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Abstract
In this paper, we develop a series of boundary pointwise regularity for Dirichlet problems
and oblique derivative problems. As applications, we give direct and simple proofs of the
higher regularity of the free boundaries in obstacle-type problems and one phase problems.

Mathematics Subject Classification Primary 35B65 · 35J25 · 35R35

1 Introduction

In this paper, we prove some new pointwise boundary regularity for Dirichlet problems:{
�u = f in � ∩ B1;
u = g on ∂� ∩ B1

(1.1)

and oblique derivative problems:{
�u = f in � ∩ B1;
β · Du = g on ∂� ∩ B1,

(1.2)

where � ⊂ R
n is a bounded domain, 0 ∈ ∂� and β is some given vector valued function on

∂� ∩ B1. The pointwise regularity shows a clear and deep relation between the regularity
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of solutions and the regularity of prescribed data. It can be tracked at least to the work of
Caffarelli [3] for the interior pointwise regularity of fully nonlinear elliptic equations. Various
pointwise regularity have been developed by many researchers since then, such as boundary
regularity [12, 20], regularity for equations with lower terms [11, 15, 19–21], regularity for
parabolic equations [22–24] and regularity for the Monge-Ampère equation [18] etc.

In this paper, we develop a series of boundary pointwise regularity for Dirichlet problems
and oblique derivative problems. We show that if the derivatives of u vanish, u possesses
higher regularity than the usual. This was first observed in [12] and we give a complete
treatment for the Dirichlet problems (1.1) and the oblique derivative problems (1.2) here.

As applications of these pointwise regularity, we prove the higher regularity of free
boundaries in obstacle-type problems and one phase problems without using the partial
hodograph-Legendre transformation (see [17]), which is a standard method up to now. We
clarify the idea briefly. Take the Dirichlet problem (1.1) for instance. It is well-known that
if ∂� ∈ Ck,α (k ≥ 1), u ∈ Ck,α . On the other hand, the regularity of u may lead to the
regularity of ∂� since ϕi = −ui/un (1 ≤ i < n), where ϕ is the representation function
of ∂�. If a problem is an overdetermined problem, i.e., we have more conditions on u on
the boundary, we may have higher regularity for u and then higher regularity for ∂� and so
forth. Eventually, u and ∂� are infinite smooth.

Before stating our main results, we introduce some notations for pointwise regularity. The
first is the pointwise characterization of a function in Hölder spaces, which is well-known
now.

Definition 1.1 Let U ⊂ R
n be a bounded set and f : U → R be a function. We say that f

is Ck,α (k ≥ 0, 0 < α ≤ 1) at x0 ∈ U or f ∈ Ck,α(x0) if there exist constants K , r0 > 0
and a polynomial P ∈ Pk (i.e., degree less than or equal to k) such that

| f (x) − P(x)| ≤ K |x − x0|k+α, ∀ x ∈ U ∩ Br0(x0). (1.3)

Then define Di f (x0) = Di P(x0) (1 ≤ i ≤ k),

[ f ]Ck,α(x0) = min
{
K

∣∣(1.3) holds with P and K
}
,

‖ f ‖Ck,α(x0) = ‖P‖ + [ f ]Ck,α(x0).

If f ∈ Ck,α(x) for any x ∈ U with the same r0 and

‖ f ‖Ck,α(Ū ) = sup
x∈U

‖ f ‖Ck (x) + sup
x∈U

[ f ]Ck,α(x) < +∞,

we say that f ∈ Ck,α(Ū ).
In addition, we say that f is C−1,α at x0 or f ∈ C−1,α(x0) if there exist constants

K , r0 > 0 such that

‖ f ‖Ln(Ū∩Br (x0)) ≤ Krα, ∀ 0 < r < r0. (1.4)

Then define

‖ f ‖C−1,α(x0) = min
{
K

∣∣(1.4) holds with K
}
.

If f ∈ C−1,α(x) for any x ∈ U with the same r0 and

‖ f ‖C−1,α(Ū ) := sup
x∈U

‖ f ‖C−1,α(x) < +∞,

we say that f ∈ C−1,α(Ū ).
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Remark 1.2 IfU is a smooth domain (e.g. a Lipschitz domain), the definition of f ∈ Ck,α(Ū )

(k ≥ 0) is equivalent to the classical definition.

Remark 1.3 In this paper, we apply Definition 1.1 only to two kinds of sets:
(i) U is a domain, i.e., U = � ∩ B1 in our paper. We use this set for the solution u and

the righthand term f since they are defined in � ∩ B1.
(ii) U is the boundary of a domain, i.e., U = ∂� ∩ B1 in our paper. We use this set for

the boundary term g since it is only defined on ∂� ∩ B1.
If we use Definition 1.1 on ∂�∩ B1, the polynomial P in (1.3) is not unique. For example,

if

∂� ∩ B1 = {x : xn = 0} ∩ B1

and P satisfies (1.3) on ∂� ∩ B1, then P + Q · xn also satisfies (1.3) for any polynomial Q.

Remark 1.4 In fact, the non-uniqueness of P is related to theboundary regularity. For instance,
assume that ∂� ∈ C1,α(0) (see Definition 1.5) and g = xn on ∂�. We can regard g as a
C∞(0) function since

|g − xn | ≡ 0 on ∂�.

On the other hand, we can regard g as a C1,α(0) function. Indeed, since ∂� ∈ C1,α(0),

|g(x)| = |xn | ≤ [∂�]C1,α(0)|x ′|1+α on ∂�.

The benefit of the second viewpoint is that Dg(0) = 0, which is used for the boundary
pointwise regularity (see Theorem 1.9).

The next is a pointwise characterization of the smoothness of a domain’s boundary. This
definition is similar to Definition 1.1. That is, both definitions use polynomials to describe
the smoothness. It was first introduced in [12].

Definition 1.5 Let � be a bounded domain, � ⊂ ∂� be relatively open and x0 ∈ �. We say
that � is Ck,α (k ≥ 0, 0 < α ≤ 1) at x0 or � ∈ Ck,α(x0) if there exist constants K , r0 > 0, a
coordinate system {x1, ..., xn} (isometric to the original coordinate system) and a polynomial
P ∈ Pk with P(0) = 0 and DP(0) = 0 (if k ≥ 1) such that x0 = 0 in this coordinate system,

Br0 ∩ {(x ′, xn)
∣∣xn > P(x ′) + K |x ′|k+α} ⊂ Br0 ∩ � (1.5)

and

Br0 ∩ {(x ′, xn)
∣∣xn < P(x ′) − K |x ′|k+α} ⊂ Br0 ∩ �c. (1.6)

Then, define

[�]Ck,α(x0) = min
{
K

∣∣(1.5) and (1.6) hold with P and K
}

and

‖�‖Ck,α(x0) = ‖P‖ + [∂�]Ck,α(x0).

If � ∈ Ck,α(x) for any x ∈ � with the same r0 and

‖�‖Ck,α := sup
x∈�

‖�‖Ck (x) + sup
x∈�

[�]Ck,α(x) < +∞,

we say that �̄ ∈ Ck,α . If �̄′ ∈ Ck,α for any �′ ⊂⊂ �, we say that � ∈ Ck,α . If � ∈ Ck,α for
any k ≥ 1 and 0 < α ≤ 1, we say that � ∈ C∞.
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Remark 1.6 The (1.5) and (1.6) means that the difference between ∂� ∩ Br0 and P is con-
trolled by K |x ′|k+α . Hence, this is an analogue of the pointwise Ck,α for a function. One
benefit of Definition 1.5 is that ∂� ∩ Br0 doesn’t need to be the graph of some function. It
could be rather complicated.

Remark 1.7 Throughout this paper, if we say that f ∈ Ck,α(x0) (� ∈ Ck,α(x0)), we use Pf

(P�) to denote the corresponding polynomial in Definition 1.1 (Definition 1.5).

Remark 1.8 We always assume that 0 ∈ ∂� and study the pointwise regularity at 0 for (1.1)
and (1.2). In addition, if we use Definitions 1.1 and 1.5 at 0, we always assume that r0 = 1,
and (1.5) and (1.6) hold if we say ∂� ∩ B1 ∈ Ck,α(0).

We also use the following notation to describe the oscillation of ∂� near 0. For r > 0,
define

osc
Br

∂� = sup
x∈∂�∩Br

xn − inf
x∈∂�∩Br

xn .

Now, we state our main results.

Theorem 1.9 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in � ∩ B1;
u = g on ∂� ∩ B1.

(1.7)

Suppose that for some integers k, l ≥ 1, u ∈ Ck,α(0), f ∈ Ck+l−2,α(0), g ∈ Ck+l,α(0) and
∂� ∩ B1 ∈ Cl,α(0). Moreover, assume that

u(0) = · · · = |Dku(0)| = |Dg(0)| = · · · = |Dkg(0)| = 0.

Then u ∈ Ck+l,α(0). That is, there exists P ∈ Pk+l such that

|u(x) − P(x)| ≤ C |x |k+l+α
(‖u‖L∞(�1) + ‖ f ‖Ck+l−2,α(0) + ‖g‖Ck+l,α(0)

)
, ∀ x ∈ � ∩ B1,

|Dk+1u(0)| + · · · + |Dk+l u(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖Ck+l−2,α(0) + ‖g‖Ck+l,α(0)

)
and

�P ≡ Pf , 	k+l
(
P(x ′, P�(x ′))

) ≡ 	k+l
(
Pg(x

′, P�(x ′))
)
, (1.8)

where C depends only on n, k, l, α and ‖∂� ∩ B1‖Cl,α(0).

Remark 1.10 For the notion of viscosity solutions and related theories, we refer to [4, 5].

Remark 1.11 In this theorem, we assume that g ∈ Ck+l,α(0). It means that there exists a
polynomial Pg such that

|g(x) − Pg(x)| ≤ C |x |k+l+α, ∀ x ∈ ∂� ∩ B1.

If we take the polynomial corresponding to u (denoted by Pu), we of course have

|g(x) − Pu(x)| = |u(x) − Pu(x)| ≤ C |x |k+α, ∀ x ∈ ∂� ∩ B1.

and

|g(0)| = |Dg(0)| = · · · = |Dkg(0)| = 0.

As we have explained before, the polynomial for g is not unique. We can’t conclude that
Pg ≡ Pu . Hence, besides assuming that g ∈ Ck+l,α(0), we must assume |g(0)| = · · · =
|Dkg(0)| = 0 additionally since Pg 
= Pu .
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Remark 1.12 In fact, the expression of the polynomial P can be written explicitly:

P(x) = Pg(x) + 	k+l

⎛
⎜⎜⎝ ∑

k+1≤|σ |≤k+l,
σn≥1

aσ

σ ! x
σ−en

(
xn − P�(x ′)

)
⎞
⎟⎟⎠ , (1.9)

where aσ are constants.

Remark 1.13 For equations with coefficients and lower order terms:

ai j ui j + biui + cu = f in � ∩ B1,

we also have u ∈ Ck+l,α(0) (k ≥ 2) if

ai j ∈ Cl−1,α(0), bi ∈ Cl−2,α(0) and c ∈ Cl−3,α(0).

Remark 1.14 Theorem 1.9 can be extended tomore general equations, including fully nonlin-
ear uniformly elliptic equations in general forms. For simplicity and clarity, we only consider
the Laplace operator in this paper.

Remark 1.15 Note that Theorem 1.9 can only be stated in the form of pointwise regularity
since we can’t propose an assumption like

u = |Du| = · · · = |Dku| = 0 on ∂� ∩ B1. (1.10)

Indeed, if u is harmonic in�∩ B1 and u = |Du| = 0 on ∂�∩ B1, then u ≡ 0. This indicates
that the assumption (1.10) is ill-poseness usually.

Remark 1.16 The (1.8) can be regarded as a polynomial version of (1.7).

As a consequence, we have the following boundary pointwise regularity.

Theorem 1.17 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in � ∩ B1;
u = g on ∂� ∩ B1.

Suppose that for some k ≥ 1, f ∈ Ck−2,α(0), g ∈ Ck,α(0) and ∂� ∩ B1 ∈ Ck,α(0).
Then u ∈ Ck,α(0). That is, there exists P ∈ Pk such that

|u(x) − P(x)| ≤ C |x |k+α
(‖u‖L∞(�1) + ‖ f ‖Ck−2,α(0) + ‖g‖Ck,α(0)

)
, ∀ x ∈ � ∩ B1,

|Du(0)| + · · · + |Dku(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖Ck−2,α(0) + ‖g‖Ck,α(0)

)
,

where C depends only on n, k, α and ‖∂� ∩ B1‖Ck,α(0). Moreover, if k = 1,

P(x ′, 0) ≡ Pg(x
′, 0);

if k ≥ 2,

�P ≡ Pf , 	k
(
P(x ′, P�(x ′))

) ≡ 	k
(
Pg(x

′, P�(x ′))
)
,

Remark 1.18 Theorem 1.17 has been proved in [11] as a special case. Since the result of
Theorem 1.17 is not well-known and the proof for the Laplace operator is rather simple than
that for fully nonlinear equations, we list this result and give a detailed proof in this paper.
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As an application of Theorem 1.9 to the higher regularity of free boundaries in obstacle-
type problems, we have

Theorem 1.19 Let u be a viscosity solution of{
�u = 1 in � ∩ B1;
u = |Du| = 0 on ∂� ∩ B1.

(1.11)

Assume that ∂�∩B1 ∈ C1,α for some 0 < α < 1. Then u ∈ C∞(�̄∩B1) and ∂�∩B1 ∈ C∞.

Remark 1.20 Although we only consider the Poisson equation in this paper, the method is
applicable to the higher regularity of free boundaries for fully nonlinear elliptic equations,
which have been well studied (see [8]).

Remark 1.21 For the obstacle-type problem (1.11), one can prove the higher regularity start-
ing from that ∂� is Lipschitz continuous with the aid of boundary Harnack inequality (see
[2], [16, Chapter 6.2]). Recently, De Silva and Savin [6] gave an elegant proof of the boundary
Harnack inequality for equations in non-divergence form. Hence, we can prove the higher
regularity in a simpleway fromLipschitz regularity even for fully nonlinear elliptic equations.

Remark 1.22 Usually, the higher regularity of free boundaries is proved in the following way.
First, by a proper partial hodograph-Legendre transformation (see [9]), (1.11) is transformed
to an elliptic equation on a flat boundary and the free boundary ∂� ∩ B1 is represented by
some function relation. Note that even for the Laplace operator, the transformed equation is
a fully nonlinear elliptic equation in general. Hence, in the second step, one need to apply
the theory for fully nonlinear elliptic equations (see [1]) to obtain the higher regularity of
solutions and free boundaries.

In 2015, De Silva and Savin [7] gave a direct and simple proof of higher regularity of
solutions and free boundaries based on a higher order boundaryHarnack inequality. However,
this method is not applicable to the fully nonlinear elliptic equations.

Remark 1.23 The Theorem 1.19 is a kind of rigidity theorem. It states that if we impose an
additional condition: |Du| = 0 on ∂� ∩ B1 (besides u = 0 on ∂� ∩ B1), u and ∂� must
be smooth. We can’t have one pointwise version of Theorem 1.19. Indeed, if we impose the
pointwise condition: |u(0)| = |Du(0)| = 0, we can obtain only u ∈ C2,α(0) (by Theorem
1.9).

With respect to the boundary pointwise regularity for oblique derivative problems, we
have

Theorem 1.24 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in � ∩ B1;
β · Du = g on ∂� ∩ B1,

where β is a vector valued function and satisfies the obliqueness condition: for some positive
constant a0,

βn = β · en ≥ a0. (1.12)

Suppose that f ∈ C−1,α(0), g ∈ Cα(0), β ∈ Cα(0) and [∂� ∩ B1]C0,1(0) ≤ δ, where δ > 0
depending only on n, α and a0.
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Then u ∈ C1,α(0). That is, there exists P ∈ P1 such that

|u(x) − P(x)| ≤ C |x |1+α
(‖u‖L∞(�1) + ‖ f ‖C−1,α(0) + ‖g‖Cα(0)

)
, ∀ x ∈ � ∩ B1,

|Du(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖C−1,α(0) + ‖g‖Cα(0)

)
and

β(0) · Du(0) = g(0),

where C depends only on n, α and a0.

Remark 1.25 We refer the reader to [10, 14] for the notion of viscosity solutions for oblique
derivative problems.

Remark 1.26 Without loss of generality, for oblique derivative problems, we always assume
that ‖β‖L∞(∂�∩B1) ≤ 1 and (1.12) holds with the fixed constant a0 throughout this paper.

Remark 1.27 Theorem 1.24 shows that the boundary C1,α regularity holds on Lipschitz
domains with a small Lipschitz constant.

For higher regularity, we have

Theorem 1.28 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in � ∩ B1;
β · Du = g on ∂� ∩ B1.

Suppose that for some integers k, l ≥ 1, u ∈ Ck,α(0), f ∈ Ck+l−2,α(0), g ∈ Ck+l−1,α(0),
β ∈ Cl−1,α(0) and ∂� ∩ B1 ∈ Cl,α(0). Moreover, assume that

u(0) = · · · = |Dku(0)| = g(0) = · · · = |Dk−1g(0)| = 0.

Then u ∈ Ck+l,α(0). That is, there exists P ∈ Pk+l such that

|u(x) − P(x)| ≤ C |x |k+l+α
(‖u‖L∞(�1) + ‖ f ‖Ck+l−2,α(0) + ‖g‖Ck+l−1,α(0)

)
, ∀ x ∈ � ∩ B1,

|Dk+1u(0)| + · · · + |Dk+l u(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖Ck+l−2,α(0) + ‖g‖Ck+l−1,α(0)

)
and

�P ≡ Pf , 	k+l−1

(
(Pβ · DP)(x ′, P�(x ′))

)
≡ 	k+l−1

(
Pg(x

′, P�(x ′))
)

, (1.13)

where C depends only on n, k, l, α, a0, ‖β‖Cl−1,α(0) and ‖∂� ∩ B1‖Cl,α(0).

Similar to the Dirichlet problem, we have the following higher order boundary pointwise
regularity.

Theorem 1.29 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in � ∩ B1;
β · Du = g on ∂� ∩ B1.

Suppose that for some k ≥ 2, f ∈ Ck−2,α(0), g ∈ Ck−1,α(0), β ∈ Ck−1,α(0) and ∂�∩ B1 ∈
Ck−1,α(0).
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Then u ∈ Ck,α(0). That is, there exists P ∈ Pk such that

|u(x) − P(x)| ≤ C |x |k+α
(‖u‖L∞(�1) + ‖ f ‖Ck−2,α(0) + ‖g‖Ck−1,α(0)

)
, ∀ x ∈ � ∩ B1

|Du(0)| + · · · + |Dku(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖Ck−2,α(0) + ‖g‖Ck−1,α(0)

)
and

�P ≡ Pf , 	k−1

(
(Pβ · DP)(x ′, P�(x ′))

)
≡ 	k−1

(
Pg(x

′, P�(x ′))
)

,

where C depends only on n, k, α, a0, ‖β‖Ck−1,α(0) and ‖∂� ∩ B1‖Ck−1,α(0).

Remark 1.30 Similar to the Dirichlet problems, one can prove corresponding pointwise
boundary regularity for fully nonlinear elliptic equations.

As an application of the above boundary pointwise regularity to the regularity of free
boundaries in one phase problems, we have

Theorem 1.31 Let 0 < α < 1 and u be a viscosity solution of⎧⎪⎨
⎪⎩

�u = 1 in � ∩ B1;
u = 0 on ∂� ∩ B1;
|Du| = 1 on ∂� ∩ B1.

Assume that ∂� ∩ B1 ∈ C1,α . Then u ∈ C∞(�̄ ∩ B1) and ∂� ∩ B1 ∈ C∞.

In Sect. 2, we prove the boundary pointwise regularity for Dirichlet problems and the
higher regularity for free boundaries of obstacle-type problems. Section3 is devoted to the
oblique derivative problems and higher regularity for free boundaries in one phase problems.
The results of this paper show the underlying relation between the regularity of solutions and
the regularity of boundaries. The proofs demonstrate how overdetermined conditions lead to
higher regularity. Notations used in this paper are listed below, most of which are standard.

Notation 1.32 (1) {ei }ni=1: the standard basis of Rn , i.e., ei = (0, ...0, 1
i th

, 0, ...0).

(2) x ′ = (x1, x2, ..., xn−1) and x = (x1, ..., xn) = (x ′, xn).
(3) |x | := (∑n

i=1 x
2
i

)1/2
for x ∈ R

n .
(4) R

n+ = {x ∈ R
n
∣∣xn > 0}.

(5) Br (x0) = B(x0, r) = {x ∈ R
n
∣∣|x − x0| < r}, Br = Br (0), B+

r (x0) = Br (x0) ∩ R
n+

and B+
r = B+

r (0).
(6) Tr (x0) = {(x ′, 0) ∈ R

n
∣∣|x ′ − x ′

0| < r} and Tr = Tr (0).
(7) Ac: the complement of A; Ā: the closure of A, where A ⊂ R

n .
(8) diam(A): the diameter of A and dist(A, B): the distance between A and B, where

A, B ⊂ R
n .

(9) �r = � ∩ Br and (∂�)r = ∂� ∩ Br .
(10) ϕi = Diϕ = ∂ϕ/∂xi , ϕi j = Di jϕ = ∂2ϕ/∂xi∂x j and we also use similar notations for

higher order derivatives.
(11) D0ϕ = ϕ, Dϕ = (ϕ1, ..., ϕn) and D2ϕ = (

ϕi j
)
n×n etc.

(12) |Dkϕ| =
(∑

|σ |=k |Dσ ϕ|2
)1/2

for k ≥ 1, where the standard multi-index notation is

used.
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(13) Pk(k ≥ 0) : the set of polynomials of degree less than or equal to k. That is, any P ∈ Pk

can be written as

P(x) =
∑
|σ |≤k

aσ

σ ! x
σ

where aσ are constants. Define

‖P‖ =
∑
|σ |≤k

|aσ |.

(14) HPk(k ≥ 0) : the set of homogeneous polynomials of degree k. That is, any P ∈ HPk

can be written as

P(x) =
∑
|σ |=k

aσ

σ ! x
σ .

(15) 	k : The projection from Pl to Pk for l ≥ k. That is, if P ∈ Pl is written as

P(x) =
∑
|σ |≤l

aσ

σ ! x
σ ,

then

	k P(x) =
∑
|σ |≤k

aσ

σ ! x
σ .

2 Dirichlet problem and application to the obstacle problem

In this section, we give the proofs of Theorems 1.9, 1.17 and 1.19.We start with the following
result (see [12, Corollary 4.3]):

Lemma 2.1 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in �1;
u = g on (∂�)1.

Suppose that u ∈ C1,α(0), f ∈ Cα(0), g ∈ C2,α(0) and (∂�)1 ∈ C1,α(0). Moreover, assume
that

u(0) = |Du(0)| = |Dg(0)| = 0.

Then u ∈ C2,α(0). That is, there exists P ∈ HP2 such that

|u(x) − P(x)| ≤ C |x |2+α
(‖u‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

)
, ∀ x ∈ �1,

|D2u(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

)
and

�P = f (0), P(x ′, 0) ≡ Pg(x
′, 0), (2.1)

where C depends only on n, α and ‖(∂�)1‖C1,α(0).
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Proof We sketch the proof for completeness. Since f ∈ Cα(0) and g ∈ C2,α(0), we have

| f (x) − f (0)| ≤ [ f ]Cα(0)|x |α, ∀ x ∈ �1 (2.2)

and

|g(x) − Pg(x)| ≤ [g]C2,α(0)|x |2+α, ∀ x ∈ (∂�)1. (2.3)

Since g(0) = |Dg(0)| = 0, Pg ∈ HP2.
Define

v(x) = u(x) − Pg(x) − 1

2
( f (0) − �Pg)x

2
n .

Then

v(0) = |Dv(0)| = 0

and v satisfies {
�v = f̃ in �1;
v = g̃ on (∂�)1,

where

f̃ (x) = f (x) − f (0), g̃(x) = g(x) − Pg(x) − 1

2
( f (0) − �Pg)x

2
n .

By (2.2) and (2.3) and noting (∂�)1 ∈ C1,α(0),

| f̃ (x)| ≤ [ f ]Cα(0)|x |α, ∀ x ∈ �1,

|g̃(x)| ≤ [g]C2,α(0)|x |2+α + 1

2

(| f (0)| + ‖g‖C2,α(0)
) |x ′|2+2α

≤ (| f (0)| + ‖g‖C2,α(0)
) |x |2+α, ∀ x ∈ (∂�)1.

From Theorem 4.2 in [12] (see also (4.10) and (4.11) there), there exists P̃ ∈ HP2 such
that

|v(x) − P̃(x)| ≤ C |x |2+α
(‖v‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

)
, ∀ x ∈ �1,

|D2 P̃(0)| ≤ C
(‖v‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

)
and

�P̃ = 0, P̃(x ′, 0) ≡ 0,

where C depends only on n, α and ‖(∂�)1‖C1,α(0).
Set

P(x) = P̃(x) + Pg(x) + 1

2
( f (0) − �Pg)x

2
n .

Then by the relation between u and v,

|u(x) − P(x)| =|v(x) − P̃(x)|
≤C |x |2+α

(‖v‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)
)

≤C |x |2+α
(‖u‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

)
, ∀ x ∈ �1,

|D2P(0)| ≤|D2 P̃(0)| + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

≤C
(‖u‖L∞(�1) + ‖ f ‖Cα(0) + ‖g‖C2,α(0)

)
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and

�P = �P̃ + f (0) = f (0), P(x ′, 0) ≡ Pg(x
′, 0).

Therefore, the proof is completed. ��
Next, we prove a generalized version of Lemma 2.1:

Lemma 2.2 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in �1;
u = g on (∂�)1.

Suppose that u ∈ Ck,α(0)(k ≥ 1), f ∈ Ck−1,α(0), g ∈ Ck+1,α(0) and (∂�)1 ∈ C1,α(0).
Moreover, assume that

u(0) = · · · = |Dku(0)| = |Dg(0)| · · · = |Dkg(0)| = 0.

Then u ∈ Ck+1,α(0). That is, there exists P ∈ HPk+1 such that

|u(x) − P(x)| ≤ C |x |k+1+α
(‖u‖L∞(�1) + ‖ f ‖Ck−1,α(0) + ‖g‖Ck+1,α(0)

)
, ∀ x ∈ �1,

|Dk+1u(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖Ck−1,α(0) + ‖g‖Ck+1,α(0)

)
and

�P ≡ Pf , P(x ′, 0) ≡ Pg(x
′, 0), (2.4)

where C depends only on n, k, α and ‖(∂�)1‖C1,α(0).

In the following proof, we will use a kind of homogeneous polynomial in a special form.
We call Q ∈ HPk a k-form (k ≥ 1) if Q can be written as

Q(x) =
∑

|σ |=k,σn≥1

aσ

σ ! x
σ .

That is, xn appears in the expression of Q at least one time (thus Q ≡ 0 on T1), which turns
out to be vital for the boundary regularity. In fact, P(x ′, 0) ≡ Pg(x ′, 0) in (2.4) indicates
that P(x) − Pg(x) is a (k + 1)-form.

We prove Lemma 2.2 by induction. For k = 1, the lemma reduces to Lemma 2.1. Suppose
that the lemma holds for k ≤ k0 − 1 and we need to prove the lemma for k = k0. First, we
prove a key step towards the conclusion of Lemma 2.2.

Lemma 2.3 Let 1 ≤ k ≤ k0, 0 < α < 1 and u ∈ Ck,α(0) be a viscosity solution of{
�u + P = f in �1;
u = g on (∂�)1,

where P ∈ HPk−1. Suppose that

‖u‖L∞(�1) ≤ 1, u(0) = · · · = |Dku(0)| = 0,

| f (x)| ≤ δ|x |k−2+α, ∀x ∈ �1,

|g(x)| ≤ δ|x |k+α, ∀x ∈ (∂�)1,

‖(∂�)1‖C1,α(0) ≤ δ,

‖P‖ ≤ 1,
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where δ > 0 depends only on n, k and α.
Then there exists a (k + 1)-form Q such that

‖u − Q‖L∞(�η) ≤ ηk+1+α,

‖Q‖ ≤ C0,

�Q + P ≡ 0,

where C0 depends only on n and k, and η depends also on α.

Proof We prove the lemma by contradiction. Suppose that the conclusion is false. Then there
exist 0 < α < 1 and sequences of um, fm, gm,�m, Pm (m ≥ 1) satisfying um ∈ Ck,α(0)
and {

�um + Pm = fm in �m ∩ B1;
um = gm on ∂�m ∩ B1.

In addition,

‖um‖L∞(�m∩B1) ≤ 1, um(0) = · · · = |Dkum(0)| = 0,

| fm(x)| ≤ |x |k−2+α/m, ∀x ∈ �m ∩ B1,

|gm(x)| ≤ |x |k+α/m, ∀x ∈ ∂�m ∩ B1,

‖∂�m ∩ B1‖C1,α(0) ≤ 1/m,

‖Pm‖ ≤ 1.

But for any (k + 1)-form Q satisfying ‖Q‖ ≤ C0 and �Q + Pm ≡ 0, we have

‖um − Q‖L∞(�m∩Bη) > ηk+1+α, (2.5)

where C0 is to be specified later and 0 < η < 1 is taken small such that

C0η
1−α < 1/2. (2.6)

Clearly, um are uniformly bounded (‖um‖L∞(�m∩B1) ≤ 1). Moreover, um are equicontin-
uous (see [12, Lemma 2.7]). Hence, there exist ũ : B+

1 ∪ T1 → R and P̃ ∈ HPk−1 such that
um → ũ uniformly in compact subsets of B+

1 ∪ T1, Pm → P̃ and{
�ũ + P̃ = 0 in B+

1 ;
ũ = 0 on T1.

By the boundary Ck,α estimate for um (Lemma 2.2 for k − 1 since k ≤ k0) and noting
um(0) = · · · = |Dkum(0)| = 0, we have

‖um‖L∞(�m∩Br ) ≤ Crk+α, ∀ 0 < r < 1.

Since um converges to u uniformly,

‖ũ‖L∞(B+
r ) ≤ Crk+α, ∀ 0 < r < 1.

Hence, ũ(0) = · · · = |Dkũ(0)| = 0. By the boundary estimate for ũ on a flat boundary, there
exists a (k + 1)-form Q̃ such that

|ũ(x) − Q̃(x)| ≤ C0|x |k+2, ∀ x ∈ B+
1 ,

�Q̃ + P̃ ≡ 0,

‖Q̃‖ ≤ C0/2,

(2.7)
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where C0 depends only on n and k.
Since Pm → P̃ , there exist (k + 1)-forms Q̃m such that �(Q̃ + Q̃m) + Pm ≡ 0 and

‖Q̃m‖ → 0 as m → ∞. Thus, (2.5) holds for Q = Q̃ + Q̃m . Let m → ∞ in (2.5) and we
have

‖ũ − Q̃‖L∞(B+
η ) ≥ ηk+1+α,

However, by (2.6) and (2.7),

‖ũ − Q̃‖L∞(B+
η ) ≤ ηk+1+α/2,

which is a contradiction.

Now, we give the

Proof of Lemma 2.2 Since we have assumed that Lemma 2.2 holds for k0 − 1, u ∈ Ck0,α(0).
By induction, we only need to prove Lemma 2.2 for k0, i.e., u ∈ Ck0+1,α(0). Without loss
of generality, by a proper transformation, we assume that{

�u + P = f in �1;
u = g on (∂�)1

(2.8)

for some P ∈ HPk0−1 and

‖u‖L∞(�1) ≤ 1, u(0) = · · · = |Dk0u(0)| = 0,

| f (x)| ≤ δ|x |k0−1+α, ∀x ∈ �1,

|g(x)| ≤ δ|x |k0+1+α/2, ∀x ∈ (∂�)1,

‖(∂�)1‖C1,α(0) ≤ δ/(2C1),

‖P‖ ≤ 1,

(2.9)

where δ is as in Lemma 2.3 (with k = k0) and C1 depending only on n, k0 and α is to be
chosen later.

Indeed, let u1 = u/K where

K = 2(‖u‖L∞(�1) + ‖ f ‖Ck0−1,α(0) + ‖g‖Ck0+1,α(0)).

Then u1 satisfies {
�u1 = f1 in �1;
u1 = g1 on (∂�)1,

where f1 = f /K and g1 = g/K .
Next, let u2 = u1 − Pg1 . Since g(0) = |Dg(0)| · · · = |Dk0g(0)| = 0, Pg ∈ HPk0+1. In

addition, by u(0) = |Du(0)| · · · = |Dk0u(0)| = 0, we have f (0) = · · · = |Dk0−2 f (0)| = 0
(see (2.4)). Hence, Pf ∈ HPk0−1. Then u2 satisfies{

�u2 + P = f2 in �1;
u2 = g2 on (∂�)1,

where

| f2(x)| = | f1(x) − Pf1(x)| ≤ |x |k0−1+α, ∀x ∈ �1,

|g2(x)| = |g1(x) − Pg1(x)| ≤ |x |k0+1+α, ∀x ∈ (∂�)1.
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In addition, P = �Pg1 − Pf1 ∈ HPk0−1 and

‖P‖ ≤ C,

where C depends only on n and k0.
Finally, let y = x/ρ for ρ > 0 and ũ(y) = u2(x). Then ũ satisfies{

�ũ + P̃ = f̃ in �̃1;
ũ = g̃ on (∂�̃)1,

where

f̃ (y) = ρ2 f2(x), g̃(y) = g2(x), P̃(y) = ρk+1P(x), �̃ = �/ρ.

Hence,

‖ũ‖L∞(�̃1)
= ‖u2‖L∞(�ρ) ≤ ‖u1‖L∞(�1) + ‖Pg1‖ ≤ 1, ũ(0) = · · · = |Dk0u(0)| = 0,

| f̃ (y)| ≤ ρk0+1+α|y|k0−1+α, ∀y ∈ �̃1,

|g̃(y)| ≤ ρk0+1+α|y|k0+1+α, ∀y ∈ (∂�̃)1,

‖(∂�̃)1‖C1,α(0) ≤ ρα‖(∂�)1‖C1,α(0),

‖P̃‖ = ρk0+1+α‖P‖ ≤ ρk0+1+αC .

Therefore, by taking ρ small enough (depending only on n, k0, α and ‖(∂�)1‖C1,α(0)), the
assumptions (2.8) and (2.9) for ũ can be guaranteed. Then the regularity of u can be derived
from that of ũ. Hence, without loss of generality, we assume that (2.8) and (2.9) hold for u.

To prove Lemma 2.2 for k0, we only need to show that there exist a sequence of (k0 + 1)-
forms Qm (m ≥ 0) such that for all m ≥ 1,

‖u − Qm‖L∞(�ηm ) ≤ ηm(k0+1+α), (2.10)

�Qm + P ≡ 0 (2.11)

and

‖Qm − Qm−1‖ ≤ C0η
mα, (2.12)

where C0 and η are the constants as in Lemma 2.3.
We prove the above by induction. For m = 1, by Lemma 2.3 and setting Q0 ≡ 0, the

conclusion holds clearly. Suppose that the conclusion holds for m. We need to prove that the
conclusion holds for m + 1.

Let r = ηm , y = x/r and

ũ(y) = u(x) − Qm(x)

rk0+1+α
. (2.13)

Then ũ satisfies {
�ũ = f̃ in �̃ ∩ B1;
ũ = g̃ on ∂�̃ ∩ B1,

where

f̃ (y) = f (x)

rk0−1+α
, g̃(y) = g(x) − Qm(x)

rk0+1+α
, �̃ = �

r
.
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From (2.12), there exists C1 depends only on n, k0 and α such that ‖Qi‖ ≤ C1 (∀ 0 ≤
i ≤ m). By combining that Qm is a (k0 + 1)-form and the definition of ∂� ∩ B1 ∈ C1,α(0)
(see (1.5) and (1.6)), we have

|Qm(x)| ≤ ‖Qm‖|x |k0 |xn |
≤ C1|x |k0‖(∂�)1‖C1,α(0)|x ′|1+α

≤ C1‖(∂�)1‖C1,α(0)|x |k0+1+α, ∀ x ∈ (∂�)1.

(2.14)

Therefore,

‖ũ‖L∞(�̃∩B1)
≤ 1, (by (2.10) and (2.13))

| f̃ (y)| = | f (x)|
rk0−1+α

≤ δ|y|k0−1+α, ∀y ∈ �̃1, (by (2.9))

|g̃(y)| ≤ 1

rk0+1+α
(|g(x)| + |Qm(x)|)

≤ 1

rk0+1+α

(
δ

2
|x |k0+1+α + C1 · δ

2C1
|x |k0+1+α

)
≤ δ|y|k0+1+α, ∀y ∈ (∂�̃)1, (by (2.9) and (2.14))

‖∂�̃ ∩ B1‖C1,α(0) ≤ δrα ≤ δ. (by (2.9))

By virtue of Lemma 2.3, there exists a (k0 + 1)-form Q̃ such that

‖ũ − Q̃‖L∞(�̃η) ≤ ηk0+1+α,

�Q̃ ≡ 0,

‖Q̃‖ ≤ C0.

Let Qm+1(x) = Qm(x) + rk0+1+α Q̃(y) = Qm(x) + rα Q̃(x). Then (2.11) and (2.12) hold
for m + 1. Recalling (2.13), we have

‖u − Qm+1‖L∞(�
ηm+1 )

= ‖u − Qm − rα Q̃‖L∞(�ηr )

= ‖rk0+1+α ũ − rk0+1+α Q̃‖L∞(�̃η)

≤ rk0+1+αηk0+1+α

= η(m+1)(k0+1+α).

Hence, (2.10) holds for m + 1. By induction, the proof is completed. ��
Remark 2.4 By checking the proof, the condition on ∂� is exactly used for estimating Qm on
∂� (see (2.14)). Hence, if the derivatives of u vanish, Qm will be a higher order homogenous
polynomial. This leads to a lower regularity assumption on ∂�. This is why we can obtain
the Ck0+1,α regularity based only on ∂� ∈ C1,α .

Now, we can prove Theorem 1.9 based on Lemma 2.2.

Proof of Theorem 1.9 Throughout this proof, C always denotes a constant depending only on
n, k, l, α and ‖(∂�)1‖Cl,α(0). Without loss of generality, we assume

‖u‖L∞(�1) + ‖ f ‖Ck+l−2,α(0) + ‖g‖Ck+l,α(0) ≤ 1.
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Since g ∈ Ck+l,α(0),

|g(x) − Pg(x)| ≤ |x |k+l+α, ∀ x ∈ (∂�)1.

Set u1 = u − Pg and then u1 is a viscosity solution of{
�u1 = f1 in �1;
u1 = g1 on (∂�)1,

where f1 = f − �Pg and g1 = g − Pg . Hence,

g1(0) = |Dg1(0)| = · · · = |Dk+l g1(0)| = 0. (2.15)

By Lemma 2.2, u1 ∈ Ck+1,α(0) and there exists a (k + 1)-form Qk+1 such that

|u1(x) − Qk+1(x)| ≤ C |x |k+1+α, ∀ x ∈ �1.

Let

u2(x) = u1(x) − Qk+1(x
′, xn − P�(x ′)),

where P� ∈ Pl corresponds to ∂� at 0 (note that (∂�)1 ∈ Cl,α(0)). Since Qk+1 is a (k + 1)
-form and P�(0) = |DP�(0)| = 0,

Dk+1(Qk+1(x
′, xn − P�(x ′)))(0) = Dk+1(Qk+1(x))(0).

Hence, u2(0) = · · · = |Dk+1u2(0)| = 0. In addition, u2 satisfies{
�u2 = f2 in �1;
u2 = g2 on (∂�)1,

where f2 ∈ Ck+l−2,α(0) and (note that Qk+1 is a (k + 1)-form and (∂�)1 ∈ Cl,α(0))

|g2(x)| ≤ |g1(x)| + |Qk+1(x
′, xn − P�(x ′))| ≤ C |x |k+l+α, ∀ x ∈ (∂�)1.

By Lemma 2.2 again, u2 ∈ Ck+2,α(0) and there exists a (k + 2)-form Qk+2 such that

|u2(x) − Qk+2(x)| ≤ C |x |k+2+α, ∀ x ∈ �1.

Let

u3(x) = u2(x) − Qk+2(x
′, xn − P�(x ′))

= u1(x) − Qk+1(x
′, xn − P�(x ′)) − Qk+2(x

′, xn − P�(x ′)).
(2.16)

Then u3(0) = · · · = |Dk+2u3(0)| = 0. In addition, u3 is a viscosity solution of{
�u3 = f3 in �1;
u3 = g3 on (∂�)1,

where f3 ∈ Ck+l−2,α(0) and

|g3(x)| ≤ |g2(x)| + |Qk+2(x
′, xn − P�(x ′))| ≤ C |x |k+l+α, ∀ x ∈ (∂�)1,

where.
By Lemma 2.2 again, u3 ∈ Ck+2,α(0) and hence u ∈ Ck+2,α(0). By similar arguments

again and again, u ∈ Ck+l,α(0) eventually and (1.8) holds. Therefore, the proof of Theorem
1.9 is completed. ��
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Remark 2.5 By checking the proof, we know that the polynomial P can be written as (1.9)
(see (2.16)).

Next, we give the

Proof of Theorem 1.17. For k = 1, Theorem 1.17 reduces to Lemma 2.1. For k ≥ 2, u ∈
C1,α(0) of course. Let

ũ(x) = u(x) − u(0) −
n−1∑
i=1

Pg,i (0)xi − un(0)(xn − P�(x ′)).

Note that

P�(0) = |DP�(0)| = 0 and ui (0) = Pg,i (0), ∀ 1 ≤ i ≤ n − 1.

Hence, ũ(0) = |Dũ(0)| = 0. In addition, ũ satisfies{
�ũ = f̃ in �1;
ũ = g̃ on (∂�)1,

where f̃ ∈ Ck−2,α(0), g̃ ∈ Ck,α(0) and

|g̃(x)| = |g(x) − g(0) −
n−1∑
i=1

Pg,i (0)xi − un(0)(xn − P�(x ′))|

= |g(x) − g(0) −
n∑

i=1

Pg,i (0)xi + (Pg,n(0) − un(0))(xn − P�(x ′)) + Pg,n(0)P�(x ′)|

≤ C |x |2, ∀ x ∈ (∂�)1.

Thus, g̃(0) = |Dg̃(0)| = 0. By Theorem 1.9, ũ and hence u ∈ Ck,α(0). ��
Finally, we prove the higher regularity of free boundaries with the aid of the boundary

pointwise regularity.

Proof of Theorem 1.19. Assume that

∂� ∩ B1 = {
(x ′, xn)

∣∣xn = ϕ(x ′)
}
,

where ϕ ∈ C1,α(T1) and ϕ(0) = |Dϕ(0)| = 0. Since u = |Du| = 0 on (∂�)1 and
(∂�)1 ∈ C1,α , by Theorem 1.9, u ∈ C2,α(x0) for any x0 ∈ (∂�)1. By combining with the
interior regularity, u ∈ C2,α(�̄′) for any �′ ⊂⊂ �̄ ∩ B1.

From |Dϕ(0)| = 0 and u = |Du| = 0 on (∂�)1 again, ui j (0) = 0 for i + j < 2n. Hence,
unn(0) = 1 by the equation �u = 1. Let v(x) = u(x) − x2n/2 and then v satisfies⎧⎪⎨

⎪⎩
�v = 0 in � ∩ B1;
v = g on ∂� ∩ B1;
v(0) = |Dv(0)| = |D2v(0)| = 0,

where

|g(x)| = |1
2
x2n | ≤ ‖∂� ∩ B1‖C1,α(0)|x |2+2α, ∀ x ∈ (∂�)1.
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That is, g ∈ C2,2α(0) and g(0) = |Dg(0)| = |D2 g(0)| = 0. By Theorem 1.9, v ∈ C2,2α(0)
and hence u ∈ C2,2α(0). Similarly, for any x0 ∈ ∂� ∩ B1, u ∈ C2,2α(x0). Hence, u ∈
C2,2α(�̄′) for any �′ ⊂⊂ �̄ ∩ B1.

Since unn(0) = 1, unn ≥ 1/2 in�r for some r > 0. Then ui/un ∈ C2α(�̄∩Br ). Note that
ϕi = −ui/un . Thus, ϕ ∈ C1,2α(Tr ), i.e., (∂�)r ∈ C1,2α . By considering other x0 ∈ (∂�)1
similarly, we have (∂�)1 ∈ C1,2α .

Consider v again and g ∈ C2,4α(0) now (since (∂�)1 ∈ C1,2α). From Theorem 1.9,
v ∈ C2,4α(0). By similar arguments as above, u ∈ C2,4α(�̄′) for any �′ ⊂⊂ �̄ ∩ B1.
Therefore, (∂�)1 ∈ C1,4α . Consider v again and again and we have (∂�)1 ∈ C2,α̃ for some
0 < α̃ < 1 eventually.

Let v(x) = u(x) − (xn − P�(x ′))2/2 where P� ∈ P2 is the polynomial corresponding to
∂� at 0 since (∂�)1 ∈ C2,α̃ . Then v satisfies⎧⎪⎨

⎪⎩
�v = f in � ∩ B1;
v = g on ∂� ∩ B1;
v(0) = |Dv(0)| = |D2v(0)| = 0,

where f ∈ P2 and

|g(x)| = |(xn − P�(x ′))2/2| ≤ C |x |4+2α̃, ∀ x ∈ (∂�)1.

As before, by Theorem 1.9, v ∈ C4,α̃(0) and hence u ∈ C4,α̃(0). Similar to previous
arguments, u ∈ C4,α̃(�̄′) for any �′ ⊂⊂ �̄ ∩ B1 and then (∂�)1 ∈ C3,α̃ .

Let v(x) = u(x) − (xn − P�(x ′))2/2 where P� ∈ P3 now. Repeat above arguments and
we have u ∈ C∞(�̄ ∩ B1) and (∂�)1 ∈ C∞ eventually. ��
Remark 2.6 In fact, we need a variation of Theorem 1.9 in the proof. That is, if g ∈ Ck+l,α(0)
is replaced by g ∈ Ck+l̃,α̃(0) with l̃ + α̃ ≤ l + α, we have u ∈ Ck+l̃,α̃(0). This variation can
be proved by almost the same proof. For clarity, we only give Theorem 1.9 with l̃ = l and
α̃ = α.

Remark 2.7 Maybe a more natural idea of proving Theorem 1.19 is to consider Du instead
of u − x2n/2. The u ∈ C2,α is easy to obtain. If Du ∈ C2,α as well, u ∈ C3,α and then
(∂�)1 ∈ C2,α . By a series of iteration, the proof is completed.

For 1 ≤ i ≤ n − 1, ui = 0 on (∂�)1 and Dui (0) = 0. Hence, ui ∈ C2,α(0) by Theorem
1.9. However, we can’t obtain un ∈ C2,α(0) since Dun(0) = en 
= 0. In addition, we can’t
obtain ui ∈ C2,α(x0) for any x0 ∈ (∂�)1 since Dui (x0) 
= 0 for other x0.

3 Oblique derivative problem and application to the one-phase
problem

In this section, we give the detailed proofs of Theorems 1.24–1.31. As in the proofs for
Dirichlet problems, we intend to use compactness method to prove the regularity of solutions.
Hence, we need to build a uniform estimate for solutions. First, we prove a Harnack type
inequality.

Lemma 3.1 Let u ≥ 0 be a viscosity solution of{
�u = f in �1;
β · Du = g on (∂�)1.
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Suppose that osc
B1

∂� ≤ δ ≤ ρ/8, where 0 < ρ < 1 depends only on n and a0.

Then for any 4δ/ρ ≤ R ≤ 1/2, we have

sup
G̃(R)

u ≤ C inf
G(R/2)

u + CR
(‖ f ‖Ln(�1) + ‖g‖L∞((∂�)1)

)
, (3.1)

where C depends only on n and a0,

G(R) := {
x ∈ �

∣∣|x ′| < R,−ρR < xn < ρR
}

and

G̃(R) := {x ∈ �
∣∣|x ′| < R, xn = ρR}.

Proof By the interior Harnack inequality,

inf
G̃(R)

u ≥ C sup
G̃(R)

u − R‖ f ‖Ln(�1),

where C depends only on n and ρ. Hence, to prove (3.1), we only need to show

inf
G̃(R)

u ≤ C inf
G(R/2)

u + CR
(‖ f ‖Ln(�1) + ‖g‖L∞((∂�)1)

)
. (3.2)

Without loss of generality, we assume that inf G̃(R)
u = 1.

Let

v(x) = 1

2
+ 1

4

((
xn
ρR

)2

+ xn
ρR

− 4|x ′|2
R2

)
. (3.3)

Then it can be verified easily that (by taking ρ small enough)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�v ≥ 0 in G(R);
v ≤ 1 on G̃(R);
v ≤ 0 on ∂G(R)\

(
G̃(R) ∪ (∂�)1

)
;

β · Dv ≥ 0 on (∂�)1 ∩ G(R).

Indeed, only the last inequality require some calculation. Since βn ≥ a0, ‖β‖L∞ ≤ 1,
R ≥ 4δ/ρ and osc

B1
∂� ≤ δ, we have

β · Dv = βn

4ρR

(
2xn
ρR

+ 1

)
−

n−1∑
i=1

2βi xi
R2

≥ a0
4ρR

(
−1

2
+ 1

)
− 2(n − 1)

R

≥ 0 on (∂�)1 ∩ G(R),

provided ρ ≤ a0/(16n).
Let w = u − v and then⎧⎪⎨

⎪⎩
�w ≤ f in G(R);
w ≥ 0 on ∂G(R)\(∂�)1;
β · Dw ≤ g on (∂�)1 ∩ G(R).
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By the Alexandrov-Bakel’man-Pucci maximum principle for oblique derivative problems
(see [10, Theorem 2.1]),

w ≥ −CR‖g‖L∞((∂�)1) − CR‖ f ‖Ln(�1) in G(R),

where C depends only on n and a0. Hence, by noting

v ≥ 1/8 in G(R/2),

we have

u = v + w ≥ 1/8 − CR
(‖ f ‖Ln(�1) + ‖g‖L∞((∂�)1)

)
in G(R/2).

That is, (3.2) holds. ��
Remark 3.2 For the Dirichlet problem, we can obtain the equicontinuity up to the boundary
by constructing proper barriers. In contrast, for the oblique derivative problem, we use the
Harnack type inequality to show the equicontinuity since the solutions satisfies an equation
on the boundary, which indicates that we should adopt the technique for the interior regularity
rather than the technique for the boundary regularity (e.g. constructing barrier functions).

Remark 3.3 Note that (3.1) is not a trueHarnack inequality since it holds for 4δ/ρ ≤ R ≤ 1/2
other than 0 < R ≤ 1/2. However, it is sufficient to provide the compactness in the proof
(see Lemma 3.7 below) and requires less smoothness of ∂�.

Remark 3.4 The construction of the auxiliary function v is motivated by [13] (see Lemma
2.1 there) and has been used in [10] (see Theorem 2.2 there).

By a standard iteration argument, Lemma 3.1 implies the following uniform estimate.

Corollary 3.5 Let u be a viscosity solution of{
�u = f in �1;
β · Du = g on (∂�)1.

Suppose that ‖u‖L∞(�1) ≤ 1, ‖ f ‖Ln(�1) ≤ 1, ‖g‖L∞((∂�)1) ≤ 1 and osc
B1

∂� ≤ δ ≤ ρ/8,

where ρ is as in Lemma 3.1.
Then for 4δ/ρ ≤ R ≤ 1/2,

osc
G(R)

u ≤ CRα, (3.4)

where 0 < α < 1 is a universal constant and C depends only on n and a0.

Based on the above uniform estimate, we have the following equicontinuity for solutions.

Lemma 3.6 For any�′ ⊂⊂ �̄∩B1 and ε > 0, there exists δ > 0 (depending only on n, a0, ε
and �′) such that if u is a viscosity solution of{

�u = f in �1;
β · u = g on (∂�)1

with ‖u‖L∞(�1) ≤ 1, ‖ f ‖Ln(�1) ≤ 1, ‖g‖L∞((∂�)1) ≤ 1 and osc
B1

∂� ≤ δ, then for any

x, y ∈ �′ with |x − y| ≤ δ,

|u(x) − u(y)| ≤ ε.
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Proof For any �′ ⊂⊂ �̄ ∩ B1, ε > 0 and x, y ∈ �′, let δ > 0 to be specified later. Take
x0 ∈ (∂�)1 such that |x − x0| = dist(x, (∂�)1). By Corollary 3.5 (a scaling version in
fact), there exists δ1 > 0 (small enough) depending only on n, a0, ε and �′ such that if
osc
B1

∂� ≤ ρδ1/4, |x − x0| ≤ δ1 and |y − x0| ≤ δ1, we have

|u(x) − u(y)| ≤ 2 osc
B(x0,δ1)

u ≤ Cδα
1 ≤ ε/2. (3.5)

If |x − x0| > δ1, by the interior Lipschitz estimate for harmonic functions,

|u(x) − u(y)| ≤ C
|x − y|

δ1
, (3.6)

where C depends only on n.
Take δ small enough such that δ ≤ ρδ1/4 and Cδ/δ1 ≤ ε/2. Then by combining (3.5)

and (3.6), we derive the conclusion. ��
In the following, we prove the boundary pointwise regularity for oblique derivative prob-

lems. First, we prove a key step.

Lemma 3.7 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in �1;
β · Du = g on (∂�)1.

Suppose that ‖u‖L∞(�1) ≤ 1, ‖ f ‖Ln(�1) ≤ δ, ‖g‖L∞((∂�)1) ≤ δ, ‖β − β(0)‖L∞((∂�)1) ≤ δ

and osc
B1

∂� ≤ δ, where 0 < δ < 1 depends only on n, a0 and α.

Then there exists P ∈ P1 such that

‖u − P‖L∞(�η) ≤ η1+α,

‖P‖ ≤ C0,

β(0) · DP = 0,

where C0 depends only on n and a0, and η depends also on α.

Proof We prove the lemma by contradiction. Suppose that the lemma is false. Then there
exist 0 < α < 1 and sequences of um, fm, gm, βm,�m such that{

�um = fm in �m ∩ B1;
βm · Dum = gm on ∂�m ∩ B1

with ‖um‖L∞(�m∩B1) ≤ 1, ‖ fm‖Ln(�m∩B1) ≤ 1/m, ‖gm‖L∞(∂�m∩B1) ≤ 1/m, ‖βm −
βm(0)‖L∞((∂�)1) ≤ 1/m and osc

B1
∂�m ≤ 1/m. In addition, for any P ∈ P1 with ‖P‖ ≤ C0

and βm(0) · DP = 0,

‖um − P‖L∞(�m∩Bη) > η1+α, (3.7)

where C0 is to be specified later and 0 < η < 1 is taken small such that

C0η
1−α < 1/2. (3.8)

Note that um are uniformly bounded (‖um‖L∞(�m∩B1) ≤ 1). Moreover, by Lemma 3.6,
um are equicontinuous. Precisely, for any �′ ⊂⊂ B+

1 ∪ T1, ε > 0, there exist δ > 0 and m0

such that for any m ≥ m0 and x, y ∈ �′ ∩ �̄m with |x − y| < δ, |um(x) − um(y)| ≤ ε.
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Hence, there exists a subsequence (denoted by um again) such that um converges uniformly
to some continuous function ũ on compact subsets of B+

1 ∪ T1. Furthermore, there exists β0

with β0
n ≥ a0 such that βm(0) → β0. By the closedness of viscosity solutions (e.g., see [10,

Proposition 2.1.]), ũ is a viscosity solution of{
�ũ = 0 in B+

1 ;
β0 · Dũ = 0 on T1.

By the boundary regularity for homogeneous equations on flat boundaries (e.g. see [10,
Theorem 4.1 and Theorem 4.2]), there exists P̃ ∈ P1 such that

|ũ(x) − P̃(x)| ≤ C0|x |2, ∀ x ∈ B+
1/2,

‖P̃‖ ≤ C0/2,

β0 · DP̃ = 0.

(3.9)

Since βm(0) → β0, there exists Pm ∈ HP1 such that βm(0) · (DP̃ + DPm) = 0 and
‖Pm‖ → 0 as m → ∞. Thus, (3.7) holds for P̃ + Pm . Let m → ∞ in (3.7) and we have

‖ũ − P̃‖L∞(B+
η ) ≥ η1+α.

On the other hand, from (3.8) and (3.9),

‖ũ − P̃‖L∞(B+
η ) ≤ η1+α/2,

which is a contradiction. ��
Remark 3.8 Usually, to prove Lemma 3.7, we solve an equation to approximate u (see the
proofs ofLemmas 5.1 and 6.3 in [10]). Instead, the compactnessmethod avoids the solvability.
This is one of the main advantages of the method of compactness.

Remark 3.9 Note that Lemma 3.6 is not a true equicontinuity up to the boundary. However,
it is enough to provide the compactness in the proof of Lemma 3.7. The benefit is that we
don’t require the smoothness of ∂�∩ B1 and hence we can develop the pointwise regularity.

Now, we can prove the boundary pointwise C1,α regularity.

Theorem 3.10 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in �1;
β · Du = g on (∂�)1.

Suppose that f ∈ C−1,α(0), g ∈ Cα(0), β ∈ Cα(0) and [∂� ∩ B1]C0,1(0) ≤ δ, where δ is as
in Lemma 3.7.

Then u is C1,α at 0, i.e., there exists P ∈ P1 such that

|u(x) − P(x)| ≤ C |x |1+α
(‖u‖L∞(�1) + ‖ f ‖C−1,α(0) + ‖g‖Cα(0)

)
, ∀x ∈ �1,

|Du(0)| ≤ C
(‖u‖L∞(�1) + ‖ f ‖C−1,α(0) + ‖g‖Cα(0)

)
,

(3.10)

and

β(0) · DP = 0, (3.11)

where C depends only on n, a0, α and ‖β‖Cα(0).
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Proof We assume that g(0) = 0. Otherwise, we may consider ũ = u − g(0)xn/βn(0). Let
δ be as in Lemma 3.7, which depends only on n, a0 and α. Without loss of generality, we
assume that

‖u‖L∞(�1) ≤ 1, ‖ f ‖C−1,α(0) ≤ δ, [g]Cα(0) ≤ δ

2
, [β]Cα(0) ≤ δ

2C1
, (3.12)

where C1 is a constant (depending only on n, a0 and α) to be specified later.
To show u ∈ C1,α(0), we only need to prove that there exists a sequence of Pm ∈ P1

(m ≥ −1) such that for all m ≥ 0,

‖u − Pm‖L∞(�ηm ) ≤ ηm(1+α), (3.13)

|Pm(0) − Pm−1(0)| + ηm |DPm − DPm−1| ≤ C0η
m(1+α) (3.14)

and

β(0) · DPm = 0, (3.15)

where C0 and η are constants as in Lemma 3.7.
We prove the above by induction. For m = 0, by setting P0 ≡ P−1 ≡ 0, the conclusion

holds clearly. Suppose that the conclusion holds for m. We need to prove that the conclusion
holds for m + 1.

Let r = ηm , y = x/r and

ũ(y) = u(x) − Pm(x)

r1+α
. (3.16)

Then ũ satisfies {
�ũ = f̃ in �̃ ∩ B1;
β̃ · Dũ = g̃ on ∂�̃ ∩ B1,

where

f̃ (y) = f (x)

rα−1 , g̃(y) = g(x) − β(x) · DPm
rα

, β̃(y) = β(x) and �̃ = �

r
.

By (3.14), there exists a constant C1 depending only on n, a0 and α such that |DPi | ≤ C1

(∀ 0 ≤ i ≤ m). Then it is easy to verify that

‖ũ‖L∞(�̃∩B1)
≤ 1, (by (3.13) and (3.16))

‖ f̃ ‖Ln(�̃∩B1)
= ‖ f ‖Ln(�∩Br )

rα
≤ δ, (by (3.12))

‖g̃‖L∞(∂�̃∩B1)
≤ 1

rα

([g]Cα(0)r
α + C1[β]Cα(0)r

α
) ≤ δ, (by (3.12) and (3.15))

‖β̃ − β̃(0)‖L∞(∂�̃∩B1)
= ‖β − β(0)‖L∞(∂�̃∩Br )

≤ [β]Cα(0)r
α ≤ δ, (by (3.12))

osc
B1

∂�̃ = 1

r
osc
Br

∂� ≤ [∂� ∩ B1]C0,1(0) ≤ δ.

From 3.7, there exists P̃ ∈ P1 such that

‖ũ − P̃‖L∞(�̃η) ≤ η1+α,

‖P̃‖ ≤ C0,

β̃(0) · DP̃ = 0.
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Let Pm+1(x) = Pm(x)+r1+α P̃(y). Then (3.14) and (3.15) hold form+1. Recalling (3.16),
we have

‖u − Pm+1‖L∞(�
ηm+1 )

= ‖u − Pm − r1+α P̃(y)‖L∞(�ηr )

= ‖r1+α ũ − r1+α P̃‖L∞(�̃η)

≤ r1+αη1+α

= η(m+1)(1+α).

Hence, (3.13) holds for m + 1. By induction, the proof is completed. ��
Next, we prove a lemma similar to Lemma 2.2.

Lemma 3.11 Let 0 < α < 1 and u be a viscosity solution of{
�u = f in �1;
β · Du = g on (∂�)1.

Suppose that u ∈ Ck,α(0)(k ≥ 1), f ∈ Ck−1,α(0), g ∈ Ck,α(0), β ∈ Cα(0) and (∂�)1 ∈
C1,α(0). Moreover, assume that

u(0) = · · · = |Dku(0)| = |Dg(0)| · · · = |Dk−1g(0)| = 0.

Then u ∈ Ck+1,α(0). That is, there exists P ∈ HPk+1 such that

|u(x) − P(x)| ≤ C |x |k+1+α
(‖u‖L∞ + ‖ f ‖Ck−1,α(0) + ‖g‖Ck,α(0)

)
, ∀ x ∈ �1,

|Dk+1u(0)| ≤ C
(‖u‖L∞ + ‖ f ‖Ck−1,α(0) + ‖g‖Ck,α(0)

)
,

and

�P ≡ Pf , β(0) · DP(x ′, 0) ≡ Pg(x
′, 0),

where C depends only on n, k, a0, α, ‖β‖Cα(0) and ‖(∂�)1‖C1,α(0).

As in Sect. 2, we prove above lemma by induction. For k = 1, the lemma reduces to
Theorem 3.10. Suppose that the lemma holds for k ≤ k0 −1 and we need to prove the lemma
for k = k0. First, we prove the following lemma which is a key step towards the conclusion
of Lemma 3.11.

Lemma 3.12 Let 1 ≤ k ≤ k0, 0 < α < 1 and u ∈ Ck,α(0) be a viscosity solution of{
�u + P = f in �1;
β · Du = g on (∂�)1,

where P ∈ HPk−1. Suppose that

‖u‖L∞(�1) ≤ 1, u(0) = · · · = |Dku(0)| = 0,

| f (x)| ≤ δ|x |k−2+α, ∀x ∈ �1,

|g(x)| ≤ δ|x |k−1+α, ∀x ∈ (∂�)1,

|β(x) − β(0)| ≤ δ|x |α, ∀x ∈ (∂�)1,

‖(∂�)1‖C1,α(0) ≤ δ,

‖P‖ ≤ 1,
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where δ > 0 depending only on n, k, a0 and α.
Then there exists Q ∈ HPk+1 such that

‖u − Q‖L∞(�η) ≤ ηk+1+α,

‖Q‖ ≤ C0,

�Q + P ≡ 0,

β(0) · DQ(x ′, 0) ≡ 0,

where C0 depends only on n, a0 and k, and η depends also on α.

Remark 3.13 Note that β(0) · DQ(x ′, 0) ≡ 0 is equivalent to that β(0) · DQ(x) is a k-form.

Proof As before, we prove the lemma by contradiction. Suppose that the conclusion is false.
Then there exist 0 < α < 1 and sequences of um, fm, gm, βm,�m, Pm (m ≥ 1) satisfying
um ∈ Ck,α(0) and {

�um + Pm = fm in �m ∩ B1;
βm · Dum = gm on ∂�m ∩ B1.

In addition,

‖um‖L∞(�m∩B1) ≤ 1, um(0) = · · · = |Dkum(0)| = 0,

| fm(x)| ≤ |x |k−2+α/m, ∀x ∈ �1,

|gm(x)| ≤ |x |k−1+α/m, ∀x ∈ (∂�)1,

|βm − βm(0)| ≤ |x |α/m, ∀x ∈ (∂�)1,

‖∂�m ∩ B1‖C1,α(0) ≤ 1/m,

‖Pm‖ ≤ 1.

But for any Q ∈ HPk+1 satisfying

‖Q‖ ≤ C0,

�Q + Pm ≡ 0,

βm(0) · DQ(x ′, 0) ≡ 0,

we have

‖um − Q‖L∞(�m∩Bη) > ηk+1+α, (3.17)

where C0 is to be specified later and 0 < η < 1 is taken small such that

C0η
1−α < 1/2. (3.18)

As in the proof of Lemma 3.7, um are uniformly bounded and equicontinuous. Hence,
there exist ũ : B+

1 ∪ T1 → R, β0 ∈ R
n with β0

n ≥ a0 and P̃ ∈ HPk−1 such that um → ũ
uniformly in compact subsets of B+

1 ∪ T1, βm(0) → β0, Pm → P̃ and{
�ũ + P̃ = 0 in B+

1 ;
β0 · Dũ = 0 on T1.

By the boundary Ck,α estimate for um (Lemma 3.11 for k − 1 since k ≤ k0) and noting
um(0) = · · · = |Dkum(0)| = 0, we have

‖um‖L∞(�m∩Br ) ≤ Crk+α, ∀ 0 < r < 1.
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Since um converges to u uniformly,

‖ũ‖L∞(B+
r ) ≤ Crk+α, ∀ 0 < r < 1.

Hence, ũ(0) = · · · = |Dkũ(0)| = 0. By the boundary estimate for ũ, there exists Q̃ ∈ HPk+1

such that

|ũ(x) − Q̃(x)| ≤ C0|x |k+2, ∀ x ∈ B+
1 ,

‖Q̃‖ ≤ C0/2,

�Q̃ + P̃ ≡ 0,

β0 · DQ̃(x ′, 0) ≡ 0,

(3.19)

where C0 depends only on n, a0 and k.
Since βm(0) → β0 and Pm → P̃ , there exist Qm ∈ HPk+1 such that ‖Qm‖ → 0 and

‖Q̃ + Qm‖ ≤ C0,

�(Q̃ + Qm) + Pm ≡ 0,

βm(0) · D(Q̃ + Qm)(x ′, ) ≡ 0.

Thus, (3.17) holds for Q = Q̃ + Qm . Let m → ∞ in (3.17) and we have

‖ũ − Q̃‖L∞(B+
η ) ≥ ηk+1+α,

However, by (3.18) and (3.19),

‖ũ − Q̃‖L∞(B+
η ) ≤ ηk+1+α/2,

which is a contradiction. ��
Now, we give the

Proof of Lemma 3.11 Sincewe have assumed that Lemma 3.11 holds for k0−1, u ∈ Ck0,α(0).
By induction, we only need to prove Lemma 3.11 for k0, i.e., u ∈ Ck0+1,α(0). Without loss
of generality, by a proper transformation, we can assume as in the proof of Lemma 2.2 that{

�u + P = f in �1;
u = g on (∂�)1

for some P ∈ HPk0−1 and

‖u‖L∞(�1) ≤ 1, u(0) = · · · = |Dk0u(0)| = 0,

| f (x)| ≤ δ|x |k0−1+α, ∀x ∈ �1,

|g(x)| ≤ δ|x |k0+α/3, ∀x ∈ (∂�)1,

|β(x) − β(0)| ≤ δ|x |α/(3C1), ∀x ∈ (∂�)1,

‖(∂�)1‖C1,α(0) ≤ δ/(3C1),

‖P‖ ≤ 1,

(3.20)

where δ is as in Lemma 3.12 (with k = k0) and C1 depending only on n, k0, a0 and α is to
be chosen later.
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ToproveLemma3.11 for k0,we only to show that there exists a sequence of Qm ∈ HPk0+1

(m ≥ 0) such that for all m ≥ 1,

‖u − Qm‖L∞(�ηm ) ≤ ηm(k0+1+α), (3.21)

‖Qm − Qm−1‖ ≤ C0η
mα, (3.22)

and

�Qm + P ≡ 0, β(0) · DQm(x ′, 0) ≡ 0, (3.23)

where C0 and η are the constants as in Lemma 3.12.
We prove the above by induction. For m = 1, by Lemma 3.12 and setting Q0 ≡ 0, the

conclusion holds clearly. Suppose that the conclusion holds for m. We need to prove that the
conclusion holds for m + 1.

Let r = ηm , y = x/r and

ũ(y) = u(x) − Qm(x)

rk0+1+α
. (3.24)

Then ũ satisfies {
�ũ = f̃ in �̃ ∩ B1;
β̃ · Dũ = g̃ on ∂�̃ ∩ B1,

where

f̃ (y) = f (x)

rk0−1+α
, g̃(y) = g(x) − β(x) · DQm(x)

rk0+α
, β̃(y) = β(x), �̃ = �

r
.

By (3.22), there existsC1 depends only onn, k0, a0 andα such that‖Qi‖ ≤ C1 (∀0 ≤ i ≤ m).
Since β(0) · DQm is a k0-form (see (3.23)) and (∂�)1 ∈ C1,α(0),

|β(0) · DQm(x)| ≤ C1|x |k0−1|xn | ≤ C1‖(∂�)1‖C1,α(0)|x |k0+α, ∀ x ∈ (∂�)1. (3.25)

Then

‖ũ‖L∞(�̃∩B1)
≤ 1, (by (3.21) and (3.24))

| f̃ (y)| = | f (x)|
rk0−1+α

≤ δ|y|k0−1+α, ∀y ∈ �̃1, (by (3.20))

|g̃(y)| ≤ 1

rk0+α
(|g(x)| + |β(x) − β(0)||DQm(x)| + |β(0) · DQm(x)|)

≤ 1

rk0+α

(
δ

3
|x |k0+α + δ

3C1
· C1|x |k0+α + C1 · δ

3C1
|x |k0+α

)
≤ δ|y|k0+α, ∀y ∈ (∂�̃)1, (by (3.20) and (3.25))

|β̃(y) − β̃(0)| = |β(x) − β(0)| ≤ rα[β]Cα(0)|y|α ≤ δ|y|α, ∀y ∈ (∂�̃)1, (by (3.20))

‖∂�̃ ∩ B1‖C1,α(0) ≤ rα‖(∂�)1‖C1,α(0) ≤ δ. (by (3.20))

By Lemma 3.12, there exists Q̃ ∈ HPk0+1 such that

‖ũ − Q̃‖L∞(�̃η) ≤ ηk0+1+α,

‖Q̃‖ ≤ C0,

�Q̃ ≡ 0,

β(0) · DQ̃(x ′, 0) ≡ 0.
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Let Qm+1(x) = Qm(x) + rk0+1+α Q̃(y) = Qm(x) + rα Q̃(x). Then (3.22) and (3.23) hold
for m + 1. By recalling (3.24), we have

‖u − Qm+1‖L∞(�
ηm+1 )

= ‖u − Qm − rα Q̃‖L∞(�ηr )

= ‖rk0+1+α ũ − rk0+1+α Q̃‖L∞(�̃η)

≤ rk0+1+αηk0+1+α

= η(m+1)(k0+1+α).

Hence, (3.21) holds for m + 1. By induction, the proof is completed. ��
Next, we prove Theorem 1.28 with the aid of Lemma 3.11.

Proof of Theorem 1.28 Throughout this proof, C always denotes a constant depending only
on n, k, l, a0, α, ‖β‖Cl−1,α(0) and ‖(∂�)1‖Cl,α(0). Without loss of generality, we assume as
before

‖u‖L∞(�1) + ‖ f ‖Ck+l−2,α(0) + ‖g‖Ck+l−1,α(0) ≤ 1.

Since g ∈ Ck+l−1,α(0) and β ∈ Cl−1,α(0),

|g(x) − Pg(x)| ≤ |x |k+l−1+α, ∀ x ∈ (∂�)1. (3.26)

and

|β(x) − Pβ(x)| ≤ [β]Cl−1,α(0)|x |l−1+α, ∀ x ∈ (∂�)1. (3.27)

Note that Pg ∈ HPk and Pβ is a vector valued polynomial. Take a polynomial P0 ∈ HPk+l

such that

Pβ · DP0 ≡ Pg.

Set u1 = u − P0 and then u1 ∈ Ck,α(0) and u1(0) = · · · = |Dku1(0)| = 0. In addition,
u1 is a viscosity solution of {

�u1 = f1 in �1;
β · Du1 = g1 on (∂�)1,

where f1 = f − �P0 and

g1 = g − β · P0 = g − Pg − (
β − Pβ

) · DP0.

Hence, by (3.26), (3.27) and noting P0 ∈ HPk+l ,

|g1(x)| ≤ C |x |k+l−1+α, ∀ x ∈ (∂�)1. (3.28)

By Lemma 3.11, u1 ∈ Ck+1,α(0). That is, there exists Pk+1 ∈ HPk+1 such that β(0)·DPk+1

is a k-form and

|u1(x) − Pk+1(x)| ≤ C |x |k+1+α, ∀ x ∈ �1.

Let

u2(x) = u1(x) − Pk+1(x
′, xn − P�),
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where P� ∈ Pl corresponds to ∂� at 0 (note that (∂�)1 ∈ Cl,α(0)). Note that P�(0) =
|DP�(0)| = 0 and then u2(0) = · · · = |Dk+1u2(0)| = 0. In addition, u2 satisfies{

�u2 = f2 in �1;
β · Du2 = g2 on (∂�)1,

where f2 ∈ Ck+l−2,α(0),

g2(x) = g1(x) − β(x) · (
DPk+1(x

′, xn − P�(x ′)) − Pk+1,n(x
′, xn − P�(x ′))DP�(x ′)

)
= g1(x) − g̃2(x) − ḡ2(x) − ĝ2(x),

and

g̃2(x) = (
β(x) − Pβ(x)

) · (
DPk+1(x

′, xn − P�(x ′)) − Pk+1,n(x
′, xn − P�(x ′))DP�(x ′)

)
,

ḡ2(x) = β(0) · DPk+1(x
′, xn − P�(x ′)),

ĝ2(x) = (
Pβ(x) − β(0)

) · (
DPk+1(x

′, xn − P�(x ′)) − Pk+1,n(x
′, xn − P�(x ′))DP�(x ′)

)
− β(0) · DP�(x ′)Pk+1,n(x

′, xn − P�(x ′)).

By (3.27) and noting Pk+1 ∈ HPk+1,

|g̃2(x)| ≤ C |x |k+l−1+α, ∀ x ∈ (∂�)1. (3.29)

Since β(0) · DPk+1(x) is a k-form and (∂�)1 ∈ Cl,α(0),

|ḡ2(x)| = |β(0) · DPk+1(x
′, xn − P�)| ≤ C |x |k+l−1+α, ∀ x ∈ (∂�)1. (3.30)

Next, since ĝ is a polynomial, it can be verified easily that

ĝ2(0) = · · · = |Dk ĝ(0)| = 0. (3.31)

Then by (3.28)–(3.31), we have g2 ∈ Ck+l−1,α(0) and

g2(0) = · · · = |Dkg2(0)| = 0.

By Lemma 3.11 again, u2 ∈ Ck+2,α(0). That is, there exists Pk+2 ∈ HPk+2 such that

|u2(x) − Pk+2(x)| ≤ C |x |k+2+α, ∀ x ∈ (�)1

and

β(0) · DPk+2(x
′, 0) ≡ 	k+1(g2(x

′, 0)). (3.32)

I.e., (β(0) · DPk+2 − 	k+1(g2))(x) is a (k + 1)-form.
Set

u3(x) = u2 − Pk+2(x
′, xn − P�)

= u1(x) − Pk+1(x
′, xn − P�) − Pk+2(x

′, xn − P�).

Hence, u3(0) = · · · = |Dk+2u3(0)| = 0. In addition, u3 is a viscosity solution of{
�u3 = f3 in �1;
β · Du3 = g3 on (∂�)1,

where f3 ∈ Ck+l−2,α(0),

g3(x) =g2(x) − β(x) · (
DPk+2(x

′, xn − P�(x ′)) − Pk+2,n(x
′, xn − P�(x ′))DP�(x ′)

)
=g2(x) − g̃3(x) − ḡ3(x) − ĝ3(x),
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and

g̃3(x) = (
β(x) − Pβ(x)

) · (
DPk+2(x

′, xn − P�(x ′)) − Pk+2,n(x
′, xn − P�(x ′))DP�(x ′)

)
,

ḡ3(x) =β(0) · DPk+2(x
′, xn − P�(x ′)),

ĝ3(x) = (
Pβ(x) − β(0)

) · (
DPk+2(x

′, xn − P�(x ′)) − Pk+2,n(x
′, xn − P�(x ′))DP�(x ′)

)
− β(0) · DP�(x ′)Pk+2,n(x

′, xn − P�(x ′)).

Similar to the above argument,

|g̃3(x)| ≤ C |x |k+l−1+α, ∀ x ∈ (∂�)1,

and

ĝ3(0) = · · · = |Dk+1 ĝ(0)| = 0.

In addition, by (3.32), for any x ∈ (∂�)1,

|ḡ3(x) − 	k+1(g2)(x
′, xn − P�(x ′))| ≤ C |x |k+l+α.

Hence,

|g3(x)| =|g2(x) − g̃3(x) − ḡ3(x) − ĝ3(x)|
=|g2(x) − 	k+1(g2)(x) + 	k+1(g2)(x

′, P�(x ′)) + 	k+1(g2)(x
′, xn − P�(x ′))

− g̃3(x) − ḡ3(x) − ĝ3(x)|
≤C |x |k+2.

That is, g3(0) = · · · = |Dk+1g3(0)| = 0. By virtue of Lemma 3.11 again, u3 ∈ Ck+3,α(0).
By similar arguments again and again, u ∈ Ck+l,α(0) eventually and (1.13) holds. Therefore,
the proof of Theorem 1.28 is completed. ��

The Theorem 1.29 is an easy consequence of Theorem 1.28.

Proof of Theorem 1.29 In fact, we can always assume that u(0) = |Du(0)| = 0 since the
boundary condition is a first order equation. Let ũ(x) = u(x) − u(0) − Du(0) · x and then
ũ satisfies {

�ũ = f in � ∩ B1;
β · Dũ = g̃ on ∂� ∩ B1,

where g̃ = g − β · Du(0). Note that β(0) · Du(0) = g(0) and hence

g̃(x) = g(x) − g(0) − (β(x) − β(0)) · Du(0).

Thus, ũ(0) = |Dũ(0)| = g̃(0) = 0 and g̃ ∈ Ck−1,α(0). By Theorem 1.28 with l = 1, we
arrive at the conclusion of Theorem 1.29.

Finally, as an application to the regularity of free boundaries in one phase problems, we
prove Theorem 1.31.

Proof of Theorem 1.31 Since u = 0 on ∂�∩B1 and (∂�)1 ∈ C1,α , by the boundary pointwise
regularity for Dirichlet problems, u ∈ C1,α(�̄ ∩ B1). Hence, we have |Du| = 1 on (∂�)1 in
the classical sense. Let v(x) = u(x) − xn and then

vn = un − 1 =
(
1 −

n−1∑
i=1

u2i

)1/2

− 1 = −∑n−1
i=1 u2i

1 +
(
1 − ∑n−1

i=1 u2i

)1/2 on (∂�)1. (3.33)
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Since u ∈ C1,α(0), ui ∈ Cα(0) and hence u2i ∈ C2α(0). By the boundary pointwise
regularity for oblique derivative problems (see Theorem 1.24), v ∈ C1,2α(0) and then u ∈
C1,2α(0). Similarly, u ∈ C1,2α(x0) for any x0 ∈ (∂�)1. Note that un(0) = 1 and then
ui/un ∈ C2α(�̄ ∩ Br ) for some r > 0. Thus, ∂� ∩ Br ∈ C1,2α . Likewise, (∂�)1 ∈ C1,2α .

Repeat above argument. Note u2i ∈ C4α(0). By Theorem 1.24, v ∈ C1,4α(0) and we have
(∂�)1 ∈ C1,4α . After finite steps, u ∈ C2,α̃ and (∂�)1 ∈ C2,α̃ for some 0 < α̃ < 1.

Note that ui (0) = 0 for 1 ≤ i ≤ n−1. Then u2i ∈ C2,α̃(0). ByTheorem1.29, v ∈ C3,α̃(0).
Hence u ∈ C3,α̃(�1) and (∂�)1 ∈ C3,α̃ . Thus, u2i ∈ C3,α̃ then u ∈ C4,α̃ and (∂�)1 ∈ C4,α̃ .
By iteration arguments, we have u ∈ C∞ and (∂�)1 ∈ C∞ eventually. ��
Remark 3.14 Since u = 0 and |Du| = 1 on (∂�)1, ∂u/∂ν = 1 on (∂�)1 where ν is the
inner normal. Thus, maybe a more natural idea of proving Theorem 1.31 is to consider the
Neumann problem: ⎧⎨

⎩
�u = 0 in � ∩ B1;
∂u

∂ν
= 1 on ∂� ∩ B1.

However, the smoothness of ν depends on the smoothness of (∂�)1. Hence, we can’t improve
the regularity of solutions and (∂�)1. Instead, β ≡ en if considering (3.33).
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