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Abstract
We settle the case of equality for the relative isoperimetric inequality outside any arbitrary
convex set with not empty interior.
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1 Introduction

In [5] Choe, Ghomi and Ritoré proved the following relative isoperimetric inequality outside
convex sets, see also [14] for an alternative proof and [12] for a generalization to higher
codimension.

Theorem 1.1 [5] Let C C RY be a closed convex set with nonempty interior. For any set of
finite perimeter and finite measure Q@ C RN \ C we have

L —

P(Q:RY\ C) zN(w—N)N|Q|%. (1.1)
2

Moreover, if C has a C% boundary and 2 is a bounded set for which the equality in (1.1)

holds, then 2 is a half ball.

Here and in what follows P(£2; RV \ C) denotes the perimeter of a set Q in RV \ C in the
sense of De Giorgi. As observed by the authors in [5] the equality case for general, possibly
nonsmooth, convex sets does not follow from their methods as it cannot be handled by a simple
approximation argument. However there are many situations in which nonsmooth convex
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sets naturally appear. For instance, in models of vapor-liquid-solid-grown nanowires the
nanotube is often described as a semi-infinite convex cylinder with sharp edges and possibly
nonsmooth cross sections. In these models super-saturated liquid droplets correspond to
isoperimetric regions for the relative perimeter outside the cylinder or more in general for the
capillarity energy, see [11, 17]. Experimentally it is observed that in some regimes preferred
configurations are given by spherical caps lying on the top facet of the cylinder. Understanding
these phenomena from a mathematical point of view was our first motivation to study the
equality cases in (1.1) also for nonsmooth convex obstacles, beside the intrinsic geometric
interest of the problem.
The main result of this paper reads as follows.

Theorem 1.2 (The equality case) Let C C RY be a closed convex set with nonempty interior
and let @ C RN \ C be a set of finite perimeter such that equality holds in (1.1). Then S is
a half ball supported on a facet of C.

Observe that, compared to the last part of Theorem 1.1, here we don’t have any restriction on
the convex set C and we allow for possibly unbounded competitors. As in [5] the starting point
in order the get the characterization of the equality case in (1.1) is an estimate of the positive
total curvature KT (X) of a hypersurface ¥ € RV \ C when the contact angle between 9C
and ¥ is larger than or equal to a fixed § € (0, 7). Here K1 (%) denotes, roughly speaking,
the measure of the image of the Gauss map restricted to those points where there exists a
support hyperplane, see Definition 1.3 below. To state more precisely our result we need to
introduce some notation: Given 6 € (0, ) we denote by Sy the spherical cap

Sp == [y eSVN 1y ey ECOSQ].
Moreover, given ¥ C RY \ C and a point x € ¥ we denote by Ny X the normal cone
N, X = {UGSN_I : (y—x)~v§0f0rally62},

that is the set of (exterior) normals to support hyperplanes to X. We can now recall the
definition of total positive curvature.

Definition 1.3 Let C be a closed convex set with not empty interior, & € R" \ C a bounded
open set and ¥ := 92 \ C. The rotal positive curvature of X is given by

K@ =H"" |J M=
xeX\C

The aforementioned estimate on the total positive curvature is provided by the following
theorem, which will be proved in Sect. 3.

Theorem 1.4 Let C C RN be a closed convex set of class C', @ € RN \ C a bounded open
setand ¥ = Q2 \ C. Let 6y € (0, ) such that

v-ve(x) <cosfy wheneverx € TNC, veN,X, (1.2)

! Theorem 1.1 shows that the isoperimetric profile of RN\ Cis always greater than or equal to the isoperimetric
profile of a half space while Theorem 1.2 characterizes the equality case. Note that in general the isoperimetric
profile of RN\ Cis also greater than or equal to the one of C, see [ 13, Theorem 6.18], where the equality case
is also characterized.
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where v (x) stands for the outer unit normal to C at x. Then,
KH(2) = HN 1 (Sy,) - (1.3)

Moreover, let r > 0 be such that ¥ N C C B, (0). For any ¢ > 0 there exists §, depending on
&, 0o and r, but not on C or Q, such that if

v-ve(x) <cosby+ 8 wheneverx € XNC, veNZ, (1.4)
and
KT () < V' (Sa) + 6, (1.5)

then ¥ N C is not empty, width(X N C) < & and more precisely ¥ N C lies between two
parallel e-distant hyperplanes orthogonal to vc(x) for some x € ¥ N C. In particular, if
(1.2) is satisfied and the equality in (1.3) holds, then ¥ N C is not empty and lies on a support
hyperplane to C.

Note that in the previous statement width(% N C) denotes the distance between the closest
pair of parallel hyperplanes which contains ¥ N C in between them, see (3.5). Even though
the proof of this theorem follows the general strategy of [4] we are able to improve their
result in three directions: (1) we consider a general contact angle 8y € (0, ), whereas in
[4] only the case 6y = /2 is considered; (2) we do not assume any regularity on X and the
contact angle condition can be replaced by the weaker condition (1.2); (3) we get a stability
estimate on the ‘contact part’ X N C which is independent of the shape of the convex set C.
As we will explain below (2) and (3) are crucial in the proof of Theorem 1.2.

As a consequence of independent interest of the previous theorem we prove a sharp
inequality for the Willmore energy, see Theorem 3.9.

Before outlining our strategy of the proof of Theorem 1.2 we briefly recall how in [5]
it is proven that a bounded set ¢ satisfying the equality in (1.1) is a half ball, when C is
sufficiently smooth. There the idea is to consider the isoperimetric profile

I(m) =inf{P(E;]RN\C) . ECRV\C, |E| =m],
1 —
defined for allm € (0, |2¢]], and to show that I (m) = N(“}TN)WmNTI,that is I (m) coincides

with the isoperimetric profile 1, (m) of the half space. Moreover, since I'(|Q2|) = Hs,
where Hy is the mean curvature of ¥ = 99 \ C,

142D (I'(1200)" ' = /Z\C HY'anV ' = (N - DV (E) w6

> (N = DV RN (S 0) = L (10D (1 (120 0)Y

where the first inequality follows from an application of coarea formula and the geometric-
arithmetic mean inequality, see for instance the proof of Theorem 3.9, and the second one
follows from the estimate of the total curvature proved in [5, Lemma 3.1]. Now, since I (m) =
Iy (m) for all m € [0, |Qo]], all the inequalities in (1.6) are equalities. In particular this
implies that K+ () = HY (S, 2) and that ¥ is umbilical. From this information, it is not
difficult to see that ¥ must be a half ball.

Note that in the proof of [5, Lemma 3.1] it is crucial that the regular part of ¥ meets 0C
orthogonally and in a C? fashion. This can be inferred from the boundary regularity theory
for perimeter minimizers which can be applied only if C is sufficiently smooth. Therefore
the above argument fails for a general convex set.
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In order to deal with this lack of regularity we implement a delicate argument based on
the approximation of C with more regular convex sets.

Let us describe the argument more in detail. Denote by ¢ a set of finite perimeter
satisfying the equality in (1.1). For n > 0 sufficiently small we approximate C with the
closed n-neighborhood C;, = C + B;,(0), which is of class C L1 Now the idea is to consider
the relative isoperimetric problem in RV \ C,;. In order to force the minimizers to converge
to 29 when n — 0 and the prescribed mass m converges to |2p|, we introduce the following
constrained isoperimetric profiles with obstacle €2¢:

I,(m) = min[P (E;]R{N\cn) L EC2\C,y |E| :m} (1.7)

for all m € (0, |20 \ C;|]. Denote by €2, ,, a minimizer of the above problem and set
Xym = 0%2y,, \ Cy. Note that in the general N-dimensional case, both the obstacle ¢ and
the minimizers €2, ,, may have singularities. Thus, despite the fact that dC,, is of class C1!,
we cannot apply the known boundary regularity results at the points x € 92, , N9C, N3L.

However, one useful observation is that €2, ,, is a restricted A-minimizer, i.e., a A-
minimizer with respect to perturbations that do not increase the “wet part” 92, ,, N C,
(see Definition 4.1 below), with a A > 0 which can be made uniform with respect to n and
locally uniform with respect to m (see Steps 1 and 2 of the proof of Theorem 1.2). Another
important observation is that restricted A-minimizers satisfy uniform volume density esti-
mates up to the boundary dC,,. All these facts are combined to show that the constrained
isoperimetric profiles (1.7) are Lipschitz continuous and that their derivatives coincide a.e.
with the constant mean curvature Hs: of the regular part 7, of X, \ €2 (see Steps 3
and 4).

As in the argument of [5] another important ingredient is represented by the inequality

1
K (Sym) = HY " (Sej2) = SNow. (1.8)

which would hold by [5, Lemma 3.1] if we could show that %, ,, meets 0C;, orthogonally
and in a sufficiently smooth fashion. However, as already observed, due the possible presence
of boundary singularities at 92, ,, N dC; N 2o we cannot show that the aforementioned
orthogonality condition is attained in a classical sense. An important step of our argument,
which allows us to overcome this difficulty, consists in showing that restricted A-minimizers
satisfy the 7 /2 contact angle condition with respect to 0C,, in a *“viscosity” sense, namely
that the following weak Young’s law holds:

v-ve,(x) <0 whenever x € X, ,, NCy, v € Ny Xy . (1.9)

This is achieved in Step 5 by combining a blow-up argument with a variant of the Strong
Maximum Principle that we adapted from [9]. In turn, owing to (1.9) we may apply The-
orem 1.4 to obtain (1.8). Having established the latter and with some extra work we
can show that I,(m) — I, (m) as n — 0 for every m € (0, []), where we recall

1 —
ILy(m)=N (“’TN) Ly m% is the isoperimetric profile of the half space (see Steps 6 and 7).
With the convergence of the isoperimetric profiles I, at hand and using again (1.8), we
can then prove that for a.e. m € (0, |Q20])

1
KT (Zym) — FNow (1.10)

and thus X, ,, almost satisfies the case of equality in (1.3) for n sufficiently small. Thanks to
the last part of Theorem 1.4 we may then infer that X, ,, N C,;, is almost flat and with some
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extra work that the whole wet part 92, ,, N C;, has the same property. By showing that for
suitable sequences m, ' || and 1, N\ 0, 982, », N C; — 3L N C in the Hausdorff
sense, we may finally conclude that €29 N C is flat and lies on a facet of C (see Step 8).
We highlight here that in all the above argument it is crucial that the stability estimate on the
width of X, ,, N C, provided by our version Theorem 1.4 is independent of the shape of the
convex set C;;.

Having established that the wet part d€2p N C is flat, more work is still needed in the final
step of the proof to deduce again from (1.10) that €2p is umbilical and in turn a half ball
supported on a facet of C.

The paper is organized as follows: in Sect. 2 we collect a few known results of the regularity
theory of perimeter quasi minimizers needed in the paper. In Sect. 3 we prove Theorem 1.4,
while the proof of Theorem 1.2 occupies the whole Sect. 4 with some of the most technical
steps outsourced to Sect. 6. Section 5 contains further regularity properties of restricted
A-minimizers that are needed in the proof of the main result and the proof of the version of
the Strong Maximum Principle needed here.

2 Preliminaries

Throughout the paper we denote by B, (x) the ball in RY of center x and radius » > 0. In the
following we shall often deal with sets of finite perimeter. For the definition and the basic
properties of sets of (locally) finite perimeter we refer to the books [3, 15]. Here we fix some
notation for later use. Given £ C R¥ of locally finite perimeter and a Borel set G we denote
by P(E; G) the perimeter of E in G. The reduced boundary of E will be denoted by 9*E,
while 9¢ E will stand for the essential boundary defined as

IE =R\ (EQUEW),

where E© and E(M are the sets of points where the density of E is 0 and 1, respectively.
Moreover, we denote by vg the generalized exterior normal to E, which is well defined at
each point of 3*E, and by ur the Gauss-Green measure associated to E

we =ve HN 1LO*E. 2.1)

In the following, when dealing with a set of locally finite perimeter E, we shall always tacitly
assume that E coincides with a precise representative that satisfies the property 0E = 0*E,
see [15, Remark 16.11]. A possible choice is given by E1 for which one may easily check
that

IEMD = 5*E . (2.2)

We recall the well known notion of perimeter (A, ro)-minimizer and the main properties
which will be used here.

Definition 2.1 Let & C R" be an open set. We say that a set of locally finite perimeter
E CcRVis aperimeter (A, ro)-minimizerin 2, A > OQandrg > 0, if forany ball B, (xo) C £,
with0 <r <rgandany F C RN such that EAF CC B, (x() we have

P(E; Br(x0)) = P(F; Br(x0)) + A|[EAF].

In order to state a useful compactness theorem for A-minimizers we recall that a sequence {C, }
of closed sets converge in the Kuratoswki sense to a closed set C if the following conditions
are satisfied:
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(i) if x,, € C, for every n, then any limit point of {x, } belongs to C;
(i) any x € C is the limit of a sequence {x,} with x,, € C,,.

One can easily see that C;, — C in the sense of Kuratowski if and only if dist(-, C,;) —
dist(-, C) locally uniformly in R" . In particular, by the Arzela-Ascoli Theorem any sequence
of closed sets admits a subsequence which converge in the sense of Kuratowski.
Throughout the paper, with a common abuse of notation, we write Ej, — E in L' (Lllac)
instead of x 5, Xr inL' (L ll »c)- Moreover, given a sequence of Radon measures uj, in an

* .
open set 2, we say that p, — w weakly* in Q in the sense of measures if

/goduh—>/<pdu forall g € COU(RQ).
Q Q

Next theorem is a well known result, see for instance [15, Ch. 21].

Theorem 2.2 Let Q@ C RN be an open set and {E,} a sequence of locally finite perimeter
sets contained in 2 satisfying the following property: there exists ro > O such that for every
n, E, is a perimeter (Ay, ro)-minimizer in Q, with A, — A € [0, +00). Then there exist
E C Q of locally finite perimeter and a subsequence {ny} such that
(1) E isa (A, ro)-minimizer in Q;

(ii) E, — EinL} (),

(iii) 0E,, — C in the Kuratowski sense for some closed set C such thatC N Q2 = dE N Q;

(v) HNTTL@E, NQ) LNt L(0E N Q) weakly* in Q in the sense of measures.
Remark 2.3 From the definition of Kuratowski convergence it is not difficult to see that

(i) and (iii) of Theorem 2.2 imply that, up to extracting a further subsequence if needed,
E,, — K in the sense of Kuratowski, with K N Q2 = E N Q.

Definition 2.4 Given a set of locally finite perimeter E, we say that a functionh € L ll e (0YE)
is the weak mean curvature of E if for any vector field X € C Cl (RN; RM) we have

/ div, X dHV ! = f hX-vg, dHN!,

0*E 0*E

where div; X := divX — (3., X) - vg stands for the tangential divergence of X along 9*E.
If such an /& exists we will denote it by Hyf.

Note that if 3 E is of class C2 then Hyg coincides with the classical mean curvature, or more
precisely with the sum of all principal curvatures. In particular, if E coincides locally with
the subgraph of a function u of class C? then locally

. Vu
Hy = —dlv(7> .
V1+|Vul?

Concerning the above mean curvature operator, we recall the following useful Strong Maxi-
mum Principle, see for instance [ 18, Th. 2.3], which covers a more general class of quasilinear
equations.

Theorem 2.5 Let Q@ C RV~ be a connected open set and letu, v € Cz(Q) such thatu < v
and

di ( Vu ) 5 — di < Vv )
iV —— )| = A =div| ——
S+ |Vup? J1+ Vo2

for some constant A € R. If u(xo) = v(xo) for some xo € Q, then u = v.
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We recall the following classical regularity result for A-minimizers.
Theorem 2.6 Let E be a perimeter (A, ro)-minimizer in some open set @ C RN. Then

() 8*E N isa hypersurface of class C' for every a € (0, 1), relatively open in dE N Q2.
Moreover, dim((0E \ 9*E) N Q) < N — 8, where dimy stands for the Hausdorff
dimension;

(1) Hyg € L®(0*E N Q), with ||Hyg|lLe < A, and thus 3*E N Q is of class wr for all
p=1

(iii) if there exists a C' hypersurface ¥ touching 3E at x € Q and lying on one side with
respect to OE in a neighborhood of x, then x € 3*E.

Items (i) and (ii) are classical, see for instance Theorems 21.8 and 28.1 in [15] for (i) and
Theorem 4.7.4 in [2] for (ii).

Concerning (iii) one can show that under the assumption on x the minimal cone obtained
by blowing up E around x is contained in a half space. For the existence of such a minimal
cone see Theorem 28.6 in [15]. Since any minimal cone contained in a half space is a half
space, see for instance [8, Lemma 3], it follows that x is a regular point.

The so-called e-regularity theory for A-minimizers underlying the proof of the above
theorem yields that sequences of A-minimizers Ej, converging in L' to a smooth set E are
regular for h large and in fact converge in a stronger sense. More precisely, we have the
following result, which is well known to the experts.

Theorem 2.7 Let E,,, E be (A, ro)-minimizers in an open set Q C RN such that E, — E
in L}OC(Q). Let x € 0*E N Q. Then, up to rotations and translations, there exist a (N — 1)-
dimensional open ball B' ¢ RN~ functions ¢,, ¢ € W>P(B') forall p > 1, andr > 0
such that x € B’ x (—r, r) and for n large

E, N (B" x (=r, 1) ={(x, ¢a(x)) : x" € B'},
AEN(B" x (=r,r) ={(',o(x") : x" € B}, (2.3)
¢on — ¢ in CY*(B’) for some a € (0, 1) .
Moreover, Hyg, (x', gn(x")) X Hyp(x', o(x")) in L®(B') and thus ¢,—¢ in W2P(B') for
all p > 1.

Properties stated in (2.3) follow from the classical e-regularity theory, see [22, Th. 1.9] (see
also the arguments of Lemma 3.6 in [6]). The last part of the statement then easily follows
from Theorem 2.6-(ii) combined with the classical Calderén-Zygmund estimates.

3 An estimate of the total positive curvature

This section is mainly devoted to the proof of Theorem 1.4 and to some applications.

We recall thataset X € SV~ is called spherically convex (in short convex) if it is geodesi-
cally convex, that is, for any pair of points xj, xo € X there exists a distance minimizing
geodesic connecting x| and x, contained in X.

If x e SNl and 6 € (0, ) we denote by Sp,x the spherical cap

So.x 1= {(ye SVl x.y>cosh}.

If x = ey we shall simply write Sy instead of Sy .,. Note that S;_g _, coincides with
(SN_1 \ Sp.x) U3Sp, x, where 9.Sp  denotes the relative boundary of Sp x in SV We recall
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that
0
HN1(Sp) = (N — l)wN_1/ sin" 20 do |
0

and HN1(SY~1) = Nwy, where wy is the measure of the unit ball.
The following lemma extends [4, Proposition 3.1] to general angles.

Lemma3.1 Let X C SN~ be spherically convex and closed, with HN~1(X) > 0, let
0 € (0, w) and fix x € X. Then we have

HY1(Sp)

N—1
N Tt (X). 3.1)

HN XN Sp0) =
Moreover, the equality holds if and only if —x € X. Finally, given 6y € (0, 7), for every
& > 0 there exists § > 0, independent of X, such that if 6 € [6p/2, 6], then

N—1 S
HYN(X NSy y) < (HNi(") + 5) HYN N (X) implies dist(—x, X) < ¢.
WN

Proof We denote by A the subset of Sy , obtained by taking the union of all the minimal

geodesics connecting x with the points of X N 9Sg . Let B := Sy, \ A. Similarly denote

by A™ the subset of S;_g — obtained by taking the union of all the minimal geodesics

connecting —x with the points of X N39Sy y = XN0Sz—g,—x,andset B~ := Sy 9 _x \A™.
Assume first that HV~1(A) > 0. We note that

HN AT HN TN (Sr )
HN=I(A) — HN1(S))

Thus, we have

HN1(Sp)
HN=1(Sr—0)

HN 1 (Sp)

77{1\1_1 XNAT).
V(s gt X0AD

HYI (X nA) =HY"1(A) = HYN(A7) >
Note now that X N B~ = . Indeed, if y € X N B, then the geodesic connecting y to x is
contained in X and intersects 9.Sp  atapointz € X N 43Sy . It follows in turn that y belongs

to the geodesic connecting z with —x, and thus y € A™, which is a contradiction. Therefore,

HN X N S0 = HY N A) +HN TN (X N B) = HYN T (4)

NS e

=i,y A (32)
HN(So) v

> m?’f (XNSr_g,—x).

From this inequality (3.1) follows, recalling that HV-LSN1) = Nay.

If instead HY~1(A) = 0, then KV~ 1(X \ Sp,x) = 0 and thus (3.1) holds trivially.

If (3.1) holds with the equality, then HV=1(A) > 0 and all the inequalities in (3.2) are
equalities. In particular, HV~1(A7) = HN1(X n Sz—0.—x) > 0. In turn, recalling that
XN Sz_p,—x C A™ and by closedness we deduce that —x € X. Conversely, if —x € X then
by spherical convexity we have A~ = X N S;_p _, and also X N B = @ since otherwise any
geodesic connecting a point y € X N B to —x would intersect 9.5 N X, thus implying that
y belongs to A, a contradiction. Therefore all the inequalities in (3.2) are equalities and the
conclusion follows.
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To establish the last part, we argue by contradiction assuming that there exist ¢ > 0, a
sequence of closed spherically convex sets X,, 3 x such that ¥ ~1(X,) > 0 and a sequence
0, € [00/2, 0o] converging to 6’ such that

HNTI(S, 1
HY (X, 0 S, 0) < (ﬁ + 7) HYL(X,) but dist(—x, X,) > &. (3.3)
Nowy n
We denote by A, and by A, the sets corresponding to X, and Sy, . defined as above. Note
that X, = (X, N Sy, ) U(X, NA;). From (3.3) it follows that H¥ =1 (A,), HN~1(A;) > 0
for n large and

HN*I Xn ns Py HN*I S
( 9,,_,)S o (Sv,) +0<%>.
HN1(X, N Ay) — HYN(Sr—0,)

N—-1
Since HY 71 (X,, 1 85,0 = HY N (A = =S MY T (X, 0 A, it follows that

HN—I (Sn—(-)n

o HY (X, N S, ) . HN (A HN1(Sp)
lim —— = lim — = =N . (G4
n—o00 H (Xp N Sq_p, —x) n=2ooHN-L(X, NA;) H (Sy_o)

Note that we have

HN=1(Sg,) HN-1(A,) HN=1(Sy)
= —
HV=(Saog,)  HN-1(A;)  HN"N(Sp0)

and thus, from (3.4) we get

. HN=L(A;)
im ———*%~  —
n—oo HN=1(X, N A;)

)

which clearly contradicts the fact that by the second inequality in (3.3) we easily infer that
HN-! (A, \ Xp) > C(e)yHN ! (A,)), for a positive constant C(¢) depending only one. 0O

Next we adapt to our case [4, Proposition 4.2]. To this aim we recall some preliminary
definitions.

Definition 3.2 Given a set X € RN and x € R¥ the unit normal cone of X at x is the
(possibly empty) set defined as

N, X :={vesSV!: (y—x)-v<O0forally € X}.

Any hyperplane passing through x and orthogonal to a direction v € N, X is called a support
hyperplane for X with outward normal v. In turn, we define the corresponding normal bundle
of X as

NX =[] NX.
xeX

Givenamapo : X — SN¥=land 6 € (0, ) we introduce the following restricted normal
cone and restricted normal bundle respectively as

NX := Ny XN Spor)  and  NOUX = | JNIOX .
xeX

Moreover, we say that a point x € X is exposed if there exists a support hyperplane IT passing
through x such that X N IT = {x}. Finally, we denote by width(X) the distance between the
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closest pair of parallel hyperplanes which contains X in between them, i.e.,

width(X) = inlezc 1 (sup{x cv:xeX}—inf{x-v:xe€ X}). 3.9
veSN—
Lemma3.3 Letr > 0andlet X = {xi,...,x¢} C B+(0). Leto : X — SV~ be such that

o (x;) € Ny, X whenever N, X is nonempty. Then
HN NI X) = HV(Sp) (3.6)

Moreover, equality holds in (3.6) if and only if X lies in a hyperplane T1 such that o (x;) L T1
whenever x; is exposed. Finally, given 6y € (0, 1), for every ¢ > 0 there exists § > 0
(depending also on r > 0 and 6y, but not on o and not on X) such that if 0 € [6y/2, 6p],
then

HNINTIX) < HNU(Sg) + 6 implies width(X) < & (3.7)

and more precisely there exist an exposed point x € X and two parallel hyperplanes orthog-
onal to o (x) with mutual distance equal to € such that X lies between them.

Proof The proof is essentially the same as for [4, Proposition 4.2], using Lemma 3.1 in place
of [4, Proposition 3.1]. We give the argument for the sake of completeness. Owing to the
compactness of X, for every v € SV ! there exists a support hyperplane to X with outward
normal equal to v. Thus, NX = SV~!. Observe also that v € intgn-1(Ny, X) if and only if
the hyperplane orthogonal to v and passing through x; is a support hyperplane intersecting
X only at x; (and thus x; is exposed). In turn, if i # j we have

inth—l (Nx,X) N intSN—l (ij X) =0.

Since by [4,Lemma4.1]every N,, X with nonvanishing HV 1 measure s spherically convex,
we may invoke Lemma 3.1 to conclude that

‘ HY1(Sp)
N—=1/70.0 vy _ N—1/70,0 N—-1 _ q/N—1
HN IV X) = ;H (NGX) = =5 ;H (NyX) =HV1(Sp)
(3.8)
thus establishing (3.6).
If equality holds in (3.6), then the above inequality is an equality and in particular
HNL(S,
HNV=I(NSOX) = A COPY LN, X) (3.9)
! Nowy

whenever HY ~1(N. X) > 0, that is whenever x; is exposed. Therefore, by Lemma 3.1
N;’GX contains both o (x;) and —o (x;) and thus X lies in the hyperplane orthogonal to
o (x;) and passing through x;. Conversely, if X lies in a hyperplane orthogonal to o (x;), for
every x; exposed, then also —o(x;) € Ny, X and thus by Lemma 3.1 (3.9) holds for all x;
exposed. And thus equality holds also in (3.8).

To prove (3.7) and the last part of the lemma, let X,, = {x],..., x,ﬁ’n} C B,(0) and let
o Xy — SVL with o, (") € len X, whenever x!' is exposed, 6, € [6p/2, 6] be such
that

HY (N X)) — HN T (S,) — 0.
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Arguing as for (3.8) we then have, in particular, that for every n € N there exists i, €
{1, ..., ky} such that

N—1 Ons6n
T (VEE) sy,
— —

in

'HN—I (Nxf’ Xn) Na)N

By Lemma 3.1 this implies that dist(—oy, (xi’;), le_n X,) — 0. From this, owing to the
equiboundedness of the X,,’s it follows that for every k € N and for n large enough X, lies
between the two parallel hyperplanes orthogonal to o, (xl.';) and passing through the points

x{; and x{)’l — %an (xlf:). In particular, width(X,) — 0. O

Next proposition extends the previous lemma to the case of a general compact set X and
a continuous map o.

Proposition 3.4 Let X C B (0) be a compact set.
Leto : X — SN=1 be a continuous map such that o (x) € NyX for all x € X such that
Ny X # 0. Then,

HN NN XY > HVL(Sy) (3.10)

and if equality holds, then X lies in a hyperplane T1 which is orthogonal to o (x) for some
x € X. Moreover, given 6y € (0, w) and ¢ > 0 there exists 5o > 0 (depending also on r and
o, but not on o and not on X) such that if 0 € [00/2, 6o], then

HVUNTOX) < HN 71 (Sg) + 80 implies width(X) < & (3.11)

and more precisely there exist x € X and two parallel hyperplanes orthogonal to o (x), with
mutual distance equal to ¢ such that X lies between them.

Proof Let {X;};en be an increasing sequence of discrete subsets of X such that X; — X in
the Hausdorff sense. We claim that
Xyooy Zmsupy .~ pointwise in sV, (3.12)
i 1

To this aim let v ¢ N X and assume by contradiction that (3.12) does not hold at v and thus
that there exist a subsequence {i, } and points x,, € X;, such thatv € N ;;OX i,- Passing to a
further (not relabelled) subsequence if needed, we may assume that x, — x € X. Observe
that by the continuity of o(:), v € Sp o(5). Fix now any x € X and due to the Hausdorff
convergence find y, € X;, suchthaty, — x. Since for every n, (y, — x,) - v < 0 passing to
the limit we get (x — Xx) - v < 0. Due to the arbitrariness of x, we have shown that v € Nz X
and thus v € NE’GX , a contradiction.

Using the first part of Lemma 3.3 (with X replaced by X;), (3.12) and Fatou’s Lemma we
get

HYL (NI X) > limsup HY L (NP X)) > liminf HY L (NTO X)) = HVTL(S))
i 1
Assume now that the first inequality (3.11) holds for some 6 € [6y/2, 6], with 8y = %

where § is the constant provided by Lemma 3.3. Then the previous inequality yields for i
sufficiently large, depending on 6,

HYN NI X) < HVTI(Sp) + 8
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and thus, thanks to second part of Lemma 3.3 we infer that there exists x; € X; and two
parallel hyperplanes orthogonal to o (x;) with mutual distance equal to ¢ such that X; lies
between them. By a compactness argument and the continuity of o, letting i — oo we get
that there exist x € X and two parallel hyperplanes orthogonal to o (x) with mutual distance
equal to ¢ such that X lies between them. Thus, in particular width(X) < e. This establishes
(3.11), which in turn, again by a compactness argument and the continuity of o, yields the
conclusion in the equality case. O

Next we prove a result in the spirit of [4, Theorem 1.1]. In the following C, Q2 and ¥ will
be as in Definition 1.3. Moreover if x € X is a point where the tangent hyperplane to X
exists we denote by vy (x) the normal to this hyperplane pointing outward with respect to €2.
We give the following definition.

Definition 3.5 We denote by =7 the set of points in = \ C such that there exists a support
hyperplane I, with the property that [T, N X = {x}.

We recall the following result, see [20, Theorem 2.2.9]:
Theorem 3.6 Let K C RN be a compact convex set. Then for HN ~'-almost every v € SN~!

the support hyperplane for K orthogonal to v intersects K at a single point.

Corollary 3.7 Let C and ¥ C R be as in Definition 1.3. With the notation above, we have
that

Kty =H""[ J Mz .

xext
where KT (X) is the total positive curvature defined in Definition 1.3.

Proof Let K denote the closed convex hull of ¥. By Theorem 3.6 we have that for ¥ ~!-a.e.
direction v € |, exy\c Nx X the corresponding support plane for K intersects K at a single
point that necessarily belongs to ¥ \ C and thus to ©T. O

Proof of Theorem 1.4 Observe that if ¥ N C = @) then
U N,z =SV,
xeX\C

hence (1.3) trivially holds.

Hence in the following we may assume that £ N C # @.
We denote by vc the outward normal to C. We start by proving (1.3). Let us define o :
>N C — SV asox) := ve(x). Note that since C is convex the direction o (x) belongs
to N, C and thus to N, (X N C) forevery x € ¥ N C.

Given v € SN~!, we denote by v the hyperplane orthogonal to v and passing through
the origin and we set

f:=max{r e R: (v +v) NI #0}.

Clearly, by definition for every v € SV~! the hyperplane 7v + v is a support hyperplane
for . Fix 6 € (0, 6p). We claim that for every x € X N C

Ve N(SNC)N Spoqy implies 7v+viNT cT\C. (3.13)
Let fo € R be such that x + v+ = #ov + vL and observe that since v - o (x) > cos6 > cos 6y

then by assumption (1.2) v ¢ N, %, hence the hyperplane fov + v+ enters §2. Thus it easily
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g

Fig. 1 Both ¥ = 9Q; \ Cand ¥, = 9, \ C meet C with contact angle 7 /4 and satisfy the equality in
(1.3) with 8 = 37 /4. Note that 3€2; N C is a point and 92, N C is a segment

follows that 7 > fo. Let y € fv + v N . Then y ¢ £ N C, since otherwise this would
contradict the fact that fv + v is a support hyperplane for & N C. This establishes (3.13).
From (3.13) it follows that

N (ENCO) c U N, T. (3.14)
xeX\C

Recall that by Definition 1.3

H Y mE =Lk,
xeX\C

Combining the equality above with (3.14), the inequality (1.3) follows from (3.10) with
X =X%2NC,letting & — 6.

Given ¢ > 0, let §p be the constant provided by Proposition 3.4 and let 8 € [6p/2, 6p)
such that

5
HV 1 (Sg) < HYT1(Sp) + 50 (3.15)

Assume that (1.4) and (1.5) hold for some é € (0, 80/2) such that cos 6y + § < cos 6. Then,
using the assumption (1.4), the same argument as before yields (3.13), hence (3.14). Thus,
from (1.5) and (3.15) we have in particular

HVTINTY(ENC) = KT(E) < HYV 71 (Sgy) +8 < HY1(Sp) + 8o -
The conclusion follows from Proposition 3.4. O

Remark 3.8 Observe that the equality case in (1.3) does not imply d€2 N C lies on a facet of
C. In fact it may happen that €2 N C is contained in a convex set of Hausdorff dimension
strictly less than N — 1, see Fig. 1.

It is well known that for surfaces ¥ C R3 without boundary the following inequality
holds

/ |Hs|?> dH* > 167 .
>

with equality achieved if and only if ¥ is a sphere. We now apply Theorem 1.4 to extend this
inequality to the following extension of the Willmore energy in N-dimensions

»\C
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for C-! hypersurfaces with boundary supported on convex sets and with contact angle larger
than a given 6y € (0, ). Note that in the next theorem we do not assume any regularity on
the convex set C.

Theorem 3.9 (A Willmore type inequality.) Let C, 2 and X be as in Definition 1.3 and let
6o € (0, ). Assume that ¥ \ C is of class CULl. Set Hy, := divsvy (where vy, is the unit
normal to ¥ pointing outward with respect to Q2). Assume also

v-v' <cosby wheneverx € ENC, ve NX and v € N.C. (3.16)

Then,
/ |Hs V7L aHN =t > (N = DV IRV 1 (S,) (3.17)
£\C

Moreover, if equality holds in (3.17) and Hy, # 0 a.e., then X \ C coincides, up to a rigid
motion, with an omothetic of Sy, sitting on a facet of C.

Proof Without loss of generality we may assume that
f |Hs N aHV ™! < 00
£\C

Set for any n > O sufficiently small C;, := C+ B;(0) and X, := 0Q2 \ C,,. Observe that C,
satisfies both a outer and inner uniform ball condition and thus is of class C'!, see [7, 16].
Note also that there exists 8, € (0, 6p) such that

v-vg, (x) < costh whenever x € XN C,, veNZ,, (3.18)

with 6, — 6p as n — 0. Indeed, if not, there would exist a sequence 1, — 0, a sequence
of points x;, € X,, N Cy, and a sequence v, € Ny, Xy,, such that vy - ve,, (xp) > cos@’
for some 0’ € (0, 8y). We may assume that x, — x € XN C, v, — v and Ve, (xp) — V.

Clearly v € N;X,v € N,Cand v - vc(x) > cos6’, a contradiction to (1.2).
We set

F=xeT\C: T #0), E,=(xecT\Cy: N, T, #0).
We claim that
X5, = Xz pointwisein ¥ \ Casn — 0. (3.19)
First of all note that & \C, C in for all n, whence

« = lim x<
Xs = Do Ko

< 117111) glf X5, pointwise in X \ C
If otherwise x ¢ ¥, we show that x ¢ i,, for n small. Indeed, assume by contradiction that
there exist v, € Ny (Xy,), for asequence i, — 0. Then, passing to a subsequence, if needed,
vy, — v € N, X, a contradiction. This proves that
X5 > limsup Xs, pointwise in X \ C
n—0+ !

and thus (3.19) holds. _

Let (X,)* the subset of ¥, defined as in Definition 3.5 with ¥ replaced by %,. Denote
by Kx the Gaussian curvature of X \ C and observe that on X, all principal curvatures are
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nonnegative. By the arithmetic-geometric mean inequality (N — 1)V ~'Ky < HY ' on &,
Then by Theorem 1.4 we get

/ |H):|N_1dHN_lz/~ Hg’ldHN_lz(N—l)N_I/N Ky dHN™!
Z\Cy z, =,

> (N—I)N_I/ Ks dHN ™!
z)+

=(N—1)N—‘/ det(Dvs) dHN !
=)+

= (N =DVt @) = WV - DY) (320

where in the second equality we have used Corollary 3.7 and the area formula, since vy is a
Lipschitz map in a neighborhood of . Then, letting n — 0 and recalling (3.19) and the
fact that §,, — 6, we get

/ |Hg |V~ gV~ z/ HélfldHN—l
=\C )

> (N_ 1)N_] \/; KZ dHN—] > (N _ 1)N_IHN_](S00).
p)
(3.21)

In particular (3.17) follows.

If equality holds in (3.17) holds, from (3.20) we have that KT (Z,) — H¥~1(S,) — 0.
In turn from the second part of Theorem 1.4 we get that width(X, N C;) — 0 and more
precisely that %, N C, lies between two parallel hyperplanes orthogonal to v¢, (x;) for some
x, € X,NC, with mutual distance going to zero. Passing to the limit by a simple compactness
argument we infer that ¥ N C lies on a support hyperplane to C.

Note also that in the equality case, if Hy # 0 H" ~'-a.e., then (3.21) implies that £\ C =
. In turn this yields that every x € ¥ N C has a support hyperplane to . Moreover, (3.21)
yields also that Hév = (N = D¥~!'Ky. In turn this implies that X is umbilical and thus,
by a classical result, see for instance [19, Th. 3.1], each connected component ¥; of X is
contained in a sphere. Since ¥ N C is contained in a hyperplane IT tangent to C, each X;
is either a spherical cap supported on IT and satisfying (3.16) with ¥ replaced by X;, or a
sphere not intersecting C.

In either case, since (3.16) is satisfied at every point in X N C (recall that ¥ \ C = i),
we may apply (3.17) to infer that for every connected component ¥; we have

/ HYVanN =1 > (N — DV IRV LS
=\

In particular, since we are in the equality case, there must be only one connected component.
Thus X is a spherical cap homothetic to Sg, up to a rigid motion. Finally £ N C by convexity
must lie on a facet of C. O
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4 The equality case in the relative isoperimetric inequality outside a
convex set

In this section we give the proof of Theorem 1.2. Throughout this proof we will denote by
¢ the half space

A=, xn) € RN : xny > 0}. 4.1)

We will also need the following notions of (A, rg)-minimizer and restricted (A, rp)-
minimizer for the relative perimeter, which extend the standard notion of perimeter
(A, ro)-minimizer recalled in Definition 2.1.

Definition 4.1 Let C C R¥ be a closed convex set with nonempty interior and let A, rg > 0.
We say that a set of finite perimeter £ C RN \ C is a (A, ro)-minimizer of the relative
perimeter P(-; RN \ C) if for any I' C RN \ C such that diam(EAF) < rq we have

P(E;:RM\C) < P(F;RY\ C)+ A|EAF].

Moreover, we say that E C RN \ C is a restricted (A, ro)-minimizer if the above inequality
holds for every set F C R \ C such that diam(EAF) < rgand 8*F N C C 3*E N C up to
a HV "1 negligible set.

Proof of Theorem 1.2 Letmg > 0 be a given mass and let 29 be a minimizer of the perimeter
outside C such that |Q2g| = m¢ and
& N-1
P(Q0; RN \ C) :N(wTN)NmON . 4.2)

Since ¢ solves the isoperimetric problem we have that Q¢ is a (Ao, rp)-minimizer of the
relative perimeter in RN \ C, see Definition 4.1, for some Ag, ro > 0, depending on 2,
see for instance the argument of [15, Example 21.3].% In turn by Proposition 5.2 € satisfies
uniform volume density estimates and thus it easily follows that €29 is bounded.

We fix a sufficiently large ball B (0) containing €2¢. Note that by standard argument, see
also the argument of Step 1 below, €2 solves the following penalized minimum problem

min{P (E; RN \ C) + A¢||E| —mo| : E C Bg\ C},
for a possibly larger Ag. In particular we have
P(Q0:RY\ C) < P(E;:RY \ C) + Ag|QAE| forall E C Bg\C. (4.3)

Since in the remaining part of the proof we will always work inside Bg, up to replacing C
with C N Bg, we may assume without loss of generality that C is bounded.

Observe that by Theorem 2.6 we may assume that 2 is an open set and that d€2p \ C
coincides with the reduced boundary 3* 2 \ C up to an H" ~!-negligible set. Let us show that
Qo is connected. Indeed, if otherwise g = 21 U 2, with € and €2, open, 2 a connected
component of Q¢ with 0 < |Q21| < mg, we have by Theorem 1.1

P(Q; RV \ C) = P(Q; RV \ €) + P(22: RV \ ©)
1 1 1

ON\ N N—1 WN\ N N-1 WN\N Lﬂl

= V() Tl T N () Tl T N () T

2 Note that in [15, Example 21.3] it is proved that a mass constrained minimizer E of the relative perimeter in
an open set A is a perimeter (A, rg)-minimizer in A according to Definition 2.1. However an inspection of the
proof shows that E is also a (Ag, ro)-minimizer of the relative perimeter P (-, A) according to Definition 4.1.
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which is a contradiction to (4.2).
For every n > 0 we set C;, = C + B,;(0) and, for n € [0, n] we set m; := Q9 \ C;|,
where 77 > 0 is such that |22 \ Cj;| > 0. Correspondingly, we set for m € (0, m,)]

I,(m) = min{P(E; RV \ C,) : E C Q\C,, |E| =m) 4.4)

and denote by €2, ,, any minimizer of the above problem. Note that Q¢ ,, = 0. Observe
also that

sup sup P (Qym) <o0. 4.5)
n€l0,7] me(0,my)

Indeed, given n € [0, 7] and 0 < m < my,, there exists n” > 5 such that |2 \ C,y| = m. Thus

P(Qn,m) = P(Qr],m; RN \ Cn) + P(Cn§ BR) =< P(QO \ Cn’) + P(Cn; BR)
< P(Q0; RV \ ©) + 2sup P(Cy; Bg) < P(Q0; RV \ ©) + 2Ny RY ™"

s>0

Let us fix m’, m"” € (0, mg), with m’ < m”. We claim that there exists 77 € (0, 7] such
that

if n € [0, 7] and U is a connected component of 29 \ C,, then|U| ¢ [m', m"]. (4.6)

To prove (4.6) we fix xo € €29 and for every n we denote by U, the connected component of
Qo \ C; containing xq. Note that U), increases as 7 becomes smaller. Given any other point
x € Q there exists a path connecting x( and x contained in €2y, thus x € U, for  small
enough. Hence |U;| — my, and the claim follows. Note that this argument implies also that
for n sufficiently small

9Qym N (Q\Cy) £ 0  foralln €[0,7j]andm € [m', m"]. A.7)

We split the remaining part of the proof in several steps. Some of the long technical

claims contained in these steps will be proved in “Appendix B” so as not to break the line of
reasoning.
Step 1 (Equivalence with a volume penalized problem). Fix 0 < m’ < m” < mg and let
0 < 7 < 7 be as in (4.6). We claim that there exists A’ > 0 with the following property:
for every n € [0, 7] and m € [m’, m"”] we have that ,, ,, is a minimizer of the following
problem

min{P(E; RV \ C,) + A'||[E| —m|: E C 2\ Cy}. 4.8)

The proof of this claim will be given in the “Appendix B”.

Step 2 (2, is a restricted A-minimizer). Fix 0 < m’ < m” < mg,let0 < 7 < 7j be
as in (4.6) and set A = max{A’, Ao}, where A’ is as in Step 1. We claim that for every
n € [0,7] and m € [m’,m"], Q,  is a restricted A-minimizer under the constraint that
9*ENC, C 9*(£20\C,;))NC,. More precisely, for every set of finite perimeter E C Br(0)\C,
such that 3*E N C, C 3* (0 \ C;) N C, up to a HY ~-negligible set

P(Qym; R\ C)) < P(E;RY\ C)) + A2y mAE]. 4.9)

In particular €2, ,, is a restricted (A, rp)-minimizer according to Definition 4.1, choosing for
instance rq :=dist(2g, 0 Bg(0)).
Given E as above, from Step 1 we get

P (20 RV \C,) < P(EN Q0 RN\ €)) + AIIE 0 Q0] = 12,0
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=HN TG EN(Q20\ C) + HYN TGO EN0*Q N {ve = v} \ Cy)
+HY 1 3* Qo N EW) + A||E N Qol — 12.mll - (4.10)
Then, using (4.3) and the condition 0*E N C,, C 3*(Rp \ C;) N C,;, we have

HY (@ Q0 N Cy) \ ©) + HY T (3%Q0 \ C,)) = P(Q0; RV \ ©)
< P(EUQ; R\ ©) + AglE \ Qo
=HV N (@* 2N CH\C) +HH(3* Q2 N ED)\ C,)
+HYTHO*EN0* Q0 N {ve = vy} \ Cy) + HY TN O*E \ Qo) + AolE \ Q.

Simplifying the above inequality, we get

HN 1 0* QN ED) + HN YO E N 9*Q N {ve = —vg,}) < HYN 10" E \ Qo) + AolE \ Q.
Combining this inequality with (4.10) we conclude that
P(Qym; RV C) < HYV O E N (R0 )\ Cp)) + HY L@ E N 9*Q0 N {ve = vy} \ Cy)
+HN LG E N\ Qo) + AIIE N Qo) — [Qynll + AolE \ Qo
< P(E;RY\ C,) + max{A’, A} EAQy |

so that the claim is proven.
Step 3 (Monotonicity and Lipschitz equicontinuity of the isoperimetric profiles). We claim
that 1, [see (4.4)] is strictly increasing in [0, my] for all n € [0, n]. Moreover, for any fixed
0 <m' <m” < mgand for 0 < 77 < 7 be as in (4.6), we claim that for n € [0, 7], 1, is
A'-Lipschitz in [m’, m”], where A’ is as in Step 2.

We postpone the proof to “Appendix B”.
Step 4 (A formula for I})). Fix 0 < m" < m" < mg and let 0 < i) < 7 be as in (4.6). For
m € [m',m"] and n € [0, 7] we set =, ,, := 92, \ C, and denote by X} the regular
free part of %, ,,, that is E;‘,m = 0%"Q,m \ (30 U C,;)). Observe that by (4.7) E;]"’m is
nonempty. We recall that by a standard first variation argument X7, is a constant mean
curvature manifold. We denote by HE;;,,,, such a mean curvature.

We claim that at any point m € (m’, m") of differentiability for I,,, n € [0, 77], we have

I,;(m) = Hyx . 4.11)

n,m

To this end we fix x € X7, and a ball B.(x) CC Q¢ \ C, such that E,’;,m N B, (x) =

n,m

082;,m N By (x). Let X be a smooth vector field compactly supported in B,-(x) such that
/ X vg,, dHVN £0.
= '
n.m
Consider now the flow associated with X, that is the solution in RY x R of

P (x,1) = X((x,1))
O(x,0) =x

and set Q,, (1) := ®(Qy.m, 1). Clearly, P(2,,,()); RN \ C;) > I,(I12.m (1)]), with the
equality at # = 0. Therefore

%(P(Qn,m(f)); RY\ Cn))L:O = %(In(lﬁn,m(f)|))|

t=0
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Note that
d . N _ N—1
E(P(Qn,m(t))a R \Cﬂ) |t:0 - HE;;'m /2\:;;’" X : in,m dH ’
L1020 D), = B L (2uu0), = I’(m)/ X -vq,, dHV"!
dt " nm ‘r:O N dt o ’t:O n o o ’

n,m

where we have used the well known formulas for the first variation of the perimeter and the
volume, see for instance [15, Chap. 17]. Thus (4.11) follows.

Step 5 (A weak Young’s law). Fix 0 < m’ < m” < mg and let 0 < 7 < 7 be as in (4.6). We
claim that if n € [0, ;7] and m € [m’, m"], the following weak Young’s law holds:

v-vc,(x) <0 wheneverx € Xy, NCyand v € Ny Xy . (4.12)

Letx € ¥, ,NC, and v € N, X, ,,. Without loss of generality, by rotating the coordinate
system if needed, we may assume that x = 0, Ve, 0) =eyandv = (v1,0,...,0, vy) with
V1 < 0. Note that (4.12) will be proven if we show that

vy > 0 implies that vy = 0. (4.13)
Set Ej, = hQy;, h € Nand C,;, = hC,; and observe that, since vi < 0 and vy > 0,
Ej, C {x1 > 0}. Note also that by (4.9) we have that

1
P(Ep; RV \Cpp) < P(G; RV \ Cp ) + ZAMERAG] (4.14)

for all sets G C Bjg(0) \ Cy. such that 3*G N C,, C 3*E; N Cyy up to a HN 71
negligible set. Using the density estimate proved in Proposition 5.2 and passing possibly
to a not relabelled subsequence we may assume that Ej converge in L ll oc (RM) to some set

E C 2 N {x1 > 0} [see (4.1)] of locally finite perimeter and that up, A g as Radon
measures in RV, see (2.1) for the definition of pg. Finally, given r > 0, from the volume
density estimate in Proposition 5.2 we get that for / large enough | E; N B-(0)| = ¢r”™ and
thus, passing to the limit, we have |E N B, (0)| > er? forall r > 0. This in turn implies that

0€d°E C OE. 4.15)
Since each Ej, is a %-minimizer, by Theorem 2.2 we have that E is a O-minimizer that is
P(E; B,(x0)) < P(F; B/(xp)) forany F, B,(xg) s.t. EAF CC B,(xg) CC 7 .(4.16)

We claim that also the minimality with respect to inner perturbations passes to the limit.
More precisely we want to show that E satisfies the following minimality property: for any
cube Q,(0) = (—r, )V and any open set with Lipschitz boundary V CC Q, 0)3

HNY@ENAV N #) =0 implies P(E; # N Q,0) < P(E\V;# N 0,(0)).
4.17)

We postpone the proof of this claim to “Appendix B”.

3 Very likely the minimality property of E with respect to inner perturbations holds true also without the
condition HV ! (0E N3V N ) = 0. However, this condition is not restrictive for our purposes, while on
the other hand it would take some extra technicalities to remove it.
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We now denote by E=EU R(E) where R denotes the reflection map R(x', xy) =
(x’, —xn). From (4.17) one can easily check that given an open set with Lipschitz boundary
V cC Q,(0) such that HN=1(E N 3dV) = 0 we have

P(E; Q,(0)) < P(E\ V: Q,(0)).

We claim that  E contains {x1 = 0}. In turn this implies (4.13).

To see this assume first that 9 E intersects {x1 = 0} \ {xy = 0} at some point xg. Then,
by Theorem 2.6-(iii) 9E is a smooth minimal surface in a neighborhood of xg. In turn, by
the Strong Maximum Principle Theorem 2.5 it coincides with the hyperplane {x; = 0} in a
neighborhood of xo. The same argument shows that IEN {x1 = 0} is both relatively closed
and open in {x; = 0} and therefore the connected component of IE containing xo coincides
with {x; = 0}. Otherwise, IEN {x; =0} C {x1 = 0} N {xy = 0} and thus in particular
HN_l(BE N {x; = 0}) = 0. We may then apply Lemma 5.3 to conclude that 0 ¢ 9E, thus
getting a contradiction to (4.15).

Step 6 (Convergence of the isoperimetric profiles). We claim that

lim I;,(m) = Ip(m) forallm € [0, mg) and lim I,(m;) = Io(mo) . (4.18)
n—0 n—0

Let n, be a sequence converging to zero such that I,,, ;m) — liminf, o I,(m). Since the
perimeters of €2, », are equibounded, see (4.5), up to a subsequence we may assume that
Q,,.m converge in L! to a set of finite perimeter E C Qo with |E| = m. Thus, by lower
semicontinuity,

Io(m) < P(E; RV \ €) < liminf P(2,, », RV \ C,,) = limi(r)lf Iy(m).  (4.19)
n n—

Recall that Q¢ ,,, denotes a minimizer for the problem defining Io(m). Since
Iy(m = |Qo.m N Cyl) < P(Qom: RN\ Cy) < Io(m)

using the equilipschitz continuity of I,, proved in Step 3, by letting # tend to 0 in the previous
inequality and recalling (4.19) we obtain the first equality in (4.18). The second one follows
simply from the fact that Q;, ,,, = Qo \ Cy.

Note that the above argument shows in particular that if m € (0, mg), n, — 0 and Q,, »
is a sequence converging in L' to a set E, then E is a minimizer for the minimum problem
in (4.4) with n = 0. Recall that any such minimizer is denoted by ¢ ;.

Step 7 (Ip = I» and any minimizer €2 ,, is a connected open set). We set

L N—1
Ly (m) = N(%N)NmT, (4.20)

that is the isoperimetric profile of half spaces. We claim that
Io(m) = Ly (m)  forallm € [0, m]. 4.21)

To thisend we fix 0 < m’ < m” < mgpandletO < 7] < 7 be as in (4.6). Recall that by Step 2
for all n € [0, 7], Q,, is a restricted (A, ro)-minimizer for all m € [m’, m”]. We claim that
for any such 7 if xg € E,;fm then X, ,, is of class Cllina neighborhood of xp. Here E,tm is
defined as in Definition 3.5 with ¥ and C replaced by X, ,, and C,,. Indeed, observe first that
if xg € Z;;"m then by Theorem 2.6 X, ,; is of class Cl%ina neighborhood of xo. Moreover,
if xg € R then, since Hs, ,, is constant in a neighborhood of xy, we have that in fact X, ,,
is analytic in such a neighborhood.

If instead xo € 920, since ¢ is a (A, rp)-minimizer and 92 lies on one side with respect
to X, , which is of class C 1. in a neighborhood of xg, again by Theorem 2.6 we infer that
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9 is of class C1*, hence analytic in a neighborhood of xg. The claim then follows from
Proposition 5.5.

To prove (4.21) observe that the very same argument of (3.20) (with i,, replaced by 2,‘; m
and 6, replaced by 7/2) yields that

f+ . HY T anN = = (v - 1)N—1N“’7N. (4.22)
n.m n

Indeed this argument only requires that %, ,, is of class C* .1'in a neighborhood of E,T and
that (3.18) holds. Recall that the latter condition with 8, = 7 /2 is ensured by Step 5. Observe
also that if E": intersects 92 in a set of positive HN ! measure then for HV~!-a.e. x on
such a set

Hy, ,(x) = Hyq, < Hx:x (4.23)

n.m

where Z,”; o 18 the regular free part defined in Step 4 and the inequality follows from Propo-
sition 5.5. Here, with a slight abuse of notation, we denote by Hygq, the constant curvature
of 3*Qq \ C. Therefore the previous inequality, (4.22) and (4.11) imply in particular that for

a.e.m € (m',m") and for all n € [0, 7]

L)Ly m)N ! = P(Qym; RV \ € Hy. !
! (4.24)

> (N — 1)”“N%N = Ly (m)(Iyy (m)N ",

where the last equality follows from (4.20). Recalling that I, is Lipschitz in [m’, m”] and
thus absolutely continuous, raising the above inequality to the power ﬁ and integrating in
[m,m"], forany m € (m’, m") we get
I N N N
L;,(m )P — In(m) N=T > Iy (m")N=T — Ly (m)N-T
for all n € [0, i]. Passing to the limit as » — 0 and using Step 6 we get
N N N N
Io(m™) V=T — Io(m)N=T > Ly (m") V=T — Ly (m)N-T (4.25)

forall 0 < m < m” < myg. Observe now that lim,,_, ,, Io(m") = Iy(mo) (this follows by
a simple semicontinuity argument and by the fact that Iy is increasing). Thus, passing to the
limit in (4.25) as m” — my, recalling that by assumption Iy(mg) = I, (m) and that by
Theorem 1.1 Io(m) > 1, (m), we get Io(m) = I (m) for all m € (0, mp), as claimed.
Finally, since 2, satisfies the equality case in (1.1), the same argument used for 2o
shows that Qg ,, is a connected open set.
Step 8 (029 N C is flat). In this step we prove that 329 N C lies on a hyperplane IT.
To this aim we start by showing that

N\’ N/
(1,7“1) - <13N2;‘> in L}, (0, mp). (4.26)

Indeed, given 0 < m’ < m” < my from (4.24) and the fact that I, — I,~, we have that for
N\’ N\’
ae.me (m',m") and n € [0, 7], (I,,N‘1> (m) > (1}?1> (m) and

"

m L /7 m// L /
/ (1{’“) (t)dt—)/ (1}‘1> (t)dt asn— 0.

Hence, (4.26) follows.
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Returning to the proof of the flatness of 929 N C, observe that by a simple diagonal
argument we can construct two sequences m, — mq and n, — 0 such that 2, ,, isa
Ap,-minimizer for some A, > 0 (possibly going to +00) and

A\ MY N \ 7
L, (mn) — To(mo), <1,,ﬁ ') (my) — (1} ‘) (mo) = N (NT) .
This is possible thanks to Step 2, Step 6 and (4.26). Given ¢ > 0, let § > 0 be as in
Theorem 1.4 with 6y = /2. Recall that § depends only on ¢ and on diam(€2). Recall
also that X, ,,, is of class C*! in a neighborhood of E,;; .m,» thanks to Step 7. Then from
the above convergence, arguing as in the proof of (3.20) with in replaced by Z;]: m,» and
recalling that the weak Young’s inequality (4.12) holds for ¥, ,,,, we have that for n large

Na)N

§1c+(2,7n,mn)5(N—])HV/+ Hg;m dHN!
2 sMn

n.mn

f (N - ])liNP(Qﬂn,mn; RN \ Cﬂn)Hév*_l

Nn.Mmn

1 N\ N—-1 No
:[ﬁ<'11:71> (mn)] <TN+5.

Note that in the third inequality above we have used (4.23). Thus from Theorem 1.4 we get
that

width(Zy, m, N Cy,) :=&, = 0.
More precisely, for n sufficiently large there exists x, € dC;,, such that
Zpmy N Cy, CHx 1 =8y < (X — xp) - v, (X2) < 0} (4.27)
Observe that, up to a not relabelled subsequence,
x, > x € C, v, (Xn) > V € Nz(C). (4.28)

Denote by I the support hyperplane passing through X and orthogonal to v and by IT* the
half spaces {x : (x —X) -V = 0}. We claim that 9290 N C C IT up to a set of HN~-measure
Zero.

To prove the claim we first show that, passing possibly to a further subsequence,

9Q,.m, NC,, — K forsome K C 92 NCs.. HY'(3QNC\ K) =0, (4.29)

where the convergence is meant in the Kuratowski sense. The existence of a subsequence
converging to K C 929 N C follows easily from the compactness properties of Kuratowski
convergence, see Sect. 2. To show that HN-1@Qy N C \ K) = 0 observe first that since
C,, N Bgr(0) is a sequence of convex sets converging to the convex set C N Bg(0) in the
sense of Kuratowski then P(C,, N Br(0)) — P(C N Bg(0)). This in turn yields that

HN=1_3(C,, N Bg(0)) = HN~1L3(C N Bg(0)) and in particular that

HY'LoC,, = HN'LAC  in Bg(0). (4.30)
We claim that

limsup HY (3R, m, N Cy,) < HY 1K) . (4.31)

n
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To thisaimset K, = K+ B, (0) C Br(0) foro > 0 sufficiently small. Then for n sufficiently
large 092y, m, N C;, C K5 N0C,;,,, hence

HY LBy, m, NCy) < HYH(K, NDC,,) .
From this inequality we then have

limsup HY =1 (8%, 1, N Cy,) < limsup HY "1 (K, N 3C,,) < HN 1K, NIC),
n n

where in the last inequality we have used (4.30). Then (4.31) follows letting ¢ — 0. On the
other hand, 2, , — €0 in L' and by the lower semicontinuity of perimeter and (4.31)

P(Q0) = In(mo) + HY~1(9*Q0 N C) < lim inf (R, m,)
n
— lim inf [1,7,, (my) + HY (@S2, m, N C,,”)]
n
< Io(mo) + H"(K).

Recall that by the volume estimate Proposition 5.2-(ii) *$2o N C coincides HY ~!-a.e. with
dQp N C. Thus the above inequality implies that K coincides H"~!-a.e. with Q0 N C.
Hence, (4.29) follows.

We finally claim that for n large

02,.m, NGy, Clx: =gy < (x —xp) - ve,, (xn) < 0}. (4.32)

To prove this we argue by contradiction assuming that for infinitely many n there exists
Yn € 92y, m, N C,;, such that (y, — x,) - v, (Xn) < —én. Observe that, if this is the case
for all such n,

Fp:=0C,, N{x: (x —x,) - ve,, (Xn) < —&n} C 02y,,m, NGy, . (4.33)

Indeed, otherwise there exists z, € F, \ 0€2;,,m, and in turn a continuous path y C F;
connecting z, to y, (recall that C,, is bounded). But then this arc must contain a point in
ac,, (082,.m, N Cy,) C Xy, .m, N Cy,, which contradicts (4.27). Therefore, from (4.33),

nn

(4.28) and (4.29) we have that
ICN{x: (x—x)-v<0}=0CNIT~ CcaopNC.

Then, let7 ;== min{t < 0: [14+tvNC # P} and setfort € (¢, 0), C' := CN(ITT +1v). Note
that, from the above inclusion, P(Qo U (C \ C'); RN \ C") = P(Q0; RN \ C) = 1,4 (my),
but this contradicts (1.1) since |2 U (C\ C")| > mg. Hence (4.32) holds for n large enough.
Finally, from (4.32) and (4.29) we have that Q2 N C C IT up to a set of vanishing H"~!
measure.
Step 9 (Conclusion). In this final step we show that ¢ is a half ball.
To this aim we fix m € (0, mg) and a sequence 7, — 0 such that

N

/ / 1
I, (m) — Io(m) = Ly (m), (1,?) (m) — (1%) (m) = N(N%N) YT (4.34)

Owing to Steps 6-8 we can find such a sequence for a.e. m € (0, mg). Thanks to Step 2,
we may assume that there exists A > 0 such that @, ,, is a A-minimizer for all n. By
Theorem 2.6-(ii) this implies in particular that [Hx, | < A KN '-a.e. on 8*Q,, m \ Cy,.
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Arguing as in the previous step, see also the proof of (3.20), we have then

N
%fiC*(znn,m):/ K:n”_deN_lf(N—l)l_N/ HY~! anN~!
Sim Shoa M
<(N=1"NP(Q, m: RV \ C, HY! (4.35)
Nn,m
Loy V-1 Noy
=[] =5

where we recall Kz, ,, is the Gaussian curvature of ¥, », and we used (4.23). We start by

observing that, since Hy, , (x) < Hg;«n‘m forHNl-ae.x € E;}:’m, from the third inequality
in (4.35) we have in particular that

im 7Y N(EE ) =1im P(Qy,m: RN\ C,) = HY (0% Q0m \C) . (4.36)
n n n

Note that Hy, , may only take the constant values Hyq, or HE;;M . Then, again from (4.35)
and from (4.23), it follows that

either Hsy =~ — Haq, or H"™'((0%,, N3Q)\ Cy,) = 0. (4.37)

Fix now x € 9*Qq,, \ C. Since Q,, » — o, in L' and P(Qnmm;RN \Cy) —

P(Q0,m; RY \ C) thanks to the first condition in (4.34), we have that HN-TL 0 Qy,m X
HNTL 9*Q0,;m in RN \ C. In turn, by Theorem 2.7 it follows that, up to rotations and trans-
lations, there exist a (N — 1)-dimensional ball B* ¢ R¥~!, functions On, @ € W2P(B),
and r > O such that x € B’ x (—r, r) and

2y,.m N (B x (—r,r)) ={(x", ga(x)) : x" € B'},

0Q20,m N (B x (=r,r) ={(', p(x")) : x € B},

on—¢ in W>P(B') forallp > 1,

Hs, (' @u(x')—Hs,, (x'.@(x")) in LP(B')forall p > 1,

Recalling (4.37) the fourth condition above implies that
Hs,, (", ¢u(x) — Hs,, (x",p(x")) = Hyy |
strongly in L?(B’) for all p > 1. In turn, see for instance [1, Lemma 7.2], this implies
@n — ¢ strongly in W>?(B') forall p > 1. (4.38)

Note also that, since from (4.36) HY ’I(E,I,l,m \ E;; m) — 0, we have that for every y €
(B’ x (—r,r)) N g, there exists a sequence y, € (B’ x (—r,r)) N Z;:“m such that
yn — y. Therefore, using the L convergence of 2, to €, we conclude that the tangent
hyperplane to 92, at y is also a support hyperplane. Thus we have shown that all principal
curvatures at any point in (B’ x (—r, r)) N o, are nonnegative. Thus, from the second

inequality in (4.35), recalling (4.36) and (4.38) we may conclude that
K, =N =D"VHI"V = (N = D'""VHI" on (B' x (—r,r) N o -
’ \m 0,m

The equality above implies that 2o, N (B’ X (—r,r))) is umbilical. Hence 8*Qq , \ C is
umbilical, thus each connected component of 3%, \ C lies on a sphere of radius R,, =
(N —1)/Hy; . Consider the unique unbounded connected component of U := RN\ Q0.
Then, recalling Step 8 and that ¢, is connected (see Step 7), dU \ C is contained in
a sphere of radius R, intersecting C on I1. Thus 0U \ C is a spherical cap and g, is
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contained in the region enclosed by dU \ C and I1. In particular Q¢ , is contained in the half
space ITT determined by IT not containing C. Since P(Q0,m; nh) = P(Q0,m; RN \C) =

1 _
N(“’TN) N m%, by Theorem 19.21 in [15] for a.e. m we conclude that for such m Qg is
a half ball. Since the argument above can be carried out for a.e. m € (0, mg), in particular
there exists a sequence m,, — mg such that ¢ ,,, is a half ball. Hence €2 is a half ball. 0O
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5 Appendix A: some auxiliary results

In this section we collect some auxiliary results needed in the proof of Theorem 1.2.

5.1 Density estimates

Density estimates for (A, rg)-minimizers are well known. However for the sake of com-
pleteness we give the proof of the proposition below showing that such density estimates are
independent of the convex obstacle.

Lemma 5.1 Let C be a closed convex set with nonempty interior and F C RN \ C a bounded
set of finite perimeter. Then

P(F;3C) < P(F;RY\ ©)
Proof Assume that C is bounded and let H; be a sequence of closed half spaces such that

oo o0
C= ﬂHi.SinceC: (CUF)ﬂﬂHi we have
i=1 i=1

n
P(C) < liminf P ((C uF) N H,~> < P(CUF),
i=1

where the last inequality follows by applying repeatedly the inequality P(G N H;) < P(G)
where G is a set of finite perimeter. Since P(CU F) = HN-1OCNFO)y+HN=1(3*F\ C),
the conclusion follows observing that P(C) = HN-LBCN FO) + HN-1(3C N 8*F).

If C is not bounded, since F CC B for a suitable closed ball B, the conclusion follows
by the same argument as before, replacing C with C N B. O

Proposition 5.2 Let C be a closed convex set with nonempty interior and let E C RV \
C be a restricted (N, ro)-minimizer of the relative perimeter P(:; RN \ C) according to
Definition 4.1. Then there are positive constants ¢c; = c{(N) and C1 = C{(N) independent
of C such that for all r € (0, min{ro, N/(4A)}) we have:
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(1) forall x € RN \ int(C)
P(E; B;(x)) = CirV 1,
(ii) forall x € O*E
|EN By (x)] = c1r.
Moreover E is equivalent to an open set 2 such that 32 = 92, hence HY ~1(9Q\9*Q) = 0,
and (ii) holds at any point x € 9%2.

Proof Givenx € RV \int(C)andr < min{rg, N/(4A)}, wesetm(r) := |EN B, (x)|. Recall
that for a.e. such r we have m’(r) = HN"Y(EWD N 9B, (x)) and HN 1 (3* EN 3B, (x)) = 0.
For any such r we set F' := E \ B,(x). Then, using Definition 4.1, we have

P(E; B,(x)\ C) < HN1(@B,(x) N ED) + A|E N B, (x)| < CyrV ™! (5.1)
for a suitable constant Cy. In turn
P(E; B,(x)) < P(E; B,(x)\ C) + HN"1(3(C N B, (x))) < CirV 1+ HN1(3B, (x)),

where in the last inequality we estimated the perimeter of C N B, (x) with the perimeter of
the larger convex set B, (x). Thus (i) follows by taking C; larger.
Observe now that by Lemma 5.1

P(E N B.(x); 3C) < P(EN B.(x); RV \ C).
Thus, using also (5.1), we have
P(EN B,(x)) = P(EN B,(x); RV \ C) + P(E N B,(x); 3C)
<2P(ENB,(x); RV \ C) =2P(E; B,(x)\ C) + 2m'(r)
<4m'(r) +2Am(r).
In turn, using the isoperimetric inequality and the fact that 2Ar < N /2 we get
1 -
Nolm(r)'™ < P(EN B, (x)) <4m'(r) + 2Am(r)
/ % N-1 ) ¥ N-1
<4m'(r) +2Aronym(r) ¥ <4m (r) + EwNm(r) N
Then from the previous inequality we get
¥ L /
szm(r) N <d4m'(r).
Observe now that if in addition x € 9*E, then m(r) > O for all r as above. Thus, we may
divide the previous inequality by m (r) = , and integrate the resulting differential inequality
thus getting
|EN B (x)| = cir™

for a suitable positive constant ¢; depending only on N.

We show that 3*E C 3°E. To this aim note that (ii) holds for every x € 9*E. Thus,
if x € RV \ C, since both £ and RN \ E are A-minimizers in a neighborhood of x we
have that |B,(x) \ E| > ¢;r" for r small. Thus x ¢ (E©® U EM), that is x € 9°E.
If x € 9C N 9*E then there exists a constant ¢c; > 0, depending on x such that for r
small |C N B,(x)| = cor™N. This estimate, together with (ii) again implies that x € 9°E.

@ Springer



Total positive curvature and the equality case in the relative... Page 27 0f32 102

Hence HY~1(@*E \ 9*E) < HN~1(3°E \ 9*E) = 0, where the last equality follows from
Theorem 16.2 in [15].

Set now Q = EMD \ dEW, Recalling that dEWD = 3*E, see (2.2), we have that Q2 is an
open set equivalent to E such 9Q = 9 E(V. Hence the conclusion follows. O

5.2 A maximum principle

Next result is essentially the strong maximum principle proved in [9, Lemma 2.13]. However,
we have to apply it in a slightly different situation and therefore we indicate the changes
needed in the proof.

Lemma5.3 Let E C {x1 > 0} be a set of locally finite perimeter such that
HNHOENI*E) \ (1 =0) =0 (5.2)

satisfying the following minimality property: for everyr > 0and every open set with Lipschitz
boundary V .cC Q,(0) such that HN"Y(AE N 3V) = 0 we have

P(E; 0r(0)) < P(E\V; 0,(0). (5.3)
Assume also that HN "V (QE N {x; = 0}) = 0. Then 0 ¢ AE.4

The proof of lemma above is in turn based on the following variant of [9, Lemma 2.12]. To
this aim, given r > 0 we set C, := (0, r) x D,, where D, := {x’ e RN"!: |x'| < r}.

Lemma5.4 Let E be as in Lemma 5.3, let ¥ > 0 and let uy € C3(D;j) N Lip(D5) with
0 < ug < r on Dy. Assume also that

ED N[0, 7) x dD;] C {(x1,x") € (0,7) x D5 : x1 > up(x)},

. Vug .
div| ————=]=0 in D;
V1+|Vugl?
and
HYN Y OE N a{(x1,x) € C7 + x1 < up(x)}) = 0. (5.4)
Then,
EWV NG C{(x1,x) € G 1 x1 = up(x)}.

Proof The proof goes exactly as the one of Lemma 2.12 in [9] as it is based on the comparison
with he competitor F = E \ V, where V = {(x1,x") € C; : x1 < up(x’)}. Observe that
assumption (5.4) guarantees that such a competitor satisfies HV =1 (d E N dV) = 0, which is
required in order (5.3) to hold. O

Proof of Lemma 5.3 For reader’s convenience we reproduce the proof of Lemma 2.13 in [9]
with the small changes needed in our case.

We choose 7 > 0 so that H¥N 1 (9E N 3C7) = 0 and HN~2(IE N 3 D7) = 0, where with
a slight abuse of notation d D; stands for the relative boundary of D; in {x; = 0}. Note that
a.e.r > 0 satisfies these conditions thanks to (5.2) and to the assumption HNTOEN{x; =
0}) = 0. Define now a function wg : D7 — [0, 00] by setting

we(x) =inf{x; e R: (x1,x") € C: N JE}.

4 Here as usual we assume that 9E = 0*E.
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Observe that wg is nonnegative and lower semicontinuous on Dy, with the property that
EVNCr c{(x1,x): X' € Dr, x1 > wp(x)}.

Recalling that N =2(d EN D;) = 0, we have that wg > 0 H" ~2-a.e. on 3 Dj. Therefore
there exists a family (¢;);e(0,1) C C°°(d D7) such that
0 < ¢y < ¢, <min {wE, %} oy Eo, forall0 <ty <t <1.

By Lemma 2.11 in [9] for every ¢ € (0, 1) there exists u; € C°°(D;) N Lip(D;) such that

. Vu, .
div| ————=) =0 in Dy,
V1+[Vu,?

Uy = @ on dD; .

Note that by the Strong Maximum Principle Theorem 2.5 we have that 0 < u;, < u;,, <7/2
in Dy forevery 0 < #; < t» < 1. Therefore the graphs I'; of u; are mutually disjoint in Cr
and so HN~1(I'; N9 E) = 0 for all but countably many ¢ € (0, 1). In particular there exists 7
such that (5.4) holds with u¢ replaced by u;. Therefore we may apply Lemma 5.4 to conclude
that ED N C; ¢ {(x1,x) € C; : x; > u;(x")} so that in particular wg(0) > u;(0) > 0,
hence 0 ¢ 0E. O

5.3 Aregularity result

The following proposition is a slight variant of a result contained in [21].

Proposition 5.5 Let Q@ C RN be a bounded open set and let xo € 92 be such that 32 is of
class C? in a neighborhood U of xo. Let E C  satisfy

P(E) < P(F) forall F C Q,|F|=|E|,st. EAF cC U. (5.5)

If there exists a support hyperplane T1 to E at xo such that 9E N I1 = {xq}, then OE is of
class C"V in a neighborhood V of xo. Moreover if 3*E N Q NV # @, then for HN -a.e.
xX€dENINNYV

Hyq(x) < H, (5.6)

where H denotes the constant curvature of 9*ENQ N V.

Proof Observe that by a standard argument (5.5), together with the assumption that 92 of
class C2, implies that E is a (A, ro)-minimizer in a possibly smaller naeighborhood U’ of
xo. Hence, since there exists a support hyperplane to dE at xg, by Theorem 2.6 9E is of
class C1* in a neighborhood of xq. Moreover, up to a change of coordinate system, we
may assume that the support hyperplane to E at xq is the horizontal hyperplane {xy = 0}
and E C {xy > 0}. Since {xy = 0} N dE = {xp}, there exists ¢ > 0 sufficiently small
such that £ N {xy = ¢} is an (N — 1)-dimensional relatively open set, denoted by w, and
there exist 8 € C%(w), u € C1¥(w) whose graphs coincide with 92 N (w x (—r, r)) and
JdE N (w x (—r, r)) respectively, for some r > 0, withu = O on dw and B < u < 0. The
C!! regularity of 3 E then follows arguing exactly as in the proof at p. 658 of [21]. Finally,
inequality (5.6) is also a byproduct of the same proof, see (3.5) in [21]. O
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6 Appendix B: some steps of the proof of Theorem 1.2
6.1 Proof of the claim of Step 1

We argue by contradiction assuming that there exist a sequence A, — +oo, ny € [0, 7],
np — no, my € [m’, m”] converging to some m, and a sequence E;, C Qo \ C,, such that
each Ej, is a minimizer of (4.8) with A’, m and n replaced by Ay, my and ny, respectively,
and | Ep| # my. Since P(Ep; RV \ C,,) < P(S2y,.m,: RY \ Cyy,), from (4.5) we have that
the perimeters of Ej are equibounded perimeters. Therefore, without loss of generality we
may assume that Ej, converges in L' to some set F C q \ C,, such that |F| = m. We
assume also that |Ej| < my, for all h, the other case being analogous. Note also that, since
Aj — 400 we have my, — |Ep| — 0.

Observe now that (4.6) implies that there exists a point xg € 3*F N (o \ C;). Arguing
as in Step 1 of Theorem 1.1 in [10], given ¢ > O sufficiently small, we can find nearby x( a
point x” and r > 0 such that B, (x") CC Qg \ C,, and

WN
|FN B (x| <er™, |FNB.(x)| > 2N+2rN
Therefore, for h sufficiently large, we also have
ON N

En 0 Brp (O] < er® 1B 0B ()| > Sasr

We can now continue as in the proof of [10, Theorem 1]. We recall the main construction
for the reader’s convenience. For a sequence 0 < o7, < 1/2% to be chosen, we introduce the
following bilipschitz maps:

X+ (A=Y =) (x —x)  iflx—x| <5,
N
@;(x):: x+(7h<1—|x_rix/|lv>(x—xl) %§|x_.x/|<r,
x lx —x'| >r.

Setting Eh = &, (E)), arguing as for the proof of [10, formula (14)], we have
HY L ER \ Cy,) — HY V@ ER \ Cy) = =2V Noy HY 1 0¥ E, \ Cy) . (6.1)
Moreover, arguing exactly as in Step 4 of the proof of [10, Theorem 1] we have
|Enl = |En| = opr™ (c = £C)

for suitable universal constants ¢, C > 0. If we fix ¢ so that the negative term in the brackets
does not exceed half the positive one, then we have

~ C
|Enl — |Enl > EahrN. (6.2)

In particular from this inequality it is clear that we can choose oy, so that |Ep| = my; this
implies o, — 0. With this choice of oy, recalling that A;, — 400 and that the perimeters of
E}, are equibounded, it follows from (6.1) and (6.2) that

P(Ep; RV \ Cp,) + Anl|Enl — mu| < P(En; RN\ Cy) + A4l En| — my,|
C
+ 28 Noy HN TV @O*Ep \ Cy,) — A;,EahrN
< P(Ep; RN\ Cy,) + ARllEn| — mp)
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for h large, thus contradicting the minimality of Ej,.

6.2 Proof of the claim of Step 3

We start by showing that the functions I;, are strictly increasing in [0, m,;] for all n € [0, 7].
To this end we fix m € (0, my] and a point x € ncn(Q,],m), where e, is the orthogonal
projection on C;,. Let IT be the tangent hyperplane to C;, at x. Define I1, = IT + tv¢, (x) for
t € R and set

f=max{r>0: T, N Q. # 9} .

Note that > 0 and that IT; is a support hyperplane for €2, ,, with dist(IT;, C,)) = . For all
t € (0, 7) we denote by 2, . ; the intersection of €2, ,, with the half space with boundary IT,
containing Cy. Then I, (1Rms)) < P(Qymrs RY \ €;) < P(Qym: RN\ C) = L, (m).
Since the function r — |2, /| is increasing and continuous in a left neighborhood of 7 and
[2.m.¢] < |Q2p,m| if t < 1, it follows that

for every m € (0, my] there exists ¢ > 0 s.t. I;)(s) < I,(m) forall s € (m — &, m) .(6.3)

Let/ ={0 <s <m: I)(0) < Iy(m)forall o € [s, m)}. We claim that / = (0, m). Indeed
if m = inf I > 0, then there exist m, € I, with m,, — m™. Since the minimizers Qy.m, are
equibounded sets with equibounded perimeters, see (4.5), up to a subsequence we may assume
that €2, ,,,, converge to a set £ C Qo \ C,, with |E| = m. Then, by the lower semicontinuity
of the perimeter we conclude that I,,(m) < P(E; RN\ C,) < liminf, I;y(m,) < I,(m). In
turn, (6.3) implies that there exists exists a left neighborhood (m — &, m) such that 1;,(s) <
I)(m) < I)y(m) forall s € (m —¢&, m) which is a contradiction to the fact thatm = inf /. This
contradiction proves that I, is increasing. The strict monotonicity now follows from (6.3).
Finally if, my, my € [m’, m"], from (4.8) we have for n € [0, 7]

Iy(ma) = P (Qn,mz; RV \Cn) <P (Qnyml;RN \ C,,) + Alma —my).

This proves the A’-Lipschitz continuity of I,,.

6.3 Proof of claim (4.17)

Let us start by assuming also that
HN ' @E, N3V N#) =0 forallh eN. (6.4)

To this aim we fix § > 0 and set /% := {x € 7 : xy > &} and (E)s = E + Bs(0). Then
we denote by @, : Q,(0) — Q,(0) a sequence of c! diffeomorphisms converging in c!
to the identity map as i — +oo with the property that ®,(Q,(0) NZ) = Q,(0) \ Cy 1,
®,(02N 0,(0)) =03C,;,, N Qr(0) and Py (x) = x if x € 7. Recalling the A-minimality
property (4.14), we have using (6.4) and observing that ®; (V) cC Q,(0) for & sufficiently
large

A
P(Ep; Qr(0)\ Cypp) < P(ER\ ©4(V); Q- (0)\ Cy ) + Zld’h(V)l
< P(Ep; (Qr()\Cpi) \ (V) + P(P1(V); (O (0) \ Cyp 1) N Ep)

A
+HN @@, (V) NOE, N {xn < 81N (Q,(0)\ Cyp)) + 712Vl
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Since
P(Ep; Qr(0)\ Cyp) = P(Ep; (Qr(0)\ Cyp) \ @1 (V) + P(En; (Qr(0)\ Cyp ) N Pp(V)),

and using the fact that 5NV = 245 N ®,(V) C (Q-(0) \ C; ) N Py (V), the inequality
above yields

P(Ep; 23N V) < P(®p(V); (Qr(0)\ Cy ) N Ey)
F YT Q@) 0 [ 28010\ ) + 5 10V
< P(V; 0,(0) N /5 N Ey)
£ 207 @04 (V) 1 Ly <8101 (Qr(0)\ Cp)) + 5 194 (V)
< P(V; 0,(0) N7 1 (E)y)

A
+ 2(Lip(@p )N TPV {0 < xy < 8) + PRI, (6.5)

where in the last inequality we used the fact that QZI((Qr O\NCyp) N{xy =8} =
0,(0)N{0 < xy < 8} and the fact that Ej, converge in the Kuratowski sense to E in 44,
see Remark 2.3. By the lower semicontinuity of the perimeter, passing to the limit in (6.5)

P(E; 50 V) < P(V; Qr(0) N5 N (E)s) +2P (V{0 <xy =6}).
In turn, by letting § — 0 we have
P(E;NV)<P(V:0,(0)NE), (6.6)

which is equivalent to (4.17) thanks to first condition in (4.17). To remove (6.4) it is enough
to consider a sequence of smooth sets V; CC Q,(0), V CC Vj, satisfying the first condition
in (4.17) and (6.4), and such that V; — V in L' and P(V;; 0,(0)) — P(V; 0,(0)). The
conclusion then follows by applying (4.17) with V replaced by V; and passing to the limit
thanks to the first condition in (4.17).
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