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Abstract
We prove stochastic homogenization for reaction–advection–diffusion equations with ran-
dom space-time-dependent KPP reactions with temporal correlations that are decaying in an
appropriate sense. We show that the limiting homogenized dynamic has the simple form of
spreading with some deterministic direction-dependent speeds from the support of the initial
datum. We obtain analogous results for G-equations with random flame speeds and incom-
pressible background advections. Important ingredients in our proofs are a non-autonomous
subadditive theorem and the principle of virtual linearity for KPP reactions from the compan-
ion papers (Zhang and Zlatoš in Electron J Probab 28:1–23, 2023; Zlatoš in Virtual linearity
for KPP reaction–diffusion equations).

Mathematics Subject Classification 35K57 · 74Q10 · 35F21

1 Introduction andmain results

We study long time behavior of solutions to models of reactive processes, such as com-
bustion and population dynamics, in random environments—specifically, reaction–diffusion
equations and G-equations. The former are the PDE

ut = Lωu + f (t, x, u, ω), (1.1)

with f : R
d+1 × [0, 1] × � → R some non-linear reaction function, a second-order linear

term

Lωu(t, x) :=
d∑

i, j=1

Ai j (t, x, ω)uxi x j (t, x) +
d∑

i=1

bi (t, x, ω)uxi (t, x), (1.2)

Communicated by P. H. Rabinowitz.

B Yuming Paul Zhang
yzhangpaul@auburn.edu

Andrej Zlatoš
zlatos@ucsd.edu

1 Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

2 Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-023-02589-1&domain=pdf
http://orcid.org/0000-0002-2371-6840


248 Page 2 of 22 Y. P. Zhang, A. Zlatoš

and ω an element from some probability space (�, P,F). One also typically assumes that f
vanishes at u = 0, 1, and solutions 0 ≤ u ≤ 1 represent normalized temperature or density,
which is subject to reaction, advection, and diffusion. The simplest reaction–diffusion model
involves Lω ≡ �x and f = f (u), but we will consider here the general non-isotropic,
space-time-dependent, random reaction–advection–diffusion setting of (1.1).

We will mainly concentrate on this case, but our methods equally apply to the related
first-order flame propagation model

ut + v(t, x, ω) · ∇u = c(t, x, ω)|∇u|. (1.3)

This Hamilton–Jacobi PDE is called the G-equation (it is often considered with c ≡ 1 only),
where c > 0 is the flame speed and v is some (incompressible) background advection.

We will consider (1.1) with the KPP (a.k.a. Fisher-KPP) reactions, first studied by Kol-
mogorov, Petrovskii, and Piskunov [19] and Fisher [11] in 1937. We will therefore assume
the following uniform KPP hypotheses.

Definition 1.1 A Lipschitz function f : R
d+1 × [0, 1] × � → R is a KPP reaction if

f (·, ·, 0, ·) ≡ 0 ≡ f (·, ·, 1, ·) and f (t, x, u, ω) ≤ fu(t, x, 0, ω)u for all (t, x, u, ω) ∈
R
d × [0, 1] × � (with fu(·, ·, 0, ·) existing pointwise), plus the following uniform hypothe-

ses hold. We have inf(t,x,ω)∈Rd+1×� f (t, x, u, ω) > 0 for each u ∈ (0, 1), as well as
inf(t,x,ω)∈Rd+1×� fu(t, x, 0, ω) > 0 and

lim
u→0

sup
(t,x,ω)∈Rd+1

(
fu(t, x, 0, ω) − f (t, x, u, ω)

u

)
= 0. (1.4)

When physical processes occur in random media, one often expects them to exhibit an
effectively homogeneous dynamic on large space-time scales due to large-scale averaging
of the variations in the environment. Our main results show that this phenomenon, called
homogenization, indeed occurs for (1.1) and (1.3) in very general settings under suitable
hypotheses. The main two of the latter are always stationarity of the environment and some
mixing assumption on it, without which one cannot reasonably hope for homogenization to
occur. We state our versions of these next, with H being either (A, b, fu(·, ·, 0, ·)) or (c, v)

(see below for why it suffices to only include fu(·, ·, 0, ·) here in the KPP reaction case).

Definition 1.2 Let (�,F, P) be some probability space and H a measurable function on
R
d+1 × � with values in some measurable space. We say that H is space-time stationary if

there is a group of measure-preserving bijections {ϒ(s,y) : � → �}(s,y)∈Rd+1 with ϒ(0,0) =
Id� andϒ(s,y)◦ϒ(r ,z) = ϒ(s+r ,y+z) for any (s, y), (r , z) ∈ R

d+1, and for any (t, x, s, y, ω) ∈
R
2d+2 × � we have

H
(
t, x, ϒ(s,y)ω

) = H(t + s, x + y, ω). (1.5)

For any t ∈ R, we let F±
t (H) be the σ -algebra generated by the family of random variables
{
H(s, x, ·) ∣∣ ± (s − t) ≥ 0 and x ∈ R

d
}

.

We also define for each s ≥ 0,

φH (s) := sup
{|P[F |E] − P[F]| ∣∣ t ∈ R & (E, F) ∈ F−

t (H) × F+
t+s(H) & P[E] > 0

}
.

So φH is clearly non-increasing, and it vanishes at some s ≥ 0 precisely when F−
t (H)

and F+
t+s(H) are P-independent for each t ∈ R (in that case H has a finite temporal range

of dependence). The mixing hypothesis mentioned above will in our case be the assumption
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that lims→∞ φH (s) = 0 (possibly at some rate) for the appropriate function H . That is, it
will involve mixing in time but not necessarily in space.

Long-time propagation of solutions to (1.1) is well known to be ballistic, with solutions
converging locally uniformly to 1. One should therefore expect homogenization to take
the following form. First, solutions starting from compactly supported initial data should
approximate the characteristic function of tS for some open bounded convex set S 
 0
(called Wulff shape) as t → ∞. This means that, as t → ∞ the θ -level set of the solution
should, after scaling by 1

t in space, converge in Hausdorff distance to ∂S for each θ ∈ (0, 1).
And, of course, this should hold for a large set of ω ∈ � in the probabilistic sense, with the
Wulff shape being deterministic (i.e., ω-independent).

Second, (3.1) should exhibit a homogenized large-scale dynamic in the ballistic scaling

uε(t, x, ω) := u
(
ε−1t, ε−1x, ω

)
, (1.6)

with ε > 0 small. This of course turns (1.1) into its large-space-time-scale version

uε
t = Lε

ωu
ε + ε−1 f

(
ε−1t, ε−1x, uε, ω

)
, (1.7)

where

Lε
ωu

ε(t, x) := ε

d∑

i, j=1

Ai j
(
ε−1t, ε−1x, ω

)
uε
xi x j (t, x) +

d∑

i=1

bi
(
ε−1t, ε−1x, ω

)
uε
xi (t, x).

Then one hopes that, again for a large set ofω ∈ �, solutions to (1.7)with some ε-independent
initial datum u0 converge as ε → 0 to a function ū that solves some homogeneous PDE with
the same initial value (the term “homogenization” usually refers to this type of result).

Such stochastic homogenization results were obtained previously in several works for
time-independent (A, b, f ) in one spatial dimension, where the geometry of the level sets of
solutions is trivial (they are typically two points ballistically traveling to±∞). The interested
reader can consult, for instance, papers [3, 5, 13, 24, 25, 27, 33, 34] and references therein (yet
others involve spatially periodic rather than random (A, b, f )), which study KPP reactions
as well as ignition and bistable reactions (for which f (·, ·, u, ·) vanishes or is negative when
u > 0 is close to 0).

Progress in the multi-dimensional (and still time-independent) case d ≥ 2 has been much
more limited, due to the geometry of the level sets of solutions substantially complicating
the analysis. Stochastic homogenization results for stationary ergodic ignition reactions and
(A, b) = (�, 0) in dimensions d ≤ 3 were recently obtained by the second author and
Lin [22] as well as by both authors [29, 30] (homogenization results in spatially periodic
multidimensional media appear in, e.g., [1, 3, 7, 13, 22, 24]), but the only such results for
KPP reactions that we are aware of are Theorem 9.3 in [23] by Lions and Souganidis, and
Theorem 1.4 in the companion paper [37] by the second author (the latter even holds in
the time-periodic (A, b, fu(·, ·, 0, ·)) case, which is closely related to the time-independent
setting). However, we note that Theorem 9.3 in [23] is stated without a proof, and the authors
only indicated that methods developed by them and in other works can be used to obtain
one. Moreover, we know of no other prior homogenization results even in the simpler case of
time-independent and spatially periodic KPP reactions (although existence of Wulff shapes
and front speeds in the periodic case goes back to work of Gärtner and Freidlin [13]).

In light of the above discussion, our main result for KPP reactions (Theorem 1.3 below)
appears to be the first one in the general time-dependent setting for any reaction and in
any dimension. In fact, homogenization results in time-dependent environments seem to
be rather sparse even in the much more studied and developed setting of Hamilton–Jacobi
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equations (see below). We note that the proof of Theorem 1.3 uses two new ingredients, a
non-autonomous version of the classical Kingman’s subadditive ergodic theorem [18] (The-
orem 2.1 below) and the principle of virtual linearity for (1.1), from the companion papers
[31, 36].

In addition, together with Theorem 1.4 in [37], Theorem 1.3 appears to be the first multi-
dimensional stochastic homogenization result for (1.1) that provides an explicit formula for
the solution to the homogenized dynamic (except in the special case of isotropic ignition
reactions, see below). The results in [22, 29, 30] for ignition reactions, as well as Theorem
9.3 in [23] forKPP reactions show that in the relevant settings, solutions to (1.7)with common
initial datum u0 converge as ε → 0 to a discontinuous viscosity solution to the homogeneous
Hamilton–Jacobi equation

ūt = c∗ (−∇ū|∇ū|−1) |∇ū| (1.8)

that only takes values in {0, 1} for all t > 0, where c∗(e) is some (A, b, f )-dependent
deterministic front speed in direction e ∈ S

d−1 (see [22, 29, 37] for its definition). This
yields an implicit formula for the homogenized solutions. However, here and in [37] we
show that for KPP reactions (including in the time-dependent case), one in fact has the
explicit formula

ū := χG+tS , (1.9)

where (essentially) G := supp u0 and S is the Wulff shape for (A, b, f ) (this then also
implies that c∗(e) exists for each e ∈ S

d−1 and c∗(e) = supy∈S y · e). Moreover, we show
that the dependence of S on f is only through fu(·, ·, 0, ·) in the KPP reaction case.

The reason for ū only taking values in {0, 1} is the hair-trigger effect, discussed in Sect. 3
below, which shows that solutions to (1.1) transition from values arbitrarily close to 0 to those
arbitrarily close to 1 in ε-independent time. This then becomes an instantaneous transition
from value 0 to 1 in the ε → 0 limit for (1.7). However, our proofs show that this transition
also becomes sharp in space in this limit, which is not surprising but also not an obvious
corollary. Of course, this means that for solutions to (1.1), spatial transition from values close
to 0 to those close to 1 happens on distances of size o(t). This shows that in the setting of
(1.1), it makes most sense to consider initial data that are also characteristic functions of sets
in R

d , but our main results in fact hold for more general initial data (see (1.11) below).
This contrasts with the case of ignition reactions in dimensions d ≤ 3, where the second

author proved that the above spatial transition for (1.1) occurs on distances of size O(1)
[35] (calling this the bounded width property of solutions). For this it is crucial that the hair
trigger effect is not present for ignition reactions, and the argument was based on the solution
dynamic being pushed for ignition reactions when d ≤ 3 (which may fail when d ≥ 4 [35]).
On the other hand, for KPP reactions it is pulled due to the crucial hypothesis f (t, x, u, ω) ≤
fu(t, x, 0, ω)u, which guarantees that the dynamic depends on f only through fu(·, ·, 0, ·)
[36]. See [35, 36] for details on these concepts and further discussion.

We note that the explicit formula (1.9) also holds for time-independent stationary ergodic
reactions if (1.1) has a Wulff shape S and this S has no corners [22] (i.e., it has a unique
unit outer normal vector at each x ∈ ∂S). However, the latter hypothesis has previously only
been verified for isotropic ignition reactions in dimensions d ≤ 3 [22], when S is a ball (this
clearly also holds in the settings of Theorem 1.3 below and Theorem 1.4 in [37]), and it is
known that it can fail even for non-isotropic periodic ignition reactions in two dimensions.
In fact, an example constructed by Caffarelli, Lee, and Mellet in [7] was used in [22] to show
that not only S can have corners in this setting, but (1.9) can also fail for non-KPP reactions.

Let us now state our main result for (1.1), in which we can also accommodate ε-dependent
shifts yε of the initial value and perturbations that decay in an appropriate sense as ε → 0.
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To simplify the relevant notation, let Br := Br (0) ⊆ R
d for r > 0 and B0 := {0}, then let

Br (G) := G + Br and G0
r := G\Br (∂G) for G ⊆ R

d and r ≥ 0 (so G0
0 is the interior of G).

Theorem 1.3 Let f be a KPP reaction and let Lω be from (1.2), where A = (Ai j ) a bounded
symmetric matrix with A ≥ λI for some λ > 0, and the vector b = (b1, . . . , bd) satisfies

‖b‖2L∞ < 4λ inf
(t,x,ω)∈Rd+1×�

fu(t, x, 0, ω). (1.10)

Also assume that H := (A, b, fu(·, ·, 0, ·)) is space-time stationary.
(i) If lims→∞ sαφH (s) = 0 for some α > 0, then there is a convex bounded open set

S ⊆ R
d containing 0 (called Wulff shape), which depends only on H, and the following

holds for almost all ω ∈ �. If G ⊆ R
d is open, θ ∈ (0, 1), � < ∞, and uε(·, ·, ω) solves

(1.7) with
θχ(G+yε)0ρ(ε)

≤ uε(0, ·, ω) ≤ χBρ(ε)(G+yε) (1.11)

for each ε > 0, with some yε ∈ B� and limε→0 ρ(ε) = 0 (when yε = 0 and ρ(ε) = 0, this
becomes just θχG ≤ uε(0, ·, ω) ≤ χG), then

lim
ε→0

uε(t, x + yε, ω) = χGS (t, x) (1.12)

locally uniformly on ([0,∞) × R
d)\∂GS , where GS := {(t, x) ∈ R

+ × R
d | x ∈ G + tS}.

(ii) If lims→∞ φH (s) = 0, then (i) holds with � = ∞ and with (1.12) replaced by

lim
ε→0

P
[
(G + (1 − δ)tS) ∩ Bδ−1 ⊆ �ε

θ ′(t, ·) ∩ Bδ−1

⊆ (G + (1 + δ)tS) ∩ Bδ−1 ∀t ∈ [δ, δ−1]] = 1 (1.13)

for any δ, θ ′ ∈ (0, 1), where �ε
θ ′(t, ω) := {x ∈ R

d | uε(t, x + yε, ω) ≥ θ ′}.
Remarks 1. The hypothesis on φH is of course satisfied in both (i) and (ii) when H has a
finite temporal range of dependence.

2. Since the homogenized dynamic only depends on f via fu(·, ·, 0, ·), the full reaction
f need not be space-time-stationary or have the required temporal dependence properties.
3. It is shown in [36] that the bound (1.10) is necessary (and sharp) for solutions to spread

with positive speeds in all directions (i.e., for 0 ∈ S).
4. Allowing for yε �= 0 makes (i) more general, but this is not the case for (ii) due to space

stationarity of H .
5. In the course of the proof we also show in Theorems 3.2 and 4.2 below that S is the

Wulff shape for (3.1) in the sense of propagation from compactly supported initial data.
6. In (ii) we also have that lim supε→0 u

ε(t, x + yε, ω) ≤ χGS (t, x) locally uniformly on
([0,∞) × R

d)\∂GS (see the remark at the end of Sect. 3).

Let us now turn to the G-equation (1.3). The scaling (1.6) transforms it into

uε
t + v(ε−1t, ε−1x, ω) · ∇uε = c(ε−1t, ε−1x, ω)|∇uε|, (1.14)

and the goal is again to show that the dynamic for this PDE converges in an appropriate sense
to that for some deterministic homogeneous equation as ε → 0.

The G-equation is a (first-order) Hamilton–Jacobi equation and there is a vast literature
on periodic and stochastic homogenization for general Hamilton–Jacobi equations

ut = H(t, x,∇u, ω),
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as well as their second-order (viscous) analogs. We will not attempt to review it here, and
will only focus on homogenization results involving time-dependent Hamiltonians. Kosy-
gina and Varadhan proved homogenization for space-time stationary ergodic super-linear
(in p) Hamiltonians in the presence of diffusion represented by the Laplacian [20], Schwab
addressed the same case but without diffusion [26], and Jing, Souganidis, and Tran treated the
cases of space-time stationary ergodic super-quadratic Hamiltonians with possibly degen-
erate diffusions [15]. The last three authors also considered (1.3) with v ≡ 0 and c that
is either periodic in time and stationary-ergodic in space or vice versa [14, 16]. All these
papers considered Hamiltonians that are convex and coercive in ∇u (the latter means that
lim p→∞ H(t, x, p, ω) = ∞ for all (t, x, ω) ∈ R

d+1 × �), which is a frequent hypothesis
in the theory, even in the time-independent case.

The Hamiltonian H(t, x, p, ω) := c(t, x, ω)|p|−v(t, x, ω) · p from (1.3) is convex when
c ≥ 0, but it is only coercive when |v| < c. Hence none of the above results are applicable
to the G-equation when this fails, and we in fact know of only two prior homogeniza-
tion results in the non-coercive time-dependent case. Cardaliaguet, Nolen, and Souganidis
obtained homogenization for (1.3) with c ≡ 1 and space-time periodic v with a not-too-large
divergence [8] (independently, Xin and Yu addressed the divergence-free time-independent
space-periodic case at the same time [28]; see also the work of Cardaliaguet and Souganidis
[9] for the general spatially stationary ergodic case). More recently, Burago, Ivanov, and
Novikov proved it with c ≡ 1 and space-time stationary divergence-free v that is not too
large in average over very large balls (specifically, (1.18) below holds with c ≡ 1) and has a
finite temporal range of dependence [6]. Hence this was the first (and prior to our results the
only) stochastic homogenization result in the non-coercive time-dependent setting.

Our approach to homogenization for KPP reaction–advection–diffusion equations, via the
non-autonomous subadditive theorem from the next section, turns out to easily extend to the
setting of G-equations with general (c, v) that have infinite temporal ranges of dependence,
provided their temporal correlations decay in an appropriate sense. Ourmain result for (1.3) is
Theorem 1.5 below, which we discuss next. We note that besides the ability to accommodate
some environments with infinite temporal ranges of dependence, another advantage of our
method is that it applies to second-order equations, including (1.1) (the method in [6] does
not seem to be fully extendable to this setting, due to the need for a control representation
formula for solutions, such as (1.16) below). It will be used to study homogenization for
other (viscous) Hamilton–Jacobi PDE elsewhere [32].

In the setting of G-equations, we again have the concept of a Wulff shape, which is now
the asymptotic shape of the reachable sets in the sense of the following definition.

Definition 1.4 We say that (t1, x1) ∈ R
d+1 is ω-reachable from (t0, x0) ∈ (−∞, t1] × R

d

if there is an absolutely continuous path γ : [t0, t1] → R
d such that γ (t j ) = x j ( j = 0, 1)

and
∣∣γ ′(t) − v(t, γ (t), ω)

∣∣ ≤ c(t, γ (t), ω)

for almost all t ∈ [t0, t1]. For any t ≥ 0, we let

�(t, ω; t0, x0) :=
{
x ∈ R

d
∣∣ (t0 + t, x) isω-reachable from (t0, x0)

}
(1.15)

be the ω-reachable set from (t0, x0) at time t , and denote �(t, ω) := �(t, ω; 0, 0).
These sets allow one to explicitly solve (1.3) via a well known control representation

formula (see, e.g., Theorem 7.2 in [12]), under reasonable hypotheses on c and v, so that
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after scaling we obtain

uε(t, x, ω) = sup
x∈ε�(ε−1t,ω;0,ε−1 y)

uε(0, y, ω) (1.16)

for solutions to (1.14). If there is S ⊆ R
d such that �(t, ω) approaches tS as t → ∞, for

a large set of ω in the probabilistic sense (space-time stationarity then shows that the same
holds for �(t, ω; t0, x0) for any (t0, x0) ∈ R

d+1), then S is the Wulff shape for (1.3). In this
case it follows from (1.16) that if the solutions uε share the same initial datum u0, then they
converge in an appropriate sense to the function

ū(t, x) := sup
x∈y+tS

u0(y) = sup
y∈x−tS

u0(y), (1.17)

which again also solves (1.8) with c∗(e) = supy∈S y · e.
We note that unlike for (1.1), here the transition time from one value of u to another should

be roughly proportional to the inverse of the spatial gradient of the solution, and therefore
can increase as O( 1

ε
) if the solution gradient is O(ε). It then makes perfect sense to consider

initial data for (1.14) equal to or approximating some continuous function as ε → 0, which
is what we will therefore do in the following analog of Theorem 1.3 for the G-equation
(nevertheless, our arguments easily extend to discontinuous initial data).

Theorem 1.5 Let (c, v) be bounded, uniformly continuous in t, and (uniformly) Lipschitz in
x, with v divergence-free (i.e., ∇x · v(t, ·, ω) = 0 holds a.e., for all (t, ω) ∈ R × �) and

inf
L>0

sup
(t,x,ω)∈Rd+1×�

∥∥∥∥
1

Ld

∫

[0,L]d
v(t, x + y, ω)dy

∥∥∥∥
L∞

< inf
(t,x,ω)∈Rd+1×�

c(t, x, ω). (1.18)

Also assume that H := (c, v) is space-time stationary.
(i) If lims→∞ sαφH (s) = 0 for some α > 0, then there is a convex bounded open set

S ⊆ R
d containing 0 (called Wulff shape) such that the following holds for almost all

ω ∈ �. If u0 and uε(0, ·, ω) for each (ε, ω) ∈ (0, 1) × � are uniformly continuous on R
d ,

� < ∞, and uε(·, ·, ω) solves (1.14) in the viscosity sense with

sup
ω∈�

‖uε(0, · + yε, ω) − u0‖L∞ ≤ ρ(ε) (1.19)

for some yε ∈ B� and limε→0 ρ(ε) = 0 (when yε = 0 and ρ(ε) = 0, this becomes just
uε(0, ·, ω) = u0), then

lim
ε→0

uε(t, x + yε, ω) = sup
y∈x−tS

u0(y) (1.20)

locally uniformly on [0,∞) × R
d .

(ii) If lims→∞ φH (s) = 0, then (i) holds with � = ∞ and with (1.20) replaced by

lim
ε→0

P

[ ∣∣∣∣∣u
ε(t, x + yε, ω) − sup

y∈x−tS
u0(y)

∣∣∣∣∣ ≤ δ ∀(t, x) ∈ [0, δ−1) × Bδ−1

]
= 1

for any δ > 0.

Remarks 1. Similarly to (1.10) in Theorem 1.3, hypotheses (1.18) and ∇x · v ≡ 0 guarantee
positive spreading speed of reachable sets in all directions [6]. We note that while the main
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result in [10] may seem to allow for weakening of these hypotheses, it in fact only guarantees
the above spreading to be ballistic after a time that is almost surely finite but not uniformly
bounded (we need the latter here).

2. Again, in (ii) we also have that lim supε→0 u
ε(t, x + yε, ω) ≤ supy∈x−tS u0(y) locally

uniformly on [0,∞) × R
d (this is analogous to the proof of Remark 6 after Theorem 1.3).

The rest of the paper is organized as follows. In Sect. 2 we state a subadditive theorem
from [31]. We then prove the two parts of Theorem 1.3 in Sects. 3 and 4, and show how to
extend these arguments to the case of Theorem 1.5 in Sect. 5.

2 A subadditive theorem in time-dependent environments

In this sectionweprovide for the convenienceof the reader a newnon-autonomous subadditive
theorem, Theorem 1.2 in [31] (also Remark 3 following it), that is a crucial ingredient in the
proofs of our main results. Specifically, it will be used in the proofs of Lemmas 3.1 and 4.1
below.

Theorem 2.1 Let (�, P,F) be a probability space, and {F±
t }t≥0 two filtrations such that

F−
s ⊆ F−

t ⊆ F and F ⊇ F+
s ⊇ F+

t

for all t ≥ s ≥ 0. For any t ≥ 0 and integers n > m ≥ 0, let X t
m,n : � → [0,∞) be a

random variable. Let there be C ≥ 0 such that the following statements hold for all such
t,m, n.

(1) Xt
m,n ≤ Xt

m,k + X
t+Xt

m,k
k,n for all k ∈ {m + 1, . . . , n − 1};

(2) X0
0,1 ≤ C;

(3) the joint distribution of {Xt
m,m+1, X

t
m,m+2, . . . } is independent of (t,m);

(4) Xt
m,n is F+

t -measurable, and {ω ∈ � | Xt
m,n(ω) ≤ s} ∈ F−

t+s for any s ≥ 0;
(5) For some α > 0 we have lims→∞ sαφ(s) = 0, where

φ(s) := sup
{|P[F |E] − P[F]| ∣∣ t ≥ 0 & (E, F) ∈ F−

t × F+
t+s & P[E] > 0

}
.

(6) Xt
m,n ≤ Xt+s

m,n + s for all s ∈ [C,C + c], with some c > 0.

Then

lim
n→∞

X0
0,n

n
= lim

n→∞
E

[
X0
0,n

]

n
almost surely. (2.1)

Moreover, if in (5) we only have lims→∞ φ(s) = 0, then (2.1) holds in probability, as well as

lim inf
n→∞

X0
0,n

n
≥ lim

n→∞
E

[
X0
0,n

]

n
almost surely. (2.2)

3 Proof of Theorem 1.3(i)

We will consider general initial times t0 ∈ R, and it will be convenient to rewrite (1.1) as

ut = Lϒ(t0,0)(ω)u + f (t0 + t, x, u, ω) (3.1)
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(recall (1.5)), so that the solutions we will consider will always be defined on R
+ ×R

d . Then
for each (t0, x0, ω) ∈ R

d+1 × �, let u(·, ·, ω; t0, x0) be the solution to (3.1) satisfying the
initial condition u(0, ·, ω; t0, x0) := 1

2χB1(x0). For any θ ∈ (0, 1), we let

�θ(t, ω; t0, x0) :=
{
x ∈ R

d
∣∣ u(t, x, ω; t0, x0) ≥ θ

}

be its θ -super-level set at time t ≥ 0. Let us also denote �θ(t, ω) := �θ(t, ω; 0, 0).
It is proved in [36] (and explicitly stated in the proof of Theorem 1.4 in [37]) that a

uniform hair-trigger effect holds under the hypotheses of Theorem 1.3. Specifically, for any
fixed θ ∈ (0, 1) we have that any solution to (3.1) with u(0, ·) ≥ θχB1(0) converges locally
uniformly on R

d to 1 as t → ∞, and this convergence is uniform in all (A, b, f ) (as well as
in all (t0, ω) ∈ R × �) that satisfy the hypotheses of Theorem 1.3 uniformly—that is, with
the same

γ ∈
(
0,min

{
λ, ‖A‖−1∞ , ‖ fu(·, ·, 0, ·)‖−1

L∞ , 4λ inf
(t,x,ω)∈Rd+1×�

fu(t, x, 0, ω) − ‖b‖2L∞

}]
,

the same Lipschitz lower bound f0 : (0, 1) → (0,∞) on f̃ (u) := inf(t,x,ω)∈Rd+1×�

f (t, x, u, ω), and the sup in (1.4) bounded above by the same ψ(u) with limu→0 ψ(u) = 0.
Of course, the uniformity in ω then also extends the uniform convergence to any spatial shift
of the initial datum, after accounting for the corresponding shift in the solution (because
shifting the medium by z ∈ R

d simply amounts to changing ω to ϒ(0,z)(ω)). Note that
bootstrapping this claim then yields at least ballistic spreading of each super-level set in all
directions (with the same positive lower bound on the spreading speed for all the super-level
sets, because such lower bound for the 1

2 -super-level set also applies to all other θ ∈ (0, 1)
due to the hair-trigger effect). On the other hand, a finite upper bound on the spreading speeds
follows from eat−(x−x0)·e being a super-solution to (3.1) for any (e, x0) ∈ S

d−1 × R
d , pro-

vided a is large enough (depending only on γ above—see, e.g., the proof of Theorem 2.1 in
[36]).

In particular, there is M ≥ 1 (which depends only on γ, f0, ψ above) such that under the
hypotheses of Theorem 1.3 we have for all (t0, x0, ω) ∈ R

d+1 × �,

BM−1t (x0) ⊆ �1/2(t, ω; t0, x0) ⊆ BMt (x0) when t ≥ M . (3.2)

This immediately yields u(s, ·, ω; t0, x0) ≥ u(0, ·, ω; t0 + s, z) for any (t0, x0, z, ω) ∈
R
2d+1 × � and s ≥ M(|z − x0| + 1). Hence the comparison principle shows that for

any t ≥ 0,

�1/2(t, ω; t0 + s, z) ⊆ �1/2(t + s, ω; t0, x0) when s ≥ M(|z − x0| + 1). (3.3)

Parabolic Harnack inequality [21, Corollary 7.42] shows that there is θ > 0 (depending only
on γ ) such that if x ∈ �1/2(t + s, ω; t0, x0) and t + s ≥ 1, then u(t + s + 1, ·, ω; t0, x0) ≥
θχB1(x). Hence if we increaseM to three times themaximum ofM and a time τ ≥ 1 such that
under the hypotheses of Theorem 1.3, any solution to (3.1) with u(0, ·) ≥ θχB1(0) satisfies
u(τ, ·) ≥ 1

2χB1(0) (such τ exists due to the hair-trigger effect), then from (3.3) we obtain
with any s′ ≥ M ,

BM−1s′
(
�1/2(t, ω; t0 + s, z)

) ⊆ �1/2(t + s + s′, ω; t0, x0) when s ≥ M(|z − x0| + 1)
(3.4)

by the hair-trigger effect and another usage of (3.2).
Next let the travel time to a point x ∈ R

d , when starting at (t0, x0) ∈ R
d+1, be

τ t0(x0, x, ω) := inf
{
t ≥ 0

∣∣ B1(x) ⊆ �1/2(t, ω; t0, x0)
}
.
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The comparison principle yields a space-time subadditivity property for these times, namely

τ t0(x0, x, ω) ≤ τ t0(x0, z, ω) + τ t0+τ t0 (x0,z,ω)(z, x, ω) (3.5)

for any (z, ω) ∈ R
d × �. Due to (3.2), we also have

τ t0(x0, x, ω) ≤ M(|x − x0| + 1) (3.6)

for all (t0, x0, x, ω) ∈ R
2d+1 × �. Combining this with (3.5) yields

τ t0(x0, x, ω) ≤ τ t0(x0, z, ω) + M(|x − z| + 1) (3.7)

for all (t0, x0, x, z, ω) ∈ R
3d+1 × �. Finally, from (3.3) we have

τ t0(x0, x, ω) ≤ τ t0+t (z, x, ω) + t when t ≥ M(|z − x0| + 1). (3.8)

We can now prove Theorem 1.3(i). We will first assume that H := (A, b, f ) is space-time
stationary (with f understood as a C([0, 1])-valued function on R

d+1 × �), rather than just
(A, b, fu(·, ·, 0, ·)). We will also denote F±

t := F±
t (H) for simplicity (see Definition 1.2).

We start with a lemma that shows that the travel times in any fixed direction are asymp-
totically linear.

Lemma 3.1 Assume the hypotheses of Theorem 1.3(i) but with H := (A, b, f ) being space-
time stationary. Then for each e ∈ S

d−1 there are �e ⊆ � and

τ̄ (e) ∈ [M−1, M
]
, (3.9)

with M from (3.2), such that P[�e] = 1 and for each (t0, x0, ω) ∈ R
d+1 × �e we have

lim
r→∞

τ t0(x0, x0 + re, ω)

r
= lim

r→∞
E
[
τ t0(x0, x0 + re, ·)]

r
= τ̄ (e). (3.10)

Moreover, for any e, e′ ∈ S
d−1 we have

max

{
|τ̄ (e) − τ̄ (e′)|,

∣∣∣∣
1

τ̄ (e)
− 1

τ̄ (e′)

∣∣∣∣

}
≤ M3|e − e′|. (3.11)

Proof For any e ∈ S
d−1, the hypotheses of Theorem 2.1 hold with Xt

m,n := τ t (me, ne, ·).
Indeed: (1) follows from (3.5); (2) from (3.6); (3) from space-time stationarity of H ; (4) from
the definition of F±

t ; (5) from the hypothesis; and (6) with (C, c) := (M,∞) from (3.8)
with z = x0. Hence Theorem 2.1 and (3.7) yield (3.10) with (t0, x0) = (0, 0) for almost
all ω ∈ �, with (3.9) following from (3.2). Space-time stationarity of H yields some full
measure set �e ⊆ � such that (3.10) holds for all (t0, x0) ∈ Z

d+1 when ω ∈ �e, and this
then extends to all (t0, x0) ∈ R

d+1 by (3.8).
Next, (3.5) and (3.6) yield for any e, e′ ∈ S

d−1,

τ 0(0, ne, ω) ≤ τ 0(0, ne′, ω) + τ τ 0(0,ne′,ω)(ne, ne′, ω) ≤ τ 0(0, ne′, ω) + M(n|e − e′| + 1).

After dividing this by n and taking n → ∞, we obtain τ̄ (e) ≤ τ̄ (e′) + M |e − e′|. This and
τ̄ ≥ M−1 yield (3.11). ��

Next,we show that solutions to (3.1)with localized initial data asymptotically approximate
characteristic functions of a ballistically expanding deterministic Wulff shape

S := {se ∣∣ e ∈ S
d−1 and s ∈ [0, w(e))}, (3.12)
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where the deterministic spreading speed in direction e ∈ S
d−1 is

w(e) := τ̄ (e)−1 ∈ [M−1, M]. (3.13)

Note that S is bounded and open due to (3.11).

Theorem 3.2 Under the hypotheses of Lemma 3.1, S from (3.12) is convex, and it is a strong
deterministic Wulff shape for (1.1). The latter means that for almost all ω ∈ �,

lim
t→∞ inf|x0|≤�t

inf
x∈(1−δ)tS

u(t, x0 + x, ω; 0, x0) = 1,

lim
t→∞ sup

|x0|≤�t
sup

x /∈(1+δ)tS
u(t, x0 + x, ω; 0, x0) = 0

(3.14)

hold for each δ ∈ (0, 1) and � ≥ 0.

Proof Convexity of S will be proved in Theorem 4.2 under slightly more general hypotheses.
For each e ∈ S

d−1, let �e be the set from Lemma 3.1. Let Q be a countable dense subset
of S

d−1 and define �′ := ∩e∈Q�e (so P[�′] = 1). Now fix any δ ∈ (0, 1) and ω ∈ �′. We
will first show that there is Cδ,ω > 0 such that for all t ≥ Cδ,ω,

(1 − δ)tS ⊆ �1/2(t, ω) ⊆ (1 + δ)tS. (3.15)

Let ε := δ
3M and let e1, . . . , eN ∈ S\{0} be such that ei|ei | ∈ Q and S ⊆ ⋃N

i=1 Bε(ei ).
Hence for any t ≥ 0 and v ∈ tS, there is i ∈ {1, . . . , N } such that |v − tei | ≤ tε. Then (3.7)
shows that ∣∣τ 0(0, v, ω) − τ 0(0, tei , ω)

∣∣ ≤ M(tε + 1). (3.16)

By Lemma 3.1, for all large enough t we have

sup
i∈{1,··· ,N }

∣∣∣∣
τ 0(0, tei , ω)

t |ei | − 1

w(ei |ei |−1)

∣∣∣∣ ≤ ε (3.17)

Using (3.16), (3.17), and |ei | ≤ w(
ei|ei | ) ≤ M (by (3.12) and (3.13)), for all large t we obtain

sup
v∈tS

τ 0(0, v, ω) ≤ max
i∈{1,··· ,N } τ

0(0, tei , ω) + M(tε + 1) ≤ t + M(2tε + 1).

Hence
tS ⊆ �1/2(t + M(2tε + 1), ω) (3.18)

holds for all large enough t . Since 2Mε < δ, the first inclusion in (3.15) follows.

Next let e′
1, . . . , e

′
N ′ ⊆ R

d \ S be such that
e′
i

|e′
i | ∈ Q and BM (0)\S ⊆ ⋃N ′

i=1 Bε(e′
i ). Note

that
v /∈ �1/2(t, ω) whenever t ≥ M and v ∈ BMt (0)

c (3.19)

due to (3.2). For each v ∈ BMt (0)\tS, there is e′
i such that |v − te′

i | ≤ tε and then

τ 0(0, v, ω) ≥ τ 0(0, te′
i , ω) − M(tε + 1).

by (3.7). Moreover, since now w(
e′
i

|e′
i | ) ≤ |e′

i | ≤ M and (3.17) holds with e′
i and N ′ in place

of ei and N , we obtain

inf
v∈BMt (0)\tS

τ 0(0, v, ω) ≥ min
i∈{1,··· ,N ′}

τ 0(0, te′
i , ω) − M(tε + 1) ≥ t − M(2tε + 1).
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This and (3.19) yield �1/2(t − 2M(tε + 1), ω) ⊆ tS for all large enough t , so the second
inclusion in (3.15) again follows by 2Mε < δ.

We next want to upgrade (3.15) to the claim that for almost all ω we have for any � ≥ 1
and δ ∈ (0, 1),

x0 + (1 − δ)tS ⊆ �1/2(t, ω; 0, x0) ⊆ x0 + (1 + δ)tS (3.20)

for all large enough t (depending on ω, δ,�) and all x0 ∈ B�t (0). This will finish the proof
because parabolic Harnack inequality and hair-trigger effect show that for each θ ∈ (0, 1),
there is Cθ > 0 such that for all (t0, x0, ω) ∈ R

d+1 × � and t ≥ Cθ + 1,

�1/2(t − Cθ , ω; t0, x0) ⊆ �θ(t, ω; t0, x0) ⊆ �1/2(t + Cθ , ω; t0, x0).
It therefore remains to show (3.20). Fix any � ≥ 1 and

δ ∈ (0, (26M�)−1) . (3.21)

By (3.15) and Egorov’s Theorem, there are τδ > 0 and Dδ ⊆ �with P[Dδ] ≥ 1− δd+1 such
that for each ω ∈ Dδ and t ≥ τδ ,

(1 − δ)tS ⊆ �1/2(t, ω) ⊆ (1 + δ)tS. (3.22)

It is clear that we can in fact pick Dδ from the σ -algebra generated by
⋃

i∈N(F+
0 ∩F−

i ). Let
F ′ be the σ -algebra generated by

⋃
i∈N(F+

−i ∩ F−
i ) (or just replace F by F ′ from the very

start) and apply Wiener’s ergodic theorem (see, e.g., [4, Theorems 2 and 3]) with the group
of transformations {ϒ(s,y)}(s,y)∈Rd+1 on the probability space (�,F ′, P). It shows that there
is �δ ∈ F ′ with P[�δ] = 1 such that the following holds, with

ϕδ,r (ω) := 1

|Br |
∫

Br

χDδ

(
ϒ(s,y)(ω)

)
dsdy

and Br ⊆ R
d+1 the space-time ball of radius r > 0 centered at the origin. The limit

ϕδ(ω) := lim
r→∞ ϕδ,r (ω) ∈ [0, 1]

(which is F ′-measurable because ϕδ,r is measurable with respect to the σ -algebra gener-
ated by

⋃
i∈N(F+−r ∩ F−

i )) exists for each ω ∈ �δ , is invariant under the transformations
{ϒ(s,y)}(s,y)∈Rd+1 , and satisfies

E[ϕδ(·)] = E[χDδ (·)] = P[Dδ].
Next we claim that ϕδ is a constant almost everywhere on �. If not, then there are k ∈ N,

c > 0, and A1, A2 ∈ F+
−k ∩ F−

k with P[A1]P[A2] > 0 such that
∣∣∣∣

1

P[A1]E[ϕδ(·)χA1(·)] − 1

P[A2]E[ϕδ(·)χA2(·)]
∣∣∣∣ ≥ c. (3.23)

Fix C ′ > 0 and note that ϕδ,r (ϒ(r+k+C ′,0)(·)) is F+
k+C ′ -measurable. Hence the definition of

φH , the fact that A j ∈ F−
k , and 0 ≤ ϕδ,r ≤ 1 yield for j = 1, 2,

E[ϕδ,r (ϒ(r+k+C ′,0)(·))χA j (·)] =
∫ 1

0
P
[
ϕδ,r (ϒ(r+k+C ′,0)(·)) > μ & χA j = 1

]
dμ

≤
∫ 1

0

(
P
[
ϕδ,r (ϒ(r+k+C ′,0)(·)) > μ

]+ φH (C ′)
)
P
[
A j
]
dμ

≤ E[ϕδ,r (ϒ(r+k+C ′,0)(·))]P
[
A j
]+ φH (C ′).
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Similarly,

E[ϕδ,r (ϒ(r+k+C ′,0)(·))χA j (·)] ≥ E[ϕδ,r (ϒ(r+k+C ′,0)(·))]P
[
A j
]− φH (C ′).

Since lims→∞ φH (s) = 0 and P[A j ] > 0 for j = 1, 2, taking sufficiently large C ′ yields
∣∣∣∣∣

1

P
[
A j
]E[ϕδ,r (ϒ(r+k+C ′,0)(·))χA j (·)] − E[ϕδ,r (ϒ(r+k+C ′,0)(·))]

∣∣∣∣∣ ≤ c

4
.

Since ϕδ,r → ϕδ almost surely as r → ∞, and 0 ≤ ϕδ,r ≤ 1, we thus obtain
∣∣∣∣

1

P[A j ]E[ϕδ(ϒ(r+k+C ′,0)(·))χA j (·)] − E[ϕδ,r (ϒ(r+k+C ′,0)(·))]
∣∣∣∣ <

c

2

for all large enough r and j = 1, 2. However, since ϕδ ◦ ϒ(r+k+C ′,0) = ϕδ , this contradicts
(3.23). Thus we see that ϕδ(ω) = P[Dδ] for almost all ω ∈ �.

This means that there is �′
δ ⊆ �δ with P[�′

δ] = 1 such that for each ω ∈ �′
δ we have

lim
r→∞

1

|Br |
∫

Br

χDδ (ϒ(s,y)(ω))dsdy = P[Dδ] ≥ 1 − δd+1.

Thus there is tω,δ,� ≥ max{τδ,
1
δ
} such that for all t ≥ tω,δ,� we have

∣∣{(s, z) ∈ B2�t | ϒ(s,z)(ω) /∈ Dδ

}∣∣ ≤ 2δd+1 |B2�t | .
For any t ≥ tω,δ,�, let Ct := M(2δ�t + 1) ≤ 3Mδ�t (because t ≥ 1

δ�
). Then for any

x0 ∈ B�t (0), there are

(s±, z±) ∈ [Ct ,Ct + 8δ�t] × B2δ�t (x0) ⊆ B2�t

satisfying ϒ(±s±,z±)(ω) ∈ Dδ (note that (−2δ�t, 2δ�t) × B2δ�t (0) ⊇ B2δ�t , while (3.21)
implies Ct + 10δ�t ≤ 13Mδ�t ≤ �t). Now let cδ,� := 13Mδ� (≤ 1

2 by (3.21)). Since
we have s± ≥ Ct ≥ M(|z± − x0| + 1) and 2Mδ�t ≥ M , as well as

s± + 2Mδ�t ≤ Ct + 10Mδ�t ≤ cδ,�t,

from (3.4), (3.22), and ϒ(±s±,z±)(ω) ∈ Dδ we obtain

�1/2(t, ω; 0, x0) − x0 ⊆ �1/2(t + s− + 2Mδ�t, ω;−s−, z−) − z−
= �1/2(t + s− + 2Mδ�t, ϒ(−s−,z−)(ω)) ⊆ (1 + δ)(1 + cδ,�)tS

and

�1/2(t, ω; 0, x0) − x0 ⊇ �1/2(t − s+ − 2Mδ�t, ω; s+, z+) − z+
= �1/2(t − s+ − 2Mδ�t, ϒ(s+,z+)(ω)) ⊇ (1 − δ)(1 − cδ,�)tS

for any ω ∈ �′
δ and t ≥ tω,δ,�. Since limδ→0 cδ,� = 0 for each � ≥ 1, this shows that for

each ω ∈ �′′ := ⋂
L∈(26M,∞)∩N �′

1/L (so P[�′′] = 1) and (δ,�) ∈ (0, 1) × [1,∞), we
indeed have (3.20) when t is large enough and x0 ∈ B�t (0). ��

If now only H := (A, b, fu(·, ·, 0, ·)) is space-time stationary (rather than (A, b, f )), we
let

f ′(t, x, u, ω) := fu(t, x, 0, ω)min{u, 1 − u}, (3.24)

so that Lemma 3.1 and Theorem 3.2 apply to (1.1) with f ′ in place of f . We will use the
virtual linearity property of (1.1) with KPP f , expressed in Theorem 1.2 in [36], to show that
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the leading order solution dynamic (as t → ∞) of (1.1) with f coincides with the “Wulff
shape spreading dynamic” (1.9) (where S is the strong deterministic Wulff shape for f ′), and
hence conclude Theorem 1.3(i) for f .

First, note that taking t → ∞ for any fixed δ > 0 in Theorem 1.2 in [36] with initial
conditions u(0, ·) = 1

2χB1(x0) (x0 ∈ R
d ), and then taking δ → 0, immediately shows that

the strong deterministic Wulff shape S for f ′ is also a strong deterministic Wulff shape for
f (here we also use the hair-trigger effect property discussed at the start of this section, but
with u(0, ·) ≥ θχB1(0) replaced by u(0, ·) ≥ θχB1(0)∩(0,1)d , which holds equally). Hence
Lemma 3.1 and Theorem 3.2 remain valid if only (A, b, fu(·, ·, 0, ·)) is space-time stationary,
with S only depending on (A, b, fu(·, ·, 0, ·)).

Let now �′ ∈ F with P[�′] = 1 be a set (of almost all ω ∈ �) from Theorem 3.2 for f ′
in place of f , and fix any ω ∈ �′. Note that “unscaled” versions of (1.11) and (1.12) are

θχ(ε−1(G+yε))0
ε−1ρ(ε)

≤ uε(0, ·, ω) ≤ χB
ε−1ρ(ε)

(ε−1(G+yε)) (3.25)

and
lim
ε→0

uε(ε
−1T , ε−1(x + yε), ω) = χGS (T , x), (3.26)

withuε solving (1.1) and t replacedbyT so that applying (3.14) later does not cause confusion.
Let us first consider the case of bounded G, that is, we have G ⊆ B�(0) after possibly
increasing � from the statement of Theorem 3.2. Fix any T0 > 0.

Applying now Theorem 1.2 in [36] to the initial values from (3.25), together with the first
claim in (3.14) with 2�

T0
in place of �, and with the fact that S is the strong deterministic

Wulff shape for (1.1) with f ′ in place of f , shows that for any δ > 0 we have

lim
ε→0

inf
T≥T0

inf
z∈ε−1

(
(G+yε)0ρ(ε)

+T (1−δ)2S
) uε(ε

−1T , z, ω) = 1

(here we again use the hair-trigger effect if θ < 1
2 ). Since the set under the inf contains

ε−1(G + T (1− δ)3S + yε) for any T ≥ T0 as long as ε > 0 is small enough, taking δ → 0
yields (3.26) locally uniformly on GS . We can use a similar argument based on the second
claim in (3.14) to show that

lim
ε→0

sup
T≥T0

sup
z /∈ε−1(Bρ(ε)(G+yε)+T (1+δ)2S)

uε(ε
−1T , z, ω) = 0, (3.27)

provided that we also have uε(0, ·, ω) ≤ 1
2 . We obviously obtain the same result for (1.1)

with f ′ in place of f . But this means that we now get (3.27) without the additional hypothesis
uε(0, ·, ω) ≤ 1

2 because 1
2uε is a subsolution to (1.1) with f ′ in place of f that is initially

≤ 1
2 . So after again taking δ → 0, we obtain (3.26) locally uniformly on ((0,∞)×R

d)\GS .
So to obtain Theorem 1.3(i) for all bounded G, it suffices to extend this convergence to

the union of the above set and {0} × (Rd \G). But this follows from the spreading speeds of
solutions to (1.1) being uniformly bounded above, namely by

a := (1 + d + d2)max

{
max
i, j

‖Ai, j‖L∞ ,max
i

‖bi‖L∞ , ‖ fu(·, ·, 0, ·)‖L∞
}

because v(t, x) := eat−(x−x0)·e is a supersolution to (1.1) for any (x0, e) ∈ R
d × S

d−1.
So if G is convex, then for each x /∈ G and any solution uε to (1.1) with uε(0, ·, ω) ≤
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χB
ε−1ρ(ε)

(ε−1(G+yε)) we have

lim
ε→0

sup
T∈[0,a−1d(x,G)−δ]

uε(ε
−1T , ε−1(x + yε), ω) = 0

for any δ > 0. If G is not convex, a similar result is obtained by instead using supersolutions
ea(t−t0)

∑d
i=1(e

(x−x0)·ei + e−(x−x0)·ei ), where {e1, . . . , ed} is the standard basis in R
d .

Finally, if G is unbounded, then it clearly suffices to prove (3.26) locally uniformly on
([0, M]×BM (0))\∂GS for anyM > 0. The last argument above (together with Theorem 1.2
in [36]) shows that ifweonly consider (T , x) in this set,we can replaceG byG∩B(2+a−1)M (0)
because uε(0, ·, ω) at points outside Bε−1(2+a−1)M (0) will have no effect on uε(·, ·, ω) on
the set [0, ε−1M] × Bε−1M (0) in the limit ε → 0. But since G ∩ B(2+a−1)M (0) is bounded,
the argument in the bounded G case applies and yields Theorem 1.3(i) for unbounded G as
well.

4 Proof of Theorem 1.3(ii)

The arguments from the start of the previous section (prior to Lemma 3.1) also apply here,
andwewill again consider (3.1) as well as u(t, x, ω; t0, x0),�θ(t, ω; t0, x0), and τ t0(x0, x, ω)

as above. We will also again first assume that H := (A, b, f ) is space-time stationary, and
denote F±

t := F±
t (H). We now have the following analogs of Lemma 3.1 and Theorem 3.2.

Lemma 4.1 Assume the hypotheses of Lemma 3.1, but with lims→∞ φH (s) = 0 for H :=
(A, b, f ) instead of lims→∞ sαφH (s) = 0. Then for each e ∈ S

d−1, there is τ̄ (e) satisfying
(3.9) and (3.11) such that for each (t0, x0) ∈ R

d+1 we have

lim
r→∞

τ t0(x0, x0 + re, ·)
r

= lim
r→∞

E
[
τ t0(x0, x0 + re, ·)]

r
= τ̄ (e) in probability. (4.1)

Proof Same as Lemma 3.1, using the convergence in probability claim in Theorem 2.1. ��
Theorem 4.2 Under the hypotheses of Lemma 4.1,S from (3.12)withw from (3.13) is convex,
and it is a strong Wulff shape for (1.1) in probability. The latter means that

lim
t→∞ P

[
(1 − δ)sS ⊆ �θ(s, ·; 0, x0) − x0 ⊆ (1 + δ)sS ∀(s, x0) ∈ [δt, δ−1t] × B�t

] = 1

(4.2)
holds for each δ, θ ∈ (0, 1) and � ≥ 0.

Proof Let e1, e2 ∈ S
d−1 be arbitrary with e2 �= −e1, and let e′ := e1+e2|e1+e2| . From (3.5) and

|e1 + e2|e′ = e1 + e2 and we obtain for each r > 0 and ω ∈ �,

τ 0(0, |e1 + e2|re′, ω) ≤ τ 0(0, re1, ω) + τ τ 0(0,re1,ω)(re1, r(e1 + e2), ω). (4.3)

Then (4.1) shows that for each ε > 0 and any large enough r , there is ωr ,ε ∈ � such that

max
{|τ 0(0, |e1 + e2|re′, ωr ,ε) − |e1 + e2|r τ̄ (e′)|, |τ 0(0, re1, ωr ,ε) − r τ̄ (e1)|

} ≤ rε,

as well as (using also (3.8))

τ τ 0(0,re1,ωr,ε)(re1, r(e1 + e2), ωr ,ε) ≤ τ r τ̄ (e1)+rε(re1, r(e1 + e2), ωr ,ε)

+2rε ≤ r τ̄ (re2) + 3rε.
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From these and (4.3) we obtain

|e1 + e2|τ̄ (e′) ≤ τ̄ (e1) + τ̄ (e2) + 5ε,

and after taking ε → 0 this becomes

w(e′) ≥ w(e1)w(e2)

w(e1) + w(e2)
|e1 + e2|.

The angle bisector theorem now shows that S is convex.

It remains to prove (4.2). Let ε := δ2

10M(1+Mδ)
, let s1, . . . , sN ∈ [δ, δ−1] be such that

[δ, δ−1] ⊆ ⋃N
j=1 Bε(s j ), and let e1, . . . , eN ∈ S\{0} be such that S ⊆ ⋃N

i=1 Bε(ei ). Thus

for any t > 0, and any s ∈ [δt, δ−1t] and v ∈ sS, there are i, j ∈ {1, . . . , N } such that
|s − ts j | ≤ tε and |v − sei | ≤ sε ≤ δ−1tε. It follows from (3.7) and |ei | ≤ M that

∣∣τ 0(0, v, ω) − τ 0(0, ts j ei , ω)
∣∣ ≤ M(|v − ts j ei | + 1) ≤ M(δ−1tε + Mtε + 1). (4.4)

By Lemma 4.1, we also have

lim
t→∞ P

[∣∣∣∣
τ 0(0, ts j ei , ·)

ts j |ei | − 1

w(ei |ei |−1)

∣∣∣∣ ≥ ε

]
= 0 (4.5)

for each i, j ∈ {1, . . . , N }. From (4.4) and s j |ei | ≤ Mδ−1 we obtain

P

[
sup
v∈sS

τ 0(0, v, ·) ≥ (s + tε) + Mδ−1tε + M(δ−1tε + Mtε + 1) for some s ∈ [δt, δ−1t]
]

≤ P

[
max

i, j∈{1,··· ,N } τ
0(0, ts j ei , ·) ≥ ts j + Mδ−1tε

]

≤
N∑

i, j=1

P
[
τ 0(0, ts j ei , ·) ≥ ts j + ts j |ei |ε

]
,

which converges to 0 as t → ∞ by (4.5) and |ei | ≤ w(
ei|ei | ). This implies that

lim
t→∞ P

[
sS ⊆ �1/2(s + 2M(δ−1 + M)tε + M, ·) ∀s ∈ [δt, δ−1t]] = 1. (4.6)

Next, let e′
1, . . . , e

′
N ′ ∈ R

d\S be such that BM (0)\S ⊆ ⋃N ′
i=1 Bε(e′

i ). It is clear that (3.19)
still holds, as does (4.5) with e′

i and N ′ in place of ei and N . For any t ≥ Mδ−1, and any
s ∈ [δt, δ−1t] and v ∈ BMs(0)\sS, there are i ∈ {1, . . . , N ′} and j ∈ {1, . . . , N } such that
(4.4) holds with e′

i in place of ei . This, together with (3.19) and s j |ei | ≤ Mδ−1, yields

P

[
inf

v∈(sS)c
τ 0(0, v, ·) ≤ s − tε − Mδ−1tε − M(δ−1tε + Mtε + 1) for some s ∈ [δt, δ−1t]

]

≤ P

[
min

i∈{1,··· ,N ′}& j∈{1,··· ,N }
τ 0(0, ts j e

′
i , ·) ≤ ts j − Mδ−1tε

]

≤
N ′∑

i=1

N∑

j=1

P
[
τ 0(0, ts j e

′
i , ·) ≤ ts j − ts j |ei |ε

]
,

which converges to 0 as t → ∞ by (4.5) and |e′
i | ≥ w(

e′
i

|e′
i | ). Therefore we get

lim
t→∞ P

[
�1/2(s − 2M(δ−1 + M)tε − M, ·) ⊆ sS ∀s ∈ [δt, δ−1t]] = 1.

123



Homogenization for space-time-dependent... Page 17 of 22 248

Since ε < δ
2M(δ−1+M)

, this and (4.6) yield (4.2) with (θ,�) = ( 12 , 0).

Let us now extend this to the general case. Fix any δ ∈ (0, 1) and again let ε := δ2

10M(1+Mδ)
.

Stationarity of (A, b, f ) and (4.2) with (θ,�) = ( 12 , 0) show that for each σ ∈ (0, 1), there
is Cσ ≥ 1

ε
such that for any (t0, z) ∈ R

d+1 and t ≥ Cσ ,

P
[
(1 − δ)sS ⊆ �1/2(t0 + s, ·; t0, z) − z ⊆ (1 + δ)sS ∀s ∈ [2−1δt, 2δ−1t]] ≥ 1 − σ.

(4.7)
Fix any � ≥ 0 and let y1, . . . , yN ′′ ∈ B�(0) be such that B�(0) ⊆ ⋃N ′′

i=1 Bε(yi ). For each
t ≥ Cσ and x0 ∈ B�t (0), there is i ∈ {1, . . . , N ′′} such that |x0 − t yi | ≤ tε. Then (3.4)
yields for all s ≥ M(2tε + 1),

�1/2(s − M(2tε + 1), ·;M(tε + 1), t yi ) − t yi ⊆ �1/2(s, ·; 0, x0) − x0

⊆ �1/2(s + M(2tε + 1), ·; −M(tε + 1), t yi ) − t yi
(4.8)

(using (3.4) twice with s′ := Mtε ≥ M). Since ε ≤ δ2

10M and t ≥ 1
ε
, for any s ≥ δt we have

M(3tε + 2) ≤ 5Mtε ≤ δ2t

2
≤ δs

2
, (4.9)

and therefore
(1 − 2δ)sS ⊆ (1 − δ)(s − M(3tε + 2))S. (4.10)

and
(1 + δ)(s + M(3tε + 2))S ⊆ (1 + 2δ)sS (4.11)

Since also M(2tε + 1) ≤ δt ≤ s, (4.8)–(4.11) imply

P
[
(1 − 2δ)sS � �1/2(s, ·; 0, x0) − x0 for some (s, x0) ∈ [δt, δ−1t] × B�t (0)

]

≤
N ′′∑

i=1

P
[
(1 − δ)(s − M(3tε + 2))S � �1/2(s − M(2tε + 1), ·; M(tε + 1), t yi ) − t yi

for some s ∈ [δt, δ−1t]]

and

P
[
�1/2(s, ·; 0, x0) − x0 � (1 + 2δ)sS for some (s, x0) ∈ [δt, δ−1t] × B�t (0)

]

≤
N ′′∑

i=1

P
[
�1/2(s + M(2tε + 1), ·; −M(tε + 1), t yi ) − t yi � (1 + δ)(s + M(3tε + 2))S

for some s ∈ [δt, δ−1t]].
Both right-hand sides are≤ σ , due to (4.7)with (s, t0, z) = (s∓M(3tε+2),±M(tε+1), t yi )
(note that (4.9) shows that s ± M(3tε + 2) ∈ [2−1δt, 2δ−1t] when s ∈ [δt, δ−1t]). Thus,
after taking σ → 0 and then replacing δ by δ

2 , we obtain (4.2) with θ = 1
2 . The general

case follows from parabolic Harnack inequality and hair-trigger effect as in the proof of
Theorem 3.2. ��

Wenow note that it suffices to prove Theorem 1.3(ii) with yε = 0 for all ε ∈ (0, 1) because
we assume space-time stationarity of H . Recall that for now we assume that H = (A, b, f ),
although this claim also holds in the general case.
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Let us first assume that f equals f ′ from (3.24), and that G is bounded. Then assume
without loss that δ ∈ (0, 1) is such that G ⊆ Bδ−1(0). Note that the “unscaled" version of
(1.11) (with yε = 0) is

θχ(ε−1G)0
ε−1ρ(ε)

≤ uε(0, ·, ω) ≤ χB
ε−1ρ(ε)

(ε−1G) (4.12)

for uε(·, ·, ω) := uε(ε−1·, ε−1·, ω), which solves (1.1). Let us define

�θ ′,ε(t, ω) :=
{
x ∈ R

d | uε(t, x, ω) ≥ θ ′}

for each θ ′ ∈ (0, 1). Therefore (1.13) will follow if we prove

lim
ε→0

P
[
ε−1G + ε−1(1 − δ)tS ⊆ �θ ′,ε(ε

−1t, ·) ⊆ ε−1G + ε−1(1 + δ)tS ∀t ∈ [δ, δ−1]] = 1.

(4.13)
The hair-trigger effect, (3.2), (4.12), and the comparison principle imply that there is

M ′ ≥ M such that with sε := Mε−1ρ(ε) + M ′ we have B1(ε
−1G) ⊆ �1/2,ε(sε, ω) for

all (ε, ω) ∈ (0, 1) × �. Then u(0, ·, ω; cε, ε
−1x0) ≤ uε(sε, ·, ω) for any x0 ∈ G, so the

comparison principle yields for all (t, x0) ∈ R
+ × G,

�θ ′(ε−1t, ω; cε, ε
−1x0) ⊆ �θ ′,ε(ε

−1t + sε, ω). (4.14)

Since space-time stationarity of H and Theorem 4.2 with ( δ
2 , θ

′, 1
δ
) in place of (δ, θ,�)

yield

lim
ε→0

P

⎡

⎣ε−1G + ε−1(1 − 2−1δ)tS ⊆
⋃

x0∈G
�θ ′(ε−1t, ·; cε, ε

−1x0) ∀t ∈ [2−1δ, 2δ−1]
⎤

⎦ = 1,

(4.14) and limε→0 εcε = 0 show that the probability of just the first inclusion in (4.13)
converges to 0 as ε → 0.

Next, from Theorem 1.2 in [36], and Remarks 2 and 3 following it, we see that for each
δ > 0, there is Cδ > 0 such that for each (ε, ω) ∈ (0, 1) × � and t ≥ Cδ we get from (4.12)
that

uε(t, ·, ω) ≤ δ + sup
z∈B

ε−1ρ(ε)
(ε−1G)

uz
(
(1 + 4−1δ)t, ·, ω) ,

where uz is a solution to (1.1) with initial data uε(0, ·, ω)χB1(z) (unit cubes were used in
[36] instead of unit balls, but simple scaling shows that these can be replaced by cubes of
side-length 1

d , which are contained in the corresponding unit balls; recall also that we now
have f = f ′). This shows that for any (θ ′, ω) ∈ (0, 1) × � and t ≥ Cδ we have

�θ ′,ε(t, ω) ⊆
⋃

z∈B
ε−1ρ(ε)

(ε−1G)

�z
θ ′−δ

((1 + 4−1δ)t, ω), (4.15)

where �z
θ ′(t, ω) := {x ∈ R

d | uz(t, x, ω) ≥ θ ′}. Since 1
2 min{u, 1 − u} ≤ min{ 12u, 1 − 1

2u},
we see that 12uz is a subsolution to (1.1) and

1
2uz(0, ·, ω) ≤ 1

2χB1(z). The comparison principle
then shows that

�z
θ ′−δ

(
(1 + 4−1δ)t, ω

) ⊆ �(θ ′−δ)/2
(
(1 + 4−1δ)t, ω; 0, z) . (4.16)

Hence (4.15), (4.16), and Theorem 4.2 with ( δ
2 ,

θ ′−δ
2 , 2

δ
) in place of (δ, θ,�) yield for any

δ < θ ′,

lim
ε→0

P
[
�θ ′,ε(t, ·) ⊆ ε−1Bρ(ε)(G) + ε−1(1 + 2−1δ)(1 + 4−1δ)tS ∀t ∈ [δ, δ−1]] = 1.
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But this, (1 + 2−1δ)(1 + 4−1δ) < 1 + δ, and limε→0 ρ(ε) = 0 show that the probability of
just the second inclusion in (4.13) converges to 0 as ε → 0. Therefore we proved (4.13) and
hence Theorem 1.3(ii) for all bounded G when f = f ′.

This now extends to general f because Theorem 1.2 in [36] shows that for any δ > 0 and
all large enough t we have

±[u(t, ·, ω; 0, 0) − u′ ((1 ± δ)t, ·, ω; 0, 0) ] ≤ δ,

where u′(·, ·, ω; 0, z) solves (1.1) with f ′ in place of f and u′(0, ·, ω; 0, z) := 1
2χB1(z).

This also shows that f and f ′ have the same S, which thus only depends on H :=
(A, b, fu(·, ·, 0, ·)).

Finally, the extension to unbounded G is obtained as in the proof of Theorem 1.4 in [37]
(this uses that, similarly to (3.2), perturbations to initial data propagate with speeds ≤ M).
Hence the proof of Theorem 1.3(ii) is finished.

Remark To prove Remark 6 after Theorem 1.3, one can use (2.2). This yields Lemma 3.1
with (3.10) replaced by

lim inf
r→∞

τ t0(x0, x0 + re, ω)

r
≥ lim

r→∞
E
[
τ t0(x0, x0 + re, ·)]

r
= τ̄ (e),

which then implies the second claim in (3.14) as in the proof of Theorem 3.2. The argument
at the end of Sect. 3 then proves the remark.

5 Proof of Theorem 1.5

Let us fix any ω ∈ �. Theorem 7.2 in [12] shows that under our hypotheses on (c, v),

u(t, x, ω) := sup
x∈�(t,ω;0,y)

u(0, y, ω) (5.1)

is a viscosity solution to (1.3).We claim that u(·, ·, ω) is uniformly continuous on [0, T ]×R
d

for each T > 0 whenever u(0, ·, ω) is uniformly continuous. Indeed, let (t, x, y) ∈ R
2d+1

be such that (t, x) is ω-reachable from (0, y). Then there is α : [0, t] → B1(0) ⊆ R
d and an

absolutely continuous path γ : [0, t] → R
d such that γ (0) = y, γ (t) = x , and

γ ′(s) = v(s, γ (s), ω) + c(s, γ (s), ω)α(s)

for a.e. s ∈ [0, t]. Pick any (τ, z) ∈ R
d+1, and extend α to (t, τ ] by 0 if τ > t . Then define

β : [0, τ ] → R
d via the terminal value problem β(τ) = z and

β ′(s) = v(s, β(s), ω) + c(s, β(s), ω)α(s)

for a.e. s ∈ [0, τ ]. If we let τ ′ := min{t, τ } and y′ := β(0). The two ODEs yield

|y − y′| ≤ eCτ ′
(|x − z| + C |t − τ |), (5.2)

where

C := ‖v‖L∞ + ‖∇xv‖L∞ + ‖∇x c‖L∞ .

It is clear that (τ, z) isω-reachable from (0, y′), so uniform continuity of u(·, ·, ω) on [0, T ]×
R
d for each T > 0 follows from uniform continuity of u(0, ·, ω). Then by, e.g. Exercise 3.9

in [2], we obtain that there is a unique uniformly continuous viscosity solution to (1.3) for
any uniformly continuous initial data.
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Let us now prove (i). Since ∇x · v(t, ·, ω) = 0 a.e. for all (t, ω) ∈ R × � and we
have (1.18), it follows from Corollary 1.3 in [6] that there is M ≥ 1 such that for any
(t0, x0, ω) ∈ R

d+1 × �,

BM−1t (x0) ⊆ �(t, ω; t0, x0) for all t ≥ M, (5.3)

with� from (1.15). (We note that that result yields (5.3) if we replace c(t, x, ω) in (1.3) by the
constant inf(t,x,ω)∈Rd+1×� c(t, x, ω), but then (5.3) follows from the comparison principle.)
Since v and c are bounded, after possibly increasing M we also obtain

�(t, ω; t0, x0) ⊆ BMt (x0) for all t ≥ 0. (5.4)

Thus (3.2) holds for all (t0, x0, ω) ∈ R
d+1 × � with � in place of �1/2. We also define the

arrival time to a point x ∈ R
d , when starting at (t0, x0) ∈ R

d+1, by

τ t0(x0, x, ω) := inf{t ≥ 0 | x ∈ �(t, ω; t0, x0)}. (5.5)

The same arguments as in Sect. 3 yield (3.3) and (3.5)–(3.8), with� in place of�1/2.More-
over, (1.15) shows that if x ′ ∈ �(t, ω; t0, x0), then �(s′, ω; t0 + t, x ′) ⊆ �(t + s′, ω; t0, x0)
for any s′ ≥ 0. This with t + s in place of t , together with (3.3) and (5.3) with s′ in place of
t , now yields (3.4) with � in place of �1/2.

All this shows that if H := (c, v) is space-time stationary and lims→∞ sαφH (s) = 0 for
some α > 0, then Lemma 3.1 holds with τ t0 from (5.5) and with the same proof. So we
can again define τ̄ , w, and S via (3.10), (3.13), and (3.12). The proof of Theorem 3.2 also
extends to this setting, with � in place of �1/2 (and without the sentence after (3.20)). We
thus obtain for any δ ∈ (0, 1) and � ≥ 1 some ��,δ ⊆ � with P[��,δ] = 1 such that

x + (1 − δ)tS ⊆ �(t, ω; 0, x) ⊆ x + (1 + δ)tS (5.6)

holds for each (x, ω) ∈ B�t (0)×��,δ whenever t is sufficiently large, depending onω, δ,�

(this is just (3.20) above). Note that we need neither the parabolic Harnack inequality nor the
hair-trigger effect here due to (1.15).

Fix any R > 0. From (1.16) we obtain

uε(t, x + yε, ω) = sup
x+yε∈ε�(ε−1t,ω;0,ε−1y)

uε(0, y, ω). (5.7)

This, (1.19), (1.17), (5.6) with � + R + M in place of �, and (5.4) yield that for each
ω ∈ �′ := ⋂

n∈N �n,1/n (so P[�′] = 1) and x ∈ BR(0) we have

ū((1 − δ)t, x) − ρ(ε) ≤ uε(t, x + yε, ω) ≤ ū((1 + δ)t, x) + ρ(ε) (5.8)

for any δ > 0 and t ∈ [ 1R , R] whenever ε is small enough (depending on δ, R,�, ω). If ϕ is
a modulus of continuity for u0 (with limr→0 ϕ(r) = 0), from (1.17), (5.4), and S ⊆ BM (0),
we also have

|ū(t, x) − ū(t ′, x ′)| ≤ ϕ(|x − x ′| + M |t − t ′|) (5.9)

for any (t, t ′, x, x ′, ω) ∈ [0,∞)2 × R
2d × �. This and (5.8) show that uε(·, · + yε, ω) → ū

locally uniformly on R
+ × R

d as ε → 0 (for each ω ∈ �′). This then easily extends to
locally uniform convergence on [0,∞) × R

d (i.e., up to time 0), using (5.4) with t0 = 0,
S ⊆ BM (0), (1.16), (1.17), (1.19), and limr→0 ϕ(r) = limε→0 ρ(ε) = 0. This finishes the
proof of (i).

Let us now turn to (ii). As in the proof of Theorem 1.3(ii), it suffices to consider yε = 0.
Since we have (3.2)–(3.8) with � in place of �1/2, the proofs of Lemma 4.1 and Theorem 4.2
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with � in place of �θ extend to the present setting (again with no need for the parabolic
Harnack inequality or the hair-trigger effect). Hence, for any R > 0 and δ ∈ (0, 1) we have

lim
t→∞ P

[
(1 − δ)sS ⊆ �(s, ·; 0, x0) − x0 ⊆ (1 + δ)sS ∀(s, x0) ∈ [R−1t, Rt] × BRt

] = 1.

(5.10)
But then the argument proving (5.8) again applies, so after using (5.10) and (5.9) we obtain

lim
ε→0

P
[|uε(t, x, ω) − ū(t, x)| ≤ ϕ(MδR) + ρ(ε) ∀(t, x) ∈ [R−1, R] × BR

] = 1.

The result now follows by taking δ := R−2 and ε → 0, althoughwith (t, x) ∈ [δ, δ−1]×Bδ−1

inside the probability. The extension up to time 0 is the same as in part (i).
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