sin Q = 2k
rk

1 + r2k

When k ≥ 2, �Q is a zero energy eigenfunction for L, i.e.,

L�Q = 0, and �Q ∈ L2
rad(R

2).

When k = 1, L�Q = 0 holds but �Q /∈ L2 due to slow decay as r → ∞ and 0 is called a
threshold resonance.

We define a smooth non-negative function Z ∈ C∞(0,∞) ∩ L1((0,∞), r dr) by

Z(r) :=
{

χ(r)�Q(r) if k = 1, 2

�Q(r) if k ≥ 3
(2.9)

and note that

〈Z | �Q〉 > 0.

The precise form of Z is not so important, rather only that it is not perpendicular to �Q and
has sufficient decay and regularity. We fix it as above because of the convenience of setting
Z = �Q if k ≥ 3. We record the following localized coercivity lemma proved in [18].

Lemma 2.6 (Localized coercivity for L)[18, Lemma 5.4] Fix k ≥ 1. There exist uniform
constants c < 1/2,C > 0 with the following properties. Let g ∈ E . Then,

〈Lg | g〉 ≥ c‖g‖2H − C 〈Z | g〉2

If R > 0 is large enough then,

(1 − 2c)
∫ R

0

(
(∂r g)

2 + k2
g2

r2

)
rdr + c

∫ ∞

R

(
(∂r g)

2 + k2
g2

r2

)
rdr +

〈
k2

r2
( f ′(Q) − 1)g | g

〉

≥ −C 〈Z | g〉2 .

If r > 0 is small enough, then

(1 − 2c)
∫ ∞

r

(
(∂r g)

2 + k2
g2

r2

)
rdr + c

∫ r

0

(
(∂r g)

2 + k2
g2

r2

)
rdr +

〈
k2

r2
( f ′(Q) − 1)g | g

〉

≥ −C 〈Z | g〉2 .

As a consequence, (see for example [16, Proof of Lemma 2.4] for an analogous argument)
one obtains the following coercivity property of the operator LQ.

Lemma 2.7 [17, Lemma 2.19] Fix k ≥ 1, M ∈ N. There exist η, c0 > 0 with the following
properties. Consider the subset of M-bubble configurations Q(m,�ι, �λ) for �ι ∈ {−1, 1}M,
�λ ∈ (0,∞)M such that,

M−1∑
j=1

( λ j

λ j+1

)k ≤ η2. (2.10)

Let g ∈ H be such that

0 =
〈
Zλ j | g

〉
for j = 1, . . . M .
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264 Page 12 of 36 J. Jendrej, A. Lawrie

for some �λ as in (2.10). Then,〈
D2 E(Q(m,�ι, �λ))g | g

〉
≥ c0‖g‖2E .

The following technical lemma is useful when computing interactions between bubbles
at different scales.

Lemma 2.8 For any λ ≤ μ and α, β > 0 with α �= β the following bound holds:∫ ∞

0
max

(
1,

r

λ

)−α

max
(
1,

μ

r

)−β dr

r
�α,β

( λ

μ

)min(α,β)

.

For any α > 0 the following bound holds:∫ ∞

0
max

(
1,

r

λ

)−α

max
(
1,

μ

r

)−α dr

r
�α

( λ

μ

)α(
1 + log

(μ

λ

))
.

Proof This is a straightforward computation, considering separately the regions 0 < r ≤ λ,
λ ≤ r ≤ μ, and r ≥ μ. ��

Using the above, along with the formula for Z in (2.9) we obtain the following.

Corollary 2.9 Let Z be as in (2.9) and suppose that λ,μ > 0 satisfy λ/μ ≤ 1. Then,

〈
Zλ | �Qμ

〉
�

{
(λ/μ)k+1 if k = 1, 2

(λ/μ)k−1 if k ≥ 3
,

〈
Zμ | �Qλ

〉
�

{
1 if k = 1

(λ/μ)k−1 if k ≥ 2

Lemma 2.8 is also used to prove the following lemma from [17] giving leading order
terms in an expansion of the nonlinear energy functional about an M-bubble configuration.
We refer the reader to [17] for the proof.

Lemma 2.10 [17, Lemma 2.22] Fix k ≥ 1, M ∈ N. For any θ > 0, there exists η > 0 with
the following property. Consider the subset of M-bubbleQ(m, ι, �λ) configurations such that

M−1∑
j=1

( λ j

λ j+1

)k ≤ η.

Then,

∣∣∣E(Q(m,�ι, �λ)) − ME(Q) − 16kπ
M−1∑
j=1

ι j ι j+1

( λ j

λ j+1

)k ∣∣∣ ≤ θ

M−1∑
j=1

( λ j

λ j+1

)k
.

Moreover, there exists a uniform constant C > 0 such that for any g ∈ H,

∣∣∣
〈
D E(Q(m,�ι, �λ)) | g

〉∣∣∣ ≤ C‖g‖E
M∑
j=1

( λ j

λ j+1

)k
.

The following (standard) modulation lemma plays an important role and we refer the
reader to [17, Lemma 2.25] for its proof. Before stating it, we define a proximity function to
M-bubble configurations. Fixing m, M we observe that Q(m,�ι, �λ; r) is an element of E�,m ,
where

� = �(m, M,�ι) := m −
M∑
j=1

ι j (2.11)
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Definition 2.11 Fix m, M as in Definition 1.5 and let v ∈ E�,m for some � ∈ Z. Define,

d(v) = dm,M (v) := inf
�ι,�λ

⎛
⎝‖v − Q(m,�ι, �λ)‖2E +

M−1∑
j=1

( λ j

λ j+1

⎞
⎠

k ) 1
2
. (2.12)

where the infimum is taken over all vectors �λ = (λ1, . . . , λM ) ∈ (0,∞)M and all �ι =
{ι1, . . . , ιM } ∈ {−1, 1}M satisfying (2.11).

Lemma 2.12 (Static modulation lemma) [17, Lemma 2.25] Fix k ≥ 1 and M ∈ N. There
exists η ∈ (0, 1), C > 0 with the following properties. Let m be as in Definition 1.5 and
dm,M as in Definition 2.11. Let θ > 0, � ∈ Z, and let v ∈ E�,m be such that

dm,M (v) ≤ η, and E(v) ≤ ME(Q) + θ2,

Then, there exists a unique choice of �λ = (λ1, . . . , λM ) ∈ (0,∞)M, �ι ∈ {−1, 1}M, and
g ∈ H, such that

v = Q(m,�ι, �λ) + g,

0 = 〈
Zλ j | g〉, ∀ j = 1, . . . , M,

along with the estimates,

dm,M (v)2 ≤ ‖g‖2E +
M−1∑
j=1

( λ j

λ j+1

)k ≤ Cdm,M (v)2,

and,

‖g‖2E +
∑
j /∈A

( λ j

λ j+1

)k ≤ C max
j∈A

( λ j

λ j+1

)k + θ2, (2.13)

where A := { j ∈ {1, . . . , M − 1} : ι j �= ι j+1}.
We also make use of the following lemma proved from [17] which says that a finite energy

map cannot be close to two distinct multi-bubble configurations.

Lemma 2.13 [17, Lemma 2.27] Let k ≥ 1. There exists η > 0 sufficiently small with the fol-
lowing property. Let m, � ∈ Z, M, L ∈ N, �ι ∈ {−1, 1}M , �σ ∈ {−1, 1}L , �λ ∈ (0,∞)M , �μ ∈
(0,∞)L , and w be such that Ep(w) < ∞ and,

‖w − Q(m,�ι, �λ)‖2E +
M−1∑
j=1

( λ j

λ j+1

)k ≤ η,

‖w − Q(�, �σ , �μ)‖2E +
L−1∑
j=1

( μ j

μ j+1

)k ≤ η.

Then, m = �, M = L, �ι = �σ . Moreover, for every θ > 0 the number η > 0 above can be
chosen small enough so that

max
j=1,...M

∣∣∣∣ λ j

μ j
− 1

∣∣∣∣ ≤ θ.
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3 Localized sequential bubbling

We define a localized distance function

δR(u) := inf
m,M,�ι,�λ

⎛
⎝‖u − Q(m,�ι, �λ)‖2E(r≤R) +

M∑
j=1

( λ j

λ j+1

)k
⎞
⎠

1
2

(3.1)

where the infimum is taken over all m ∈ Z, M ∈ {0, 1, 2, . . . }, all vectors ι ∈ {−1, 1}M ,
�λ ∈ (0,∞)M , and we use the convention that the last scale λM+1 = R.

Lemma 3.1 Let �,m ∈ Z and let un ∈ E�,m be a sequence ofmapswith lim supn→∞ E(un) <

∞. Let ρn ∈ (0,∞) be a sequence and suppose that

lim
n→∞(ρn‖T (un)‖L2) = 0. (3.2)

Then, there exists a sequence Rn → ∞ so that, up to passing to a subsequence of the un, we
have,

lim
n→∞ δRnρn (un) = 0.

The subsequence of the un can be chosen so that there are fixed (M,m,�ι) ∈ N ∪ {0} × Z ×
{−1, 1}M, a sequence �λn ∈ (0,∞)M, and C0 > 0 with

lim
n→∞

⎛
⎝‖un − Q(m,�ι, �λn)‖2E(r≤Rnρn)

+
M−1∑
j=1

( λn, j

λn, j+1

)k
⎞
⎠ = 0,

and,

λn,M ≤ C0ρn, ∀ n.

Remark 3.2 Lemma 3.1 is proved in the general (non-equivariant) setting by Qing [24]. Here
we give a different (but related) treatment adapted to the equivariant setting using explicitly
the notion of a profile decomposition of Gérard [11]. The proof that no energy can accumulate
in the “neck” regions between the bubbles can be simplified in the equivariant setting and
here we use an argument due to Jia and Kenig [19] from their proof of an analogous result
for equivariant wave maps; see Lemma 3.4 below.

Lemma 3.3 If ak,n are positive numbers such that limn→∞ ak,n = ∞ for all k ∈ N, then there
exists a sequence of positive numbers bn such that limn→∞ bn = ∞ and limn→∞ ak,n/bn =
∞ for all k ∈ N.

Proof For each k and each n define ãk,n = min{a1,n, . . . , ak,n}. Then the sequences ãk,n →
∞ as n → ∞ for each k, but also satisfy ãk,n ≤ ak,n for each k, n, as well as ã j,n ≤ ãk,n if
j > k. Next, choose a strictly increasing sequence {nk}k ⊂ N such that ãk,n ≥ k2 as long as
n ≥ nk . For n large enough, let bn ∈ N be determined by the condition nbn ≤ n < nbn+1.
Observe that bn → ∞ as n → ∞. Now fix any � ∈ N and let n be such that bn > �. We then
have

a�,n ≥ ã�,n ≥ ãbn ,n ≥ b2n � bn .

Thus the sequence bn has the desired properties. ��
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The proof of the Lemma 3.1 consists of several steps, which are designed to reduce the
proof to a scenario already considered by Côte in [6, Proof of Lemma 3.5] and then by Jia-
Kenig in [19, Proof of Theorem 3.2], albeit in a different context. In particular, we will seek
to apply the following result from [19].

Lemma 3.4 [19, Theorem 3.2] Let vn be a sequence of maps such that lim supn→∞ E(vn) <

∞. Suppose that there exists a sequence an integer M ≥ 0 and scalesλn,1 � · · · � λn,M � 1
such that

vn = m1π + ∑M
j=1 ι j (Q

( ·
λn, j

) − π) + wn,0,

where ‖wn‖L∞ → 0 and ‖wn‖E(r≥r−1
n )

→ 0 as n → ∞ for some sequence rn → ∞.
Suppose in addition that, ‖wn‖E(A−1λn≤r≤Aλn)

→ 0 as n → ∞ for any sequence λn � 1
and any A > 1, and finally, that

lim sup
n→∞

∫ ∞

0

(
k2

sin2(2vn)

2r2
+ (∂rvn)

22 cos(2vn)

)
r dr ≤ 0. (3.3)

Then,

‖wn‖E → 0 as n → ∞.

Remark 3.5 Lemma 3.4 is not stated in [19] exactly as given above. However, an examination
of [19, Proof of Theorem 3.2] shows that this is precisely what is established. The heart of
the matter lies in the fact that the Jia-Kenig virial functional (3.3) vanishes at Q, i.e.,

∫ ∞

0

(
k2

sin2(2Q)

2r2
+ (∂r Q)22 cos(2Q)

)
r dr = 0,

but gives coercive control of the energy in regions where vn(r) is near integer multiples of π .

Proof of Lemma 3.1 By rescaling we may assume that ρn = 1 for each n.
First, we observe that after passing to a subsequence, un admits a profile decomposition,

un = mπ + ∑K0
j=1

(
ψ j

( ·
λn, j

) − m jπ
)

+ ∑J
i=1 vi

( ·
σn,i

) + w J
n (·).

where the profiles (ψ j , λn, j ), (v
j , σn, j ) and the error satisfy the conclusions of Lemma 2.5.

Step 1 We make an initial restriction on the sequence Rn → ∞, refining our choice of
this sequence later in the proof. Consider the sets of indices

J∞ :=
{
j ∈ {1, . . . , K0} | lim

n→∞ λn, j = ∞
}

, I∞ :=
{
i ∈ N | lim

n→∞ σn,i = ∞
}

By Lemma 3.3 we choose a sequence Rn,1 → ∞ so that Rn,1 � λn, j , σn,i for each λn, j

with j ∈ J∞ and each σn,i with i ∈ I∞. If follows that

lim
n→∞ E(ψ j (·/λn, j ); 0, Rn,1) = 0, lim

n→∞ E(v j (·/σn,i ); 0, Rn,1) = 0

for any of the indices j ∈ J∞ or i ∈ I∞, and thus these profiles do not factor into the
distance δRn (un) for any sequence Rn ≤ Rn,1.

Step 2 Next we perform a bubbling analysis on the profiles with bounded scale. Define

J0 :=
{
j ∈ {1, . . . , K0} | lim

n→∞ λn, j < ∞
}

, I0 :=
{
i ∈ N | lim

n→∞ σn,i < ∞
}
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First, for j ∈ J0 and i ∈ I0, denote

u j
n(r) := un(λn, j r), uin(r) := un(σn,i r)

Then we have u j
n → ψ j as n → ∞ locally uniformly in (0,∞) and weakly in Ḣ1(R2) (that

is, if we view each u j
n as a radially symmetric function onR2). These convergence properties

are by construction, see [19, pg. 1594]). Moreover, since limn→∞ λn, j < ∞ we have,

‖T (u j
n)‖L2 = λn, j‖T (un)‖L2 → 0 as n → ∞

It follows that,
〈
T (ψ j ) | φ

〉
L2 = 0

for allφ ∈ C∞
0 (0,∞), i.e.,ψ j is aweak harmonicmap, and hence a smooth harmonicmap by

Hélein [15]. Since
∣∣m j − � j

∣∣ ≥ 1 we see that E(ψ j ) ≥ E(Q), and thusψ j = � jπ + ι j Qλ j,0

for some ι j ∈ {−1, 1} and some fixed scale λ j,0 and m j = � j + ιπ . We will abuse notation
and replace λn, j with λn, jλ j,0 while still calling this sequence λn, j .

We perform the same analysis with the uin and vi , concluding that each vi is a smooth
harmonic map. But since vi ∈ E0,0 we find that vi ≡ 0 for every i ∈ I0.

Step 3:Next, by (3.2) and recalling that we have rescaled so that ρn = 1, we let R2,n → ∞
be a sequence such that

1 � R2,n � ‖T (un)‖−1
L2 .

Then, by Cauchy-Schwarz∣∣∣〈T (un) | sin(2un)χR̃n

〉∣∣∣ ≤ ‖T (un)‖L2 R̃n → 0 as n → ∞ (3.4)

for any sequence R̃n ≤ R2,n . We define R3,n := min(R1,n, R2,n).
Step 4: We close in on the final selection of the sequence Rn , choosing first

√
R3,n ≤

R4,n ≤ (1/2)R3,n so that

E

(
un; 1

4
Rn, 4Rn

)
→ 0 as n → ∞

The existence of such a sequence is proved by pigeonholing; see for example [17, Eq. (3.12)].
Using Lemma 2.3 we can, after passing to a subsequence, find an integer m1 ∈ Z so that
|un(r) − m1π | → 0 for a.e., r ∈ [ 14 Rn, 4Rn], and we define a truncated sequence

ũn := χR4,n un + (1 − χR4,n )m1π

By construction we have the following decomposition for ũn ,

ũn = m1π +
∑
j∈J0

(ι j Qλ j − π) + w̃n

where the error w̃n := χR4,nw
J
n + on(1) (note we can drop the index J since any nontrivial

profiles from the index sets J∞ or I∞ contribute a vanishing error in the region r ≤ R4,n

by Step 1 and there are no nontrivial profiles from the index set I0 from Step 2). We define
M := #J0 and we reorder/relabel the profiles so that λn,1 � λn,2 � . . . λn,M for the indices
j ∈ J0. Note that we have proved that

lim
n→∞ ‖w̃n‖L∞ = 0 (3.5)
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After passing to a subsequence of the un , we claim there is a sequence Rn → ∞ with the
properties,

1 � Rn ≤ R4,n, ‖w̃n‖E( 14 R
−1
n ≤r≤4Rn)

→ 0 as n → ∞. (3.6)

The existence of such a sequence is a consequence of the following property about w̃n : for
any sequence λn � 1 and any A > 1 we have,

‖wn‖E(λn A−1≤r≤λn A) → 0 as n → ∞. (3.7)

The property (3.7) was proved in [6, Step 2., p.1973–1975, Proof of Theorem 3.5] and [19,
Proof of (5.29) in Theorem 5.1] and we refer the reader to those works for details of the
argument, which also applies in the current setting. The intuition is that at any scale λn � 1
at which ũn carries energy we have already extracted a profile Qλn, j with λn, j � λn . To
prove (3.6) we consider the case λn = 1 in (3.7), and passing to a subsequence of the ũn , we
obtain a sequence as in (3.6).

We truncate to the region r ≤ Rn , following the same procedure used to define ũn , using
now Rn in place of R4,n . Indeed, set

ŭn(tn, r) := χRn (r )̃un(t, r) + (1 − χRn (r))m1π.

Defining w̆n,0 := χRn (r)w̃n + (χRn (r) − 1)
∑M

j=1 ι j (Q
( ·

λn, j

) − π) and using that λn,1 �
· · · � λn,M � 1 along with (3.5) and (3.6) we see that,

ŭn(tn) = m1π +
M∑
j=1

ι j

(
Q

( ·
λn, j

)
− π

)
+ w̆n,0, and

lim
n→∞

(
‖w̆n‖E(R−1

n ≤r<∞)
+ ‖w̆n‖L∞

)
= 0.

(3.8)

Moreover, by (3.7) we see that for any sequence λn � 1 and any A > 1 that,

lim
n→∞ ‖w̆n‖E(λn A−1≤r≤λn A) = 0.

Note that since ŭn(r) = un(r) for r ≤ Rn , we deduce from (3.4) that,
∣∣∣〈T (ŭn) | sin(2ŭn)χ 1

4 Rn

〉∣∣∣ → 0 as n → ∞
We claim that ∣∣∣〈T (ŭn) | sin(2ŭn)(1 − χ 1

4 Rn
)
〉∣∣∣ → 0 as n → ∞

as well. To see this, note that by (3.8)

lim
n→∞ E(ŭn; rn,∞) = 0

for any sequence rn → ∞. And after integration by parts we deduce the bound,
∣∣∣〈T (ŭn) | sin(2ŭn)(1 − χ 1

4 Rn
)
〉∣∣∣ � E(ŭn; 1/8Rn,∞) → 0 as n → ∞

Hence, ∣∣∣〈T (ŭn) | sin(2ŭn)
〉∣∣∣ → 0 as n → ∞
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Integrating by parts on the left hand side, we see that

lim
n→∞

∫ ∞

0

(
k2

sin2(2ŭn)

2r2
+ (∂r ŭn)

22 cos(2ŭn)

)
r dr = 0.

The sequence ŭn then satisfies all the conditions of Lemma 3.4 and we conclude that
limn→∞ ‖w̆n‖E = 0. Since ŭn(r) = un(r) for r ≤ Rn we conclude that limn→∞ δRn (un) =
0. An examination of the decomposition (3.8) yields the remaining claims in from
Lemma 3.1. ��

4 Sequential bubbling

4.1 Sequential bubbling for finite time blow-up solutions

Proposition 4.1 (Sequential bubbling for solutions that blow up in finite time) Let �,m ∈
Z, u0 ∈ E�,m, and let u(t) denote the solution to (1.2) with initial data u0. Suppose that
T+(u0) < ∞. There exist integers m∞,m�, a mapping u∗ ∈ E0,m∞ , an integer N ≥ 1, a
sequence of times tn → T+, signs �ι ∈ {−1, 1}N , a sequence of scales �λn ∈ (0,∞)N , and an
error gn defined by

u(tn) = m�π +
N∑
j=1

ι j (Qλn − π) + u∗ + gn,

with the following properties:

(i) The integer N ≥ 1 and the body map u∗ satisfy,

lim
t→T+

E(u(t)) = NE(Q) + E(u∗); (4.1)

(i) for any α > 0,

lim
t→T+

E
(
u(t); 0, α(T+ − t)

1
2

)
= NE(Q), (4.2)

lim
t→T+

E
(
u(t) − u∗;α(T+ − t)

1
2 ,∞

)
= 0, (4.3)

and there exists 0 < T0 < T+ and function ρ : [T0, T+) → (0,∞) satisfying,

lim
t→T∗

(
(ρ(t)/

√
T+ − t) + ‖u(t) − u∗ − m�π‖E(ρ(t))

) = 0; (4.4)

(ii) the error gn and the scales �λn satisfy,

lim
n→∞

⎛
⎝‖gn‖2E +

N∑
j=1

( λn, j

λn, j+1

)k
⎞
⎠

1
2

= 0, (4.5)

where here we adopt the convention that λn,N+1 := (T+ − tn)
1
2 .

Lemma 4.2 (Identification of the body map) Let u0 ∈ E�,m and let u(t) be the solution
to (1.2). Suppose that T+(u0) < ∞ and let I∗ = [0, T+). There exist m∞,m� ∈ Z and a
mapping u∗ ∈ E0,m∞ such that for any r0 > 0,

lim
t→T∗

‖u(t) − u∗ − m�π‖E(r≥r0) = 0. (4.6)
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Moreover, there exists L > 0 such that for each r0 ∈ (0,∞],
lim
t→T+

E(u(t); 0, r0) = L + E(u∗; 0, r0), (4.7)

and in particular, limr0→0 limt→T+ E(u(t); 0, r0) = L.

Proof of Lemma 4.2 In the general (non-equivariant) setting Struwe [28] proves the existence
of the body map as the weak limit of the flow in H1 as t → T+ and moreover that one
has strong C2 convergence on compact sets not containing the bubbling points (the origin in
our case); see for example [20, Step 3, Proof of Theorem 6.16]. The existence of the limit
L is proved by Qing in [24, Proposition 2.1], and an identical argument can be used in the
equivariant setting. ��
Proof of Proposition 4.1 We follow, roughly, the arguments by Qing in [24, Proof of Theorem
1.1] and Topping in [31, Proof of Theorem 1.4]. The main ingredient is the compactness
result, Lemma 3.1. Let u(t) ∈ E�,m be a heat flow blowing up at time T+ > 0. By (2.2) we
can find a sequence tn → T+ so that,

(T+ − tn)
1
2 ‖T (u(tn))‖L2 → 0 as n → ∞.

We can now apply Lemma 3.1 with ρn := (T+ − tn)
1
2 , which yields N ≥ 0, m0 ∈ Z,

�ι ∈ {−1, 1}N , �λn ∈ (0,∞)N such that after passing to a subsequence, we have

lim
n→∞

⎛
⎝‖u(tn) − Q(m0,�ι, �λn)‖2E(r≤A(T+−tn)

1
2 )

+
N−1∑
j=1

( λn, j

λn, j+1

)k
⎞
⎠ = 0 (4.8)

for each A > 0, and moreover that λn,N � (T+ − tn)
1
2 . Next, for each R > 0 define the

localized energy,

�R(t) :=
∫ ∞

0
χR(r)2e(u(t, r)) r dr .

along with the localized energy of the body map,

�∗
R :=

∫ ∞

0
χR(r)2e(u∗(r)) r dr .

From (2.4) we see that for each 0 < s < τ < T+ we have,

∣∣∣�R(τ ) − �R(s)
∣∣∣ �

∫ τ

s
‖∂t u(t)‖2L2 dt + (τ − s)

1
2

R

(∫ τ

s
‖∂t u(t)‖2L2 dt

) 1
2

�
∫ T+

s
‖∂t u(t)‖2L2 dt + (T+ − s)

1
2

R

(∫ T+

s
‖∂t u(t)‖2L2 dt

) 1
2

(4.9)

Since the right-hand side tends to zero as s → T+, it follows that limt→T+ �R(t) := �R
exists. Define,

1

2π
LR := �R − �∗

R

and we claim that in fact, LR = L := limr0→0 limt→T+ E(u(t); 0, r0), which is independent
of R > 0. To see this we write, for any 0 < r0 < R,

�R(t) − �∗
R = ∫ 4R

r0
χR(r)2(e(u(t, r)) − e(u∗(r))) r dr + 1

2π E(u(t); 0, r0) − 1
2π E(u∗; 0, r0)
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Letting t → T+, the right hand side tends to 1
2π LR . By (4.6) the first term on the left

vanishes as t → T+. Sending r0 → 0 after letting t → T+ on the right, we see from (4.7)
that LR = L = limr0→0 limt→T+ E(u(t); 0, r0).

Next, let γ > 0 and set R = γ (T+ − s)
1
2 in (4.9) we obtain, after letting τ → T+,

∣∣∣ 1

2π
L + �∗

γ (T+−s)
1
2

− �
γ(T+−s)

1
2
(s)

∣∣∣ �
∫ T+
s ‖∂t u(t)‖2

L2 dt + 1
γ

( ∫ T+
s ‖∂t u(t)‖2

L2 dt
) 1

2

Letting s → T+ above we see that lims→T+ �
γ(T+−s)

1
2
(s) = 1

2π L for all γ > 0.

Let α > 0 and note the inequality,

2π�
α
2 (T+−s)

1
2
(s) ≤ E(u(s); 0, α(T+ − s)

1
2 ) ≤ 2π�

α(T+−s)
1
2
(s)

which implies that lims→T+ E(u(s); 0, α(T+ − s)
1
2 ) = L for any α > 0. Hence, for any

0 < α < A < ∞, lims→T+ E(u(s);α(T+ − s)
1
2 , A(T+ − s)

1
2 ) = 0. Returning to the

decomposition (4.8) we find that

λn,N

(T+ − tn)
1
2

→ 0 as n → ∞, (4.10)

and as a consequence, L = NE(Q) and (4.2) is proved. Further, we see from (4.7) that for
every r0 > 0,

lim
t→T+

E(u(t); 0, r0) = NE(Q) + E(u∗; 0, r0).

and we see from (2.1) that N ≥ 1. Combining the above with (4.2) we see that for every
α > 0, r0 ∈ (0,∞],

lim
t→T+

E(u(t);α(T+ − t)
1
2 , r0) = E(u∗; 0, r0) (4.11)

and (4.1) now follows. Next, if (4.3) were to fail, we could find α1, ε1 > 0 and a sequence
sn → T+ such that

E(u(sn) − u∗;α1(T+ − sn)
1
2 ,∞) ≥ ε1, ∀ n.

To reach a contradiction, we choose r0 > 0 sufficiently small so that E(u∗; 0, r0) ≤ ε1/8,
and then, using (4.6) and (4.11), n sufficiently large so that E(u(sn) − u∗; r0,∞) ≤ ε1/8

and E(u(sn);α1(T+ − sn)
1
2 , r0) ≤ ε1/4. We then estimate,

E(u(sn) − u∗; α1(T+ − sn)
1
2 ,∞) ≤ E(u(sn) − u∗;α1(T+ − sn)

1
2 , r0) + E(u(sn) − u∗; r0,∞)

≤ 2E(u(sn);α1(T+ − sn)
1
2 , r0) + 2E(u∗;α1(T+ − sn)

1
2 , r0) + ε1/8 ≤ 7ε1/8,

a contradiction, proving (4.3).We see from (4.6) and (4.8) thatm0 = m� and fromLemma2.3
we have,

lim
t→T+

‖u(t) − u∗ − m�π‖E(r≥α(T+−t)) = 0,

which implies (4.4). Finally, the above together with (4.8) and (4.10) yield (4.5). ��
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4.2 Sequential bubbling for global solutions

Proposition 4.3 (Sequential bubbling for global-in-time solutions) Let �,m ∈ Z. Let u0 ∈
E�,m and let u(t) denote the solution to (1.2) with initial data u0. Suppose that T+(u0) = ∞.
Then there exist T0 > 0, an integer N ≥ 0, a sequence of times tn → ∞, signs �ι ∈ {−1, 1}N ,
a sequence of scales �λn ∈ (0,∞)N , and an error gn defined by

u(tn) = mπ +
N∑
j=1

ι j (Qλn − π) + gn

with the following properties:

(i) the integer N ≥ 0 satisfies,

lim
t→∞ E(u(t)) = NE(Q); (4.12)

(ii) for every α > 0,

lim
t→∞ E(u(t);α

√
t,∞) = 0, (4.13)

and there exists T0 > 0 and a function ρ : [T0,∞) → (0,∞) such that

lim
t→∞

(ρ(t)√
t

+ ‖u(t) − mπ‖E(r≥ρ(t))

)
= 0; (4.14)

(iii) the scales �λn and the sequence gn satisfy,

lim
n→∞

⎛
⎝‖gn‖2E +

N∑
j=1

( λn, j

λn, j+1

)k
⎞
⎠

1
2

= 0 (4.15)

where here we adopt the convention that λn, j+1 := t
1
2
n .

Proof Let u(t) ∈ E�,m be a heat flow defined globally in time. By (2.2) we can find a sequence
tn → ∞ so that,

t
1
2
n ‖T (u(tn))‖L2 → 0 as n → ∞.

We can now apply Lemma 3.1 with ρn := t
1
2
n , which yields N ≥ 0, m0 ∈ Z, �ι ∈

{−1, 1}N , �λn ∈ (0,∞)N such that after passing to a subsequence, we have

lim
n→∞

⎛
⎝‖u(tn) − Q(m0,�ι, �λn)‖2

E(r≤At
1
2
n )

+
N−1∑
j=1

( λn, j

λn, j+1

)k
⎞
⎠ = 0 (4.16)

for each A > 0, and moreover that λn,N � t
1
2
n .

Fix α > 0 and let ε > 0. By (2.2) and the fact that E(u(0)) < ∞ we can find T0 =
T0(ε) > 0 such that,

4
√
E(u(0))

α

( ∫ ∞

T0

∫ ∞

0
(∂t u(t, r))2 r dr dt

) 1
2 ≤ ε (4.17)

Next, choose T1 ≥ T0 so that

E(u(T0);α
√
T /4,∞) ≤ ε (4.18)
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for all T ≥ T1. Fixing any such T , we set

φ(t, r) = φT (r) = 1 − χ(4r/α
√
T ) for t ∈ [T0, T ]

where χ(r) is a smooth function on (0,∞) such that χ(r) = 1 for r ≤ 1, χ(r) = 0 if r ≥ 4,
and

∣∣χ ′(r)
∣∣ ≤ 1 for all r ∈ (0,∞). Since d

dt φ(t, r) = 0 for t ∈ [T0, T ] it follows from (2.6)
that,

∫ ∞

0
e(u(T , r)) φT (r)2 r dr ≤

∫ ∞

0
e(u(T0, r)) φT (r)2 r dr

+4
√
E(u(0))

α

(∫ T

T0

∫ ∞

0
(∂t u(t, r))2 r dr dt

) 1
2

Using the above together with (4.17) and (4.18) we find that

E(u(T );α
√
T ,∞) ≤ ε.

for all T ≥ T1, completing the proof of (4.13). It follows from (4.13) that there exists T0 > 0
and a function ρ : [T0,∞) → (0,∞) with ρ(t) � √

t and limt→∞ E(u(t); ρ(t),∞) = 0.
Thus, (4.14) is a consequence of Lemma 2.3.

Returning to the sequential decomposition we see from (4.16), the fact that λn,N � t
1
2
n ,

and from (4.13) that we must have

lim
n→∞

λn,N

t
1
2
n

= 0.

Then, (4.15) follows from the above, (4.14) and (4.16). Moreover we see that
limn→∞ E(u(tn)) = NE(Q) and the continuous limit (4.12) then follows from the fact
that E(u(t)) is non-increasing. ��

5 Decomposition of the solution and collision intervals

For the remainder of the paper we fix a solution u(t) ∈ E�,m of (1.2), defined on the time
interval I∗ = [0, T∗) where T∗ := T+ < ∞ in the finite time blow-up case and T∗ = ∞ in
the global case. Let u∗ ∈ E0,m∞ be the body map as defined in Proposition 4.1 and in the
case of a global solution we adopt the convention that u∗ = 0. Note thatm∞ = 0 if T∗ = ∞.

We let m� be as in Proposition 4.1 so that u(t) ∼ m�π + u∗ in the region r � (T+ − t)
1
2 .

To unify notation, we adopt the convention that m� = m in the case of a global solution, so
that we may again view u(t) ∼ m�π +u∗ in the region r �

√
t . By Propositions 4.1 and 4.3

there exists an integer N ≥ 0 and a sequence of times tn → T∗ so that u(tn)−u∗ approaches
an N -bubble as n → ∞.

We define a localized distance to an N -bubble.

Definition 5.1 (Proximity to a multi-bubble) For all t ∈ I , ρ ∈ (0,∞), and K ∈
{0, 1, . . . , N }, we define the localized multi-bubble proximity function as

dK (t; ρ) := inf
�ι,�λ

⎛
⎝‖u(t) − u∗ − Q(m�,�ι, �λ)‖2E(ρ,∞) +

N∑
j=K

( λ j

λ j+1

)k
⎞
⎠

1
2

,
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where �ι := (ιK+1, . . . , ιN ) ∈ {−1, 1}N−K , �λ := (λK+1, . . . , λN ) ∈ (0,∞)N−K , λK := ρ

and λN+1 := √
T+ − t in the finite time blow-up case and λN+1 := √

t in the case of a
global solution.

The multi-bubble proximity function is defined by d(t) := d0(t; 0).
Remark 5.2 We emphasize that if dK (t; ρ) is small, this means that u(t) − u∗ is close to
N − K bubbles in the exterior region r ∈ (ρ,∞).

We can now rephrase a consequence of Propositions 4.1 and 4.3 in this notation: there exists
a monotone sequence tn → T∗ such that

lim
n→∞ d(tn) = 0. (5.1)

We state and prove some simple consequences of the set-up above. We always assume
N ≥ 1, since Theorem 1 in the case N = 0 is immediate from (4.12).

A direct consequence of (4.14) is that u(t) always approaches a 0-bubble in some exterior
region. With ρN (t) = ρ(t) given by the function in Proposition 4.1 or 4.3 the following
lemma is immediate from the conventions of Definition 5.1.

Lemma 5.3 There exists T0 > 0 and function ρN : [T0, T∗) → (0,∞) such that

lim
t→T∗

dN (t; ρN (t)) = 0. (5.2)

5.1 Collision intervals

Theorem 1 will follow from showing that,

lim
t→T∗

d(t) = 0. (5.3)

The approach which we adopt in order to prove (5.3) is to study colliding bubbles. A collision
is defined as follows.

Definition 5.4 (Collision interval) Let K ∈ {0, 1, . . . , N }. A compact time interval [a, b] ⊂
I∗ is a collision interval with parameters 0 < ε < η and N − K exterior bubbles if

• d(a) ≤ ε and d(b) ≥ η,
• there exists a functionρK : [a, b] → (0,∞) such thatdK (t; ρK (t)) ≤ ε for all t ∈ [a, b].

In this case, we write [a, b] ∈ CK (ε, η).

Definition 5.5 (Choice of K ) We define K as the smallest nonnegative integer having the
following property. There exist η > 0, a decreasing sequence εn → 0, and sequences
(an), (bn) such that [an, bn] ∈ CK (εn, η) for all n ∈ {1, 2, . . .}.
Lemma 5.6 (Existence of K ≥ 1) If (5.3) is false, then K iswell definedand K ∈ {1, . . . , N }.
Remark 5.7 The fact that K ≥ 1 means that at least one bubble must lose its shape if (5.3) is
false.

Proof of Lemma 5.6 Assume (5.3) does not hold, so that there exist η > 0 and a monotone
sequence bn → T∗ such that

d(bn) ≥ η, for all n.
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We claim that there exist sequences (εn), (an) such that [an, bn] ∈ CN (εn, η). Indeed, (5.1)
implies that there exist εn → 0 and an ≤ bn such that d(an) ≤ εn . Note that an → T∗ and
bn → T∗. Let ρN : [an, bn] → (0,∞) be the function given by Lemma 5.3, restricted to the
time interval [an, bn]. Then (5.2) yields

lim
n→∞ sup

t∈[an ,bn ]
dN (t; ρN (t)) = 0.

Upon adjusting the sequence εn , we obtain that all the requirements of Definition 5.4 are
satisfied for K = N .

We now prove that K ≥ 1. Suppose K = 0. By Definition 5.4 of a collision interval, there
exist η > 0, and sequences an, bn → T∗ and ρ0(bn) ≥ 0 such that d0(bn; ρ0(bn)) ≤ εn and
at the same time d(bn) ≥ η. We show that this is impossible.

Define vn := u(bn) − u∗. Since d0(bn; ρ0(bn)) ≤ εn we can find parameters, ρ0(bn) �
λn,1 � · · · � λn,N and signs �ιn such that defining gn = vn − Q(m�,�ιn, �λn) we have

d0(cn; ρ0(bn)) � ‖gn‖2E(ρ0(bn),∞) +
N∑
j=0

( λn, j

λn, j+1

)k
� ε2n . (5.4)

If T∗ < ∞, with ρ(t) as in (4.4) we see that we must have λn,N � ρ(bn) � (T∗ − bn)
1
2 ,

and thus using (4.4) along with (5.4) and Lemma 2.10 we have

E(u(bn); ρ0(bn),∞) = E(gn + u∗ + Q(m�,�ιn, �λn); ρ0(bn), ρ(bn))

+ E(gn + u∗ + Q(m�,�ιn, �λn); ρ(bn),∞)

= NE(Q) + E(u∗) + on(1).

A similar argument in the case T∗ = ∞ shows that

E(u(bn); ρ0(bn),∞) = NE(Q) + on(1).

Since by (4.1) and (4.12) we know that limn→∞ E(u(bn)) = NE(Q)+ E(u∗), we conclude
from the previous line that,

E(u(bn); 0, ρ0(bn)) = on(1) as n → ∞.

Using the fact that ρ0(bn) � ρ(bn) it follows that E(vn; 0, ρ0(bn)) = on(1), and hence
by (2.3) we conclude that

‖vn − �π‖E(0,ρ0(bn)) � E(vn; 0, ρ0(bn)) = on(1) as n → ∞
Thus, combining the above with (5.4) we have d(bn) = on(1) as n → ∞, a
contradiction. ��
Remark 5.8 For each collision intervalwemay assumewithout loss of generality thatd(an) =
εn , d(bn) = η, and d(t) ∈ [εn, η] for each t ∈ [an, bn]. Indeed, given some initial choice of
[an, bn] ∈ CK (εn, η), just set an ≤ ãn := sup{t ∈ [an, bn] | d(t) ≤ εn} and b̃n := inf{t ∈
[̃an, bn] | d(t) ≥ η}.

Similarly, given some initial choice εn → 0, η > 0 and intervals [an, bn] ∈ CK (η, εn) we
are free to “enlarge” εn or “shrink” η > 0, by choosing some other sequence εn ≤ ε̃n → 0,
and 0 < η̃ ≤ η, and new collision subintervals [̃an, b̃n] ⊂ [an, bn] ∩ CK (̃η, ε̃n) as in the
previous paragraph. We will enlarge our initial choice of εn and shrink η in this fashion over
the course of the proof.
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5.2 Decomposition of the solution

Lemma 5.9 (Basic modulation) Let K ≥ 1 be the number given by Lemma 5.6. There exist
η > 0, a sequence εn → 0, and sequences an, bn → ∞ satisfying the requirements of
Definition 5.5, and such that d(an) = εn, d(bn) = η and d(t) ∈ [εn, η] for all t ∈ [an, bn]
and so that the following properties hold. There exist signs �ι ∈ {−1, 1}N , a function �λ =
(λ1, . . . , λN ) ∈ C1(∪n∈N[an, bn]; (0,∞)N ), sequences αn → 0 and νn → 0, such that
defining the functions,

ν : ∪n∈N[an, bn] → (0,∞), ν(t) := νnλK+1(t), for t ∈ [an, bn],

α ∪n∈N [an, bn] → (0,∞), α(t) :=
{

αn
√
T+ − tn if T+ < ∞

αn
√
t if T+ = ∞ , for t ∈ [an, bn],

u∗(t) :=
{

(1 − χα(t))
(
u(t) − m�π

)
if T+ < ∞

0 if T+ = ∞
and

g : ∪n∈N[an, bn] → E; g(t) := u(t) − u∗(t) − Q(m�,�ι, �λ(t)),

there hold,

(i) the orthogonality conditions,

0 = 〈
Zλ(t) | g(t)〉, ∀ t ∈ [an, bn], ∀n; (5.5)

(ii) and the estimates,

lim
n→∞ sup

t∈[an ,bn ]

⎛
⎝ ν(t)

λK+1(t)
+

N−1∑
j=K+1

λ j (t)

λ j+1(t)
+ λN (t)

α(t)
+ E(u(t); 1

4
ν(t), 4ν(t))

⎞
⎠ = 0,

(5.6)

C−1
0 d(t) ≤ ‖g(t)‖E +

N−1∑
j=1

( λ j (t)

λ j+1(t)

) k
2 ≤ C0d(t), (5.7)

‖g(t)‖E +
∑
j /∈A

( λ j

λ j+1

) k
2 ≤ C0

∑
j∈A

( λ j

λ j+1

) k
2

(5.8)

∣∣∣λ′
j (t)

∣∣∣ ≤ C0
1

λ j (t)
d(t), (5.9)

for all t ∈ [an, bn] and all n ∈ N;
(iii) for any sequence sn ∈ [an, bn] and any sequence Rn such that ν(sn) ≤ Rn � λK+1(sn)

if K < N and ν(sn) ≤ Rn ≤ α(sn) if K = N, then,

lim
n→∞ E(u(sn); Rn,∞) = (N − K )E(Q) + E(u∗). (5.10)

and,

lim
n→∞(‖u(sn) − u∗(sn) − Q(m�, ιK+1, . . . , ιN ,λK+1(sn), . . . , λN (sn))‖E(r≥Rn)

+
N∑

j=K+1

( λ j (sn)

λ j+1(sn)

) k
2

⎞
⎠ = 0.

(5.11)
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Remark 5.10 One should think of ν(t) as the scale that separates the N − K “exterior”
bubbles, which stay coherent on the union of the collision intervals [an, bn] from the K
“interior” bubbles that are coherent at the left endpoint [an, bn], but come into collision
inside the interval and lose their shape. In the case K = N , there are no exterior bubbles,
we set λK+1(t) := √

T+ − t and νn → 0 is chosen using (4.4) in the blow up case, and
λK+1(t) := √

t and νn → 0 is chosen using (4.14) in the global case.

Proof of Lemma 5.9 We carry out the argument in the case T+ < ∞, and note that the global
case is similar, and in fact, slightly less involved since u∗ = 0 in that case. Let an, bn, εn, η,
and K ∈ {1, . . . , N } be some initial choice of parameters given by Definition 5.5 and
Lemma 5.6. Over the course of the proof wewill shrink η and enlarge εn as in Remark 5.8, but
abuse notation by still denoting the resulting subintervals by [an, bn] after thesemodifications.

We first define the function α(t) and choose the sequence νn → 0. By Defintion 5.1,

for each n we can find scales ρK (t) � μK+1(t) � · · · � μN (t) � (T+ − t)
1
2 and signs

�σ(t) ∈ {−1, 1}N−K for t ∈ [an, bn], such that defining hρK (t) for r ∈ (ρK (t),∞) by

u(t) − u∗ = Q(m�, �σ(t), �μ(t)) + hρK (t)

we have,

d(t; ρK (t)) � ‖hρK (t)‖2E(ρK (t),∞) +
N∑

j=K

( μ j (t)

μ j+1(t)

)k
� ε2n , (5.12)

keeping the convention μK (t) := ρK (t), μN+1(t) := (T+ − t)
1
2 . Using

limn→∞ supt∈[an ,bn ] dK (t; ρK (t)) = 0 and the fact that

lim
n→∞ sup

t∈[an ,bn ]
E(Q(m�, �σ(t), �μ(t)); νn,1μ̃K+1(t), νn,2μ̃K+1(t)) = 0, (5.13)

for any two sequence νn,1 � νn,2 � 1, we can choose a sequence νn → 0 such that for any
A > 1,

ρK (t) ≤ νnμK+1(t), and lim
n→∞ sup

t∈[an ,bn ]
E(u(t) − u∗; 1

A
νnμK+1(t), AνnμK+1(t)) = 0.

(5.14)

Next, letting ρ(t) be as in (4.4), we can use (5.12) to choose αn → 0 to be a sequence such
that,

lim
n→∞ sup

t∈[an ,bn ]

(
μN (t)

αn(T+ − t)
1
2

+ ρ(t)

αn(T+ − t)
1
2

)
= 0, (5.15)

and we define α(t) := αn(T+ − t)
1
2 for t ∈ [an, bn]. If K = N we may assume that αn ≥ νn .

Setting,

u∗(t) := (1 − χα(t))
(
u(t) − m�π

)
(5.16)

we see from (4.4) and the fact that limt→T+ E(u∗; γ (t)) = 0 for any γ (t) → 0 as t → T+,
that

lim
t→T+

‖u∗(t) − u∗‖E = 0, (5.17)
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and by definition,

u(t) − u∗(t) = χα(t)u(t) + (1 − χα(t))m�π

and by (4.3) and (4.2) we have,

lim
n→∞ sup

t∈[an ,bn ]
∣∣E(u(t) − u∗(t)) − NE(Q)

∣∣ = 0 (5.18)

Now that u∗(t) is defined,wefind the parameters�ι ∈ {−1, 1}N and �λ(t) ∈ (0,∞)N . By the

definition of d(t)wemake an initial choice of signs �̃ι(t) ∈ {−1, 1} and scales �̃λ(t) ∈ (0,∞)N

such that defining

g̃(t) := u(t) − u∗ − Q(m�, �̃ι(t), �̃λ(t)) (5.19)

we have,

d(t) ≤ ‖g̃(t)‖E +
N∑
j=1

( λ̃ j (t)

λ̃ j+1(t)

) k
2 ≤ 2d(t) ≤ 2η (5.20)

keeping the convention that λN+1(t) = (T+ − t)
1
2 .

By (5.17) (5.19), and (5.20) we see that d(t) ≤ η implies that

dm�,N (u(t) − u∗(t)) ≤ C0d(t) + on(1) ≤ 2C0η, (5.21)

where dm�,N is as in (2.12) and on(1) denotes a term that tends to zero as n → ∞. We
may then shrink η > 0 as in Remark 5.8 small enough so that we can apply Lemma 2.12 to
u(t)−u∗(t), obtaining �λ(t) ∈ (0,∞)N defined on∪n[an, bn], and signs�ι ∈ {−1, 1}N (which
can be taken independent of t ∈ [an, bn] using continuity of the flow and independently of n
after passing to a subsequence of the [an, bn]), and g(t) so that

u(t) − u∗(t) = m�π +
N∑
j=1

ι j (Qλ j (t) − π) + g(t),
〈
Zλ(t) | g(t)〉 = 0, ∀t ∈ [an, bn],

and,

dm�,N (u(t) − u∗(t))) ≤ ‖g(t)‖E +
N−1∑
j=1

( λ j (t)

λ j+1(t)

) k
2 ≤ C0dm�,N (u(t) − u∗(t))

Using again (5.17) along with (5.21) we see that in fact,

d(t) − ζ1,n ≤ ‖g(t)‖E +
N∑
j=1

( λ j (t)

λ j+1(t)

) k
2 ≤ C0d(t) + ζ1,n

where ζ1,n is a sequence tending to zero as n → ∞. By enlarging εn so that εn ≥ 2ζ1,n
for all n as in Remark 5.8 we prove (5.7) (note here that because of Remark 5.8, the act of
“enlarging” εn does not affect the sequence ζ1,n).

Next, we compare the scales λK+1, . . . , λN to μK+1, . . . , μN . Denoting by ν̃(t) :=
νnμK+1(t) we claim that for each j = 1, . . . , N ,

lim
n→∞ sup

t∈[an ,bn ]

( ν̃(t)

λ j (t)
+ λ j (t)

ν̃(t)

)
= 0. (5.22)
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If not, we could find C > 0, j ∈ {1, . . . , N }, a subsequence of the [an, bn] and a sequence
sn ∈ [an, bn] such that

C−1ν̃(sn) ≤ λ j (sn) ≤ C ν̃(sn)

By (5.7) for all η > 0 sufficiently small we can find δ = δ(η), R = R(η) > 0 so that for all
n,

δ ≤ E(u(sn) − u∗(sn); R−1λ j (sn), Rλ j (sn)) ≤ E(u(sn) − u∗(sn);C−1R−1ν̃(sn), RC ν̃(sn))

which contradicts (5.14).
By (5.14) and Lemma 2.3 we can find integers mn so that denoting

w(t) = mnπχν̃(t) + (1 − χν̃(t))(u(t) − u∗(t))

we have,

‖w(t) − Q(m�, �σ(t), �μ(t))‖2E +
N−1∑

j=K+1

( μ j (t)

μ j+1(t)

)k = on(1) (5.23)

On the other hand, by (5.22) we can find j0 ∈ {1, . . . , N − 1} so that

‖w(t) − Q(m�, ι j0 , . . . , ιN , λ j0(t), . . . , λN (t))‖2E +
N−1∑
j= j0

( λ j (t)

λ j+1(t)

)k ≤ C0η

An application of Lemma 2.13 yields j0 = K + 1, �σ(t) = {ιK+1, . . . , ιK } and moreover, by
shrinking η > 0, we can ensure that

sup
t∈[an ,bn ]

∣∣∣ λ j (t)

μ j (t)
− 1

∣∣∣ ≤ 1

4

and thus, defining ν(t) := νnλK+1(t)we see that (5.6) follows from (5.12) (5.14), and (5.15).
Let sn ∈ [an, bn] and Rn so that ν(sn) ≤ Rn � λK+1(sn). If K < N then Rn � α(sn), thus,
using (5.23) and (5.15), we see that

E(u(sn); Rn, α(sn)) → (N − K )E(Q) as n → ∞
Since by (5.15), (5.16) and (5.17),

E(u(sn);α(sn),∞) → E(u∗) as n → ∞
we see that (5.10) follows. If K = N then E(u(sn); Rn,∞) → E(u∗). Similarly N − K
converge now follows from (5.23).

Next we prove (5.8). An application of (2.13) together with (5.18) gives,

‖g(t)‖E +
∑
j /∈A

( λ j (t)

λ j+1(t)

) k
2 ≤ C0

∑
j∈A

( λ j (t)

λ j+1(t)

) k
2 + ζ2,n

for some sequence ζ2,n → 0, which is independent of t ∈ [an, bn]. But then by enlarging
εn → 0 as in Remark 5.8 so that εn � ζ2,n we obtain (5.8) via the above and (5.7) (note
again here that because of Remark 5.8, the act of “enlarging” εn does not affect the sequence
ζ2,n).
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Lastly, we prove the modulation estimate (5.9). Differentiating in time the orthogonality
conditions (5.5) yields, for each j = 1, . . . , N , the identity,

〈
∂t g | Zλ j

〉 = λ′
j

λ j

〈
Zλ | g〉 (5.24)

Next, differentiating in time the expression for g(t) in (5.2) and recalling the definition of
u∗(t) gives,

∂t g = ∂tχα − α′

α
�χα(u(t) − m�π) +

N∑
j=1

ι jλ
′
j�Qλ j

= (�u)χα − k2

r2
f (u)χα − α′

α
�χα(u(t) − m�π) +

N∑
j=1

ι jλ
′
j�Qλ j

= �(χαu + (1 − χα)m�π) − k2

r2
f
(
χαu + (1 − χα)m�π

) +
N∑
j=1

ι jλ
′
j�Qλ j

− (u − m�π)�χα − 2∂r u∂rχα − α′

α
�χα(u(t) − m�π)

− k2

r2

(
f (u)χα − f (χαu + (1 − χα)m�π)

)
,

and we see that

∂t g = −LQg +
N∑
j=1

ι jλ
′
j�Qλ j + fi(m�,�ι, �λ) + fq(m�,�ι, �λ, g) + φ(u, α) (5.25)

where

φ(u, α) := −(u − m�π)�χα − 2∂r u∂rχα − α′

α
�χα(u(t) − m�π)

− k2

r2

(
f (u)χα − f (χαu + (1 − χα)m�π)

)

and

fi(m�,�ι, �λ) := −D E(Q(m,�ι, �λ)) = −k2

r2

⎛
⎝ f

(
Q(m�,�ι, �λ)

) −
N∑
j=1

ι j f (Qλ j )

⎞
⎠

fq(m�,�ι, �λ, g) := −k2

r2

(
f
(
Q(m�,�ι, �λ) + g

) − f
(
Q(m�,�ι, �λ)

) − f ′(Q(m�,�ι, �λ)
)
g
)

.

The subscript i above stands for “interaction” and q stands for “quadratic.”
We make use of the estimates,

‖ fi(m�,�ι, �λ)‖L1 �
N−1∑
j=1

( λ j

λ j+1

)k
, ‖ fq(m�,�ι, �λ, g)‖L1 � ‖g‖2E (5.26)
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For the fi estimate we expand to obtain the expression,

r2

k2
D E(Q(m,�ι, �λ)) = 1

2
sin

(
2

M∑
i=2

ιi Qλi + 2ι1Qλ1

)
− 1

2

M∑
i=1

ιi sin 2Qλi

= − sin

(
2

M∑
i=2

ιi Qλi

)
sin2 Qλ1 − ι1 sin

2

(
M∑
i=2

ιi Qλi

)
sin 2Qλ1

+ 1

2
sin

(
2

M∑
i=2

ιi Qλi

)
− 1

2

M∑
i=2

ιi sin 2Qλi

Iterating this expansion in the last line above and using the identity k sin Q = �Q we obtain
the pointwise estimates,

|D E(Q(m,�ι, �λ))| � 1

r2
∑

i, j,� not all equal

�Qλi �Qλ j �Qλ� (5.27)

from which the estimate for fi in (5.26) follows by way of Lemma 2.8. The estimate for fq
in (5.26) is straightforward.

For each j ∈ {1, . . . , N } we pair (5.25) with Zλ j and use (5.24) to obtain the following
system

ι jλ
′
j

(〈
�Q | Z〉 − ι j

λ j

〈
Zλ j | g〉) +

∑
i �= j

ιiλ
′
i

〈
�Qλi | Zλ j

〉

= 〈
LQg | Zλ j

〉 − 〈
fi(m�,�ι, �λ) | Zλ j

〉 − 〈
fq(m�,�ι, �λ, g) | Zλ j

〉 − 〈
φ(u, α) | Zλ j

〉
.

The above is diagonally dominate for all sufficiently small η > 0, hence invertible. We note
the brutal estimates,

∣∣∣〈LQg | Zλ j

〉∣∣∣ � 1

λ j
‖g‖E

∣∣∣〈 fi(m�,�ι, �λ) | Zλ j

〉∣∣∣ � 1

λ j

N−1∑
j=1

( λ j

λ j+1

)k

∣∣∣〈 fq(m�,�ι, �λ, g) | Zλ j

〉∣∣∣ � 1

λ j
‖g‖2E

∣∣∣〈φ(u, α) | Zλ j

〉∣∣∣ = 1

λ j
on(1)

(5.28)

We remark that to prove the second inequality in (5.28) we may use (5.27) and the definition
of fi. The estimates of the remaining estimates are straightforward and we omit the proofs.
It follows that,

∣∣∣λ′
j

∣∣∣ � 1

λ j

(
d(t) + ζ3,n

)

for some sequence ζ3,n → 0 as n → ∞. Then (5.9) follows by enlarging εn (note that
because of Remark 5.8, the act of “enlarging” εn does not affect the sequence ζ3,n). This
completes the proof. ��
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6 Conclusion of the proof

For the remainder of the paper, when we write [an, bn] ∈ CK (εn, η) we we always assume
that d(an) = εn , d(bn) = η and d(t) ∈ [εn, η] for all t ∈ [an, bn]. This assumption is valid
by Remark 5.8.

Lemma 6.1 If η0 > 0 is small enough, then for any η ∈ (0, η0] there exist ε ∈ (0, η) and
Cu > 0 with the following property. If [c, d] ⊂ [an, bn], d(c) ≤ ε and d(d) ≥ η, then,

(d − c)
1
2 ≥ C−1

u λK (c)

Proof If not, there exists η > 0, sequences εn → 0, [cn, dn] ⊂ [an, bn], and Cn → ∞ so
that d(cn) ≤ εn , d(dn) ≥ η and

(dn − cn)
1
2 ≤ C−1

n λK (cn) (6.1)

We show that in this case [cn, dn] ∈ CK−1(εn, η), which contradicts the minimality of K .
First, using (5.9) we see for all j ,

∣∣λ j (t)
2 − λ j (cn)

2
∣∣ ≤ C0(t − cn) (6.2)

for all t ∈ [cn, dn]. Hence, using the contradiction assumption (6.1) we can ensure that for
large enough n,

3

4
≤ λ j (t)

λ j (cn)
≤ 5

4

for all j = K , . . . , N and all t ∈ [cn, dn]. Since d(cn) → 0, it follows that,

lim
n→∞ sup

t∈[cn ,dn ]

N∑
j=K

( λ j (t)

λ j+1(t)

)k = 0. (6.3)

Next, since d(cn) → 0 we can find a sequence rn such that

λK−1(cn) + (dn − cn)
1
2 � rn � λK (cn) and lim

n→∞ E(u(cn) − u∗(cn); 1
8
rn, 8rn) = 0.

(6.4)

Since rn � α(t) we see that u(t, r) − u∗(t, r) = χα(t)u(t, r) + (1 − χα(t))m�π = u(t, r)
for all r ∈ (1/8rn, 8rn). Letting φ(r) be a smooth bump equal to 1 for r ∈ (1/4, 4) and
supported for r ∈ (1/8, 8) with |φ′(r)| ≤ 16, we apply (2.5) with such a φ and deduce that
for any t ∈ [cn, dn],

E(u(t); 1
4
rn, 4rn) ≤ E(u(cn); 1/8rn, 8rn) + C0

dn − cn
r2n

and hence,

lim
n→∞ sup

t∈[cn ,dn ]
E(u(t) − u∗(t); 1

4
rn, 4rn) = 0.

Next we claim that

sup
t∈[cn ,dn ]

E(u(t) − u∗(t); 1
4
rn,∞) ≤ (N − (K − 1))E(Q) + on(1) (6.5)
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In the case T+ < ∞ we recall that α(t) = αn(T+ − t)
1
2 and we write,

E(u(t) − u∗(t); 1
4
rn,∞) = E(u(t) − u∗(t); 1

4
rn,

1

4
α(t)) + E(u(t) − u∗(t); 1

4
α(t),∞)

Since α(t) ≥ ρ(t) we have,

lim
t→∞ E(u(t) − u∗(t); 1

4
α(t),∞) = 0

Recalling that u(t, r) − u∗(t, r) = u(t, r) for all r ≤ α(t) we again apply (2.5) with the
cut-off function φ(t, r) = (1 − χ4rn (r))χ 1

4α(t)(r). Since
d
dt φ(t, r) ≤ 0 we use (2.5) to

deduce that for all t ∈ [cn, dn],

E

(
u(t) − u∗(t); 1

4
rn,

1

4
α(t)

)
≤ E

(
u(cn) − u∗(cn); 1

8
rn,

1

2
α(t)

)
+ C0

dn − cn
r2n

and the right hand side tends to zero as n → ∞, proving (6.5) in the case T+ < ∞. If
T+ = ∞, we use the same argument, but without the need to truncate at α(t) since we have
u∗(t) := 0.

Next, using (6.2) with j = K − 1 gives,

sup
t∈[cn ,dn ]

∣∣λK−1(t)
2 − λK−1(cn)

2
∣∣ � dn − cn,

and hence

sup
t∈[cn ,dn ]

λK−1(t)

rn
� λK−1(cn)

rn
+ (dn − cn)

1
2

rn
→ 0 as n → ∞

given our choice of rn in (6.4). Using all of the above, we can find mn ∈ Z so that defining,

v(t) := (1 − χrn )(u(t) − u∗(t)) + χrnmnπ

we have v(t) ∈ Emn ,m� for t ∈ [cn, dn] and such that

‖v(t) − Q(m�, ιK , . . . , ιN , λK (t), . . . λN (t))‖E +
N−1∑
j=K

( λ j (t)

λ j+1(t)

) k
2 � η

It follows that dm�,N−K+1(v(t)) � η and we can apply Lemma 2.12 to find modulation
parameters �̃ι ∈ {−1, 1}N−K+1, λ̃K (t), . . . , λ̃N (t) and h(t) defined by

h(t) = v(t) − Q(m�, ιK , . . . , ιN , λ̃K (t), . . . , λ̃N (t))

so that

0 = 〈
Zλ̃ j (t) | h(t)

〉
, and ‖h(t)‖E +

N−1∑
j=K

( λ̃ j (t)

λ̃ j+1(t)

) k
2 � η

In fact, using (6.3) and the fact that the λ̃ j (t) satisfy |̃λ j (t)/λ j (t) − 1| � η, we have,

lim
n→∞ sup

t∈[cn ,dn ]

N−1∑
j=K

( λ̃ j (t)

λ̃ j+1(t)

) k
2 = 0.
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And, thus, using (2.13) along with (6.5) we have the bound,

‖h(t)‖E �
N−1∑
j=K

( λ̃ j (t)

λ̃ j+1(t)

) k
2 + on(1)

and thus limn→∞ supt∈[cn ,dn ] ‖h(t)‖E = 0 as well. Letting ρK−1(t) := rn for t ∈ [cn, dn]
we have proved that

lim
n→∞ sup

t∈[cn ,dn ]
d(t; ρK−1(t)) = 0

which means we can find η̃ > 0, ε̃n → 0 such that [cn, dn] ∈ CK−1(̃εn, η̃) contradicting the
minimality of K . ��
Lemma 6.2 Let η0 > 0 be as in Lemma 6.1, η ∈ (0, η0], εn → 0 be some sequence, and let
[an, bn] ∈ CK (εn, η). Then, there exist ε ∈ (0, η), n0 ∈ N, and cn, dn ∈ (an, bn) such that
for all n ≥ n0, we have

d(t) ≥ ε, ∀ t ∈ [cn, dn], (6.6)

dn − cn = 1

n
λK (cn)

2, (6.7)

and

1

2
λK (cn) ≤ λK (t) ≤ 2λK (cn) ∀ t ∈ [cn, dn]. (6.8)

Proof Choose ε > 0 so that Lemma 6.1 holds and define cn := sup{t ∈ [an, bn] | d(t) ≤ ε}.
Then d(cn) = ε and by Lemma 6.1 we have

bn − cn ≥ C−1
u λK (cn).

We then let dn := cn + 1
nλK (cn)2 and for n sufficiently large we have dn < bn . Then by (5.9)

we have, ∣∣∣∣ λK (t)2

λK (cn)2
− 1

∣∣∣∣ � dn − cn
λK (cn)

= 1

n
.

from which (6.8) follows. ��
Lemma 6.3 There exists η1 > 0 with the following property. Let η ∈ (0, η1], εn → 0 and let
[an, bn] ∈ CK (εn, η). If {sn}n and {rn}n are any sequences such that sn ∈ [an, bn] for all n,
1 � rn � λK+1(sn)/λK (sn), and limn→∞ δrnλK (sn)(u(sn)) = 0, then limn→∞ d(sn) = 0.

Proof Let Rn be a sequence such that rnλK (sn) � Rn � λK+1(sn). Without loss of gen-
erality, we can assume ν(sn) ≤ Rn ≤ α(sn), since it suffices to replace Rn by ν(sn) for
all n such that Rn < ν(sn). If K = N we can similarly ensure that Rn ≤ α(sn). Let
Mn,mn, �σn ∈ {−1, 1}Mn , �μn ∈ (0,∞)Mn be parameters such that

‖u(tn) − Q(mn, �σn, �μn)‖2H(r≤rnλK (sn)) +
Mn∑
j=1

( μn, j

μn, j+1

)k + μn,Mn

rnλK (sn)
→ 0, (6.9)

which exist by the definition of the localized distance function (3.1). Since d(t) ≤ η on
[an, bn] we can choose η1 > 0 sufficiently small so that,

(
K − 1

2

)
E(Q) ≤ lim inf

n→∞ E(u(sn); 0, rnλK (sn))
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≤ lim sup
n→∞

E(u(sn); 0, rnλK (sn)) ≤
(
K + 1

2

)
E(Q),

after noting that the radiation u∗ is negligible on the region r ≤ rnλK (sn). Hence, Mn = K
for n large enough. We set μn, j := λ j (sn) and σn, j := ι j for j > K . We claim that

lim
n→∞

⎛
⎝‖u(sn) − u∗ − Q(m�, �σn, �μn)‖2E +

N∑
j=1

( μn, j

μn, j+1

)k
⎞
⎠ = 0.

By the definition of d, the proof will be finished. First, recall that μn,K � rnμ(tn), so
μn,K /μn,K+1 → 0. In the region r ≤ rnλK (sn), convergence follows from (6.9), since the
energy of the exterior bubbles asymptotically vanishes there. In the region r ≥ Rn , the energy
of the interior bubbles vanishes, hence it suffices to apply (5.11). In particular, by the above
and (5.10),

lim
n→∞ E(u(sn); 0, rnλK (sn)) = K E(Q),

lim
n→∞ E(u(sn); Rn,∞) = (N − K )E(Q) + E(u∗),

which implies

lim
n→∞ E(u(sn); rnλK (sn), Rn) = 0,

and (2.3) yields convergence of the error also in the region rnλK (sn) ≤ r ≤ Rn . ��
Proof of Theorem 1 Assume the theorem is false and let [an, bn] ∈ CK (εn, η) be a sequence
of disjoint collision intervals given by Lemma 5.9, and η > 0 is sufficiently small so that
Lemmas 6.1 and 6.3 hold. Let ε > 0, n0, and [cn, dn] be as in Lemma 6.2.

We claim that there exists c0 > 0 such that for every n ≥ n0,

inf
t∈[cn ,dn ]

λK (t)2‖∂t u(t)‖2L2 ≥ c0. (6.10)

If not, we could, after passing to a subsequence, find a sequence sn ∈ [cn, dn] such that

lim
n→∞ λK (sn)‖∂t u(sn)‖L2 = 0

But then an application of Lemma 3.1 gives a sequence rn → ∞ such that, after passing
to a further subsequence, limn→∞ δrnλK (sn)(u(sn)) = 0. But then Lemma 6.3 gives that
limn→∞ d(sn) = 0, which contradicts (6.6). Thus (6.10) holds.

Therefore, using (6.10), (6.8), and (6.7) we have

∑
n≥n0

∫ dn

cn
‖∂t u(t)‖2L2 dt ≥ c0

4

∑
n≥n0

∫ dn

cn
λK (cn)

−2 dt ≥ c0
4

∑
n≥n0

n−1 = ∞.

On the other hand, by (2.2) and the fact that the [cn, dn] are disjoint, we have,
∑
n≥n0

∫ dn

cn
‖∂t u(t)‖2L2 dt ≤

∫ T∗

0
‖∂t u(t)‖2L2 dt < ∞,

which is a contradiction. ��
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