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Abstract

We study a class of variational problems involving both bulk and interface energies. The bulk
energy is of Dirichlet type albeit of very general form allowing the dependence from the
unknown variable u and the position x. We employ the regularity theory of A-minimizers
to study the regularity of the free interface. The hallmark of the paper is the mild regularity
assumption concerning the dependence of the coefficients with respect to x and u that is of
Holder type.

Mathematics Subject Classification 49Q10 - 49N60 - 49Q20

1 Introduction and statements

This paper deals with a large class of nonlinear variational problems involving both bulk and
interface energies,

F(E, u; Q) = / [F(x,u,Vu) + 1gG(x, u, Vu)] dx + P(E; Q), (1)
Q

where u € H'(Q) and 1 denotes the characteristic function of a set E C € with finite
perimeter P (E; 2) in 2. Energy functionals including both bulk and interface terms are very
frequent in the mathematical and physical literature (see for instance [1, 2, 13, 14, 17, 20-22,
26]). In particular, the functionals that we study in this paper are strictly related to the integral
energy employed in the study of charged droplets (see [9, 25]). A prototype version of these
functionals, that is

/aE<x)|Vu|2dx+P<E; Q). P
Q
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with u = uq prescribed on 0Q2 and og(x) = Blg + alo\r, 0 < @ < B, was formerly
studied in 1993 in two papers by Ambrosio et al. (see [2, 22]).

The regularity of minimizers of these kinds of functionals is a rather subtle issue, even in
the scalar setting, especially regarding the free interface 9 E.

In 1993 in the paper [2] Ambrosio and Buttazzo proved that if (E, u) is a minimizer of
the functional (2), then u is locally Holder continuous in €2 and E is relatively open in 2. In
the same volume of the same journal, Lin proved a regularity result for the interface 0 E. To
clarify the situation we define the set of regular points of d E as follows:

Reg(E) := {x €IENQ: dEisaC'Y hypersurface in B, (x),
for some ¢ > Oand y € (0, 1)},

where B, (x) denotes the ball centered in x with radius ¢. Accordingly, we define the set of
singular points of 0 E

S(E) := (0E N Q) \ Reg(E).
Lin in [22] proved that, for minimal configurations of the functional (2),
H'Y(Z(E)) =0.

The aforementioned regularity result has been recently improved by G. De Philippis & A.
Figalli, and N. Fusco & V. Julin. Using different approaches and different techniques De
Philippis and Figalli [7] and Fusco and Julin [15] proved that for minimal configurations of
the functional (2) it turns out that

dimp(X2(E)) <n—1-—e¢, 3)

for some ¢ > 0 depending only on «, 8. Regarding this dependence, it is worth notic-
ing that in [11] it was proven that u € C 0.3+¢ and the reduced boundary 9*E of E is a
C'¢ —hypersurface and H*(0E \ 9*E) = 0 for all s > n — 8, assuming that 1 < % < Yn»
for some y,, > 1 depending only on the dimension.

Lin and Kohn in [23] extended the same result that the first author obtained for the model
case (2) to the more general setting of integral energy of the type (1), depending also on x
and u. More precisely F.H. Lin and R.V. Kohn proved, for minimal configurations (E, u) of
(1) under suitable smothness assumption on F and G, that H'Y(Z(E)) =0.

A natural question to ask is whether the same dimension reduction of the singular set
Y (E) proved for the model case (2) by De Philippis et al. can be extended also to the general
case of functionals of the type (1). In a very recent paper we give a positive answer to this
question. Inded in [12] we prove that

dimy(Z(E)) <n—1-—¢,

for some ¢ > 0, for optimal configurations of a wide class of quadratic functionals depending
also on x and u. Our path to prove the aforementioned result basically follows the same
strategy used in [15]. The technique used in [12] relies on the linearity of the Euler—Lagrange
equation of the functional (1). For this reason we need a quadratic structure condition for the
bulk energy. Conversely, the nonquadratic case is less studied and there are few regularity
results available (see [4, 5, 10, 19]).
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Throughout the paper we will assume that the density energies F and G in (1) satisfy the
following structural quadratic assumptions:

n

F(x,s,z2) = Z aij(x,s)zizj + Za,-(x, s)zi +a(x,s), 4)

ij=1 i=1

Gx,s.20)= Y bij(x.)zizj + »_bi(x.8)zi +b(x, ), ®)

ij=1 i=1

for any (x, s, z) € Q x R x R”. In the paper [12] we assumed as in [23] that the coefficients
aij, bij, , a;, b;, a, b belong to the class co! (22 x R) with respect to both variables x and s.
This C%! assumption of the coefficients with respect to (x, s) is crucial in several respects
in order to prove the desired regularity result for 0 E.

In the first place the C%! assumption is strongly used (see Theorem 2 in [12]) to prove that
every minimizer of the constrained problem (that is for | E| = d fixed) is a A-minimizer of a
penalized functional containing the extra-term A||E| — d|. In addition the C%! assumption
is primarly used to get an Euler—Lagrange-type equation that is one of the main ingredients
to prove the desired regularity result (see Proposition 4.9 in [15] and Theorem 8 in [12]).

In this paper we examine in depth the question of the minimal regularity assumptions
of the coefficients we ought to assume in order to get the regularity result quoted in (3).
Concerning the coefficients appearing in (4) and (5) we will assume a Holder continuous
dependence of (x, s). We want to stress that under this hypothesis it is not possible to write
down an Euler-Lagrange-type equation of the functional (1). We overcome this problem
considering, in Section 8, the first variation of the functional (1), under a small perturbation
®,(x) = x 4+ t X (x), depending on the lower order term (t* + o(t)) (where « is the Holder
exponent of the coefficients with respect to x). This does not allow us to write down the
Euler equation because we cannot pass to the limit for# — 0 being 0 < o < 1. Nevertheless
it is possible, in the blow-up procedure employed in Theorem 10 (Excess improvement),
to choose the excess ¢j, as increment in the first variation described above. In this step it is
possible to carry out the blow-up procedure letting £, — 0 using the condition o > ”n;l > %
(see equations before (80)). We exploited the proof strategy in every possible way in order
to push to the limit the assumptions concerning the Holder exponent of the coefficients. In
this regard it is important to point out that no restriction is needed for the Holder exponent
with respect to the s variable quoted below. Precisely we will assume that

ajj(x,-),bij(x,),a;(x,-),bi(x,-),alx,-),b(x,-) € C*P(R), foreveryx € .

We will denote by Lg the greatest Holder seminorm of the coefficients with respect to the
second variable, that is

laij(x, g = sup T T @D

<L
u,teR, u#t |I/t - t|‘8 P

= ’

Vx € @, (6)

and the same holds true for b;;, a;, b;, a, b.
Similarly we will assume about the dependence on the first variable that

aij (- 8), bij (-, 8),ai (-, 8),bi (-, 8), a(-, 8), b(-, 5) € CO*(Q), forevery s € R,

o e 1.
n

where
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We will denote by L, the greatest Holder seminorm of the coefficients with respect to the
first variable, that is

fay o)l = sup D ZGWEIN e @

V,2€Q, y#2 ly —z|*

and the same holds true for b;;, a;, b;, a, b.
Moreover, to ensure the existence of minimizers, we assume the boundedness of the
coefficients and the ellipticity of the matrices a;; and b;;, i.e.

vz|* < a;ij(x,s)zizj < Nz|%, vz < bij(x,s)zizj < Nlz|?, 8)
n n
D laiCe, )+ Y 1bix, )l + latx, )| + |b(x, 9)] < L, ©)

i=1 i=1

for any (x,s,z) € 2 x R x R”, where v, N and L are three positive constants.

Some comments about the Holder exponent « are in order. There are two main points in
our proof where the assumption o > ";l is used. In both cases we have to handle with a
perturbation of the set E.

The first point concerns the equivalence between the constrained problem and the penal-
ized problem (see the definitions below). In Theorem 2 we perform a suitable “small”
perturbation of a minimal set E around a point x € d E using a transformation of the type

O, (x) =x +0X(x), where X € Ch(B,(x)).

Denoting by E:= @, (E) the perturbed set and by i := u o d>;1 the perturbed function, we
prove that

F(E,u) — F(E, i) = 0(c?),

where « is the Holder exponent given in (7). On the other hand, in Theorem 2 we prove by
contradiction that (E, ) is a minimizer of a penalized functional obtained adding in (1) a
penalization term of the type

Al|E| -4,

for some suitable A to be choosen sufficiently large. Since we can observe that A | |E|—d |S =
O (0?), it is clear that we are forced to choose s = o (see Definition 2 below). Finally it is
evident that this new penalization term cannot exceed the perimeter term when we rescale
the functional (see Lemma 6) and so we are forced to choose o > n=l

The second point concerns the excess improvement given in Theorem 10, where we use
a standard rescaling argument to show that the limit g of the rescaled functions g; whose
graph locally represents d E is harmonic (see Step 1 in Theorem 10). In this step we use the
Taylor expansion of the bulk term given in Theorem 7 and the condition o > ”n;l is again
crucial, see (81).

In this paper we study the regularity of minimizers of the following constrained problem.

Definition 1 We shall denote by (P.) the constrained problem
min_ {F(E,v; Q) : |E| =d}, (Pe)
EcA(Q)
veuo+Hj (Q)

where ug € H'(Q),0 < d < |Q| are given and A(RQ) is the class of all subsets of  with
finite perimeter in 2.

@ Springer



Regularity results for a free interface problem... Page50f49 156

The problem of handling with the constraint |E| = d is overtaken using an argument
introduced in [11], ensuring that every minimizer of the constrained problem (P.) is also
a minimizer of a penalized functional of the type

FA(E, v; Q) = F(E,v; Q) + Al|E| —d|,

for some suitable A > 0 (see Theorem 2 below). Therefore, we give in addition the following
definition.

Definition 2 We shall denote by (P) the penalized problem
min_ FA(E, v; Q), (P)

EcA(RQ)
veug+H} (Q)

where uy € H'() is fixed and A(2) is the same class defined in Definition 1.

From the point of view of regularity, the extra term A | |E| —d |a is a higher order negligible

”;] . The main result of the paper is stated in the following theorem.

perturbation, being o >

Theorem 1 Let (E, u) be a minimizer of problem (P), under assumptions (4-9). Then

a) there exists a relatively open set T C 9E such that T is a C'"* hypersurface for all
O<pu< %, wherey :=1+n(a—1) € (0, 1),

b) there exists ¢ > 0 depending onn, v, N, L such that

H'ITE(@E\T)NQ) = 0.

Letus briefly describe the organization of this paper. Section 2 collects known results, notation
and preliminary definitions. Moreover, in this section the equivalence between the constrained
problem an the penalized problem is proved. As it always happens when different kind of
energies compete with each other, the proof of the regularity is based on the study of the
interplay between them. In this case we must compare perimeter and bulk energy (see [3,
22]).

We notice that the standard regularity theory give us u € C%7, for some 0 < y < 1, for
solutions u of either (P) or (P.). However, the Holder exponent y = % is critical in our setting,
indeed the Holder exponent is linked to the decay of the gradient on balls. As observed by

Lin (see [22] Remark pg. 162), whenever u € €% 27 for some n > 0, thenforany K CC Q

/ |vu|2 Scr"71+2n,
By (x)

namely the bulk term locally decay faster than the perimeter term.

In Sect. 3 we prove suitable energy decay estimates for the bulk energy. The key point of
this approach is contained in Lemma 5, where it is proved that the bulk energy decays faster
than p”~!, that is, for any u € (0, 1),

/ [Vul>dx < Cp" ™M, (10)
Bp(xO)
either in the case that

min{|E N B, (x0)|, | By (x0) \ E|} < &0|Bp(x0)l,

or in the case that there exists an half-space H such that

I(EAH) N By (xo)| < €0l B, (x0)l,
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for some g9 > 0. The latter case is the hardest one to handle because it relies on the regularity
properties of solutions of a transmission problem which we study in Sect. 3.1. Let us notice
that, for any given E C €2, local minimizers u of the functional

/ [F(x,u, Vu) + 1gG(x, u, Vu)] dx (11)
Q

are Holder continuous, u € C 2)’3 (£2), but the needed bound o > % cannot be expected in the
general case without any information on the set E.

In Sect. 3.1 we prove that minimizers of the functional (11) are in C 0.9 for everyo € (0, 1),
in the case E is an half-space. In this context the linearity of the equation strongly comes
into play ensuring that the derivatives of the Euler—Lagrange equation are again solutions of
the same equation. For the proof in Sect.3 we readapt a technique depicted in the book [3]
in the context of the Mumford-Shah functional and recently used in a paper by Mukoseeva
and Vescovo [25].

In Sect. 4, using the estimates obtained in Sect. 3, we are in position to prove some decay
estimates for the whole energy including the perimeter term. More precisely, whenever the
perimeter of E is sufficiently small in a ball B, (x¢), then the total energy

/ |Vul*dx + P(E; B,(x0)), 0<r <p,
By (x0)

decays as " (see Lemma 7). In the subsequent sections we collect the preliminary results
needed to deduce that d E is locally represented by a Lipschitz graph, see Theorem 5.

In Sect. 4, making use of the previous results, we are in position to prove the density upper
bound and the density lower bound for the perimeter of E which, in turn, are crucial to prove
the Lipschitz approximation theorem. In the subsequent sections the proof strategy follows
the path traced by the regularity theory for perimeter minimizers.

In Sect.5 it is proved the compactness for sequences of minimizers which follows in a
quite standard way from the density lower bound.

Section 6 is devoted to the Lipschitz approximation theorem which involves the usual
main ingredient of the regularity proof, that is the excess

e(x,r) = inf e(x,r,v):= inf
vesn1 vesn—1 =1

o2
/ ve(y) — vl AH ().
JENB, (x) 2

In Sect.7 we prove a reverse Poincaré inequality which is the counterpart of the well-
known Caccioppoli’s inequality for weak solutions of elliptic equations.

Section 8 contains a Taylor-like expansion formula for the terms appearing in the energy
under a small domain perturbation.

In Sect. 9 we finally prove the excess improvement, which is the main ingredient to achieve
the regularity of the interface. More precisely, we prove that, whenever the excess e(x, r)
tends to zero, as r — 0, the Dirichlet integral f B, (x0) |Vu|2 dx decays as in (10). With all
these results in hand we can conclude the desired result.

In Sect. 10 we provide the proof of Theorem 1 that is a consequence of the excess improve-
ment proved before.
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2 Preliminary notation and definitions

In the rest of the paper we will write (£, n) for the inner product of vectors &, n € R”, and
consequently |&| := (&, &)2 will be the corresponding Euclidean norm. As usual w, stands
for the Lebesgue measure of the unit ball in R”. For E C R” we denote by E(1 the set of
points of density 1 of E.

We will denote by p : R* — R" ! and ¢ : R" — R the horizontal and vertical
projections, so that x = (px, gx) for all x € R". For simplicity of notation we will often
write px = x” and gx = x,,, so that we will write x = (x’, x,), where x’ € R" ! and x,, € R.
Accordingly, we denote V' = (x5 ..., Ox,_,) the gradient with respect to the first n — 1
components.

The n-dimensional ball in R” with center xo and radius r > 0 will be denoted as

Br(xg) ={x e R" : |x —x9| < R}.

If xo = 0, we will simply write By instead of Bg(xo).
The (n — 1)-dimensional ball in R"~! with center x(’) and radius » > 0 will be denoted
with a different letter, that is

Dr(xo) = (x' e R" 11 |x' — x{| < R}.

If u is integrable in Bg(xp) we set

1
Up = / udx :][ udx.
op R" JBg(xo) BR(x0)

For any i > 0 we define the Morrey space L>*(2) as

L>*(Q):={ueL?>Q): sup r_“/ lul?>dx < oo} . (12)
QN By (xo)

x0€2, r>0

In the sequel we will constantly need to denote the difference between @ and ”n;l , so that we
define

y:=n(a—”n;1)=1+n(a—1)e(0,1).

The following definition is standard.

Definition 3 Letv € Hﬁw(ﬂ) and assume that £ C  is fixed. We define the functional Fg
by setting

Frw, Q) = F(E,w;Q), Ywe H(Q).
Furthermore we say that v is a local minimizer of the integral functional F if and only if

FE(v; Br(xo)) = min Fe(w; Br(xo)),
wev+H] (Bg(x0))

for all Br(xg) CC L.

It is worth mentioning that for a quadratic integrand F'(x, s, z) of the type given in (4) the
following growth condition can be immediately deduced from assumptions (8) and (9):

L2
§|z|2 — < F(x,5,2) <(N+ DzP+L(L+1), YxeQ,VseR, VzeR".(13)
%

The next lemma is very standard and can be found for example in [3, Lemma 7.54].
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Lemma1 Let f : (0,a] — [0, 00) be an increasing function such that
P
f(p) < A[(%) + Rs]f(R) + BR?, whenever) < p < R <a,

for some constants A, B > 0,0 < g < p, s > 0. Then there exist Ry = Ro(p, q, s, A) and
c =c(p,q, A) such that

f(p) < c(%)qf(R) +cBp?,  whenever 0 < p < R < min{Ry, a}.

2.1 From constrained to penalized problem

The next theorem allows us to overcome the difficulty of handling with the constraint |E| = d.
Indeed, we prove that every minimizer of the constrained problem (P,) is also a minimizer
of a suitable unconstrained problem with a volume penalization of the type given in (P).

Theorem 2 There exists Ao > O such that if (E, u) is a minimizer of the functional

o
)

Fa(A, w) = / [F(x,w, Vw) + 14G(x, w, Vw) dx]dx + P(A; Q) + A||A| —d
Q
(14)

for some A > Ao, among all configurations (A, w) such that w = ugy on 9S2, and « is the
Hoélder coefficient with respect to x variable appearing in (7), then |E| = d and (E, u) is a
minimizer of problem (P.). Conversely, if (E, u) is a minimizer of problem ( P.), then it is a
minimizer of (14), for all A > Ay.

Proof The proof can be carried out as in [11, Theorem 1]. For reader’s convenience we give
here its sketch, emphasizing main ideas and minor differences with respect to the case treated
in [11].

The first part of the theorem can be proved by contradiction. Assume that there exist a
sequence (Ap)neN such that A, — 0o as h — oo and a sequence of configurations (Ep,, up)
minimizing F;, and such that u, = up on 92 and |Ej| # d for all 1 € N. Let us choose
now an arbitrary fixed Eg C 2 with finite perimeter such that | Eg| = d. Let us point out that

Fon (Ep,up) < F(Eo, ug) := 0©. (15)

Without loss of generality we may assume that | Ej, | < d.Indeed, the case |Ej| > d can be
treated in the same way considering the complement of Ej, in 2. Our aim is to show that, for /
sufficiently large, there exists a configuration (Eh, i) such that 7y, (Eh, up) < Foy, (En, up),
thus proving the result by contradiction.

By condition (15), it follows that the sequence (), is bounded in H 1(Q), the perimeters
of the sets E, in 2 are bounded and | Ej, | — d. Therefore, possibly extracting a not relabelled
subsequence, we may assume that there exists a configuration (E, u) such thatu;, — u weakly
in H'(Q), 1g, — 1f a.e.in , where the set E is of finite perimeter in 2 and |E| = d. The
couple (E, u) will be used as reference configuration for the definition of (Eh, ip).

Step 1. Construction of(gh, iiy). Proceeding exactly asin [11], we take a pointx € 9*EN
2 and observe that the sets E, = (E — x)/r converge locally in measure to the half-space
H = {{(z,ve(x)) < 0},ie., 1g, = 1y in L}OC(R”), where v (x) is the generalized exterior
normal to E at x (see [3, Definition 3.54]). Let y € B1(0)\H be the point y = vg(x)/2.
Given ¢ (that will be chosen in the Step 2), since 1z, — 1y in Ll(Bl(O)) there exists
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0 < r < 1 such that
,
E-N Bl <e B NBIG| = 1E-NBipO)] > 055,
where w,, denotes the measure of the unit ball of R”. Then, if we define x, :=x +ry € €,
we have that

wpr"

|E N Brpa(x,)| < er”, [E N Br(x)| > iz

Let us assume, without loss of generality, that x, = 0. From the convergence of Ej, to E we
have that for all 4 sufficiently large

wpr"

mn+2”

|Ep N Brpa| < er”, |Ep N By| > (16)

Let us now define the following bi-Lipschitz function used in [11] which maps B, into itself:
(1—on@" = D)x if |x| < %
)x if % <|x|<r, (17

X if |x| >r,

n

D(x) = x —l—ah(l _ !
x|
for some 0 < oy, < 1/2" sufficiently small to be chosen later in such a way that, setting
Ep:=®(Ep), iy :=upod ",
we have
|Ep| < d.

We are going to evaluate
Fop (Ep,up) — ﬂh(Eh, up) = [/ [F(x,upn, Vup) + 15, G(x, up, Vup)]dx
Br

—/ [F(x,ﬂh,vah)+ﬂghG(x,zzh,Vﬁw]dy]
Br

+ [P(Ew; By) — P(Ep; B)] + an[(d — |ExD® — (d — |ExD®]
=hn+Dhbn+ Ly (18)

In order to estimate the contribution of the last integrals we need some preliminary esti-
mates for the map & that can be obtained by direct computation (see [11] or [12] for the
explicit calculation). We just observe that for [x| < r/2, ® is simply a homothety and all the
estimates that we are going to introduce are trivial.

Conversely, for r /2 < |x| < r we have
n

8<b,~( ) (1 n opr
xX) = op — ——
ox; "

XiXj
|x|n+2'

)Sij + nopr’ (19)

It is clear from this expression that, since oy, is going to zero, V& is a small perturbation of
the identity that can be written as

Vo =1d+o,Z.
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We can also address the reader to Section 17.2 “Taylor’s expansion of the determinant close
to the identity” in [24] for related estimates. Then we have

|lz—z0V®()| < Ci(n)oylz|, forall y,z e R". (20)
It is not difficult to find out also that
[vol(@w)|, <(1-@Q" = Doy)” <1+2"0y, forall xeB,. (1)

Concerning J ®, the Jacobian of @, from (19) we deduce

(n— l)ahr”)(l ghr")n—l.

Jo =(1 _
(x) + o+ N + oy o

For r/2 < |x| < r, we can estimate (see also Section 3 in [4]):

(n — Dopr" ahr”>

1o = (140 + o

)(1+Gh—(n_1)

x|
> 14204 — (4"(n — 1)* — 1)o} > 1 + oy,
provided that we choose

1
= =1
Summarizing we gain the following inequalities for the Jacobian of ®:
l+o, <J®(x), forallx € B\ B, 2,
JO(x) <1+ 2"n0,, forallx € B,. (22)

Now, let us start by estimating /3 ; thus proving at the same time that the condition |Epl < d
is satisfied.
Step 2. Estimate of I3 j,. First we recall (16), (17), (22), thus getting

|Eh|—|Eh|:/ JP(x)—1) dx+/ (JO(x)—1) dx
EyNBA\B )2 EpNB, 2

> (o5 —&)onr” = [1 = (1 = @" = Do) "Jer"

,
> ahr"[zn% e (2 — 1)n8].

Therefore, if we choose 0 < ¢ < go(n), we have that
M Enl — |Ep]) = Ay Ca(m)opr™. (23)

Moreover, if we denote 8, := ‘i_ |Ep |, we choose oy, in such a way that IE";,I —|Ep| <6,/2
thus respecting the condition | Ej | < d. For this reason let us observe that we have, proceding
as before and using (22),

|En| — |Ep| = / (JDx) — 1) dx <n2"opr".
E,NB,

Then we will choose
O

< < —_—
S =op = nontlpn’
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Let us observe that in the last condition we imposed also that o7, is comparable with §;,, which
is crucial in the following estimate. Resuming (23) we can conclude

~ o ~
Ly =M[d = ExD® = (d = |EnD*] = My ——————(En| — |Es)
[ ] d— |Ex)'—*
|En| — |Enl Cr(n)oyr”
=A d— |E))Y ————M— > rpadf ————
no(d — |Epl) d—|En hotdy, 5
> Cs(n, @)alr™, (24)

for some positive constant C3 = C3(n, o).
Step 3. Estimate of I1 . Now we can perform the change of variables y = ®(x) and,
observing that ]lgh(d>(x)) = 1g, (x), we get

Iin =/ [Fx,up, Vup) — J @) F(@(x), up(x), Vup(x) o VO (D (x))] dx
B,

+ / [G(x, up, Vup) — JO(x)G(P(x), up(x), Vup(x) o VCD_l(dD(x)))] dx
B.NE),
= Jin+ -

The two terms J; ;, and J> p, involving F and G in B, and B, N Ej respectively, can be
treated in the same way. Therefore we just perform the calculation for Jj .

To make the argument clearer, since we shall use the structure conditions (4) and (5) we
introduce the following notation. A, (x, s) denotes the quadratic form and A (x, s) denotes
the linear form defined as follows:

Ax(x, s)[z] == aij(x,8)ziz;, Ai1(x, 8)[z] == a;(x, 5)z;,
for any z € R". Analogously we set Ag(x, s) = a(x, s). Accordingly, we can write down
Jin

= /B {Az(x, wp () [Viey (x)]— Ao (@ (x), wp () [Vaty (x)o VO ™! (<I>(x))]J<I>(x)] dx

- /B [ A1 ()T ()1 A1 (@), 11, () [Vt ()0 VO™ (@)1 D () | v

+/B[Ao(x,uh(X))—Ao(CD(X),Mh(X))Jq>(X)]dx~ (25)

We proceed estimating the first difference in the previous equality, the other being similar
and indeed easier to handle.

/B [Az(x, up (X)) [Vup(x)]— Az (P (x), uh(X))[Vuh(X)OV¢_1(¢(X))]J¢(X)] dx
:/ [Az(d’(X),uh(X))[Vuh(X)] - Az@(X),Mh(X))[Vuh(X)OVCVI(¢(X))]J¢>(X)}dx

+ /B {Az(x, up N[Vup(x)] — A2(P(x), Mh(x))[Vuh(x)]} dx =: Hip + Ha p.

The first term Hj ; can be estimated observing that, as a consequence of (8), we have:

|A2[§] — Aa[n]] < NI +nll§ —nl, V&, neR"
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If we apply the last inequality to the vectors

£ = Vup(x), 1 1=/ J®x)[Vup(x)o VO~ (D (x))],

we are led to estimate |£ — 7.
We start by observing that, being J P (x) = (1 — o (2" — 1))” for |x| < r/2, by also
using, (22) we deduce

IVJI®(x) — 1| < C(n)oy,, forall x € R™.
Therefore we have
IVI®E — | < C(mopl§].
In addition choosing z = & o Vo~ 1(®(x)) in (20) and using also (21), we can deduce

&0 VO (@(x)) — &| < 0uCi()[& 0 VO 1 (@(x))| < 0 [€|C1(n) [VOH (@),
< n2"Ci(n)oyl§|.

Summarizing we finally get
&€ = nl = onCM)|Vup(x)], 1§ +nl = CM)[Vup(x)l,

for some constant C = C(n) > 0. From the previous estimates we deduce that
|Hy 4 < 04 NC?(n) / |Vup (x))> dx < 0, NC* (), (26)
Br

where ® is defined in (15).
The second term H j; can be estimated using the Holder continuity assumption on a;;
and observing that |[x — ®(x)| < o5,72". Therefore we deduce that

|Ho il < (002 Lo | [Vup(0)? dx < 0f C(n, @, Ly)®. 2N
B

In conclusion, since the other terms in (25) can be estimated in the same way, collecting
estimates (26) and (27) we get

[Ji,pl <05 C(n, N, o, Ly)®.
Since the same estimate holds true for J 5, we conclude that
Iy = =0 Ca(n, N, t, Ly)®, (28)

for some constant C4 = C4(n, N, a, Ly) > 0.

Step 4. Estimate of I . In order to estimate I j,, we can use the area formula for maps
between rectifiable sets. If we denote by 7}, . the tangential gradient of & along the approxi-
mate tangent space to 3* Ej, in x and Th*’ . isthe adjoint of the map 7} », the (n—1)-dimensional
jacobian of T}, , is given by

Jn—1Th x = det(Th*,x o Th,x)'
Thereafter we can estimate

Jio1Thx <140, +2"(n — Doy, (29)
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We address the reader to [11] where explicit calculations are given. In order to estimate I j,
we use the area formula for maps between rectifiable sets ( [3, Theorem 2.91]), thus getting

Ly = P(Ey; B,) — P(Ey; By) =/ _dH! —f  Juei Ty dH!
d*ERNB, *EpNB,

=/ (1= Jyo1Tpx) dH"! +/ (1= Jue1Tpx) dH"1.
0*ExNB/\By )2 0*EpNBr 2

Notice that the last integral in the above formula is non-negative since & is a contraction in
B, 2, hence J, 1Ty x < 1in B, 2, while from (29) we have

/ (1= Juo1Thx) dH"™" = =2"nP(Ey; By)oy, = —2"nOof,
B*EhQE,\B,/z

thus concluding that
Ly > —2"n®o;. (30)
Finally to conclude the proof we recall (18), (24), (28) and (30) to obtain
Foy (En, up) — Fo, (Ep, iip) > op (MC3(n,a)r" — ©(Cs(n, N, a, L) +2"n)) > 0,

if Ay is sufficiently large. This contradicts the minimality of (Ej, uy), thus concluding the
proof. O

The previous theorem motivates the following definition.

Definition 4 ((A, «)-minimizers) The energy pair (E, u) is a (A, «)-minimizer in Q of the
functional F, defined in (1), if and only if for every B, (xo) C €2 it holds:

F(E, u; Br(x0)) < F(F,v; Br(x0)) + A|[FAE|,

whenever (F, v) is an admissible test pair, namely, F is a set of finite perimeter with FAE CC
B, (x0) and v — u € H} (B, (x0)).

3 Decay of the bulk energy

We start by quoting higher integrability results both for local minimizers of the functional
(1) and for comparison functions that we will use later in the paper. We assume that E is
fixed and therefore we consider only the dependence on the bulk term through u. It is worth
mentioning that the following lemmata can be applied in general to minimizers of integral
functionals of the type

H(u; 2) :=/ H(x,u,Vu)dx, 31
Q

assuming that the energy density H satisfies only the structure condition (4) and the growth
conditions (8) and (9), without assuming any continuity on the coefficients. It is clear that
functionals of the type (1) belong to this class and in addition the involved estimates only
depend on the constants appearing in (8) and (9) but do not depend on E accordingly. Since
the argument is very standard we address the reader to [12] where detalied proofs is given.
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Lemma2 Let u € HY(Q) be a local minimizer of the functional H defined in (31), where
H satisfies the structure condition (4) and the growth conditions (8) and (9). There exists
s =s(n,v, N, L) > 1 such that, for every Byg(xg) CC 2, it holds

N
][ |Vul* dx < 01(7[ (1+|Vul?) dx) :
Br(xo) Bar(x0)

where C1 = C1(n, v, N, L) is a positive constant.

In the next subsection we will prove some energy density estimates by using a standard
comparison argument. For this purpose we will need a reverse Holder inequality for the
comparison function defined below.

Definition 5 (Comparison function) Let u € H 1(©2) be a local minimizer of the functional
F defined in (1) and Bag(xg) CC 2. We shall denote by v the solution of the following
problem

v:i=  argmin / I:I(x, Vw)dx, (32)
weu+HJ (Br(xp)) Y Br(x0)

where H (x,2) := H(x,u(x), z) satisfies the structure condition (4) and the growth condi-
tions (8) and (9).

Lemma3 Letu € H'(Q) be a local minimizer of the functional F defined in (1). Let v €
HY(Bgr(x0)) be the comparison function defined in (32). Denoting by s = s(n,v, N, L) > 1
the same exponent given in Lemma 2, it holds

N
][ |Vo|® dx < CZ(J[ (1+|Vul?) dx) ,
Bpr(xp) Bag(x0)

where Cy = Ca(n, v, N, L) is a positive constant.

Remark 1 The proof of Lemma 3 does not use directly the minimality of u, but only the
higher integrability of its gradient.

3.1 A decay estimate for elastic minima

In this section we prove a decay estimate for elastic minima that will be crucial for the proof
strategy. Indeed, we show that if (E, u) is a (A, «)-minimizer of the functional F defined
in (1) and xq is a point in €2, where either the density of E is close to 0 or 1, or the set E is
asymptotically close to a hyperplane, then for p sufficiently small we have

/ Vi dx < Co"
Bp(xo)

forany u € (0, 1]. A preliminary result we want to mention, which will be used later, provides
an upper bound for F. The proof is rather standard and is related to the threshold Holder
exponent % of the function u, when (E, u) is either a solution of the constrained problem
(P.) or a solution of the penalized problem (P) defined in Sect. 1. For the proof we address
the reader to [23, Lemma 2.3] and [15]. A detailed proof in the case of costrained problems
and for functionals satisfying general p-polinomial growth is contained in [4].
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Theorem 3 Let (E, u) be a (A, a)-minimizer of F in Q2. Then for every open set U CC Q
there exists a constant C3 = Cj (n, N,v,a,A, U, IIVulle(Q)) > 0 such that for every
B, (x0) C U it holds

F(E,u; B;(x0)) < C3r"~\.
Proof Fixing B, (x9) C U CC 2, we compare (E, u) with (E \ B (xp), u) thus obtaining
F(E,u; Q) < F(E\ By (x0), u; 2) + A[EA(E \ Br(x0)) N Q|*
< F(E\ By(x0), u; Q) + A|By(x0)|*.
Making F explicit and getting rid of the common terms, we obtain an energy estimate on
B, (XO) NE,
/ G(x,u, Vu)dx + P(E; B;(xg)) < P(E N3By(x0); Q) + c(n, a, A)r"™®
By (xo)NE

< H" (3B (x0)) + c(n, &, A)r" ™!

<c(n,a, A" L (33)
Now we want to prove that there exist M and 7 € (0, %), depending on %, such that for
every 6 € (0, 1) there exists hg € N such that, for any B,(xg) C U, we have

/ [Vul> < hor" ' or / [Vul>dx < Mr”*‘g/ [Vul*dx.
B, (x0) Bz, (x0) B (x0)

Step 1: Arguing by contradiction, for T € (O, %) and § € (0, 1), we choose M > 1 and
we assume that, for every /& € N, there exists a ball B, (x;,) C U such that

/ [Vu|? dx > hr,’l’_l (34)
Brh (xp)
and
/ [Vul?dx > MTH/ |Vul? dx. (35)
Brrh (xp) Brh (xp)
Note that estimates (33) and (34) yield
/ \Vu dx + P(E; By, (xp)) < cor! ™" < 2 |Vul*dx,  (36)
By, (xn)NE h By, (xp)
and so
/ |Vu?dx < £ IVul dx, 37)
By, (xp)NE By, (x)

for some positive constant cg.
Step 2: We will prove our aim by means of a blow-up argument. We set

= ][ [Vul? dx
Brh (xp)

and, for y € Bj, we introduce the sequence of rescaled functions defined as

o (y) == w with ay, -_][ wdx
' Shlh ' ' By, (xn) ’
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E —
E} = h

N Bj.
T

We have Vu(xy + rpy) = ¢, Vui(y) and a change of variable yields

1
/ |th<y>|2dy=—2f Vu@)Pdx = 1.
By gh Brh(xh)

Therefore, there exist a (not relabeled) subsequence of vy and v € H L(B}) such that v,—v
in H'(By) and v, — v in L?(B). Moreover, the semicontinuity of the norm implies

][ |Vv(y)|2dy§liminf][ Vor(Pdy = 1. (38)
Bl h—o00 Bl

We rewrite the inequalities (34), (35) and (37). They become, respectively,

) h
Sp = E: (39)
][ Vo) dy > Mt~ (40)

T

Cowp

h

2 €0 2
/ Vo) dy < ;/ Vo) dy = @1)
BlﬁE;‘k By

Of course, (39) implies that ¢, — 0o, as h — oo.
Step 3: In order to go further we must prove the strong convergence v, — v in H, l{w (By).
Since r;l‘_l P(EZ; B1) = P(E; By, (xp)), by (36), we have that the sequence
(P(E}; B1))hen is bounded. Therefore up a not relabeled subsequence, 1 E} — 1g+ in
L'(By), for some set E* C B of locally finite perimeter. By semicontinuity we deduce that

/ 1g+|Vv|> dy fliminf/ 1|V > dy
B h—o00 B
§liminf(/ IIE]*lehlzdy +/ IIE*\E7|Vvh|2dy) =0,
B g By g

h—o00

where we used (41) and the equi-integrability of (|Vva|?), -
By A-minimality of (E, u) with respect to (E, u + ¢) we get, for ¢ € HO1 (B, (xp)),

/ [F(x,u,Vu)+]lEG(x,u,Vu)]dx
By, (xn)

5/ [Fx,u+¢,Vu+Ve)+1G(x,u+¢, Vu+ V)| dx.
Brh(-xh)
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Using the change of variable x = x;, + ry, we deduce for every ¥ € HO1 (By),
/B [F Cen 4 rny, uen +ray)s Vo) + 1gz G e 4 rny, ulen + 1), sn Vo) dy
1
< /B F(xp +rny, uCxn +ray) +raVr, saVop + Vi) dy
1
+ [ 1560+ iy o +1u9) + e 6+ Vi dy. “2)
1

Let n € C2°(By) such that 0 < n < 1. We choose the test function v, = ¢;n(v — v;) and
exploit

Vo, + Vi, = gpnVu + gp(1 =)V, + gp(v — vp) V.

For simplicity of notation we will denote wy, := u(x, + rpy) + rnspn(v — vy) so that the
previous inequality can be read as

/ [F e+ ray, uCen +rny), saVon) + Lgr G + iy, uCen +ray), s Vop)] dy
B
< / FQxn +rpy, wi, sanVo + (1 = n)Vuy + gp(v — vp) V) dy
B
+/ 1 G (6 + rhys 0, SV + (1= )V, + 640 — 0) V) dy.,
B

Using the quadratic structure of F and G we can pull out the terms ¢; (v — vp,) in order to
use the convexity in the next step.

/B [F e+ ray, uCen +rny), seVon) + Lgr G + rpy, uCen + ray), s Vop)] dy
1
< /B Fxp +rny, wn, Vv + gp(1 —n)Vup) dy
1
+ /B LgrGen + rny, wn, spnVo + (1 = m)Vug) dy
1
+c(N, L) [ (IsnVvl + [sn Vorl + s (v — vi))|)snlv — vpl dy.

B

Using the convexity of F and G and rearranging the terms we obtain

/ nFn +ray, wh, spVon) < / nF(xp +rny, wn, sn Vo) dy
B| B]
+/ [Fen + rny, wa, nVop) — F(xp + rpy, uCxp + ray), nVop)] dy
B
+/ 1[G O + iy, wiy sVvr) = G + 1wy, u(xn + rny), spVop)] dy
B

+/ 1[G (n + rny, wi, spVv) = G + ray, wa, spVop)] dy
By

+cN, L) [ (IsaVol + [saVoul + [sa( — vi)|) snlv — val dy.
B
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The last term and the second to last term can be treated in a standard way using (38), Holder’s
inequality, the strong convergence of vy to v and the weak convergence of Vv, to Vv. The
remaining two terms, which differ only in the second argument, can be treated as follows.

We remark that by definition of v, and Holder continuity of u; immediately follows
rngnvp, — 0. Therefore, being r, ¢, — 0 where v # 0, we deduce also wy, — u(x, +rpy) =
rncnn(v —vy) — Oforae. y € By. Finally, using the equi-integrability of |V, |?, resulting
from the weak convergence of Vv, and the boundedness of the coefficients a;;, a;, a we
conclude that

- [F(xn + rny. wa, saVor) — F(xp + ray, uCep + rny), snVop) | dy
1
< §;?/l; |aij (xn +rny, wp) — aij(xp +rpy, u(xp +rpy) | Vivpl[Vivp| dy
1
+ Sth lai (xp + rny, wp) — @i (xp 4 rpy, uCxp + )| Vive|dy + c¢(n, L) = ¢Pen.
1
Combining the previous inequalities, we get

/ nF(xp +rpy, wn, spVop)dy < / nF (xp + ruy, wp, shVv) dy + gién.
B| BI

Dividing by gi, the linear terms in F tend to 0, thus getting

/ najj(xp +rpy, wp)VivpVivp dy < / najj(xp +rpy, wp)VivVivdy + gp.
B B

Since B,, (x;) C U CC Q forall & € N, we may assume that x;, — X, as h — o0.
Passing to the upper limit for 7 — oo, in the previous inequality, we deduce

lim sup/ na;ij(x, u(x))Vivy Vv dy < / na;j(x, u(x))VivVivdy.
h—o00 B B
The opposite inequality holds true by lower semicontinuity. Thus we conclude

lim/ nai.,'(f,u(f))v,-vhvjvhdy:/ na;j(x, u(x))VivVivdy.
1 B

h—o0 Jp

Since the matrix a;; (X, u (X)) is elliptic and bounded, it induces a norm which is equivalent to
the euclidean norm. Therefore, being n € CL! (B1) arbitrary we deduce the strong convergence
of vy to v in H! (By).

Step 4: (Reaching a contradiction.) Using the strong convergence of v, tovin H ZIUC(B 1) we
can pass to the limit in the inequality(42) divided by g,%. Observing that the terms containing
G vanish by (41) we conclude that

/ F()E,u()?),Vv)dyg/ F&, u(®), Vv + V) dy,
By By

for every ¢ € HO1 (B1). Therefore v minimizes a quadratic functional in By and we deduce
that there exists 79 € (0, %) and C, depending on ¥ such that

][ Vo> dy < C“Ji [Vu’dy < C, Vr < 1.
T 1
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Then we conclude

lim ][ [Vou|? dy :][ Vo> dy < é][ [Vv|?dy < C
T Br B

h— 00

Thus we reach a contradiction with (40) if we choose M > C > 1C.

‘We conclude that there exists T € (0, %) and M > C such that, for every § € (0, 1) there

exists hg € N such that, for any B,(xg) C €2, we have

/ IVul® < hor"™! or / [Vul?dx < MT"_5/ |Vul? dx.
B (x0) By (x0) B, (x0)

Hence,

/ |Vul*dx < Mr”*‘s/ \Vul®dx + hor"™",
Bz (x0) By (x0)

and, using Lemma 1, we obtain that

n—1
/ |Vu|2dx§c=<£> / |Vu|2dx+h0p"_l}, YVO<p<r <R,
BP(XO) r By (x0)

and so

/ |Vul?dx < cp™ .
By (x0)

[m}

As a consequence of the previous theorem, using Poincaré’s inequality and the characteriza-

tion of Campanato spaces (see for example [16, Theorem 2.9]), we can infer that u € CO’%.
We deduce the following remark.

Remark 2 Let (E, u) be a A-minimizer of the functional F defined in (1). For every open set
U CC Q there exists a constant C = C(n, &, A, U, [|Vull;2(q)) > 0 such that

sup 10— ul _”(ly” <cC. (43)
x,yeU |x — y|§

In order to prove the main lemma of this section we introduce the following preliminary
result. For reader’s convenience we give here a sketch of the proof, which can be found in
[25]. Actually we state here a weaker version that is suitable for our aim. In the following
we will denote

H={xeR: x, >0}

Lemma4 Letv € H'(By) be a solution of
—div(AVu) = div G, in D'(By),
where
Gt :=14G e C*(HNB), G :=1uGeC" (HNB),
for some o € (0, 1] and A is an elliptic matrix satisfying

< N|z)?

2
viz|® < Ajj(X)ziz)
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and
AT =154 eC*(HNB), A =1pAecC"(H NB,
for some constants v, N > 0. Let us denote

C4 = max | ||A+||Co,{r ; ”A_”Co,a o Co=max{|G" ”c‘)ﬂ ’

G_”cﬂﬂ }

ThenVv € Lz’"(Bl) (see (12)). Moreover, there exist two constants C = C(n, v,N,Cy, CG)

loc

andrg =ro(n,v, N, |G|~ , Ca, Cg) such that, for any r < ro with B,(xo) C B,

n
/ Vo2 dx < c(ﬁ) / IVol2dx +Cp", Vp <=
B, (x0) r Br(x0) 4

Proof Fix xo € Bj and let r be such that B,(xyp) C Bj. Let us denote by a* and a~ the
averages of A in H N B, (xg) and H¢ N B, (xp) respectively. In an analogous way we define
gt and g~ the averages of G in H N B, (xo) and H® N B, (xq). For x € B, (xo) we define

A=at 1y +a 1ge, E:=g+]lH+g_]le~.
Notice that by assumption
|A(x) — A(x)| < C4r? and  |G(x) —G(x)| < Cgr?. (44)
Let w be the solution of

—div(AVw) =divG in D' (B, (xp)),
w=uv on 4B, (xq).

Step 1: Tangential derivatives of w. Let us denote with T the general direction tangent
to the hyperplane d H. Since A and G are both constant along the tangential directions, the
classical difference quotient method gives that V. w € WIIO’CZ(B,. (x0)) and

div(AV(V,w)) =0  ae.in B,(xg).

Hence, Caccioppoli’s inequality holds:

v, N
/ V@ Pdy < VN g - (o R dy, (45)
By (x) (p—0) Jp,x)

forall balls B, (x) C B, (x0), withO < o < p. Moreover, by De Giorgi’s regularity theorem,
V:w is Holder continuous and there exists y = y (n, v, N) > O such thatif B,(x) C B,(xo)
o n+2y
/ IVew — (Vew)yo dy < c(n, v, N)(—) / Vew — (Vew)s|* dy,
Bo (x) P B, (x)
(46)
forany 0 < o < 4 and

N
e[ vawPay, 7

max |Vtw|2 <
Bp(x) o B, (x)
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Observe that, since a® and g% are constant, we have that w® € W]20’C2(B;|E (x0)) respec-
tively, where we denoted Br‘" (x0) = Br(x0) N H and B, (x9) = B, (xo) NH, wt = w]lBr+,
w” = wlp-. If we choose ¢ € CCI(B;") or¢ € CC1 (B,") in the equation

/ (AVw +G)Vody =0, ¥ € C3(B,(xo)).
By (x0)

we deduce that

—div(@aTVwT) =0 ae.in B, (xo) N H,
—div(e"Vw™) =0 a.e.in B,(xg) N HS,
wt=w" on B, (xg) NdH.

We also notice that, by the linearity of the first and the second equations quoted above, we
can deduce that

2 +2 .+ +
ann vn - Z aij Vijw m Br (-XO)»
(i, ))#(n,n)

and then

N .
V2 wE| < c(m=— > IViwF| in B (xo).
i, )

Therefore we can estimate, using (45), the second derivatives of w* up to the flat boundary
d0H, that is to say wt e W2'2(B;,t(x0)) for every 0 < p < r. This implies that Vw® has a
trace on 9 H. Let us write down the equation for w separately on B;" and B, :

/ (a+Vw+ + g+>v¢ dy +/7 (a*Vw* + g*)w dy =0, Vo e Cl(B,(x0)).
Bj By

We can integrate by part the separately on B, and B,~ and use the fact that Vw™ and Vw™
have a trace on B, (xo) N d H, while the volume terms disappear, to conclude that

/ (a+Vw+ + g+) cepnpdy
B, (x0)N0H
—/ (a7Vum +g7) - enpdy =0, Vo CL(B (x0).
B, (x0)N0H
Therefore we have obtained the transmission condition
<a+vw+s en) —{a " Vw ,en) = (g ,en) — <g+s ey) on B.(xo) NdH, (48)

in the sense of traces. Set
= Z AinViw + (G, ey),

where A, is the (i, n)-th entry of the matrix A. In the next steps we will use the transmission

condition to deduce that the distributional gradient of D.w is well defined all over B, (xq).
Step 2: Regularity of D.w. We start by proving that the distributional gradient of D w is

given by VD .w™ on B; and VD.w™ on B,~. Hence, no contribution appears on d . Let
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¢ € C°(Br(x0); R"), if we employ the integration by part deduce that

/ D.w divqbdy:/ VD .w ~¢dy—|—/ VD.w - ¢pdy
By (x0) B, (x0) B (xo)

n

n
+/ (Zainviw'f'g*—‘en_za;nviw"‘g_'en)((p'en)dy~
JHNB, (x0)

i=1 i=1

Finally, we can observe that the last term vanishes thanks to the transmission condition (48).
Thus we conclude that the distributional gradient of D.w coincide with the pointwise one and
so D.w is a Sobolev function. Let us compute now V,(D.w) = D (V. w) — (G, e,). This
implies by Step 1 that the tangential derivatives of D.w belong to leo . (Br(x0)). Furthermore
we can estimate directly by definition of D w:

IVa(Dew)| < c(n, N)|VVwl,
which implies again by Step 1
IVD.w| < c¢(n, N)|VViwl.

We can conclude that D.w € WIL’CZ(Br (x0)). Using Poincaré’s inequality and (45), we have

/ Bew — (Dew)s o dy < c(n)p? f V(Dew) P dy
B/)(X) Bp(x)

< c(n, N)pzf IV(Vew)|*dy

Bp (x)

<c(n, v, N) IVew — (Vew) 2l dy,
By (x)

for any B, (x) C B, (xo). By (46) we infer

/ |5cw - (Bcw)x,p|2dy
B,;(X)

r

0 n+2y
<c(n,v, N)(*) / V. w|*dy,
r B, (x0)

for any x € B:4; (x0) and p < L. Hence by Lemma 4.2 in [25] (see also [3, Lemma 7.51]),

0 n+2y
<c(n,v, N)( ) / IVew — (Vew), £ |* dy
B%(X)

7
D.w is Holder continuous and by (47) we get:

2
max |56w|2 <c(n,v,N) |er|2dy + V D.w(y)dy
B% (x0) B, (x0) Bzr{ (x0) (49)
c(n,v, N)
<o Vw2 dy + 211G} -
r By (x0)
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Step 3: Comparison between v and w. Subtracting the equation for w from the equation for
v we get

/ Zij(x)(v,-v—vl-w)vjq;dx
By (x0)

= / (Z,'j(x) — A,-j(x))V,-ij<pdx +/ (6, — Gi)vi(pdx
By (x0) B

r(x0)

forany ¢ € WO1 ’Z(Br (x0)). Choosing ¢ = v — w in the previous equation and using assump-
tion (44) we have

v/ Vv — Vw|?dx < Cyr® / [Vo>dy + Cor'*e.
By (x0) B, (xq)

Finally we can estimate

/ |Vv|2dy§2/ |Vw|2dy+2/ Vv — Vw|*dy
By (x0) By (x0) B, (x0)

<2w,p" sup|Vw|2+2/ Vv — Vw|?dy,
B% By (x0)

for any p < %, and observing that

sup |Vw|2= sup |V,w|2+ sup |Vnw|2
Bg (x0) Bi (x0) Bzr( (x0)

<c(m, v, N) sup |Vew|*> +c() sup [Dewl® 4+ c(v, |Gllo),
Bzr[(xg) Bzr{(xo)

by (47), (49), the minimality of w and Young’s inequality we gain

/ Vol dy
B, (x0)

n
<c(n,v, N)<B> / \Vw|*>dy + c(n, v, IIGIIOO,CA,CG)[r"/ IVvlzderr"]
r By (x0) By (x0)

it cocol[(2) <] [ wtan]
r By (xo)

which leads to our aim if we apply Lemma 1. O

The next lemma is inspired by [15, Proposition 2.4] and is the main result of this section.
In the sequel we shall consider the worst Holder exponent introduced in (6) and (7), defined
as

8 := min {«, B}.

Lemma5 Let (E, u) be a (A, a)-minimizer of the functional F defined in (1). There exists
70 € (0, 1) such that the following statement is true: for all T € (0, ty) there exists g =

eo(t) > O such that if B, (x9) CC Qwithr % < 7 and one of the following conditions holds:

@ £ N Br(x0)| < 0| Br(x0)l,
(i) |B,(x0) \ E| < €0l B (x0)l,
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(iii) There exists a halfspace H such that W < &0,

then

f |Vul>dx < 04[1"/ [Vul? dx + r”],
Bz, (x0) By (x0)

for some positive constant C4 = C4(n, v,N,L,a, B, Ly, Lg, IIVuIILQ(Q) )

Proof Let us fix B,(xp) CC Qand 0 < v < 1. Without loss of generality, we may assume
that 7 < 1/4 and xo = 0. We start by proving the assertion in the case (i), the proof in the
case (ii) being similar. Let us define

AY s = aij(xo, urp(x0)). B = ai(x0, ur2(x0)), £ 1= alxo, ur2(x0)),
Fo(2) : = (A%, 2) + (B%, 2) + f°.
Let us denote by v the solution of the following problem:

min  Fo(w; By/2),
weu+H{ (By)2)

where

Fo(w; By2) :2/ Fo(Vw) dx.

B2
Now we use the following identity
(A%, &) — (A%, m) = (A°E — ). & —m) +2(A%n.E — ), VE.neR",
in order to deduce that

Fo(u) — Fo(v)

:/ [(A°Vu, Vu) — (A°Vv, Vv)]dx—i—/ (B, Vi — Vv) dx
B2 B2

= / (A°(Vu — Vv), Vu — Vv) dx
B2

+ 2/ (A°Vv, Vu — Vo) dx +/ (B, Vu — Vv) dx. (50)
B2 B,

r/2

By the Euler—Lagrange equation for v we deduce that the sum of the last two integrals in
the previous identity is zero, being also u = v on 9B, 5. Therefore, using the ellipticity
assumption of A” we finally achieve that

v/ |Vu — Vo> dx < Fo(u) — Fo(v). (51)
B2

Now we prove that u is an w-minimizer of F. We start by writing

Fou) = F(E,u) + [Fo(u) — F(E, u)]
< F(E,v) + [Fo(u) — F(E, u)]
= Fo(v) + [Fo(w) — F(E, u)] + [F(E, v) — Fo(v)]. (52)
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Estimate of Fo(u) — F(E, u). We use (6), (7), (8), (9) and (43) to infer

Fo(u) — F(E,u) = / (aij (x0, ur2(x0)) — aij(x, u(x)))ViuVju dx
B2

+/B (ai (x0, urj2(x0)) — @i (x, u(x)))Viudx
r/2

+ / (a(xo, ur/2(x0)) —a(x, u(x))) dx — / G(x,u,Vu)dx
B2 B

r2NE

<c(n Lo, Lg ”VMHLZ(Q))(r%/ |Vu|2dx+r”+%)
B

r/2

+C(N,L)</ |Vu|2dx+r”>, (53)
B, pNE

where we denoted Ly, Lg the greatest modulus of Holder continuity of the data a;;, b;;, a;,
bi, a, b defined in (6) and (7). Now we use Holder’s inequality and Lemma 2 to estimate

1/s
/ |Vul*dx < |EmBr|1—”S|Br|”X(,[ |Vu|’“)
B, pNE By )2

ENB.I\!-1/s
<c/” IEN B / (14 |Vul?) dx. (54)
|Br| B,

Merging the last estimate in (53) we deduce

Fow) =FE )= (c(n, Las Ly, [Vull 2y )+CN, LCT ) (75 +257) [ 1Vuldx
B,

+(CN, L +CN L)+ e, Las Ly, [ Vul 2y )™ (59)

Estimate of F(E, v) — Fo(v).

F(E,v) — Fo(v) :/B (aij(x, v(x)) — aij(x0, ur/2(x0))) VivV,vdx
r/2

+/B (ai (x, v(x)) — ai(x0, ur2(x0))) Viv dx
r/2

+/ (a(x,v(x)) —a(xo,ur/z(xo)))dx+/ G(x, v, Vv)dx.
Brp By pNE

(56)
If we choose now z € 0B, 2, recalling that u(z) = v(z) we deduce
|aij (x, v(x)) — a;j (x0, ur/2(x0))|
= |aj; (x, v(x)) — a;; (x, v(2) + ai; (x, u(2)) — a;j(xo, ur2(x0))|

s
< (Lglvx) —v@I? + C(Lp, IVull 2 )r? + Lor®)
8

< (c(B, Lp)osc(u, 3By 2)’ + C(n, v, N, L, B, Lo, Lg)r? + C(Lg, |Vull 2, )r? +1°)
< C(n.v, N, L, B. Lo, Lg. [ Vull 2 )3,
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where we used the fact that osc(v, Byj2) < osc(u, dB,;2) +C(n, v, N, L)r (see [16, Lemma
8.4]). Analogously we can estimate the other differences in (56), deducing

F(E,v) — Fo(v) < C(n,v,N,L,a, B, Lo, Lg. || Vul 12 )r% ([ Vo> dx + r")

B2
+ C(N, L)(/ |Vv|2dx—|—r”>,
Br/zﬁE

Reasoning in a similar way as in (54), we can apply the higher integrability for v given by
Lemma 3 and infer

f \Vol?dx < C(n, v, N, L)e(l)_m(/ \Vul® dx —I—r”).
B, pNE B,

Therefore we obtain
F(E,v) — Fo(v)

SC(n,u,N,L,a,ﬁ,La,Lﬂ,||Vu||L2(Q))[(r%+g(‘)—1/s)/ |Vu|2dx+rn:|. (57)
Br

_1
Finally, collecting (51), (52), (55) and (57), if we choose &g such that Sé ¢ = 1", recalling

that r % < 1, we conclude that
/ [Vu — V|2 dx < C[r"/ |Vu|?dx +r"], (58)
B2 B,

for some constant C = C(n, v, N, L, B, Lo, Lg || Vul|2() ). On the other hand v is the
solution of a uniformly elliptic equation with constant coefficients, so we have

/ |Vu>dx < C(n, v, N)'L'"/ |Vu>dx < C(n, v, N, L)[T”/ [Vu|? dx +r"].
By Br/2 B

r/2

(59)

Hence we may estimate, using (58) and (59),

/ [Vul? dx < 2/ Vv — Vu|? dx +2/ [Vv|?dx < c[f"/ [Vul? dx +r”:|,
T Brr Brr Br

for some constant C = C(n, v, N, L,a, B, Lo, Lg || Vul 12 )-
We are left with the case (iii). Let H be the half-space from our assumption and let us denote
accordingly

AD () = aij O, w(x)) + Labij (x, u(x)),

BJ}(x) := ai(x, u(x)) + Lubi(x, u(x)),

FO0) = alx, u(x)) + Lyb(x, u(x)),

Fo(x,2) := (A%(x)z,2) + (B(x). 2) + fO(x).
Let us denote by vy the solution of the following problem

min Fo(w; By y2),
weu+Hg (Brj2)
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where
Fo(w; Byp2) := / Fo(x, Vw)dx.
B2

Let us point out that vy solves the Euler—Lagrange equation
—2div(A°Vuy) = divB® in D'(B,)2). (60)

Therefore we are in position to apply Lemma 4 to the function vg. Indeed, from the
Holder continuity of u (see Remark 2) we deduce that the restrictions of A% and BY
onto H N B, and B,\H respectively are Holder continuous. We can conclude using
also (43) that there exist two constants C = C(n, v,N,L,a, B, Ly, Lg IIVulle(Q)) and
0 = To(n, v,N,L,a, B, Ly, Lg ||Vu||Lz(Q)) such that for 7 < 19

/ Vo |?dx < c[r”/ |VvH|2dx+r”:|. (61)
Brr Br/2

In addition, using the ellipticity condition of A? we can argue as in (50) to deduce using also
the fact that vy satisfies (60),

v/ |Vu — Vug|>dx < Fou) — Fo(vg). (62)
B2

One more time we can prove that u is an w-minimizer of Fy. We start as above by writing

Fou) = F(E, u) + [Fo(u) — F(E, u)]
< F(E,vp) + [Fo(u) — F(E, u)]
= Fo(vy) + [Fo(u) — F(E, u)] + [F(E, vy) — Fo(vm)l.

We can estimate the differences Fo(u) — F(E, u) and F(E, vy) — Fo(vy) exactly as before
using this time the higher integrability given in Lemma 3. We conclude that

/ |Vu—VuH|2dx§c[r"/ |Vu|2dx+r"],
Br/Z B,

for some constant C = C(n,v, N, L, a, B, Lo, Lg [|Vull;2(q) ). From the last estimate we
can conclude the proof as before using (61) and (62). ]

4 Energy density estimates

This section is devoted to prove a lower bound estimate for the functional F(E, u; B, (xo)).
Points i) and ii) of Lemma 5 are the main tools to achieve such result. We shall prove that the
energy F decays “fast” if the perimeter of E is “small”. In this section we will use a scaling
argument.

Lemma 6 (Scaling of (A, @)-minimizers) Let B,(xo) C 2 and let (E,u) be a (A, o)-
minimizer of F in By(xg). Then (E,, u,) is a (ArY, «)-minimizer of F, in By, fory =
14+ n(a—1) € (0, 1) where

E — xg _1
E, = pa ur(y) :=r"2u(xo +ry), forye By,
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1 1
]:r(Er,ur;Bl)::r/ [F(X0+Vy,"7ur,r_7vm)
By

1 1
+ lE,G(xO +ry,riu,, r7§Vur)] dy + P(E,; By).
Proof Since Vu,(y) = r%Vu(xo + ry), for any y € By, we rescale:

F(E,u; Br(x0)) =r" / [F(x0 4 ry, u(xo +ry), Vu(xo + ry))

B
+ 1g(x0 4+ ry)G(xo + ry, u(xo + ry), Vu(xo + ry)) | dy + r"~' P(E,; By)
= rnil}—r(Ers ur; B).
Thus, if F C R” is a set of finite perimeter with FAE, CC By and o € H'(B)) is such that
U — u, € Hy(B)), then

F(E, u; Br(x0)) _ F(F,v; Br(x0) + AIFAE

Fr(Er,up; By) =

rnfl - rnfl
= F(F,; B1) + Ar? |FAE,|%,
where F := xo + rF and v(x) = r%f)(x;xo), for x € B, (xg). u]

Lemma?7 Let (E, u) be a (A, a)-minimizer in 2 of the functional F defined in (1). For every
7 € (0, 1) there exists e1 = g1(t) > Osuch that, if By (xo) C Qand P(E; Br(xp)) < e1r"™1,
then

F(E, u; By (x0)) < Cs(t"F(E, u; By (x0)) + (zr)"*),

for some positive constant Cs = Cs (n, V,N,L, Ly, Lg,a, B, A, IIVulle(Q)) independent
oftandr.

Proof Lett € (0, 1) and B, (xg) C 2. Without loss of generality, we may assume that t < %

We may also assume that xg = 0, and r = 1 by scaling E, = E;xo, u(y) = r’%u(xo +ry)

for y € By, and replacing A with Ar?. Thus, we have that (E,, u,) is a (Ar?, a)-minimizer
of F, in Q:x". For simplicity of notation we can still denote E, by E, u, by u and then,
recalling that 7 = 7"~!Z, and y = na — (n — 1), we have to prove that there exists

&1 = &1(7) such that, if P(E; By) < &1, then

Fr(E,u; By) < Cs(¢"Fr(E,u; By) +7"r7).

Note that, since P(E; Bj) < €1, by the relative isoperimetric inequality, either |B; N E| or
|B1 \ E| is small and thus Lemma 5 can be applied. Assuming that | By \ E| < |B; N E| and
using the relative isoperimetric inequality we can deduce that

|Bi\ E| < c(n)P(E; By)iT.

If we choose as a representative of E the set of points of density one, we get, by Fubini’s
theorem that

2t
1By \ E| z/ H'\ 0B, \ E)dp.
T
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Combining these inequalities, we can choose p € (t, 27) such that

n—1

1
c(n)ey
T

Ht o8, E) = Y pee Byt < L pe: By, (©3)
Now we set F' = E U B, and observe that
P(F; B)) < P(E; By \Ep) +H"_l(83p \ E).
If we choose (F, u) to test the (Ar?, a)-minimality of (E, u) we get
Fr(E,u) < Fr(Fou) + ArV|F\ E|*
< P(E;Bi\ By) +H" '(3B, \ E) + Ar”|B,|*

1 1 1 1
+r/ (Fxo+ry, r2u(y), r=2Vu)+1rGxo+ry, r2u(y), r=2Vu(y))) dy.
B
Then getting rid of the common terms we obtain

P(E; B)) <H''(3B, \ E) + r/ G(xo+ry.riu(y). r=2Vu(y) dy + Ar”|B,|".
Bp

e
Now if we choose &1 such that c(n)e;~" < t"*! we have from (63)

P(E; B,) <t"P(E; B)) + r/ G(xo+ry, r%u(y), r_%Vu(y)) dy + Ar¥|B,|*.
By

Then, we choose ¢ satisfying c(n)e;”~

conditions (8), (9),

! < £0(21)|By| to obtain, using Lemma 5 and growth

r/ Gxo +ry, riu(y), r=2Vu(y) dy
B,
scwv.p) [ avuk+ndy
By
< C(1 v, N, L. L L o IVl ) [ (9 4+ dy.
By
Finally, we recall that p € (7, 27) to conclude, using the previous estimates,

P(E; By) < C(n, v, N, L, La, Lg, @, B, [ Vull ;20 )r”[/ (IVul® +r)dy + P(E; Bn]
B

+ ArY|By|®
< C(n, v, N, L, Lo, Lg, o, B, [IVull 120 )[I"F,(E, u; By) + r"”‘r)’].

From this estimate the result easily follows applying again Lemma 5. O

In the sequel we will assume that the representative of the set E is choosen in such a way
that the topological boundary d E concides with the closure of the reduced boundary, that is
0E = 3™ E, (see also [24] Proposition 12.19).
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Theorem 4 (Density lower bound) Ler (E,u) be a (A, «)-minimizer of F in Q and
U CC Q2 be an open set. Then there exists a constant Ce = C(,(n, VN,L,a,B, Ly, Lg, A,
IVullp2 ) U), such that, for every xog € 0E and B,(xo) C U, it holds

P(E; By(xg)) > Cer"™".
Moreover, H" "' ((dE\3*E) N ) = 0.

Proof We start by assuming that xo € 9™ E. Without loss of generality we may also assume
that xog = 0. Let

1
7 € (0,277) such that 2Cst"! ™) < 1,
L2
o€ (0, 1) such that 2Cs5C30? < &1(7), 20p—0 < €1(7), of < "179),
v
1

L 1
0<ro<min{l,CJ, e (r)7},

where Cs and ¢; come from Lemma 7, C3 comes from Theorem 3. We point out that
7,0,r9,€1(0) dependonn, v, N, L, o, B, Lo, Lg, A, ||Vu||L2(Q) through the constants C3
and Cs only. Let us suppose by contradiction that there exists B, C U, with r < rp, such
that P(E; B,) < sl(a)r"_l. We shall prove that

F(E,u; B,1.) < e1(t)t" (o7 r)" !, (64)

othr
for any h € Ny, reaching a contradiction afterward.
1
For h = 0, using Lemma 7 with &1 = ¢;(0), Theorem 3, r < rg < C3V and 2C5C30? <
e1(r), we get:
F(E,u; Bsy) < Cs(o"F(E,u; B,) + (o))

< C5C30"r" ' + Csa™ 1Y

<2C5C30™ " < g1(t)(or)" L.
In order to prove the induction step we have to ensure to be in position to apply Lemma

7, that is by proving smallness of the perimeter. In such regard, let us observe that, by the
definition of F(E, u; B,) and the growth condition given in (13),

L2
P(E; Bp) < F(E,u; Bp) + 20, —p",
v

for any B, C .
Assuming that the induction hypothesis (64) holds true for some 4 € N and, being 2w, LTZU <

1
e1(t), 7 <2 7 andr < 1, we infer
L2 h_~\n
P(E; Byh,) < F(E,u; Bypn,) + 260”7(01' r)
12
< (ot"r)"! <51(r)r”h + an—athr> < (") ey (m) @ + o)
v

< (o) e (1)2tY < (o) e (7).
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We are now in position to apply Lemma 7 with ¢; = ¢{(7). Using also the induction hypoth-
esis and, since 6¥ < t"U0~% r <y < sl(r)% and 2Cst"1~% < 1, we estimate:
F(E,u; Bypisr,) < Cs[t"F(E, u; Byon,) + 1" (at"r)"™]
< Cs[t"e1 (@0 )"t + 7" (ot r)™]
ety Cs [1:”51(1') + ¢« (Gr)y]
"ot [ Csen (T) + CsrY |
(o) 1 e"2Cse1 (1) < TV (o ) e ()@ D

= VD (gt pyn=lg (1),

ANl

IA

We conclude that (64) holds for any 4 € Np. Thus, we gain

L2
P(E; Byn,) < el (D) o) + 20, — (o T )"
v
L2
< (othr)yrl¢vh (81(1:) + 2w,,—afh(]_7’)>
v
< (ot"r)" e (o) (1 4 "I
<2 thr)y e (7).
We finally get
P(E; B . P(E; B .
fim DEB) o PEBow) o et o,
p—>0F /0"71 h—+00 (O‘L’hr)nfl h—+00

whichimplies that xg ¢ 0* E, thatis a contradiction. We recall that we chose the representative
of 9E suchthat 0 E = 0™ E. Thus, if xg € 0 E, there exists (x,),en C 0*E such that x;, — xq
as h — +oo,

P(E; By(x)) = ¢(n,v. N, L., B, Lo, Lg, A, [|Vul| 2 )r"™!

and B, (x) C U, for h large enough. Passing to the limit as 7 — 400, we get the thesis. O

5 Compactness for sequences of minimizers

In this section we basically follow the path given in [24, Part III]. We start by proving a
standard compactness result.

Lemma 8 (Compactness) Let (Ep, up) be a sequence of (Ay, a)-minimizers of F in Q such
thatsup, F(Ep, up; Q) < ooand Ay, — A € RY. There exist a (not relabelled) subsequence
and a (A, a)-minimizer of F in Q, (E, u), such that for every open set U CC 2, it holds

E, — Ein L"(U), up — uin H'(U), P(Ep;U) — P(E:U).
In addition,

ifxp € dEp,NU and xp, — x € U, thenx € 0ENU, (65)
ifx e d0ENU, there exists x, € dE, N U such that x,, — x. (66)
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Finally, if we assume also that Vu,—0 weakly in leoc(Q, R™) and A, — 0, as h — oo,

then E is a local minimizer of the perimeter, that is
P(E; Br(x0)) < P(F; Br(x0)),

for every set F such that FAE CC Br(xg) C Q.

Proof We start by observing that, by the boundedness condition on F(Ej, uj; £2), we may
assume that u;, weakly converges to u in H'(U) and strongly in L?(U), and 1 E, converges
to 1g in L'(U), as h — oo. By lower semicontinuity we are going to prove the (A, a)-
minimality of (E, u). Let us fix B,(xo) CC 2 and assume for simplicity of notation that
xo = 0. Let (F, v) be a test pair such that FAE CC B, and supp(y — v) CC B,. We can
handle the perimeter term as in [24], that is, eventually passing to a subsequence and using
Fubini’s theorem, we may choose 0 < ry < p < r such that, once again, FAE CC B,,
F\B,, = E\B;,, supp(u — v) CC By, and in addition,

H'" ' D*EN3B,) =H"'(3*ExNdB,) =0,
and
lim H"~'(aB, N (EVAE")) = 0. (67)
h—0
Now we choose a cut-off function € Cé (B,) such that ¥ = 1 in B, and define
vy = Yv+ (I — Yuy, Fp = (F N By) U (ER\B,) to test the minimality of (Ej, u).
Thanks to the (A, o)-minimality of (Ej, uj) and [24, Theorem 16.16], we have
/ (F(x,up, Vup) + 1g,G(x, up, Vup)) dx + P(Ep; By) <
B,
< f (F(x,vn, Vo) + 15, G(x, vi, Vop)) dx + P(Fy; By) + Ap|Fy AER|*
B,
< / (F(x, v, Vo) + 15, G(x, vy, Vop)) dx 4+ P(F; By) + Ap| Fy AER|*
Br
+ P(En; By \ By) + e, (68)
The mismatch term &, = H"*~(d WAED)) = -1 MAED
h = @B, N(FYWAE, ")) =H"" (0B, N(E"VAE,, ")) appears
because F is not in general a compact variation of Ej,. Nevertheless we have that ¢, — 0

because of the assumption (67) (see also [24, Theorem 21.14]).
Now we use the convexity of F' and G with respect to the z variable to deduce

/ (F(x, v, Vog) + 15,G(x, vg, Vp)) dx

B,

< f (F(x,vp, Vo + (1 — ¥)Vuy) + 15, G(x, vp, Y Vv + (1 — ) Vuy)) dx
B,

+/ (VeF(x, v, Vog), Vi (v—up)) dX+/ 1p, (V:G(x, v, Vop), Vi (v—up)) dx,

B,

where the last two terms in the previous estimate tend to zero as & — oc. Indeed, the term
V(v — uyp) strongly converges to zero in L2, being u = v in B,\B, and the first part in
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the scalar product weakly converges in L2. Then using again the convexity of F and G with
respect to the z variable we obtain, for some infinitesimal oy,

/ (F(x,vn, Vop) + 15, G(x, vy, Vvp)) dx

',

5/ ¥ (F(x, vp, V) 4+ 15,G (x, v, Vv)) dx

B,

+/ (1 = ¥)(F(x, vn, Vup) 4+ 15, G(x, vy, Vup)) dx + oy,. (69)
B,

Finally, we combine (68) and (69) and pass to the limit as 4 — 400, using the lower
semicontinuity on the left-hand side. For the right-hand side we observe that 1z, — 1g and
1p, — 1fin LY(B,) and we use also the equi-integrability of {Vu;};, to conclude,

/ Y (F(x,u, Vu) + 1G(x, u, Vu)) dx + P(E; B))
By

< / Y (F(x,v, Vo) + 1pG(x, v, Vv)) dx + P(F; By) + A|[FAE|”.
B,
Letting ¥ | 1p, we finally get

/ (F(x,u, Vu) + 1gG(x, u, Vu)) dx + P(E; B,)

P

< / (F(x,v, Vv) + 1rG(x, v, Vv)) dx + P(F; By) + A|[FAE|,
B

P

and this proves the (A, «)-minimality of (E, u).
To prove the strong convergence of Vuy, to Vu in L?(B,) we start by observing that by
(68) and (69) applied using (Ep, u) to test the (A, o)-minimality of (Ej, up) we get

/ Y (F(x,up, Vup) + 1g, G (x, up, Vuy)) dx
B,

< / Y (F(x,u, Vu) + 1g,G(x, u, Vu)) dx + op.

B,

Then from the equi-integrability of {Vuy},, in LU ) and recalling that 1 g, — 1gin LY(U ),
we obtain

lim sup/ W(F(x, up, Vup) + 1g,G(x, up, Vuh)) dx

h—o00
< / W(F(x, u,Vu) + 1pG(x, u, Vu)) dx.
B,

The opposite inequality can be obtained by semicontinuity. Thus we get

lim [ (F(x,un, Vup) + L, G(x, up, Vup)) dx

h—o0 Jp,

= / Y (F(x,u, Vu) + 1gG(x, u, Vu)) dx.
B,
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From the ellipticity condition in (8) we infer, for some o, — 0,

v | Y|Vup — Vul?dx < / ¥ (F(x, up, Vuy) — F(x,u, Vu)) dx
B, B,

+/ Y1e(G(x, up, Vup) — G(x, u, Vu)) dx + oy,
BV
Passing to the limit we obtain

lim | ¥|Vu, — Vul>dx =0.

h—o0 J g,
Finally testing the minimality of (Ej, up,) with respect to the pair (E, u) we also get
lim P(Ep; B,) = P(E; B,).
h— 00
With a usual argument we can deduce u;, — u in WL2(U) and P(E,; U) — P(E;U),
for every open set U CC 2. The topological information stated in (65) and (66) follows

as in [24, Theorem 21.14], indeed they are a consequence of the lower and upper density
estimates given above. O

6 Height bound and Lipschitz approximation

In the following for R > 0 and v € $"~! we will denote
CR(XO, U) = -x0+{y € R" : I(yv V)l < R’ |y - (yv V>V| < R}5

the cylinder centered in xo with radius R oriented in the direction v.
The cylinder of radius R oriented in the direction e,, with height 2 will be denoted as

Kg(xo) :={y = v/, yn) € R" : [y = x| < R, |yn — (x0)u| < 1},
In addition we introduce some usual quantities involved in regularity theory

Definition 6 Let E be a set of locally finite perimeter, x € dE, r > Oand v € $"~!. We
define:

o the cylindrical excess of E at the point x, at the scale r and with respect to the direction
v, as

o 1 lve—v[® -1
ec(x,r,v) = =1 fC(x,r,v)ﬂB*E E2 dn"
1 _
= i fC(x,r,v)ﬂa*E[l - <UE’ v>]dHn 1'

o the spherical excess of E at the point x, at the scale r and with respect to the direction
v, as

1 vg —v|?
e(x,r,v) = e =V gyt
n—1 2
r JENB,(x)

o the spherical excess of E at the point x and at the scale r, as

e(x,r):= min e(x,r,v).
vegn—!
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In the following, for simplicity of notation we will denote
Cr=Cgr0.en) ={y= .y €eR": Y| <R, |yal <R}

The following height bound lemma is a standard step in the proof of regularity because itis one
of the main ingredients to prove the Lipschitz approximation theorem. The results contained
in this section are a consequence of the compactness lemma, the density lower bound and the
lower semicontinuity of the excess. In the statement of these results we assume that (E, u) is
a (A, a)-minimizer of F. However the minimality is not used except to ensure compactness
and the density lower bound.

Lemma9 (Height bound) Let (E, u) be a (A, a)-minimizer of F in Br(xg). There exist
two positive constants g3 and C7, depending onn, v, N, L,a, 8, Ly, Lg, A, ||Vu ||L2(B, (x0))’
such that if xo € 0E and

e(xo, 7, V) < &2,
for some v € $"~ 1, then

[{(v, y — x0)| 1
sup Gl A < Cre(xq, r,v)20=D,

YEIENB, /2(x0) r

Proof The proof of this lemma is identical to the one in [24, Theorem 22.8]. Indeed, it follows
from the density lower bound (see Theorem 4), the relative isoperimetric inequality and the
compactness result proved in the previous section. O

Proceeding as in [24], we give the following Lipschitz approximation lemma, which is a
consequence of the height bound lemma. Its proof follows exactly as in [24, Theorem 23.7].
It is a foundamental step in the long journey to the regularity because it provides a connec-
tion between the regularity theories for parametric and non-parametric variational problems.
Indeed we are able to prove for (A, o)-minimizers that the smallness of the excess guaranties
that 9 E can be locally almost entirely covered by the graph of a Lipschitz function.

Theorem 5 (Lipschitz approximation) Let (E, u) be a (A, o)-minimizer of F in By (x).
There exist two positive constants €3 and Cg, depending on ||Vul| L2(B, (x0))’ such that if
xo € 0E and

e(xo,r, ep) < €3,
then there exists a Lipschitz function f : R"~' — R such that

|f G
r

< Cge(xo, 1, e) T, |V [0 < 1,
x'eRn-1

and

1

yn—1

H'" N (QEAT ;) N B, j2(x0)) < Cse(xo, 7, €n),

where I ¢ is the graph of f. Moreover,
1

pn—1

/ IV 12 dx’ < Cse(xo, 7, en).
Dy /2(x()
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7 Reverse Poincaré inequality

In this section we shall prove a reverse Poincaré inequality. This is the counterpart for (A, o)-
minimizers of the well-known Caccioppoli inequality for weak solutions of elliptic equations.
The proof of the results of this section can be obtained as in the case of A-minimizers of the
perimeter (see [24, Section 24]). For the sake of completeness we give here the main steps
of the proof underlining the minor changes. We will need first a weak form.

Lemma 10 (Weak reverse Poincaré inequality) If (E, u) is a (A, o)-minimizer of F in Cy4
such that

[x,] < Vx e CobNOE,

§7
1
{xeCz\E:xn<—§H=

1
{xeCzﬂE:xn>§”=0,

and ifz €e RV and s > 0 are such that
K zx) CCy  H''OENIK(2) =0, (70)

1
then, for every |c| < g,

P(E;K5(2) —H""'(D5(2)) < C(n, N, L){ [ (P(E: K (2)) — H" ' (Dy(2)))

N 3
X/ Md?—["‘l] +As<”‘”°‘+/ IVulde}-
K @n*E  § K@)

Proof We may assume z = 0.
Step 1: The set function

7(G) = P(E; CanN p~ ' (G)) = H"Y(G), for G C D,

defines a Radon measure on R"~!, supported in D.

Step 2: Since E is a set of locally finite perimeter, by [24, Theorem 13.8] there exist a
sequence (Ej)nen of open subsets of R” with smooth boundary and a vanishing sequence
(en)nen C RT such that

loc

En 5 E, H''L0E, - H"'L0E, 9E, C I.,(3E),

as h — +o00, where I, (0 E) is a tubular neighborhood of 0 E' with half-lenght ¢;,. By Coarea
formula we get

33
Moreover, provided £ is large enough, by 0E), C I, (0E), we get:

23
H' (0K, N (EWAER)) — 0, forae.re ( ) :

1
[x,] < T Vx € Co NOEy,

1 1
{xeszx,,<—Z]CC20EhC{xeCZ:xn<Z}.

Therefore, given A € (O, %) and |c| < 41, we are in position to apply [24, Lemma 24.8] to

every Ej, to deduce that there exists I, C (%, %), with |I,| > 1

3 and, for any r € I, there
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exists an open subset Fj, of R" of locally finite perimeter such that

F N oK,y = Ep N Ky,
K NF, = Dy x {c}, (71)

P(Fy; Ky5) — H" " (Dyy)

| _C|2

< c(n){x(mEh;Ks)—H'H(Dx)) +% / dH'H}. (72)
K.

noE, 87

1
Clearly ﬂ U [ | > 7 > 0 and thus there exist a divergent subsequence {/;}ren and
heNk>h
r € (3, 3) such that

. —1 1
re kONIhk and  lim H' L 0K,y N (EWAE)) =0.

We will write Fy in place of Fj,. Now we test the (A, «)-minimality of (E, u) in C4 with
(Gg, u), where G, = (Fy NK,5) U (E\K,y), as EAGy CcC Ky CC Bs. By [24, (16.33)]
we infer:

P(E; Kys) < P(Gi; Kpg) + A[(EAF) N Ky +/ Gx,u, Vu)[lg, — 1gldx
KI'S

< P(Fi: Kps) + ok + A(EAF) NKys|* +c(n, N, L)/ (IVul* + 1) dx,
er

with o = H" 1 (0K, N(EV AF)) = H' 1 (9K,s N (EWAE),)) — 0, thanks to (71), as
k — +o0. Thus, since ¢ is nondecreasing and r > %, by (72) we deduce that

P(E:Ky) = H""!(Dy) = £(Dg) < {(Dys) = P(E: Kps) = H''(Dyy)

< P(Fi; Kry) = H" 1 (Drg) + 0k + AI(EAF) N K |* 4 c(n, N, L)/ (IVul> + 1) dx
KI'A'

1 n 2
< c(n){k (P(En;: Ky) — H'™\ (D)) + —/ b — dH”_l}
A JK,noE,, S

+c(n, N, L) (AN*”“ +/ |Vu|2dx>.
K.

5

Letting k — 00, (70) implies that P(Ex); Ks) — P(E; K;) and therefore
P(E;K3) —H""(Dy)

lx, — c]?

< c(n){)\ (P(E;K) —H" 1 (Dy)) + %/ > dH”_]}

SNOE s
+c(n, N, L) (As<”—1>“ +f |Vu|2a’x>, (73)
K,
for any A € (0, %) If A > %,
P(E;K3) = H""'(Dy) = £(Dy) < ¢(Dyy)

< 4P (E; Kps) = H''(Dyy) < cm (P(E; Ky) — H'(Dy))
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and thus (73) holds true for A > 0, provided we choose c¢(n) > 4. Minimizing over A, we get
the thesis. O

Theorem 6 (Reverse Poincaré Inequality) There exists a positive constant C9 = Co(n, N,
L, o) such that if (E, u) be a (A, a)-minimizer of F in Cya, (x9, v) with xo € E and

1
ec(xp,4r,v) < w (n, §> ,
then

1
eclro.rv) < C9<T+1/ | (v, x = x0) — clPdH"™" + ArY
r 9ENCy, (x0,v)

1 2
+— [Vul”dx |,
r Car (x0,v)
E—xqo

Proof Up to a rotation taking v into e, and replacing (E, u) with (—, r_%u(xo + ry))

for every ¢ € R.

I

(see Lemma 6), we may assume that (E, u) is a (Ar?, o)-minimizer of F, in C4,0 € 0E
and, by [24, Proposition 22.1],

1
ec(0,4,e;) <w (n, g) .

Using Lemma 8 and Theorem 4 it is easy to verify that [24, Lemma 22.10 and Lemma 22.11]
hold also for (Ar?, «)-minimizers of F, in C4. Thus we infer that

1
[xn| < 7 Vx e C,NOE,

1
{xeCz\E:x,,<—8”:

1
{xeCzﬂE:xn>8”:O.

H'HG) =/ (VE, en) dH™™', VG C Ds.
CLNI*ENp~1(G)
Since

en(l)zf (1= (vE,en))dH"™ ' = P(E; cl)—/ (v, en) dH"!
CiNo*E CiNO*E

= P(E; Cy) — H""Y(Dy),

then our aim is to show

P(E;C) —H" YD) < Cg(/ X, — |2 dH" " + AFY +/
C

[Vu|? dx>, (74)
Cy

HNIE

for any ¢ € R. Actually, it suffices to prove it only for |c| < %; indeed, for |c| > 1 we have:
2 n—1 2 n—1 1 1
lxp —c|"dH"™" > (lel = xaD*dH*™ = —P(E; C2) = — P(E; Cy).
C2MIE C2NIE 64 64
The set function £(G) = P(E; Cy2 N p_l(G)) — H""(G), for G C D3, defines a Radon

measure on R”~!, concentrated on D,. We apply Lemma 10 to E in every cylinder K, (z)
with z € R*~! and s > 0 such that

Dys(z) C Dy, H'NOE N 3dKay(z)) =0, (75)
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to get that

¢(Ds(2)) =C(n, N, L,a) {(C(DZs(Z))h)% + Ar?stn=he +/ IVulde} )
K

25 (2)

where

h:= inf / Xy — c|>dH" .
CNIE

1
|C\<z

Multiplying by s? and using an approximation argument to remove the second assumption
in (75), we obtain:

s2¢(Ds(2)) < c(n, N, L,a) (\/szg'(D%(z))h + ArY +/
K

for Dys(z) C D>, where we used that s < 1. In order to prove the thesis, we use a covering
argument by setting

|Vu|2dx> . (76)

25(2)

0= sup s*¢(Ds(2) < +oo.
Dy (z2)CDy

,,,,,

course, this can be done with N < N (n), for some N (n) € N. Hence, by the sub-additivity
of ¢ and (76) for %, since Dg(zx) C Dy, we have:

SLD (@) < 8 i; (Ds0) = 162Nj () ¢ (pyc)
k=1 k=1

<c(m N, L.a) i <\/(;)2; (Dy @)+ arr +/K
k=1

<c(,N,L,a) (w/Qh—i—ArV —|—/
Ko (2)

Passing to the supremum for Dos(z) C D, we infer that

Q0 <c(n,N,L,a) (w/Qh + ArY +/ |Vu|2dx> .
K>

|Vu|2dx)

25(2)

|Vu|2dx>.

It VOI < AF + fic, IVul?dx, then Q < c(n, N, L,a) (Ar + fic, [Vul*dx).

If/Oh > ArY +fK2 [Vu|?dx,then Q < ¢(n, N, L, ®)/Ohandthus Q < ¢(n, N, L, a)h.
In both cases we obtain:

O <cn N,L,a) (h—i—Ar”—i—/

|Vu|2dx> ,
K>

which leads to (74), since K, C C,. O

8 First variation of the energy

In this section we deduce a kind of Taylor’s expansion formula, with respect to a parameter
t € R, for the energy quantity involved in the definition of (A, «)-minimizer, under a “small”

@ Springer



156 Page 40 of 49 L. Esposito, L. Lamberti

domain perturbation of the type
D, (x) =x +1tX(x).

We remark that it is not possible to write an Euler—Lagrange-type equation for the energy
because the densities F' and G are not Lipschitz continuous in x and u.

We start with the energy of the rescaled functional F,. For the sake of simplicity we
will denote with A{(x, s) the matrix whose entries are aj(x,s), A>(x, s) the vector of
components aj (x, s), A3z(x,s) = a(x, s) and similarly for B;,i = 1, 2, 3. Then we define

Fr(w; D) := / [Fr(x, w, Vw) + 1pG,(x, w, Vw)] dx
By

= / [((A1; + 1pBi,)Vw, Vw) + «/r(Az + 1p By, Vw) + (A3, + 1pB3,) ] dx,
By

where r > 0, xg € Q, Ajr(y, w) := A;j(xo +ry, /rw), Biy(y, w) := Bi(xo +ry, J/rw),
fori =1,2,3.

Theorem 7 (First variation of the bulk term) Let u € H'(B) and let us fix X € C)(By; R").
We define ®,(x) := x + tX(x), for any t > 0. Accordingly we define

E :=®(E), u, :=uod; "
There exists a constant C = C(N, L, Ly, | X|loo » IVX|lso) > O such that

/ [F, (vt Vur) + 15, (0)Gy (v, s, V)] dy
B

- / [Fr(x,u, Vi) + 1g(x)Gr(x, u, Vu)|dx
By

<CU*+o®) | (IVul® +r)dx,
B

where Ly is defined in (7).
Proof Taking into account that
VCID,_1 (P, x)=1—-tVX(x)+o(@), JO;(x)=1+tdivX(x)+ o(t).

we obtain:

/B [F (v ur, Vae) + L, (0)Gr (v ., Vup)] dy
= / [Fr (@ (x), u, Vi) + 1 (x) G (P (x), u, Vi) |(1 + tdivX + o(t)) dx
By
—(t4om) [ [({C1VuVX,VuVX)+2(C1VuVX, Vu)+ /r(Ca, VuVX)|dx,
By

where we set
Ci = Ay + 1By = Aip (O (x), 1) + Lg(x) Bir (4 (x), u),

fori =1, 2, 3. From the previous identity, by subtracting the term

/ [Fr(x, u,Vu) + 1g(x)G(x, u, Vu)] dx,
B

@ Springer



Regularity results for a free interface problem... Page 410f49 156

we gain:
/ B Vi) + 15,006, 0, ] dy
—/B [Fr(x,u, Vu) + 1g(x)Gr(x, u, Vu)| dx
|
= [/E [Fr (i (x), u, Vi) + 1E(x) G (D (x), u, Vi)
|

— [Fr(x,u, Vu) + 1(X)G,(x, u, Vu)]] dx]

+ [rfB [Fr (i (x), u, Vi) + 1g ()G (D (x), u, V) |divX dx

|
+o(t) | [Fr(®:(x),u, Vu) + 1g(x)Gr (P (x), u, Vi) |dx

—(t+o@) | [{{C1VuVX,VuVX)+2(CiVuVX, Vu)
By

+ V/r(Ca, VuVX)] dx] =:[Ii] + [I2].

Letus estimate separately the two terms /1, 1> on the right-hand side. By the Holder continuity
of the data with respect to the first variable given in (7) and Young’s inequality we get

I :/B [(Fr (@ (x), u, Vi) + 1 ()G (P (x), u, Vi)
- [F,l(x, u, Vu) + 1g(x)G,(x, u, Vu)]] dx
SC(La)fa/B X[ Vul® + Vr|Vul + rldx < c(Lq, ||X||oo)r“f3 [Vul® + rldx.
| |
Regarding I, we have that

L < (t+o@)(1+ ||VX||OO)/ | Fr (@4 (x), u, Vo) + 1 (x) G (P (x), u, Vuu)| dx
By

+(t+ o)1+ VXl | |({C1Vu, V) +2(C1Vu, Vu) + /r(Ca, Vu)| dx
B

<Ct+o®) | (IVul*+r)dx,
B

where C = C(N, L, ||VX|| ). From the last estimates the thesis easly follows. O

The second estimate concerns the perimeter (see [24, Theorem 17.5]).

Theorem 8 (First variation of the perimeter) If A C R” is an open set, E C R" is a set of
locally finite perimeter and ®;(x) := x + t X (x) for some fixed X € Cé (A; R"Y), then

P(®,(E); A) — P(E; A) = (t + O(tz))/ dive X dH" ",
0*E

where the tangential divergence of X, divg X : 0*E — R, is the Borel function defined as

diVEX =divX — (UE, VXUE>.
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The last result we will use in the sequel concerns the penalization term (see [24, Lemma
17.9]).

Theorem9 Let A C R" be an open set, E C R”" be a set of locally finite perimeter
and ®;(x) = x + tX(x), for some fixed X € Cé (A; R™), be a local variation in A, i.e.
{x £ &;(x)} C K C A, for some compact set K C A and for |t| < &g. Then

|®:(E)AE| < Clt|P(E; K),

where C is a positive constant.

9 Excess improvement

We point out that, in the following estimates, the constant depending on D(xo, ) actually
justdependsonn, N, v, a, A, €2, IIVulle(Q) by means of Theorem 3.

Theorem 10 (Excess improvement) For every T € (0, §) and M > 0 there exists a constant
&4 = e4(t, M) € (0, 1) suchthat if (E, u) is a (A, a)-minimizer of F in B, (xo) withxg € 0E
and

e(xg,r) < &4, D(xo,r)+r" < Me(xo, 1), 7
then there exists a positive constant C1o, depending on D(xq, r), such that

e(xg, 7r) < Cro(t2e(xo, ) + D(xo, 4tr) + (zr)?).

Proof Without loss of generality we may assume that 7 < é. Let us rescale and assume by

contradiction that there exist an infinitesimal sequence {&j,},eny € RT, asequence {rj,}peny €
R™ and a sequence {(E}, up)}pen of (Ar}’:, «)-minimizers of F,, in By, with equibounded
energies, such that, denoting by e, the excess of E, and by Dy, the rescaled Dirichlet integral
of up, we have

e, (0,1) =¢5, Du(0,1)+r] < Mg,
and
€ (0, 7) > Cio(z%ex(0, 1) + Dy (0, 47) + (zr)"),
with some positive constant Cq to be chosen. Up to rotating each Ej we may also assume
that, forall 4 € N,

1 _
eh(07 1) = */ |VE;, - en|2dHn l~
2 JaE,nB,

Step 1. Thanks to the Lipschitz approximation theorem, for & sufficiently large, there exists
a 1-Lipschitz function f; : R"~! — R such that

1
sup | ful < Cse;" ", H"'(BEyAT;)N B)) < Csen, / IV ful* dx' < Cgen.

Rn-1 D,
2

(78)
We define
/ J—
en(x) = M, where aj, = frndx'

NG Dy
2
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and we assume, up to a subsequence, that { gy}, converges weakly in H (D ! ) and strongly
in LQ(D%) to a function g.
We prove that g is harmonic in D . It is enough to show that

2

1. 1 (v/ﬁ‘l’ V/¢>
im —— _
h—+00 \/€p D% /1+|V’fh|2
forall ¢ € Cé (D%); indeed, if ¢ € C(l) (D%), by weak convergence we have
/ (V'g,V'¢p)dx' = lim L/‘ (V' fn, V) dx'
Dy ’ h—+o00 (/€p D ’
2 2

(V' fn, V') dx/+/D [(V/fhsv/(b)_w} dx/}.

i | [ S
h—
teeVERLIDL 1 v )2 VI IV il

Using the Lipschitz continuity of fj and the third inequality in (78), we infer that the second
term in the previous equality is infinitesimal:

dx' =0, (79)

lim supL / |:(V/fh, Vg) - (Vi V) }dx’
h—+00 ﬁ D% /1 + |V/fh|2

JIFIVEPE-1

< hmsup—/D IV ful |V | e dx
1
2

h—+00 f /1 4 |V/fh|2

1 2
< limsup —— V'o||V’ dx' < lim Cg |V’ =0.
<tmsp = | VIVl dx' < Hm Gy V6] Ve

h— 400

Therefore, we should prove (79). We fix § > 0 so that supp ¢ x [—25, 28] C B 1 and choose
a cut-off function ¥ : R — [0, 1] with supp ¢ C (—28, 28), ¢ = 1 in (=6, §). Let us define

D, (x) :=x + &, X(x), where X(x) = ¢ ()Y (xy)en,
and
Ep = @, (Ep), iy =uod,!.
By the (A, a)-minimality of (Ej, uj) we deduce that
Fu(Enun) < Fp (En. i) + Arj | EpAER|*.
Then we may estimate

P(Ey: By) = P(Ep: By)

< [ [F . Vi) + 1, 06 O . Vi) ] dy
B

—/ [Fr(x,u, Vu) + 1g(x)Gr(x, u, Vu)] dx
By

+ Ar) 1@, (Ep) AE,|".
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Applying Theorems 7 and 9 in the right-hand side we get

P(Ep; By) — P(Ep: By) < C[(e;,' +o<eh>)/

By

(IVup* + ) dx + r) e (P(En; Bl))“],
for some C = C(N, L, Ly, o, A, || X|loo IVX|s). Then, using the second assumption in
(77), we obtain

P(Ey: By) — P(Ep: By) < MC[(f; + olen))en + ¢, (P(E: B)*].  (80)

We want apply now Theorem 8 on the left-hand side. For this reason let us observe that by
Lemma 9, for & large enough, |x,| < 8 for every x € 9 E}, so that ' = 0 and then we can
write

VX(x)=e, @ V(), divX =o¢y =
thus concluding
divg, X = —(VXvg,, vg,) = —(VE,, en)(V'), vg,) ondEj.

Therefore, applying Theorem 8, we obtain

P(Ep; By) = P(Ep; By) = (en+ 0(8;,))/ (VE,. en) (V' v, ) dH" ™',
EhﬁBl

and then inserting this equality in (80) we deduce,

en+ 0(D) / (V. en) (V' v, ) dH
E/zﬂBl

< MC[(ef + o(eh))Sh + &, (P (Ep: B))*].

Finally, if we replace ¢ by —¢, we deduce dividing by &,

/ (vE,, en)(V'®, v%h)dH"_l’ < MC(&fl +o(en))(1 + P(Ey; B1)%),
JE,NB

then recalling that o > "n;l > % we deduce

(VE,. en) (V. v )| dH"™" = 0. (81)

1
lim —‘/
h—+oo /en 1 JoE,nB,
2
Decomposing 0E, N B1 = ([T, U QE\T ;)\ 5, \dEn)) N By, we deduce
_\/%7 fBEhﬂBl (VEy,» en)(V'e, V;;,q) dH" ! = \/%7[ - frfhﬂBl (VEy» en)(V'e, Viﬁ[)dH’HI
2 2

—1 -1
- ﬁaEh\Fm”B% (V- en)(V'$. Vg, ) M + f(F.f-,,\aEm”B% (e, en) (V'$, v, ) " }

Since by the second inequality in (78) we have

— (VE,» en) (V' v Y dH" ™| < Cy/En sup [V,
h

A/ En (aEh\th)ﬂB% Rr—1

— (VE,» en) (V'ep, v ) dH"™'| < Cg/en sup |V,
h

VEh (th\aE,,)ﬂB% Rn-1
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then by (81) and the area formula, we infer

1 1 V' fi, V'
0= lim (VE,, ea)(V'$, vy, ) dH"™ = lim (V. V'é)

h—+o00 /&) h—+00 /€& 2
Ven Jryns, VERIDE 1419 i)
This proves that g is harmonic.

Step 2. The proof of this step now follows exactly as in [15] using the height bound lemma
and the reverse Poincaré inequality. We give here the proof for the sake of completeness.
By the mean value property of harmonic functions, Lemma 25.1 in [24], Jensen’s inequality,
semicontinuity and the third inequality in (78) we deduce that

dx’.

1
lim 7/1) @) = (f)ae = (Y fdae. 2N d’
2t

h—o0 &}

- / 20 = ()20 — (V'g)ae, )P’
D2r

:/ 18(x") — g(0) — (V'g(0). x) [ dx’
Doy

<! sup [g(x) — g(0) — (V'g(0), x')[°
x'eDyy
< c(n)r"+3/ IV'g|*dx’ < c(n)e" 3 liminf/ IV gn|* dx’
Dl h— o0 Dl
2 2
< C(n, Cg)t" 3.

On one hand, using the area formula, the mean value property, the previous inequality and
setting

(fh)2e (—=(V' fi)ae, 1)

Ch = ———, V=

VIH 1Y fi)ae P L+ 1V fw)oe

we have
1
limsup—/ (vp, x) — cpl> dH!
h—oo €h BE/,ﬂthﬂBzf
1 (v X N 2
=1imsup—/ {=(V fn)2e x)+fh(x2) (fr)2zl 1+ |V fu ()2 d’
h—oo €h JOE,NT;, NBae L+ (V' )2

1 ~
< lim */D /@) = (fze = (Y fiae, 2P dx’ < C(n, Co)r"*.
2t

~ h—oo €

On the other hand, arguing as in Step 1, we immediately get from the height bound lemma
and the first two inequalities in (78) that

. 1
lim — (v, x) — cp>dH"™™ ' = 0.
h—=00 &n J (@ E)\T' ;)N B

Hence we conclude that
1

lim sup — / |(vp, x) — cp>dH"™" < C(n, Cg)T" 3. (82)
h—oo €h JYIE,NBy

@ Springer



156 Page 46 of 49 L. Esposito, L. Lamberti

We claim that the sequence {e;, (0, 27, vy)}hen is infinitesimal; indeed, by the definition of
excess, Jensen’s inequality and the third inequality in (78) we have

lim sup/ v, — vnl? dH"!
h—o0 JOIER,NB;

< lim sup 2/ e, —en?dH" ™" 4 2le, — vpPHHOEL N th)}
JER,NBy

h— o0

2
r IV fi)2es /14 1V fi)2e |2 = D ]

< limsup | 4¢), + 2H" YD E, N Bye)

oo L L+ (V' f)ae |
< limsup [4e), +4H" " DE, N BZT)|(V/fh)2r|2]
h—o0

< limsup | 4ep, +4/ |V’fh|2dx’j| < llim [4e), + 4Cgep] = 0.
D 11— 00

h— o0

1

2

Therefore, applying the reverse Poincaré inequality, (82) and observing that C; C By, we
have for / large that

€,(0,7) < e,(0, 7, v) < Co(Ct?e,(0, 1) + D(0, 47) + 2Trp)Y),

which is a contradiction if we choose C1g > Cg max{C‘, 2V} O

10 Proof of the main theorem

The proof works exactly as in [15]. We give here some details to emphasize the dependence
of the constant ¢ appearing in the statement of Theorem 1 from the structural data of the
functional. The proof is divided in four steps.

Step 1. We show that for every t € (0, 1) there exists es = &5(r) > 0 such that if
e(x,r) < es, then

D(x,tr) < C4tD(x,r),

where Cy is from Lemma 5. Assume by contradiction that for some t € (0, 1) there exist
two positive sequences (¢j);, and (r;,);, and a sequence (Ej, up) of (Ar}l/ , o)-minimizers of
Fr, in By with equibounded energies such that, denoting by e;, the excess of Ej, and by Dy,
the rescaled Dirichlet integral of u;, we have that 0 € 0 Ep,

en(0,1) =¢, — 0 and Dy (0,7) > C47Dy(0, 1). (83)

Thanks to the energy upper bound (Theorem 3) and the compactness lemma (Lemma 8), we
may assume that £, — E in L'(B;) and 0 € 9 E. Since, by lower semicontinuity, the excess
of E at 0 is null, £ is a half-space in By, say H. In particular, for & large, it holds

[((ERAH) N By| < go(t)| By,

where ¢g is from Lemma 5, which gives a contradiction with the inequality (83).

Step 2. Let U CC 2 be an open set. We prove that for every T € (0, 1) there exist
two positive constants ¢¢ = €¢(t, U) and Cy; such that if xo € 9E, B.-(xg) C U and
e(xg,r) + D(xg,r) + 17 < &g, then

e(xg, tr) + D(xg, r) + (zr)Y < Cii(re(xg, r) + tD(x0,7) + (Tr)V). (84)
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Fix T € (0, 1) and assume without loss of generality that 7 < %. We can distinguish two
cases.

Case 1: D(xg,r) +r” <1t "e(xp,r).If e(xg, r) < min{eq(r, T7"), £5(27)} it follows from
Theorem 10 and Step 1 that

e(xo, Tr) < Cio(z2e(xo, r) + D(xo, 4tr) + (tr)?)
< Cio(te(xg, r) +4C4tD(x0, 1) + (zr)V).

Case 2: e(xp, r) < t"(D(xo, r) + r”). By the property of the excess at different scales, we
infer

e(xp, tr) < ' "e(xo, r) < (tD(xo, ) + (tr)Y).

We conclude that choosing e = minf{e4(z, T7"), £5(27), £5(7)}, inequality (84) is verified.
Step 3. Fix o € (0, ) and choose 79 € (0, 1) such that Cy;7] < 13°. Let U CC € be an
open set. We define

rNU:={xecdENU: ex,r)+Dx,r)+r" < egg(ro, U),
for some r > 0 such that B, (xg) C U}.

Note that ' N U is relatively open in d E. We show that ' N U is a C -9 -hypersurface. Indeed,
inequality (84) implies via standard iteration argument that if xo € I' N U there exist ryp > 0
and a neighborhood V of x( such that for every x € 0 E N V it holds:

e(x, tiro) + D(x, tiro) + (zfr0)” < 13°F, fork € No.

In particular e(x, ré‘ro) < tozak and, arguing as in [15], we obtain that for every x e dENV

and 0 < s <t < rg it holds

|(vE)s (x) — (V) (X)] < ct?,

for some constant ¢ = ¢(n, 19, r9), Where
e (x) = ][ vg dH"
dENB; (x)

The previous estimate first implies that I' N U is C'. By a standard argument we then
deduce again from the same estimate that I' N\ U is a C'-?-hypersurface. Finally we define
I' := U;(I' N U;), where (U;); is an increasing sequence of open sets such that U; CC Q2
and Q2 = U; U;.

Step 4. Finally we are in position to prove that there exists € > 0 such that

H''TCQE\T) =0.

The argument being rather standard, setting ¥ = {x € JE\T : lin}) Dx,r) = 0], by
r—

2s

Lemma 2 we have that Vu € L.

(2) for some s = s(n, v, N, L) > 1 and we have that

dimH({x € Q: limsupD(x,r) > 0}) <n-s.

r—0

The conclusion follows as in [15] (see also [6, 8]) showing that ¥ = @ if n < 7 and
dimy(X) <n—8ifn > 8.
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