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Abstract

We first investigate the lower bound for higher eigenvalues 1; of the Laplace operator on
a bounded domain and obtain a sharp lower bound. Then, we extent this estimate of the
eigenvalues to general cases. Finally, we study the eigenvalues I'; for the clamped plate
problem and deliver a sharp bound for the clamped plate problem for arbitrary dimension.

Mathematics Subject Classification 35P15 - 58G05

1 Introduction

Let © be a bounded domain with piecewise smooth boundary 92 in an n-dimensional
Euclidean space R". First of all, we focus on the following Dirichlet eigenvalue problem
of Laplacian

(1.1)

Au = —Au in Q,
u=20 on 092.

It is well known that the spectrum of eigenvalue problem (1.1) is real and discrete (cf. [2, 6,
12, 15, 21])

O<A <M =<AM<-- > 0,

where each A; has finite multiplicity which is counted by its multiplicity.
Let V(£2) be the volume of 2, and w,, the volume of the unit ball in R”. Then the following
well-known Weyl’s asymptotic formula holds
42 2
A~ —————kn, k— o0,
(0, V(2))7
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which implies that

k 472 2
E 7101, k — oo. (1.2)
i "+2(w V()

In 1961, Pélya [23] proved that, if n = 2 and 2 is a tiling domain in RZ, then
472 2
M > ————kn, fork=1,2,...,
(0, V(2))7
Based on the result above, he proposed the famous conjecture:
Conjecture of Pélya. IfQ2 is a bounded domain in R", then k-th eigenvalue Ay of the
eigenvalue problem (1.1) satisfies
472 2
M= ————kn, fork=1,2,....
(wn V(2))7
During the past six decades, many mathematicians have focused on this problem and the
related topics, there are a lot of important results on this aspect (cf. [4, 5, 7, 10, 11, 13, 14,
16, 18]) and we suggest that readers refer [25, 29] for more details. In 1983, Li and Yau [17]
verified the famous Li-Yau inequality

k 2
1 4
72 A — T ki k=1.2..... (1.3)
k= "+2(w V(Q)

It’s seen from the asymptotic formula (1.2), that Li-Yau’s inequality is the best possible in
the sense of the average of eigenvalues. From (1.3), one can derive

n 472

> ﬁk%, fork=1,2,...,
n+2 (w,V(Q)n

which gives a partial solution to the Pélya conjecture with a factor
still open up to now.

In [20], Melas obtained the following beautiful estimate which improves (1.3) forn > 1
and k > 1

13- This conjecture is

k 2
4 . V(Q
2: > P e Y k=12, (1.4)
— n+2(w V(Q))n 1(2)

where ¢, is a positive constant depending only on n and
1(Q) = min[ Ix —al*dx
aeR” Jo

is called the moment of inertia of 2. In fact ¢, < m. Obviously,

2
n V(R)\"
I(Q2) > mV(Q) < )

wp

é
(27f)

Wp ”

we get ¢ < %. Putting ¢ < % into the formula (2.27) of [20], we get ¢, < m in (1.4).

|—

In the formula (2.27) of [20], Males requires ¢ < min{%, }. According to

<
(271)2 =2
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Afterwards, Kovarik, Vugalter and Weidl [13] improved this results when n = 2. They
proved that

2 —3.3 sk . V(€2)
P> 7‘/(9)/( + CanV @7k 4 (1 - a0) 5ok (1.5)

[\j»

i=1
where C(ap) is a positive constant depending on ag € [0, 1] and the length of the smooth
parts of 9€2, (k) = —2 ___andc= 3]—’110’“.

log, (k)

The first purpose of this paper is to improve Melas’s estimate (1.4) by giving a sharper
polynomial inequality, see Corollary 2.4. For more general cases, where n > m > 2 and
k > 1, we obtain a lower bound for eigenvalues in Sect. 3, and we should mention that our
result gives a sharp lower bounds by comparing Lemma 2.2 with the polynomial inequality
in [20]. As a consequence of our result, we prove the Theorem 3.1. An interesting problem
is to investigate the similar problem in a Cartan-Hadamard manifold and we recommend
readers to refer to [27, 28] for details.

The second purpose of this paper is to estimate eigenvalues of the following clamped
plate problem. Let 2 be a bounded domain in R". We consider the following clamped plate
problem, which describes characteristic vibrations of a clamped plate:

A%y =Tu, in$,
u=73=0, ondQ,

where A is the Laplacian operator and v denotes the outward unit normal to the boundary
d€2. As is known, this problem has a real and discrete spectrum (cf. [1])

O<IM<sIh<Iz<---—> o0,

where each I'; has finite multiplicity which is repeated according to its multiplicity.
For the eigenvalues of the clamped plate problem, Agmon [1] and Pleijel [22] gave the
following asymptotic formula

DN
(0, V(§2)) 7
This implies that

k 2

1 16

EE I ~ L 4k%, k — oo. (1.6)
pat n+4 (w,V(Q)n

Furthermore, Levine and Protter [ 16] proved that the eigenvalues of the clamped plate problem
satisfy

k 4
EZ r > 167 k%.
ki "+4<an(9>>"

The formula (1.6) shows that the coefficient of k;iz is the best possible in the sense of the
average of eigenvalues. Later, Cheng and Wei [8] improved the above estimate as follows:
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2
kn

n+2 1 V(Q) n 472
<12n(n +4)  1152n%(n + 4)) 1) n+2 (4, V()2

(oo res) ()
576n(n +4) 27648n%(n +2)(n + 4) Q)"

wheren > 1l and k > 1.
Recently, by using a different method, Cheng and Wei [9] got better lower bounds for
eigenvalues of the clamped plate problem and proved that

Xk:‘ 167* 4 n+2 V(Q) n 472 ¥

T4 o V@), T e 4 1@ nE2 (0 v (Q)) W

(n+2)>2 V(Q))2
1152n(n + 4)2 ( 1(Q)

wheren > 2 and k > 1.
Furthermore, they gave upper bounds for the sum of I';,

k 4(n+4)(n24+2n+6) V (2ry)

1 I < 1+ 1 nyg_z L V(Q(; n 167(4 ké
* Z = Vi it n+4 ERA
= (1= Yoy (@ V()7

V()

where k > V(Q)rg, and
: 1
Q, = =x € Q | dist(x, 0Q2) < f} .
r
In [30], Yildirim and Yolcu improved Cheng and Wei’s estimates by replacing the last

term in the right hand of (1.7) by a positive term of k. For any bounded open set 2 C R",
where n > 2 and k > 1, Yildirim and Yolcu got the following inequality

k 1 ( ) 2n— 2kn+2
S 2 -t et
3(n+4) 0?2
i=1 (1.8)
3n—1  n+l
2 (wn)™ na ok
9(n +4) o3 ’
where
V(€2) —n
= , p=2Qn) "/ V(Q)I(Q). (1.9)

2m)"

In Sect.4, we will improve Yildirim and Yolcu’s [30] estimate (1.8) by giving a shaper
polynomial inequality when n > 3, see Corollary 4.4.

2 Lower bounds for sums of Dirichlet eigenvalues

In this section we prove the following theorem.
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Theorem 2.1 For any bounded domain Q C R", n > 2 we have

Ek A(Q) > w_%of%k%z _ &
R (n+2)p?
j=1
3n+1 _ n—1
n %sia nJr k™
Clo, ,
)

where

. 4v/2ns3kn 4v/2(n + Dk
¢) <min { 1, max T 7 )
(Bn + Dsy (Bn + sy

st =(a+ 1 —d,
o, p are defined by (1.9) and a is defined by (2.16).

Firstly, we introduce some notations and definitions. For a bounded domain €2, the moment
of inertia of Q2 is defined by

1(Q) = min/ Ix —al?dx.
acR" |

By a translation of the origin and a suitable rotation of axes, we can assume that the center
of mass is the origin and

1(Q) :/ lx|?dx.
Q

We now fixak > 1 and let uy, ..., u; denote an orthonormal set of eigenfunctions of (1.1)
corresponding to the set of eigenvalues A1 (2), . .., A (£2). We consider the Fourier transform
of each eigenfunction

fi®) =) = @n)™"? fQ uj(x)e*Edx.

It seems from Plancherel’s Theorem that fi, . ..., f is an orthonormal set in R”. Since these
eigenfunctions uy, ..., uj are also orthonormal in L;(£2), Bessel’s inequality implies that
for every £ € R"

k

Y Ifier<en™ fg e Pdx = 1) " V(). 2.1)

j=1
Since

Vi) = (271)_”/2/ ixuj(x)eixgdx,
Q
we have
k
YIVAE® < o) f lixe™ Pdx = 1) " 1(Q).
Q

j=1

By the boundary condition, we get

/Rn EP1S; ) PdE = fg Vi () Pddx = 1j(9)
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foreach 1 < j < k. Set
k
F&) =) 1fi@N
j=1
From (2.1), we have
0<F@) <) "V(Q), 2.2)
' 12 1/2
IVE@E|<2| Y 1f@EP YIVE®P|  =2en)VVE@IQ  @23)
j=1 j=1
for each & € R". We also get
/ ) F(£)dE =k, 24
k
| terredE =31 @5)

Jj=1

Assume (by approximating F) that the decreasing function ¢ : [0, +00) — [0, 27)™"V
(€2)] is absolutely continuous. Let F*(§) = ¢ (|&]) denote the decreasing radial rearrange-
ment of F. Put u(¢) = |[{F* > t}| = |[{F > t}|. It follows from the coarea formula that

Qr)™"V(RQ) 1
u(t) =/ / ——dogds.
‘ (F=s) IVF| "’

Since F* is radial, we have (¢ (s)) = [{F* > ¢(s)}| = w,s". Differentiating both side of
the above equality, we have nwps" ' = 1 (¢ (s))¢’(s) for almost all s. This together with

(2.3), p =2Q2m) "V (2)1(2) and the isoperimetric inequality implies
—1 (@) = / IVF| ™ dogs)
{F=¢(s)}
> p~'Vol,—1({F = ¢(s)})

> p " naw,s" !

For almost all s, we have
—p <¢'(s) <0.

Since the map & > |£|? is radial and increasing, applying (2.5), we get

k= / F(§)ds = f F*(6)d& = no, / Y g s)ds
RN R 0

and
k 00
D ori@) = / EPF()dE = / &P F*(§)dE = nwy, / "l (s)ds.
J=l R" R" O
The following lemma will be used in the proof of Theorem 2.1.
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Lemma22 Letn >2,p>0,A>0.Ify :[0,4+00) — [0, +00) is a decreasing function
(and absolutely continuous) satisfying

—p = —¥'(5) <0 (2.9)
and
/Ooos”*‘z/f(s)ds = A
Then
/oos”“xp(s)ds z(nA)¥1//(0 S S mA)Y0)? shnA) Ty (0) |
0 n n(n +2)p? n(n +2)p3
where

sll:(a—i—l)l—alzl.

Proof We choose the function o/ (8t) for appropriate «, 8 > 0, such that p = 1 and ¥ (0) =
1. By [20] we can also assume that B = fooo "ty (s)ds < oo. If we let q(s) = —1//(&)
fors > 0, we have 0 < ¢g(s) <1 and fooo q(s) = ¥(0) = 1. Moreover, integration by parts
implies that

0o 00
/ s"q(s)ds = n/ s" M (s)ds = nA
0 0
and

o0
/ s"2q(s)ds < (n + 2)B.
0

Next, let 0 < a < 400 satisfies that
a+1 00
/ s"ds = / s"q(s)ds = nA. (2.10)
a 0
By the same argument as in Lemma 1 of [17], such real number a exists. From [20], we have
oo a+1
(n+2)B > / s"2q(s)ds > / s"2ds. (2.11)
0 a

To estimate the last integral we take T > 0 to be chosen later. Applying (2.11) and integrating
the both sides of the following inequality

ns"t2 — (n+ )13 + 2t > 2t (s — )P + stV M s — )2, s € [a,a + 1], (2.12)
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we get

n(n+2)B — (n+2)t*nA + 27"

a+1 a+1
> 21"/ (s —1)% + 47! / s(s — 7)%ds
a a
S3 a+1
> 27" <§ —sPT+ S‘L’2>
a
(st 287 s [T @19
4" — — —_—
+ 4t < 1 3 + > ) )
a+1
— 2S_L,n+2 + 252T”+1 _ 233‘5n _ 252‘5”+1 + s4tn71
a

=20""2 253" 4 sie T,

where
s,l=(a+1)1—al > 1.

Putting, 7 = (nA)'/" we get

B2l )+ — )

—(n n — —(n —(n n
“n n(n+2) n(n+2)
This proves Lemma 2.2.
To prove (2.12), we need to show that for any 7 > 0 we have
ns"t? — (n+2)t2s" 4+ 20" 2t (s — 1)2 —dst N (r — 5)2 > 0. (2.14)

Taking t = 7, we define f(¢) (for¢ > 0) by
F@O =nt"? —n+ 2" +2 -2 — )% —41(t — 1)°.
Differentiating, f () we have
@O =nm+2"" =+ =4 —1) — 4@ — D2 =81t — 1)
= [n(n+ 2" 2t + 1) — 12]1(r = 1).

It follows from the above formula that if n > 2, then t = 1 is the minimum point of f and
f = min{f (1) =0, £(0) = 0}. This implies

FOT"? =ns"T? — (n+2)1%s" + 2172 — 20" (s — )% —4st" l(z — 5)2 > 0.

O
Next we will give the proof of Theorem 2.1.
Proof of Theorem 2.1 Applying Lemma 2.2 to the function ¢ with A = (nw,) 'k, p =
2Qm) "V (R2)1(2) and submitting it to (2.8), we obtain
k ’ 3 2
-2 _2 a2 S3%(0)
Ai(Q) zw, "Y(O0) ik — S
;,U_n ¥ (0) Gy
/= (2.15)
g (0) kT
e O
(n+2)p3
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where 0 < ¢; < 1is a constant and « is defined by

a+1 0
/ £ndE = / e (€)dE. (2.16)
a 0

We observe the following facts

1) 0<vy(0) <2m)™"V(Q),
(ii) if R is a positive constant such that w, R" = V(£2), then

) nw, Rn+2
1(2) 2/ [x|7dx = (2.17)
B(R) n—+2
It follows from the above properties
1 n+l
p>Q2r) "w, "V(Q) . (2.18)

On the other hand, we consider the following function
g() = g1(1) + g2(0),
fort € (0, Qm) "V (2)], where

n+2
gl(t):wn t "k"
and

3n+1

Lj kil nl
k+0w"7
T 2)03

s3t?
H=——>"——
82(1) 120

Then we have

sik 0 3n—|—l EZES)

n

(n + Z)ngé(t) = —2s3kt +crop "

2_ that

2
nl(3)

By a direct calculation, we see from w, =

S
S3e

IA
| =

@2m)?

where I'(¢) is the Gamma function.
Therefore, in view of (2.18), if

4ﬁns33k$ }

c1 <minj 1, T
(Bn + Dsy

then g,(¢) is decreasing on (0, (27)~"V(£2)]. Now we consider another estimate. Setting
G@) =Gi(1) + Ga(2),

where
3n+1

st O kT

Gi(t) = w, "¢(0)7k GRS PR
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and
3 2
s3¥(0)
Ga(t) = ————k,
(n+2)p
we have
) —% 4 2n+1
Gl ()p? = — 2wy ik QO Don st s
n n (n +2)p?

Therefore, we conclude that if
_ 420+ 2k
Gn+Dsf

then G (¢) is decreasing on (0, (277) 7"V (£2)]. Finally, we obtain
k 2 2 ar2 s;az

DA ze, Tk — —2

(n+2)p

(2.19)

=1
! 3n+1  n—1

where «, p are defined in the (1.9) and

42ns3kn 42(n + Dk } }

c1 <min { 1, max T I
Bn + 1)sy GBn + 1)sy
O

Note that A} < Ay < A3 < ---. This together with the above lemma implies the following

estimate for higher eigenvalues.

Corollary 2.3 For any bounded domain Q € R", n > 2 and any k > 1 we have

3,2
2 S

-2 2.2

)‘-k(Q) >wy, "o nkn — m
n nlsicx}nfl =
c s
4 2)08

where

4/2ns3kn 4v/2(n + Dk ”

c¢; <min 1 1, max 70 P
(Bn + Dsy (Bn + Dsy

sll =(a + l)l —d,

o, p are defined by (1.9).
In fact, if we choose special a in (2.13), we also have the following result.
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Corollary 2.4 For any bounded domain Q C R", n > 2 and any k > 1 we have

2"} >nwn*%(2n)ZV(Q)*%km 1 <V(S2)>

i n+2 24 +2) \ 1(Q)

i= 1 (2.20)
—= 3n+1

Wy "o n—1

——k
+ 9(n +2)p3

Proof Combining with the formula (2.25) in [20] and (57) in [30], we have

a+1 a+l1
nn+2)B — (n+2)t2nA + 2t > 2¢" / (s — )2 + 47" / s(s — 1)%ds
a a
tnfl
9

By using similar discussion in the proof of Theorem 2.1, we get

.C"l
> —+
=6

3n+l1

" 2.21)

1
ik' Loy 9O T e G0 Co0,"$(0)
P "= n+2 (n +2)p2 (n+2)p3

where 0 < C; < % and 0 < Cp < é are two constants which will be determined later. We

consider the following function

_2 2 2 -1
W, ntTn a2 Cit Crw, "t

no+
n+2 (n+2)p? (n+2)p3

3n+1
n n—1

ko,

n
gt) =

which would be decreasing on (0, 27) "V (Q)]if g'((27) "V (2)) < 0. In view of (2.18),
the degression of g(¢) is equal to the following inequality

2 2
n 3 1 n
i =20, -2 o,
(2m)? n  (2m)3
#
Since k > 1 and (;’T”)Q < %, we can choose C| = 1 Therefore, C, satisfies
R
G < mm{g, G2},
where
. 202m)* 1
Gy — V20t (1Y
3.5 6
Obviously, C; > %. Hence, we complete our proof. O

3 Lower bounds for Dirichlet eigenvalues in higher dimensions

In this section we will give a universal lower bound on the sum of eigenvalues forn > m + 1,
where m > 2.
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Theorem 3.1 For any bounded domain Q@ C R", n > m + 1 > 3 and k > 1, we have

k m=1 (m+Dn+m—1
_2 _ 2 n+2 an " Sm+2a n n—m+1
E Ai Zw, "aT ik — ol kn
- n m
P (n+2)p
m (m+2)n+m
26()7;1 (m + l)Sm+3a n n—m

€2

)

(n +2)(m + 3)pm+2

where

. (m+1)n+m—1«/§Sm+2m+3 1
¢y <min{1, kn ¢,
(m+2)n+m Smy3z m+1

S =@+ 1 —d,

o= (‘;g,i, p =2Qm) "JV(Q)I(Q) and a is defined by (2.16).
The following lemma will be used in the proof of Theorem 3.1.

Lemma 3.2 For an integer n > m + 1 > 0 and positive real numbers s and T we have the
following inequality:

m+1
nsn-‘r2 _ (l’l 4 Z)Tzsn 4 2.L.n+2 _ Z stk—].[n—k+] (T _ S)z > 0.
k=1
Proof Setting t = 7, and putting
m+1
f@) =n" = (42" 42— 2kt — 1),
k=1

fort > 0, we get
£ =n(n +2)" ! — n(n +2)"!

- [40 — D+ Y Qk(k+ DN — 1D 4k + Dk — 1))}

k=1
=n(n+ )" —nmn +2)""!

—¢-D|4+ Z[Zk(k + DN =) + 4%k + l)tk]:|
L k=1

=n(n+2)" —nm +2)""!

m—1
— (= 1) | 20m +2)(m + D™ + Y Q@hk(k + D — 2k(k + DF = + 4k + 1):")}
L k=1

=n(n+2)" ' —nm+ 2" = 2m +2)(m + D™ — 1)
="t — D) [n(n+ 2"t + 1) = 2(m + 2)(m + D].

3.1)
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It follows from the above formula that if » > m + 1, then t = 1 is the minimum point of
f(@) and f > min{f(1) =0, f£(0) = 0}. So, we get

m+1

"2 F (1) = ns"t? — (n + 2)3"

Next we will give the proof of Theorem 3.1.

k=1

Proof of Theorem 3.1 Forl > 0, t > % and a > 0, we have

a+l1 1+3 1+2 I+1  ja+1
/ ) s 2s s 2
T — ds = — +
/a S e S e L e L
_ Ss _ 25!+2r Si+1 o
I1+3 [1+2 I[+1 7
where
Si=@+1/ —al > 1.
Therefore, we get
m+1 S 25
n(n+2)B — (n+2)t*nA 420" > " 2k (k}:zz . J":ll

k=1
From

m+1
sz n—k+1 <Sk 2 25/<+1f Sk+2

P k k+ k+2

m+1

)

n+2 n—k+2
2 Sk+1T -2 T
+ Z k+1 Z k + 1

20m 4+ DSy
m+3

_2rn+2 + 252Tn+l + 2mSp42 tn7m+l
m-+2
40m +1)Sm2 Lnoml
m+2

2%k
2 )
+ Z( k+l k—H) k1

:2‘5”+2 + 2SQT"+1 + 2mSm+2 ,L,n—m+1

_ 2S2.[n+1 _

2k g1 n—k+2

m+1

2(m +1)S43 —

m—+2 m+3
_ 252‘["+1 _ 4(m + DSmy2 ,L_n—m—H
m+2
"2 _ 25n1+2z.n—m+l + 20m + 1)Smy3 nm
m+3
and
m
k—1 2k
_ S n—k+2 __ 07
k=2< k41 k+1) e

- Z sk ekl — )2 > 0.

(3.2)

N
r—i—kr).

kSk+2 p—k+1
= k+2
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we obtain

nn+2)B — (n+2)t’nA +2¢"? >2¢"2 — 28,
2(m + 1) Sm+3 ohem
m+3 ’
Choosing T = (nA)%, we get

5o AT 2800A) T 20 + DSusna) T
- n nn+2) nn+2)(m+3)
It follows from (3.3) that

(3.3)

m—+1 (m+Dn+m—1

i (nA)*w(or* 25,04 g0 "
/0 (s)ds = L

n—m (m +2)n +m

2(m + D Spu3(mA) = ¥ (0)
n(n+2)(m + 3)pm+2

(3.4)

From (2.8), we know

k o0
Z}\.i Zna)n/ sy (s)ds
i=1 0

Za)n Sm+2 (nA) n—l’7;1+1 w(o) (m+]):,,l+m7]
(n +2)pm+1
= (”1+2)n+m
+ 2(1)1/1 (m + 1)Sm+3(l’lA) n W(O)
(n+2)(m+ 3)pm+2

n+2 2
>0n(nA) 5 Y (0) T —

k

In view of A = , we have

m—1

a (’"+1)ﬂ+m 1
. 2 ! O n—m
> hizo, T 2o Snev© st
/ (n+2)pm

m+2)n+m

2a’n (m + 1)Sp 139 (0) n=m
(n +2)(m + 3)pm+2

(3.5)

)

where 0 < ¢» < 1 is a constant.
When m = 1, we complete the proof of Theorem 2.1 in Sect. 2. We assume that m > 2.
Putting

g() = g1(t) + g2(1),

where
2 n42
gl([)za)n [ “nk n
and
m=1 (m+Dn+m—1
g ([) 26()" " Sm+2t n knfr:Jrl
2 = -
n + 2)pm+1

m (m+2)n+m
2y (m + 1)Spq3t™ n—m

(n 4 2)(m + 3)p"+2

2

3
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we have
(n + 2)pm+la),fg/2(t) m+DHn+m—-1 -1 mntm—1 1
n—m = - Wy m+2t n k’l
2k n n
(m + 2)’1 + m (m + 1)Sm+3 ¢ (m+l)n+m
n (m+3)p '
When
C2§(m+1)n+m—1\/§Sm+2m+3k$! 3.6)
m+2n+m Sm+3z m—+1
we get that g»(¢) is decreasing on (0, (277) ™"V (£2)] by using the following formulas
k
nA = —,
wn
n+l
p = Q2r) " w, ”V(Q) "
Hence g(t) is also decreasing on (0, (277) "V (2)]. This implies
2 mnl 1//-(0) (m+l)n+m 1
nt2 n—m
Zx > T (0) 2k 52— 2en Smi2 K=
(n + 2)pm+1
3.7
(m+2)n+m
. 2wn” (m+ 1)Sm43¢(0) n=m
2 (n +2)(m + 3)pm+2 ’
where
V()
0)= ,
Vo =5
and
V@
= T
Qm) w,);
[m}

From the above lemma, we have the following universal lower bounds for higher eigen-
values.

Corollary 3.3 For any bounded domain Q@ € R", n > m + 1 > 3 and k > 1 we have

) 2 m;l S (m+1)n+m—1
- _2 2 Wy m+20 n —m+l
M Zowp "o nkn — k™n
k =@n (n +2)pm+!
(m+2)n+m

2w, (m+ 1) Spiza

Tt m + 3 ’
where
, m+Dn+m—1280m~+3 1
¢ <minj 1, kn ¢,
(m+2)n+m Smy3z m+1

S =(a+ 1D —d,
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o= (vzg;;z, p =2Qm) "V (QI(Q) and a is defined by (2.16).

Due to the similar discussion to Corollary 2.4, we have

Corollary 3.4 For any bounded domain Q C R", n > 3 and any k > 1 we have

k —27)? -
T Lo QYT e (vm)) .
P n+2 24(n+2) \ 1(Q)

-1 3n+l _1 4n+42

wp " n-d 3w, "o a2

Sk o _kw .
+ 9(n +2)p3 + 80(n + 2) p*

Proof According to Lemma 3.2, we have

n n—1 3 n—2
n(n+2)B — (n+2)2nA + 20" 2 > % 41 —+ 780

By using similar discussion in the proof of Theorem 2.1, we get

k 2,2 5 Lo
St O s SOF 00O
P n+2 6(n+2)p 9n+2)p
_ﬁ 4n+2
Ciw, "9 (0) n k n=2 ’ (3.9)

(n+2)p*

where 0 < C3 < 33—0 is a constant which will be chosen. By using the similar discussion in
the proof of Corollary 4.4, one can choose C3 = 83—0. Hence, we complete our proof. O

4 A universal lower bound on eigenvalues of the clamped plate
problem

In this section, let ¢ (z) be the decreasing radial rearrangement of (z) where h(z) is defined
as (4.9). Then, a is defined by

a+1 0
/ "Bz = / —7"3¢/ (2)dz. A.1)
a 0

We will give a universal lower bounds on the sum of eigenvalues forn > m, where m > 1.

Theorem 4.1 For any bounded domain Q € R", n > m > 1 and k > 1 we have

(1) Whenn =1 and

27283
<k,
5
we have
L -4 4 1+4 m=4 48,40 mntm—4  n—m+4
ZF,‘ Za),,”a nk —a)n" ﬁ(}l n k™ n
n
pay (n+4)p 4.2)
m=3 4ms, ntDntm=3  p—m+3
+wn . m-+2 m :: m kn r: ’

-+ D +2)p" T
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where o, p are defined by (1.9) and
=@+ —d.

(2) When m > 2, we have

k
_4 gy 4 m=4 48 +m—4  n—m+4
Fl- Za)n"(xiﬁkl+fl —wn” #amn nm kn r:
lel (n+4)p™m

m=3 4m Sy 42 (mtDnm=3 X n=m+3
n

et T Hm

’

where

2T+ 2)m+2) omn
Sm42[(m + Dn +m — 3] '

C3§min{l, k™

Next, we recall the definition and serval properties of the symmetric decreasing rearrange-
ments. Let Q@ C R" be a bounded domain. Its symmetric rearrangement * is the open ball
with the same volume as €2,

QF = {x € R"| |x| < (V(Q)>}.
Wy

By using a symmetric rearrangement of €2, we have

2
V) \ "
1(9):/ |x|2dx2/ x[2dx = —— V(Q)( ( )) ) (4.3)
Q QF I’l+2 Wy
Then we have
o0
/ Ix|*F(x)dx > / Ix|*F*(x)dx = now, / s"F3¢ (s)ds. (4.4)
R" R" 0

The following lemma is useful in the proof of Theorem 4.1.

Lemma 4.2 Forintegersn > m > 1and positive real numbers s and T, we have the following
inequality:

m
ns" T — (n + 4" + 47 — Z4ksk_lt”_k+3(t —5)2>0. 4.5)
k=1
Proof Taking t = £, and putting f(¢)

T°

m
f@ ="t = D" A=A — 1P =) 4k - 17,
k=2
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fort > 0, we get

£ @) =n(n+H" = n(n + 4"

- [8(1 — D+ Y k(= D=1+ sk - 1)}

k=2 k=2
=n(n+H"3 —nm + !

B m m

— =18+ 4ktk— D2 — 1) + ZSktkl]
L k=2 k=2
=n(n+H"? —nm + H"!

m m m
—(t—=1]8+ Z4k(k — Dkl = Z4k(k — D2 4+ Z 8ktk‘1}
k=2 k=2

L k=2
=n(n + "3 —nn + """

B m
— (=1 |4mm+ D"+ Z(4(k — 1)k —2) — 4k(k — 1) + 8(k — 1))z’<—2}
L k=3

=n(n+ "> —n+ 9" —dmm + D" @ - 1)

=[n(+H"" @+ (e + 1) — dm(m + D] " (¢ = 1).
From the above formula, it is clear that when n > m, we have t = 1 is the minimum point

of f(¢) and then f > min{f(1) =0, f(0) = 0}. We get

m
Tn+4f(l) — nsn+4 _ (n +4)T4Sn _ Z4ksk_]1'n_k+3(l' _ S)Z > 0.
k=1

Now, we will give the proof of Theorem 4.1.

Proof of Theorem 4.1 Let {u; };?Ozl be the eigenfunction corresponding to the eigenvalue I';,
j = 1,2.... which satisfy

AZMJ-:Fjuj, in Q,
uj = % =0, on 082,
Joui(x)uj(x)dx =8, foranyi,j.
Thus, {u j}?"zl forms an orthonormal basis of L?(2). We define a function ¢ j by

uj(x), x €8,

v = io, x e R\Q.

Denote by @, (z) the Fourier transform of ¢; (x). For any z € R", we have

a_,(z):(zn)*%/w gaj(x)ei(x’Z)dx:(2n)7%/;2uj(x)ei<x’z)dx.

By the Plancherel formula, we have

/R” 9i(2)9;(2) = éij (4.6)
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for any 7, j. Since {u‘,-}‘/’.‘;1 is an orthonormal basis in L?(S2), the Bessel inequality implies
that '

k
Y@@ < em)™ f "9 Pdx = 27) "V (Q).
j=1 @

Foreach j = 1,..., k, we deduce from the divergence theorem and u ;|3 = %L’m =0
that

_ ;N 926l tr2)
20i() = @)~ fR 0 () (—D)?

2
8xp

2.
= —(271)7%/ ;00 éij(-x) e dx
n )Cp

dx

32g0j
Bxlz,

(2)-
It follows from the Parseval’s identity that

/ 121419 () Pdz = / (12P16;())dz
R" Rn

= f |Auj (x)|2dx “7)
Q
=T;.
Since
Voiz) = (271)7%/ ixuj(x)ei(x’z>dx,
Q
we obtain
k .
Y IVEiI* < (271)_"/ lixe' ™9 2dx = 2m) " 1(Q). (4.8)
j=! @
Putting
k
h() =Y 9@ (4.9)

Jj=1

one derives from (4.6) that 0 < h(z) < 27)7"V (). It follows from (4.8) and the Cauchy-
Schwarz inequality that

2

k 2 (&
V@I <2 > 18, | | D IVe@
j=1

j=1
<22m)™"VV(Q)I(Q)

for every z € R”. From the Parseval’s identity, we derive
k
/ h(z)dz = Z/ |uj(x)|2dx =k. (4.10)
R" —JQ
j=1
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Applying the symmetric decreasing rearrangement to s(z) and noting that { = sup |[Vh| <
2Qm) "/ V(I (RQ) := n, we see from (2.6)

—n<—¢<¢'(s) <0

for almost every s. According to (4.4) and (4.7), we infer

k
Y Ti= / l2*h(z)dz
i=1

n

> f 2 h* (2)dz @.11)

o0
:na),,/ s (s)ds.
0

In order to apply Lemma 4.2, from (4.4) and the definition of A, we take

0 =2Q1) " VQIRQ). (4.12)

k
Y(s) =¢(s), A=
now,

n

From (4.3), we deduce that

N
>2Qnm) " | —— 4.13
p =2Q2m) (n+2> o (4.13)
On the other hand, 0 < ¢(0) < suph*(z) = suph(z) < 2n) "V (Q).
For any k > 1 and @ > 0, we have
a+1 k+2 okt kK ja+l
/ sk_l(r—s)zds= ]: 5 _]:711_,_%12
a + 2+ a (4.14)
S
_ Skr2 Sk+1t+&l_2,
k+2 k+1 k
where
S =(a+1 —d.
Let D' = fa“+1 s"T4ds, from the above lemma, integrating the both sides of (4.5) over

[a,a + 1], we get

m
n(n+4)D — (n+4r*nA + 47" > Z4kr"_k+3 <

ﬁrz 2841 Sk42 )
k=1

k k+1 T k+2
(4.15)

From

Sk 28k+1 Sk+2
4k n—k+3 2
g; T T+ k2

2k Sk41 kSk+2
n+4 4 S n—k+4 _ 4 + = k—+4 = k+3
* Ezk“f Zk+1 i Zk+2

4msim+2tn7m+3 MT”*M“‘

_4 n+4 4S n+3
! T * m+2 m+1
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_ 8mSm+2 ‘L'n_m+4
m+1

m—1
k—1 2k
4 1 = )s n—k+4
* ;;( T k+1> k1
AmSp 42 ‘E”_m+3 4(m — 1) Syt Tn_m+4
m—+2 m—+1

SmSerQ ‘L'n_m+4
m—+1

_ 452.L.Vl+3

=4t 445" 4

_ 4S2,Eﬂ+3 _

4m Sm+2 ‘L’n_m+3

=4 n+4 _ 48 n—m+4
T m+2T + )

)

and
nl k—1 2%
4§ - = Sk 1,511 k+4_0,
k+1 k+1
k=2
we get

nn+4)D' — (n+4)Tt*nA + 40" 40" 45, L

4mSm+2 tn_m+3
m+2 '

This implies that

nn+4)D >+ HTtHnA) — 48, "

4mSim2 tn—m+3
m+2

Taking T = (nA)%, we get

rs (nA) 4 4Sm+2 ph—mta

T n nn+4)
+ AmSpy2

nn+4)(m+2)

n+4 n—m+4

>(nA)T _ ASmi2(nA)
T on nn+4)

n—m+3

AmSy42(nA) n
nn+4)(m+2)

D

n—m+3

Then, we get
o0 At i A4Sy (A) T s
n+3 ds > (n 0)" i — m—+2 0 !
/0 Y s 2T 07 = Sy 0)
AmSmia(MA)TH" reinnes

n(n +4)m +2)pm 1

@ Springer



175 Page 22 of 27

Z.Ji,H. Xu

According to (4.4), (4.7) and the above inequality, we conclude

k
Y Ti= / l2I*h(z)dz
i=1 R

Z/ |z|*h* (2)dz

o0
=nw, / s"F3¢ (s)ds
0

A+ L ASnmA)
annTw(o) n—= W

4m Sm+2 (m+1)n+m 3

+nwnn(n+4)(m+2)pm+lw( )

n— m+4

4S42(nA)

—0n(nA) T (0) 7 — oy Ly 0)

(n+4)p™
4mSm+2(nA)n = W( )(m+1)n+m 3
wp
(n+4)(m +2)pmtl

Form = 1and n = 1, we define f(¢) as follows

f@) =)+ f200),

on (0, 27)~ "V (2)], where

and

fi() = E0,(nA) Tt — w,

L) =01- f)a)n(nA)H'%t—% + wy

n— m+4

4Su12(nA)
(n+4)p™

nm+

4mSy42(nA)

v (0)

mn+m—4
n

mn+m—4
n

=2
n

’

3

2n—2

nm+

4msS, A
= —f)wn(nA)H‘%f% + w, mSy2(nA)

A Hm+ 2o

3

2n—2

for0 < & < 1. Then

When

/ t n 2S n
I’lfl( ) — = —S(nA)t7 2—4 n-+2 [7%2
i (n+4)p
dw,(nA)n
ZfS% <<

we prove that f(¢) decreases on (0, (27)™"V (£2)] by using

and
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Therefore, if

we get

n—m+4

4Sm+2 (l’lA) n mn+m—4
n+ D"

Z T >w0,(nA) g r — w,
i=1
4mSm+2(f’lA)” i (m+l)n+m—3
+ Wy n s
"t Dm0

where
_V(Q)
- Qen)n’

and

T
2m)"wy

Noting that A = , we obtain the following inequality
}’l
. - a4 mt 485,40 mntm—4  n—m+4
ZFi >w, "o kT —w," ————a 1 k n
< (n+4)p™
m=3 4mSm+2 (m+Dn+m—=3 n—m+3
" k.

T A+ 2
When m > 2, F(t) is defined by
F(t) =F1(1) + F2(1)
fort € (0, Qn) "V (2)], where

(4.16)

n—m+3

4 S A n (m+Dn+m—3

Fi(0) =wn(nA)l+%t_% + 30, mSnr2(nA) ;%,
(n+4)(m +2)p" 1

forO < c¢3 < 1and

4Sm+2(l’lA)” = mntm—4
) =—op—————1 7 .
(n+4p™

This implies

Fl/(t) ( A)l+n[ n$4

4w,

ot Dt m =3 MSmia (AT s
n (n +2)(m +2)pm+!
So, if
m+1
c3 < ko,

Sm2[(m + Dn +m — 3]
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we obtain that F'(¢) decreases on (0, (2) ™"V (2)], which yields that
k

_4 _4 4 m—4 4S 2 mn+m—4 n—m+4
Zri an "o ;k1+’ _wn’l Lma n k n
i=1 (I’l T 4)p
n m;3 4mSm+2 (m+Dn+m—=3  n—m+3
c3wy o n n
(n +4)(m +2)pm*!

where

m+1
272 2 2 m
¢3 <min {1, > (n+2)(m +2) st
Sm42[(m + Dn +m — 3]

O
For higher eigenvalues, we have the following universal lower bounds
Corollary 4.3 For any bounded domain Q € R*, n > m > 1 and any k > 1 we have
(1) Whenn =1 and
2\/§S3 <k
5 =
we have
_4 m=4 45 mn+m—4  —m
'y >, Tk — wp" _TomA2 e e
(n+4)p™
4.17)
m=3 4m Sy 42 (ntDntm=3  —m+3
+ w," T o n k n s
(n+4Hm+2)pm
where o, p are defined by (1.9) and
S =@+ l)l —d.
(2) When m > 2, we have
_4 m=4 4S mn-+m—: —m
Iy >w, "y Tk —w," _Tomi2 et =
(n+4)p"
m=3 4mS 2 (m+Dn+m=3  —m+3 (418)
+ 3w, " mE o kT

n+dHm+2m 1" ’

where

m

+1
2% 2 ) m
¢3 <min {1, (+2m+2  =al
Smt2[(m + Dn +m — 3]

According to Lemma 4.2 and the proof of Theorem 4.1, we also have the following result.

Corollary 4.4 For any bounded domain Q C R", n > 3 and any k > 1 we have

k 1 ( ),2 Mkﬁ
Iz () ek On) 12
; n+4 3n+4) 02
i=1 o (4.19)
2 (o) ek 304
+ . + k.
9(n +4) P 40(n +4)p
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Proof By using Lemma 4.2, we get

nSn+4 _ (l’l + 4)T4Sn +4.L.n+4 Z4T’l+2(f _ S)2 + SS.L.71+1(.L. _ S)2

+ 12527 (1 — 5)2.

In view of (4.15) and (57) in [30], integrating the both sides of the above inequality over
[a, a + 1], we have

.L,n+2 2‘[”+l %
nn+4)D — (n+4Hr*nA 4 4" 2t 127" / s*(t —s)?
0

1

Tn+2 2‘["+l 3
> + + 127" mln/ sz(r - s)2
0

3 9 e>1
>Tn+2 N 2.L,n+l N 37n
-3 9 40 °

By using similar discussion in the proof of Theorem 4.1 and taking T = (nA)%, we get

o0 1 .L.n-&-Z 21.n+1 3¢
n+3 ds > n+4 .
/0 SV 2 T ST D T ot d) T done 1 4)

Hence,we arrive at

ir. >0 AV (0) T + M
i=1 l T4 3+
2wn(nA) In= 3w, (nA) 4
9(n +4)p? W(O) 40(n +4)p4w<0)
n+2
_ nay <k>”'+l4 O+ “n (wL) )
T n+4 \w, v 3(n+4)p2'/'
n+1
2wy, ( k ) ! et 3wy (k )
+ WW( ) WV/( )

where 0 < d; < 1 is a constant to be determined. Let t € (0, 27) "V (2)], we define

n+2

n+4 k n

Q( ) k n [_A + (w,,) [2,,,2
T+ 4 3(n + 4)p?
n+1

K\ m k
2 (w?) (%) .
+ o +d r,

9(n + 4)p> 40(n +4)p*
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which would be decreasing on (0, 27) "V ()] if Q'(27x) "V (2)) < 0. Obviously,
0'((27) "V () < 0is equal to

4 n ]+é 2 n—=2
) ) =57 @) = (em)

wn V() - oon wy ) p? \(2m)"
+3n_1 2(a])(7>n (V(Q))Zn”l

n 9n+4p3 \ Q)"

3 V) \®
+4d140(n+4),04 ((271)”) '
4

Due to (2.18) and 55 < 4. if

di = min{1, do},

we have Q'((2m) "V (2)) < 0, where

W= () - () - () ()
0= 3 Wy V27 \wy 21(27T)% 2 wp ’

By direct computation, one has dyp > 1. Therefore, we obtain the following eigenvalue
inequality

e

nt2
n k n
k nw, [k o 4 @n (uTH) )
N
= n+4\w, 3(n+4)p
n+l
200 () * wn 3on(a)
— "7 gt
9(n +4)p3 20(n + 4) p*

[m}
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