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Abstract
The Lott–Sturm–Villani curvature-dimension condition C D(K , N ) provides a synthetic
notion for ametricmeasure space to have curvature bounded from below by K and dimension
bounded from above by N . It was proved by Juillet (RevMat Iberoam 37(1), 177–188, 2021)
that a large class of sub-Riemannianmanifolds donot satisfy theC D(K , N ) condition, for any
K ∈ R and N ∈ (1,∞). However, his result does not cover the case of almost-Riemannian
manifolds. In this paper, we address the problem of disproving the C D condition in this set-
ting, providing a new strategy which allows us to contradict the one-dimensional version of
the C D condition. In particular, we prove that 2-dimensional almost-Riemannian manifolds
and strongly regular almost-Riemannian manifolds do not satisfy the C D(K , N ) condition
for any K ∈ R and N ∈ (1,∞).
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1 Introduction

In their seminal works Lott–Villani [20] and Sturm [28, 29] introduced a synthetic notion
of curvature-dimension bounds, which is heavily based on the theory of Optimal Transport.
They noticed that, in a Riemannian manifold, a uniform lower bound on the Ricci curvature,
together with an upper bound on the dimension, is equivalent to a convexity property of the
Rényi entropy functionals in the Wasserstein space. This allowed them to define a consistent
notion of curvature-dimension bounds for metric measure spaces, known as C D condition.
While in theRiemannian setting, theC D condition is equivalent to having bounded geometry,
an analogue result does not hold in the sub-Riemannian setting. Sub-Riemannian geometry
is a far-reaching generalization of Riemannian geometry: given a smooth manifold M , we
define a smoothly varying scalar product only on a subset of horizontal directionsDp ⊂ Tp M
(called distribution) at each point p ∈ M . Under the so-called Hörmander condition, M is
horizontally-path connected, and the usual length-minimization procedure yields a well-
defined distance d. In particular, differently from what happens in Riemannian geometry,
the rank of the distribution r(p) = dimDp may be strictly less than the dimension of the
manifold and may vary with the point. In general, we can not expect the C D condition to
hold for truly sub-Riemannian manifolds. This statement is confirmed by the following result
by Juillet.

Theorem 1.1 [19, Corrollary 1.2] Let M be a complete sub-Riemannian manifold with
dim M ≥ 3, equipped with a smooth positive (i.e. with strictly positive density) measure m.
Assume that the possibly varying rank of the distribution is smaller than dim M − 1. Then,
(M, d,m) does not satisfy the C D(K , N ) condition for any K ∈ R and N ∈ (1,∞).

While this result is quite general, it does not include many cases of interest, such as
almost-Riemannian geometry. Roughly speaking, an almost-Riemannian manifold is a sub-
Riemannian manifold where the rank of the distribution coincides with the dimension of M ,
at almost every point.1 For this reason, the technique used to prove Theorem 1.1 can not be
adapted to this setting. Indeed, it relies on the construction of two Borel subsets for which the
Brunn–Minkowski inequality does not hold, namely, for all R, ε > 0, one can find A, B ⊂ M
such that diam(A ∪ B) < R, m(A) ≈ m(B), and such that there exists t ∈ (0, 1) for which

m(Zt (A, B)) ≤ 1

2N−dim M
m(B)(1+ ε), (1)

where Zt (A, B) denotes the t-intermediate set between A and B and N is the so-called
geodesic dimension of M , see [26] or [2, Definition 5.47] for a precise definition. The inequal-
ity (1) allows to contradict the Brunn-Minkowski inequality if and only if the geodesic

1 But not at every point, otherwise the structure would be Riemannian.
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dimension N is strictly greater than dim M . However, in the almost-Riemannian setting,
N = dim M almost everywhere, making this construction inconclusive. We mention that
Juillet [18] disproved the C D condition in the simple example of the standard Grushin plane
(cf. Example 2.6) equipped with the Lebesgue measure, by direct computations. Heuristi-
cally, disproving the C D condition in almost-Riemannian manifolds is a more challenging
task, since they behave in some sense like non-complete Riemannian manifolds. Thus, a new
strategy is needed.

Our idea is to exploit the one-dimensional characterization of the C D condition:

C D(K , N ) ⇒ C D1(K , N ), (2)

proven by Cavalletti andMondino [12], and contradict the C D1(K , N ) condition. For any 1-
Lipschitz function u, the latter relies on a disintegration of the reference measure, associated
with u, in one-dimensional transport rays and requires the C D(K , N ) condition to hold
along them. The main advantage in dealing with one-dimensional C D spaces is related to a
differential characterization of theC D densities, (cf. Lemma 3.2), which is easier to disprove
compared with the convexity of the Rényi entropy. In Sect. 3.2, we present a local version
of the one-dimensional characterization (2) (cf. Proposition 3.7), which permits to exploit
the local structure of sub-Riemannian manifolds. Then, in the case of an almost-Riemannian
manifold, equipped with a smooth positive measurem, we are able to explicitly compute the
disintegration and verify that the one-dimensional C D(K , N ) condition along the rays does
not hold for any K ∈ R and N ∈ (1,∞). Our main result is the following, cf. Theorems 5.4
and 6.3. We refer to Sects. 2 and 6 for precise definitions.

Theorem 1.2 Let M be a complete almost-Riemannian manifold and let m be any smooth
positive (i.e. with strictly positive density) measure on M. Assume M is either of dimension 2
or strongly regular. Then, the metric measure space (M, d,m) does not satisfy the C D(K , N )

condition for any K ∈ R and N ∈ (1,+∞).

Remarkably, for 2-dimensional almost-Riemannian manifolds, we do not require any addi-
tional assumption on the structure of the singular region Z, see (4) for the precise definition.
However, as soon as the dimension of the manifold increases, the complexity of the computa-
tions prevents us to treat the general case and we need an auxiliary control on the behavior of
the distribution. Nonetheless, we stress that our procedure is algorithmic and can be applied
to any explicit example of almost-Riemannianmanifold. This algorithmic procedure has been
implemented in the software Mathematica, see [23].

A crucial tool for proving Theorem 1.2 will be a truly sub-Riemannian phenomenon,
namely the existence of characteristic points. For an embedded hypersurface � ⊂ M , a
characteristic point is a point where the distribution is tangent to �. Of course, such points
do not exist in Riemannian geometry, but as soon as the rank of the distribution r(p) < dim M
for some p ∈ M , they can appear. Usually, characteristic points are source of subtle technical
problems, mostly related to the low regularity of the (signed) distance δ� from �. Indeed,
although being 1-Lipschitz with respect to d, δ� is not smooth around characteristic points
(and not even Lipschitz in coordinates). In the proof of Theorem 1.2, we choose a suitable
hypersurface �, we build the disintegration of m associated with a localized version of
δ� and we exploit its singular behavior to contradict the differential characterization of
the one-dimensional C D(K , N ) condition. In particular, � is chosen to be transverse to
the singular region of M in such a way � ∩ Z exhibits characteristic points; we can then
exploit the Riemannian structure at points of � \Z to describe the degeneration of δ� in the
disintegration of m. For example, in the standard Grushin plane, where the singular region
is Z = {x = 0}, a suitable transverse hypersurface is � = {y = 0}.
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It is worth mentioning that there exists a weaker synthetic notion of curvature bounds,
introducedbyOhta [24], calledmeasure contraction property orMCP condition.This property
seems to be more suited to sub-Riemannian geometry, see for example [7–10]. Finally, we
refer to Milman [21] for a relaxation of the C D condition, called quasi-curvature-dimension
condition, which holds for a certain class of sub-Riemannian manifolds. However, it is not
known whether these weaker conditions hold for a general almost-Riemannian manifold.

After submitting this work, Rizzi and Stefani proved in [27] that every sub-Riemannian
manifold does not satisfy the C D(K ,∞) condition, using different techniques.

2 Preliminaries

2.1 Almost-Riemannian geometry

We recall some basic facts about almost-Riemannian geometry, following [1].

Definition 2.1 Let M be a smooth, connected manifold. A sub-Riemannian structure on M
is a triple (U, ξ, (·|·)) satisfying the following conditions:

(i) πU : U → M is a Euclidean bundle of rank k with base M , namely for all p ∈ M , the
fiberUp is a vector space equipped with a scalar product (·|·)p , which depends smoothly
on p;

(ii) The map ξ : U → T M is a morphism of vector bundles, i.e. ξ is smooth and such that
the following diagram commutes:

U

πU

ξ
T M

πM

M

where πM : T M → M denotes the canonical projection of the tangent bundle.
(iii) The distributionD = {ξ(σ ) | σ : M → U smooth section} ⊂ T M satisfies the Hörman-

der condition (also known as bracket-generating condition), namely

Liep(D) = Tp M, ∀ p ∈ M .

With a slight abuse of notation, we say that M is a sub-Riemannian manifold.

Let (U, ξ, (·|·)) be a sub-Riemannian structure on M . We can define the sub-Riemannian
norm on D as

‖v‖2p = inf{(u|u)p | u ∈ Up, ξ(u) = v}, ∀ v ∈ Dp, p ∈ M . (3)

The norm (3) is well-defined since the infimum is actually a minimum and it induces a
scalar product gp on Dp by polarization. Notice that different sub-Riemannian structures
on M may define the same distributions and induced norms. This is the case for equivalent
sub-Riemannian structures.

Definition 2.2 Let (U1, ξ1, (·|·)1), (U2, ξ2, (·|·)2) be two sub-Riemannian structures on M .
These are said to be equivalent if the following conditions hold:
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(i) There exists a Euclidean bundle (V, (·|·)V) and two surjective bundle morphisms
pi : V → Ui such that the following diagram is commutative

V
p1

p2

U1

ξ1

U2
ξ2

T M

(ii) The projections pi ’s are compatible with the scalar products defined on Ui , namely

(u|u)i = min{(v|v)V | pi (v) = u}, ∀ u ∈ Ui , i = 1, 2.

Definition 2.3 Let M be a sub-Riemannianmanifold. Theminimal bundle rank is the infimum
of the rank of Euclidean bundles inducing equivalent structures on M . For p ∈ M , the local
minimal bundle rank of M at p is the minimal bundle rank of the structure when restricted
to a sufficiently small neighborhood Up .

Definition 2.4 (Almost-Riemannian structure) Let M be a connected, smooth manifold of
dimension n + 1 and let (U, ξ, (·|·)) be a sub-Riemannian structure on M . We say that M is
an almost-Riemannian manifold if the local minimal bundle rank of the structure is n + 1.

We denote by Z the set of singular points, namely those points where the distribution has
not full rank:

Z = {p ∈ M | dim(Dp) < n + 1}. (4)

Notice that Z is closed, since the rank of the distribution is lower semi-continuous. We say
that a point is Riemannian if it belongs to M \ Z.

Remark 2.5 If the singular set is empty, then the structure on M is Riemannian. Therefore,
we will always tacitly assume that Z �= ∅.

A local orthonormal frame for the distribution is the image through ξ of a local orthonormal
frame forU. Consequently, by definition of almost-Riemannianmanifold of dimension n+1,
it consists of exactly n + 1 vector fields which are linearly independent only at Riemannian
points. In particular, local orthonormal frames are standard Riemannian orthonormal frames
around Riemannian points.

Example 2.6 (Grushin plane) Let M = R
2 and consider the sub-Riemannian structure given

by U = R
2 × R

2 with the standard Euclidean scalar product on fibers and

ξ : U → TR
2; ξ(x, z, u1, u2) = (x, z, u1, xu2).

As one can check, the resulting distribution is generated by the orthonormal vector fields
X = ∂x , Y = x∂z . The local minimal bundle rank is equal to 2, thus the structure is almost-
Riemannian. In this case the singular region is Z = {x = 0} and {X , Y } is a (global)
orthonormal frame.

Remark 2.7 Any truly sub-Riemannian structure (meaning that is not Riemannian) of rank 2
on a 2-dimensional manifold is always almost-Riemannian, in the sense of Definition 2.4.
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2.2 Almost-Riemannian distance

Let (U, ξ, (·|·)) be an almost-Riemannian structure on M . We say that γ : [0, T ] → M is a
horizontal curve, if it is absolutely continuous and

γ̇ (t) ∈ Dγ (t), for a.e. t ∈ [0, T ].
This implies that there exists a measurable function u : [0, T ] → U, such that

πU(u(t)) = γ (t), γ̇ (t) = ξ(u(t)), for a.e. t ∈ [0, T ].
Moreover, we have that u ∈ L∞([0, T ],U), see [1, Lemma 3.12], therefore the map t �→
‖γ̇ (t)‖ is integrable on [0, T ]. We define the length of a horizontal curve as follows:


(γ ) =
∫ T

0
‖γ̇ (t)‖dt .

The almost-Riemannian distance on M is defined, for any p, q ∈ M , by

d(p, q) = inf{
(γ ) | γ horizontal curve between p and x}.
By Chow–Rashevskii theorem (see for example [5, Theorem 5.9]), the bracket-generating
assumption ensures that the distance d : M × M → R is finite and continuous. Furthermore
it induces the same topology as the manifold one. We say that M is complete, if the metric
space (M,d) is.

2.3 Geodesics and Hamiltonian flow

A geodesic is a horizontal curve γ : [0, T ] → M , parameterized with constant speed, such
that any sufficiently short segment is length-minimizing. The almost-Riemannian Hamilto-
nian is the function on the cotagent space H ∈ C∞(T ∗M) defined by

H(λ) = 1

2

n∑
i=0

〈λ, Xi 〉2, λ ∈ T ∗M, (5)

where {X0, . . . , Xn} is a local orthonormal frame for the almost-Riemannian structure, and
〈λ, ·〉 denotes the action of covectors on vectors. The Hamiltonian vector field �H on T ∗M is
defined by ς(·, �H) = d H , where ς ∈ 2(T ∗M) is the canonical symplectic form. Solutions
λ : [0, T ] → T ∗M to the Hamilton equations

λ̇(t) = �H(λ(t)), (6)

are called normal extremals. Their projections γ (t) = π(λ(t)) on M , where π : T ∗M → M
is the bundle projection, are locally length-minimizing horizontal curves parameterized with
constant speed, and are called normal geodesics. If γ is a normal geodesic with normal
extremal λ, then its speed is given by ‖γ̇ ‖g = √

2 H(λ). In particular


(γ |[0,t]) = t
√
2H(λ(0)), ∀ t ∈ [0, T ].

There is another class of length-minimizing curves in sub-Riemannian geometry, called
abnormal or singular. As for the normal case, to these curves it corresponds an extremal lift
λ(t) on T ∗M , which however may not follow the Hamiltonian dynamics (6). Here we only
observe that an abnormal extremal lift λ(t) ∈ T ∗M satisfies

〈λ(t),Dπ(λ(t))〉 = 0 and λ(t) �= 0, ∀ t ∈ [0, T ], (7)
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that is H(λ(t)) ≡ 0, therefore abnormal geodesics are always contained in the singular region
Z. A geodesic may be abnormal and normal at the same time.

Definition 2.8 Let M be an almost-Riemannian manifold and let p ∈ M . Then, the almost-
Riemannian exponential map is

expp(λ) = π ◦ e
�H (λ), ∀λ ∈ T ∗

p M, (8)

where H denotes the almost-Riemannian Hamiltonian (5) and e �H (λ) is the solution to (6) at
time t = 1, with initial datum λ ∈ T ∗

p M .

Note that, in general, expp may not be defined on the whole cotangent space, but if M is

complete, then �H is a complete vector field and (8) is well-posed.

2.4 Length-minimizers to a hypersurface

Let � ⊂ M be a smooth hypersurface and fix q0 ∈ �. Moreover, let v ∈ C∞(M) be a local
defining function for � around q0, namely there exists an open neighborhood �q0 ⊂ � of
q0 such that

�q0 ⊂ {v = 0} and dv|�q0
�= 0. (9)

We define the local signed distance function from � around q0 as follows:

δv := sgn(v(p)) · d(p, {v = 0}), ∀ p ∈ M . (10)

Let γ : [0, T ] → M be a horizontal curve, parameterized with constant speed, such that
γ (0) ∈ �, γ (T ) = p ∈ M \ � and assume γ is a minimizer for d(·, �), that is 
(γ ) =
d(p, �). In particular, γ is a geodesic and any corresponding normal or abnormal lift, say
λ : [0, T ] → T ∗M , must satisfy the transversality conditions, cf. [5, Thm 12.13],

〈λ(0), w〉 = 0, ∀w ∈ Tγ (0)�. (11)

Equivalently, the initial covector λ(0) must belong to the annihilator bundle A� of � with
fiber Aq� = {λ ∈ T ∗

q M | 〈λ, Tq�〉 = 0}, for any q ∈ �. The restriction of expq to the
annihilator bundle of� allows to build (locally) a smooth tubular neighborhood around non-
characteristic points. Recall that q ∈ � is a characteristic point, and we write q ∈ C(�), if
Dq ⊂ Tq�.

Lemma 2.9 Let � ⊂ M be a smooth hypersurface, let q0 ∈ �\C(�) be a non-characteristic
point and v ∈ C∞(M) as in (9). Then, there exist εq0 > 0 and a neighborhood Oq0 ⊂ �q0
of q0 such that the map

G : (−εq0 , εq0) ×Oq0 → M, G(s, q) = expq(sλ(q)), (12)

is a diffeomorphism on its image, where λ(q) is the unique element (up to a sign) of Aq�

such that 2H(λ(q)) = 1. Moreover, δv is smooth in G((−εq0 , εq0) ×Oq0) and2

G∗∂s |(s,q) = ∇δv(G(s, q)), ∀ (s, q) ∈ (−εq0 , εq0) ×Oq0 . (13)

2 The horizontal gradient of f ∈ C∞(M) is defined by gp(∇ f , v) = dp f (v), ∀ v ∈ Dp and p ∈ M .
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Remark 2.10 It is known that if � has no characteristic points, the signed distance is smooth
in a tubular neighborhood of �, cf. [17, Proposition 3.1]. This lemma can be regarded as
its local version and its proof is a straightforward adaptation of the aforementioned result.
Moreover, note that C(�) ⊂ Z and so the Riemannian points of � are non-characteristic.
Finally, if � contains characteristic points, the parameter εq0 , as well as Oq0 , can not be
chosen uniformly.

Remark 2.11 By condition (13), for any q ∈ Oq0 , we have

(−εq0 , εq0) ∈ s �→ G(s, q) ∈ M

is the unique minimizing geodesic (parameterized by unit-speed) from � passing through
q . Moreover, notice that the initial covector λ(q) in (12) is unique up to a sign: the only
requirement is to choose this covector in such a way it defines a continuous section of the
annihilator bundle.

3 The curvature-dimension condition

A triple (X ,d,m) is called metric measure space if (X ,d) is a complete and separable metric
space and m is a locally finite Borel measure on it. In the following C([0, 1], X) will stand
for the space of continuous curves from [0, 1] to X . A curve γ ∈ C([0, 1], X) is called
minimizing geodesic if

d(γs, γt ) = |t − s| · d(γ0, γ1) for every s, t ∈ [0, 1],
wedenote byGeo(X) the space ofminimizing geodesics on X . Themetric space (X ,d) is said
to be geodesic if every pair of points x, y ∈ X can be connected with a curve γ ∈ Geo(X).
For any t ∈ [0, 1]we define the evaluation map et : C([0, 1], X) → X by setting et (γ ) := γt

and the stretching/restriction operator restrs
r in C([0, 1], X), defined, for all 0 ≤ r < s ≤ 1,

by

[restrs
r (γ )]t := γr+t(s−r), t ∈ [0, 1].

We denote byP(X) the set of Borel probability measures on X and byP2(X) ⊂ P(X) the
set of those having finite second moment. We endow the spaceP2(X) with the Wasserstein
distance W2, defined by

W 2
2 (μ0, μ1) := inf

π∈Adm(μ0,μ1)
d2(x, y) dπ(x, y),

where Adm(μ0, μ1) is the set of all the admissible transport plans between μ0 and μ1,
namely all the measures in P(X2) such that (p1)�π = μ0 and (p2)�π = μ1. The metric
space (P2(X), W2) is itself complete and separable, moreover, if (X ,d) is geodesic, then
(P2(X), W2) is geodesic as well. In particular, every geodesic (μt )t∈[0,1] in (P2(X), W2)

can be represented with a measure η ∈ P(Geo(X)), meaning that μt = (et )#η. A subset
G ⊂ Geo(X) is called non-branching if for any pair γ1, γ2 ∈ G such that γ1 �= γ2, it holds
that

restrt
0(γ1) �= restrt

0(γ2) for every t ∈ (0, 1).

A metric measure space (X ,d,m) is said to be essentially non-branching if for every two
measures μ0, μ1 ∈ P2(X) which are absolutely continuous with respect to the reference
measure m (μ0, μ1 � m), every W2-geodesic connecting them is concentrated on a non-
branching set of geodesics.

123



Almost-Riemannian manifolds do not satisfy the... Page 9 of 27 123

3.1 CD spaces

In this subsection we introduce the C D condition, pioneered by Sturm and Lott–Villani [20,
28, 29]. This condition aims to generalize, to the context metric measure spaces, the notion
of having Ricci curvature bounded from below by K and dimension less than or equal to
N . In particular, in the Riemannian setting it is possible to characterize this two bounds in
terms of a property whose definition involves only the distance and the (volume) measure.
This property, which is stated in Definition 3.1, is given in terms of the following distortion
coefficients: for every K ∈ R and N ∈ (1,+∞)

τ
(t)
K ,N (θ) := t

1
N

[
σ

(t)
K ,N−1(θ)

]1− 1
N

,

where

σ
(t)
K ,N (θ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(tθ
√

K/N )

sin(θ
√

K/N )
if Nπ2 > K θ2 > 0,

t if K = 0,
sinh(tθ

√−K/N )

sinh(θ
√−K/N )

if K < 0.

Definition 3.1 Ametricmeasure space (X ,d,m) is said to be aC D(K , N ) space (or to satisfy
the C D(K , N ) condition) if for every pair of measures μ0 = ρ0m, μ1 = ρ1m ∈ P2(X),
absolutely continuous with respect to m, there exists a W2-geodesic (μt )t∈[0,1] connecting
them and induced by η ∈ P(Geo(X)), such that for every t ∈ [0, 1] μt = ρtm � m and
the following inequality holds for every N ′ ≥ N and every t ∈ [0, 1]∫

X
ρ
1− 1

N ′
t dm ≥

∫
X×X

[
τ

(1−t)
K ,N ′

(
d(x, y)

)
ρ0(x)

− 1
N ′ + τ

(t)
K ,N ′

(
d(x, y)

)
ρ1(y)

− 1
N ′

]
dπ(x, y),

(14)

where π = (e0, e1)#η.

In general, the C D condition is not very easy to disprove, however when the reference
space is an interval I ⊆ R the following lemma, whose proof can be find in [14, Lemma
A.5], provides a nice strategy.

Lemma 3.2 Let I ⊂ R be an interval and let h : I → R be a measurable function such that
(I , | · |, hL 1) is a C D(K , N ) space. Then at any point x in the interior of I where h is twice
differentiable it holds that

(log h)′′(x) + 1

N − 1

(
(log h)′(x)

)2 ≤ −K . (15)

Remark 3.3 This lemma holds also for N = +∞, where now the left-hand side of (15) has
to be intended as (log h)′′(x) (for the definition of C D(K ,∞) space, see [28]).

In fact, in order to disprove that the space (I , | · |, hL 1) satisfies C D(K , N ) is sufficient to
find a point x in the interior of I such that h is twice differentiable in x and

(log h)′′(x) + 1

N − 1

(
(log h)′(x)

)2
> −K .

Notice also that, if we manage to prove that

(log h)′′(x) > −K , (16)
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we automatically show that (I , |·|, hL 1) does not satisfyC D(K , N ) for every N ∈ (1,+∞].
This observation will be fundamental in the following, especially in combination with the
one-dimensional localization results we are now going to present.

3.2 One-dimensional localization

In this subsection we present a suitable adaptation of the one-dimensional characterization
of the C D condition. This property, called C D1(K , N ) condition, has been studied in the
general framework of essentially non-branching metric measure spaces with a curvature-
dimension bound in [11–14]. We provide a local version of such characterization, that allows
us to take advantage of the local structure of almost-Riemannian manifolds.

We recall a general result regarding disintegration of measures. Given a measurable space
(R,R), and a function Q : R → Q to a general set Q, we endow Q with the push forward
σ -algebra Q of R, i.e. the biggest σ -algebra on Q such that Q is measurable. Moreover,
given a finite (non-null) measure ρ on (R,R), consider the measure q := Q#ρ on (Q,Q).

Definition 3.4 A disintegration of ρ consistent withQ is a map Q � q �→ ρq ∈ P(R) such
that the following hold:

(1) for all B ∈ R, ρ·(B) is q-measurable,
(2) for all B ∈ R, C ∈ Q, we have

ρ
(
B ∩Q−1(C)

) =
∫

C
ρq(B) dq(q).

A disintegration is called strongly consistent with respect to Q if, in addition, for all q ∈ Q
it holds that ρq(Q−1(q)) = 1.

Theorem 3.5 [12, Theorem 2.8] Let (R,R) be a countably generated measurable space and
ρ be a finite measure on it. Assume there exists a partition of R as

R =
⋃
q∈Q

Rq ,

denote by Q : R → Q the quotient map and by (Q,Q, q) the quotient measure space. If
(Q,Q) = (X ,B(X)) where X is a Polish space and B(X) denotes its Borel σ -algebra,
then there exists a unique strongly consistent disintegration q �→ ρq with respect to Q.

Let (X ,d,m) be a metric measure space and fix an open subset� ⊂ X with 0 < m(�) =
m(�̄) < ∞. Let u : �̄ → R be a 1-Lipschitz function, define

�u := {(x, y) ∈ �̄ × �̄ | u(x) − u(y) = d(x, y)}
and its transpose �−1

u := {(x, y) ∈ �̄ × �̄ | (y, x) ∈ �u}. Consequently, we introduce the
transport relation Ru and the transport set Tu as

Ru := �u ∪ �−1
u and Tu := p1

(
Ru \ {(x, y) ∈ �̄ × �̄ | x = y}),

where p1 denotes the projection on the first factor. Although this is not always the case, if
we assume that Ru is an equivalence relation, we may partition the set �̄. Letting Q be the
set of equivalence classes and Q : �̄ → Q the quotient map, we can write

�̄ =
⋃
q∈Q

γq ,
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where γq := {x ∈ �̄ | Q(x) = q} for every q ∈ Q. With the quotient map we can endow Q
with the quotientσ -algebraQ, that is the finestσ -algebra on Q forwhichQ ismeasurable.We
introduce the following definition to obtain a local version of the one-dimensional localization
of Cavalletti andMondino [12], which better fits the setting of almost-Riemannian geometry,
where we have a good local description of geodesics. In [12], the authors define a global
partition starting from a globally defined 1-Lipschitz function, see Remark 3.8.

Definition 3.6 We say that a 1-Lipschitz function u : �̄ → R induces a one-dimensional
partition of �̄ if

(1) Ru is an equivalence relation and m(�̄\Tu) = 0,
(2) for every q ∈ Q, the set γq ⊂ �̄ is the image of a geodesic of (X ,d),
(3) for every q ∈ Q there exists x ∈ �̄ such that Q(x) = q and u(x) = 0.

If u induces a one-dimensional partition, then, in particular, we can choose Q = {u = 0}.
Indeed, the point x ∈ �̄ satisfying (3) of Definition 3.6 is unique. Define the ray map

g : Dom(g) ⊂ Q × R → �̄

by imposing that

graph(g) := {(q, t, x) ∈ Q × R× �̄ | Q(x) = q, u(x) = t}.
The ray map g is Borel and bijective, its inverse is

�̄ � x �→ g−1(x) := (Q(x), u(x)).

Moreover, for every q ∈ Q the map t �→ g(q, ·) is an isometry, and consequentlyH1 γq =
H1 {g(q, t) | t ∈ Iq} = g(q, ·)#L 1, where Iq := Dom(g(q, ·)). Theorem 3.5 ensures that
there exists a unique strongly consistent disintegration of m �:

m � =
∫

Q
mq dq(q),

where mq is a measure concentrated on γq and we recall that q := Q#(m �).

Proposition 3.7 Let (X , d,m) be a essentially non-branching metric measure space satisfy-
ing the C D(K , N ) condition, for some K ∈ R and N ∈ (1,∞). Let � ⊂ X be open and
such that 0 < m(�) = m(�̄) < ∞ and let u : �̄ → R be a 1-Lipschitz function providing
a one-dimensional partition. Then:

(1) for q-a.e. q ∈ Q, the measure mq is absolutely continuous with respect to H1 γq ,
namely there exists hq : Iq → [0,∞] such that mq = g(q, ·)#

(
hq ·L 1

)
,

(2) for q-a.e. q ∈ Q, (Iq , | · |, hqL
1) is a C D(K , N ) space.

Proof The proof of this proposition can be done by adapting the classical global approach
to the space (�̄,d,m �), see in particular [11, Sect. 6] for point (1) and [12, Theorem
4.2] for point (2). We point out that this space is not necessarily geodesic, hence we can
not conclude that it satisfies the C D(K , N ) condition and simply apply the known results.
However, observe that, in order to deduce properties of the disintegration induced by u, it is
enough to study Wasserstein geodesics that follow its transport rays. Since u induces a one-
dimensional partition in �̄ in the sense of Definition 3.6, all the transport rays are contained
in �̄ and the C D condition (14) holds along such Wasserstein geodesics. For this reason, we
can repeat the standard arguments verbatim, obtaining the result. ��
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Remark 3.8 In the classical theory of [12], starting from a globally defined 1-Lipschitz func-
tion on a C D(K , N ) essentially non-branching metric measure space, the authors build a
one-dimensional partition of the whole space, up to a negligible set, and disintegrate the mea-
sure accordingly. Then, the densities in the disintegration satisfy the C D(K , N ) condition,
providing the one-dimensional characterization C D1(K , N ). In this setting, there is no need
for the additional properties of Definition 3.6 on the 1-Lipschitz function u.

In particular, given a 1-Lipschitz function u : X → R, we can introduce the transport
relation Ru and the transport set Tu as before (with X in place of �̄) and denote by �u(x)

the section of �u through x in the first coordinate. Then, we define the set of forward and
backward branching points as

A+ := {x ∈ Tu | ∃y, z ∈ �u(x), (y, z) /∈ Ru}
A− := {x ∈ Tu | ∃y, z ∈ �−1

u (x), (y, z) /∈ Ru}.
Finally, we define the non-branched transport set and the non-branched transport relation as

T nb
u := Tu \ (A+ ∪ A−), and Rnb

u := Ru ∩ (T nb
u × T nb

u ).

On the one hand, as shown in [11], the essentially non-branching assumption ensures that
Rnb

u is an equivalence relation on T nb
u and for q-a.e. q ∈ Q, γq is isometric to a closed interval

of R. On the other hand, if (X ,d,m) also satisfies the C D(K , N ) condition, the set Tu\T nb
u

is m-negligible, cf. [12, Theorem 3.4]. It is then possible to obtain a global result, analogous
to Proposition 3.7.

Remark 3.9 Note that showing (16) for K ∈ R actually implies that hq can not be a
C D(K ,∞) density. However, for a metric measure space (X ,d,m), it is not known whether
the C D(K ,∞) condition can be characterized with one-dimensional disintegrations.

4 A general strategy for disproving the CD condition

The 1-Lipschitz function whose disintegration allows us to disprove the C D condition will
be a localized version of the (signed) distance function from a hypersurface �. Indeed with
this choice we are able to compute explicitly the one-dimensional marginals and to exploit
the existence of characteristic points.

4.1 Existence of normal coordinates

Let M be an almost-Riemannian manifold of dimension n + 1. We build a convenient set of
coordinates around a point in the singular region. This result can be regarded as a general-
ization of Agrachev et al. [1, Proposition 9.8].

Lemma 4.1 (Normal coordinates) Let M be an almost-Riemannian manifold of dimension
n + 1, let Z ⊂ M the set of singular points and let p0 ∈ Z. Then, there exists a set of
coordinates ϕ = (x, z) : U → M centered at p0 and a local orthonormal frame X0, . . . , Xn

for the almost-Riemannian structure on U such that:

X0 = ∂x , Xi =
n∑

j=1

ai j (x, z)∂z j , ∀ i = 1, . . . , n, (17)

where ai j are smooth functions in U. Moreover, denoting by A(x, z) = (ai j (x, z))i . j , we have
det A(0, 0) = 0.
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The proof of Lemma 4.1 follows from the existence of a tubular neighborhood around non-
characteristic points. We require a preliminary result.

Lemma 4.2 Let M be an almost-Riemannian manifold and let p0 ∈ M. Then, there exists a
hypersurface W ⊂ M such that p0 ∈ W \ C(W ).

Proof We assume by contradiction that p0 ∈ M is a characteristic point for any hypersurface
W ⊂ M passing through p0. By definition of characteristic point, this means that Dp0 ⊂
Tp0W for any such W . In turn, this implies that Dp0 = {0}, contradicting the bracket-
generating assumption. ��
Proof of Lemma 4.1 Using Lemma 4.2, we find an embedded hypersurface W ⊂ M such
that p0 ∈ W \ C(W ). We use the almost-Riemannian normal exponential map to define the
desired coordinates. Indeed, let v ∈ C∞(M) be a local defining function as in (9). Then, by
Lemma 2.9, there exist εp0 > 0 and a neighborhood Op0 ⊂ W of p0 such that

G : (−εp0 , εp0) ×Op0 → M, G(s, p) = expp(sλ(p)),

is a diffeomorphism on its image, where λ(p) satisfies (11) with 2H(λ(p)) = 1. Moreover,
the local signed distance function δv is smooth in G((−εp0 , εp0) ×Op0) and

G∗∂s |(s,p) = ∇δv(G(s, p)), ∀ (s, p) ∈ (−εp0 , εp0) ×Op0 .

Thus, fixing any set of coordinates (z1, . . . , zn) for Op0 , and relabelling s = x , the coordi-
nates (x, z) satisfies (17). Finally, since p0 ∈ Z, the vector fields {X0, . . . , Xn} are linearly
dependent at p0, meaning that the matrix A(x, z) has zero determinant at (0, 0). ��
Remark 4.3 From now on, without loss of generality, whenever we fix a set of coordinates,
we will assume that the domain of the chart is the whole R× R

n .

4.2 Assumptions on the almost-Riemannian structure

Let M be an almost-Riemannian manifold of dimension n + 1, and let Z ⊂ M be the set of
singular points. Let p0 ∈ Z and let � ⊂ M be a hypersurface. To proceed with our general
construction, we need two assumptions on the almost-Riemannian structure: in coordinates
(x, z) ∈ R× R

n centered at p0 given by Lemma 4.1, we require that

(i) the hypersurface � consists of Riemannian points except when x = 0 and has a charac-
teristic point at the origin, i.e.

� ∩ Z ⊂ {x = 0} and (0, 0) ∈ C(�); (H1)

(ii) let m be any smooth positive measure on M , then

m(Z) = 0. (H2)

Here by smooth positive measure, we mean a measure with strictly positive and smooth
density with respect to the Lebesgue measure in coordinates.

Remark 4.4 Let us comment on why we need these assumptions. The first one is necessary
to have a good local description of the marginals outside the set {x = 0}, in order to exploit
the presence of a characteristic point only at the origin, cf. Lemma 2.9. The second one is
necessary in order to ensure the essentially non-branching property, cf. Lemma 4.7, and to
characterize the marginals in the disintegration, cf. (21).
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Remark 4.5 We remark that assumption (H2) is not always guaranteed as the next example
shows. Consider C ⊂ [0, 1] a closed subset with positive Lebesgue measure and empty
interior and let f ∈ C∞(R) such that f|C ≡ 0. Then, define the structure on R4 with global
orthonormal frame:

X0 = ∂x , X1 = ∂z1 −
z2
2

∂z3 , X2 = ∂z2 +
z1
2

∂z3 , X3 = f (x)∂z3 .

As one can check, the Hörmander condition is verified and the local minimal bundle rank
is always 4, since C has empty interior. Thus, the structure is almost-Riemannian. Now fix
m = L 4, then the singular set has infinite measure indeed, by (18)

Z = {(x, z) ∈ R
4 | det A(x, z) = 0} = {(x, z) ∈ R

4 | f (x) = 0} = C × R
3.

Here, the matrix A is given by

A(x, z) =
⎛
⎝ 1

1
− z2

2
z1
2 f

⎞
⎠ .

In an analogue way, one can build an example where (H1) is not verified. Indeed, in the
construction above, it is enough to consider a closed set C with empty interior and with an
accumulation point at the origin. Then, the hypersurface � = {z3 = 0} has a characteristic
point at the origin, however it intersects the singular region in C × R

2.

Notice that, in coordinates (17), the singular set can be described by the matrix A =
(ai j )i, j , indeed

(x, z) ∈ Z if and only if det A(x, z) = 0. (18)

In particular, along the hypersurface �, by (H1), we have

x �= 0 ⇒ det A(x, z1, . . . , zn−1, 0) �= 0, (19)

since the set � ∩{x �= 0} consists of Riemannian points. As a consequence, since a Rieman-
nian point is never a characteristic one, C(�) ⊂ {x = 0}. Actually, it is always possible to
ensure that � = {zn = 0} satisfies (0, 0) ∈ C(�), so the only condition one should check is
(19).

Lemma 4.6 Let M be an almost-Riemannian manifold and let p0 ∈ Z. Then, there exists an
hypersurface � ⊂ M such that p0 ∈ C(�). Moreover, in coordinates (x, z) as in (17), up to
a rotation, we can choose � = {zn = 0}.
Proof Assume by contradiction that p0 ∈ M is not a characteristic point for every hypersur-
face W ⊂ M passing through p0. Then, by definition of characteristic point, we deduce that
Dp0 must be transversal to Tp0W , for every such W , or equivalently

Dp0 + Tp0W = Tp0 M,

for every W ⊂ M passing trough p0. As a consequence, Dp0 = Tp0 M and thus r(p0) =
n + 1. This gives a contradiction, since r(p0) < n + 1, being p0 ∈ Z. Let us show that in
coordinates � can be chosen as {zn = 0}: since det A(p0) = 0, there exists an invertible
matrix M ∈ GL(n+1,R) such that the last column of the matrix A(p0)M consists of zeroes.
Then, we introduce the following change of coordinates

ψ : (x, z) �→ (x, z̃) = (x, Mᵀz).
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In the newcoordinates, the generating family for the distributionhas the following expression:

X0 = ∂x , Xi =
n∑

j=1

ai j (x, z)∂z j =
n∑

k, j=1

ai j (x, ψ−1(z))m jk∂z̃k ,

having denoted by M = (mi j )i, j . Thus, (17) is still valid and, when evaluated at p0, the
matrix describing the generating family has the last column consisting of zeroes. Finally, this
implies that the hypersurface � = {z̃n = 0} has a characteristic point at p0. Indeed,

∇ z̃n(p0) =
n∑

i=1

Xi (z̃n)Xi (p0) =
n∑

i, j=1

ai j (0, 0)m jn Xi (p0) =
n∑

i=1

(A(p0)M)in Xi (p0) = 0,

since the last column of the matrix A(p0)M is zero, implying that Dp0 ⊂ Tp0�. ��
Lemma 4.7 Let M be an almost-Riemannian manifold, equipped with a smooth positive
measure m and satisfying assumptions (H2). Then (M, d,m) is essentially non-branching.

Proof Let γ : [0, 1] → M be a minimizing geodesic. Then γ is abnormal if there exists an
abnormal extremal lift λ(t) �= 0, satisfying (7). But this implies that

γ (t) ⊂ Z, ∀ t ∈ [0, 1].
Hence, if γ is a minimizing geodesic with endpoints in the Riemannian region, i.e.

γ (0), γ (1) ∈ M \ Z, (20)

then γ must be strictly normal. As showed in [22, Corollary 6], a strictly normal geodesic
γ : [0, 1] → M is branching for some positive time t ∈ (0, 1) if and only if it contains a non-
trivial abnormal subsegment that starts at time 0. Thus, a minimizing geodesic satisfying
(20) can not branch for positive times since Z is closed. Now, let η ∈ P(Geo(X)) be a
W2-geodesic joining the measures μ0, μ1 ∈ P2(X), which are absolutely continuous with
respect to the reference measurem (μ0, μ1 � m). In particular, notice that (e0)#η = μ0 and
(e1)#η = μ1 and therefore, by (H2),

η(e−1
0 (Z)) = μ0(Z) = 0 and η(e−1

1 (Z)) = μ1(Z) = 0.

Consequently, the measure η is concentrated on Geo(X)\(e−1
0 (Z) ∪ e−1

1 (Z)
)
, which is a

non-branching set of geodesics, according to the first part of the proof. ��
Remark 4.8 Notice that it is possible to build examples of almost-Riemannian manifolds
where (H2) is verified but there exist branching geodesics. Indeed, consider R4, with the
global orthonormal frame given by

X0 = ∂x , X1 = ∂z1 , X2 = ∂z2 + B(z1, z2)∂z3 , X3 = x∂z3 ,

where B is a smooth magnetic potential, defined as in [22], namely

B(z1, z2) = z1θ(z2) + z22θ(1− z2)

and θ ∈ C∞(R) such that 0 ≤ θ ≤ 1, θ(r) = 0 for r ≤ 0 and θ(r) = 1 for r ≥ 1. In this
situation, we have strictly normal branching geodesic in the singular region. Nevertheless,
thanks to Lemma 4.7, (M,d,m) is essentially non-branching. On the other hand, if the
measure of the singular set is positive, it is unclear whether an almost-Riemannian manifold
is essentially non-branching.
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4.3 Choice of the local disintegration

Let us fix coordinates (x, z) ∈ R × R
n as in (17). Let m be a smooth positive measure on

M and let � = {zn = 0} be defined as Sect. 4.2. Under the assumptions (H1) and (H2),
we consider the signed distance function δv from �, as defined in (10), with v := zn . For
ease of notation, we denote δv simply by δ. By triangle inequality, δ is always 1-Lipschitz
on M with respect to d. However, δ develops singularities at a characteristic point, indeed it
is only Hölder (and not Lipschitz) with respect to the Euclidean distance of the chart, see [4,
Theorem 4.2]. Roughly speaking, such a singularity is related to the fact that the horizontal
gradient of δ, which exists almost everywhere (see, [16, Theorem 8]), becomes tangent to
� as the base point approaches a characteristic point. Our idea is to exploit this behavior to
prove that the disintegration associated with δ does not produce C D(K , N ) densities along
the transport rays, for any K ∈ R, N ≥ 1.

Starting from δ, we build a suitable open and bounded set � and we consider the local
disintegration of m � induced by δ, cf. Section 3.2. Set B := Br ((0, 0)) for some r > 0
and define the open and bounded set

� :=
⋃

q0∈(�\C(�))∩B

γq0 , where γq0 = G((− f (q0), f (q0)) × {q0}),

where G is the map defined in Lemma 2.9 and f ∈ C∞(�) such that 0 < f (q0) < εq0 , for
every q0 ∈ � \ C(�). Note that G is a local diffeomorphism on � and, with this choice of
f , m(�) = m(�̄).
Then, δ is a 1-Lipschitz function on �̄ inducing a one-dimensional partition in the sense

of Definition 3.6. Indeed Q = {δ = 0} ∩ �̄ = � ∩ B̄ and, for every q ∈ Q, the transport
ray γq of the disintegration coincides with the minimizing geodesics for δ, which exist by
completeness. Moreover, Tδ = �̄ \ C(�) and therefore, m(�̄ \ Tδ) = 0. The quotient map
Q : �̄ → Q can be regarded as a projection on the foot of a geodesic,3 thusQ is the inverse
of the exponential map, namely

G (δ(p),Q(p)) = p, ∀ p ∈ �̄,

and G is indeed the ray map associated to the partition. Finally, since � is defined by the
smooth function f , the measure q = Q#(m �) is smooth on �.

4.4 Coordinate expression for themarginals in the disintegration

Using Lemma 2.9 and, in particular, the diffeomorphism (12), we can conveniently represent
the one-dimensional densities in the disintegration. Indeed, consider a Riemannian point
q0 = (x̄, z̄) ∈ �, with z̄n = 0. In particular, thanks to (19), it is enough to assume x̄ �= 0.
Then, for every Borel set C ⊂ �, on the one hand we have that

∫
�∩C

dm =
∫

�

∫ f (q)

− f (q)

χG−1(C)d(G
∗(m �)),

while, on the other hand, making the disintegration explicit and recalling that G is the ray
map, we conclude that

3 For any p ∈ �̄, there exists a unique point f(p) ∈ � ∩ �̄ for which |δ(p)| = d(p, f(p)).
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∫
�∩C

dm =
∫

�

mq(� ∩ C)dq

=
∫

�

∫ f (q)

− f (q)

χC (G(s, q))dmqdq =
∫

�

∫ f (q)

− f (q)

χG−1(C)(s, q)hq(s)dsdq.

Thus, having fixed a frame for T �, say {v1, . . . , vn}, the density hq(s) is given by:

hq(s) = hq(s)ds(∂s)
q(v1, . . . , vn)

q(v1, . . . , vn)
= G∗m(∂s, v1, . . . , vn)

q(v1, . . . , vn)

= m(G∗∂s, G∗v1, . . . , G∗vn)

q(v1, . . . , vn)
= m(∇δ, G∗v1, . . . , G∗vn)

q(v1, . . . , vn)
, (21)

for any (s, q) ∈ G−1(�), and having used (13) in the last equality.

Remark 4.9 Notice that, from (21), the one-dimensional densities hq(s) are smooth functions
of (s, q) ∈ G−1(�). Moreover, they do not depend on the choice of coordinates.

We are going to study the second logarithmic derivative of hq(s), at s = 0 and as q → 0,
in order to obtain a contradiction with the differential characterization of Lemma 3.2. Firstly,
notice that since we are performing derivatives in s, we can disregard constant functions in
s. Secondly, by definition m is a smooth positive measure, i.e.

m = m(x, z)dxdz, with m ∈ C∞(R× R
n), c ≤ m ≤ C, (22)

for some C, c > 0. Moreover, in (21), as a frame for T �, we can choose the vector
fields {∂x , ∂z1 , . . . , ∂zn−1}. In conclusion, we obtain the following expression for the one-
dimensional density associated with the disintegration:

hq(s) ∝ m(G(s, q))dxdz(∇δ, G∗∂x , . . . , G∗∂zn−1)|(s,q). (23)

Then, defining the matrix

Bq(s) := (∇δ | G∗∂x | . . . | G∗∂zn−1),

where the columns are expressed in coordinates {∂x , . . . , ∂zn }, the second logarithmderivative
at s = 0 is given by:

(
log(hq (s))

)′′
|s=0 = (log(m(G(s, q)))′′|s=0 +

(
log det(Bq (s)))

)′′
|s=0

= (log(m(G(s, q)))′′|s=0 + tr
(
−(B−1

q (0)B′
q (0))2 + B−1

q (0)B′′
q (0)

)
, (24)

having used Jacobi formula for the determinant of a smooth curve of invertible matrices:

det(B(s))′ = det(B(s))tr
(
B−1(s)B ′(s)

)
.

Remark 4.10 We stress that, for any q ∈ Q \ C(�), hq(·) is defined on an open interval Iq

containing 0. Thus, the derivative in (24) makes sense.

4.5 Computations for thematrix Bq(s)

Proceeding with hindsight, we analyze the term of (24) involving Bq(s), as in general it will
be more singular than the other one.We expand in s its columns and we deduce an expression
for the coefficients of the expansion, using the almost-Riemannian Hamiltonian system.
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4.5.1 An expression for the trace term in (24)

We look for an explicit expression for the matrix Bq(s). We may regard ∇δ ∈ R
n+1 and

G : R×R
n → R

n+1, therefore expanding in s, there exists smooth functions f, h ∈ C∞(�∩
�) such that,

G(s, q) = q + ∇δ(q)s + 1

2
f(q)s2 + o(s2),

∇δ(G(s, q)) = ∇δ(q) + f(q)s + 1

2
h(q)s2 + o(s2), (25)

as s → 0. The relation between the two expansions comes from (13). Therefore, we obtain
the following formulas for Bq(s) and its derivatives at s = 0: for the zero order term, we
have

Bq(0) = (∇δ | ∂x | ∂z1 | . . . | ∂zn−1

)
|q =

(∇δ(q) Idn×n

0 · · · 0
)

.

For the first derivative of Bq(s), we differentiate component by component. Notice that we
have to take into account the quantities ∂zi G(0, q), with i = 0, . . . , n − 1,4 therefore we
have to differentiate the expansion (25), namely:

∂zi G(s, q) = ∂zi + ∂zi∇δ(q)s + 1

2
∂zi f(q)s2 + o(s2),

as s → 0, for any i = 0, . . . , n − 1, where the derivatives have to be interpreted component
by component. Therefore, we obtain:

B ′
q(0) = (

f | ∂x | ∂z1 | . . . | ∂zn−1

)
|q +

n−1∑
i=0

(∇δ | ∂x | . . . | ∂zi∇δ | . . . | ∂zn−1

)
|q .

Analogously, we can deduce the expression for the second-order derivative of Bq(s) at s = 0:

B ′′
q (0) = (

h | ∂x | ∂z1 | . . . | ∂zn−1

)
|q +

n−1∑
i=0

(∇δ | ∂x | . . . | ∂zi f | . . . | ∂zn−1

)
|q

+ 2
n−2∑
i=0

n−1∑
j=i+1

(∇δ | ∂x | . . . | ∂zi∇δ | . . . | ∂z j∇δ | . . . | ∂zn−1

)
|q

+ 2
n−1∑
i=0

(
f | ∂x | . . . | ∂zi∇δ | . . . | ∂zn−1

)
|q .

Inserting the above formulas in the trace term in (24), we obtain the desired expression, in
terms of the quantities ∇δ, f and h.

4.5.2 Explicit expression for∇ı, f and h

In order to obtain an explicit expression for ∇δ, f and h, we study the Hamiltonian system
associated with the almost-Riemannian Hamiltonian

H(λ) = 1

2

n∑
i=0

〈λ, Xi 〉2, ∀ λ ∈ T ∗M,

4 Here and below, with a slight abuse of notation, for i = 0, we set z0 = x and ∂z0 = ∂x .
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where {X0, . . . , Xn} is the local orthonormal frame for the distribution defined in (17). In
coordinates (x, z), the almost-Riemannian metric g on the Riemannian region is represented
by the matrix (

1
(Aᵀ A)−1

)
.

Therefore the Hamiltonian in canonical coordinates induced by (x, z) is

H(px , pz; x, z) = 1

2
p2x +

1

2
pᵀ

z Aᵀ A(x, z)pz,

where pz is a shorthand for (pz1 , . . . , pzn ). The Hamiltonian system then becomes
⎧⎪⎪⎨
⎪⎪⎩

ẋ = ∂ H

∂ px
= px ṗx = −∂ H

∂x
= −1

2
pᵀ

z ∂x
(

Aᵀ A
)

pz

ż = ∂ H

∂ pz
= Aᵀ Apz ṗz = −∂ H

∂z
= −1

2
pᵀ

z ∂z
(

Aᵀ A
)

pz

(26)

From Lemma 2.9 (cf. also Remark 2.11) we know that the unique minimizing geodesic for
δ with initial point q ∈ � ∩ � has unique (up to a sign) initial covector such that:

〈λ(q), Tq�〉 = 0 and 2H(λ(q)) = 1. (27)

Since Tq� = span{∂x , ∂z1 , . . . , ∂zn−1}, the first condition in (27) implies that λ(q) = pzn dzn .
In addition, the second condition in (27) forces λ(q) to be of the form:

λ(q) = 1

β(q)
dzn, with β(q)2 =

n∑
k=1

akn(q)2, (28)

wherewe chooseβ to be positive. Thus, denoting by (xq(s), zq(s); pq
x (s), pq

z (s)) the solution
to (26) with initial datum (λ(q); q), the minimizing geodesic for δ starting at q is given by:

Iq � s �→ G(s, q) = (xq(s), zq(s)), (29)

where Iq is an open interval containing the origin. By (13) and (29), we deduce that

∇δ(q) = ∂s G |(0,q) =
(
ẋq(0), żq(0)

)
.

Computing derivatives along s of the equality (13) and recalling the definition of f, h in (25),
we analogously obtain higher-order expression in terms of the solution to (26), precisely:

f(q) = (
ẍq(0), z̈q(0)

)
, h(q) = (...

x q(0),
...
z q(0)

)
. (30)

We refer to Appendix 1 for the explicit expression of f and h.

4.6 Contradicting the CD condition

The idea is to exploit the presence of a characteristic point for � at the origin to conclude
that

(
log(hq(s))

)′′
|s=0

(x,0)→(0,0)−−−−−−−→ +∞, (31)

proving (16) for every K ∈ R, up to taking x sufficiently small. Keeping in mind (24), we
anticipate that the term providing the desired pathology will be(

log det(Bq(s))
)′′
|s=0 .
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Observe that, according to Sect. 3, in order to disprove the C D(K , N ) condition for every
K ∈ R and N ∈ (1,+∞) we need to show that, given any K ∈ R, it holds(

log(hq(s))
)′′
|s=0 > −K ,

for every q in a q-positive set. However, since the function (s, q) → hq(s) is smooth (see
Remark 4.9) it is sufficient to prove (31).

Notice that the initial covector for the minimizing geodesic from � in (28) is singular at
q = (0, 0). More precisely, since (0, 0) ∈ C(�) and � is the level set of v(x, z) = zn , we
have that

0 = ∇zn |(0,0) =
n∑

i=1

Xi (zn)Xi |(0,0) =
n∑

i, j=1

ai j (0, 0)ain(0, 0)∂z j ,

meaning that the function β(q) defined in (28) vanishes at q if and only if q ∈ C(�).
In particular, it vanishes at the origin, making the initial covector singular at q = (0, 0).
Moreover, solving the Hamiltonian system, we deduce that

∇δ(q) = (ẋq(0), żq(0)) = (0, Aᵀ Aβ−1(q)∂zn ) =
(
0, β−1(q)

n∑
k=1

aki (q)akn(q)

)
. (32)

Remark 4.11 On the one hand, all the components of∇δ(q), but the first and last, are singular
at q = (0, 0), as fast as the initial covector (28). On the other hand, since the last component
of ∇δ(q) is exactly β(q) which tends to 0 as q → (0, 0), formally ∇δ(q) becomes tangent
to � at the characteristic point.

In particular, we see that ∇δ(q) is singular at the origin and the same goes for the functions
f(q), h(q). Replacing their explicit expressions in (24), we will be able to prove (31).

Remark 4.12 The procedure described in this section for disproving the C D condition is
constructive and the algorithm has been implemented in the software Mathematica. The
code is available online, see [23].

5 2-Dimensional almost-Riemannianmanifolds do not satisfy CD

In this section, we apply our general strategy to show that 2-dimensional almost-Riemannian
manifolds do not satisfy any curvature-dimension condition. The reason why we are able
to perform explicit computations is related to the better regularity properties of δ, when
dim M = 2, cf. Remark 4.11.

Let M be an almost-Riemannian manifold of dimension 2, with non-empty singular
region Z ⊂ M . We recall the following local description of a general 2-dimensional almost-
Riemannian manifold which holds without any assumption on the structure of the singular
set, see [3, Lemma 17].

Lemma 5.1 Let M be an almost-Riemannian manifold. Then, for every point q0 ∈ M, there
exists a set of coordinates ϕ = (x, z) : U → M, centered at q0, such that a local orthonormal
frame for the distribution is given by

X = ∂x , Y = f (x, z)∂z .

where f : U → R is a smooth function. Moreover,
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(i) the integral curves of X are normal extremals, as in (6);
(ii) let s be the step of the structure at q0. If s = 1 then f (0, 0) �= 0. If s ≥ 2, we have

f (0, 0) = 0, . . . ,
∂s−2 f

∂xs−2 (0, 0) = 0,
∂s−1 f

∂xs−1 (0, 0) �= 0. (33)

Remark 5.2 This Lemma improves Lemma 4.1 since we can give additional condition on the
function f (x, z) = det A(x, z), using the Hörmander condition.

In the 2-dimensional case, assumption (H2) is always verified, see [1, Theorem 9.14]. For
what concerns assumption (H1), we have the following lemma.

Lemma 5.3 Let M be a 2-dimensional almost-Riemannian manifold and let q0 ∈ Z. Consider
the curve in normal coordinates � = {z = 0}. Then, up to restricting the chart, � ∩ Z =
C(�) = {(0, 0)}.
Proof Recall that if � = {v = 0}, for v ∈ C∞ with never-vanishing differential, then

p ∈ C(�) ⇔ ∇v(p) = 0,

where ∇u denotes the horizontal gradient of v. In particular, in the normal coordinates given
by Lemma 5.1, the singular region isZ∩U = {(x, z) | f (x, z) = 0}, thus setting v(x, z) = z,

p = (x, 0) ∈ C(�) ⇔ f (x, 0) = 0.

Since q0 ∈ Z, then dim(Dq0) < 2 and the almost-Riemannian structure has step s ≥ 2 at
q0. Thus f (0, 0) = 0 and consequently p = q0 ∈ C(�). On the other hand, if 0 < |x | < ε,
f (x, 0) �= 0. Indeed, by the vanishing condition (33) on f , we can expand f (x, 0) as a
Taylor series at x = 0, obtaining

f (x, 0) = ∂s−1 f

∂xs−1 (0, 0)xs−1 + o(xs−1), as x → 0.

where the leading term is not zero. This implies that there exists a smooth function r ∈
C∞(−ε, ε), such that r(x) �= 0, for every x ∈ (−ε, ε) and f (x, 0) = r(x)xs−1, which never
vanishes on � ∩ U \ {q0}, up to restricting the domain of the chart U. ��

Now, thanks to Lemmas 5.1 and 5.3, we can follow the general strategy (cf. Sect. 4) to
disprove the C D condition. First of all, notice that the matrix A = ( f (x, z)) has only one
entry, so the Hamiltonian system is greatly simplified. More precisely, the initial covector
(28) becomes:

λ(x) = 1

f (x, 0)
dz, ∀ x �= 0.

Thus, as one can check using (26), (30) and (32) we have

∇δ(x) = (0, f (x, 0)), f(x) =
(
−∂x f

f
, f ∂z f

)
|(x,0)

,

h(x) =
(

�,−2(∂x f )2

f
+ f (∂z f )2 + f 2∂2z f

)
|(x,0)

. (34)

Here we have omitted the first component of h(x), since we will not need it.
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Second of all, we can replace the quantities (34) in the matrix Bq(s), defined in (23).
After a long but routine computation, we obtain the following expression for the logarithmic
second derivative of det Bq(s) at s = 0, namely

(log det Bx (s))
′′ (0) =

(
f ∂2z f + (∂x f )2 − f ∂2x f

f 2

)
|(x,0)

.

We are in position to prove the main result of this section.

Theorem 5.4 Let M be a complete 2-dimensional almost-Riemannian manifold and let m
be any smooth positive measure on M. Then, the metric measure space (M, d,m) does not
satisfy the C D(K , N ) condition for any K ∈ R and N ∈ (1,+∞).

Proof As explained in Sect. 4, we have to show that the quantity (log hx (s))′′ (0) diverges
at +∞ as x → 0. Recall that, by the proof of Lemma 5.3, there exists a never-vanishing
function r ∈ C∞(−ε, ε) such that

f (x, 0) = r(x)xs−1, with f , r ∈ C∞(U).

Therefore, using the smoothness of both f and r , we deduce that

(log det Bx (s))
′′ (0) = (∂x f (x, 0))2 − f (x, 0)∂2x f (x, 0)

f (x, 0)2
+ O(1)

=
(

s − 1

x2
+ ∂xr(x)2 − r(x)∂2x r(x)

r(x)2

)
+ O(1)

= s − 1

x2
+ O(1), (35)

which diverges to +∞ as x → 0, since (0, 0) ∈ Z and therefore s > 1. Moreover, let
us remark that the singularity is polynomial of order −2. We are left to take care of the first
term in (24): by a direct computation and using (22), one can check that

∣∣(logm(G(s, x)))′′ (0)
∣∣ ≤ C0

(|∂s G(0, x)|2e + |∂2s G(0, x)|e
) ≤ C1 + C2

∣∣∣∣∂x f (x, 0)

f (x, 0)

∣∣∣∣
= C1 + C2

∣∣∣∣ s − 1

x
+ ∂xr(x)

r(x)

∣∣∣∣ , (36)

where | · |e denotes the Euclidean norm of R2. Since the singularity in (36) is polynomial of
order 1, it is negligible compared to the one in (35), and we conclude that:

(log det hx (s))
′′ (0) x→0−−−→ +∞,

disproving the C D(K , N ) condition for any K ∈ R and N ∈ (0,+∞), as desired. ��

Remark 5.5 A similar argument can be carried out for generic 3-dimensional almost-
Riemannian manifolds, in the sense of Agrachev et al. [3, Definition 2]. Indeed, in this
situation we have a convenient description of a local orthonormal frame, and of the matrix
A, cf. [6, Theorem 2].
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6 Strongly regular almost-Riemannianmanifolds do not satisfy CD

In this section,we prove that strongly regular almost-Riemannianmanifolds do not satisfy any
curvature-dimension condition. Strongly regular almost-Riemannian manifolds have been
studied in [15, 25]. In this setting, we can deal with the complexity of the computations
thanks to a nice local description of the singularities of the structure. We recall the following
definition.

Definition 6.1 Let M be a n-dimensional almost-Riemannian manifold. Assume that the
singular set Z ⊂ M is an embedded hypersurface without characteristic points. Then, for
any q0 ∈ Z, there exist local coordinates (x, z) centered at q0 such that Z = {x = 0}
in coordinates, and condition (17) is verified, namely a local orthonormal frame for the
distribution is given by

X0 = ∂x , Xi =
n∑

j=1

ai j (x, z)∂z j , ∀ i = 1, . . . , n,

for some smooth functions ai j , so that, denoting by A = (ai j )i, j ,

det A(x, z) = 0 if and only if x = 0.

We say that M is a strongly regular almost-Riemannian manifold, if there exists l ∈ N such
that

ai j (x, z) = xl âi j (x, z) with det(âi j )(0, z) �= 0, (37)

for all (0, z) in the domain of the chart.

Remark 6.2 Although being formulated in coordinates, the notion of a strongly regular
almost-Riemannian structure on M is intrinsic. In particular, condition (37), as well as the
order l, do not depend neither on the choice of q0 ∈ Z nor on the coordinates (x, z), see [25]
for further details.

In order to apply our general strategy, we have to ensure that conditions (H1) and (H2)
are verified. The former is a consequence of the very definition of strongly regular almost-
Riemannian structure and we pick � as in Lemma 4.6 so that also the latter condition is
satisfied.We proceed by computing the second logarithmic derivative of the one-dimensional
densities,

(
log det Bq(s)

)′′
|s=0 = 1

β

[
hn + β∂x f0 +

n−1∑
i=1

(
β∂zi fi − βi∂zi fn

) − 2f0∂xβ

+ 2
n−1∑
i=1

(
fn∂zi βi − fi∂zi β

) + 2
∑

0<i< j<n

det

⎛
⎝ ∂zi βi ∂z j βi βi

∂zi β j ∂z j β j β j

∂zi β ∂z j β β

⎞
⎠

⎤
⎦

− 1

β2

(
fn +

n−1∑
i=1

(
∂zi βiβ − βi∂zi β

))2

, (38)

where βi , fi , hi denote the components of∇δ, f and h respectively. This computation follows
from the trace term in (24), using the property that the first component of ∇δ is identically
zero, cf. (32).
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Theorem 6.3 Let M be a complete strongly regular almost-Riemannian manifold and let m
be any smooth positive measure on M. Then, the metric measure space (M, d,m) does not
satisfy the C D(K , N ) condition for any K ∈ R and N ∈ (1,+∞).

Proof As in the proof of Theorem 5.4, we have to show that the quantity
(
log hq(s)

)′′
(0)

diverges at +∞ as q → 0 along �. To do that, the idea is to highlight the most singular
terms in x , namely those where a derivative in x appears. Let us discuss the order in x of
the quantities in (38), using as well formulas from Appendix 1. Firstly, since M is strongly
regular, (37) holds and we have

β(x, z)2 =
n∑

i=1

a2
kn(x, z) = x2l

n∑
i=1

â2
kn(x, z) = x2l β̂(x, z)2, (39)

with β̂(0, z) �= 0. Thus, β has order l in x . Similarly, the components βi of ∇δ are given by
(42),

βi (x, z) = αi (x, z)

β(x, z)
= 1

β(x, z)

n∑
k=1

aki (x, z)akn(x, z) = xl

β̂(x, z)

n∑
k=1

âki (x, z)âkn(x, z).

Therefore, also βi ’s have order l in x . A crucial remark before moving forward is that, thanks
to the strongly regular assumption on M , computing derivatives along z-directions does not
change the order in x of the quantities. Thus, for example,

ordx∂z j βi (x, z) = l, ∀ i, j = 1, . . . , n.

Reasoning in this way, for the functions fi defined in (43), we have:

ordx fi (x, z) = 2l, ∀ i = 1, . . . , n,

and the same is true for any derivative in z-directions. For what concerns f0, recall that

f0(x, z) = −∂xβ(x, z)

β(x, z)
⇒ ordx f0(x, z) = −1. (40)

From (40), it is clear that derivatives in the x-direction encode all the possible singularities
of second logarithmic derivatives of hq(s). Finally, using (44), we see that

ordxhn(x, z) = l − 2, and hn(x, z) = −2(∂xβ(x, z))2

β(x, z)
+ O(x3l).

Finally, we can evaluate the order in x of the functions in (38): the lowest order is−2 coming
from the terms hnβ−1, ∂x f0 and β−1f0∂xβ. Thus, denoting by z′ = (z1, . . . , zn−1, 0), we
obtain:

(log det Bq(s))′′|s=0 =
(
hn(x, z′) − 2f0∂xβ(x, z′)

β(x, z′)
+ ∂x f0(x, z′)

)
+ O(1)

=
(−∂2x β(x, z′)β(x, z′) + (∂xβ(x, z′))2

β2(x, z′)

)
+ O(1).

Now using (39), we can reason as in the 2-dimensional case, cf. (35), to conclude that

(
log det Bq(s)

)′′
(0)

q→(0,0)−−−−−→ +∞.

Once again, also in this situation, the singularity in x of the quantity
(
log det Bq(s)

)′′
(0) is

polynomial of order−2. Finally, using the same argument used in (36) for the 2-dimensional
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case, we can show that the density of the measure m produces a polynomial singularity of
order −1, which is negligible as q → (0, 0). Finally, we obtain

(
log det hq(s)

)′′
(0)

q→(0,0)−−−−−→ +∞,

disproving the C D(K , N ) condition for any K ∈ R and N ∈ (1,+∞), as desired. ��
Remark 6.4 We stress once again that, thanks to the strongly regular assumption on M , the
order of the structure (and thus the order of β) controls the orders in x , not only of the
functions βi , fi and hn , but also of their derivatives in the z-directions. Below, we provide
an example of regular (but not strongly regular) structure where the orders of the derivatives
are not controlled by the order of β. Nevertheless our strategy to disprove the C D condition
works.

In full generality, it is possible to prove that (log det hx (s))′′ (0) actually diverges, however
there is no criterion of determining the sign of the leading order, without requiring some
additional regularity on the structure. On the other hand, as characteristic points encode the
truly sub-Riemannian behavior of almost-Riemannianmanifolds, we believe that our strategy
should always be effective.

Example 6.5 Let M = R
4 and in coordinates (x, z1, z2, z3) consider the almost-Riemannian

structure defined by the global vector fields

X0 = ∂x , X1 = ∂z1 −
z2
2

∂z3 , X2 = ∂z2 +
z1
2

∂z3 , X3 = x∂z3 .

The singular region is given byZ = {x = 0} and is an embedded hypersurface without char-
acteristic points. Notice that M is regular, see [25, Definition 7.10] for the precise definition,
but not strongly regular, thus we can not apply Theorem 6.3. Nevertheless, if we consider
� = {z3 = 0}, assumptions (H1) and (H2) are verified, therefore, we can apply our general
strategy. Setting m = L 4, an explicit computation leads to

(
log det hq(s)

)′′
(0) = 8x2 − 4(z21 + z22)

(4x2 + z21 + z22)
2
, (41)

which diverges at +∞ along the curve (x, 0, 0, 0) as x → 0, disproving the C D(K , N )

condition for any K ∈ R and N ≥ 1. A few remarks are in order: first of all, the function
β(x, z1, z2) = 4x2 + z21 + z22 has order 2 in x but this is not true for its derivatives in the
z-directions. Second of all, the numerator of (41) does not have a sign, highlighting the
difficulties of the general case of determining the behavior of the leading term.
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Appendix A. Explicit expression for∇ı, f and h

In order to obtain an explicit expression for ∇δ, f and h, we study the Hamiltonian sys-
tem associated with the sub-Riemannian Hamiltonian. Recall that in canonical coordinates
induced by (x, z), given by (17), the Hamiltonian is

H(px , pz; x, z) = 1

2
p2x +

1

2
pᵀ

z Aᵀ A(x, z)pz,

where pz is a shorthand for (pz1 , . . . , pzn ). For the hypersurface � ⊂ M , given by (H1),
from Lemma 2.9, we know that the unique minimizing geodesic for δ with initial point
q ∈ �\C(�) has unique (up to a sign) initial covector:

λ(q) = 1

β(q)
dzn, with β(q)2 =

n∑
k=1

akn(q)2

Thus, if (x(s), z(s), px (s), pz(s))5 is the solution to (26) with initial datum (λ(q); q), we
deduce that

β0(q) = ẋ(0) = 0, βi (q) = żi (0) = 1

β(q)

n∑
k=1

aki (q)akn(q) = αi (q)

β(q)
, ∀ i = 1, . . . , n, (42)

having denoted ∇δ(q) = (β0(q), . . . , βn(q)). Moreover, notice that by definition βn(q) =
β(q). In an analogous way, we can compute f = (

f0, . . . , fn
)
:

f0(q) = ẍ(0) = −∂xβ(q)

β(q)

fi (q) = z̈i (0) = 1

β2(q)

⎡
⎣ n∑

l=1

∂zl αi (q)αl(q) − 1

2

n∑
j,k=1

aki (q)akj (q)∂z j β
2(q)

⎤
⎦ . (43)

Finally, taking the third-order derivatives in s of the solution to (26), we obtain h. Notice,
however, that we only need the n-th component of h in (38), thus:

hn = ...
z n(0) = 1

β3

[
− (∂xβ

2)2

2
+

n∑
j,r ,l=1

αlαr∂
2
zl zr

(β2) +
n∑

j,l=1

β2∂zl (β
2)fl

−
n∑

j,l=1

αl∂zl α j∂z j (β
2) − 1

2

n∑
j,l=1

α j
(
αl∂z j zl (β

2) − ∂z j αl∂zl (β
2)

) ]
. (44)
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