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Abstract

A reaction—diffusion—advection predator—prey model with Holling type-II predator functional
response is considered. We show the stability/instability of the positive steady state and the
existence of a Hopf bifurcation when the diffusion and advection rates are large. Moreover,
we show that advection rate can affect not only the occurrence of Hopf bifurcations but also
the values of Hopf bifurcations.

Mathematics Subject Classification 37G15 - 35K57 - 92D25

1 Introduction

The influence of environmental heterogeneity on population dynamics has been studied
extensively. For example, environmental heterogeneity can increase the total population size
for a single species [21]. For two competing species in heterogeneous environments, if they
are identical except dispersal rates, then the slower diffuser wins [7], whereas they can
coexist in homogeneous environments. The global dynamics for the weak competition case
was investigated in [19, 21], and it was completely classified in [12]. The heterogeneity of
environments can also induce complex patterns for predator—prey interaction models, see [9,
10, 20] and references therein.

In heterogeneous environments, the population may have a tendency to move up or down
along the gradient of the environments, which is referred to as a “advection” term [2]. That
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is, the random diffusion term d Au is replaced by
dAu —aV - (uVm(x)), (1.1)

where d is the diffusion rate, « is the advection rate, and m (x) represents the heterogeneity
of environment. The effect of advection as (1.1) on population dynamics has been studied
extensively for single and two competing species, see, e.g., [1-6, 16, 17, 22, 45]. There also
exists another kind of advection for species in streams, and the random diffusion term du
is now replaced by

duyy — oy, (1.2)

where ou, represents the unidirectional flow from the upstream end to the downstream end.
It is shown that, if the two competing species in streams are identical except dispersal rates,
then the faster diffuser wins [23, 26, 27, 44]. In [24, 33, 37, 39, 42], the authors showed the
effect of advection as (1.2) on the persistence of the predator and prey. One can also refer to
[13-15, 18, 28-30, 32, 36] and references therein for population dynamics in streams.

As is well known, periodic solutions occur commonly for predator—prey models [31], and
Hopf bifurcation is a mechanism to induce these periodic solutions. For diffusive predator—
prey models in homogeneous environments, Hopf bifurcations can be investigated following
the framework of [11, 43], see also [8, 35, 40, 41] and references therein. A natural ques-
tion is how advection affects Hopf bifurcations for predator—prey models in heterogeneous
environments.

In this paper, we aim to give an initial exploration for this question, and investigate the
effect of advection as (1.1) on Hopf bifurcations for the following predator—prey model:

u,:V-[d1Vu—a1uVm]+u(m(x)—u)—ﬂ, xe,t>0,

14+ u
—dyAv— o4 xeQ, 150
Uy = a2QAv —rv T+ , s (1.3)
dy0,u — oqud,m =0, d,v=0, x€d, t>0,
u(0, x) = ug(x) = 0,v(0,x) = vo(x) >0, x € Q.

Here € is a bounded domain in RY (1 < N < 3) with a smooth boundary 8%; n is the
outward unit normal vector on 9€2, and no-flux boundary conditions are imposed; u(x, t)
and v(x, t) denote the population densities of the prey and predator at location x and time
t, respectively; dy, dy > 0 are the diffusion rates; oy > 0 is the advection rate; [ > 0 is the
conversion rate; r > 0 is the death rate of the predator; and the function u /(1 + u) denotes
the Holling type-II functional response of the predator to the prey density. The function m(x)
represents the intrinsic growth rate of the prey, which depends on the spatial environment.
Throughout the paper, we impose the following assumption:

(H)) m(x) € C2(Q), m(x) > ()0 in €, and m(x) is non-constant.

dy ag
Hy) —=6>0and — =a > 0.
dy d;

Here (H;) is a mathematically technical condition, and it means that the dispersal and advec-
tion rates of the prey and predator are proportional. Then letting &i = e~ *"®y, f = dit,
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denoting A = 1/d;, and dropping the tilde sign, model (1.3) can be transformed to the
following model:

U = e MMy . [e"m(x)Vu] + Au (m(x) — M)y #) , xe€Q, >0,
I+ eamto
l am(x)
v,:@Av—l—Av(—r—}—H), xeQ, t>0,
1+eam(x)u
Opu = 0,v =0, x €d, t >0,
u(0, x) = up(x) = 0,v(0, x) = vo(x) = 0, x e,
(1.4)

where 6 and « are defined in assumption (H»).

We remark that model (1.3) with «; = 0 (or respectively, model (1.4) with o = 0)
was investigated in [25, 38], and they showed that the heterogeneity of the environment can
influence the local dynamics, and multiple positive steady states can bifurcate from the semi-
trivial steady state by using d, d» (or respectively, 1) as the bifurcation parameters. In this
paper, we consider model (1.4) for the case that @ # 0 and 0 < A < 1. We show that when
0 < X < 1, the local dynamics of model (1.4) is similar to the following “weighted” ODE:s:

eam(x)u
u,/ MOy =y <f " (x)dx — u/ ezo‘m(x)dx> - v/ ——dx,
Q Q Q o 1+ ey

lv em(x) y
vyy=—rv+— [ ———dx.
12| Jo 1T+ eam@y
(1.5)

A direct computation implies that model (1.5) admits a unique positive equilibrium (coz, gor)
if and only if [ > [, where (cq;, qo;) and ! are defined in Lemma 2.1. From the proof of
Lemma 3.4, one can obtain the local dynamics model (1.5) as follows:

(1) If 7 () < 0, then the positive equlllbrlum (cor, gor) of model (1.5) is stable for [ > I
@i1) If 7 (@) > O, then there exists [y > I such that (cor, gor) is stable forl <1 < lp and
unstable for [ > Iy, and model (1.5) undergoes a Hopf bifurcation when [ = [j.

Here 7 () and [y are defined in Lemma 3.3. Similarly, model (1.4) admits a unique positive
steady state (u™D, v*D) for (1, 1) € [[+€, 1/€]x (0, 8] with0 < € < 1, where 5. depends
on € (Theorem 2.5), and admits similar local dynamics as model (1.5) when ! € [[ + €, 1/¢]
and 0 < A < 1 (Theorem 3.10), see also Fig. 1. Moreover, we show that the sign of 7 («)
is key to guarantee the existence of a Hopf bifurcation curve for model (1.4). We obtain that
if fQ(m(x) — 1)dx < O0and {x € Q : m(x) > 1} # (J, then there exists oy, > 0 such that
T(ay) =0,7T(x) <0for0 <o < ay,and 7 () > 0 for @ > a4 (Theorem 4.2). Therefore,
the advection rate affects the occurrence of Hopf bifurcations (Proposition 4.3). Moreover,
we find that the advection rate can also affect the values of Hopf bifurcations (Proposition
4.4).
For simplicity, we list some notations for later use. We denote

X ={ue H*(Q)]du=0} and ¥ = L*(Q).
Denote the complexification of a real linear space Z by

Zc:=Z ®iZ = {x1 +ixz|x1, x2 € Z},
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/
1/e 1/e
(ull‘”’ vMJ] )

is unstable

(u(m’vu,z)) . .
~{, a Hopf bifurcation curve

is stable
L (w0,
~ R is stable
[ +e¢ [ +¢ !
o A(ae) P 0 Kl(a.€) A

Fig.1 Local dynamics of model (1.4) for (I, 1) € [l +e, 1/€] x (0, Xj (o, €)) with 0 < € < 1. Here )~Lj (o, €)
means that Xj depends on « and € for j = 1, 2. (Left): 7 («) < 0; (Right): 7 () > 0

the kernel and range of a linear operator 7 by N (T) and R(T), respectively. For Y, we
choose the standard inner product (u, v) = fQ u(x)v(x)dx, and the norm is defined by
lulla =, )3

The rest of the paper is organized as follows. In Sect. 2, we show the existence and
uniqueness of the positive steady state for a range of parameters, see the rectangular region
in Fig. 1. In Sect. 3, we obtain the local dynamics of model (1.4) when (I, 1) is in the above
rectangular region. In Sect. 4, we show the effect of advection on Hopf bifurcations.

2 Positive steady states

In this section, we consider the positive steady states of model (1.4), which satisfy the
following system:

_Vv. I:eam(x)vu] — )\e[xm(x)u m(x) _ eam(x)u _ v Y e
1 4 exm@)y J’ ’
1 am(x)
“OAv = 2 <_,+e”>, req. @D
1 + exm)y
opu = dpv =0, x € 0Q.
Denote
L:=V. [e“'"@)v] , 2.2)

and we have the following decompositions:

X=N()& X1 =N(L) ® X1,

2.3
Y=NQA)®Y =N(L)DY, 23
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where
Xlz{yeX:/y(x)dxzo},
@ 2.4)
=R(A)=R(L) = {er:/y(x)dx:O}.
Q
Let
u=c+é&, where c:%/ udx € R, & € Xy,
12| Jo (2.5)

1
v=g+n, where q:—/vdxeR, ne Xi.
12 Jo

Then substituting (2.5) into (2.1), we see that (u, v) (defined in (2.5)) is a solution of (2.1)
if and only if (c,q,&,n) € R2 x X% solves

F(e.q.6. 0.1, = (fi, fo, f3. [0 =0, (2.6)
where F(c,q,& n,1,2) : R? x X2 x R> - (R x ¥})?, and
. am(x) _am(x) _ %
fl(quaéaUaL)\) = Le )L (C+$) (m(x) e (C+$) 1+eotm(x)(c+§:))dx’
fZ(C’qséan’)t) = é_@fl .
am(x) _ poam(x) — 4777
+2e (c+8&)|mix)—e (c+8) 1+eam(x)(c+g)>’

fale,q, 8, 1,1, %) :

leanl(x)(c+%-)
/Q (g+m (—r LIPS D1 E) dx

leam(x)(c_i_%-)
,q, 8,1, = 6A A — R — —
fale,q, 6, 1,1, 2) n+ (61+n)< r+1+eam<ﬂ(c+g) IQlfg
2.7
We first solve F(c,q,&,n,1,1) =0forx =0.
Lemma 2.1 Suppose that A = 0, and let
MO (x)dx - Q
¢ oM Om0dx #. 2.8)
f e2am(x) g Geom(x)
g Q Teamto 4

Then, for anyl > 0, F(c,q,&,n,1,X) = 0 has three solutions: (0,0, 0, 0), (¢, 0,0, 0) and
(cor, qoi, 0, 0), where (cor, qor) satisfies

core®™®) r
/ —dx = - |Q],
a 1+ corem@) l

Leor M) (m(x) — cozeam(“‘)) dx.
r|2

(2.9)

qor =

Moreover, cor, qoi > 0 if and only if | > I
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Proof Substituting A = 0 into f> = 0 and f4 = 0, respectively, we have &£ = 0 and n = 0.
Then substituting £ = n = O into f; = 0 and f3 = 0, respectively, we have

c/ ") 1 (x) — ce®™® — # dx =0,
Q 1 + ceamx)

fp— (2.10)
/;Zq —r + m dx = 0.

Therefore, (2.10) has three solutions: (0, 0), (¢, 0), (cor, gor), where ¢ is defined in (2.8), and
(cor, qor) satisfies

eotm(x) mx) — ¢ eam(x) _ L dx =0,
/Q ( ) 0l 1+C0]eam(x)

™) @.11)
/Q —r + W dx = 0

A direct computation implies that co; and go; satisfy (2.9). By the second equation of (2.9),
we see that co7, go; > 0 if and only if 0 < cg; < ¢. It follows from the first equation of (2.9)
that

d

O~ 0 and lim co = 0.

dl [—00

Then we obtain that 0 < ¢o; < ¢ if and only if / > I, where [ is defined in (2.8). This

completes the proof. O

We remark that [ is the critical value for the successful invasion of the predator for model
(1.4) with 0 < A < 1 (or respectively, (1.5)). In the following we will consider the mono-
tonicity of [ with respect to o and show the effect of advection rate on the invasion of the
predator.

Proposition 2.2 Let [(t) be defined in (2.8). Then

s Q+V
I(a) > W forall o >0, (2.12)

where

Jo M) (x)dx Jo M) g x

Vi) = Tty

(2.13)

Moreover, the following statements hold:
@ 7'(@la=o < 0:

(1) If limy— oo V() =0, then limy— +00 l~(a) = o0. Especially, if @ = (0, 1) and m’ (x) >
0 (or respectively, m'(x) < 0) for all x € [0, 1], then limy_, 1o V() = 0.

. . X . . . .
Proof Since function 1 is concave, it follows from the Jensen’s inequality that

+x

1 E(a)e@m® oy Jo E@)e™Wdx
- * x < ’
1] Jo 14 &(a)em L+ & Jq éa)eem @ dx

where ¢(«) is defined in (2.8). This combined with (2.8) implies that (2.12) holds.
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(i) We define
~ am(x) 1
Fl@) = f e~ el - / S S—
o 1+ ¢(a)exm) o 14 é(a)erm)
~ || . L
and consequently, /(«) = ﬁ A direct computation yields
o

2
F(0) = < . [|9|/ m?(x)dx — (/ m(x)dx) }
(12 + [om(x)dx) Q Q

Since m(x) is non-constant, it follows from the Holder inequality that 7 (0) > 0, and
consequently I/(0) < 0.

(i) By (2.12), we see that limy—, 100 [(2r) = 00 if limg_, 0 V (@) = 0. Next, we give a
sufficient condition for limy_, o V (@) = 0. We only consider the case that m’(x) > 0 for all
x € €2, and the other case can be proved similarly. Since

1 1 !
/ eotm(x)dx _ / eam(x)m/(x)de — / eam(x);dm(x),
0 0 m’(x) 0 m’(x)
which implies that

eam(l) _ eam(())

e(xm(l) _ eotm(())
_— </ S B —

/ = = . / .
o max m'(x) 0 o min m (x)

x€[0,1] Rt
Therefore,
/ 1 0 2
2[m(x)llos ( max_m’(x)) (eam< ) _ gom( >>
x€[0,1]
Vi) < 7
o( min m/(x))2 (eZOtm(l) _ eZotm(O))
x€[0,1]

which yields limy— 400 V() = 0. .

It follows from Proposition 2.2 that I() is strictly monotone decreasing when « is small,
and it may change its monotonicity at least once under certain condition. We conjecture that
I (v) changes its monotonicity even for general function m(x) and all > > 0.

Now we solve (2.6) for A > 0 by virtue of the implicit function theorem.

Lemma 2.3 Foranyl, > lN, where [ is defined in (2.8), there exists 51* > 0, a neighborhood
Oy, of (coi, qoi,» 0,0) in R? x X %, and a continuously differentiable mapping

Gy > (€0, gD 0D 00 110,81 x [y = 801y + 8.1 > B2 x X}

such that (cf)"l), g, %'()"l), 770:’1)) € R? x X% is a unique solution of (2.6) in Oy, for
A D €0,68,1 % [le —8,, L« + 81,]. Moreover,

(e, qD, €40, 7%D) = (cor.. qoi.» 0,0) for (1) = (O, 1).

Here co; and qo; are defined in Lemma 2.1.
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Proof It follows from Lemma 2.1 that
F(cor,, qo1,,0,0,1:,0) =0,
where F is defined in (2.6). Then the Fréchet derivative of F with respect to (c, g, &, n) at
(cot,» qoi,. 0,0, L, 0) is as follows:
G4, &, 7) = (21,8285 80",
where ¢, g € R, .§, n € Xy, and

AN E Ay am(x) _ am(x) _ 401, ~ 2
g1(¢,q.§,1) = /Qe (m(x) 2cq, e (1+col*e°""(x))2>(c+$)dx

o e
_/g T cqp eam@ (@ T 14X,
2.4, 7)== LE,

A poa Legor, e™™™) (A .
Gk [ ),
§3(¢. q.§.1) /Q(lJFCOI*em(x))Q c+é&)dx

Licor, ™™ FU
+/s2 (—r 1 + cop, €™ @+ mdx.

g4(6,4,6,1) = OAR.

If G, §,E,%) =0, then € = 0 and # = 0. Substituting £ = # = 0 into g; = 0 and
g3 = 0, respectively, we have

(P, 9T = (0,07,

where
Py :/ MO m (x)dx — 2co; / MO dx — go; / —eam(X) dx
Q “Ja “Jo (14 cope@m)2
cor €™ r|Q
Pl2:_/ 0L, dx:—| |7
o 1+ cop em™) Ly

/ eozm(x)
Py :/ x40l dx.
a (1 + cop exm)?

l*COI*eam(x)
Py = —r+ ——— |dx =0.
Q 1 4+ co, eam(x)
Noticing that

qor, ™™

det(P;;) = r|Q| o W

dx #0,

we obtain that ¢ = 0 and § = 0. Therefore, G is injective and thus bijective. Then, we can
complete the proof by the implicit function theorem. O

By virtue of Lemma 2.3, we have the following result.

Theorem 2.4 Assume that I, > I, where [ is defined in (2.8). Let

uD = 0D gD 0D = O g 0D for 1) €10, 8,1 x [y — 81, L + 81,1,
(2.14)
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where 0 < §;, < 1, and (c()"l), gD, gD, n()"”) is obtained in Lemma 2.3. Then
(u(}"l), v(}"l)) is the unique positive solution of (2.1) for (A, 1) € (0, 8,1 x [lx — 81, L+ + 81, ].
Moreover,

(c“)’”, gD, £OD, n“””) = (cor. q0r, 0,0) for 1 €[l =8, L +8,], (215
where co; and qo; are defined in Lemma 2.1.

Proof It follows from Lemma 2.3 that when §;, < Sl*, (u(”), v(”)) is a solution of (2.1)
for (A, 1) € (0,6;,] x [« — 61, L« + 8., ], and

: ) ) : 2
(A.I)ILHgOZ*) (u( ), v )) = (cor,. qo1,) in X7,

Note from Lemma 2.1 that ¢y, , gor, > 0 if [, > [. Then (u(”), v(”)) is a positive solution
of (2.1) for (A, 1) € (0,8;,]1 X [l — &1, Lx + 8,1 with0 < §;, < 1.

Next, we show that (u®", v*D) is the unique positive solution of (2.1) for (A1) €
0,8,1 x [lx =84, L« + 8,1 with 0 < §;, < 1. If it is not true, then there exists a sequence
{(uk, [))Z2 | such that

0<M <1, |k =LK1, lim (g, ) = (0, 1), (2.16)
k— 00
and (2.1) admits a positive solution (u, vx) for (A, 1) = (Ak, Ix) with

(g, 1) # (W0, p000) 2.17)
It follows from (2.3) that (u, vx) can also be decomposed as follows:
up = ck + &, vk =gk +nk, where ci, qx € R, &, nr € X1.
Plugging (u, v, A, 1) = (ug, vk, Ak, lx) into (2.1), we see that
fi (¢k» Gk &y My Lk, M) =0 for i =1,2,3,4, (2.18)
where f; (i =1, 2, 3, 4) are defined in (2.7). It follows from (2.1) that
— Lug < ;e ug m(x) — up)

Ik / M)y (m(x) - e"”"(x)uk> dx = r/ vidx,
Q Q

where we have used the divergence formula to obtain the second equation. From the maximum
principle and the first equation of (2.19), we have

(2.19)

0 <ux <maxm(x) for k> 1. (2.20)

xe
This, together with the second equation of (2.19), implies that
l
/ vpdx <Py = Mmaxm(x) MO (x)dx for k > 1.
Q r xeQ Q

Here we remark that max,>1 [y < oo from (2.16). Consequently,

P
inf ve <Py = — for k> 1. 2.21)
xeQ €2
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Note from (2.1) and (2.16) that
—0Avg +rvg > —0Av, + Agrvg > 0.

where we have used 0 < A; < 1 (see (2.16)) for the first inequality. Note that €2 is a bounded
domainin RN with 1 < N < 3. Then we see from [34, Lemma 2.1] that there exists a positive
constant Cy, depending only on r and €2, such that

lvell, < Co inf v = CoPs for k > 1, (2.22)

xeQ

where we have used (2.21) in the last step.
Note from (2.20) and (2.22) that {u}2 | is bounded in L°°(£2), and {vi};2 | is bounded
in Lz(Q). Since limg_, oo Ay = 0, we see from (2.18) with i = 2, 4 that

lim L& =0 and lim An; =0 in Y7,
k— 00 k— 00
which implies that
lim & =0 and lim n =0 in X;. (2.23)
k— 00 k— 00

Here X and Y| are defined in (2.4). By (2.5), (2.20) and (2.22), we see that

1 /‘ 1
¢k =— | updx and gqp = —/ vrdx,
2] Jo 12 Jo

and {cx}72 |, {gk )z are bounded. Then, up to a subsequence, we see that
lim ¢, =c*, lim ¢ = q*.
k— 00 k— 00

Taking the limits of (2.18) with i = 1, 3 on both sides as k — oo, respectively, we obtain
that (¢*, ¢*) satisfies (2.10) with [ = [,.
We first claim that

(c*.q%) # (0,0).

Suppose that it is not true. Then by (2.23) and the embedding theorems, we see that, up to a
subsequence,

klim (ug, vr) = (0,0) in C?(Q) forsome 0 <y < 1.
— 00

This yields, for sufficiently large k,

l am(x)
/ ve | —r + ke Mk dx < 0.
Q 1+ eam(x)uk

Substituting (u, v, A, ) = (ug, vk, Ak, lx) into (2.1), and integrating the result over €2, we

obtain that
1 am(x)
/ vk _r+u dx =0,
o 1+ @m0y

which is a contradiction. Next, we show that

(c*.q%) # (€, 0).
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By way of contradiction, (c*, ¢*) = (¢, 0). Similarly, by (2.23) and the embedding theorems,
we see that, up to a subsequence,

lim (ug, vi) = (¢,0) in CY(Q) forsome 0 <y < 1.
k— 00

From the second equation of (2.1), we have

l am(x) \v/ 2
_r|9|+/ ™ / | ”;' dx < 0. (2.24)
o 14 exm@y, Ak v

Then taking k — oo on both sides of (2.24) yields

r|€2| =
ly < ——— =l,

Ceotm(v)
Jo Tyzzmmd
which is a contradiction.
Therefore,

li , = , .
Jim (ck q1) = (cor,- qo1,)
This, combined with (2.23) and Lemma 2.3, implies that, for sufficiently large k,

(cw,lk)’ g0l | Gt nw,lk)) ,

(cks qr» &k k) = . q

and consequently, for sufficiently large k,

(g, vi) = (u()uk,lk)’ v(xk,zk)) .

This contradicts (2.17), and the uniqueness is obtained.
By using similar arguments as in the proof of the uniqueness, we can show that, for any
Lell =6, L« + 4,1,

Ali_% (c(x,z)vq(x,z)gw)’ nw)) = (cor, go1, 0,0) in R? x X%.

Note from Lemma 2.3 that (c(”), g*b g*D, r](”)) is continuously differentiable for

1) €[0,6,,] x [« = é,, 1« + 8,,]. Then we see that (2.15) holds. This completes the
proof. O

From Theorem 2.4, we see that (2.1) adn}its a unique positive solution when (I, 1) is in a
small neighborhood of (/,, 0) with /, > [. In the following, we will solve (2.1) for a wide
range of parameters, see the rectangular region in Fig. 1.

Theorem 2.5 Let L := [IN—{— €, 1/e], where 0 < e < 1 and [ is defined in Lemma 2.1. Then
the following statements hold.

(1) There exists ¢ > 0 such that, for (A, 1) € (0,38¢] x L, model (2.1) admits a unique
positive solution (u®D |y,

(i) Ler u©@D, y©ODy = (cot, qor) forl € L, where (cor, qor) is defined in Lemma 2.1. Then
@D py*Dy g continuously differentiable for (1, 1) € [0, §¢] x L, and W™D 3Dy
can be decomposed as follows:

WD = (0D L gOD 0D gD g 0D

where (¢, g®D g*D 50Dy € R2 x X7 solves Eq. (2.6) for (A, 1) € [0, 8¢] x L.
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Proof 1t follows from Lemma 2.4 that, for any /, € L, there exists §;, (0 < §;, < 1) such
that, for (A, [) € (0, &;,]1 x [l — 81,, I« + 81,1, system (2.1) admits a unique positive solution
@*D, y*Dy where u® and v*) are defined in (2.14) and continuously differentiable
for (A, 1) € [0, 8;,] x [ls« — &1, Is« + &1, ]. Clearly,

cc -6 l+0a,).
el

Noticing that £ is compact, we see that there exist finite open intervals, denoted by
(lil) — 81(,-), lf,:) + 81(1-)) fori =1,...,s,such that

N
LC U (lii) - Slii), ZS) + 313)) .
i=1

Choose 8¢ = minj<j< 81@. Then, for (A,l) € (0,68] x L, system (2.1) admits a unique

positive solution (u(”), v(”)). By Lemma 2.3 and Theorem 2.4, we see that (u()"l), U()"’[))
is continuously differentiable on [0, 8] x £, if @D, v©@Dy = (¢qr, gop). O

Using similar arguments as in Lemma 2.3 and Theorems 2.4 and 2.5, we can show the
nonexistence of positive solution under certain condition, and here we omit the proof for
simplicity.

Theorem 2.6 Let L) := [¢], I— €1], where 0 < €1 < 1 and [ is defined in (2.8). Then there
exists 8¢, > 0 such that, for (A, 1) € (0, 8¢,1 x L1, model (2.1) admits no positive solution.

3 Stability and Hopf bifurcation

Throughout this section, we let (u(”), v(”)) be the unique positive solution of model (2.1)
obtained in Theorem 2.5. In the following, we use [ as the bifurcation parameter, and show
that under certain condition there exists a Hopf bifurcation curve / = [, when A is small.

Linearizing model (1.4) at (u()‘*l), v(”)), we obtain

i = om0V [V 4 (M + M{E), xe @ 1> 0,

5 = 0A7 + 4 (M + M{05), xeQ, t>0,
Opll = 0,0 =0, xe€ed, t>0,
where
7)) 7))
v u
Ml(,\,l) = m(x) — 26%m@y*D _ - 2@,1) _ —
(1 + exm @ 0-D) 1 + eam)y (.)
3.1
M()\J) leam(x)v(k,l) M(A,Z) leam(x)u(k,l)
3= 7 My = am (), Ol
(1 + eozm(x)u()»,l)) 1+e u'’
Let
p—amx)yy . [eam(x)v] 0 MDD
AL = ( + 2 b o |- (3.2)
0 OA M; M,
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Then, 11 € C is an eigenvalue of A; (1) if and only if there exists (¢, ¥)T (# (0,0)7) € X2
such that

ey . [e"‘m(x)V(p] +A (Ml()"l)(p + Mg"l)w) — e =0,

OAY + 2 (Mgk% + Mﬁ*’%) —u =0.

3.3)
We first give a priori estimates for solutions of (3.3) for later use.

Lemma 3.1 Let £ and $¢ be defined and obtainedin Theorem2.5. Suppose that (i), L., ¢;., ¥)

solves (3.3) for 1 € (0,81, where Reps > 0, (g, y)T (#0,007) € X2 and I, € L.

Then |y /A| is bounded for A € (0, 8]

Proof Substituting (s, [x, @5, ¥») into Eq. (3.3), we have

oMy eam(x)V(PA:I Y (M{)\J)L)QD)\ + Mé)»,lx)w)) — g = 0,

3.4
0AY; + 3 (MO + MP 9 ) — i =0

Then multiplying the first and second equations of (3.4) by ¢*"¥g, and ¥, , respectively,
summing these two equations, and integrating the result over €2, we have

i /Q (@l + W) dx =(93, V- [ OV ]) + (i Avi)
+2 /Q e (MMl P+ MY G0 ) dx (3.5)
L) N
+A/Q (MY 0, + M1 ) dx.

We see from the divergence theorem that
0V [0V + . sy = = [ 019 - [ [99aPdx <006
Q Q

Noticing from Theorem 2.5 that (u(’u), v(’u)) 20,8 x £ — X2is continuously differ-
entiable, we see from the imbedding theorems that there exists a positive constant P, such
that

|M*0] <P for G el0.60x £ and i =1,2,3,4. 3.7)
o

Then, we see from (3.5)—(3.7) that

am(x)— b)) d
0<Re (ﬂ) <P, 1+ fsz (e 0¥+ wh) X
A Jo (€@ @ 2 + [¥,1?) dx

<P, (1 + eamaxxeﬁm(x)) )

Similarly, we can obtain that

[om (12)| = P, (1 4 exmsscamcn).
b)) <

This completes the proof. O
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To analyze the stability of (u*", v*D), we need to consider whether the eigenvalues
of (3.3) could pass through the imaginary axis. It follows from Lemma 3.1 that if 4 = io
is an eigenvalue of (3.3), then v = o/X is bounded for A € (0, §.], where §, is obtained in
Theorem 2.5. Substituting = iAv (v > 0) into (3.3), we have

Lo + 1™ (M0 + M{D ) = e g = 0,

(3.8)
OAY + A (M;% + Mf’”w) — iy = 0.

Ignoring a scalar factor, (¢, )7 € Xé in (3.8) can be decomposed as follows:

¢ =38+ w, whered >0 and w € (X1)¢,
¥ = (s1 +1is2) +z, wheresy,s2 € R and z € (X1)¢, (3.9
lel3 + w113 = <.

Now we can obtain an equivalent problem of (3.8) in the following.

Lemma 3.2 Let (¢, V) be defined in (3.9). Then (¢, ¥, v, 1) solves (3.8) withv > 0,1 € L,
if and only if (8, s1, 52, v, w, z, 1) solves

H =
{ 6, s1,82,v,w,2,1,A) =0, (3.10)

§>0, s1,2€R, v>0,lel, w,ze X1)c-
Here
H(, 51,5, v, w,2,1,A) = (h1, ha, h3, ha, hs)T

is a continuously differentiable mapping from R*x (X )(C)2 xLx[0, §¢]to (C x (Y; )(C)2 xR,
where

h1(8, 1,82, v, w, 2,1, 1) :=/

e [M{D (8 + w) + M{ (51 + 5z + )| dx
Q

- iv/ "0 (§ 4+ w)dx,
Q
ha(8, 51,52, v, w, 2,1, 4) :=Lw + 2.e*" [M](”) 6+ w) + MY (51 +is2 + z)]

A
— iAve®™ (S + w) — —hy,
|2

h3(8, 51,52, v, w, 2,1, ) ::/
Q
—iv(s; +1is2)|L2],

ha(8, 51,52, v, w, 2,0, 2) =OAZ + 3 [MED 6+ w) + MPD (s +isa + )]

[ M50 4+ w) 4+ MED (51 452 + 2) |

A
—iAv(sy +is2 +2) — —h3,
|€2]
hs(8, 51,52, w, 2, v, 1,2) :=[Q| (8> + 57 + 55 — 1) + [wll3 + [1z[13,
and M are defined in (3.1) fori = 1,2,3, 4.

Proof Note that f = ¢ + z for any f € Y, where

1 1
c:ﬁfgfdxe(c, Z:f—ﬁfﬂfdxe(Yl)C. 3.11)
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A direct computation implies that H (8, s1, s2, v, w, z, 1, 1) is a continuously differentiable
mapping from R* x ((Xl)(c)2 x L x [0, 8] to (C x (Yl)(c)2 x R. Denote the left sides of
the two equations of (3.8) as G| and G, respectively. That is,

Gilg, . v.1,3) 1= Lo + ™ @ (Mg 4+ MPDyr) = idve @y,
Ga(, ¥, v, 1, 1) = OAY + A (M;% + Mf’”w) — vy
Plugging (3.9) into (3.8), wee see from (3.11) that G (¢, ¥, v, [, A) = 0 if and only if
hi(8, 51,8, v, w,z,1,0) =0 for i =1,2,
and G2 (¢, ¥, v, [, 1) = 0 if and only if
hi(§,s1,s2,v,w,z,[,A) =0 for i =3,4.
This completes the proof. O

Note from (3.1) that

qo1 on _ col

©,0) anm(x)
M =m(x) — 2coe - —— <0,
: (1+ corem®)? ? 1+ core@m™)
3.12)
l eotm(x) lc eotm(x) (
MgO,l)dx _ qol 5> 0. MiO,l) = —r 4+ 0l ’
- (1 + cOleotm(x)) 1+ coze“’"()‘)

where cq; and gq; are defined in Lemma 2.1. Then we give the following result for further
application.

Lemma3.3 LerS(l) .= fQ e“m(x)M{O’l)dx, wherel € L, and L := [l~+ €, 1 /€] is defined in
Theorem 2.5 with 0 < € < 1, and let T () := fQ ™) (m(x) — 1)dx. Then the following
two statements hold:

1) IfT(a) <0, then S(I) <O foralll € L; ~
(i) If T () > O, then {here existsly € int(L) = (I+€, 1/€) such that S(lp) = 0, S'(lp) > 0,
S(l) <O0forl €[l +¢€,ly), and S(I) > 0 forl € (lp, 1/€].

Proof We construct an auxiliary function:

eam(x)
Si(c) =/;Zmdx

A direct computation implies that
20m(x) 630”"()‘)
Si(o) = —/ ——dx <0, Si(c) = 2/ ————dx>0. (3.13)
(1 + ceotm(x)) Q (1 + ceam(x))
Clearly, we see from (3.12) that

am(x)

S() = / [e“m@f)m(x)—26‘0162“'"(”][1)5—[101 / —  _dx. (314
Q Q (] + cOleO‘m(x))

It follows from the first equation of (2.11) that

qgor = / " (x) — cozezam(x)] dx, (3.15)

Sy (cor)
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and plugging (3.15) into (3.14), we get
S(1) = Sa(car). (3.16)

Here

Sy (c) ::/ [eam(x)m(x) — 2ce2°‘m(x)]dx
Q
1 am(x)
S / I:e“’"(x)m(x) —Cezam(x)] dx/ " 5dx
1(c) Ja Q (1 +Cetxm(x))

am(x)
:/ [eam(")m(x) —cez"”"(x)] / dx —c/ e2em) g
Q 51 (C) 1 + Ceozm(x) Q

’
B CSl (o) [eam(x)m(x) _ CeZam(x):Idx _ C/ eZam(x)dx,
Si(o) Q

where we have used (3.13) in the last step. Let

S/
S3(c) = 519 [e“m(x)m(x) - cezam(x)] dx +/ &2 x| (3.17)
Si(c) Q
and consequently, we have
S2(c) = —cS3(c). (3.18)
It follows from the first equation of (2.9) that
dcoy . - .
—— <0, limcy =¢, and lim ¢y =0, (3.19)
dl I—I [—00

Whe~re ¢ and [ are defined in Lemma 2.1 (see (2.8)). Therefore, to determine the zeros of S(/)
in (I, 00), we only need to consider the zeros of S3(c) in (0, ¢).
It follows from the Holder inequality and (3.13) that

e%am(x)e%am(x)

[81 (C)] - / 3 1 dx
Q (1 + Ceam(x))i (1 + Ceam(x))?

/ gdam(x) / oM (x) S/ (©)S1(c)
< dx dx = ’
e (1+ ce”‘m(x))3 o 1+ cexm® 2

and consequently,

[s; (c):|/ _ S{(©)S1(c) — (S (C))2 20 (3.20)

Si(0) S3(c)

Note from (2.8) that [, [¢*" ™ m(x) — ce?*™ ™ ] dx > 0forc € (0, ¢). This, combined with
(3.13), (3.17) and (3.20), yields

Si@7 2 Si(e) 2
Shi(c) = |: 1 ] / M (x) — ™) | gx — T2 | QR2em gy 5 .
3 Sie)] Ja [ ] Si(o) Ja

(3.21)
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It follows from (2.8) that lim._,z S3(c) = [, e**"Wdx > 0, and

fg e2am(x)dx

fQ eam(x) o y T(Ot)

lim S3(c) =
c—0

Therefore, if 7(«) < 0, then S3(¢) > 0 for all ¢ € (0, ¢). If 7(x) > 0, then there exists
co € (0, ¢) such that S3(cg) = 0, Sz(c) < 0 for ¢ € (0, ¢p) and S3(c) > 0 for ¢ € (g, C).
Then, we see from (3.16), (3.18) and (3.19) that if 7 (o) < 0, then (i) holds; and if 7 (@) > 0,
then there exists Iy > / such that

coly =co, SUp) =0, S(U) <0 for [ e (l~, lp), and S(I) > 0 for [ € (Ip, o).
(3.22)

It follows from (3.16) and (3.18) that

dco; dco;
S'lo) = S S =-s 84 | =
(o) > (001)|1:,0 al | 3 (cony) + corg 3(coz)|,:,0 dl |,
dco;
= —[S3 (co) + coS5(co)] —+ ,
dl I=lp

where we have used cq;, = co in the last step. Noting that S3 (co) = 0, we see from (3.19)
and (3.21) that S’(lp) > 0. Note from Theorem 2.5 that £ = [/ + €, 1/e] with 0 < € < 1.
Then, for sufficiently small €, [y € int(L) = (I + €, 1/€) and (ii) holds. This completes the
proof. O

By Lemma 3.3, we can solve (3.10) for A = 0.

Lemma 3.4 Suppose that . = 0, and let T () be defined in Lemma 3.3. Then the following
statements hold:

1) If T (a) < O, then (3.10) has no solution;
(i) If T (a) > 0, then (3.10) has a unique solution

(6, 51,52, v, w, z,1) = (80, S10, 520, V0, W, 20, l0),

where |y is obtained in Lemma 3.3,

fg eam(x)Mz(OJO)dx fg M3(0’l°)dx
Q| [ e dx

1 8

o = w 75 S20 = — 0 / M§0’10)dx,
Jg M5 d i€l Je

T o

and M*" is defined in (3.12) fori = 1,2,3, 4.

s10=0, wp=0, z0=0, vp =

s

Proof It follows from (3.12) that
/ MmO M dx < 0, / MV dx > o, (3.23)
Q Q

which implies that vy is well defined.
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Substituting & = 0 into h, = 0 and h4 = 0, respectively, we have w = wo = 0 and
z = zo = 0. Note from the second equation of (2.11) that

/ M Pdx =0 forany I € L. (3.24)
Q

Then plugging w =z =0and A = Ointo h; = 0 fori = 1, 3, 5, respectively, we have
fQ e“m(X)Ml(O’l)dx —1iv fg M) gy fQ e“m(x)Mz(O’l)dx ( 8. ) _ (0)
Jo M dx —iv|Q s1+is2 0)’
(3.25)

and
245 +s3=1. (3.26)

Therefore, (3.10) has a solution if and only if (3.25)-(3.26) is solvable for some value of
(6, 81,82, v, 1) with 8, v > 0, 51, 50 € Rand ! € L. It follows from (3.23) that (3.25)—(3.26)
is solvable (or (3.10) is solvable) if and only if

S() = f O pOD gy = 0 (3.27)
Q
is solvable for some / € £. From Lemma 3.3, we see that if 7 (o) < 0, then (3.27) has no

solution in £; and if 7 («) > 0, then (3.27) has a unique solution /o in £ with S(lp) = 0.
Substituting I = [y into (3.25), we compute that

8
s1=s10=0, V=g, 52 = — f M g, (3.28)
vol2| Jo

Then, plugging (3.28) into (3.26), we get § = &g and s» = s2¢. This completes the proof. O
Now, we solve (3.10) for A > 0.

Iheorem 3.5 Suppose that T (a) > 0, where T () is defined in Lemma 3.3. Then there exists
A € (0, 8¢), where b¢ is obtained in Theorem 2.5, and a continuously differentiable mapping

A (Brs 1052 v s 2o 1) 110,41 > RY x (X)) x £
such that (3.10) has a unique solution (8,, S1x, S22, Va, Wy, Za, 1) for & € [0, 5\], and
(8, S1as 8225 Vis Wi, 22, 1) = (80, S10. 520, Vo, Wo, 20, lo)

for & = 0, where (8¢, $10, $20, V0, W0, 20, Lo) is defined in Lemma 3.4.

Proof We first show the existence. It follows from Lemma 3.4 that H (Ky) = 0, where
Ko = (80, $10 520, Vo, Wo, 20, Lo, 0). Note from (3.24) that

d
/ MOax —o, L / MO®dx) =0 forall e L. (3.29)
o di \Jg

Then the Fréchet derivative of H (8, s1, 52, v, w, 2, [, A) with respect to (6, s1, $2, v, w, z,1)
at Ky is as follows:

K@, 51,5, 0,0, 2,0 := (ki, ka, k3, ka, ks)7,
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where (8, §1, 5, 0,0, 2.1) € R* x ((X1)¢)? x £, and

ki = / e [(MO —iwg) 6+ ) + MY Gy +i5; + 2) | dx — Do / M)
Q Q
. d
+1 E |:/ eam(x) (SUMI(O’I) + iSQoMéOJ)> dxi|
Q

ko =L,

’

I=lo

ks = / [Mg‘“ﬂ)(é + ) + MQOJO)%]dx + Ds0| Q) — ivg (81 +i82) |2
Q

A d 0,)
I8y — MmO q
- °dl<fg 3 x)

ks =0AZ,

’

1=l

ks =280|R218 + 2520|2152,
where we have used (3.29) to obtain k3. If K(8, 8,5, 9, W, 2,0) = 0, then & = 0 and
Z = 0. Substituting w = z = 0 into k; = 0 and k3 = 0, respectively, separating the real and
imaginary parts, and noting that ks = 0, we get
(Dij)8, 81,52, 0, D) = (0,0,0,0,0)".
Here D;; = 0 except

D12 :f MO0y, Dis =808 (lp), Doy = _VO/ e dx, D3y =520/,
Q

Q
Do3 = / eam(x)Méo’IO)dx, Doy = —80/ e”‘m(x)dx,
Q

Q
d

Dos = s70— /e“m(x)Méo‘[)dx
a \ g,

d
0,0
D35 = Soa </Q M3 dx)

where S(/) is defined in Lemma 3.3. A direct computation implies that

0.
. D31 :/ M dx, Dyy = vl
1=l Q

, Dap = —1|R|, Dsi =280|R2], Ds3 = 2s20|2],
1=l

—Vp fQ M) g fQ e“”’(")Mz(O’lO)dx —80 fQ M) x
[(Dij)| =2w0lQ17808 (o) | [y MO dx el 52012

80 $20 0

3.30
=2v080|§2|25’(10)<80s20|Q|/ eam(X)Méo’lO)dx+(S%U0|Q|/ ) gy ( )
Q Q

+v05220|§2|/ M) g —60s20/ e“m(x)dx/ M3(0’l°)dx>.
Q Q Q

Since (8, 510, 520, Vo) satisfies (3.25), we have

szo/ e"‘m(x)Méo‘l(’)dx = v050/
Q

M3 dx, 80/ MY dx = —vosylQl. (3.31)
Q Q

Plugging (3.31) into (3.30), we have

I(Dij)| = 4380121 S (lo) (85 + 530) /Q "V dx >0,
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where we have used Lemma 3.3 (ii) in the last step. Therefore, §=0,§1=0,86%=0,D=0
and / = 0, which implies that K is injective and thus bijective. From the implicit function
theorem, we see that there exists A € (0, §¢) and a continuously differentiable mapping

dor> (B 10820 Vi, was 20 5) 110,31 = R x (X)) x £
such that H (83, s15, S22, Vi, Wi, 25, L, A) =0, and for L = 0,
(82 S125 S22, Vs Wi, 22, 1) = (80, $10, 820, V0, W0, 20, lo).
Now, we show the uniqueness. From the implicit function theorem, we only need to verify
that if ((Sk, slk, sé‘, vh wh, 7, lk) is a solution of (3.10) for A € (0, 5\], then
}13}) (8%, s, 55, vh, wh, 24, 1%) = (80, 510, 520, 0, w0, 20, L) in R* x ((X1)¢)? x R.
(3.32)
Noticing that /5 (Sx,s])‘, sé‘, v*, w’\,z’\,l’\) = 0, we see that |8)”|, |sf‘|, |s§‘|, ||w}‘ |l and

lz*l2 are bounded for A € [0, X]. Since /* S £, we obtain that [* is bounded for A € [0, A].
Moreover, |v*| is also bounded for A € [0, A] from Lemma 3.1. Let

A A
Q%) =A™ [Ml(“ Y 4+ wh) + M (57 4 ish + z*)]
A
— eI E ) — o (8 st sy vt wh ),
A A
Q1) =h [M;“ '@+ wh) + M (s} sy + z’\)]
A
— i)\vk(si\ + isé‘ + zk) — @h3 (8’\, sf\, sé‘, u)‘, w’\, z’\, l’\) .
Noting that (8*, si\, s%‘, vh wh, 7, ZA) is bounded in R* x ((Yl)(c)2 x R, we see from (3.7)
that lim) .o Q1 (X)) = 0 and lim .9 Q2(A) = 0 in (¥;)c. Since
wh=-L7' QW] & =-ATT[QMW)].

where L~! and A~! are bounded operators from (Y1)¢ to (X1)¢, we get
lim w* =wp =0, limz*=z0=0 in (X))c.
r—0 r—0

Since (8}‘, s%, s%, VA, l’x) is bounded in R? for A € (0, X], we see that, up to a subsequence,

lim 8* = 6%, lim s} =5}, lim s} =s3, limv* =v* lim /* = 7%
A—0 r—0 1—0 r—0 r—0
Taking & — 0 on both sides of
H (8%, 51,55, 0" w2 1%) = 0,
we see that H (8*, s}, 53, v*,0,0,*) = 0. This combined with Lemma 3.4 implies that
8% = 8o, 57 = 510, 85 = 520, v* = vp and [* = lp. This completes the proof. O
Then from Lemma 3.2 and Theorem 3.5, we have the following result.

Theo~rem 3.6 Let L be defined in Theorem 2.5. Suppose that T (/) > 0 and i € (0, 1), where
0 < X <K 1, and T (a) is defined in Lemma 3.3. Then (¢, ¥, 0, 1) solves

(A —io ) (g, ¥)T =0,
c>01eL, (¢, v)7 # 0,07 € X2,
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if and only if
0 =My, ¢ =k@) =k(& +w), ¥ =«kPp =rkl[(s1n+is2n) +zal, [ =1,

where A;(A) is defined in (3.2), I is the identity operator, k € C is a nonzero constant, and
(8, S1, S22, Vi, Wi, Zas 1)) is obtained in Theorem 3.5.

To show that iAv; is a simple eigenvalue of A;, (1), we need to consider the following
operator

L O eotm(x)M()»,lA) +iv eam(x) 1‘4()L 1)
Hiyy o 1 A
AT () = (0 6A> + X < e“’”(")Mék’l*) M(’\ 50 v | (3.33)

Let

eotm(x)o
z._< ' 1). (3.34)

Then A ()) is the adjoint operator of 7 (Alk (A) —iAvy, I). That is, for any (¢1, »)T e Xc
and (Y, 1//2)T € X, we have

(A7) @167 (01, 92" ) = (@1, 827 . T (4,60 = iduid) (1, )" ). (3.35)

Lemrpa 3.7 Let AT (L) be defined in (3.33). Suppose that T («) > 0 and € (0, X1, where
0 <A <K 1and T () is defined in Lemma 3.3. Then

N [A7G0] = spanl @, )",
and, ignoring a scalar factor, (¢;., 1/},\) can be represented as

@) = 8, + Wy, where8 >0 and W, € X1c,
U = (S1x 4+ 1520) + 21, where 513,52 € R and %, € (X1)¢ ., (3.36)
@113 + 12115 = IS21.

Moreover, lim)_ (Sx,fu,fzx, @x,fx) = (80, 510, 20, Wo, Z0) in B3 x ((X1)c)?, where
wo =0, Zo =0,

< 1 . . Sovo [ XM dx
8o = s10 =0, Szoz—%
Jo My dx

2 9
vy [ €W dx
1 + 0,lp)
Jo Mz dx

and vy, ly are defined in Lemma 3.4.

Proof 1t follows from Theorem 3.6 that O is an eigenvalue of 7 (Alk (A) —iAavy 1 ) and
N [Z (A;, () —irv, )] is one-dimensional for A € (0, A], where Z is defined in (3.34).
Then 0 is also an elgenvalue of A#()) and NTAH (1)] is also one-dimensional. Then

NIAH D] = span[(¢;., 1//;\) ], and (¢, 1//,\) can be represented as (3.36). By the similar
arguments as in the proof of Theorem 3.5, we see that

and uptoa subsequence,

lim &, = &85, lim §);, = s¥,, lim 5y = s}
A—0 0" >0 100520 20
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where (8%, 57y, s3,) satisfies (83)2 + (s;‘o)2 + (5;0)2 =1, and

. (0,1y)
lv()/ e g / M dx
L B )

/ MO MO0 g i s1o +is3, 0

Q

A direct computation implies that (83,3{‘0,@0) = (50,510,520), and consequently,
lim; ¢ (S;L, Sias 521) = (50, 510, 520). This completes the proof. O

Then, by virtue of Lemma 3.7, we show that iAv, is simple.

Theorem 3.8 Suppose that T (a) > 0 and ) € (0, 5\], where 0 < A < 1 and T (@) is defined
in Lemma 3.3. Then iAv, is a simple eigenvalue of Ay, (L), where A;()) is defined in (3.2).

Proof 1t follows from Theorem 3.6 that N'[A;, (1) — iivy ] = span[(¢g, w,\)T], where @;,
and y,, are defined in Theorem 3.5. Then we show that

NTAL, (M) — iav 117 = NTA;, (A) — i 1]
Letting (W1, ¥2)7 € N[Aj, (1) — iAv; 1], we have
[Af, ) — A T1(W1, W) € NTA;, (1) — idva T] = span[ (g, ¥2)" 1,
and consequently, there exists a constant s € C such that
[A, () — A I, W) = s, ¥
Then
TAL, (W) — iy 1191, W) = sT(gs, ¥2) ", (3.37)

where 7 is defined in (3.34). Note that A7 (1) is the adjoint operator of Z[ Ay, (A) — iAv; 1],
and it follows from Lemma 3.7 that

N [A%G) | = spanl(@, ¥
Then, by (3.35) and (3.37), we have
0= (A" @ I, W1 W) ) = (@, 0T T (A1, (B = i d) (W1, )T
=sW(A),
where
W) = (@ )T T )T) = [ (<" T+ v ) dx. 339)
It follows from Lemmas 3.4 and 3.7 and Theorem 3.5 that
Jim W) = 25080 /Q W dx > 0, (3.39)
which implies that s = 0 for A € (0, ):] with0 < & < 1. Therefore,
NTA;, (M) — idv 11> = NTA;, (M) — i 1]

This completes the proof. O
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Note that iAv, is simple if exists. Then, by using the implicit function theorem, we see
that there exists a neighborhood Py x V. x O, of (¢;, ¥, iva, [x) (Py, V, and O, are neigh-
borhoods of (¢;, ¥), vy and [, respectively), and a continuously differentiable function
(D), ¥ (D), w(D) = 05, > PyxVysuchthat u(ly) =ivy, (@), ¥ (W) = (gx, Y1), where
V., ¢x and ¥, are defined in Theorem 3.5. Moreover, for each [ € O;, the only eigenvalue
of A;(}) in V, is u(l), and

(A1) = nOD) (), Y1) =0. (3.40)
Then, we show that the following transversality condition holds.

Theorem 3.9 Let [, be obtained in Theorem 3.5. Then

dRe[p(D)]
dl

I=1;,

Proof Multiplying both sides of (3.40) by Z to the left, and differentiating the result with
respect to/ at/ = [;, we have

dp T . ¢ dy r
- Z(pa, =T (A, (V) —iv ]
a |, (@, Y1) (A, () —ivd) (dl 7l »
i amy" (3.41)
+7 dl dl T,
dM3(”) de’”) (@2, )
dl dl I=l;,

where Ml.(”\’l) (i =1,...,4) and Z are defined in (3.1) and (3.34), respectively. Note from
(3.35) and Lemma 3.7 that

~ 7 (p dlp
<<¢A, V)" T (AL () —ivad) (41 dl ) ,,~>
ot 2o (de Ay _
= <A AW (@, ¥)' s (dl dl > i > =0

where ¢, and ;. are defined in Lemma 3.7. Then, multiplying both sides of (3.41) by
(@2, ) to the left, and integrating the result over €2, we have

dM()LJ) ]‘,[(7L D
o [ e M [ )
dl /Q .05 T y x+ Vg T B x
=) =n
dM()“ h M()‘ D (3.42)
+A/ @) G, dx+x/ Vi dx,
@ I=1, I=1,

where W()) is defined in (3.38). From Theorem 3.5 and Lemma 3.7, we see that

1im (5 @ Y a0 ) = (lo. 80,520, 50, i520) in Rx X8 (343)
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It follows from Theorem 2.5 that (1D, v*-D) is continuously differentiable. This, combined
with the embedding theorems and Eq. (3.43), implies that

D
am - d
li am(x) = 1 _ a ozm(x)M(OJ)
x%/ T dx = 80dp ai \ s e L dx .
1=y, =0
[N
lim [ gy, M dx = 59520 4 / em@) pr 0D g ,
r—=0Jqo dl Q 2 —
1=, I=lo
. 44)
lim / Uy, — dx = —i850 — ( / My dx) ,
()» D
hm/ mm dx = 520820 — </ M dx >
I=l; 1=l
It follows from Lemma 3.3 and Eq. (3.29) that
d am(x) 3 7(0.0) 7 d 0,0)
— e M dx =8 (y) >0 and — My dx =0.
dl Q 1=l dl Q 1=l
This, together (3.39), (3.42) and (3.44), yields
.1 dRe[pn()] S'(lo)
lim - ———— =—>0.
r—=0 A dl =1, 2 fQ eam(x)dx
This completes the proof. O

From Theorems 2.5, 3.5, 3.8 and 3.9, we can obtain the following results on the dynamics
of model (1.4), see also Fig. 1.

Theorem 3.10 Let (u(“), v(”)) be the unique positive steady state (obtained in Theorem
2.5) of model (1.4) forl € L := [l~+ e, 1/eland ) € (0, 8] with0 < € K 1, where Il and Se
are defined in Eq. (2.8) and Theorem 2.5, respectively. Then the following statements hold.

1) If T(a) < 0, where T () is defined in Lemma 3.3, then there exists *1 € (0,80) such
that, for each A € (0, L], the positive steady state (u(’“), v(’\’”) of model (1.4) is locally
asymptotically stable for | € L.

(i) If 7 (o) > O, then there exists J2€(0,8.) and a continuously differentiable mapping

A D (0,00] = £=1[+¢, 1/€]

such that, for each A € (0, ):2], the positive steady state (u()"l), v()"l)) of model (1.4)
is locally asymptotically stable when | € [l~ + €, 1)) and unstable when |l € (I, 1/€].
Moreover; system (1.4) undergoes a Hopf bifurcation at (u(“), v(“)) when | = I,.

Proof To prove (i), we need to show that if 7 () < 0, there exists A1 > 0 such that
oc(Ai(A) C{x+iy:x,yeR,x <0} forall » € (0,5\1] and/ € L.

If it is not true, then there exists a sequence {(Ak, lk)},‘fi1 such that limg_ oo Ax = O,
limg o0 ly =1* € L, and

o(A (M) € {x+iy:x,ye R x <0}
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Then, fork > 1,
(A ) — ) (0, )" =0 (3.45)

is solvable for some value of (g, @k, ¥x) with Repr > 0 and (gx, vi)7 (= (0,0)7) €
(Xc)?. Substituting (14, ¢, ¥) = (i, @k, Yx) into (3.45), we have

Mkeam(x)(pk =Ly + )\keam(x) (Ml(lk,lk)(pk + Mékk,lk)wk) !
Aol I
i = 08+ hi (M{H g+ MEPF )
Ignoring a scalar factor, we see that (¢, V)T (£ (0,007) € (Xc)? can be represented as

@k = Ok + wg, where 8 >0 and wi € (X1)¢,
Y = (s1x +1is2%) + 2k, where sy, s € R and zx € (X1)¢,
leell3 + vall3 = 1€,

and (px, 8k, S1k, S2k» Wk, Zk) satisfies
H (1k, 8k, 1k $2ks Wiy Zhs Iy Ak) = (H1, Ha, H3, Ha, Hs)T =0,

where

Hy = / ) [Ml('\"’lk)@k + wy) + M;\k’lk)(slk + sy + Zk)]dx
Q

— Mk / MO (81 + wy)dx,
Q
Hp := Lwy + kkeam(x) I:Ml()hk’lk)((sk + wg) + Mz()\k’lk)(slk + isor + Zk)]

A
— Mk €™ (8 4 wy) — ﬁHl,

H3 = / [Méxk’lk)(ﬁk + wy) + Mffk’lk)(ﬁk +iso + Zk)]dx
Q
— i (s1x + 152612,
Ha = O0Azk + M [Mékk’lk)(Sk + wy) + Mikk’[k)(ﬂk + isor + Zk)]

. Mk
— Mk (S1x + isox + 2i) — @HL
Hs = |Q] (87 + sty + 53¢ — 1) + lwell3 + llzell3-
Using similar arguments as in the proof of Theorem 3.5, we see that
lim Wi = 0, lim lk = 0 in (X])(C.
k—00 k—00

Since Hs([Lk, 8k, S1ks S2ks Wk 2k ks k) = 0, we see that, up to a subsequence, limy_, o0 6 =
8%, limgs oo 1k = 87 and limg_ oo 52t = s5. It follows from Lemma 3.1 that, up to a
subsequence, limg_ o tx = pu* with Reu™ > 0. Then, taking k — oo on both sides of
Hj(,u,k, Sk» S1k» S2k» Wk, 2k, Ik, M) = 0 for j = 1, 3, we have

S(I%) oy e@m MO
Jo €O dx Joem®dx

. 8* * . 1 *
w* (st +is3) = — / M3(0’l Vdx + (s7 +1is3) —/ Mf‘o’l dx,
12] Jo 12] Jo

kgt — §*

+ (s +1is3)
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where S(I) is defined in Lemma 3.3. Note from (3.24) that / Mio’l*) dx = 0, and conse-
Q

quently, p* is an eigenvalue of the following matrix

S(I%) Jo ™ MO dx
fQ eo{m(x)dx fQ eam(x)dx
e
— 3 X 0
1Q Jo -

It follows from Lemma 3.3 that S(I*) < 0, which contradicts the fact that Reu* > 0.
Therefore, (i) holds.
_ Now we consider the case of 7 (o) > 0. Then we only need to show that there exists
A2 > 0 such that

o(Ap, (W) C{x+iy:x,y e R, x <0} for i € (0, Aal.

Note from Lemma 3.3 that S (f + €) < 0. Then substituting [ = [+ ¢ inthe proof of (i) and
using similar arguments, we can also obtain a contradiction. This proves (ii). O

Remark 3.11 We remark that, in Theorem 3.10, Xi depends on o and € fori = 1, 2.

4 The effect of the advection

In this section, we show the effect of advection. For later use, we first show the properties of
the following auxiliary sequence:

{Bk)i2y, where By = / mk(x)(m(x) — Ddx. 4.1
Q

Lemma 4.1 Let {Bi}2,, be defined in (4.1), and let B = {x € Q : m(x) > 1}. Then
Bi+1 > Brfork =0,1,2,...;limg_ 00 By = 00 if B # @; and limy_, oo B = 0if B = 0.

Proof A direct computation implies that

By =/ Sie(x)dx —/ gk(x)dx, 4.2)
Q Q
where
fi(x) = mF @) m(x) = DI, ge(x) = m* () (1 — m(x)),
and
i {0, xeQ\B, - {1, xeQ\B,
I = I, =
1, xeB, 0, xehB.
Note that

0<fi)=fox)=...=Z filx) ...,
g1(x) = g(x)>...>gx)>...>0.

Then we obtain that Byy; > B for k = 0,1,2,..., limg fr(x) = fi(x), and
limy— o0 gk (x) = g4«(x), where g4 (x) = 0, and

oo — :0, xeQ\B,
o0, x €B.
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Then we see from the Lebesgue’s monotone convergence theorem that
lim / Jr(x)dx = / f«(x)dx and lim / gr(x)dx = 0. 4.3)
k—o0 Jo Q k—o0 Jq

Clearly, [q fy(x)dx = oo if B # #, and [, fi(x)dx = 0 if B = . This, combined with
(4.2) and (4.3), implies that limy_, oo By = 00 if B # @, and limy_,oo By =0if B=0. O

Now, we can consider function 7 («), which determines the existence of Hopf bifurcation
from Theorem 3.10.

Theorem 4.2 Let 7 (o) and B be defined in Lemmas 3.3 and 4.1, respectively. Then the
following statements hold:

) If7(0) = fQ(m(x) — Ddx >0, then T («) > 0 for any a > 0;
(1) If T(0) < 0 and B # (), then there exists ay > 0 such that T (o) = 0, 7 () < O for
0<o<ay,andT () > 0fora > oy
(i) If B =0, then T (o) < 0 for any o > 0.

Proof For simplicity, we denote

d*T ()

— for k>1 and 7O (@) = T(@).
o

T® (@) =

A direct computation yields
7O (@) = /Q Dk (x) (m(x) — Ddx for k > 0.
Note that m(x) is non-constant. Then we see that, for k > 0,
T D () = 7W (@) = /Qe“'"(x>m’<(x)(m(x) —1)2%dx > 0,

which yields

—a (k)
AT TV@] _ e gy — o700 = 0,
do
and consequently,
T® (@) > *T® ) forall « > 0. (4.4)

Here 7®)(0) = By, where By is defined in (4.1).

Now we show that (i) holds. Note that 7(0) = 7© () = By > 0. Then we see from
(4.4) that 7 (o) > 0O for all @ > 0. Then we show that (iii) holds. Since B = ¢}, we have
0 <m(x) < 1, and consequently, 7 (o) < 0 forall ¢ > 0.

Finally, we consider (ii). Note that 7 (0) = By < 0. It follows from Lemma 4.1 that there
exists an integer ky > 1 such that By > 0 for k > k, and By < 0 for 0 < k < k.. This,
combined with (4.4), implies that

T® (@) > 0foralle > 0 and k > ki. 4.5)
Then 7%~D (@) is strictly increasing for & > 0, and consequently,

lim 7®& D) = oy
o—00 *
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We claim that 0‘1?*071 = oo. If it is not true, then

T(k*fl)(a)
Iim ——= =

o— 00 o

0. (4.6)

Note from (4.5) that 7%= () is also strictly increasing for @ > 0. This, combined with the
fact 7% (0) = By, > 0, implies that
lim 7% (a) > 0.

oa—> 00

Then we see from the L’Hospital’s rule that

(ki1
fim @) i T®) (@) > 0,
a—00 o oa—>00
which contradicts (4.6). Therefore, the claim is true and limgy— oo 7% D (a) = oco. This,
combined with the fact that 7®—D Q) = By, 1, implies that there exists o, such that
T®=D(q. 1) =0, and

T® D) <0 fora € [0, ag,—1) and T®"D(@) >0 fora > Uy —1-

This implies that 7 ®+~2) () is strictly decreasing fora € [0, ak,—1]and strictly increasing for
a € [ag,—1, 00). Therefore, limy— 00 7 *k:=2)(g) = a,‘:f_z. Then we claim that a,‘jf_z = 0.
If it is not true, then
T:=2) (4
lim L@

a—00 o

A7

By the L’Hospital’s rule again, we have

Tke=2) (4
T i GO T®=D () = 00,
o— 00 o a— 00

which contradicts (4.7). Therefore, limy_ oo 7% ~2) (a) = 0o. Then, there exist ok, —2 such
that 7®—2) (., _») = 0, and

TE*=2) () <0 fora € [0, 0tx,—2) and Tke=2) (a) > 0 for o > ag,—2.
Therefore, we can repeat the previous arguments to obtain (ii). This completes the proof. O

Then, by virtue of Theorem 4.2, we show the effect of advection rate « on the occurrence of
Hopf bifurcations for model (1.4).

Proposition 4.3 Assume that T (0) < 0, B # 0, and let o, be defined in Theorem 4.2. Then
for any € with 0 < € < 1 and o # ay, there exists M(«, €) > 0 such that the Sfollowing
statements hold.

(1) Ifa < oy, thenforeach \ € (0, ):(oz, €)], the positive steady state (u(”), v(”)) of model
(1.4) is locally asymptotically stable forl € L := [ +e, 1/€], where Lis defined in (2.8)
and depends on .

(i1) If o > «ay, then there exists a continuously differentiable mapping

A Lo [0, Ao, €)] = L=1[] +€, 1/€]

such that, for each A € (0, i(a, €)], the positive steady state (u()"l), U(U)) of model (1.4)
is locally asymptotically stable for | € [[+e€, 1,) and unstable forl € (I, 1/€), where [ is

defined in (2.8) and depends on a. Moreover, system (1.4) undergoes a Hopf bifurcation
at (u“’l), U()”’[)) when | = [,.
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By Proposition 4.3, we see that the advection rate affects the occurrence of Hopf bifur-
cations if 7(0) < 0 and B # {. Actually, there exists a critical value o, such that Hopf
bifurcation can occur (or respectively, cannot occur) with & > o, (or respectively, o < ).
Next, we show that the advection rate can also affect the values of Hopf bifurcations if
7(0) > 0.

Proposition 4.4 Assume that T(0) > 0. Then for any € with 0 < € < 1 and a > 0, there
exists M(a, €) > 0 and a continuously differentiable mapping

A Lo [0, Mo, €)] = L=1[]+e€,1/€]

such that, for each » € (0, A(«, €)], the positive steady state ( D)y 1)) of model (1.4)
is locally asymptotically stable for | € [ +e, 1) and unstable for | € (I),, 1/€], and system
(1.4) undergoes a Hopf bifurcation at ( (GURTCR Z)) when | = I, where [ is defined in (2.8)
and depends on a. Moreover, limy_.ol, = lo, and ly (defined in Lemma 3.3) depends on o
and satisfies the following properties:

Q) If H > 0, then l(’)(oz)|a=0 > 0, and lo(a) is strictly increasing for a € (0, €) with
O<exl;

() If H < O, then l(’)(a)|a=o < 0, and ly(a) is strictly decreasing for a € (0, €) with
O<exl

2
Here H =2 <f m(x)dx) — |§2|/ m(x)dx — |§2|/ mz(x)dx.
Q Q Q

Proof Let Si(c), 81 (¢), 83(¢c), co be defined in the proof of Lemma 3.3, where ’ is the
derivative With respect to ¢, and they all depend on «. Therefore, we denote them by

Si(c, a) (c a), S3(c, o), co(a), respectively. By (3.19) and (3.22), we see that co(o) =

dcy
co; wWith [ = lo(a) and —— < 0, which implies that l(/)(ot) has the same sign as —co(a).

Since 7 (0) > 0, it follows from Theorem 4.2 that 7 («) > 0 for all « > 0. This combined
with Lemma 3.3 implies that co(«) exists for all @ > 0. From the proof of Lemma 3.3, we
see that

S3(co(@), o) =0, (4.8)

aS 183
and —3 > 0 for all « > 0. Therefore, —co(oc) has the same sign as 8—(00(01) «). By
3.17) and a direct computation yields

2
@ — (81 -8y _ @@) L/ [eam(x)m(x) _ CeZam(x)] dx
Q

da dcda  da dc ) S} 49)
S 1 '
42 " m2(x) — 2¢O mx) | dx +2 | O m(x)dx,
dc S1 Jo Q
where
951 = / e Om(x) dx 0”5 = —2/ 7e2am(ﬂm(x) dx
du (1 + Ceam(x))z " dcda (1 + Ceotm(x))3
Substituting @ = 0 into (4.8), we obtain that
1
co(0) = m /Q(m(x) — 1)dx. (4.10)
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Then plugging ¢ = ¢9(0) and o = 0 into (4.9), we have

25, 2| (Jom)dx)* = 1921 fomx)dx = 191 f mP(x)dx ]
87(60(0), 0) =
a Jom(x)dx + 1€

)

which implies that /o (o) satisfies (i) and (ii). m]

Here we only show the effects of advection rate on the values of Hopf bifurcations for
0 < o < 1, and the general case still awaits further investigation.

Data availability statement All data generated or analyzed during this study are included in this manuscript.
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