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Abstract
Areaction–diffusion–advectionpredator–preymodelwithHolling type-II predator functional
response is considered. We show the stability/instability of the positive steady state and the
existence of a Hopf bifurcation when the diffusion and advection rates are large. Moreover,
we show that advection rate can affect not only the occurrence of Hopf bifurcations but also
the values of Hopf bifurcations.

Mathematics Subject Classification 37G15 · 35K57 · 92D25

1 Introduction

The influence of environmental heterogeneity on population dynamics has been studied
extensively. For example, environmental heterogeneity can increase the total population size
for a single species [21]. For two competing species in heterogeneous environments, if they
are identical except dispersal rates, then the slower diffuser wins [7], whereas they can
coexist in homogeneous environments. The global dynamics for the weak competition case
was investigated in [19, 21], and it was completely classified in [12]. The heterogeneity of
environments can also induce complex patterns for predator–prey interaction models, see [9,
10, 20] and references therein.

In heterogeneous environments, the population may have a tendency to move up or down
along the gradient of the environments, which is referred to as a “advection” term [2]. That
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is, the random diffusion term d�u is replaced by

d�u − α∇ · (u∇m(x)), (1.1)

where d is the diffusion rate, α is the advection rate, and m(x) represents the heterogeneity
of environment. The effect of advection as (1.1) on population dynamics has been studied
extensively for single and two competing species, see, e.g., [1–6, 16, 17, 22, 45]. There also
exists another kind of advection for species in streams, and the random diffusion term duxx
is now replaced by

duxx − αux , (1.2)

where αux represents the unidirectional flow from the upstream end to the downstream end.
It is shown that, if the two competing species in streams are identical except dispersal rates,
then the faster diffuser wins [23, 26, 27, 44]. In [24, 33, 37, 39, 42], the authors showed the
effect of advection as (1.2) on the persistence of the predator and prey. One can also refer to
[13–15, 18, 28–30, 32, 36] and references therein for population dynamics in streams.

As is well known, periodic solutions occur commonly for predator–prey models [31], and
Hopf bifurcation is a mechanism to induce these periodic solutions. For diffusive predator–
prey models in homogeneous environments, Hopf bifurcations can be investigated following
the framework of [11, 43], see also [8, 35, 40, 41] and references therein. A natural ques-
tion is how advection affects Hopf bifurcations for predator–prey models in heterogeneous
environments.

In this paper, we aim to give an initial exploration for this question, and investigate the
effect of advection as (1.1) on Hopf bifurcations for the following predator–prey model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · [d1∇u − α1u∇m] + u (m(x) − u) − uv

1 + u
, x ∈ �, t > 0,

vt = d2�v − rv + luv

1 + u
, x ∈ �, t > 0,

d1∂nu − α1u∂nm = 0, ∂nv = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ �.

(1.3)

Here � is a bounded domain in R
N (1 ≤ N ≤ 3) with a smooth boundary ∂�; n is the

outward unit normal vector on ∂�, and no-flux boundary conditions are imposed; u(x, t)
and v(x, t) denote the population densities of the prey and predator at location x and time
t , respectively; d1, d2 > 0 are the diffusion rates; α1 ≥ 0 is the advection rate; l > 0 is the
conversion rate; r > 0 is the death rate of the predator; and the function u/(1 + u) denotes
the Holling type-II functional response of the predator to the prey density. The functionm(x)
represents the intrinsic growth rate of the prey, which depends on the spatial environment.

Throughout the paper, we impose the following assumption:

(H1) m(x) ∈ C2(�), m(x) ≥ (�≡)0 in �, and m(x) is non-constant.

(H2)
d2
d1

= θ > 0 and
α1

d1
= α ≥ 0.

Here (H2) is a mathematically technical condition, and it means that the dispersal and advec-
tion rates of the prey and predator are proportional. Then letting ũ = e−αm(x)u, t̃ = d1t ,

123



Stability and bifurcation in a reaction–diffusion–advection... Page 3 of 31 61

denoting λ = 1/d1, and dropping the tilde sign, model (1.3) can be transformed to the
following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = e−αm(x)∇ ·
[
eαm(x)∇u

]
+ λu

(

m(x) − eαm(x)u − v

1 + eαm(x)u

)

, x ∈ �, t > 0,

vt = θ�v + λv

(

−r + leαm(x)u

1 + eαm(x)u

)

, x ∈ �, t > 0,

∂nu = ∂nv = 0, x ∈ ∂�, t > 0,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ �,

(1.4)

where θ and α are defined in assumption (H2).
We remark that model (1.3) with α1 = 0 (or respectively, model (1.4) with α = 0)

was investigated in [25, 38], and they showed that the heterogeneity of the environment can
influence the local dynamics, and multiple positive steady states can bifurcate from the semi-
trivial steady state by using d1, d2 (or respectively, λ) as the bifurcation parameters. In this
paper, we consider model (1.4) for the case that α �= 0 and 0 < λ � 1. We show that when
0 < λ � 1, the local dynamics of model (1.4) is similar to the following “weighted” ODEs:
⎧
⎪⎪⎨

⎪⎪⎩

ut

∫

�

eαm(x)dx = u

(∫

�

eαm(x)m(x)dx − u
∫

�

e2αm(x)dx

)

− v

∫

�

eαm(x)u

1 + eαm(x)u
dx,

vt = −rv + lv

|�|
∫

�

eαm(x)u

1 + eαm(x)u
dx .

(1.5)

A direct computation implies that model (1.5) admits a unique positive equilibrium (c0l , q0l)
if and only if l > l̃, where (c0l , q0l) and l̃ are defined in Lemma 2.1. From the proof of
Lemma 3.4, one can obtain the local dynamics model (1.5) as follows:

(i) If T (α) < 0, then the positive equilibrium (c0l , q0l) of model (1.5) is stable for l > l̃;
(ii) If T (α) > 0, then there exists l0 > l̃ such that (c0l , q0l) is stable for l̃ < l < l0 and

unstable for l > l0, and model (1.5) undergoes a Hopf bifurcation when l = l0.

Here T (α) and l0 are defined in Lemma 3.3. Similarly, model (1.4) admits a unique positive
steady state

(
u(λ,l), v(λ,l)

)
for (l, λ) ∈ [l̃+ε, 1/ε]×(0, δε]with 0 < ε � 1,where δε depends

on ε (Theorem 2.5), and admits similar local dynamics as model (1.5) when l ∈ [l̃ + ε, 1/ε]
and 0 < λ � 1 (Theorem 3.10), see also Fig. 1. Moreover, we show that the sign of T (α)

is key to guarantee the existence of a Hopf bifurcation curve for model (1.4). We obtain that
if
∫

�
(m(x) − 1)dx < 0 and {x ∈ � : m(x) > 1} �= ∅, then there exists α∗ > 0 such that

T (α∗) = 0, T (α) < 0 for 0 ≤ α < α∗, and T (α) > 0 for α > α∗ (Theorem 4.2). Therefore,
the advection rate affects the occurrence of Hopf bifurcations (Proposition 4.3). Moreover,
we find that the advection rate can also affect the values of Hopf bifurcations (Proposition
4.4).

For simplicity, we list some notations for later use. We denote

X = {
u ∈ H2(�)

∣
∣ ∂nu = 0

}
and Y = L2(�).

Denote the complexification of a real linear space Z by

ZC := Z ⊕ iZ = {x1 + ix2|x1, x2 ∈ Z},
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ε ε

εε

ε ε

Fig. 1 Local dynamics of model (1.4) for (l, λ) ∈ [l̃ + ε, 1/ε] × (0, λ̃ j (α, ε)) with 0 < ε � 1. Here λ̃ j (α, ε)

means that λ̃ j depends on α and ε for j = 1, 2. (Left): T (α) < 0; (Right): T (α) > 0

the kernel and range of a linear operator T by N (T ) and R(T ), respectively. For YC, we
choose the standard inner product 〈u, v〉 = ∫

�
u(x)v(x)dx, and the norm is defined by

‖u‖2 = 〈u, u〉 1
2 .

The rest of the paper is organized as follows. In Sect. 2, we show the existence and
uniqueness of the positive steady state for a range of parameters, see the rectangular region
in Fig. 1. In Sect. 3, we obtain the local dynamics of model (1.4) when (l, λ) is in the above
rectangular region. In Sect. 4, we show the effect of advection on Hopf bifurcations.

2 Positive steady states

In this section, we consider the positive steady states of model (1.4), which satisfy the
following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ ·
[
eαm(x)∇u

]
= λeαm(x)u

(

m(x) − eαm(x)u − v

1 + eαm(x)u

)

, x ∈ �,

−θ�v = λv

(

−r + leαm(x)u

1 + eαm(x)u

)

, x ∈ �,

∂nu = ∂nv = 0, x ∈ ∂�.

(2.1)

Denote

L := ∇ ·
[
eαm(x)∇

]
, (2.2)

and we have the following decompositions:

X = N (�) ⊕ X1 = N (L) ⊕ X1,

Y = N (�) ⊕ Y1 = N (L) ⊕ Y1,
(2.3)
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where

X1 =
{

y ∈ X :
∫

�

y(x)dx = 0

}

,

Y1 = R(�) = R(L) =
{

y ∈ Y :
∫

�

y(x)dx = 0

}

.

(2.4)

Let

u = c + ξ, where c = 1

|�|
∫

�

udx ∈ R, ξ ∈ X1,

v = q + η, where q = 1

|�|
∫

�

vdx ∈ R, η ∈ X1.

(2.5)

Then substituting (2.5) into (2.1), we see that (u, v) (defined in (2.5)) is a solution of (2.1)
if and only if (c, q, ξ, η) ∈ R

2 × X2
1 solves

F(c, q, ξ, η, l, λ) = ( f1, f2, f3, f4)
T = 0, (2.6)

where F(c, q, ξ, η, l, λ) : R2 × X2
1 × R

2 → (R × Y1)2, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(c, q, ξ, η, l, λ) :=
∫

�

eαm(x)(c + ξ)

(

m(x) − eαm(x)(c + ξ) − q + η

1 + eαm(x)(c + ξ)

)

dx,

f2(c, q, ξ, η, l, λ) := Lξ − λ

|�| f1
+λeαm(x)(c + ξ)

(

m(x) − eαm(x)(c + ξ) − q + η

1 + eαm(x)(c + ξ)

)

,

f3(c, q, ξ, η, l, λ) :=
∫

�

(q + η)

(

−r + leαm(x)(c + ξ)

1 + eαm(x)(c + ξ)

)

dx,

f4(c, q, ξ, η, l, λ) := θ�η + λ(q + η)

(

−r + leαm(x)(c + ξ)

1 + eαm(x)(c + ξ)

)

− λ

|�| f3.

(2.7)

We first solve F(c, q, ξ, η, l, λ) = 0 for λ = 0.

Lemma 2.1 Suppose that λ = 0, and let

c̃ =
∫

�
eαm(x)m(x)dx
∫

�
e2αm(x)dx

and l̃ = r |�|
∫

�
c̃eαm(x)

1+c̃eαm(x) dx
. (2.8)

Then, for any l > 0, F(c, q, ξ, η, l, λ) = 0 has three solutions: (0, 0, 0, 0), (c̃, 0, 0, 0) and
(c0l , q0l , 0, 0), where (c0l , q0l) satisfies

∫

�

c0l eαm(x)

1 + c0l eαm(x)
dx = r

l
|�|,

q0l = lc0l
r |�|

∫

�

eαm(x)
(
m(x) − c0l e

αm(x)
)
dx .

(2.9)

Moreover, c0l , q0l > 0 if and only if l > l̃ .
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Proof Substituting λ = 0 into f2 = 0 and f4 = 0, respectively, we have ξ = 0 and η = 0.
Then substituting ξ = η = 0 into f1 = 0 and f3 = 0, respectively, we have

c
∫

�

eαm(x)
(

m(x) − ceαm(x) − q

1 + ceαm(x)

)

dx = 0,

∫

�

q

(

−r + lceαm(x)

1 + ceαm(x)

)

dx = 0.

(2.10)

Therefore, (2.10) has three solutions: (0, 0), (c̃, 0), (c0l , q0l), where c̃ is defined in (2.8), and
(c0l , q0l) satisfies

∫

�

eαm(x)
(

m(x) − c0l e
αm(x) − q0l

1 + c0l eαm(x)

)

dx = 0,

∫

�

(

−r + lc0l eαm(x)

1 + c0l eαm(x)

)

dx = 0.

(2.11)

A direct computation implies that c0l and q0l satisfy (2.9). By the second equation of (2.9),
we see that c0l , q0l > 0 if and only if 0 < c0l < c̃. It follows from the first equation of (2.9)
that

dc0l
dl

< 0 and lim
l→∞ c0l = 0.

Then we obtain that 0 < c0l < c̃ if and only if l > l̃, where l̃ is defined in (2.8). This
completes the proof. ��

We remark that l̃ is the critical value for the successful invasion of the predator for model
(1.4) with 0 < λ � 1 (or respectively, (1.5)). In the following we will consider the mono-
tonicity of l̃ with respect to α and show the effect of advection rate on the invasion of the
predator.

Proposition 2.2 Let l̃(α) be defined in (2.8). Then

l̃(α) ≥ r(|�| + V (α))

V (α)
for all α > 0, (2.12)

where

V (α) :=
∫

�
eαm(x)m(x)dx

∫

�
eαm(x)dx

∫

�
e2αm(x)dx

. (2.13)

Moreover, the following statements hold:

(i) l̃ ′(α)|α=0 < 0;
(ii) If limα→∞ V (α) = 0, then limα→+∞ l̃(α) = ∞. Especially, if � = (0, 1) and m′(x) >

0 (or respectively, m′(x) < 0) for all x ∈ [0, 1], then limα→+∞ V (α) = 0.

Proof Since function
x

1 + x
is concave, it follows from the Jensen’s inequality that

1

|�|
∫

�

c̃(α)eαm(x)

1 + c̃(α)eαm(x)
dx ≤

1
|�|
∫

�
c̃(α)eαm(x)dx

1 + 1
|�|
∫

�
c̃(α)eαm(x)dx

,

where c̃(α) is defined in (2.8). This combined with (2.8) implies that (2.12) holds.
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(i) We define

F(α) :=
∫

�

c̃(α)eαm(x)

1 + c̃(α)eαm(x)
dx = |�| −

∫

�

1

1 + c̃(α)eαm(x)
dx,

and consequently, l̃(α) = r |�|
F(α)

. A direct computation yields

F ′(0) = |�|
(|�| + ∫

�
m(x)dx

)2

[

|�|
∫

�

m2(x)dx −
(∫

�

m(x)dx

)2
]

.

Since m(x) is non-constant, it follows from the Hölder inequality that F ′(0) > 0, and
consequently l̃ ′(0) < 0.

(ii) By (2.12), we see that limα→+∞ l̃(α) = ∞ if limα→∞ V (α) = 0. Next, we give a
sufficient condition for limα→∞ V (α) = 0. We only consider the case that m′(x) > 0 for all
x ∈ �, and the other case can be proved similarly. Since

∫ 1

0
eαm(x)dx =

∫ 1

0
eαm(x)m′(x) 1

m′(x)
dx =

∫ 1

0
eαm(x) 1

m′(x)
dm(x),

which implies that

eαm(1) − eαm(0)

α max
x∈[0,1]m

′(x)
≤
∫ 1

0
eαm(x)dx ≤ eαm(1) − eαm(0)

α min
x∈[0,1]m

′(x)
.

Therefore,

V (α) ≤
2‖m(x)‖∞( max

x∈[0,1]m
′(x))

(
eαm(1) − eαm(0)

)2

α( min
x∈[0,1]m

′(x))2
(
e2αm(1) − e2αm(0)

) ,

which yields limα→+∞ V (α) = 0. ��

It follows from Proposition 2.2 that l̃(α) is strictly monotone decreasing when α is small,
and it may change its monotonicity at least once under certain condition. We conjecture that
l̃(α) changes its monotonicity even for general function m(x) and all λ > 0.

Now we solve (2.6) for λ > 0 by virtue of the implicit function theorem.

Lemma 2.3 For any l∗ > l̃ , where l̃ is defined in (2.8), there exists δ̃l∗ > 0, a neighborhood
Ol∗ of (c0l∗ , q0l∗ , 0, 0) in R

2 × X2
1 , and a continuously differentiable mapping

(λ, l) �→
(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

)
: [0, δ̃l∗ ] × [l∗ − δ̃l∗ , l∗ + δ̃l∗ ] → R

2 × X2
1

such that
(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

) ∈ R
2 × X2

1 is a unique solution of (2.6) in Ol∗ for

(λ, l) ∈ [0, δ̃l∗ ] × [l∗ − δ̃l∗ , l∗ + δ̃l∗ ]. Moreover,
(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

)
= (c0l∗ , q0l∗ , 0, 0) for (λ, l) = (0, l∗).

Here c0l and q0l are defined in Lemma 2.1.
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Proof It follows from Lemma 2.1 that

F(c0l∗ , q0l∗ , 0, 0, l∗, 0) = 0,

where F is defined in (2.6). Then the Fréchet derivative of F with respect to (c, q, ξ, η) at
(c0l∗ , q0l∗ , 0, 0, l∗, 0) is as follows:

G(ĉ, q̂, ξ̂ , η̂) = (g1, g2, g3, g4)
T ,

where ĉ, q̂ ∈ R, ξ̂ , η̂ ∈ X1, and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(ĉ, q̂, ξ̂ , η̂) :=
∫

�

eαm(x)
(

m(x) − 2c0l∗e
αm(x) − q0l∗

(1 + c0l∗eαm(x))2

)

(ĉ + ξ̂ )dx

−
∫

�

c0l∗e
αm(x)

1 + c0l∗eαm(x)
(q̂ + η̂)dx,

g2(ĉ, q̂, ξ̂ , η̂) := L ξ̂ ,

g3(ĉ, q̂, ξ̂ , η̂) :=
∫

�

l∗q0l∗eαm(x)

(1 + c0l∗eαm(x))2

(
ĉ + ξ̂

)
dx

+
∫

�

(

−r + l∗c0l∗eαm(x)

1 + c0l∗eαm(x)

)

(q̂ + η̂)dx,

g4(ĉ, q̂, ξ̂ , η̂) := θ�η̂.

If G(ĉ, q̂, ξ̂ , η̂) = 0, then ξ̃ = 0 and η̂ = 0. Substituting ξ̂ = η̂ = 0 into g1 = 0 and
g3 = 0, respectively, we have

(Pi j )(ĉ, q̂)T = (0, 0)T ,

where

P11 =
∫

�

eαm(x)m(x)dx − 2c0l∗

∫

�

e2αm(x)dx − q0l∗

∫

�

eαm(x)

(1 + c0l∗eαm(x))2
dx,

P12 = −
∫

�

c0l∗e
αm(x)

1 + c0l∗eαm(x)
dx = −r |�|

l∗
,

P21 =
∫

�

l∗q0l∗eαm(x)

(1 + c0l∗eαm(x))2
dx,

P22 =
∫

�

(

−r + l∗c0l∗eαm(x)

1 + c0l∗eαm(x)

)

dx = 0.

Noticing that

det(Pi j ) = r |�|
∫

�

q0l∗e
αm(x)

(1 + c0l∗eαm(x))2
dx �= 0,

we obtain that ĉ = 0 and q̂ = 0. Therefore, G is injective and thus bijective. Then, we can
complete the proof by the implicit function theorem. ��

By virtue of Lemma 2.3, we have the following result.

Theorem 2.4 Assume that l∗ > l̃ , where l̃ is defined in (2.8). Let

u(λ,l) = c(λ,l) + ξ (λ,l), v(λ,l) = q(λ,l) + η(λ,l) for (λ, l) ∈ [0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ],
(2.14)
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where 0 < δl∗ � 1, and
(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

)
is obtained in Lemma 2.3. Then

(
u(λ,l), v(λ,l)

)
is the unique positive solution of (2.1) for (λ, l) ∈ (0, δl∗ ]×[l∗ − δl∗ , l∗ + δl∗ ].

Moreover,
(
c(0,l), q(0,l), ξ (0,l), η(0,l)

)
= (c0l , q0l , 0, 0) for l ∈ [l∗ − δl∗ , l∗ + δl∗ ], (2.15)

where c0l and q0l are defined in Lemma 2.1.

Proof It follows from Lemma 2.3 that when δl∗ < δ̃l∗ ,
(
u(λ,l), v(λ,l)

)
is a solution of (2.1)

for (λ, l) ∈ (0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ], and

lim
(λ,l)→(0,l∗)

(
u(λ,l), v(λ,l)

)
= (

c0l∗ , q0l∗
)

in X2.

Note from Lemma 2.1 that c0l∗ , q0l∗ > 0 if l∗ > l̃. Then
(
u(λ,l), v(λ,l)

)
is a positive solution

of (2.1) for (λ, l) ∈ (0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ] with 0 < δl∗ � 1.
Next, we show that

(
u(λ,l), v(λ,l)

)
is the unique positive solution of (2.1) for (λ, l) ∈

(0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ] with 0 < δl∗ � 1. If it is not true, then there exists a sequence
{(λk, lk)}∞k=1 such that

0 < λk � 1, |lk − l∗| � 1, lim
k→∞(λk, lk) = (0, l∗), (2.16)

and (2.1) admits a positive solution (uk, vk) for (λ, l) = (λk, lk) with

(uk, vk) �=
(
u(λk ,lk ), v(λk ,lk )

)
. (2.17)

It follows from (2.3) that (uk, vk) can also be decomposed as follows:

uk = ck + ξk, vk = qk + ηk, where ck, qk ∈ R, ξk, ηk ∈ X1.

Plugging (u, v, λ, l) = (uk, vk, λk, lk) into (2.1), we see that

fi (ck, qk, ξk, ηk, lk, λk) = 0 for i = 1, 2, 3, 4, (2.18)

where fi (i = 1, 2, 3, 4) are defined in (2.7). It follows from (2.1) that

− Luk ≤ λke
αm(x)uk (m(x) − uk) ,

lk

∫

�

eαm(x)uk
(
m(x) − eαm(x)uk

)
dx = r

∫

�

vkdx,
(2.19)

wherewehave used the divergence formula to obtain the second equation. From themaximum
principle and the first equation of (2.19), we have

0 ≤ uk ≤ max
x∈�

m(x) for k ≥ 1. (2.20)

This, together with the second equation of (2.19), implies that
∫

�

vkdx ≤ P1 := maxk≥1 lk
r

max
x∈�

m(x)
∫

�

eαm(x)m(x)dx for k ≥ 1.

Here we remark that maxk≥1 lk < ∞ from (2.16). Consequently,

inf
x∈�

vk ≤ P2 := P1

|�| for k ≥ 1. (2.21)
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Note from (2.1) and (2.16) that

−θ�vk + rvk ≥ −θ�vk + λkrvk ≥ 0.

where we have used 0 < λk � 1 (see (2.16)) for the first inequality. Note that� is a bounded
domain inRN with 1 ≤ N ≤ 3. Thenwe see from [34, Lemma 2.1] that there exists a positive
constant C0, depending only on r and �, such that

‖vk‖2 ≤ C0 inf
x∈�

vk = C0P2 for k ≥ 1, (2.22)

where we have used (2.21) in the last step.
Note from (2.20) and (2.22) that {uk}∞k=1 is bounded in L∞(�), and {vk}∞k=1 is bounded

in L2(�). Since limk→∞ λk = 0, we see from (2.18) with i = 2, 4 that

lim
k→∞ Lξk = 0 and lim

k→∞ �ηk = 0 in Y1,

which implies that

lim
k→∞ ξk = 0 and lim

k→∞ ηk = 0 in X1. (2.23)

Here X1 and Y1 are defined in (2.4). By (2.5), (2.20) and (2.22), we see that

ck = 1

|�|
∫

�

ukdx and qk = 1

|�|
∫

�

vkdx,

and {ck}∞k=1, {qk}∞k=1 are bounded. Then, up to a subsequence, we see that

lim
k→∞ ck = c∗, lim

k→∞ qk = q∗.

Taking the limits of (2.18) with i = 1, 3 on both sides as k → ∞, respectively, we obtain
that (c∗, q∗) satisfies (2.10) with l = l∗.

We first claim that

(c∗, q∗) �= (0, 0).

Suppose that it is not true. Then by (2.23) and the embedding theorems, we see that, up to a
subsequence,

lim
k→∞(uk, vk) = (0, 0) in Cγ (�) for some 0 < γ < 1.

This yields, for sufficiently large k,

∫

�

vk

(

−r + lkeαm(x)uk
1 + eαm(x)uk

)

dx < 0.

Substituting (u, v, λ, l) = (uk, vk, λk, lk) into (2.1), and integrating the result over �, we
obtain that

∫

�

vk

(

−r + lkeαm(x)uk
1 + eαm(x)uk

)

dx = 0,

which is a contradiction. Next, we show that

(c∗, q∗) �= (c̃, 0).
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Byway of contradiction, (c∗, q∗) = (c̃, 0). Similarly, by (2.23) and the embedding theorems,
we see that, up to a subsequence,

lim
k→∞(uk, vk) = (c̃, 0) in Cγ (�) for some 0 < γ < 1.

From the second equation of (2.1), we have

− r |�| +
∫

�

lkeαm(x)uk
1 + eαm(x)uk

dx = − θ

λk

∫

�

|∇vk |2
v2k

dx ≤ 0. (2.24)

Then taking k → ∞ on both sides of (2.24) yields

l∗ ≤ r |�|
∫

�
c̃eαm(x)

1+c̃eαm(x) dx
= l̃,

which is a contradiction.
Therefore,

lim
k→∞(ck, qk) = (

c0l∗ , q0l∗
)
.

This, combined with (2.23) and Lemma 2.3, implies that, for sufficiently large k,

(ck, qk, ξk, ηk) =
(
c(λk ,lk ), ξ (λk ,lk ), q(λk ,lk ), η(λk ,lk )

)
,

and consequently, for sufficiently large k,

(uk, vk) =
(
u(λk ,lk ), v(λk ,lk )

)
.

This contradicts (2.17), and the uniqueness is obtained.
By using similar arguments as in the proof of the uniqueness, we can show that, for any

l ∈ [l∗ − δl∗ , l∗ + δl∗ ],
lim
λ→0

(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

)
= (c0l , q0l , 0, 0) in R

2 × X2
1 .

Note from Lemma 2.3 that
(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

)
is continuously differentiable for

(λ, l) ∈ [0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ]. Then we see that (2.15) holds. This completes the
proof. ��
From Theorem 2.4, we see that (2.1) admits a unique positive solution when (l, λ) is in a
small neighborhood of (l∗, 0) with l∗ > l̃. In the following, we will solve (2.1) for a wide
range of parameters, see the rectangular region in Fig. 1.

Theorem 2.5 Let L := [l̃ + ε, 1/ε], where 0 < ε � 1 and l̃ is defined in Lemma 2.1. Then
the following statements hold.

(i) There exists δε > 0 such that, for (λ, l) ∈ (0, δε] × L, model (2.1) admits a unique
positive solution (u(λ,l), v(λ,l)).

(ii) Let (u(0,l), v(0,l)) = (c0l , q0l) for l ∈ L, where (c0l , q0l) is defined in Lemma 2.1. Then
(u(λ,l), v(λ,l)) is continuously differentiable for (λ, l) ∈ [0, δε] × L, and (u(λ,l), v(λ,l))

can be decomposed as follows:

u(λ,l) = c(λ,l) + ξ (λ,l), v(λ,l) = q(λ,l) + η(λ,l),

where
(
c(λ,l), q(λ,l), ξ (λ,l), η(λ,l)

) ∈ R
2 × X2

1 solves Eq. (2.6) for (λ, l) ∈ [0, δε] × L.
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Proof It follows from Lemma 2.4 that, for any l∗ ∈ L, there exists δl∗ (0 < δl∗ � 1) such
that, for (λ, l) ∈ (0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ], system (2.1) admits a unique positive solution
(u(λ,l), v(λ,l)), where u(λ,l) and v(λ,l) are defined in (2.14) and continuously differentiable
for (λ, l) ∈ [0, δl∗ ] × [l∗ − δl∗ , l∗ + δl∗ ]. Clearly,

L ⊆
⋃

l∗∈L

(
l∗ − δl∗ , l∗ + δl∗

)
.

Noticing that L is compact, we see that there exist finite open intervals, denoted by(
l(i)∗ − δ

l(i)∗
, l(i)∗ + δ

l(i)∗

)
for i = 1, . . . , s, such that

L ⊆
s⋃

i=1

(
l(i)∗ − δ

l(i)∗
, l(i)∗ + δ

l(i)∗

)
.

Choose δε = min1≤i≤s δ
l(i)∗

. Then, for (λ, l) ∈ (0, δε] × L, system (2.1) admits a unique

positive solution (u(λ,l), v(λ,l)). By Lemma 2.3 and Theorem 2.4, we see that (u(λ,l), v(λ,l))

is continuously differentiable on [0, δε] × L, if (u(0,l), v(0,l)) = (c0l , q0l). ��

Using similar arguments as in Lemma 2.3 and Theorems 2.4 and 2.5, we can show the
nonexistence of positive solution under certain condition, and here we omit the proof for
simplicity.

Theorem 2.6 Let L1 := [ε1, l̃ − ε1], where 0 < ε1 � 1 and l̃ is defined in (2.8). Then there
exists δε1 > 0 such that, for (λ, l) ∈ (0, δε1 ] × L1, model (2.1) admits no positive solution.

3 Stability and Hopf bifurcation

Throughout this section, we let
(
u(λ,l), v(λ,l)

)
be the unique positive solution of model (2.1)

obtained in Theorem 2.5. In the following, we use l as the bifurcation parameter, and show
that under certain condition there exists a Hopf bifurcation curve l = lλ when λ is small.

Linearizing model (1.4) at
(
u(λ,l), v(λ,l)

)
, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

ũt = e−αm(x)∇ · [eαm(x)∇ũ
]+ λ

(
M (λ,l)

1 ũ + M (λ,l)
2 ṽ

)
, x ∈ �, t > 0,

ṽt = θ�ṽ + λ
(
M (λ,l)

3 ũ + M (λ,l)
4 ṽ

)
, x ∈ �, t > 0,

∂nũ = ∂n ṽ = 0, x ∈ ∂�, t > 0,

where

M (λ,l)
1 = m(x) − 2eαm(x)u(λ,l) − v(λ,l)

(
1 + eαm(x)u(λ,l)

)2 , M (λ,l)
2 = − u(λ,l)

1 + eαm(x)u(λ,l)
,

M (λ,l)
3 = leαm(x)v(λ,l)

(
1 + eαm(x)u(λ,l)

)2 , M (λ,l)
4 = −r + leαm(x)u(λ,l)

1 + eαm(x)u(λ,l)
.

(3.1)

Let

Al(λ) :=
(
e−αm(x)∇ · [eαm(x)∇] 0

0 θ�

)

+ λ

(
M (λ,l)

1 M (λ,l)
2

M (λ,l)
3 M (λ,l)

4

)

. (3.2)
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Then, μ ∈ C is an eigenvalue of Al(λ) if and only if there exists (ϕ, ψ)T
( �= (0, 0)T

) ∈ X2
C

such that
⎧
⎨

⎩

e−αm(x)∇ ·
[
eαm(x)∇ϕ

]
+ λ

(
M (λ,l)

1 ϕ + M (λ,l)
2 ψ

)
− μϕ = 0,

θ�ψ + λ
(
M (λ,l)

3 ϕ + M (λ,l)
4 ψ

)
− μψ = 0.

(3.3)

We first give a priori estimates for solutions of (3.3) for later use.

Lemma 3.1 LetLand δε bedefinedandobtained inTheorem2.5. Suppose that (μλ, lλ, ϕλ, ψλ)

solves (3.3) for λ ∈ (0, δε], where Reμλ ≥ 0, (ϕλ, ψλ)
T
(�= (0, 0)T

) ∈ X2
C
and lλ ∈ L.

Then |μλ/λ| is bounded for λ ∈ (0, δε].

Proof Substituting (μλ, lλ, ϕλ, ψλ) into Eq. (3.3), we have
⎧
⎨

⎩

e−αm(x)∇ ·
[
eαm(x)∇ϕλ

]
+ λ

(
M (λ,lλ)

1 ϕλ + M (λ,lλ)
2 ψλ

)
− μλϕλ = 0,

θ�ψλ + λ
(
M (λ,lλ)

3 ϕλ + M (λ,lλ)
4 ψλ

)
− μλψλ = 0.

(3.4)

Then multiplying the first and second equations of (3.4) by eαm(x)ϕλ and ψλ, respectively,
summing these two equations, and integrating the result over �, we have

μλ

∫

�

(
eαm(x)|ϕλ|2 + |ψλ|2

)
dx =〈ϕλ,∇ ·

[
eαm(x)∇ϕλ

]
〉 + 〈ψλ,�ψλ〉

+ λ

∫

�

eαm(x)
(
M (λ,lλ)

1 |ϕλ|2 + M (λ,lλ)
2 ϕλψλ

)
dx

+ λ

∫

�

(
M (λ,lλ)

3 ϕλψλ + M (λ,lλ)
4 |ψλ|2

)
dx .

(3.5)

We see from the divergence theorem that

〈ϕλ,∇ ·
[
eαm(x)∇ϕλ

]
〉 + 〈ψλ,�ψλ〉 = −

∫

�

eαm(x)|∇ϕλ|2dx −
∫

�

|∇ψλ|2dx ≤ 0.(3.6)

Noticing from Theorem 2.5 that
(
u(λ,l), v(λ,l)

) : [0, δε] × L → X2 is continuously differ-
entiable, we see from the imbedding theorems that there exists a positive constant P∗ such
that

∥
∥
∥M (λ,l)

i

∥
∥
∥∞ ≤ P∗ for (λ, l) ∈ [0, δε] × L and i = 1, 2, 3, 4. (3.7)

Then, we see from (3.5)–(3.7) that

0 ≤ Re
(μλ

λ

)
≤P∗

(

1 +
∫

�

(
eαm(x)ϕλψλ + ϕλψλ

)
dx

∫

�

(
eαm(x)|ϕλ|2 + |ψλ|2

)
dx

)

≤P∗
(
1 + eαmaxx∈� m(x)

)
.

Similarly, we can obtain that
∣
∣
∣Im

(μλ

λ

)∣
∣
∣ ≤ P∗

(
1 + eαmaxx∈� m(x)

)
.

This completes the proof. ��
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To analyze the stability of
(
u(λ,l), v(λ,l)

)
, we need to consider whether the eigenvalues

of (3.3) could pass through the imaginary axis. It follows from Lemma 3.1 that if μ = iσ
is an eigenvalue of (3.3), then ν = σ/λ is bounded for λ ∈ (0, δε], where δε is obtained in
Theorem 2.5. Substituting μ = iλν (ν ≥ 0) into (3.3), we have

⎧
⎨

⎩

Lϕ + λeαm(x)
(
M (λ,l)

1 ϕ + M (λ,l)
2 ψ

)
− iλνeαm(x)ϕ = 0,

θ�ψ + λ
(
M (λ,l)

3 ϕ + M (λ,l)
4 ψ

)
− iλνψ = 0.

(3.8)

Ignoring a scalar factor, (ϕ, ψ)T ∈ X2
C
in (3.8) can be decomposed as follows:

⎧
⎪⎨

⎪⎩

ϕ = δ + w, where δ ≥ 0 and w ∈ (X1)C ,

ψ = (s1 + is2) + z, where s1, s2 ∈ R and z ∈ (X1)C ,

‖ϕ‖22 + ‖ψ‖22 = |�|.
(3.9)

Now we can obtain an equivalent problem of (3.8) in the following.

Lemma 3.2 Let (ϕ, ψ) be defined in (3.9). Then (ϕ, ψ, ν, l) solves (3.8) with ν ≥ 0, l ∈ L,
if and only if (δ, s1, s2, ν, w, z, l) solves

{
H(δ, s1, s2, ν, w, z, l, λ) = 0,

δ ≥ 0, s1, s2 ∈ R, ν ≥ 0, l ∈ L, w, z ∈ (X1)C .
(3.10)

Here

H(δ, s1, s2, ν, w, z, l, λ) = (h1, h2, h3, h4, h5)
T

is a continuously differentiablemapping fromR
4×((X1)C)2×L×[0, δε] to (C × (Y1)C)2×R,

where

h1(δ, s1, s2, ν, w, z, l, λ) :=
∫

�

eαm(x)
[
M (λ,l)

1 (δ + w) + M (λ,l)
2 (s1 + is2 + z)

]
dx

− iν
∫

�

eαm(x)(δ + w)dx,

h2(δ, s1, s2, ν, w, z, l, λ) :=Lw + λeαm(x)
[
M (λ,l)

1 (δ + w) + M (λ,l)
2 (s1 + is2 + z)

]

− iλνeαm(x)(δ + w) − λ

|�|h1,

h3(δ, s1, s2, ν, w, z, l, λ) :=
∫

�

[
M (λ,l)

3 (δ + w) + M (λ,l)
4 (s1 + is2 + z)

]
dx

− iν(s1 + is2)|�|,
h4(δ, s1, s2, ν, w, z, l, λ) :=θ�z + λ

[
M (λ,l)

3 (δ + w) + M (λ,l)
4 (s1 + is2 + z)

]

− iλν(s1 + is2 + z) − λ

|�|h3,
h5(δ, s1, s2, w, z, ν, l, λ) :=|�| (δ2 + s21 + s22 − 1

)+ ‖w‖22 + ‖z‖22,
and M (λ,l)

i are defined in (3.1) for i = 1, 2, 3, 4.

Proof Note that f = c + z for any f ∈ YC, where

c = 1

|�|
∫

�

f dx ∈ C, z = f − 1

|�|
∫

�

f dx ∈ (Y1)C . (3.11)
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A direct computation implies that H(δ, s1, s2, ν, w, z, l, λ) is a continuously differentiable
mapping from R

4 × ((X1)C)2 × L × [0, δε] to (C × (Y1)C)2 × R. Denote the left sides of
the two equations of (3.8) as G1 and G2, respectively. That is,

G1(ϕ, ψ, ν, l, λ) := Lϕ + λeαm(x)
(
M (λ,l)

1 ϕ + M (λ,l)
2 ψ

)
− iλνeαm(x)ϕ,

G2(ϕ, ψ, ν, l, λ) := θ�ψ + λ
(
M (λ,l)

3 ϕ + M (λ,l)
4 ψ

)
− iλνψ.

Plugging (3.9) into (3.8), wee see from (3.11) that G1(ϕ, ψ, ν, l, λ) = 0 if and only if

hi (δ, s1, s2, ν, w, z, l, λ) = 0 for i = 1, 2,

and G2(ϕ, ψ, ν, l, λ) = 0 if and only if

hi (δ, s1, s2, ν, w, z, l, λ) = 0 for i = 3, 4.

This completes the proof. ��
Note from (3.1) that

M (0,l)
1 = m(x) − 2c0l e

αm(x) − q0l
(
1 + c0l eαm(x)

)2 , M (0,l)
2 = − c0l

1 + c0l eαm(x)
< 0,

M (0,l)
3 dx = lq0l eαm(x)

(
1 + c0l eαm(x)

)2 > 0, M (0,l)
4 = −r + lc0l eαm(x)

1 + c0l eαm(x)
,

(3.12)

where c0l and q0l are defined in Lemma 2.1. Then we give the following result for further
application.

Lemma 3.3 Let S(l) := ∫

�
eαm(x)M (0,l)

1 dx, where l ∈ L, and L := [l̃ + ε, 1/ε] is defined in
Theorem 2.5 with 0 < ε � 1, and let T (α) := ∫

�
eαm(x)(m(x) − 1)dx. Then the following

two statements hold:

(i) If T (α) < 0, then S(l) < 0 for all l ∈ L;
(ii) If T (α) > 0, then there exists l0 ∈ int(L) = (l̃+ε, 1/ε) such that S(l0) = 0, S ′(l0) > 0,

S(l) < 0 for l ∈ [l̃ + ε, l0), and S(l) > 0 for l ∈ (l0, 1/ε].
Proof We construct an auxiliary function:

S1(c) =
∫

�

eαm(x)

1 + ceαm(x)
dx .

A direct computation implies that

S ′
1(c) = −

∫

�

e2αm(x)

(
1 + ceαm(x)

)2 dx < 0, S ′′
1 (c) = 2

∫

�

e3αm(x)

(
1 + ceαm(x)

)3 dx > 0. (3.13)

Clearly, we see from (3.12) that

S(l) =
∫

�

[
eαm(x)m(x) − 2c0l e

2αm(x)
]
dx − q0l

∫

�

eαm(x)

(
1 + c0l eαm(x)

)2 dx . (3.14)

It follows from the first equation of (2.11) that

q0l = 1

S1(c0l)

∫

�

[
eαm(x)m(x) − c0l e

2αm(x)
]
dx, (3.15)
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and plugging (3.15) into (3.14), we get

S(l) = S2(c0l). (3.16)

Here

S2(c) :=
∫

�

[
eαm(x)m(x) − 2ce2αm(x)

]
dx

− 1

S1(c)

∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx
∫

�

eαm(x)

(
1 + ceαm(x)

)2 dx

=
∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx

[

1 − 1

S1(c)

∫

�

eαm(x)

(
1 + ceαm(x)

)2 dx

]

− c
∫

�

e2αm(x)dx

= − cS ′
1(c)

S1(c)

∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx − c

∫

�

e2αm(x)dx,

where we have used (3.13) in the last step. Let

S3(c) = S ′
1(c)

S1(c)

∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx +

∫

�

e2αm(x)dx, (3.17)

and consequently, we have

S2(c) = −cS3(c). (3.18)

It follows from the first equation of (2.9) that

dc0l
dl

< 0, lim
l→l̃

c0l = c̃, and lim
l→∞ c0l = 0, (3.19)

where c̃ and l̃ are defined in Lemma 2.1 (see (2.8)). Therefore, to determine the zeros of S(l)
in (l̃,∞), we only need to consider the zeros of S3(c) in (0, c̃).

It follows from the Hölder inequality and (3.13) that

[S ′
1(c)]2 =

⎡

⎣

∫

�

e
3
2αm(x)e

1
2αm(x)

(
1 + ceαm(x)

) 3
2
(
1 + ceαm(x)

) 1
2

dx

⎤

⎦

2

≤
∫

�

e3αm(x)

(
1 + ceαm(x)

)3 dx
∫

�

eαm(x)

1 + ceαm(x)
dx = S ′′

1 (c)S1(c)
2

,

and consequently,

[S ′
1(c)

S1(c)

]′
= S ′′

1 (c)S1(c) − (
S ′
1(c)

)2

S2
1 (c)

> 0. (3.20)

Note from (2.8) that
∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx > 0 for c ∈ (0, c̃). This, combined with

(3.13), (3.17) and (3.20), yields

S ′
3(c) =

[S ′
1(c)

S1(c)

]′ ∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx − S ′

1(c)

S1(c)

∫

�

e2αm(x)dx > 0.

(3.21)

123



Stability and bifurcation in a reaction–diffusion–advection... Page 17 of 31 61

It follows from (2.8) that limc→c̃ S3(c) = ∫

�
e2αm(x)dx > 0, and

lim
c→0

S3(c) = −
∫

�
e2αm(x)dx

∫

�
eαm(x)dx

T (α).

Therefore, if T (α) < 0, then S3(c) > 0 for all c ∈ (0, c̃). If T (α) > 0, then there exists
c0 ∈ (0, c̃) such that S3(c0) = 0, S3(c) < 0 for c ∈ (0, c0) and S3(c) > 0 for c ∈ (c0, c̃).
Then, we see from (3.16), (3.18) and (3.19) that if T (α) < 0, then (i) holds; and if T (α) > 0,
then there exists l0 > l̃ such that

c0l0 = c0, S(l0) = 0, S(l) < 0 for l ∈ (l̃, l0), and S(l) > 0 for l ∈ (l0,∞).

(3.22)

It follows from (3.16) and (3.18) that

S ′(l0) = S ′
2 (c0l)

∣
∣
l=l0

dc0l
dl

∣
∣
∣
∣
l=l0

= −
[
S3
(
c0l0
)+ c0l0 S ′

3(c0l)
∣
∣
l=l0

] dc0l
dl

∣
∣
∣
∣
l=l0

= − [
S3 (c0) + c0S ′

3(c0)
] dc0l

dl

∣
∣
∣
∣
l=l0

,

where we have used c0l0 = c0 in the last step. Noting that S3(c0) = 0, we see from (3.19)
and (3.21) that S ′(l0) > 0. Note from Theorem 2.5 that L = [l̃ + ε, 1/ε] with 0 < ε � 1.
Then, for sufficiently small ε, l0 ∈ int(L) = (l̃ + ε, 1/ε) and (ii) holds. This completes the
proof. ��

By Lemma 3.3, we can solve (3.10) for λ = 0.

Lemma 3.4 Suppose that λ = 0, and let T (α) be defined in Lemma 3.3. Then the following
statements hold:

(i) If T (α) < 0, then (3.10) has no solution;
(ii) If T (α) > 0, then (3.10) has a unique solution

(δ, s1, s2, ν, w, z, l) = (δ0, s10, s20, ν0, w0, z0, l0),

where l0 is obtained in Lemma 3.3,

s10 = 0, w0 = 0, z0 = 0, ν0 =
√
√
√
√−

∫

�
eαm(x)M (0,l0)

2 dx
∫

�
M (0,l0)

3 dx

|�| ∫
�
eαm(x)dx

,

δ0 =
√
√
√
√
√

1

1 +
(∫

� M
(0,l0)

3 dx
ν0|�|

)2 , s20 = − δ0

ν0|�|
∫

�

M (0,l0)
3 dx,

and M (0,l)
i is defined in (3.12) for i = 1, 2, 3, 4.

Proof It follows from (3.12) that
∫

�

eαm(x)M (0,l0)
2 dx < 0,

∫

�

M (0,l0)
3 dx > 0, (3.23)

which implies that ν0 is well defined.
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Substituting λ = 0 into h2 = 0 and h4 = 0, respectively, we have w = w0 = 0 and
z = z0 = 0. Note from the second equation of (2.11) that

∫

�

M (0,l)
4 dx = 0 for any l ∈ L. (3.24)

Then plugging w = z = 0 and λ = 0 into hi = 0 for i = 1, 3, 5, respectively, we have
(∫

�
eαm(x)M (0,l)

1 dx − iν
∫

�
eαm(x)dx

∫

�
eαm(x)M (0,l)

2 dx
∫

�
M (0,l)

3 dx −iν|�|

)(
δ

s1 + is2

)

=
(
0
0

)

,

(3.25)

and

δ2 + s21 + s22 = 1. (3.26)

Therefore, (3.10) has a solution if and only if (3.25)–(3.26) is solvable for some value of
(δ, s1, s2, ν, l) with δ, ν ≥ 0, s1, s2 ∈ R and l ∈ L. It follows from (3.23) that (3.25)–(3.26)
is solvable (or (3.10) is solvable) if and only if

S(l) =
∫

�

eαm(x)M (0,l)
1 dx = 0 (3.27)

is solvable for some l ∈ L. From Lemma 3.3, we see that if T (α) < 0, then (3.27) has no
solution in L; and if T (α) > 0, then (3.27) has a unique solution l0 in L with S(l0) = 0.

Substituting l = l0 into (3.25), we compute that

s1 = s10 = 0, ν = ν0, s2 = − δ

ν0|�|
∫

�

M (0,l0)
3 dx . (3.28)

Then, plugging (3.28) into (3.26), we get δ = δ0 and s2 = s20. This completes the proof. ��
Now, we solve (3.10) for λ > 0.

Theorem 3.5 Suppose that T (α) > 0, where T (α) is defined in Lemma 3.3. Then there exists
λ̃ ∈ (0, δε), where δε is obtained in Theorem 2.5, and a continuously differentiable mapping

λ �→ (δλ, s1λ, s2λ, νλ,wλ, zλ, lλ) : [0, λ̃] → R
4 × ((X1)C)2 × L

such that (3.10) has a unique solution (δλ, s1λ, s2λ, νλ,wλ, zλ, lλ) for λ ∈ [0, λ̃], and
(δλ, s1λ, s2λ, νλ,wλ, zλ, lλ) = (δ0, s10, s20, ν0, w0, z0, l0)

for λ = 0, where (δ0, s10, s20, ν0, w0, z0, l0) is defined in Lemma 3.4.

Proof We first show the existence. It follows from Lemma 3.4 that H (K0) = 0, where
K0 = (δ0, s10, s20, ν0, w0, z0, l0, 0). Note from (3.24) that

∫

�

M (0,l)
4 dx = 0,

d

dl

(∫

�

M (0,l)
4 dx

)

= 0 for all l ∈ L. (3.29)

Then the Fréchet derivative of H(δ, s1, s2, ν, w, z, l, λ) with respect to (δ, s1, s2, ν, w, z, l)
at K0 is as follows:

K (δ̂, ŝ1, ŝ2, ν̂, ŵ, ẑ, l̂) := (k1, k2, k3, k4, k5)
T ,
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where (δ̂, ŝ1, ŝ2, ν̂, ŵ, ẑ, l̂) ∈ R
4 × ((X1)C)2 × L, and

k1 =
∫

�

eαm(x)
[(

M (0,l0)
1 − iν0

)
(δ̂ + ŵ) + M (0,l0)

2 (ŝ1 + iŝ2 + ẑ)
]
dx − iν̂δ0

∫

�

eαm(x)dx

+ l̂
d

dl

[∫

�

eαm(x)
(
δ0M

(0,l)
1 + is20M

(0,l)
2

)
dx

]∣
∣
∣
∣
l=l0

,

k2 =Lŵ,

k3 =
∫

�

[
M (0,l0)

3 (δ̂ + ŵ) + M (0,l0)
4 ẑ

]
dx + ν̂s20|�| − iν0(ŝ1 + iŝ2)|�|

+ l̂δ0
d

dl

(∫

�

M (0,l)
3 dx

)∣
∣
∣
∣
l=l0

,

k4 =θ�ẑ,

k5 =2δ0|�|δ̂ + 2s20|�|ŝ2,
where we have used (3.29) to obtain k3. If K (δ̂, ŝ1, ŝ2, ν̂, ŵ, ẑ, l̂) = 0, then ŵ = 0 and
ẑ = 0. Substituting ŵ = ẑ = 0 into k1 = 0 and k3 = 0, respectively, separating the real and
imaginary parts, and noting that k5 = 0, we get

(Di j )(δ̂, ŝ1, ŝ2, ν̂, l̂)T = (0, 0, 0, 0, 0)T .

Here Di j = 0 except

D12 =
∫

�

eαm(x)M (0,l0)
2 dx, D15 = δ0S ′(l0), D21 = −ν0

∫

�

eαm(x)dx, D34 = s20|�|,

D23 =
∫

�

eαm(x)M (0,l0)
2 dx, D24 = −δ0

∫

�

eαm(x)dx,

D25 = s20
d

dl

(∫

�

eαm(x)M (0,l)
2 dx

)∣
∣
∣
∣
l=l0

, D31 =
∫

�

M (0,l0)
3 dx, D33 = ν0|�|,

D35 = δ0
d

dl

(∫

�

M (0,l)
3 dx

)∣
∣
∣
∣
l=l0

, D42 = −ν0|�|, D51 = 2δ0|�|, D53 = 2s20|�|,

where S(l) is defined in Lemma 3.3. A direct computation implies that

∣
∣
(
Di j
)∣
∣ =2ν0|�|2δ0S ′(l0)

∣
∣
∣
∣
∣
∣

−ν0
∫

�
eαm(x)dx

∫

�
eαm(x)M (0,l0)

2 dx −δ0
∫

�
eαm(x)dx

∫

�
M (0,l0)

3 dx ν0|�| s20|�|
δ0 s20 0

∣
∣
∣
∣
∣
∣

=2ν0δ0|�|2S ′(l0)
(

δ0s20|�|
∫

�

eαm(x)M (0,l0)
2 dx + δ20ν0|�|

∫

�

eαm(x)dx

+ ν0s
2
20|�|

∫

�

eαm(x)dx − δ0s20

∫

�

eαm(x)dx
∫

�

M (0,l0)
3 dx

)

.

(3.30)

Since (δ0, s10, s20, ν0) satisfies (3.25), we have

s20

∫

�

eαm(x)M (0,l0)
2 dx = ν0δ0

∫

�

eαm(x)dx, δ0

∫

�

M (0,l0)
3 dx = −ν0s20|�|. (3.31)

Plugging (3.31) into (3.30), we have

|(Di j )| = 4ν20δ0|�|3S ′(l0)
(
δ20 + s220

)
∫

�

eαm(x)dx > 0,

123



61 Page 20 of 31 Y. Sun, S. Chen

where we have used Lemma 3.3 (ii) in the last step. Therefore, δ̂ = 0, ŝ1 = 0, ŝ2 = 0, ν̂ = 0
and l̂ = 0, which implies that K is injective and thus bijective. From the implicit function
theorem, we see that there exists λ̃ ∈ (0, δε) and a continuously differentiable mapping

λ �→ (δλ, s1λ, s2λ, νλ,wλ, zλ, lλ) : [0, λ̃] → R
4 × ((X1)C)2 × L

such that H (δλ, s1λ, s2λ, νλ,wλ, zλ, lλ, λ) = 0, and for λ = 0,

(δλ, s1λ, s2λ, νλ,wλ, zλ, lλ) = (δ0, s10, s20, ν0, w0, z0, l0).

Now, we show the uniqueness. From the implicit function theorem, we only need to verify
that if

(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

)
is a solution of (3.10) for λ ∈ (0, λ̃], then

lim
λ→0

(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

) = (δ0, s10, s20, ν0, w0, z0, l0) in R
4 × ((X1)C)2 × R.

(3.32)

Noticing that h5
(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

) = 0, we see that |δλ|, |sλ
1 |, |sλ

2 |, ‖wλ‖2 and
‖zλ‖2 are bounded for λ ∈ [0, λ̃]. Since lλ ∈ L, we obtain that lλ is bounded for λ ∈ [0, λ̃].
Moreover, |νλ| is also bounded for λ ∈ [0, λ̃] from Lemma 3.1. Let

Q1(λ) =λeαm(x)
[
M (λ,lλ)

1 (δλ + wλ) + M (λ,lλ)
2 (sλ

1 + isλ
2 + zλ)

]

− iλνλeαm(x)(δλ + wλ) − λ

|�|h1
(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

)
,

Q2(λ) =λ
[
M (λ,lλ)

3 (δλ + wλ) + M (λ,lλ)
4 (sλ

1 + isλ
2 + zλ)

]

− iλνλ(sλ
1 + isλ

2 + zλ) − λ

|�|h3
(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

)
.

Noting that
(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

)
is bounded in R4 × ((Y1)C)2 × R, we see from (3.7)

that limλ→0 Q1(λ) = 0 and limλ→0 Q2(λ) = 0 in (Y1)C. Since

wλ = −L−1 [Q1(λ)] , zλ = −�−1 [Q2(λ)] ,

where L−1 and �−1 are bounded operators from (Y1)C to (X1)C, we get

lim
λ→0

wλ = w0 = 0, lim
λ→0

zλ = z0 = 0 in (X1)C .

Since
(
δλ, sλ

1 , sλ
2 , νλ, lλ

)
is bounded in R

5 for λ ∈ (0, λ̃], we see that, up to a subsequence,

lim
λ→0

δλ = δ∗, lim
λ→0

sλ
1 = s∗

1 , lim
λ→0

sλ
2 = s∗

2 , lim
λ→0

νλ = ν∗, lim
λ→0

lλ = l∗.

Taking λ → 0 on both sides of

H
(
δλ, sλ

1 , sλ
2 , νλ, wλ, zλ, lλ

) = 0,

we see that H
(
δ∗, s∗

1 , s
∗
2 , ν

∗, 0, 0, l∗
) = 0. This combined with Lemma 3.4 implies that

δ∗ = δ0, s∗
1 = s10, s∗

2 = s20, ν∗ = ν0 and l∗ = l0. This completes the proof. ��
Then from Lemma 3.2 and Theorem 3.5, we have the following result.

Theorem 3.6 LetL be defined in Theorem 2.5. Suppose that T (α) > 0 and λ ∈ (0, λ̃], where
0 < λ̃ � 1, and T (α) is defined in Lemma 3.3. Then (ϕ, ψ, σ, l) solves

{
(Al(λ) − iσ I ) (ϕ, ψ)T = 0,

σ ≥ 0, l ∈ L, (ϕ, ψ)T �= (0, 0)T ∈ X2
C
,
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if and only if

σ = λνλ, ϕ = κϕλ = κ(δλ + wλ), ψ = κψλ = κ[(s1λ + is2λ) + zλ], l = lλ,

where Al(λ) is defined in (3.2), I is the identity operator, κ ∈ C is a nonzero constant, and
(δλ, s1λ, s2λ, νλ,wλ, zλ, lλ) is obtained in Theorem 3.5.

To show that iλνλ is a simple eigenvalue of Alλ(λ), we need to consider the following
operator

AH (λ) :=
(
L 0
0 θ�

)

+ λ

(
eαm(x)M (λ,lλ)

1 + iνλeαm(x) M (λ,lλ)
3

eαm(x)M (λ,lλ)
2 M (λ,lλ)

4 + iνλ

)

. (3.33)

Let

I :=
(
eαm(x) 0

0 1

)

. (3.34)

Then AH (λ) is the adjoint operator of I
(
Alλ (λ) − iλνλ I

)
. That is, for any (φ1, φ2)

T ∈ XC

and (ψ1, ψ2)
T ∈ XC, we have

〈
AH (λ) (φ1, φ2)

T , (ψ1, ψ2)
T
〉
=
〈
(φ1, φ2)

T , I
(
Alλ (λ) − iλνλ I

)
(ψ1, ψ2)

T
〉
. (3.35)

Lemma 3.7 Let AH (λ) be defined in (3.33). Suppose that T (α) > 0 and λ ∈ (0, λ̃], where
0 < λ̃ � 1 and T (α) is defined in Lemma 3.3. Then

N
[
AH (λ)

]
= span[(ϕ̃λ, ψ̃λ)

T ],
and, ignoring a scalar factor, (ϕ̃λ, ψ̃λ) can be represented as

⎧
⎪⎨

⎪⎩

ϕ̃λ = δ̃λ + w̃λ, where δ̃ ≥ 0 and w̃λ ∈ (X1)C ,

ψ̃λ = (s̃1λ + is̃2λ) + z̃λ, where s̃1λ, s̃2λ ∈ R and z̃λ ∈ (X1)C ,

‖ϕ̃λ‖22 + ‖ψ̃λ‖22 = |�|.
(3.36)

Moreover, limλ→0

(
δ̃λ, s̃1λ, s̃2λ, w̃λ, z̃λ

)
= (δ̃0, s̃10, s̃20, w̃0, z̃0) in R

3 × ((X1)C)2, where

w̃0 = 0, z̃0 = 0,

δ̃0 =
√
√
√
√
√

1

1 +
(

ν0
∫

� eαm(x)dx
∫

� M
(0,l0)

3 dx

)2 , s̃10 = 0, s̃20 = − δ̃0ν0
∫

�
eαm(x)dx

∫

�
M (0,l0)

3 dx
,

and ν0, l0 are defined in Lemma 3.4.

Proof It follows from Theorem 3.6 that 0 is an eigenvalue of I
(
Alλ (λ) − iλνλ I

)
and

N
[
I
(
Alλ (λ) − iλνλ I

)]
is one-dimensional for λ ∈ (0, λ̃], where I is defined in (3.34).

Then 0 is also an eigenvalue of AH (λ) and N [AH (λ)] is also one-dimensional. Then
N [AH (λ)] = span[(ϕ̃λ, ψ̃λ)

T ], and (ϕ̃λ, ψ̃λ) can be represented as (3.36). By the similar
arguments as in the proof of Theorem 3.5, we see that

lim
λ→0

w̃λ = 0, lim
λ→0

z̃λ = 0 in (X1)C ,

and up to a subsequence,

lim
λ→0

δ̃λ = δ∗
0 , lim

λ→0
s̃1λ = s∗

10, lim
λ→0

s̃2λ = s∗
20,
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where
(
δ∗
0 , s

∗
10, s

∗
20

)
satisfies

(
δ∗
0

)2 + (
s∗
10

)2 + (
s∗
20

)2 = 1, and
⎛

⎜
⎝

iν0

∫

�

eαm(x)dx
∫

�

M (0,l0)
3 dx

∫

�

eαm(x)M (0,l0)
2 dx iν0|�|

⎞

⎟
⎠

(
δ∗
0

s∗
10 + is∗

20

)

=
(
0
0

)

.

A direct computation implies that
(
δ∗
0 , s

∗
10, s

∗
20

) =
(
δ̃0, s̃10, s̃20

)
, and consequently,

limλ→0

(
δ̃λ, s̃1λ, s̃2λ

)
=
(
δ̃0, s̃10, s̃20

)
. This completes the proof. ��

Then, by virtue of Lemma 3.7, we show that iλνλ is simple.

Theorem 3.8 Suppose that T (α) > 0 and λ ∈ (0, λ̃], where 0 < λ̃ � 1 and T (α) is defined
in Lemma 3.3. Then iλνλ is a simple eigenvalue of Alλ(λ), where Al(λ) is defined in (3.2).

Proof It follows from Theorem 3.6 that N [Alλ (λ) − iλνλ I ] = span[(ϕλ, ψλ)
T ], where ϕλ

and ψλ are defined in Theorem 3.5. Then we show that

N [Alλ(λ) − iλνλ I ]2 = N [Alλ(λ) − iλνλ I ].
Letting (�1, �2)

T ∈ N [Alλ (λ) − iλνλ I ]2, we have
[Alλ (λ) − iλνλ I ](�1, �2)

T ∈ N [Alλ (λ) − iλνλ I ] = span[(ϕλ, ψλ)
T ],

and consequently, there exists a constant s ∈ C such that

[Alλ (λ) − iλνλ I ](�1, �2)
T = s(ϕλ, ψλ)

T .

Then

I[Alλ (λ) − iλνλ I ](�1, �2)
T = sI(ϕλ, ψλ)

T , (3.37)

where I is defined in (3.34). Note that AH (λ) is the adjoint operator of I[Alλ(λ) − iλνλ I ],
and it follows from Lemma 3.7 that

N
[
AH (λ)

]
= span[(ϕ̃λ, ψ̃λ)

T ].
Then, by (3.35) and (3.37), we have

0 =
〈
AH (λ)(ϕ̃λ, ψ̃λ)

T , (�1, �2)
T
〉
=
〈
(ϕ̃λ, ψ̃λ)

T , I
(
Alλ (λ) − iλνλ I

)
(�1, �2)

T
〉

= sW(λ),

where

W(λ) :=
〈
(ϕ̃λ, ψ̃λ)

T , I(ϕλ, ψλ)
T
〉
=
∫

�

(
eαm(x)ϕ̃λϕλ + ψ̃λψλ

)
dx . (3.38)

It follows from Lemmas 3.4 and 3.7 and Theorem 3.5 that

lim
λ→0

W(λ) = 2δ̃0δ0

∫

�

eαm(x)dx > 0, (3.39)

which implies that s = 0 for λ ∈ (0, λ̃] with 0 < λ̃ � 1. Therefore,

N [Alλ(λ) − iλνλ I ]2 = N [Alλ(λ) − iλνλ I ].
This completes the proof. ��
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Note that iλνλ is simple if exists. Then, by using the implicit function theorem, we see
that there exists a neighborhood Pλ ×Vλ ×Oλ of (ϕλ, ψλ, iνλ, lλ) (Pλ, Vλ and Oλ are neigh-
borhoods of (ϕλ, ψλ), iνλ and lλ, respectively), and a continuously differentiable function
(ϕ(l), ψ(l), μ(l)) : Oλ → Pλ×Vλ such thatμ(lλ) = iνλ, (ϕ(lλ), ψ(lλ)) = (ϕλ, ψλ), where
νλ, ϕλ and ψλ are defined in Theorem 3.5. Moreover, for each l ∈ Oλ, the only eigenvalue
of Al(λ) in Vλ is μ(l), and

(Al(λ) − μ(l)I ) (ϕ(l), ψ(l))T = 0. (3.40)

Then, we show that the following transversality condition holds.

Theorem 3.9 Let lλ be obtained in Theorem 3.5. Then

dRe[μ(l)]
dl

∣
∣
∣
∣
l=lλ

> 0.

Proof Multiplying both sides of (3.40) by I to the left, and differentiating the result with
respect to l at l = lλ, we have

dμ

dl

∣
∣
∣
∣
l=lλ

I(ϕλ, ψλ)
T = I

(
Alλ (λ) − iνλ I

)
(
dϕ

dl
,
dψ

dl

)T
∣
∣
∣
∣
∣
l=lλ

+ I

⎛

⎜
⎜
⎝

dM (λ,l)
1

dl

dM (λ,l)
2

dl
dM (λ,l)

3

dl

dM (λ,l)
4

dl

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
l=lλ

(ϕλ, ψλ)
T ,

(3.41)

where M (λ,l)
i (i = 1, . . . , 4) and I are defined in (3.1) and (3.34), respectively. Note from

(3.35) and Lemma 3.7 that

〈

(ϕ̃λ, ψ̃λ)
T , I

(
Alλ (λ) − iνλ I

)
(
dϕ

dl
,
dψ

dl

)T
∣
∣
∣
∣
∣
l=lλ

〉

=
〈

AH (λ)(ϕ̃λ, ψ̃λ)
T ,

(
dϕ

dl
,
dψ

dl

)T
∣
∣
∣
∣
∣
l=lλ

〉

= 0,

where ϕ̃λ and ψ̃λ are defined in Lemma 3.7. Then, multiplying both sides of (3.41) by
(ϕ̃λ, ψ̃λ) to the left, and integrating the result over �, we have

W(λ)
dμ

dl

∣
∣
∣
∣
l=lλ

= λ

∫

�

eαm(x)ϕ̃λϕλ

dM (λ,l)
1

dl

∣
∣
∣
∣
∣
l=lλ

dx + λ

∫

�

ψ̃λϕλ

dM (λ,l)
3

dl

∣
∣
∣
∣
∣
l=lλ

dx

+ λ

∫

�

eαm(x)ϕ̃λψλ

dM (λ,l)
2

dl

∣
∣
∣
∣
∣
l=lλ

dx + λ

∫

�

ψ̃λψλ

dM (λ,l)
4

dl

∣
∣
∣
∣
∣
l=lλ

dx,

(3.42)

where W(λ) is defined in (3.38). From Theorem 3.5 and Lemma 3.7, we see that

lim
λ→0

(
lλ, ϕλ, ψλ, ϕ̃λ, ψ̃λ

)
=
(
l0, δ0, is20, δ̃0, is̃20

)
in R × X4

C
. (3.43)
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It follows fromTheorem2.5 that (u(λ,l), v(λ,l)) is continuously differentiable. This, combined
with the embedding theorems and Eq. (3.43), implies that

lim
λ→0

∫

�

eαm(x)ϕ̃λϕλ

dM (λ,l)
1

dl

∣
∣
∣
∣
∣
l=lλ

dx = δ0δ̃0
d

dl

(∫

�

eαm(x)M (0,l)
1 dx

)∣
∣
∣
∣
l=l0

,

lim
λ→0

∫

�

eαm(x)ϕ̃λψλ

dM (λ,l)
2

dl

∣
∣
∣
∣
∣
l=lλ

dx = iδ̃0s20
d

dl

(∫

�

eαm(x)M (0,l)
2 dx

)∣
∣
∣
∣
l=l0

,

lim
λ→0

∫

�

ψ̃λϕλ

dM (λ,l)
3

dl

∣
∣
∣
∣
∣
l=lλ

dx = −iδs̃20
d

dl

(∫

�

M (0,l)
3 dx

)∣
∣
∣
∣
l=l0

,

lim
λ→0

∫

�

ψ̃λψλ

dM (λ,l)
4

dl

∣
∣
∣
∣
∣
l=lλ

dx = s̃20s20
d

dl

(∫

�

M (0,l)
4 dx

)∣
∣
∣
∣
l=l0

.

(3.44)

It follows from Lemma 3.3 and Eq. (3.29) that

d

dl

(∫

�

eαm(x)M (0,l)
1 dx

)∣
∣
∣
∣
l=l0

= S ′(l0) > 0 and
d

dl

(∫

�

M (0,l)
4 dx

)∣
∣
∣
∣
l=l0

= 0.

This, together (3.39), (3.42) and (3.44), yields

lim
λ→0

1

λ

dRe[μ(l)]
dl

∣
∣
∣
∣
l=lλ

= S ′(l0)
2
∫

�
eαm(x)dx

> 0.

This completes the proof. ��
From Theorems 2.5, 3.5, 3.8 and 3.9, we can obtain the following results on the dynamics

of model (1.4), see also Fig. 1.

Theorem 3.10 Let
(
u(λ,l), v(λ,l)

)
be the unique positive steady state (obtained in Theorem

2.5) of model (1.4) for l ∈ L := [l̃ + ε, 1/ε] and λ ∈ (0, δε] with 0 < ε � 1, where l̃ and δε

are defined in Eq. (2.8) and Theorem 2.5, respectively. Then the following statements hold.

(i) If T (α) < 0, where T (α) is defined in Lemma 3.3, then there exists λ̃1 ∈ (0, δε) such
that, for each λ ∈ (0, λ̃1], the positive steady state

(
u(λ,l), v(λ,l)

)
of model (1.4) is locally

asymptotically stable for l ∈ L.
(ii) If T (α) > 0, then there exists λ̃2 ∈ (0, δε) and a continuously differentiable mapping

λ �→ lλ : (0, λ̃2] → L = [l̃ + ε, 1/ε]
such that, for each λ ∈ (0, λ̃2], the positive steady state

(
u(λ,l), v(λ,l)

)
of model (1.4)

is locally asymptotically stable when l ∈ [l̃ + ε, lλ) and unstable when l ∈ (lλ, 1/ε].
Moreover, system (1.4) undergoes a Hopf bifurcation at

(
u(λ,l), v(λ,l)

)
when l = lλ.

Proof To prove (i), we need to show that if T (α) < 0, there exists λ̃1 > 0 such that

σ(Al(λ)) ⊂ {x + iy : x, y ∈ R, x < 0} for all λ ∈ (0, λ̃1] and l ∈ L.

If it is not true, then there exists a sequence {(λk, lk)}∞k=1 such that limk→∞ λk = 0,
limk→∞ lk = l∗ ∈ L, and

σ(Alk (λk)) �⊂ {x + iy : x, y ∈ R, x < 0}.
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Then, for k ≥ 1,
(
Alk (λk) − μI

)
(ϕ, ψ)T = 0 (3.45)

is solvable for some value of (μk, ϕk, ψk) with Reμk ≥ 0 and (ϕk, ψk)
T (�= (0, 0)T ) ∈

(XC)2. Substituting (μ, ϕ,ψ) = (μk, ϕk, ψk) into (3.45), we have
⎧
⎨

⎩

μke
αm(x)ϕk = Lϕk + λke

αm(x)
(
M (λk ,lk )

1 ϕk + M (λk ,lk )
2 ψk

)
,

μkψk = θ�ψk + λk

(
M (λk ,lk )

3 ϕk + M (λk ,lk )
4 ψk

)
.

Ignoring a scalar factor, we see that (ϕk, ψk)
T (�= (0, 0)T ) ∈ (XC)2 can be represented as

⎧
⎪⎨

⎪⎩

ϕk = δk + wk, where δk ≥ 0 and wk ∈ (X1)C ,

ψk = (s1k + is2k) + zk, where s1k, s2k ∈ R and zk ∈ (X1)C ,

‖ϕk‖22 + ‖ψk‖22 = |�|,
and (μk, δk, s1k, s2k, wk, zk) satisfies

H(μk, δk, s1k, s2k, wk, zk, lk, λk) = (H1,H2,H3,H4,H5)
T = 0,

where

H1 :=
∫

�

eαm(x)
[
M (λk ,lk )

1 (δk + wk) + M (λk ,lk )
2 (s1k + is2k + zk)

]
dx

− μk

∫

�

eαm(x)(δk + wk)dx,

H2 := Lwk + λke
αm(x)

[
M (λk ,lk )

1 (δk + wk) + M (λk ,lk )
2 (s1k + is2k + zk)

]

− λkμke
αm(x)(δk + wk) − λk

|�|H1,

H3 :=
∫

�

[
M (λk ,lk )

3 (δk + wk) + M (λk ,lk )
4 (s1k + is2k + zk)

]
dx

− μk(s1k + is2k)|�|,
H4 := θ�zk + λk

[
M (λk ,lk )

3 (δk + wk) + M (λk ,lk )
4 (s1k + is2k + zk)

]

− λkμk(s1k + is2k + zk) − λk

|�|H3,

H5 := |�| (δ2k + s21k + s22k − 1
)+ ‖wk‖22 + ‖zk‖22.

Using similar arguments as in the proof of Theorem 3.5, we see that

lim
k→∞ wk = 0, lim

k→∞ zk = 0 in (X1)C.

SinceH5(μk, δk, s1k, s2k, wk, zk, lk, λk) = 0,we see that, up to a subsequence, limk→∞ δk =
δ∗, limk→∞ s1k = s∗

1 and limk→∞ s2k = s∗
2 . It follows from Lemma 3.1 that, up to a

subsequence, limk→∞ μk = μ∗ with Reμ∗ ≥ 0. Then, taking k → ∞ on both sides of
H j (μk, δk, s1k, s2k, wk, zk, lk, λk) = 0 for j = 1, 3, we have

⎧
⎪⎪⎨

⎪⎪⎩

μ∗δ∗ = δ∗ S(l∗)
∫

�
eαm(x)dx

+ (
s∗
1 + is∗

2

)
∫

�
eαm(x)M (0,l∗)

2 dx
∫

�
eαm(x)dx

,

μ∗ (s∗
1 + is∗

2

) = δ∗

|�|
∫

�

M (0,l∗)
3 dx + (

s∗
1 + is∗

2

) 1

|�|
∫

�

M (0,l∗)
4 dx,
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where S(l) is defined in Lemma 3.3. Note from (3.24) that
∫

�

M (0,l∗)
4 dx = 0, and conse-

quently, μ∗ is an eigenvalue of the following matrix
⎛

⎜
⎜
⎝

S(l∗)
∫

�
eαm(x)dx

∫

�
eαm(x)M (0,l∗)

2 dx
∫

�
eαm(x)dx

1

|�|
∫

�

M (0,l∗)
3 dx 0

⎞

⎟
⎟
⎠ .

It follows from Lemma 3.3 that S(l∗) < 0, which contradicts the fact that Reμ∗ ≥ 0.
Therefore, (i) holds.

Now we consider the case of T (α) > 0. Then we only need to show that there exists
λ̃2 > 0 such that

σ(Al̃+ε
(λ)) ⊂ {x + iy : x, y ∈ R, x < 0} for λ ∈ (0, λ̃2].

Note from Lemma 3.3 that S(l̃ + ε) < 0. Then substituting lk = l̃ + ε in the proof of (i) and
using similar arguments, we can also obtain a contradiction. This proves (ii). ��
Remark 3.11 We remark that, in Theorem 3.10, λ̃i depends on α and ε for i = 1, 2.

4 The effect of the advection

In this section, we show the effect of advection. For later use, we first show the properties of
the following auxiliary sequence:

{Bk}∞k=0 , where Bk =
∫

�

mk(x)(m(x) − 1)dx . (4.1)

Lemma 4.1 Let {Bk}∞k=0 be defined in (4.1), and let B = {x ∈ � : m(x) > 1}. Then
Bk+1 ≥ Bk for k = 0, 1, 2, . . .; limk→∞ Bk = ∞ if B �= ∅; and limk→∞ Bk = 0 if B = ∅.
Proof A direct computation implies that

Bk =
∫

�

fk(x)dx −
∫

�

gk(x)dx, (4.2)

where

fk(x) = mk(x)(m(x) − 1) Ĩ1, gk(x) = mk(x)(1 − m(x)) Ĩ2,

and

Ĩ1 =
{
0, x ∈ � \ B,

1, x ∈ B,
Ĩ2 =

{
1, x ∈ � \ B,

0, x ∈ B.

Note that

0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fk(x) ≤ . . . ,

g1(x) ≥ g2(x) ≥ . . . ≥ gk(x) ≥ . . . ≥ 0.

Then we obtain that Bk+1 ≥ Bk for k = 0, 1, 2, . . ., limk→∞ fk(x) = f∗(x), and
limk→∞ gk(x) = g∗(x), where g∗(x) ≡ 0, and

f∗(x) =
{
0, x ∈ � \ B,

∞, x ∈ B.
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Then we see from the Lebesgue’s monotone convergence theorem that

lim
k→∞

∫

�

fk(x)dx =
∫

�

f∗(x)dx and lim
k→∞

∫

�

gk(x)dx = 0. (4.3)

Clearly,
∫

�
f∗(x)dx = ∞ if B �= ∅, and ∫

�
f∗(x)dx = 0 if B = ∅. This, combined with

(4.2) and (4.3), implies that limk→∞ Bk = ∞ if B �= ∅, and limk→∞ Bk = 0 if B = ∅. ��
Now, we can consider function T (α), which determines the existence of Hopf bifurcation

from Theorem 3.10.

Theorem 4.2 Let T (α) and B be defined in Lemmas 3.3 and 4.1, respectively. Then the
following statements hold:

(i) If T (0) = ∫

�
(m(x) − 1)dx ≥ 0, then T (α) > 0 for any α > 0;

(ii) If T (0) < 0 and B �= ∅, then there exists α∗ > 0 such that T (α∗) = 0, T (α) < 0 for
0 < α < α∗, and T (α) > 0 for α > α∗;

(iii) If B = ∅, then T (α) ≤ 0 for any α ≥ 0.

Proof For simplicity, we denote

T (k)(α) = dkT (α)

dαk
for k ≥ 1 and T (0)(α) = T (α).

A direct computation yields

T (k)(α) =
∫

�

eαm(x)mk(x)(m(x) − 1)dx for k ≥ 0.

Note that m(x) is non-constant. Then we see that, for k ≥ 0,

T (k+1)(α) − T (k)(α) =
∫

�

eαm(x)mk(x)(m(x) − 1)2dx > 0,

which yields

d
[
e−αT (k)(α)

]

dα
= e−αT (k+1)(α) − e−αT (k)(α) > 0,

and consequently,

T (k)(α) > eαT (k)(0) for all α > 0. (4.4)

Here T (k)(0) = Bk , where Bk is defined in (4.1).
Now we show that (i) holds. Note that T (0) = T (0)(0) = B0 ≥ 0. Then we see from

(4.4) that T (α) > 0 for all α > 0. Then we show that (iii) holds. Since B = ∅, we have
0 ≤ m(x) ≤ 1, and consequently, T (α) ≤ 0 for all α ≥ 0.

Finally, we consider (ii). Note that T (0) = B0 < 0. It follows from Lemma 4.1 that there
exists an integer k∗ ≥ 1 such that Bk ≥ 0 for k ≥ k∗ and Bk < 0 for 0 ≤ k < k∗. This,
combined with (4.4), implies that

T (k)(α) > 0 for all α > 0 and k ≥ k∗. (4.5)

Then T (k∗−1)(α) is strictly increasing for α > 0, and consequently,

lim
α→∞ T (k∗−1)(α) = α∞

k∗−1.
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We claim that α∞
k∗−1 = ∞. If it is not true, then

lim
α→∞

T (k∗−1)(α)

α
= 0. (4.6)

Note from (4.5) that T (k∗)(α) is also strictly increasing for α > 0. This, combined with the
fact T (k∗)(0) = Bk∗ ≥ 0, implies that

lim
α→∞ T (k∗)(α) > 0.

Then we see from the L’Hospital’s rule that

lim
α→∞

T (k∗−1)(α)

α
= lim

α→∞ T (k∗)(α) > 0,

which contradicts (4.6). Therefore, the claim is true and limα→∞ T (k∗−1)(α) = ∞. This,
combined with the fact that T (k∗−1)(0) = Bk∗−1, implies that there exists αk∗−1 such that
T (k∗−1)(αk∗−1) = 0, and

T (k∗−1)(α) < 0 for α ∈ [0, αk∗−1) and T (k∗−1)(α) > 0 for α > αk∗−1.

This implies thatT (k∗−2)(α) is strictly decreasing forα ∈ [0, αk∗−1] and strictly increasing for
α ∈ [αk∗−1,∞). Therefore, limα→∞ T (k∗−2)(α) = α∞

k∗−2. Then we claim that α∞
k∗−2 = ∞.

If it is not true, then

lim
α→∞

T (k∗−2)(α)

α
= 0. (4.7)

By the L’Hospital’s rule again, we have

lim
α→∞

T (k∗−2)(α)

α
= lim

α→∞ T (k∗−1)(α) = ∞,

which contradicts (4.7). Therefore, limα→∞ T (k∗−2)(α) = ∞. Then, there exist αk∗−2 such
that T (k∗−2)(αk∗−2) = 0, and

T (k∗−2)(α) < 0 for α ∈ [0, αk∗−2) and T (k∗−2)(α) > 0 for α > αk∗−2.

Therefore, we can repeat the previous arguments to obtain (ii). This completes the proof. ��
Then, by virtue of Theorem 4.2, we show the effect of advection rate α on the occurrence of
Hopf bifurcations for model (1.4).

Proposition 4.3 Assume that T (0) < 0, B �= ∅, and let α∗ be defined in Theorem 4.2. Then
for any ε with 0 < ε � 1 and α �= α∗, there exists λ̃(α, ε) > 0 such that the following
statements hold.

(i) If α < α∗, then for each λ ∈ (0, λ̃(α, ε)], the positive steady state (u(λ,l), v(λ,l)
)
of model

(1.4) is locally asymptotically stable for l ∈ L := [l̃ + ε, 1/ε], where l̃ is defined in (2.8)
and depends on α.

(ii) If α > α∗, then there exists a continuously differentiable mapping

λ �→ lλ : [0, λ̃(α, ε)] → L = [l̃ + ε, 1/ε]
such that, for each λ ∈ (0, λ̃(α, ε)], the positive steady state (u(λ,l), v(λ,l)

)
of model (1.4)

is locally asymptotically stable for l ∈ [l̃+ε, lλ) and unstable for l ∈ (lλ, 1/ε], where l̃ is
defined in (2.8) and depends on α. Moreover, system (1.4) undergoes a Hopf bifurcation
at
(
u(λ,l), v(λ,l)

)
when l = lλ.
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By Proposition 4.3, we see that the advection rate affects the occurrence of Hopf bifur-
cations if T (0) < 0 and B �= ∅. Actually, there exists a critical value α∗ such that Hopf
bifurcation can occur (or respectively, cannot occur) with α > α∗ (or respectively, α < α∗).
Next, we show that the advection rate can also affect the values of Hopf bifurcations if
T (0) > 0.

Proposition 4.4 Assume that T (0) > 0. Then for any ε with 0 < ε � 1 and α ≥ 0, there
exists λ̃(α, ε) > 0 and a continuously differentiable mapping

λ �→ lλ : [0, λ̃(α, ε)] → L = [l̃ + ε, 1/ε]
such that, for each λ ∈ (0, λ̃(α, ε)], the positive steady state

(
u(λ,l), v(λ,l)

)
of model (1.4)

is locally asymptotically stable for l ∈ [l̃ + ε, lλ) and unstable for l ∈ (lλ, 1/ε], and system
(1.4) undergoes a Hopf bifurcation at

(
u(λ,l), v(λ,l)

)
when l = lλ, where l̃ is defined in (2.8)

and depends on α. Moreover, limλ→0 lλ = l0, and l0 (defined in Lemma 3.3) depends on α

and satisfies the following properties:

(i) If H > 0, then l ′0(α)|α=0 > 0, and l0(α) is strictly increasing for α ∈ (0, ε) with
0 < ε � 1;

(ii) If H < 0, then l ′0(α)|α=0 < 0, and l0(α) is strictly decreasing for α ∈ (0, ε) with
0 < ε � 1.

Here H = 2

(∫

�

m(x)dx

)2

− |�|
∫

�

m(x)dx − |�|
∫

�

m2(x)dx.

Proof Let S1(c),S ′
1(c),S3(c), c0 be defined in the proof of Lemma 3.3, where ′ is the

derivative with respect to c, and they all depend on α. Therefore, we denote them by

S1(c, α),
∂S1
∂c

(c, α),S3(c, α), c0(α), respectively. By (3.19) and (3.22), we see that c0(α) =
c0l with l = l0(α) and

dc0l
dl

< 0, which implies that l ′0(α) has the same sign as −c′
0(α).

Since T (0) > 0, it follows from Theorem 4.2 that T (α) > 0 for all α ≥ 0. This combined
with Lemma 3.3 implies that c0(α) exists for all α ≥ 0. From the proof of Lemma 3.3, we
see that

S3(c0(α), α) = 0, (4.8)

and
∂S3
∂c

> 0 for all α ≥ 0. Therefore, −c′
0(α) has the same sign as

∂S3
∂α

(c0(α), α). By

(3.17) and a direct computation yields

∂S3
∂α

=
(

S1
∂2S1
∂c∂α

− ∂S1
∂α

∂S1
∂c

)
1

S2
1

∫

�

[
eαm(x)m(x) − ce2αm(x)

]
dx

+ ∂S1
∂c

1

S1

∫

�

[
eαm(x)m2(x) − 2ce2αm(x)m(x)

]
dx + 2

∫

�

e2αm(x)m(x)dx,

(4.9)

where

∂S1
∂α

=
∫

�

eαm(x)m(x)
(
1 + ceαm(x)

)2 dx,
∂2S1
∂c∂α

= −2
∫

�

e2αm(x)m(x)
(
1 + ceαm(x)

)3 dx .

Substituting α = 0 into (4.8), we obtain that

c0(0) = 1

2|�|
∫

�

(m(x) − 1)dx . (4.10)
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Then plugging c = c0(0) and α = 0 into (4.9), we have

∂S3
∂α

(c0(0), 0) =
2
[(∫

�
m(x)dx

)2 − |�| ∫
�
m(x)dx − |�| ∫

�
m2(x)dx

]

∫

�
m(x)dx + |�| ,

which implies that l0(α) satisfies (i) and (ii). ��
Here we only show the effects of advection rate on the values of Hopf bifurcations for
0 < α � 1, and the general case still awaits further investigation.

Data availability statement All data generated or analyzed during this study are included in this manuscript.
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