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Abstract
Given a double cone C with entropy at most two that is symmetric across some hyperplane,
we show that any integral Brakke flow coming out of the cone must inherit the reflection
symmetry for all time, provided the flow is smooth for a short time. As a corollary we prove
that any such flow coming out of a rotationally symmetric double cone must stay rotationally
symmetric for all time. We also show the existence of a non-self-similar flow coming out of
a double cone with entropy at most two, and give an example of such a flow with a finite
time singularity. Additionally, we show the existence of self-expanders with triple junctions,
which are exceptions to our main theorem.

1 Introduction

Afamily of properly embedded hypersurface {�t }t∈I satisfies themean curvature flow (MCF)
equation if:

(
∂x

∂t

)⊥
= H�t (x), x ∈ �t .

Here H�t is the mean curvature vector of �t , x is the position vector and ⊥ denotes the pro-
jection onto the normal bundle. In this paper we studymean curvature flows (MCF) that come
out of (smooth) cones. Due to the singularity at the origin, there could be multiple distinct
mean curvature flows coming out of a given cone C. We are interested in how symmetries of
the cone influence these solutions.

The simplest solutions coming out of cones are self-expanders. We say a properly
embedded hypersurface �n ⊂ R

n+1 is a self-expander if

H�(x) = x⊥

2
. (1.1)
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Equivalently, � is an self-expander if and only if {√t�}t∈(0,∞) is a solution to the MCF.
Self-expanders are of particular importance in the study of singularities of MCF as they arise
naturally as models of how MCFs flow through conical singularities.

There exist, however, other solutions coming out of the cone that are not self-similar. A
class of such solutionswasfirst sketched byBernstein–Wang [10] asMorseflow lines between
unstable and stable self-expanders asymptotic to the same cone. Note that the existence of
such solution requires the existence of an unstable self-expander asymptotic to C, which is
not guaranteed.

In the present article,we studyflows coming out of a double conewith reflection symmetry.
Our main result roughly says that any MCF coming out of a suitable cone with a reflection
symmetry across some hyperplane must inherit the symmetry for all future times, provided
the flow is initially smooth for a short time (see Sect.2 for terminologies).

Theorem 1.1 Let � ⊂ R
n+1 be a hyperplane passing through the origin and H an open

half-space with ∂H = �. Let C ⊂ R
n+1 be a smooth double cone with λ[C] < 2 such that

C ∩ H is a Lipschitz graph over �. Let M = {μt }t∈[0,∞) be an integral, unit-regular and
cyclic Brakke flow coming out of C; that is,

lim
t→0

μt = Hn�C

as Radon measures. Suppose alsoM is smooth on (0, T ) for some T > 0. If C is symmetric
across �, then so is M for t ∈ [0,∞). Moreover, M is smooth away from �.

Applying the above to rotationally symmetric double cones we obtain:

Corollary 1.2 Let C ⊂ R
n+1 be a smooth rotationally symmetric double cone with λ[C] < 2

(see Sect.2 for the precise definitions). Let M = {μt }t∈[0,∞) be an integral, unit-regular
and cyclic Brakke flow coming out of C that is smooth on (0, T ). Then M is rotationally
symmetric with the same axis of symmetry as C. Moreover, M is smooth away from its axis
of symmetry.

Remark In our previous work [16], we only showed that the flow is rotationally symmetric up
to the first singular time T , so the point of the current work is to show that the symmetry still
holds after any singularity, which, as part of the conclusion, must lie on the axis of symmetry.

Remark The entropy condition λ[C] < 2 is likely redundant. See Sect.7.

In fact, if the cone C ⊂ R
n+1 is of the form

x21 = m2 (
x22 + · · · + x2n+1

)
, m > 0, (1.2)

where m is the parameter determined by the cone angle, a much stronger conclusion holds:

Corollary 1.3 Suppose C is of the form (1.2) and has entropy λ[C] < 2. Suppose M is an
integral, unit-regular and cyclic Brakke flow coming out of C. IfM is smooth on (0, T ), then
M is rotationally symmetric across the x1-axis. The only possible singularity model ofM is
the round cylinder R× S

n−1. Moreover, there can be at most one of such singularity, which,
if it exists, must occur at the origin.

We can also apply Theorem 1.1 to cones with O(p+1)×O(n− p+1) symmetry to prove:

Corollary 1.4 Suppose n ≥ 2 and 1 ≤ p ≤ n − 1. Let C ⊂ R
n+2 be a cone invariant under

O(p + 1) × O(n − p + 1) with λ[C] < 2. LetM = {μt }t∈[0,∞) be an integral, unit-regular
and cyclic Brakke flow coming out of C. If there is T > 0 such that M is smooth on (0, T ),
thenM inherits the O(p + 1) × O(n − p + 1) symmetry (with the same axes of symmetry).
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There are many other related works on the rotational symmetry of self-expanders. Observe
that if there is a unique self-expander asymptotic to a rotationally symmetric cone, then it
must inherit the rotational symmetry. The first nontrivial result for double cones is obtained by
Fong–McGrath [25]. Theyproved that amean-convex self-expander (i.e. H� > 0) asymptotic
to a rotationally symmetric double cone is rotationally symmetric. This is later generalized
by Bernstein–Wang (Lemma 8.3 in [8]) to weakly stable self-expanders. In our previous work
[16], we showed in full generality that any smooth self-expander asymptotic to a rotationally
symmetric double cone is rotationally symmetric. Rotational symmetry of self-expanding
solitons of other geometric flows has been studied by Chodosh [19] and Chodosh–Fong [14].

Next we briefly comment on some of the assumptions made in Theorem 1.1. First of all,
the only extra assumption over the smooth case is the entropy bound λ[C] < 2. This is due
to the complicated nature of singularities of higher multiplicities arising from Brakke flows.
In particular, the entropy condition is essential to the maximum principle Theorem B.1 (in
which the entropy controls the Gaussian density) and the proof of Proposition 3.2.

Secondly, the cyclicity ofM is needed to ensure singularities modeled on triple junctions
do not appear along the flow. Standard Schauder estimates and pseudolocality arguments can
only guarantee smoothness outside of a large ball (see for example Proposition A.2) but do
not rule out formations of triple junctions. This condition is explicitly used in Proposition
3.2. In fact, we will show that there exists a self-expander with triple junctions in Sect.6. Our
moving plane method will not work for such self-expanders. However, if we assume that C
is also symmetric across the hyperplane perpendicular to its axis of symmetry, then there is
still some hope that all self-expanders with triple junctions are rotationally symmetric (See
Sect.7).

Finally, it is not immediately clear that our theorem contains more flows than [16], which
includes smooth self-expanders and low entropy flow lines of Bernstein–Wang [10]. For this
reason we will establish an existence result of a non-self-similar flow coming out of a cone
C with λ[C] < 2. We warn the readers that, while the flow constructed below agrees with the
construction from [10] on the smooth part, they are not necessarily the same flow. This is due
to the lack of understanding how expander-mean-convexity is preserved after the singularity.

Theorem 1.5 Let C ⊂ R
n+1 be a smooth cone with λ[C] < 2. Let� be a self-expander C2,α-

asymptotic to C. If � is unstable, there exists a non-self-similar immortal integral Brakke
flow M = {μt }t∈(0,∞) such that

lim
t→0

μt = Hn�C.

Moreover, there is T > 0 such that M is smooth on (0, T ).

Remark This existence theorem is weaker than the one obtained in [2] in which no entropy
assumption is made, but is enough for our purposes. Thanks to the entropy bound, it is much
simpler to analyze our situation as the flowswe produce are automaticallymatching.A similar
construction for self-shrinkers is carried out by Chodosh–Choi–Mantoulidis–Schulze [13].

Remark Without the more restrictive entropy bound, it is not enough to produce the flow line
as a smoothMCF—Some unstable connected self-expanders under the flowwill necessarily
disconnect in order to reach the stable double-disk solution. SeeCorollary 1.3 and Proposition
5.7.

Let us now briefly discuss the proof of Theorem 1.1. As in [16], the proof is based on
the moving plane method, first used by Alexandrov to prove that embedded, compact CMC
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hypersurfaces are round spheres. The method was then employed by Gidas–Ni–Nirenberg
[26]who proved radial symmetry of positive solutions to theYamabe problem, and by Schoen
[38] who proved the uniqueness of catenoids. Recently, there are a number of other results
on MCF that utilize the moving plane method, including [37] and [17]. Unfortunately since
we are dealing with potentially singular flows, these methods for smooth flows are no longer
sufficient. Instead wewill use a novel variant without smoothness, recently developed by [18]
(for parabolic equations) and [28] (for elliptic equations). The key ingredient in the proof is
the Hopf lemma without smoothness Theorem B.2, which allows us to upgrade regularity of
the flow concurrently with the symmetry.

In order to apply the (geometric) moving plane method to noncompact objects, it is
mandatory to have a well-controlled asymptote at infinity. In the asymptotically cylindrical
case [18] (see also the preceding [17]), a fine neck analysis is carried out in order to determine
the asymptotic expansion near infinity. However, to our advantage, in the asymptotically
conical case, the asymptote near infinity is entirely determined by the given cone C, and
it is an immediate consequence of the pseudolocality theorem that our flows are nice C2,α

normal graphs over C outside of a large ball with appropriate decay rates (see Appendix A
or the works of Bernstein–Wang [9] or [7]). Knowing this, we can then carry out the moving
plane method with the usual maximum principle and Hopf lemma replaced by Theorem
B.1 and Theorem B.2 respectively (barring some technicality, e.g. the tameness assumption
Proposition 3.2).

We will prove Theorem 1.1 in Sect.3. In Sect.4 we apply Theorem 1.1 to prove the various
corollaries mentioned above. In Sect.5 we give a construction for Theorem 1.5. In Sect.6
we will prove an ODE existence result of self-expanders with triple junctions, which shows
that the cyclic assumption in Theorem 1.1 is indeed necessary. In Appendix A we review the
construction of smooth Morse flow line following [10]. Finally in Appendix B we recall the
key maximum principle and Hopf lemma from Section 3 of [18].

2 Preliminaries

2.1 Notations

Throughout the paper lower case letters such as x denote points in R
n+1, while upper case

letters such as X denote points in the spacetimeRn+1 ×[0,∞). Br (x) denotes the Euclidean
ball of radius r centered at x , and P(X , r) denotes the parabolic ball centered at X = (x, t)
of radius r , i.e.

P(X , r) = Br (x) × (t − r2, t].
Tr (A) denotes the tubular neighborhood of A ⊂ R

n+1 of radius r . Finally, for x = (x ′, xn+1),
let

Bn
r (x) = {(y′, yn+1) ∈ R

n+1 | ∣∣y′ − x ′∣∣ < r , yn+1 = xn+1},
and Cr (x) be the open cylinder of height r over Bn

r (x), i.e.

Cr (x) = {(y′, yn+1) ∈ R
n+1 | ∣∣x ′ − y′∣∣ < r , |xn+1 − yn+1| < r}.

By a (hyper)conewe mean a set C ⊂ R
n+1 that is invariant under dilation, i.e. ρC = C for

all ρ > 0. The link of C isL(C) = C∩S
n .We say C is smooth ifL(C) is a smooth hypersurface

of Sn . A double cone is a cone C whose link L(C) has two connected components lying in

123



Rotational symmetry of solutions ... Page 5 of 32 70

opposite hemispheres of Sn . A hypersurface � is Ck,α-asymptotically conical to C if

lim
ρ→0+ ρ� = C in Ck,α

loc

(
R
n+1 \ {0}) .

We will simply say � is asymptotically conical to C if it is smoothly asymptotically conical.
In our applications, the cone C is almost always assumed to be smooth and the asymptot-
ically conical hypersurfaces will come from solutions to MCF, which are in fact smoothly
asymptotic to C by standard Schauder theory.

Given a hypersurface � ⊂ R
n+1, the Gaussian surface area of � is

F[�] =
∫

�

e− |x |2
4 dHn .

Following Colding–Minicozzi [20], the entropy of � is

λ[�] = sup
ρ∈R+,x0∈Rn+1

F[ρ� + x0] = sup
ρ,x0

1

(4πρ)n/2

∫
�

e− |x−x0|2
4ρ dHn .

By Huisken’s monotonicity formula, the entropy is nonincreasing along a MCF.

2.2 Integral Brakke flows

For the rest of the article we will be using notations from geometric measure theory. We refer
to [39] and [30] for the relevant definitions.

Since we are dealing with potentially singular MCF, we need to generalize the classes of
MCF to make sense of the flow and hence the symmetries past singularities. The measure-
theoretic generalization of MCF is the Brakke flow [4] (see also the more recent book of
Tonegawa [41]), which is a flow of varifolds. Given an integral n-rectifiable Radon measure
μ, let V (μ) denote the associated integral varifold, and H its generalized mean curvature
vector given by the formula:∫

divV (μ) Xdμ = −
∫

H · Xdμ.

where X is a compactly supported C1 vector field.
Given an open set U ⊂ R

n+1, by an integral n-Brakke flow in U we mean a family of
integral n-rectifiable Radon measures M = {μt }t∈I such that:
(a) For a.e. t ∈ I , V (μ) has locally bounded first variation and its generalizedmean curvature

vector H is orthogonal to the approximating tangent space of V (μ) x-a.e.
(b) For any bounded interval [a, b] ⊂ I and compact set K ⊂ U ,

∫ b

a

∫
K

(
1 + |H |2) dμt dt < ∞.

(c) For [a, b] ⊂ I and every φ ∈ C1
c (U × [a, b],R+),

∫
φdμb −

∫
φdμa ≤

∫ b

a

∫ (
−φ |H |2 + |H | · ∇φ + ∂φ

∂t

)
dμt dt .

Since we are working in codimension one we will drop the dependence on n in the definition
above and simply refer to it as a Brakke flow.

Brakke flow has two main drawbacks. First, due to the inequality in condition (c), a
Brakke flow can vanish abruptly (in fact some evolution must involve such vanishing). In
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order to avoid this technical difficulty in Sect.5 we will employ the notion of a matching
flow which, in some sense, prevents certain sudden loss of mass. Secondly, and as part of our
motivation, Brakke flow does not have to be unique. In fact, there could be multiple (smooth)
self-expanders coming out of a fixed cone, which is singular at the origin.

A Brakke flow M is unit-regular if, for a spacetime point X = (x, t), M is smooth and
has no sudden mass loss if a tangent flow at X is a multiplicity one hyperplane. We sayM is
cyclic if the associated mod-2 flat chain [V (μt )] (see eg. [44]) has no boundary. By works of
Ilmanen [30], Brakke flows produced by elliptic regularization are unit-regular and cyclic.

Throughout our presentation, given a Brakke flow M = {μt }t∈I , we will write Mt =
suppμt for t ∈ I .

3 Reflection symmetry

In this section we prove Theorem 1.1. Fix a smooth double cone C with λ[C] < 2 and an
integral, unit-regular Brakke flowM = {μt } satisfying the assumptions of Theorem 1.1; that
is,

lim
t→0

μt = Hn�C,

and M is smooth on (0, T ) for some T > 0. Given a hyperplane �, if C is graphical over
� and symmetric across �, the main theorem in our previous work [16] implies that M is
symmetric across � until its first singular time, past which the usual moving plane argument
stops to work. For this reason, we will prove Theorem 1.1 using a version of the moving
plane method without assuming smoothness, recently developed by [18] (see also [28]).

A technical ingredient we need for the moving plane method is the notion of tameness,
which we now define.

Definition 3.1 (Definition 3.1 in [18]) For an integral Brakke flow M in R
n+1, we say

X ∈ M is a tame point of the flow if the −1 time slice of every tangent flow at X is smooth
with multiplicity one away from a singular set S with Hn−1(S) = 0. We say M is a tame
flow if every point X ∈ M is a tame point.

For instance, a tame flow should not have a singularity modeled on a triple junction (that is,
three hyperplanes meeting at equal angles) or a multiplicity two plane. Tameness is a key
assumption to apply the Hopf lemma without smoothness Theorem B.2, which, in turn, is
crucial to the moving plane method. The next proposition establishes tameness of M.

Proposition 3.2 Let M be as above. Then M is a tame flow.

Proof It suffices to check the definition. Let X = {νt }t∈(−∞,0] be a tangent flow at (x0, t0).
Since λ[C] < 2, X has multiplicity 1 (i.e. the Gaussian density is 1 Hn−1-a.e. on X , t-a.e.).

If X is static or quasi-static, then ν−1 = Hn�� for some stationary cone �. If � splits off
(n − 2)-lines, then ν−1 = μRn−2 × ν′ where ν′ is a one-dimensional stationary cone in R

2.
Hence ν′ is a union of half-rays. Since λ[ν′] = λ[ν−1] < 2, there are at most 3 rays. Since
M is cyclic, ν′ cannot be 3 rays meeting at the origin. This is because the triple junction
is not cyclic, and a cyclic Brakke flow cannot have a singularity modeled on a non-cyclic
singularity by [44]. Therefore ν′ consists of 2 lines and in fact ν−1 is smooth. So any singular
cone ν−1 can split off at most (n − 3)-lines, and consequently the singular part of ν−1 has
codimension at least 3.

123



Rotational symmetry of solutions ... Page 7 of 32 70

If X is a non-flat self-shrinker, then any tangent cone ν′ to ν is a stationary cone with
entropy at most 2 (here we used the fact that self-shrinkers are minimal surfaces with respect

to the metric gi j = e− |x |2
2n δi j which is conformal to the Euclidean metric). It follows from the

above discussion that ν′ can split off at most (n − 3)-lines (if ν′ splits of (n − 2)-lines then it
is a multiplicity 1 hyperplane, which, by Allard regularity theorem, means that S(X ) ⊂ {0}
and consequently X is a multiplicity 1 hyperplane), and so ν−1 is smooth away from a set of
Hausdorff dimension at most (n − 2). Thus M is tame. �
Remark With a more restrictive entropy bound it is possible to refine the codimension of the
singular set even more. See [6] or Section 4 of [18].

Next we establish some properties of M. The next proposition says that the flow M stays
asymptotically conical for all future time.

Proposition 3.3 LetM be as above. ThenM is asymptotically conical to C for all t ∈ (0,∞).
Consequently, for every t > 0 there is R = R(t) such that Mt \ BR(0) is a smooth MCF.

Proof This follows from pseudolocality for Brakke flows and parabolic Schauder estimates
as in Proposition A.2 (see also Proposition 4.4 of [7]). �
Fix an open half space H and let � = ∂H. We now use the pseudolocality theorem to prove
that if C is graphical over �, then so is M outside of a large compact set. This will serve as
an asymptotic expansion at infinity and be upgraded into interior graphicality via the moving
plane method. For the next two lemmas we write M+

t = Mt ∩ H.

Lemma 3.4 Suppose C ∩ H is a Lipschitz graph over �. let M be as above, then for every
t > 0 there is R = R(t) and a smooth function u on C such that

M+
t \ BR(0) ⊂ {p + u(p)νC(p) | p ∈ C}.

and |u(p)| ≤ C |p|−1 for p ∈ C for some constant C = C(t).

Proof Fix a time t0. Let us first show that M+
t \ BR(0) can be written as a smooth normal

graph over C. By Proposition 3.3, there exists R = R(t) > 0 such that Mt \ BR(0) is
asymptotically conical to C. Since M0 = C, by pseudolocality theorem for Brakke flows
(Theorem 1.5 of [31]), given η > 0 there exists t1 such that for 0 < t < t1 and x ∈ C \ B1(0),
Mt ∩C√

t1(x) can be written as a normal graph over Bn√
t1
(x) ∩ TxC with Lipschitz constant

bounded by η. By parabolic rescaling, we see that, for 0 < t < 2t0 and x ∈ C \ B√
2t0t

−1
1

(0),

Mt ∩ C√
2t0(x) can be written as a normal graph over Bn√

2t0
(x) with Lipschitz constant

bounded by η. In particular putting t = t0 gives the desired graphicality. The regularity of u
follows from Proposition 3.3.

To see that the function u decays near infinity, by a similar argument as in Proposition
A.1, there exists N such that for all R > 1 we have

Mt0 \ BNR
√
t0+1(0) ⊂ TR−1

√
t0+1(C).

Equivalently, for R > N
√
t0 + 1,

Mt0 \ BR′(0) ⊂ TN (t0+1)(R′)−1(C).

Enlarge R if needed so that M+
t0 \ BR(0) is a normal graph over C. We see that u satisfies

|u(p)| ≤ C |p|−1 for p ∈ C and u(p) ∈ M+
t \ B2R(0). �
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Lemma 3.5 Suppose C ∩H is a Lipschitz graph over �. LetM be as above. For every t > 0
there is R = R(t) such that M+

t \ BR(0) can be written as a graph over �; that is, the
projection π : M+

t \ BR(0) → � is injective.

Proof By Lemma 3.4, for every η > 0, there is R = R(t) such thatM+
t \ BR(0) is a normal

graph over C with Lipschitz constant bounded by η. Since C ∩ H is a Lipschitz graph over
�, the unit normal vector ν� is not contained in any tangent space to x ′ ∈ (C ∩ H) \ {0}.
Therefore by taking η sufficiently small we may make sure that ν� is also not contained in
any tangent space to x ∈ M+

t \ BR(0) (here R = R(t, η), but of course η in turn depends
on t). This proves that M+

t \ BR(0) is graphical over � as well. �
Proposition 3.2 and Lemma 3.5 allow us to use the moving plane method without

smoothness, which we now carry out. Let

�s = {(x, xn+1) ∈ R
n+1 | xn+1 = s} × [0,∞) ⊂ R

n+1 × [0,∞)

be the hyperplane at level s in spacetime. Given a set A ⊂ R
n+1 × [0,∞) and s ∈ [0,∞)

we let

As+ = {(x, xn+1, t) ∈ A | xn+1 > s} and As− = {(x, xn+1, t) ∈ A | xn+1 < s}
be the parts of A lying above �s and below �s respectively. Finally, the set

As∗ = {(x, xn+1, t) | (x, 2s − xn+1, t) ∈ A}
is the reflection of A across �s . We say A > B for A, B ⊂ R

n+1 × [0,∞) provided for any
(x, s, t) ∈ A and (x, s′, t) ∈ B we have s > s′. In contrast, a subscript t will continue to
denote the time t slice of a spacetime set.

To set up the proof of Theorem 1.1, WLOGwemay assume the hyperplane is {xn+1 = 0}.
Fix a time T0 > 0. We consider M on [0, T0) as its spacetime track; namely,

M =
T0⋃
t=0

Mt × {t} ⊂ R
n+1 × [0, T0].

Finally, let

S = {s ∈ (0,∞) | (Ms+)∗ > Ms−, and (Ms+)t is graphical over (�s)t for t ∈ [0, T0]}.
Here graphicality means that the projection πs : (Ms+)t → (�s)t is injective for t ∈ [0, T ].
Since each (Ms+)t is countably n-rectifiable, graphicality is equivalent to that the unit
normal en+1 = (0, . . . , 0, 1) of (�s)t is not contained in the approximate tangent space of
(Ms+)t for t ∈ [0, T0]. Observe that (Ms+)∗ is asymptotically conical to the translated cone
(C+2sen+1)×[0,∞) (in the sense of Lemma 3.4— this ensures that a hypersurface cannot
be simultaneously asymptotic to two distinct cones).

First we need a lemma about smoothness of the top part of the flow similar to Proposition
7.4 of [18].

Lemma 3.6 Suppose s > 0 and s ∈ S. Then Ms+ is a smooth MCF asymptotic to C.
Moreover, every point on M ∩ {xn+1 = s} is a regular point of the flow.

Proof Let

Is = {s′ ≥ s | Ms′+ is smooth}.
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By Proposition 3.3, there is R = R(t) such thatMt \ BR(0) is a smooth MCF asymptotic to
C. So for sufficiently large s depending on T0 we see thatMs+ is asymptotic to C × [0, T0].
This shows Is is not empty.

Let s0 = inf Is . We first argue that M ∩ {xn+1 = s0} consists of regular points. Let
(x, t) ∈ M ∩ {xn+1 = s0} and let M∗ be the flow reflected across �s . We wish to apply
the Hopf lemma Theorem B.2 to M, M∗ and H = {xn < s} to conclude that (x0, t0) is a
regular point. To this end we must check that the conditions are satisfied. Tameness follows
from Proposition 3.2. We may also assume that ∂H is not a tangent flow to eitherM orM∗
at (x0, t0), because otherwise the entropy bound together with Brakke regularity theorem
implies (x0, t0) is a regular point. Finally, we claim regMt ∩H and regM∗

t ∩H are disjoint
for t sufficiently close to t0. Suppose not, then there must be point of contact in H:

(x1, t) ∈
(
Ms0−

t

)
∩ (

Ms0+)∗
t ⊂ H.

By definition of s0 we know
(
Ms0+)∗

t is in fact a smooth MCF, so maximum principle

Theorem B.1 implies thatMs0−
t agrees with

(
Ms0+)∗ in some parabolic cylinder. The same

reasoning applied to any other point inMs0− ∩ (
Ms0+)∗ shows that a connected component

of Ms0− agrees with a connected component of
(
Ms0+)∗. This implies that

(
Ms0+)∗ is

simultaneously asymptotic to C×[0,∞) and (C + 2s0en+1)×[0,∞), a contradiction. Hence
the last condition in order to applyTheoremB.2 is satisfied andwe conclude thatM∩{xn+1 =
s0} is regular.

Lastly we show that s0 = s. This is a consequence of the fact that M ∩ �s0 is compact.
Using small balls as barriers similar to Proposition A.1, one sees that there exists some
constant N1 such that

Mt \ BN1R
√
t+1(0) ⊂ TR−1

√
t+1(C)

for R > 1. On the other hand, for a fixed t there is a constant N2 such that

Mt ∩ BN1
√
t+1(0) ⊂ TN2(C).

as the first set is clearly compact. These two facts together imply the existence of a constant
N3 such that

Mt ∩ {xn+1 = s0} ⊂ TN3(C) ∩ {xn+1 = s0}.
This shows that Mt ∩ {xn+1 = s0} is compact (as C ∩ {xn+1 = s0} is compact), and since
t ∈ [0, T0], M ∩ �s0 is compact as well. To finish the proof, note that by the previous
paragraph M ∩ {xn+1 = s0} consist of regular points only. At each regular point (x0, t0)
there is some r = r(x0, t0) such thatM is smooth in P((x0, t0), r). SinceM∩ {xn+1 = s0}
is compact, r is uniformly bounded below away from 0, and this is a contradiction unless
s0 = s. �
Proof of Theorem 1.1 To finish the proof we must show S is nonempty, S is open, and S is
closed.

Again by Proposition 3.3, for sufficiently large s we can make sure thatMs+ is a smooth
MCF, (

Ms+)∗ ∩ ((
Ms−) ∩ {xn+1 ≥ 0}) = ∅,

and that for any (x, s1, t) ∈ (
Ms+)∗ and (x, s2, t) ∈ M0− it holds that s1 − s2 ≥ 2s − 1.

These two facts imply that for sufficiently large s the inequality
(
Ms+)∗

> Ms− is valid. On
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the other hand, by Lemma 3.5, there is R = R(T0) such that (M0+)T0 \ BR(0) is graphical
over (�0)T0 . So for s > R we have

(
Ms+)

t is graphical over (�s)t for all t ∈ [0, T0). This
shows S is not empty.

It is clear that (Ms+)∗ > Ms− is an open condition. To see that the graphicality condition
is also an open condition, let θt (x) be the angle between the unit normal to the approximate
tangent space at a point x ∈ Mt and en+1. Suppose that s ∈ S, then graphicality is equivalent
to θt (x) < π

2 for all t ∈ [0, T0) and x ∈ (Ms+)t . Since the flow M is C2,α-asymptotically

conical, for given t there exists ε > 0 such that θt (x) < π/2 for all x ∈ (Ms′+)t where∣∣s′ − s
∣∣ < ε. Since the time interval is compact, there is a universal ε such that the above

holds for all t ∈ [0, T0). This shows openness of S.
Finally we show S is closed. Obviously if s ∈ S then [s,∞) ⊂ S. So we assume

(s,∞) ⊂ S and suppose for a contradiction that s /∈ S. At level s, either (Ms+)∗∩Ms− �= ∅
or there is some t0 ∈ [0, T0) such that (Ms+)t0 fails to be graphical over (�s)t0 .

In the first case, s is necessarily the first level of contact. By choosing r small enough
we can ensure (Ms+)∗ and Ms− are graphical in P(X , r) where X ∈ (Ms+)∗ ∩ Ms−.
Moreover, by Lemma 3.6, the reflected part (Ms+)∗ is a smooth MCF, so all the conditions
of the maximum principle Theorem B.1 are satisfied (note that the Gaussian density bound is
automatic from the entropy bound). Applying Theorem B.1, we see (Ms+)∗ andMs− agree
in a neighborhood of X . Now an identical argument as in the proof of Lemma 3.6 shows that
(Ms0+)∗ is simultaneously asymptotic to C × [0,∞) and (C + 2s0en+1) × [0,∞), which is
again a contradiction.

In the second case, WLOG we may assume t0 is the first time the graphicality condition
fails. Then there necessarily exists a point X = (x, s, t0) ∈ Mt0 ∩{xn+1 = s}whose tangent
space contains the vector en+1. We again check the condition to apply Hopf lemma Theorem
B.2 to M1 = (Ms+)∗, M2 = Ms− and H = {xn+1 < s} as in the proof of Lemma 3.6.
Tameness follows from Proposition 3.2. Since en+1 is normal to the hyperplane {xn+1 = s}
and X is a regular point of M by Lemma 3.6, we see that ∂H is not the tangent flow to
either M1 or M2 (here we used the fact that the tangent flow at a regular point agrees with
the static flow of the tangent plane). The disjointness of the regular parts of M1 and M2 in
H follows identically as in the proof of Lemma 3.6. Hence, we may apply Theorem B.2 to
conclude thatM1 andM2 have distinct tangents, which is a contradiction since the tangent
spaces agree at X . This concludes the proof that S is closed.

This shows that S = (0,∞). At s = 0, one sees that the graphicality condition is
preserved (alternatively one can run the moving plane method from the other side, i.e.
s < 0), but the strict inequality (M0+)∗ > M0− does not hold anymore, which implies that
(M0+)∗∩M0− �= ∅. Applying themaximumprinciple TheoremB.1 once againwe conclude
(M0+)∗ = M0−, and this is the required reflection symmetry across �0 = {xn+1 = 0}.

4 Rotational symmetry

In this section we prove Corollary 1.2 and Corollary 1.4. First let C be a smooth, rotationally
symmetric double cone. A typical example of such a C is given by (1.2) which has the x1
axis as its axis of symmetry. Our theorem allows more general cones of the form

x21 =
{
m2

1(x
2
2 + x23 + · · · + x2n ), x1 ≥ 0

m2
2(x

2
2 + x23 + · · · + x2n ), x1 < 0

,
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where m1,m2 > 0 (i.e. the top and bottom parts of the cone can have different cone angles).
A cone C of the above form should also satisfy λ[C] < 2, but this is not explicitly known.
See Sect.7 for more on the entropy of cones.

Proof of Corollary 1.2 WLOG we may assume the axis of symmetry is the x1-axis. Observe
that rotational symmetry is equivalent to reflection symmetry across every hyperplane con-
taining the x1-axis. Up to a rotation it suffices to show that M is symmetric across the
hyperplane {xn+1 = 0}. Since C is a smooth graph over {xn+1 = 0}, the desired conclusion
follows from Theorem 1.1. �
Proof of Corollary 1.3 The rotational symmetry is Corollary 1.2. Since C is symmetric across
the hyperplane {x1 = 0} as well, we can apply Theorem 1.1 to H = {x1 > 0} to conclude
that M is smooth away from {x1 = 0}. Together with Corollary 1.2 we infer that the only
possible singularity of M is at the origin. Moreover, any tangent flow X at the first singular
time must be rotationally symmetric. By the classification of rotationally symmetric self-
shrinkers of Kleene and Møller [33], X has to be one of the following: a round sphere, a
round cylinder R × S

n−1 or a smooth embedded S
1 × S

n−1. Since M is not closed, we
conclude that X has to be a round cylinder. The uniqueness of the cylinder follows from the
work of Colding–Minicozzi [21].

Remark The above corollary does not guarantee the existence of a cylindrical singularity,
as it is entirely possible that the flow remains smooth for all times. See Proposition 5.7 for
sufficient conditions for the flow to have a singularity.

Next we apply the same method to cones with more general symmetry groups. For this
part we will work, for convenience, in R

n+2 instead. Let O(p) denote the symmetry group
of Sp−1 ⊂ R

p . Fix an integer 1 ≤ p ≤ n − 1 and suppose C is a smooth double cone with
λ[C] < 2 that has symmetry group O(p + 1) × O(n − p + 1). Typical examples are cones
Cn,p over the families of minimal hypersurfaces in Sn given by

Sn,p =
√

p

n
S
p ×

√
n − p

n
S
n−p ⊂ S

n .

The cones Cn,p are known as Simons-type cones. An immediate consequence of Corollary
1.4 is:

Corollary 4.1 Any smooth self-expander coming out of a Simons-type cone Cn,p inherits the
O(p + 1) × O(n − p + 1)-symmetry of Cn,p.

Remark Similar results for minimal surfaces have been obtained by Mazet [36], using the
elliptic moving plane method.

Proof of Corollary 1.4 Write (x1, . . . , xp+1, y1, . . . , yn−p+1) the standard coordinates on
R
n+2. WLOGwemay assumeL(C) = σ1×σ2 where σ1 is rotationally symmetric across the

x1 axis and σ2 rotationally symmetric across the the y1-axis. Evidently showing the rotational
symmetry in x-coordinates is enough, as the identical argument works for the y-coordinates.
It suffices to show that the reflection symmetry is preserved through all hyperplanes of the
form

p+1∑
i=2

ci xi = 0,
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which, up to an ambient rotation in the x-coordinates, wemay assume to be {xp+1 = 0}. Note
that the a cone with O(p + 1) × O(n − p + 1) symmetry takes the form (up to relabeling)

p+1∑
i=1

ai x
2
i =

n−p+1∑
j=1

b j y
2
j

for suitable choices of coefficients ai and b j . It is not hard to see that C ∩ {xp+1 > 0} is a
graph over {xp+1 = 0} via

xp+1 = a−1/2
p+1

⎛
⎝n−p+1∑

j=1

b j y
2
j −

p∑
i=1

ai x
2
i

⎞
⎠

1/2

.

Hence Theorem 1.1 applies and the desired reflection symmetry follows (of course, we have
to put

�s = {(x, xp+1, y) ∈ R
n+2 | xp+1 = s} × [0,∞) ⊂ R

n+2 × [0,∞).

and change the dimensions in the proofs accordingly).

5 Construction of thematchingmotion

In this section we use the ideas of Bernstein–Wang in [10] and [7] to produce an immortal
Brakkeflowstarting fromaconeCwithλ[C] < 2 that is not self-expanding.This demonstrates
that Corollary 1.2 is not void.

5.1 Self-expanders

Let us briefly summarize some basic facts about self-expanders. It is often helpful to consider
the variational characterization of self-expanders. Formally, self-expanders are critical points
of the functional:

E[�] =
∫

�

e
|x |2
4 dHn

and equation (1.1) corresponds to theEuler-Lagrange equation of E[�].We record the second
variation of E . For a proof see for example Proposition 4.2 in [12].

Theorem 5.1 If {φt }t∈(−ε,ε) is a compactly supported normal variation of � with dφt
dt

∣∣∣
t=0

=
f ν� , where ν� is the outwards unit normal. Then

d2

dt2

∣∣∣∣
t=0

E[φt (�)] = −
∫

�

f L� f dHn

where L� is the stability operator of � given by

L� = �� + 1

2
x · ∇� + |A� |2 − 1

2
.

A real number μ ∈ R is an eigenvalue for −L� if there is a function u ∈ W 1
1
4
(�) \ {0} such

that −L�u = μu, where

W 1
1
4
(�) = { f : � → R |

∫
�

(| f |2 + |∇ f |2) e |x |2
4 dHn < ∞}.
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The index of a self-expander is the number of negative eigenvalues of −L� , which is equal
to

sup{dim V | V linear subspace ⊂ C2
0 (�),−

∫
�

f L� f ≤ 0 ∀ f ∈ V \ {0}}.

We say a self-expander is stable if it has index zero. By Lemma 4.1 in [8], the operator L�

is formally adjoint in W 0
1
4
(�), and L� has a discrete spectrum; that is, the eigenvalues of

−L� can be ordered as μ1 < μ2 < · · · < μn < · · · . Moreover, the space of eigenfunctions
associated to the lowest eigenvalue μ1 is 1-dimensional, and any eigenfunction f of μ1 has
a sign.

We need the following basic distance estimates of asymptotically conical self-expanders.

Proposition 5.2 Let C be a smooth cone. Suppose � is a self-expander C2,α-asymptotic to
C, then there is N > 0 such that � \ BNR(0) ⊂ TR−1(C) for R > 1.

Proof Since � is smooth and ρ� → C in C2,α
loc (Rn \ {0}), for sufficiently small ρ we have

on ρ� ∩ (B1(0) \ {0}) ∣∣Aρ�

∣∣ ≤ C .

Hence for x ∈ � with |x | sufficiently large depending on the above,

|A(x)| = ρ
∣∣Aρ�(ρx)

∣∣ ≤ C |x |−1

if we pick ρ = 1
2 |x |−1 so that ρx ∈ B1(0). This proves that |A(x)| ≤ C |x |−1 for all x ∈ �.

Together with the self-expander equation, these imply that there is C > 0 with

dist(x, C) < C |x |−1

for x ∈ C \ B1(0). Finally by scaling it follows that there is N such that for R ≥ 1.

� \ BNR(0) ⊂ TR−1(C).

�
Remark Note that similar to the above we can also estimate the derivatives of A:∣∣∇m A

∣∣ ≤ C |x |−m−1 ,

provided the cone is sufficiently regular.

5.2 Mean curvature flowwith boundary

Since we are dealing with noncompact initial hypersurfaces, many existence theorems (in
particular the unit density theorem 11.4 in [30]) do not apply directly in our case. To account
for this we will utilize White’s recent work on MCF with boundary [45], which is a gen-
eralization of the Brakke flow in Sect.2.2. For simplicity we will only work in the ambient
manifold BR(0).

Given a hypersurface � with boundary � ⊂ ∂BR(0) in an open set U ⊂ BR(0) and an
integral n-rectifiable Radon measure μ, the first variation formula becomes:∫

divV (μ) Xdμ = −
∫

H · Xdμ +
∫

νμ · Xd(Hn−1��)
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for any compactly supported C1 vector field X , where H is the generalized mean curvature
vector and ν the approximating normal vector to �. By an integral n-Brakke flow with
boundary � in U we mean a family of integral n-rectifiable Radon measures M = {μt }t∈I
satisfying the items (a), (b) and (c) in Sect.2.2 with the extra condition:

(d) For a.e. t ∈ I the normal vector satisfies
∣∣νμt

∣∣ ≤ 1 Hn−1-a.e on �.

For simplicitywewill refer to the above asBrakkeflowwith boundary�. This is unambiguous
since, by item (d), the boundary � stays unchanged under the Brakke flow.

As before, a Brakke flow with boundary � is unit-regular if, for a spacetime point X =
(x, t), M is smooth and has no sudden mass loss if a tangent flow at X is a multiplicity one
plane. M is cyclic if the associated mod-2 flat chain [V (μt )] has boundary equal to �. By
works of White [45], Brakke flows with boundary � produced by elliptic regularization are
unit-regular and cyclic.

Theorem 5.3 (Theorem 1.1, Theorem 14.1 of [45]) Let � ⊂ BR(0) be a hypersurface with
boundary � ⊂ ∂BR(0). There exists a unit-regular and cyclic Brakke flow with boundary �,
M = {μt }t∈[0,∞) with μ0 = Hn��.

Similarly Brakke flow with boundary needs not be unique, but White’s theorem says that
a unit-regular and cyclic one always exists. White proved in addition a strong boundary
regularity theorem (Theorem 17.1 of [45]) in the codimension one case, ruling out a scenario
where interior singularities could accumulate to a boundary singularity. Hence the boundary
� truly remains unchanged in the classical sense.

5.3 Level set flows andmatchingmotions

The final ingredient we need is the set-theoretic generalization of MCF, initially developed
by [15] and [24] as viscosity solutions to certain PDEs. Given a closed set �0 ⊂ R

n+1, we
choose any uniformly continuous function u0 such that �0 = {x ∈ R

n+1 | u0(x) = 0}.
There exists a unique u ∈ C(Rn+1 × [0,∞)) which is a viscosity solution to the problem{

ut = ∑n+1
i, j=1

(
δi j − uxi ux j

|∇u|2
)
uxi x j on Rn+1 × [0,∞)

u(x, 0) = u0(x) on Rn+1 × {0}.
Let �t = {x ∈ R

n+1 | u(x, t) = 0}. We call K = ⋃
t∈[0,∞) �t × {t} the level set flow of �0.

Since the viscosity solution is unique, level set flow is also unique with given initial
data. However, level set flows might fatten, i.e. K might develop a non-empty interior (for
example the figure eight fattens immediately). Formally, the level set flow of �0 fattens if
Hn+1(�t ) > 0 for some t > 0. A theorem of Ilmanen (11.3 in [30]) shows that fattening
phenomenon is not generic and can therefore be perturbed away.

Alternatively, it has been observed that the level set flow can be characterized as the
"biggest flow" of a closed set satisfying the avoidance principle. There is a rich literature on
this more geometrically intuitive way of handling set flows and we refer to [43], [29] and [2]
for more information on this approach.

Ilmanen [30] combined ideas from Brakke flows and level set flows and introduced the
notion of a matching motion, which turns out to be the suitable notion for our purposes. Let
In(U ) be the set of integral n-current in U .

Definition 5.4 (8.1, 9.1 of Ilmanen [30]) Let K ∈ In+1(R
n+1 ×R

+),M = {μt }t∈[0,∞) be a
Brakke flow and �0 ∈ In(Rn+1) with finite mass and empty boundary. A pair (K,M) is an
enhanced motion with initial data �0 if
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(a) ∂K = �0 and Kt ∈ In(Rn+1) for a.e. t ≥ 0;
(b) ∂Kt = 0 and t → Kt is continuous in the flat topology for t ≥ 0;
(c) μ0 = μ�0 , M[μt ] ≤ M[μ0] and μKt ≤ μt for a.e. t ≥ 0.

If the pair (K,M) further satisfies

(d) μt = μKt = μV (μt ) for t ≥ 0,

then we call it a matching motion.

Note that in the above definition we have already abused some notation. Indeed, in our
applications K is going to be the level set flow from �0. A fundamental result of Ilmanen
(Section 12 of [30]) shows that a nonfattening level set flow is a matching motion, which
justifies our abuse of notation here.

We will use the following result of S. Wang [42] which asserts that limit of low entropy
matching motions is a matching motion. Recall that a sequence of Brakke flow Mi =
{μi

t }t∈[0,∞) converges toM = {μt }t∈[0,∞) ifμi
t → μt as Radonmeasures and, after possibly

passing to a subsequence, V (μi
t ) → V (μt ) as varifolds for a.e t ∈ [0,∞).

Proposition 5.5 [Theorem 3.5 of [42]] Let (Ki ,Mi ) be a sequence of matching motions
converging to an enhanced motion (K,M) with λ[M] < 2, then (K,M) is a matching
motion.

Remark The theorem fails without the entropy assumption as the set-theoretic limit of a
sequence of grim reapers (which has entropy 2) is two lines but the limit in the sense of
currents is empty (as the two lines cancel each other).

5.4 Construction of the smooth flow

Before we construct the weak flow, we briefly summarize the construction of Morse flow line
starting from an unstable self-expander [10]. For reader’s convenience we have also included
a summary of the theorems with some proofs in Appendix A.

Recall that for an unstable self-expander�, the stability operator L� has discrete spectrum
and eigenfunctions to the lowest eigenvalue μ1 < 0 have a sign. Let f be the unique positive
eigenfunction of μ1 with ‖ f ‖W 0

1
4
(�) = 1. For ε > 0 we form the perturbations of � by f

given by

�ε = �ε(�) where �ε(x) = x + ε f (x)ν�.

By Lemma A.4, there is N > 0 depending on ε such that �ε \ BNR(0) ⊂ TR−1(C) for all
R > 1. By Lemma A.5, �ε is expander mean-convex (see Appendix A for the definition) for
ε sufficiently small. By the existence theorem Theorem A.3 there is a unique MCF starting
from an asymptotically conical, expander mean-convex hypersurface, and the expander-
mean-convexity is preserved along the flow until the first singular time. Applying Theorem
A.3 to �ε , we get for each ε a unique MCF Mε = {�ε

t }t∈[1,T ε) with �ε
1 = �ε. Moreover,

by Lemma A.4 and Proposition 5.2, �ε has uniformly bounded curvature, so the interior
estimates of Ecker–Huisken [23] implies that the interval of existence of is independent of
ε. Moreover, at first singular time T ε ,

lim
t→T ε

sup
�ε
t ∩BN ′√t

∣∣A�ε
t

∣∣ = ∞

for some constant N ′ > 0.
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5.5 Construction of the Brakke flow

We now turn to our construction of the weak flow. One of the method to construct a weak
flow is via capping off the hypersurfaces �ε ∩ BR(0) smoothly and taking a sequence of
Brakke flows (or weak set flows) starting from these capped-off hypersurfaces. However, one
has to be careful with the above method when working with entropy bounds, since the cap
might increase the entropy. On the other hand, the capping method has the advantage that,
by a suitable choice of the caps, the expander mean-convexity is preserved through the cap
and hence in the limits (here with weak set flows one has to interpret the mean-convexity in
the weak sense as well). Such a construction for self-shrinkers can be found in Section 7 of
[13] and, for self-expanders, in [2].

Here we use an alternative approach of Brakke flow with boundary. This construction
is less technical and respects the entropy well. However, it is also less clear how expander
mean-convexity is preserved through the flows and hence in the limit. This is not needed
in our case because we are only concerned with existence. It is an interesting question to
determine whether the flows constructed from the two methods above agree (they are, of
course, the same notion when smooth, so the point is to determine how each of them flows
past singularities). We believe this should be the case with the entropy bound λ[C] < 2, but
the general picture might be less clear.

The following proposition is the weak flow analogy of the smooth flow produced in
Theorem A.3.

Proposition 5.6 Let C, � be as in Theorem 1.5, and �ε be as above. There exists ε0 > 0
such that, for |ε| < ε0, there exists an immortal matching motion (Kε,Mε) where Kε =
{�ε

t }t∈[1,∞) and Mε = {με
t }t∈[1,∞) such that �ε

1 = �ε and με
1 = Hn��ε. Moreover the

flow (Kε,Mε) agrees with the smooth flow starting from �ε for t ∈ [1, T ε).

Proof Suppose ε > 0, as the argument for ε < 0 is identical. Let �ε,R = �ε ∩ BR(0)
be the hypersurface in BR(0) with boundary �ε ∩ ∂BR(0). By Theorem 5.3, there exists
an unit-regular and cyclic Brakke flow with boundary Mε,R = {με,R

t }t∈[0,∞) starting from
�ε,R . The flow Mε,R�BR/2(0) is therefore a (usual) Brakke flow inside BR/2(0). Since
nonfattening is generic, we may choose a sequence Ri → ∞ such that the associated level
set flow of Mε,Ri �BRi /2(0) is nonfattening. This produces a sequence of matching motions

(Kε,Ri ,Mε,Ri �BRi /2(0)).

By compactness of Brakke flow we may now pass to a subsequence Ri → ∞ to obtain a
limiting enhanced motion (Kε,Mε) in R

n+1 starting from �ε.
By Lemma 3.5 of [9], λ[�] = λ[C] < 2, and by Lemma 6.2 of [10], for every δ > 0

there exists ε0 such that |λ[�ε] − λ[�]| < δ for ε < ε0. Choosing δ small enough so that
λ[C] + δ < 2 and ε0 small according to δ ensures that λ[Mε] = λ[�ε] < 2, and so, in view
of Proposition 5.5, (Kε,Mε) is matching.

Finally, using the argument inPropositionA.2with pseudolocality ofMCF replacedby that
of Brakke flow there exist δ > 0 and N ′ > 0 such that suppμε

t \ BN ′√t (0) = �ε
t \ BN ′√t (0)

for t ∈ [1, 1 + δ]. Since (Kε,Mε) is matching, �ε
t \ BN ′√t (0) = �ε

t \ BN ′√t (0) as well.
It follows from uniqueness of level set flow that �ε

t agrees with �ε
t . Using the matching

property again we infer that suppμε
t = �ε

t . It is easy to see that these flow agree up to the
first singular time of �ε

t (i.e. T
ε). �

Let (Kε,Mε) be the matching motions constructed as above. We can once again take a
limit as ε → 0+ to obtain a limiting enhanced motion (K,M) where K = {�t }t∈[1,∞) and
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M = {μt }t∈[1,∞) such that �0 = � and μ0 = Hn��. However, this limit is not enough to
prove Theorem 1.5 as we will only recover the flow of the self-expander � (as in the case of
the smooth flow). Moreover, the limit does not attain the cone as its initial data. We need to
translate the flow properly so that the starting time can be extended back to 0, and argue that
we do not get the original flow of the self-expander back in the process.

Proof of Theorem 1.5 Again WLOG suppose ε > 0. Let (Kε,Mε) be the matching motions
from Proposition 5.6. It is convenient to work with the following rescaled MCF:

μ̃ε
s = με

t ◦ t−
1
2 and �̃ε

s = �ε
t , s = log t .

and let (K̃ε,M̃ε) denote the rescaled flow. Under the rescaling, a smooth MCF will satisfy
the rescaled MCF equation

(
∂x

∂s

)⊥
= H�s − x⊥

2
,

which has self-expanders as stable solutions. The flow M̃ε is defined on the time interval
[0,∞) with supp μ̃ε

0 = �ε. Since � is unstable, the lowest eigenvalue λ1 of −L� satisfies
λ1 < 1

2 , and consequently the Mε "flows faster" than the parabolic rescaling
√
t . To be

precise, for the the flow of the self-expander � we have

lim
λ→0+ dist(�, λ�λ−2) = lim

λ→0+ dist
(
�, λ

√
λ−2�

)
= 0

but since we are perturbing � by its eigenfunction whose eigenvalue is below 1
2 , we must

have

lim
λ→0+ dist

(
�ε, λ suppμε

λ−2

) = ∞.

In the rescaled setting, the above means that M̃ε moves out exponentially (the exact rate of
which depends on λ1). As such, we can find a sequence of time sε with

d
(
supp μ̃ε

sε , x0
) = γ

for some fixed point x0 ∈ � and positive constant γ . On the other hand ε → 0+, the rescaled
flows M̃ε converge to the static rescaled flow of �, so in fact sε → ∞ as ε → 0+, i.e. one
has to go further in time to reach a distance γ away from x0 ∈ �. This fact allows us to time
translate M̃ by −sε to obtain a sequence of rescaled MCFs M̃ε,sε = {μ̃ε,sε

s }s∈[−sε,∞) such
that

supp μ̃
ε,sε−sε = �ε and d(supp μ̃

s,sε
0 , x0) = γ.

By compactness of Brakke flows we can take ε → 0+ to obtain a limiting flow M̃ defined
on (−∞,∞). It is easy to see that M̃ is not the flow of � as d(supp μ̃0, �) ≥ γ . Moreover,
since � is asymptotically conical and �ε → � smoothly as ε → 0, it follows that

lim
s→−∞ supp μ̃s = lim

ε→0
supp μ̃

ε,sε−sε = lim
ε→0

�ε = �.

In view of the rescaling, this proves that the flow achieves C as the initial data.
Since μ̃s is integral, it follows from strong maximum principle for varifolds [40] that

lims→−∞ μ̃s = kHn��. Since λ[C] < 2, k = 1, so the desired regularity follows from
Brakke regularity theorem. �
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5.6 An example of singularity formation

To conclude the section, we give a sufficient condition when there exists a flow coming
out of C that has a singularity. The proof makes heavy use of the structure theory of self-
expanders developed by Bernstein andWang in a series of papers starting from [12]. It would
be interesting to see if a simpler proof exists.

Proposition 5.7 Suppose C ⊂ R
n+1, 2 ≤ n ≤ 6, is a smooth double cone with λ[C] < 2

and that the two connected components of L(C) are graphs over some (fixed) hyperplane.
Suppose that there is a connected self-expander asymptotic to C. Then there exists an integral
Brakke flow coming out of C that has a singularity in finite time.

Remark We note that the above is consistent with the topological uniqueness result of [10].
Indeed, by Proposition 5.6 of [10], if λ[C] < λ[Sn−1 × R], the flow produced by Theorem
1.5 is smooth for all time. On the other hand, any such double cone will not have a connected
self-expander.

Proof Let σ = L(C), and let W be the connected component of Sn lying between the two
connected components of σ . By Corollary 1.2 of [12], the set of generic cones (in the sense
that there is no C2-asymptotically self-expander with nontrivial Jacobi fields that fix the
infinity) whose link lie in W , is dense near C. These facts allow us to take a sequence of
C2,α-hypersurfaces σi in S

2 such that

• σi → σ in C2,α(Sn) as i → ∞;
• σi ⊂ W is a smooth double cone for all i .
• Ci is generic for all i , where Ci is the cone over σi ;
• λ[Ci ] < 2 for sufficiently large i , by Lemma 6.2 of [10].

From the above we immediately see that there exists a unique disconnected, stable self-
expander �i C2,α-asymptotic to Ci (by evolution of entire graph [22]). We also see that
Ci ⊂ �, where � is the connected component of Rn+1 \ C that contains W . Denote by �0

the connected self-expander asymptotic to C. Using a direct method with �0 as the barrier,
similar to Lemma 8.2 of [8], we can find a connected self-expander asymptotic to Ci in �′,
where �′ is the connected component of Rn+1 \ �0 such that the outward unit normal of C
points into �′.

Since there exists a connected self-expander for each Ci , by the partial ordering of self-
expanders asymptotic to a fixed cone (Theorem 4.1 of [10]), we can pick an innermost
connected self-expander �i C2,α-asymptotic to Ci (note that �i might not be unique). We
claim that �i is unstable. If not, the mountain pass theorem (Corollary 1.2 [5], this requires
2 ≤ n ≤ 6) and the genericity of Ci imply the existence of an unstable self-expander�′ lying
between �i and �i . �′ must then be connected, but this contradicts the partial ordering.

Since�i is unstable and λ[Ci ] < 2, we can produce using Theorem 1.5 an integral Brakke
flow Mi = {μi

t }t∈(0,∞) that moves inwards initially (by expander-mean-convexity) and
satisfies limt→0 μi

t = Hn�Ci . Suppose for a contradiction that Mi is smooth for all t , then
the flow is expander-mean-convex (in the classical sense) and moves inwards for all time.
Moreover, using an almost identical argument as in Proposition 5.1(3) of [10], the rescaled
flow (rescaling as in the proof of Theorem 1.5) M̃i converges as s → ∞ to a smooth, stable
self-expander asymptotic to Ci , which must lie inside�i . Since�i is an innermost connected
self-expander, the stable limit must be �i which is disconnected, a contradiction.

Now let si denote the first singular time of the rescaled flows M̃i , and time translate M̃i

by −si to obtain rescaled flows M̃i,si with a singularity at time 0. By compactness of MCF
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we obtain a rescaled flow M̃ such that M̃i,si → M̃ subsequentially. Rescaling back we
see that, by upper semicontinuity of the Gaussian density, M has its first singularity at time
t = 1. Finally, we claim thatM indeed comes out of the cone C. AsM is smooth on (0, 1),
it is enough to show that

lim
t→0

suppμt ∩ S
n = σ in C2,α(Sn). (5.1)

Since each Mi attains Ci as initial data and Ci is C2,α-regular, we have

lim
t→0

suppμi
t ∩ S

n = σi in C
2,α(Sn).

As σi → σ in C2,α(Sn), by a diagonalization argument, we see that (5.1) holds. This
completes the proof. �

Assuming Conjecture 7.1, the assumptions in Proposition 5.7 are satisfied by cones of the
type (1.2), given that the parameter m is sufficiently small. In fact, numerical computations
do confirm that the cones x21 = m2(x22 +x23 ) form ≤ 1 have entropy less than 2.Moreover, by
[1], there exists a connected self-expander for sufficiently smallm. In these cases, combining
the above with Corollary 1.3, we have the much stronger conclusion that any such cone has
a potential evolution which disconnects at a cylindrical singularity.

6 Self expanders with triple junctions

An important question in the study of self-expander is to determine the number of self-
expanders coming out of a given cone. A classical result of Ecker–Huisken [22] shows that
there exists a unique self-expander coming out of a graphical cone. In general, however,
Angenent–Ilmanen–Chopp [1] showed numerically that uniqueness fails for double cones.
It is proved rigorously by Helmensdorfer [27] that there are at least three distinct smooth
self-expanders asymptotic to a rotationally symmetric double cone of the form (1.2) provided
the cone angle is sufficiently large (when the cone angle is small, a barrier argument shows
that uniqueness indeed holds — see Lemma 8.1 of [8]).

In this section we prove a simple ODE result on the existence of two self-expanders with
triple junctions for rotationally symmetric double cones with sufficiently large cone angle.
The proof roughly follows the setup of Helmensdorfer [27], although we do not need the
clearing out lemma forMCF in the following analysis. This provides an example of a singular
self-expander, and also illustrates that the cyclicity assumption in Theorem 1.1 is essential as
tameness (Proposition 3.2) clearly fails for self-expanders with triple junction singularities.
However, the examples constructed below are in fact still rotationally symmetric.

We consider cones Cm of the form (1.2), where m is the parameter therein. Observe that
Cm has a rotational symmetry across the x1-axis as well as a reflection symmetry across the
{x1 = 0} hyperplane.

Assume the expander � has a triple junction singularity at a point (0, x0). Imposing
rotational symmetry on� across the x1-axis we may assume x0 = (a, 0, . . . , 0). Note also at
a triple junction singularity, the tangent cone is stationary and is therefore the union of three
half-lines meeting at an angle of 2π/3. These observations reduce the problem to finding a
function u : R+ → R satisfying the following ODE (written in spherical coordinates):

urr
1 + u2r

− n − 1

u
+ 1

2
rur − 1

2
u = 0. (6.1)
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with initial data u(0) = a and u′(0) =
√
3
3 . The solution is asymptotic to Cm if

lim
r→∞

u(r)

r
= m. (6.2)

Of course, by the usual ODE existence and uniqueness theorem, the solution to the prob-
lem (6.1) is unique with a given initial data a. First we show that any solution to (6.1) is
asymptotically conical.

Proposition 6.1 For any a > 0, there is a (unique) m = m(a) such that (6.2) holds.

Proof First we prove u > 0 for all r > 0. Suppose for a contradiction that there is r0 such
that u(r0) < 0. Since initially u and ur are both positive, by the mean value theorem there
must be a local maximum r1 ∈ (0, r0) with u(r1) > 0, but at such an r1 we can use (6.1) to
get

urr (r1) = n − 1

u(r1)
+ 1

2
u(r1) > 0,

a contradiction. So u is indeed positive. By the above calculation, this implies that all critical
points of u are local minima.

To continue, let α(r) = arctan(u/r). Differentiating, we obtain

α′(r) = rur − u

u2 + r2
and α′′(r) = rurr

u2 + r2
− (rur − u)(2uur + 2r)

(u2 + r2)2
.

At a critical point r0 of α(r), we have r0ur (r0) − u(r0) = 0 and (6.1) implies that urr (r0) =
n−1
u(r0)

> 0. Hence α′′(r0) = rurr
u2+r2

> 0. Therefore all critical points of α(r) are local minima
as well. Since α(r) is bounded and only has local minima, monotone convergence theorem
shows that limr→∞ α(r) exists. This limit is clearly positive and concludes the existence of
m. �

Knowing the above, our problem becomes essentially a shooting problem: Givenm, we wish
to find the appropriate initial condition a so that the solution to (6.1) satisfies (6.2). Let ua(r)
be the solution to (6.1) with initial condition ua(0) = a. Consider the asymptotic cone angle
parameter m as a function of a:

m(a) = lim
r→∞

ua(r)

r
= lim

r→∞ uar (r) ∈ (0,∞).

Proposition 6.2 m(a) is a continuous function on (0,∞).

Proof First we record that

urr (0) = 4

3

(
n − 1

a
+ 1

2
a

)
> 0.

From the proof of Proposition 6.1, we see that a critical point of u must be a local minimum,
but since u is initially increasing and smooth, there cannot be any critical point at all. So u
is strictly increasing and we deduce that ur > 0 for all r > 0. On the other hand, l’Hôpital’s
rule on (6.2) yields limr→∞ ur = m. Going back to (6.1) and taking the limit as r → ∞
yield also limr→∞ urr = 0.
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Fix an a ∈ (0,∞). Clearly ua ≥ a and uar is bounded above. Therefore we may fix a
constant N with 1

N < a such that
∣∣a′ − a

∣∣ < 1
N implies that

1

ua′ ≤ c (6.3)

for some constant c depending on a and N . We compute
(u
r

)
r

= 1

r

(
ur − u

r

)
= 2

r2

(
n − 1

u
− urr

1 + (ur )2

)
. (6.4)

For
∣∣a − a′∣∣ < 1

N there are two cases. If ua
′

rr is never zero, then it is always positive. This
immediately gives the bound: (

ua
′

r

)
r

≤ c

r2
. (6.5)

If ua
′

rr (r0) = 0 at some point r0, differentiating (6.1) once we get

1

1 + u2r

(
urrr − 2ur (urr )2

1 + u2r

)
+ n − 1

u2
ur + 1

2
rurr = 0. (6.6)

From this we immediately see that when ua
′

rr (r0) = 0,

uarrr (r0) = −(1 + u2r )
n − 1

u2
< 0,

so every critical point of ua
′

r is a local maximum, for which there can be at most one of them.
Therefore r0 is the only zero of ua

′
rr . In this case, we see from (6.6) that, at any negative local

minimum of ua
′

rr , we have

2ua
′

r

(1 + (ua′
r )2)2

(ua
′

rr )
2 ≤ (n − 1)ua

′
r

(ua′
)2

�⇒ (ua
′

rr )
2

(1 + (ua′
r )2)2

≤ n − 1

2(ua′
)2

≤ c,

where we used (6.3). Going back to (6.4), this yields the same type of uniform upper bound
as (6.5) (up to increase c). Therefore we conclude (6.5) holds for all

∣∣a − a′∣∣ < 1
N .

Integrating (6.5) from r to ∞, we obtain the estimate:

m(a′) − ua
′
(r)

r
<

c

r
,

∣∣a′ − a
∣∣ <

1

N
.

Now given ε > 0 we can pick r0 > 0 such that c/r0 < ε/3 and δ so small that
∣∣a′ − a

∣∣ < δ

implies that
∣∣∣ua′ − ua

∣∣∣ < ε/3 on (0, r0] (this follows from continuous dependence on initial

data as we are now in a compact set). Using the triangle inequality we get that

∣∣m(a) − m(a′)
∣∣ ≤

∣∣∣∣m(a) − ua(r0)

r0

∣∣∣∣ +
∣∣∣∣∣
ua(r0)

r0
− ua

′
(r0)

r0

∣∣∣∣∣ +
∣∣∣∣∣m(a′) − ua

′
(r0)

r0

∣∣∣∣∣ < ε.

This finishes the proof of continuity. �
We are now in the position to prove the existence theorem.

Theorem 6.3 There is an M0 > 0 such that for all M > M0, there exists at least two distinct
values a1, a2 ∈ (0,∞) depending on M such that m(a1) = m(a2) = M.
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Proof We will show that m(a) → ∞ both as a → 0 and as a → ∞. In view of Proposition
6.2 this will prove the theorem.

Let us show that m(a) → ∞ as a → ∞. First of all, we show that uar cannot be
uniformly bounded above. Indeed if uar is uniformly bounded above by some constant C ,
then u − rur ≥ a − C for r ∈ [0, 1] and so urr ≥ 1

2 (a − C) on [0, 1] by (6.1). But then

uar (1) =
√
3

3
+

∫ 1

0
uarr (r)dr ≥

√
3

3
+ 1

2
(a − C) → ∞

as a → ∞, a contradiction.
Recall from the proof of Proposition 6.2 that uarr can have at most one zero. If there is a

sequence ai → ∞ such that uairr has one zero ri , then (6.4) immediately implies that(
uai

r

)
r

> 0, r > ri .

Integrating the above from ri to ∞ we get

m(ai ) >
uai (ri )

ri
. (6.7)

On the other hand, at a zero of urr , (6.1) gives that

uai (ri )

ri
= uair (ri ) − 2(n − 1)

uai (ri )ri
(6.8)

Observe that uair (ri ) = supr u
ai
r (r) because ri is a local maximum of uair and uairr (r) < 0 for

all r > ri . Since u
ai
r is not uniformly bounded, we have that

lim
i→∞

uai (ri )

ri
= lim

i→∞ uair (ri ) − 2(n − 1)

uai (ri )ri
= ∞,

where we also used uai (ri ) > ai . Recalling (6.7), we see that limi→∞ m(ai ) = ∞.
Otherwise there is a0 > 0 such that uarr has no zero for all a > a0. This means that uar is

strictly increasing for all a > a0. Since uar is not uniformly bounded we can find a sequence
ai → ∞ and {ri } ⊂ [0,∞) such that uair (ri ) > i . Of course monotonicity implies that
m(ai ) ≥ uair (ri ) > i . This shows that m(a) → ∞ as a → ∞.

Next we will show that m(a) → ∞ as a → 0 as well. Again we will first argue that uar
cannot be uniformly bounded near 0. Suppose for a contradiction that there is a0 > 0 such
that

∣∣uar ∣∣ ≤ C for all 0 < a < a0, then since uar > 0 we get

ua(r) = a +
∫ r

0
uar (t)dt ≤ a + Cr , a < a0. (6.9)

On the other hand, (6.1) gives that

uarr ≥ n − 1

ua
+ 1

2
(ua − ruar ) ≥ n − 1

2ua
+ √

n − 1 − Cr , a < a0.

In particular for sufficiently small a we can ensure
√
n − 1 ≥ Cr and so that uarr (r) ≥ n−1

2ua(r)
for r <

√
a. Hence, using (6.9), we may estimate

uar (
√
a) ≥

√
3

3
+

∫ √
a

0

n − 1

2ua(r)
dr

≥
√
3

3
+ n − 1

2

∫ √
a

0

1

a + Cr
dr =

√
3

3
+ n − 1

2C
log(1 + Ca− 1

2 ) → ∞
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as a → 0, a contradiction. This shows that uar is not uniformly bounded near 0.
Suppose there is a sequence ai → 0 such that uairr has one zero ri . In view of (6.8), if ri

is bounded away from 0, then taking i → ∞ will give

lim
i→∞

uai (ri )

ri
= lim

i→∞ uair (ri ) − 2(n − 1)

uai (ri )ri
= ∞,

where we used the fact that uai (ri ) ≥ ai +
√
3
3 ri and that uar is not uniformly bounded near 0.

By (6.7), we can conclude m(ai ) → ∞ as i → ∞ as before. So we henceforth assume that
ri → 0 and assume for a contradiction that there is a constant C such that r−1uai (r) ≤ C
uniformly for r ≥ ri . Since ur is decreasing on [ri ,∞) we get

uai (2ri ) ≥
∫ 2ri

ri
uair (t)dt ≥ ri u

ai
r (2ri ) �⇒ uair (2ri ) ≤ uai (2ri )

ri
≤ 2C .

Since uairr (2ri ) < 0, (6.1) gives that

0 <
uai (2ri )

2ri
≤ −2(n − 1)

2ri uai (2ri )
+ uair (2ri ).

Rearranging, we deduce that ri uai (2ri ) ≥ (n − 1)uair (2ri )−1 ≥ 1
2 (n − 1)C−1, and so

2Cr2i ≥ ri u
ai (2ri ) ≥ 1

2
(n − 1)C−1 �⇒ r2i ≥ 1

4
(n − 1)C−2

a contradiction as ri → 0. Hence r−1uai (r) is not uniformly bounded on (ri ,∞), so for each
i we may find r ′

i ∈ (ri ,∞) such that (r ′
i )

−1uai (r ′
i ) > i . (6.7) then implies m(ai ) → ∞ as

i → ∞.
Otherwise uarr has no zero for sufficiently small a and monotonicity as before implies that

m(a) → ∞ as a → 0. This completes the proof. �

7 Further remarks

We conclude our article with some open questions and conjectures, some of which we have
already alluded to before.

The most natural question to ask is what happens if C is rotationally symmetric and the
link L(C) has three (or more) connected components. It is not expected that self-expanders
asymptotic to C will be rotationally symmetric. This should be compared to the case of
minimal surfaces - the Costa surface, which is not rotationally symmetric, has two catenoidal
ends and one planar end. It is therefore natural to expect that something similar happens if
the cone is given by the union of a rotationally symmetric double cone and a hyperplane.
We suspect that gluing method by desingularizing the connected expander (asymptotic to the
cone) with the hyperplane will produce a counterexample.

Another important problem is to determine the entropy of rotationally symmetric double
cones. In fact, we conjecture that the assumption λ[C] < 2 in Corollary 1.2 is redundant
(where as the same assumption in Theorem 1.1 is essential). More precisely we conjecture:

Conjecture 7.1 Let C be a rotationally symmetric double cone of the form:

x21 =
{
m1(x22 + x23 + · · · + x2n ), x1 ≥ 0

m2(x22 + x23 + · · · + x2n ), x1 < 0
,

where m1,m2 > 0. Then λ[C] < 2.
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Whenm1 = m2 = m, observe that whenm → 0, C converges to a multiplicity 2 plane which
has entropy 2, and that when m → ∞, C converges after suitable translations to a cylinder
R × S

n−1 which has entropy strictly less than 2. This also explains why the two connected
components of L(C) need to be in different half-spaces, for otherwise when m is small the
double cone could be close to a multiplicity two cylinder which has entropy strictly larger
than 2.

It is not so hard to calculate the Gaussian area of C at the origin, but unlike self-shrinkers,
the maximum in our case needs not to happen at the origin (the argument for self-shrinkers
can be found in eg. Section 7 of [20]). In fact when m is large, the entropy is achieved far
away from the origin (in a region where the cone looks more like a cylinder). Although we
have strong numerical evidence that the conjecture is true, the analysis of the Gaussian area
functional on the cone centered away from the origin is complicated to handle.

Less clear is the entropy of cones with O(p+ 1)× O(n− p+ 1) symmetry. Ilmanen and
White [32] give an exact formula for the Gaussian density of Cn,p at the origin:

�Cn,p (0) = σpσn−p

σn

( p

n

)p/2
(
n − p

n

)(n−p)/2

,

where σp is the volume of the unit sphere in R
p+1. It can be checked this is less than 2 for

all n, p (the proof is by rather tedious computation so we omit it here, but one can easily
verify by numerics as well). Since Cn,p are minimal, they are also self-shrinkers. It follows
from a theorem of Colding–Minicozzi [20] that the entropy of Cn,p is achieved at the origin.
Hence, in fact, λ[Cn,p] = �Cn,p (0) < 2. For example, the cone C2,1 ⊂ R

4 has entropy 3
2 . It

is therefore reasonable to make the following conjecture, partly due to Solomon:

Conjecture 7.2 [cf. Section 4 of [32]] Any cone with O(p + 1) × O(n − p + 1) symmetry
has entropy at least that of Cn,p and at most 2.

Finally we discuss the rotational symmetry of singular self-expanders. As we remarked
before, the Hopf lemma Theorem B.2 cannot deal with triple junction singularities which are
a possibility as we have seen in Sect.6.

Question 7.3 What can we say about the symmetry of a singular self-expander coming out
of a rotationally symmetric double cone?

In particular, if� is a self-expander asymptotic to Cm (notation as in Sect.6) that is smooth
away from {x1 = 0} and only has triple junction singularities on {x1 = 0}, is � rotationally
symmetric?

It is possible that one can use a parabolic variant of the argument of Bernstein–Maggi [3] for
singular Plateau surfaces (in particular Lemma 2.4 therein) to prove the desired rotational
symmetry.

Acknowledgements I would like to thank my advisor, Jacob Bernstein, for many helpful comments on the
paper and continuous encouragement. I would also like to thank JunfuYao for helpful conversations, Kyeongsu
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Appendix A. Construction of the Smooth Flow

Here we give a more detailed overview of the construction of smooth Morse flow lines from
Sect.5.4. The construction is an adaptation of the work of Bernstein and Wang in a series of
papers, including [5], [11], [10] and [7].
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Throughout the section, we assume C ⊂ R
n+1 is a smooth cone. The first proposition was

originally proven for self-shrinkers in [7] and we give a modified proof for self-expanders.

Proposition A.1 (cf. Lemma 4.3 of [7]) Suppose � is an hypersurface C2,α-asymptotic to C,
and there is N > 0 such that � \ BNR(0) ⊂ TR−1(C) for R > 1. If {�t }t∈[1,T ] is an integral
Brakke flow starting from � in R

n+1, then there is a constant N ′ > 0 such that

�t \ BN ′R
√
t (0) ⊂ TR−1

√
t (C)

for R > 1.

Proof For any x ∈ R
n+1 \ (BNR(0) ∪ TR−1(C)) let

ρ(x) = inf{ρ′ ≥ 0 | Bρ′(x) ∩ (BNR(0) ∪ TR−1(C)) �= ∅}
and let

ρt (x) =
{√

ρ(x)2 − 2n(t − 1) ρ(x)2 ≥ 2n(t − 1)

0 ρ(x)2 < 2n(t − 1)

be the corresponding MCF starting from Bρ(x). Let

Ut =
⋃

ρt (x)>0

Bρt (x)(x).

be the time t slice of the above MCF. Since initially � ∩U1 = ∅ maximum principle implies
that Ut ∩ �t = ∅ for all t ∈ [1, T ). This proves that

�t \ BNR+√
2n(t−1)(0) ⊂ TR−1+√

2n(t−1)(C) (A.1)

since Rn+1 \ (BNR+√
2n(t−1)(0) ∪ TR−1+√

2n(t−1)(C)) ⊂ Ut .

Next we consider the map � : C \ {0}×R → R
n+1 given by �(x, λ) = x +λνC . Choose

λ0 < 1/2 depending on C small enough so that �|L(C)×(−2λ0,2λ0) is a diffeomorphism onto
its image. It follows, since C is a cone, that � is a diffeomorphism on the set {(x, λ) | |λ| <

2λ0 |x |}.
Consider, for some N ′ to be chosen later,

Vt = R
n+1 \ (Ut ∪ BN ′R

√
t (0)).

We first claim that N ′ can be chosen so that y ∈ Vt can be written as x + λ′ |x | νC(x) for
some

∣∣λ′∣∣ < λ0. Indeed, since y /∈ Ut we have that dist(y, C) ≤ R−1 +√
2n(t − 1) provided

we choose N ′ large enough so that

N ′R
√
t > N R + √

2n(t − 1).

Let x be the nearest point projection of y onto C, then using R > 1 we have that

|y − x |
|x | ≤ 1 + √

2nt

N ′√t − 1 − √
2nt

= (
√
t)−1 + √

2n

N ′ − (
√
t)−1 − √

2n
<

1 + √
2n

N ′ − 1 − √
2n

< λ0

provided we choose N ′ large depending on n only. Hence the claim holds.
Let y ∈ �t \ BN ′R

√
t (0) ⊂ Vt . We claim that, up to further increasing N ′, dist(y, C) <

R−1√t and this will finish the proof. To this end consider y0 = x + λ0 |x | νC . We have that

|y0| = |x + λ0 |x | νC | =
√
1 + λ20 |x | > N R + λ0 |x | − 1

3
R−1,
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if N ′ is chosen large enough so that

|x | ≥ (N ′R − √
2n)

√
t − R−1 > 4N R − R−1,

where we used the fact that
√
1 + λ20−λ0 > 1

3 . This implies that Bλ0|x |−R−1(y0)∩BNR(0) =
∅. Since dist(y0, C) = λ0 |x | we conclude that

ρ(y0) = λ0 |x | − R−1.

Increasing N ′ if necessary we can also ensure that

λ0 |x | − R−1 >
√
2n(t − 1).

Since y /∈ Bρt (y0)(y0) ⊂ Ut we can estimate

dist(y, C) ≤ dist(y0, C) − ρt (y0) = λ0 |x | −
√

(λ0 |x | − R−1)2 − 2n(t − 1).

To finish the proof we compute, for large N ′,

(λ0 |x | − R−1√t)2 − ((λ0 |x | − R−1)2 − 2n(t − 1))

= 2R−1λ0 |x | (1 − √
t) + R−2(t − 1) + 2n(t − 1)

= R−1(
√
t − 1)(−2λ0 |x | + (R−1 + 2nR)(

√
t + 1)) ≤ 0.

which is equivalent to

λ0 |x | − R−1√t ≤
√

(λ0 |x | − R−1)2 − 2n(t − 1) �⇒ dist(y, C) ≤ R−1√t

provided N ′ is chosen large enough so that

λ0 |x | ≥ (N ′R − √
2n)

√
t − R−1 ≥ (R−1 + 2nR)

√
t .

�
The next proposition shows the desired regularity for an asymptotically conical MCF.

Since the proof is used repeatedly in our presentation, we have also included a proof for the
sake of completeness. In the proof we will use the notation [ f ]α;� to denote the α-Hölder
seminorm of f on � (note � could be a subset of Rn+1 or a time interval), i.e.

[ f ]α;� = sup
x,y∈�,x �=y

| f (x) − f (y)|
|x − y|α .

Proposition A.2 (Lemma 5.3(2) of [10]) Suppose � is an hypersurface C2,α-asymptotic to
C and let {�t }t∈[1,T ) be a MCF starting from �. If there is N > 0 such that �1 \ BNR(0) ⊂
TR−1(C) for all R > 1, then there is N ′ > 0 such that �t \ BN ′√t (0) can be written as
a (smooth) normal graph over C \ BN ′√t (0). In particular we have the uniform curvature
bound

sup
t∈[1,T )

sup
�t\BN ′√t

∣∣A�t

∣∣ < ∞.

Proof Fix t ∈ [1, T ) and let δ > 0. Since � is asymptotically conical, by Proposition 5.2
there is N1 and ε > 0 depending on δ such that for any x0 ∈ C \ BN1(0), �1 ∩ Cη(x0) can
be written as a graph f̃x0(x) over some neighborhood of x0 in TxC containing Bn

η (x0). Here
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η = ε |x |. Moreover up to increasing N1 we can ensure Proposition A.1 holds, and that f̃x0
satisfies the estimates

2∑
i=0

η−1+i sup
Bn

η (x0)
|∇ i f̃x0 | + r1+α[∇2 f̃x0 ]α < δ (A.2)

By pseudolocality of MCF (Theorem 1.5 in [31]), given ε > 0, there is N1 > 0 such that for
every x0 ∈ �1 \ BN1(0) and s ∈ [1, t], �s ∩Cη/2(x0) can be written as a normal graph over
�1 ∩ Bn

η/2(x0). Combining the above two facts, we see that for sufficiently small δ and ε,
�s ∩Cη/2(x0) can be written as the graph of a function fx0(s, x) over some neighborhood of
Tx0C for all s ∈ [1, t] and x0 ∈ C \ BN1(0). Moreover, fx0 satisfies the pointwise estimates

(η/2)−1 sup
Bn

η/2(x0)

∣∣ fx0(s, ·)∣∣ + sup
Bn

η/2(x0)

∣∣∇x fx0(s, ·)
∣∣ < 1.

For the rest of the proof we fix an x0 and put f = fx0 . Since {�s}s∈[1,t] is a graphical MCF
near x0, f satisfies the evolution equation:

∂ f

∂s
=

√
1 + |∇x f |2 div

(
∇x f√

1 + |∇x f |2
)

.

This is a quasilinear parabolic equation, so we may use Hölder estimates (eg. Theorem 1.1
in Chapter 4 of [35]) to get that

sup
s∈[1,t]

[∇x f (s, ·)]α;Bη/4(x0) + sup
Bn

η/4(x0)
[∇x f (·, x)]α/2;[1,t] ≤ C(η/4)−α.

for any α ∈ (0, 1). Standard Schauder estimates (see eg. Chapter 5 of [34] or Theorem 5.1
in Chapter 4 of [35]) yield higher order estimates of the form

2∑
i=0

(η/8)i−1 sup
Bn

η/8(x0)

∣∣∣∇ i f (s, ·)
∣∣∣ + (η/8)1+α[∇2 f (s, ·)]α;Bη/8(x0) ≤ C

for s ∈ [1, t] and
sup

x∈Bn
η/8(x0)

[∇x fx0(s, x)] 1
2 ;[1,t] ≤ C(η/8)−1.

From the above we may estimate∣∣ fx0(s, x) − fx0(1, x0)
∣∣ ≤ C(s − 1)(η/8)−1 + δ |x − x0| + C(η/8)−1 |x − x0|2

where we also used the evolution equation and the fact that |∇x f (1, x0)| < δ from (A.2).
These implies that, for ρ < 1/8, a fixed s ∈ [1, t] and x0 ∈ C \ BÑ

√
s(0),

(ρη)−1 sup
x∈Bn

ρη(x0)
| f (s, x)| ≤ (ρη)−1N1 |x0|−1 + C(s − 1)ρ−1η−2 + δ + Cρ

≤ (ρε)−1N1

Ñ 2s
+ C(s − 1)ρ−1

Ñ 2s
+ δ + Cρ

where we used that | f (1, x0)| < N1 |x0|−1 by Proposition A.1. The right hand side of the
above equation can be made arbitrarily small provided we choose δ and ρ small enough and
Ñ large enough. Similarly we can estimate the derivative∣∣∇x0 fx0(s, x) − fx0(1, x0)

∣∣ ≤ C(η/8)−1 |x − x0| + C(η/8)−1
√
s − 1
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and

sup
x∈Bn

ρη(x0)
|∇x f (s, x)| ≤ δ + Cρ + C

√
s − 1

Ñ
√
s

which can be made arbitrarily small as well. These two decay estimates together with
Schauder estimates above with η/8 replaced by ρη give

2∑
i=0

(η/8)i−1 sup
Bn

η/8(x0)

∣∣∣∇ i f (s, ·)
∣∣∣ + (η/8)1+α[∇2 f (s, ·)]α;Bη/8(x0) ≤ 1

2
+ C(ρ + ρ1+α)

which can be made to be less than 1 provided ρ is chosen small enough. This proves that
�t ∩Cρη(x0) is a graph over (a neighborhood of) Tx0C for x0 ∈ C \ BÑ

√
t (0) with derivative

bounds up to the second order. The curvature bounds follow easily, and higher order bounds
follow similarly using Schauder estimates. �

Given a MCF {�t }t∈I , the expander mean curvature of �t is

E�t (x) = 2t H�t + 〈
x, ν�t

〉
.

We say {�t } is expander-mean-convex if the E�t (x) > 0 along the flow. For a fixed time t
and a hypersurface �, the relative expander mean curvature of � is

Et
�(x) = 2t H� + x⊥.

For β > 0 define the auxiliary function gβ : R+ → R
+ by

gβ(s) = s−βe−βs .

We now prove the main existence theorem for expander-mean-convex hypersurfaces without
entropy bound.

Theorem A.3 (Existence Theorem, cf. Proposition 5.1 of [10]) Let� be a hypersurface C2,α-
asymptotic to C with no closed components. Suppose that there is N such that � \ BNR(0) ⊂
TR−1(C) and that there is c, β > 0 such that

E�(x) ≥ cgβ(1 + |x |2) > 0, x ∈ �.

Then there exists a unique MCF {�t }t∈[1,T ) with �1 = �, where T is the first singular time
(possibly ∞). Moreover the MCF satisfies

(1) �t is C2,α-asymptotic to C for all t ∈ [1, T ).
(2) E�t (x) > cgβ(1 + |x |2 + 2n(t − 1)) for all t ∈ [1, T ) and x ∈ �t .
(3) If T < ∞, we have

lim
t→T

sup
�t∩BN ′√t

∣∣A�t

∣∣ = ∞.

Proof Consider the map � : � × (−ε, ε) → R
n+1 given by

�(x, λ) = x + λν�.

Since � is asymptotically conical, we can choose ε sufficiently small so that the above map
is a diffeomorphism onto its image for every λ ∈ (−ε, ε). Using this parametrization we
can invoke standard existence theorem for MCF to conclude that there exists a unique MCF
starting from �1 = �. For the properties, Item (1) and (3) follow from Proposition A.2, and
Item (2) is Lemma 5.4 of [10].
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Given an unstable self-expander � asymptotic to C, we wish to apply Theorem A.3 to the
perturbed self-expander �ε defined by

�ε = �ε(�) where �ε(x) = x + ε f (x)ν�.

It remains to check that �ε satisfies the assumption of Theorem A.3. We need the following
C0-estimate on the first eigenfunction f .

Lemma A.4 (Proposition 3.2 of [5]) Let� be an unstable connected self-expander. Let f be
the unique positive eigenfunction of L� with eigenvalue μ1 < 0 and ‖ f ‖W 0

1/4(�) = 1. Then

f satisfies the following C0 estimate:

C−1(1 + |x |2)− 1
2 (n+1−2μ1)e− |x |2

4 ≤ f ≤ C(1 + |x |2)− 1
2 (n+1−2μ1)e− |x |2

4 .

where C = C(�).

Lemma A.4 and Proposition 5.2 imply that there exists N > 0 such that �ε \ BNR(0) ⊂
TR−1(C) for R > 1, so the first condition to apply TheoremA.3 is satisfied. Finally we need to
show that perturbing by thefirst eigenfunction produces a hypersurfacewith positive expander
mean curvature. This relies on the fact that −L� is the linearization of the self-expander
equation.

Lemma A.5 Let � be a connected self-expander C2,α-asymptotic to C. Let f be the unique
positive eigenfunction corresponding to μ1 of L� with ‖ f ‖W 0

1/4(�) = 1. Then there exists

ε0 > 0 such that for all |ε| < ε0 there is β = β(ε) such that

E�ε (x) ≥ cgβ(1 + |x |2).
Here �ε is the image of � under the map �(x) = x + ε f (x)ν� .

Proof By Lemma A.2 of [11] we have (the computation is long, but the result should be
standard),

E�ε (x) = −εL� f + ε2Q( f , 〈x,∇� f 〉 ,∇� f ,∇2
� f )

for some homogeneous quadratic polynomial Q with bounded coefficients. When ε > 0, it
follows from Lemma A.4, that, up to further shrinking ε,

E�ε (x) ≥ εμ1C
−1(1 + |x |2)− 1

2 (n+1−2μ1)e− 1+|x |2
4 ≥ cgβ(1 + |x |2)

where β = 1
2 (n + 1 − 2μ1) > 0. The case ε < 0 can be handled similarly.

Lemma A.5 shows that �ε satisfies the second condition of Theorem A.3 for sufficiently
small ε. As such, Theorem A.3 can be applied to conclude the short-time existence of an
expander mean-convex MCF starting from �ε.

Appendix B. Maximum principles

Here we record the maximum principles from Section 3 of [18] for Brakke flows. These are
the essential tools in applying the moving plane method without smoothness. If M is an
integral Brakke flow and X = (x0, t0) ∈ suppM, the Gaussian density at X is

�M(X) = lim
ρ→0

1

(4πρ2)n/2

∫
Mt0−ρ2

e
− |x−x0|2

4ρ2 dHn .
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�M(X) is well-defined by Huisken’s monotonicity formula. Observe that an entropy upper
bound automatically gives upper bounds on all Gaussian densities.

Theorem B.1 (Maximum principle for Brakke flows, Theorem 3.4 of [18]) Let M be a
smooth MCF defined in a parabolic ball P(X , r), where X = (x0, t0) ∈ suppM and r > 0
is sufficiently small such that suppM separates P(x, r) into two open connected components
U and U ′. Let M′ be an integral Brakke flow in P(X , r) with X ∈ suppM′ and Gaussian
density �X (M′) < 2. If suppM′ ⊂ U ∪ suppM, then X is a smooth point forM′, andM′
agrees with M in a small parabolic ball.

Theorem B.2 (Hopf lemma for tame Brakke flows, Theorem 3.19 of [18]) Let M and M′
be two integral Brakke flows defined in a parabolic ball P(X , r) where X = (x0, t0) ∈
suppM ∩ M′. Suppose X is a tame point (see Definition 3.1) for both M and M′ and let
H ⊂ R

n+1 be an open half space with x0 ∈ ∂H. If in addition ∂H is not the tangent flow to
eitherM orM′, and regMt ∩H and regM′

t ∩H are disjoint for t ∈ (t0 − r2, t0), thenM
and M′ are smooth at (0, 0) with distinct tangents.

We remark that in contrast to the usual smooth maximum principle and Hopf lemma, the
smoothness is in fact a conclusion in both of the statements above.
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