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Abstract
In his celebrated article, Aronson established Gaussian bounds for the fundamental solution
to the Cauchy problem governed by a second order divergence form operator with uniformly
elliptic coefficients. We extend Aronson’s proof of upper heat kernel estimates to nonlocal
operators whose jumping kernel satisfies a pointwise upper bound and whose energy form is
coercive. A detailed proof is given in the Euclidean space and extensions to doubling metric
measure spaces are discussed.

Mathematics Subject Classification 35K08 · 60J25 · 31C25 · 47D07 · 39B62

1 Introduction

1.1 Background

Let ai, j : [0, T ] × Rd → (0,∞), i, j = 1, . . . , d , be bounded, measurable coefficients
which satisfy the usual uniform ellipticity condition. A celebrated result by D.G. Aronson
from 1967 says that the fundamental solution �(y, s; x, η) to the equation

∂t u − ∂i (ai, j∂ j u) = 0, in (η, T ) × Rd , (1.1)

satisfies the following two-sided estimate for all 0 ≤ η < s < T , and x, y ∈ Rd :

c1(s − η)−
d
2 e−c2

|x−y|2
s−η ≤ �(y, s; x, η) ≤ c3(s − η)−

d
2 e−c4

|x−y|2
s−η , (1.2)
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where c1, c2, c3, c4 > 0 depend only on d and the ellipticity constants. In other words, the
fundamental solution of the classical heat equation ∂t u − �u = 0 is an upper and lower
bound of � up to multiplicative constants, see [1, 2]. In this sense, the bounds (1.2) are robust
in the class of second order divergence form operators with bounded, measurable, uniformly
elliptic coefficients.

Aronson’s proof is closely related to the so-called DeGiorgi-Nash-Moser theory for
parabolic differential operators of second order with bounded, measurable and uniformly
elliptic coefficients. The proof heavily relies on Hölder regularity estimates and the parabolic
Harnack inequality for solutions to (1.1), see also [3].

[2] has initiated several research studies on estimates for fundamental solutions to
parabolic equations in various contexts. An important feature of this research is that it con-
nects partial differential equations with geometry. This is due to the sensitivity of the heat
kernel to the geometric properties of the underlying space. This phenomenon becomes appar-
ent in the celebrated works [18, 41], where the method of Aronson was generalized to prove
heat kernel estimates on complete Riemannian manifolds with nonnegative Ricci curvature.
Some of their arguments have been further refined and generalized in [20], where an integral
estimate for the heat kernel was established that is useful for proving the upper bound in (1.2).
We refer the interested reader to [32, 39, 50] and the references therein for more detailed
expositions on this topic.

1.2 Main results

The goal of this article is to extend Aronson’s proof of upper heat kernel estimates to integro-
differential operators of the form

Ltu(x) = p.v.
∫
Rd

(u(y) − u(x))k(t; x, y)dy, t ∈ (0, T ), x ∈ Rd .

Such operators are determined by a jumping kernel k : (0, T )×Rd ×Rd → [0,∞]which is
assumed to be symmetric, i.e., k(t; x, y) = k(t; y, x) and satisfies a pointwise upper bound

k(t; x, y) ≤ �|x − y|−d−α, t ∈ (0, T ), x, y ∈ Rd , (k≤)

for some given constant � > 0, and α ∈ (0, 2), 0 < T ≤ ∞.
Moreover, we assume that there is λ > 0 such that for any ball B ⊂ Rd and every

v ∈ Hα/2(B):∫
B

∫
B
(v(x) − v(y))2k(t; x, y)dydx ≥ λ[v]2Hα/2(B)

, t ∈ (0, T ). (E≥)

(E≥) can be thought of as a coercivity assumption on k and is substantially weaker than
a pointwise lower bound. We refer the reader to Sect. 2 for a more detailed discussion and
to Section4 where we explain a possible extension of our method and replace (E≥) by a
Faber-Krahn inequality.

We are now ready to state the main result of this article in the aforementioned setup. For
a possible extension to doubling metric measure spaces and jumping kernels of mixed type,
we refer to Theorem 4.1.

Theorem 1.1 Let k : (0, T ) × Rd × Rd → [0,∞] be symmetric and assume (k≤) , (E≥) .
Let p(y, s; x, η) be the fundamental solution to the equation

∂t u − Ltu = 0, in (η, T ) × Rd , (1.3)
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where η ∈ [0, T ). Then there exists a constant c > 0 depending on d, α, λ,� such that for
every 0 ≤ η < s < T , and x, y ∈ Rd :

p(y, s; x, η) ≤ c(s − η)−
d
α

(
1 + |x − y|α

s − η

)− d+α
α

. (1.4)

Estimate (1.4) states that the fundamental solution to ∂t u − Ltu = 0 possesses the same
upper bound as the fundamental solution to the fractional heat equation ∂t u+(−�)α/2u = 0,
see [8]. Only for α = 1 an explicit formula for p(y, s; x, η) is known:

p(y, s; x, η) = �
( d+1

2

)
π

d+1
2

(
s − η

(s − η)2 + |x − y|2
) d+1

2

.

It is well known that corresponding lower bounds do not hold under (k≤) and (E≥) since the
latter condition does not rule out k to be zero in certain cones of directions (see [34]).

Different versions of Theorem 1.1 already exist in the literature. Let us give a brief account
on the history of heat kernel bounds for nonlocal operators. Two-sided estimates of the form
(1.4) have been established by [11, 13] using a probabilistic approach. They assume that the
jumping kernel is pointwise comparable to |x − y|−d−α , α ∈ (0, 2), from above and below.
Their analysis of the upper heat kernel estimate heavily relies on [16], where Davies’ method
was extended to a more general setup, including jump processes. Building upon this, [9]
derived (1.4) assuming (k≤) and a Nash inequality.

In a series of articles, see [28–30], the analysis of heat kernel estimates was extended to
metric measure spaces with walk dimension greater than 2. The authors were able to char-
acterize upper heat kernel estimates, as well as two-sided heat kernel estimates in terms of
equivalent conditions on the jumping kernels and the geometry of the underlying space. Their
approach does not use the underlying stochastic process and is based on certain comparison
inequalities of the corresponding heat semigroups relying on the parabolic maximum prin-
ciple. Note that Davies’ method was extended to jumping kernels with jump index α > 2 in
[33, 48]. The aforementioned results assume certain homogeneity of the doubling measure
space and do not deal with mixed-type jumping kernels.

In [14, 15, 17] upper and two-sided heat kernel estimates were investigated on doubling
metric measures spaces for jumping kernels of mixed type. This approach applies also to
cases when α ≥ 2. We would like to draw the reader’s attention to Theorem 1.15 in [17]. In
the case α < 2, it states that upper heat kernel estimates of the form (1.4) are equivalent to
a pointwise upper bound on the jumping kernel and a Faber-Krahn inequality, which can be
understood as an implicit lower bound.

A major difference between our approach and [17] is that our method relies on purely
analytic arguments, while [17]makes essential use of the corresponding stochastic process. In
Theorem 4.1 we extend our approach to doublingmetric measure spaces and jumping kernels
ofmixed type. Let usmention that we prove on-diagonal heat kernel estimateswith the help of
a parabolic L∞ − L1-estimate, see Lemma 4.2. This rather straightforward approach allows
us to avoid truncation methods and the usage of the iteration techniques of [35].

In contrast to our setup, all jumping kernels in the results discussed above are assumed
to be time-homogeneous. Note that it would require substantial effort to extend methods
based on stochastic processes to situations with time-dependent jumping kernels. Heat kernel
estimates for time-inhomogeneous jumping kernels were established in [43, 44] where the
authors assume pointwise upper and lower bounds on the jumping kernel. Note that assuming
pointwise lower bounds is more restrictive than (E≥) . The focus of these works lies on the
treatment of an additional divergence-free drift of first order.
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There are further results on heat kernel estimates for nonlocal operators, which are related
to Theorem 1.1. For example, sharp two-sided estimates for jump processes onRd with upper
scaling index not strictly less than 2 are established in [10]. In [36], heat kernel estimates for
a certain class of jump processes with singular jumping measures are proved.

1.3 Strategy of proof

A main insight of Aronson’s proof for second order differential operators is the observation
that solutions u to the Cauchy problem (1.1) satisfy the weighted L2-estimate

sup
t∈(η,s)

∫
Rd

H(t, x)u2(t, x)dx ≤
∫
Rd

H(η, x)u20(x)dx (1.5)

for 0 ≤ η < s < T , whenever H satisfies

C |∇H1/2|2 ≤ −∂t H , in (η, s) × Rd , (1.6)

for a given number C > 0 depending on the ellipticity constants. (1.6) is closely related to
the famous Li-Yau inequality:

|∇ logw|2 ≤ d

2t
+ ∂t logw. (1.7)

In fact, a direct computation reveals that the Gauss-Weierstrass kernel w(t, x) = t− d
2 e− |x |2

4t

satisfies (1.7) with equality. By a scaling argument, it becomes evident that (1.6) holds true

for H(t, x) = (C[t]) d
2 w(C[t], x − y) = exp(−|x−y|2

4C[t] ), where [t]:=2(s − η) − (t − η) and

y ∈ Rd can be chosen arbitrarily.
This insight suggests that some qualitative information on the decay of solutions to (1.1)

is encoded in the weighted L2-estimate (1.5). Indeed, by combining (1.5) with a localized
L∞ − L2-estimate, as it was proved by Moser [45–47], one can estimate the value of the
solution to the Cauchy problem at the center of a ball that lies outside the support of the
initial data (see Theorem 3.2). From such estimate, it is not difficult to deduce

(∫
Rd\Bσ (y)

�2(y, s; z, η)dz

)1/2

≤ c(s − η)−
d
4 e− σ2

32C(s−η)

for every σ > 0 and 0 ≤ η < s < T with s − η ≤ σ 2. Together with the on-diagonal

estimate �(y, s; x, η) ≤ c(s − η)− d
2 , one deduces the upper bound in (1.2) via a standard

argument.
We would like to point out that (1.7) is at the core of the works [18, 41], where (1.7) was

used to derive a parabolic Harnack inequality on Riemannian manifolds with nonnegative
Ricci-curvature and to establish its equivalence to Gaussian heat kernel bounds.

Next, let us summarize how we adapt Aronson’s proof to integro-differential operators.
First, we require a nonlocal analog of (1.5).We prove that there exist functions H that satisfy

C�α
ρ (H1/2, H1/2) ≤ −∂t H , in (η, s) × Rd (1.8)

givenC, ρ > 0.Here,�α
ρ denotes theρ-truncated carré du champoperator of orderα ∈ (0, 2),

which is defined as follows:

�α
ρ ( f , f )(x) =

∫
Bρ(x)

( f (x) − f (y))2|x − y|−d−αdy, x ∈ Rd .
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By a careful choice of a function H satisfying (1.8), we deduce a nonlocal analog of (1.5) for
solutions to the ρ-truncated Cauchy problem, see Lemma 3.1. The corresponding integro-
differential operator only takes into account differences up to distance ρ. In order to prove an
a priori bound for the corresponding fundamental solution pρ (see Theorem 3.4), we derive
a parabolic L∞ − L2-estimate in the spirit of [51], see Lemma 2.4. The estimate involves a
nonlocal, truncated tail-term which requires special treatment. In a final step, we obtain the
desired upper heat kernel estimate (1.4) for p by gluing together short and long jumps. Such
argument is by now standard in the theory of jump processes.

Last, we explain several difficulties that occur when avoiding the detour via the truncated
jumping kernel.

First, the corresponding L∞−L2-estimate involves a non-truncated tail-termwhich cannot
be controlled without any further assumptions on k.

Second, finding suitable weight functions H which satisfy a non-truncated version of (1.8)
is a challenging task in the light of the following observation: The corresponding nonlocal
analog of the Li-Yau inequality, whichwould imply an estimate of the form (1.5) for solutions
to (1.3), reads as follows:

�α(w
1/2
α ,w

1/2
α )

wα

≤ d

αt
+ ∂t log(wα). (1.9)

However, one can show that the fundamental solution wα(t, x) to ∂t u + (−�)α/2u = 0 does
not satisfy (1.9). Let us give a quick proof of this fact. First, note that wα is a radial function
and satisfies

d

αt
wα + ∂twα = −|x |

αt
∂|x |wα.

For a proof of this identity, we refer to (2.5) in [52]. Consequently,

d

αt
+ ∂t logwα(t, 0) = 0,

but this is a contradiction to (1.9) since �α(w
1/2
α ,w

1/2
α )(t, 0) > 0 for t > 0.

Wewould like to point out that modifications of the estimates (1.6) and (1.7) also hold true
in the context of the porous medium equation. Such estimates are known as Aronson-Benilan
estimates (see [4, 40]). For a discussion of nonlinear fractional diffusion equations of porous
medium type, we refer the interested reader to [12, 24, 53].

1.4 Outline

This article is separated into five sections. In Sect. 2 we present several auxiliary results
that we need in our proof. Section 3 contains the derivation of the upper heat kernel bounds
and proves Theorem 1.1. In Sect. 4, we explain how our method can be applied to jumping
kernels of mixed type on metric measure spaces. In Sect. 1, we provide a proof of a gluing
lemma which differs from [27] due to the time-inhomogeneity of the jumping kernels under
consideration.

2 Preliminaries

In this section we provide several auxiliary results that will be required for the proof of
Theorem 1.1 in Sect. 3.
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Let k : (0, T ) × Rd × Rd → [0,∞] be a symmetric jumping kernel satisfying the
pointwise upper bound (k≤) and the coercivity condition (E≥) .

Let us make a few comments on assumption (E≥) : First of all, (E≥) can be regarded
as a nonlocal substitute of the classical uniform ellipticity condition for local operators. In
fact, it is considerably weaker than a pointwise lower bound on the jumping kernel, since
(E≥) allows for jumping kernels that might degenerate in certain directions, as for example
kernels that are supported on double cones. We refer the interested reader to [19, 21] for
an investigation of such condition. Since k is allowed to depend on time, our result also
covers kernels that are supported on double cones with fixed apex, whose cone axes rotate
continuously in time.

A coercivity assumption like (E≥) is crucial to our approach since it is needed for the
L∞ − L2-estimate (Lemma 2.4) and also the on-diagonal heat kernel bound (Theorem 2.3).
In the literature, lower bounds on jumping kernels are often introduced through functional
inequalities, e.g. in [9], or [17]where the authors assume aNash -, or a Faber-Krahn inequality.
We point out that such assumptionwould have been possible also in thiswork, since the proofs
of Lemma 2.4, Theorem 2.3 can be changed accordingly (see Sect. 4). For a discussion on the
equivalence of Nash - and Faber-Krahn inequalities, we refer the reader to [17].Moreover, we
would like to mention the recent article [7], where the relation between L1 − L∞ smoothing
effects, on-diagonal upper heat kernel estimates, and functional inequalities are studied for
fractional equations of porous medium type.

Let us point out a possible extension that was mentioned to us by a reviewer of this article.
Our approach certainly allows to track constants in the respective estimates, as it is done in
[6]. In particular, one could treat time-dependent versions of the condition (E≥) and establish
sufficient conditions on λ(t) as t → ∞.

For any ρ > 0, we define the truncated jumping kernel kρ via

kρ(t; x, y) = k(t; x, y)1{|x−y|≤ρ}(x, y).

The associated integro-differential operator Lρ
t is defined as

Lρ
t u(x) = p.v.

∫
Rd

(u(y) − u(x))kρ(t; x, y)dy.

Definition 2.1 We say that a function u ∈ L2
loc((η, T ); Hα/2(Rd)) with ∂t u ∈ L1

loc((η, T );
L2
loc(R

d)) solves the Cauchy problem associated with k in (η, T ) × Rd :
{

∂t u − Ltu = 0, in (η, T ) × Rd ,

u(η) = u0 ∈ L2(Rd),
(2.1)

if for every φ ∈ Hα/2(Rd) with supp(φ) compact, it holds∫
Rd

∂t u(t, x)φ(x)dx + Et (u(t), φ) = 0, a.e. t ∈ (η, T ), (2.2)

‖u(t) − u0‖L2(Rd ) → 0, as t ↘ η, (2.3)

where we write

Et (u, v) =
∫
Rd

∫
Rd

(u(t, x) − u(t, y))(v(t, x) − v(t, y))k(t; x, y)dydx (2.4)

for the family of energy forms (Et )t∈(η,T ) associated with k.
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Solutions to the ρ-truncated Cauchy problem associated with k in (η, T ) × Rd

{
∂t u − Lρ

t u = 0, in (η, T ) × Rd ,

u(η) = u0 ∈ L2(Rd),
(2.5)

are defined in an analogous way, replacing k by kρ .
Throughout this article, we will assume that the fundamental solutions p, pρ : (0, T ) ×

Rd × [0, T ) × Rd → [0,∞] to the equations ∂t u − Ltu = 0 and ∂t u − Lρ
t u = 0 exist. p

and pρ have the following properties for all 0 ≤ η < t < s < T , x, y ∈ Rd :

p(y, s; x, η) = p(x, s; y, η) > 0, pρ(y, s; x, η) = pρ(x, s; y, η) > 0, (2.6)∫
Rd

p(y, s; x, η)dx = 1,
∫
Rd

pρ(y, s; x, η)dx = 1, (2.7)

p(y, s; x, η) =
∫
Rd

p(y, s; z, t)p(z, t; x, η)dz, pρ(y, s; x, η)

=
∫
Rd

pρ(y, s; z, t)pρ(z, t; x, η)dz. (2.8)

Moreover, the solutions u to (2.1) and uρ to (2.5) are unique and have the representation

u(s, y) =
∫
Rd

p(y, s; x, η)u0(x)dx, uρ(s, y)

=
∫
Rd

pρ(y, s; x, η)u0(x)dx, s ∈ (η, T ), y ∈ Rd . (2.9)

In the following, we will denote the unique solutions to (2.1) and (2.5) by Pη,su0, and
Pρ

η,su0. (Pη,s)s∈[η,T ), and (Pρ
η,s)s∈[η,T ) are called the heat semigroups associated with k, and

kρ .
In the time-homogeneous case, i.e., when k does not depend on t , the existence of

(Pη,s)s∈[η,T ) and (Pρ
η,s)s∈[η,T ) is guaranteed by symmetric Dirichlet form theory. The

existence of the fundamental solution classically follows from so-called ultracontractivity
estimates for the heat semigroup which are a consequence of Nash’s inequality. For time-
inhomogeneous jumping kernels k which satisfy the following pointwise lower bound for
some λ > 0

k(t; x, y) ≥ λ|x − y|−d−α, t ∈ (0, T ), x, y ∈ Rd , (2.10)

the existence of the fundamental solutions p and pρ was proved in [43] by approximation
of k through a sequence of smooth jumping kernels for which the desired properties follow
from the theory of pseudo-differential operators. A similar result is proved in [37, 38] but
under an additional smoothness assumption on t . Alternatively, the existence and uniqueness
of solutions to (2.1) and (2.5) can be established by following the proof of Theorem 5.3 in
[25], which is based on a parabolic version of the Lax-Milgram lemma (see Corollary 23.26
in [54]).

The following result explains the connection between p and pρ and is crucial to our
approach. It is frequently used in the derivation of upper heat kernel bounds for alpha-stable
like processes and goes back to a probabilistic construction carried out in [42]. An analytic
proof via the parabolic maximum principle is derived in [27] (see also [30]). Since both
proofs are known only in the time-homogeneous case, we will provide a modified version of
the argument in [27] in the appendix.
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Lemma 2.2 Assume that k satisfies (k≤) , (E≥) . Then there exists c > 0 such that for every
ρ > 0, 0 ≤ η < s < T , and x, y ∈ Rd it holds

p(y, s; x, η) ≤ pρ(y, s; x, η) + c(s − η)ρ−d−α, (2.11)

pρ(y, s; x, η) ≤ ecρ
−α(s−η) p(y, s; x, η). (2.12)

Next, we provide the so-called on-diagonal bound for the heat kernels p, and pρ .

Theorem 2.3 (on-diagonal bound) Assume that k satisfies (k≤) , (E≥) . Then there exists
c > 0 depending on d, α, λ,� such that for every ρ > 0, 0 ≤ η < s < T , and x, y ∈ Rd it
holds

p(y, s; x, η) ≤ c(s − η)−
d
α , (2.13)

pρ(y, s; x, η) ≤ cecρ
−α(s−η)(s − η)−

d
α . (2.14)

There are at least two ways to prove Theorem 2.3. One approach classically goes via Nash
inequalities (see [17]) and can be traced back to Nash’s famous work [49]. This proof also
works in the time-inhomogeneous setup (see [43]).

Another way to establish on-diagonal bounds goes via L∞ − L1-estimates. For this, we
refer to Lemma 4.2, where such estimate is proved in a more general setup. Observe that
(t, z) �→ p(y, t; z, η) solves ∂t u − Lu = 0 in (η, T ) ×Rd for every y ∈ Rd . Therefore, by
the L∞ − L1-estimate (4.4), for every 0 ≤ η < s < T and x, y ∈ Rd :

p(y, s; x, η) ≤ c(s − η)−
d
α sup
t∈(η,s)

∫
Rd

p(y, t; z, η)dz ≤ c(s − η)−
d
α ,

where we used (2.7) in the last step. (2.14) follows from Lemma 2.2.
The remainder of this section is devoted to proving an L∞ − L2-estimate for solutions

to the truncated problem ∂t u − Lρ
t u = 0 in a time-space cylinder IR(t0) × BR(x0), where

t0 ∈ (0, T ), x0 ∈ Rd , and IR(t0):=(t0 − Rα, t0) ⊂ (η, T ).
For truncated jumping kernels kρ , it is possible to estimate the nonlocal tail-term by an

L2-norm over a ball with radius ρ, see (2.16), without assuming any pointwise lower bounds
of k, or a UJS-type condition as in [5]. This is at the cost of the suboptimal scaling factor
(ρα/Rα)d/(2α) in the resulting estimate, which luckily does not affect the proof of the final
heat kernel estimate.

A similar result for solutions to elliptic equations was obtained in [17]. We follow the
strategy outlined in [51] which is based on a nonlocal adaptation of De Giorgi’s iteration
technique (see [22, 23]) but present the proof in all details due to our special treatment of the
tail term.

Lemma 2.4 (truncated L∞ − L2-estimate) Assume that k satisfies (k≤) , (E≥) . There exists
a constant C > 0 depending on d, α, λ,� such that for every t0 ∈ (0, T ), x0 ∈ Rd , and
ρ, R > 0 with R ≤ ρ/2∧ t1/α0 , and every subsolution u to ∂t u−Lρ

t u = 0 in IR(t0)×BR(x0)
it holds:

sup
IR/2(t0)×BR/2(x0)

u ≤ C

(
ρα

Rα

) d
2α

R− d
2 sup
t∈IR(t0)

(∫
B2ρ(x0)

u2(t, x)dx

)1/2

. (2.15)

For the definition of a subsolution to ∂t u − Lρ
t u = 0 in IR(t0) × BR(x0), we refer to the

appendix.
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Proof To keep notation simple, from now on we will write IR :=IR(t0), and BR(x0) := BR .
We do not provide the details for d = 1. From the usual Caccioppoli inequality, see [51], we
know that for every r , R with 0 < r ≤ R ≤ ρ/2 and every l > 0, it holds

sup
t∈IR

∫
BR

w2
l (t, x)dx +

∫
IR

∫
BR

∫
BR

(wl(s, x) − wl(s, y))
2kρ(s; x, y)dydxds

≤ c1

(
σ(R, r)

∫
IR+r

∫
BR+r

w2
l (t, x)dxdt + ‖wl‖L1(IR+r×BR+r )

sup
t∈IR+r

sup
x∈BR+ r

2∫
Bc
R+r

wl(t, y)kρ(t; x, y)dy
)

,

where c1 > 0 is a constant, wl = (u − l)+, and σ(r , R) = r−(α∨1)(R + r)(α∨1)−α . Define
κ = 1 + α

d , and A(l, R) := |{(t, x) ∈ IR × BR : u(t, x) > l}|. Then, by (E≥) and the
fractional Sobolev inequality:

∫
IR

∫
BR

w2
l (t, x)dxdt ≤ c2|A(l, R)| 1

κ′
(∫

IR

∫
BR

w2κ
l (s, x)dxds

) 1
κ

≤ c3|A(l, R)| 1
κ′

⎛
⎝
(
sup
t∈IR

∫
BR

w2
l (t, x)dx

)κ−1 ∫
IR

(∫
BR

w
2d
d−α

l (s, x)dx

) d−α
d

ds

⎞
⎠

1
κ

≤ c4|A(l, R)| 1
κ′
(

σ(R, r)
∫
IR+r

∫
BR+r

w2
l (t, x)dxdt

+ ‖wl‖L1(IR+r×BR+r )
sup

t∈IR+r

sup
x∈BR+ r

2

∫
Bc
R+r

wl (t, y)kρ(t; x, y)dy
)

for some c2, c3, c4 > 0. Observe that for some constant c5 > 0 by (k≤)

sup
t∈IR+r

sup
x∈BR+ r

2

∫
Bc
R+r

wl(t, y)kæ(t; x, y)dy ≤ c5r
− (æ

r

) d

sup
t∈IR+r

−
∫
B2æ

|u(t, y)|dy. (2.16)

Let us now fix R ∈ (0, ρ/2] and define sequences li = M(1 − 2−i ), for M > 0 to be
defined later, ri = 2−i−1R, Ri+1 = Ri − ri+1, R0:=R, Ai = ∫

IRi

∫
BRi

w2
li
(t, x)dxdt . Note

that by definition: R/2 = limi→∞ Ri < · · · < R2 < R1 < R0 = R, and li ↗ M , and
σ(ri , Ri ) ≤ c6R−α22i . Then, we deduce from the two lines above:

Ai ≤ c7
1

(li − li−1)
2
κ′

⎛
⎜⎜⎝σ(Ri , ri ) +

r−α
i

(
ρα

rα
i

) d
α
supt∈IRi−1

−
∫
B2ρ

|u(t, x)|dx
li − li−1

⎞
⎟⎟⎠ A

1+ 1
κ′

i−1

≤ c8
2

2i
κ′

M
2
κ′

(
22i

Rα
+ 2i(d+α+1)ρd

MRd+α
sup
t∈IR

−
∫
B2ρ

|u(t, x)|dx
)
A
1+ 1

κ′
i−1

≤ c9
2γ i

M
2
κ′ Rα

⎛
⎜⎜⎝1 +

(
ρα

Rα

) d
α
supt∈IR −

∫
B2ρ

|u(t, x)|dx
M

⎞
⎟⎟⎠ A

1+ 1
κ′

i−1
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where c7, c8, c9 > 0, and γ = 2 + 2
κ ′ + d + α > 0. Let us now choose

M :=
(æ
R

) d

sup
t∈IR

−
∫
B2æ

|u(t, x)|dx + C
ˇ′2
2 c

ˇ′
2
10R

− ˇ′
2 A1/2

0 ,

where c10 = 2c9, C = 2γ > 1. Consequently, it holds

Ai ≤ c10

M
2
κ′ Rα

Ci A
1+ 1

κ′
i−1 , A0 ≤ C−κ ′2

(
c10

RαM
2
κ′

)−κ ′

.

By Lemma 7.1 in [31], we obtain

sup
IR/2×BR/2

u ≤ M =
(

ρα

Rα

) d
α

sup
t∈IR

−
∫
B2ρ

|u(t, x)|dx + C
κ′2
2 c

κ′
2
10 R

− ακ′
2 A1/2

0

≤ c11

(
ρα

Rα

) d
α

sup
t∈IR

−
∫
B2ρ

|u(t, x)|dx + c11

(
−
∫
IR

−
∫
BR

u2(t, x)dxdt

)1/2

≤ c12

(
ρα

Rα

) d
2α

R− d
2 sup
t∈IR

(∫
B2ρ

u2(t, x)dx

)1/2

,

for some c11, c12 > 0, as desired, where we used R ≤ ρ/2. ��

3 Nonlocal Aronsonmethod

In this section we prove Theorem 1.1. As is standard for proofs of heat kernel bounds for
nonlocal operators, we first establish bounds for the heat kernel corresponding to the truncated
jumping kernel and derive the estimate for the original jumping kernel by gluing together
short and long jumps with the help of Lemma 2.2 in a second step.

The following lemma is a nonlocal version of (1.5). Presumably, estimates of this form
are also of interest in the study of fractional porous medium equations and gradient flows.

Lemma 3.1 Assume that k satisfies (k≤) and letρ > 0, 0 ≤ η < s < T . Let u ∈ L∞((η, T )×
Rd) be a solution to the ρ-truncated Cauchy problem (2.5) in (η, T )×Rd . Then there exists
a constant C = C(�) such that for every bounded function H : [η, s] × Rd → [0,∞)

satisfying

• C�α
ρ (H1/2, H1/2) ≤ −∂t H in (η, s) × Rd ,

• H1/2 ∈ L2((η, s); Hα/2(Rd)),

the following estimate holds true:

sup
t∈(η,s)

∫
Rd

H(t, x)u2(t, x)dx ≤
∫
Rd

H(η, x)u20(x)dx . (3.1)

Proof Let R ≥ 2 and γR ∈ C∞
c (Rd) such that γR ≡ 1 in BR−1(0), γR ≡ 0 in Rd \ BR(0),

0 ≤ γR ≤ 1, |∇γR | ≤ 2. Consequently, �α
ρ (γR, γR) satisfies:

�α
ρ (γR, γR)(x) ≤

{
0, x ∈ B R−1

2
(0),

c1, x ∈ Rd \ B R−1
2

(0)
(3.2)
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for some constant c1 > 0. We test the equation for u with the test function φ = γ 2
RHu and

integrate in time over (η, τ ), where τ ∈ (η, s), and obtain:∫ τ

η

∫
Rd

(∂t u)φdxdt

+
∫ τ

η

∫
Rd

∫
Rd

(u(t, x) − u(t, z))(φ(t, x) − φ(t, z))kρ(t; x, z)dzdxdt = 0.

Note that φ is a valid test function since for every t ∈ (η, s) by assumption it holds
γRH(t)u(t) ∈ Hα/2(Rd). From (∂t u)u = 1

2∂t (u
2) and integration by parts:

∫
Rd

u2(τ, x)γ 2
R(x)H(τ, x)dx + 2

∫ τ

η

∫
Rd

∫
Rd

(u(t, x) − u(t, z))(φ(t, x)

− φ(t, z))kρ(t; x, z)dzdxdt
=
∫
Rd

u20(x)γ
2
R(x)H(η, x)dx

+
∫ τ

η

∫
Rd

u2(t, x)γ 2
R(x)∂t H(t, x)dxdt .

We treat the nonlocal term by making use of the following algebraic inequality:

(u1 − u2)(γ
2
1 H1u1 − γ 2

2 H2u2) ≥ (γ1H
1/2
1 u1 − γ2H

1/2
2 u2)

2

− c2
(
(γ1 − γ2)

2(H1 + H2)(u
2
1 + u22) + (H1/2

1 − H1/2
2 )2(γ 2

1 + γ 2
2 )(u21 + u22)

)
,

where c2 > 0. Its proof is based on the following two observations:

(u1 − u2)(γ
2
1 H1u1 − γ 2

2 H2u2) = (γ1H
1/2
1 u1 − γ2H

1/2
2 u2)

2 − u1u2(γ1H
1/2
1 − γ2H

1/2
2 )2,

u1u2(γ1H
1/2
1 − γ2H

1/2
2 )2 ≤ c2(u

2
1 + u22)

(
(γ1 − γ2)

2(H1 + H2) + (γ 2
1

+γ 2
2 )(H1/2

1 − H1/2
2 )2

)
.

Moreover, note that for R > 4ρ it holds γ 2
R(z) = γ 2

R(x) = 1 for every x ∈ B R−1
2

(0) and

z ∈ Bρ(x). By symmetry of k, (k≤) and the observations from above, we deduce:

sup
τ∈(η,s)

∫
Rd

u2(τ, x)γ 2
R(x)H(τ, x)dx ≤

∫
Rd

u20(x)γ
2
R(x)H(η, x)dx

+
∫ s

η

∫
Rd

u2(t, x)γ 2
R(x)

(
2c2��α

ρ (H1/2, H1/2)(t, x) + ∂t H(t, x)
)
dxdt

+ 2c2�
∫ s

η

∫
Rd

∫
Bρ(x)

u2(t, x)γ 2
R(z)(H1/2(t, x) − H1/2(t, z))2|x − y|−d−αdzdxdt

+ 2c2�
∫ s

η

∫
Rd

u2(t, x)H(t, x)�α
ρ (γR, γR)(x)dxdt

+ 2c2�
∫ s

η

∫
Rd

∫
Bρ(x)

u2(t, z)H(t, x)(γR(x) − γR(z))2|x − y|−d−αdzdxdt

≤
∫
Rd

u20(x)γ
2
R(x)H(η, x)dx

+
∫ s

η

∫
Rd

u2(t, x)γ 2
R(x)

(
4c2��α

ρ (H1/2, H1/2)(t, x) + ∂t H(t, x)
)
dxdt
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+ 2c2�‖u‖2∞
∫ s

η

∫
Rd\B R−1

2 (0)

�α
ρ (H1/2, H1/2)(t, x)dxdt

+ 4c2�‖u‖2∞
∫ s

η

∫
Rd

�α
ρ (γR, γR)(x)H(t, x)dxdt .

Now, assume that H satisfies the assumption with C = 4c2�. Then, using also (3.2), the
following holds true:

(
4c2��α

ρ (H1/2, H1/2)(t, x) + ∂t H(t, x)
) ≤ 0, t ∈ (η, s), x ∈ Rd ,∫ s

η

∫
Rd\B R−1

2
(0)

�α
ρ (H1/2, H1/2)(t, x)dxdt → 0, as R → ∞,

∫ s

η

∫
Rd

�α
ρ (γR, γR)(x)H(t, x)dxdt ≤ c1

∫ s

η

∫
Rd\B R−1

2
(0)

H(t, x)dxdt → 0, as R → ∞.

Upon the observation that γR → 1, as R → ∞, it follows

sup
τ∈(η,s)

∫
Rd

u2(τ, x)H(τ, x)dx ≤
∫
Rd

u20(x)H(η, x)dx,

as desired. ��

Our next goal is to establish the following auxiliary estimate:

Theorem 3.2 Assume that k satisfies (k≤) , (E≥) . Let y ∈ Rd , σ, ρ > 0, η ≥ 0. Let
u0 ∈ L2(Rd) be such that u0 ≡ 0 in Bσ (y). Assume that u ∈ L∞((η, T ) × Rd) is a weak
solution to ∂t u − Lρ

t u = 0 in (η, T ) × Rd . Then there exist ν > 1,C > 0 depending on
d, α, λ,� such that for every s ∈ (η, T ) with s − η ≤ 1

4ν ρα:

|u(s, y)| ≤ C(s − η)−
d
2α 2

σ
6ρ

(
ρα

ν(s − η)

)− σ
6ρ + 1

2+ d
2α ‖u0‖L2(Rd ).

The idea to prove Theorem 3.2 is to find a suitable function H such that Lemma 3.1 is
applicable. In the following, we present a suitable such function.

Given y ∈ Rd , ρ > 0, 0 ≤ η < s < T , ν > 1 with s − η ≤ 1
4ν ρα , we define

Hy,ρ,η,s,ν = H : [η, s] × Rd → [0,∞) via

H(t, x):=
(

ρα

ν[2(s − η) − (t − η)]
)−1

∧
(

ρα

ν[2(s − η) − (t − η)]
)− |x−y|

3ρ

= e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x−y|

3ρ ∨1
)
.

(3.3)

Lemma 3.3 For every C > 0, there exists ν = ν(d, α,C) > 1 such that for every y ∈ Rd ,
ρ > 0, 0 ≤ η < s < T with s − η ≤ 1

4ν ρα , the function Hy,ρ,η,s,ν = H defined above
satisfies

C�α
ρ (H1/2, H1/2) ≤ −∂t H , in (η, s) × Rd , (3.4)

H1/2 ∈ L2((η, s); Hα/2(Rd)). (3.5)
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Proof Let y ∈ Rd , ρ > 0, 0 ≤ η < s < T , with s − η ≤ 1
4ν ρα , where ν > 1 to be chosen

later. Note that by assumption, ρα

ν[2(s−η)−(t−η)] > 1 for every t ∈ [η, s]. Let t ∈ [η, s] be
fixed. We split the proof of (3.4) into three cases.

Case 1: |x − y| ≤ 2ρ.
In this case, trivially �α

ρ (H1/2, H1/2)(t, x) = 0, and

−∂t H(t, x) = −∂t

(
ν[2(s − η) − (t − η)]

ρα

)
= νρ−α > 0.

Therefore, (3.4) holds true for any ν > 0.
Case 2: 2ρ ≤ |x − y| ≤ 3ρ.
In this case, −∂t H(t, x) = νρ−α , as in Case 1. Moreover, let us fix x0 ∈ Bρ(x) with

|x0 − y| = 3ρ such that for every z ∈ Rd \ B3ρ(y) it holds |x0 − z| ≤ 2|x − z|. This
holds true, e.g. if one chooses x0 as a point on ∂B3ρ(y) that minimizes dist(x,Rd \ B3ρ(y)),
since then by triangle inequality: |x0 − z| ≤ |x0 − x | + |x − z| ≤ 2|x − z|. Note that
H(t, x) = H(t, x0) and Bρ(x) ⊂ B2ρ(x0).

Therefore:

�α
ρ (H1/2, H1/2)(t, x) =

∫
Bρ(x)\B3ρ(y)

(
H1/2(t, x) − H1/2(t, z)

)2 |x − z|−d−αdz

≤ c1

∫
B2ρ (x0)\B3ρ (y)

(
H1/2(t, x0) − H1/2(t, z)

)2 |x0 − z|−d−αdz

≤
∫
B2ρ (x0)\B3ρ (y)

|∇H1/2(t, x0)|2|x0 − z|2−d−αdz

≤ c2|∇H1/2(t, x0)|2ρ2−α

= c2

(
(6ρ)−1 log

(
ρα

ν[2(s − η) − (t − η)]
)
e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x0−y|

6ρ

))2

ρ2−α

= c3ρ
−α

(
log

(
ρα

ν[2(s − η) − (t − η)]
)(

ρα

ν[2(s − η) − (t − η)]
)−1/2

)2

≤ c4ρ
−α

for some c1, c2, c3, c4 > 0. We used the inequality log(a) ≤ a1/2 in the last step. Moreover,

note that the estimate
(
H1/2(t, x0) − H1/2(t, z)

)2 ≤ |∇H1/2(t, x0)|2|x0 − z|2 is correct
since supz∈Rd\B3ρ(y) |∇H1/2(t, z)| = |∇H1/2(t, x0)| due to x0 ∈ ∂B3ρ(y). Therefore, (3.4)
holds true in this case for any ν > c4C .

Case 3: |x − y| > 3ρ.
In this case,

−∂t H(t, x) = |x − y|
3ρ[2(s − η) − (t − η)]e

− log
(

ρα

ν[2(s−η)−(t−η)]
)( |x−y|

3ρ

)
.

Moreover:

�α
ρ (H1/2, H1/2)(t, x) =

∫
Bρ (x)

(
H1/2(t, x) − H1/2(t, z)

)2 |x − z|−d−αdz

≤
∫
Bρ (x)

(
e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x−y|

6ρ

)
− e

− log
(

ρα

ν[2(s−η)−(t−η)]
)( |z−y|

6ρ

))2

|x − z|−d−αdz

≤
∫
Bρ (x)

sup
z∈Bρ (x)

∣∣∣∣∇e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |z−y|

6ρ

)∣∣∣∣
2

|x − z|2−d−αdz
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≤ c5

(
(6ρ)−1 log

(
ρα

ν[2(s − η) − (t − η)]
)
e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x−y|−ρ

6ρ

))2

ρ2−α

= c6

[
log

(
ρα

ν[2(s − η) − (t − η)]
)]2 (

ρα

ν[2(s − η) − (t − η)]
)1/3

e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x−y|

3ρ

)
ρ−α

≤ c7
1

ν[2(s − η) − (t − η)] e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x−y|

3ρ

)

≤ c7
|x − y|

3ρν[2(s − η) − (t − η)] e
− log

(
ρα

ν[2(s−η)−(t−η)]
)( |x−y|

3ρ

)

for some c5, c6, c7 > 0. In the third inequality, we used |z − y| ≥ |x − y| − ρ, and
in the second to last step we applied the estimate log(a) ≤ ca1/3. This holds with c > 0
independent of a > 1. Therefore, by choosing ν > c7C , (3.4) is satisfied also in this case.

Together, we have proved (3.4). Finally, note that �α
ρ (H1/2, H1/2) ∈ L1((η, s) × Rd)

since for |x − y| ≥ 3ρ, we computed above

�α
ρ (H1/2, H1/2)(t, x) ≤ |x − y|c− |x−y|

3ρ ,

where c > 1 is a constant that might depend on η, s, ρ. This proves (3.5). ��
Having at hand the function H defined in (3.3), it is possible to establish Theorem 3.2.

Proof (Proof of Theorem 3.2) The idea is to apply Lemma 3.1 with H as in Lemma 3.3. It
follows that for every y ∈ Rd , 0 ≤ η < s < T with s − η ≤ 1

4ν ρα:

sup
τ∈(η,s)

∫
B2ρ(y)

u2(τ, x)H(τ, x)dx ≤ sup
τ∈(η,s)

∫
Rd

u2(τ, x)H(τ, x)dx

≤
∫
Rd\Bσ (y)

u20(x)H(η, x)dx .

Consequently,

sup
τ∈(η,s)

∫
B2ρ(y)

u2(τ, x)dx ≤
(

supx∈Rd\Bσ (y) H(η, x)

infτ∈(η,s),x∈B2ρ(y) H(τ, x)

)
‖u0‖2L2(Rd )

.

By the truncated L∞−L2-estimate Lemma 2.4, applied with R = (s−η)1/α , t0 = s, x0 = y:

sup
(η′,s)×B 1

2 (s−η)1/α
(y)

u ≤ c1(s − η)−
d
2α

(
ρα

s − η

) d
2α

sup
τ∈(η,s)

(∫
B2ρ (y)

u2(τ, x)dx

)1/2

≤ c1(s − η)−
d
2α

(
ρα

s − η

) d
2α
(

supx∈Rd\Bσ (y) H(η, x)

infτ∈(η,s),x∈B2ρ (y) H(τ, x)

)1/2

‖u0‖L2(Rd )

for some c1 > 0, where η′:=s − 2−α(s − η) ∈ (η, s).
Note that there exist c2, c3 > 0 such that for x ∈ Rd \ Bσ (y) it holds

H(η, x) ≤ c2

(
ρα

2ν(s − η)

)− σ
3ρ

and for (τ, x) ∈ [η, s] × B2ρ(y) we have:

H(τ, x) ≥ e
− log

(
ρα

ν(s−η)

)(
2ρ
6ρ ∨1

)
≥ c3e

− log
(

ρα

ν(s−η)

)
≥ c3

(
ρα

ν(s − η)

)−1

.
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This follows directly from the definition of H and s − η ≤ 1
4ν ρα . Together, we obtain

|u(s, y)| ≤ c4(s − η)−
d
2α 2

σ
6ρ

(
ρα

ν(s − η)

)− σ
6ρ + 1

2+ d
2α ‖u0‖L2(Rd )

for some c4 > 0, as desired. ��
Having proved Theorem 3.2, we are now in the position to establish upper off-diagonal

bounds for pρ(y, s; x, η):

Theorem 3.4 Assume that k satisfies (k≤) , (E≥) . Then there exists c > 0 depending on
d, α, λ,� such that for every ρ > 0, 0 ≤ η < s < T , and x, y ∈ Rd with s − η ≤ 1

4ν ρα:

pρ(y, s; x, η) ≤ c(s − η)−
d
α 2

|x−y|
12ρ

(
ρα

ν(s − η)

)− |x−y|
12ρ + 1

2+ d
2α

. (3.6)

Proof Note that the on-diagonal bound (2.14) and (2.7) immediately imply for every 0 ≤
η < s < T with s − η ≤ 1

4ν ρα and x, y ∈ Rd :

(∫
Rd

p2ρ(z, s; x, η)dz

)1/2

≤ c1(s − η)−
d
2α (3.7)

for some c1 > 0. On the other hand, from Theorem 3.2, it follows for every 0 ≤ η < s < T
with s − η ≤ 1

4ν ρα and x, y ∈ Rd :

(∫
Rd\Bσ (y)

p2ρ(y, s; z, η)dz

)1/2

≤ c2(s − η)−
d
2α 2

σ
6ρ

(
ρα

ν(s − η)

)− σ
6ρ + 1

2+ d
2α

(3.8)

for some c2 > 0.To see this, oneobserves thatu(t, x) = ∫Rd\Bσ (y) pρ(x, t; z, η)pρ(y, s; z, η)

dz satisfies the assumptions of Theorem 3.2 with

u0(x) = pρ(y, s; x, η)1{|x−y|>σ }(x), u(s, y) =
∫
Rd\Bσ (y)

p2ρ(y, s; z, η)dz.

To prove (3.6), let us fix 0 ≤ η < s < T with s − η ≤ 1
4ν ρα , and x, y ∈ Rd . Then we

define σ = 1
2 |x − y| and compute, using (2.8):

pρ(y, s; x, η) =
∫
Rd

pρ(y, s; z, (s − η)/2)pρ(z, (s − η)/2; x, η)dz

=
∫
Rd\Bσ (y)

pρ(y, s; z, (s − η)/2)pρ(z, (s − η)/2; x, η)dz

+
∫
Bσ (y)

pρ(y, s; z, (s − η)/2)pρ(z, (s − η)/2; x, η)dz

= J1 + J2.

For J1, we compute, using (3.7), (3.8):

J1 ≤
(∫

Rd\Bσ (y)
p2ρ(y, s; z, (s − η)/2)dz

)1/2 (∫
Rd\Bσ (y)

p2ρ(z, (s − η)/2; x, η)dz

)1/2

≤ c3(s − η)−
d
α 2

|x−y|
12ρ

(
ρα

ν(s − η)

)− |x−y|
12ρ + 1

2+ d
2α
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for some c3 > 0. For J2, observe that Bσ (y) ⊂ Rd \ Bσ (x), and therefore by (2.6):

J2 ≤
(∫

Rd\Bσ (x)
p2ρ(y, s; z, (s − η)/2)dz

)1/2 (∫
Rd\Bσ (x)

p2ρ(z, (s − η)/2; x, η)dz

)1/2

≤ c4(s − η)−
d
α 2

|x−y|
12ρ

(
ρα

ν(s − η)

)− |x−y|
12ρ + 1

2+ d
2α

for some c4 > 0. Together, we obtain the desired result. ��
Bounds for the heat kernel corresponding to the truncated jumping kernel pρ imply bounds

for pwith the help of the gluing lemmaLemma2.2. The underlying argument is known among
probabilists as “Meyer’s decomposition”. For an analytic proof relying on the parabolic
maximum principle we refer to the appendix.

We are now ready to provide the proof of our main result Theorem 1.1:

Proof of Theorem 1.1 Let x, y ∈ Rd be fixed. By (2.13) it suffices to prove that for some
constants c0, c1 > 0 and s − η ≤ c0|x − y|α it holds

p(y, s; x, η) ≤ c1
s − η

|x − y|d+α
.

By Lemma 2.2, and (k≤) we know that for every ρ > 0, 0 ≤ η < s < T :

p(y, s; x, η) ≤ pρ(y, s; x, η) + c2(s − η)‖k − k1{|x−y|≤ρ}‖∞
≤ pρ(y, s; x, η) + c3(s − η)ρ−d−α

(3.9)

for some c2, c3 > 0. We choose ρ = |x−y|
12

( d+α
α

+ 1
2 + d

2α

)−1
. Then by (3.6) and (3.9) it

holds for s − η ≤ 1
4ν ρα:

p(y, s; x, η) ≤ c4(s − η)|x − y|−d−α,

where c4 > 0, as desired. ��

4 Extension: jumping kernels of mixed type onmetric measure spaces

In this section, we discuss a possible extension of the nonlocal Aronson method to jumping
kernels of mixed type. Moreover, we work on a general doubling metric measure space. The
main result of this section is Theorem 4.1.

Let (M, d) be a locally compact, separable metric space, and let μ be a positive Radon
measure with full support. We assume that (M, d, μ) satisfies the volume doubling property,
i.e., there exists C > 0, d ∈ N such that

μ(BR(x))

μ(Br (x))
≤ C

(
R

r

)d

, x ∈ M, 0 < r ≤ R. (VD)

Note that as a consequence of (VD) , for every δ > 0 there exist c1, c2 > 0 such that for
every R > 0, x, y ∈ M with d(x, y) ≤ δR: c1μ(BR(x)) ≤ μ(BR(y)) ≤ c2μ(BR(x)).

Moreover, let φ : [0,∞) → [0,∞) be strictly increasing with φ(0) = 0, φ(1) = 1 and

C−1
(
R

r

)α1

≤ φ(R)

φ(r)
≤ C

(
R

r

)α2

, 0 < r ≤ R, (4.1)
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for some constant C > 0 and 0 < α1 ≤ α2 < 2.
For a detailed discussion of the setup, we refer to [17].
Consider symmetric jumping kernels k : (0, T ) × M × M → R satisfying for some

� > 0

k(t; x, y) ≤ �μ(Bd(x,y)(x))
−1φ(d(x, y))−1, x, y ∈ M, (k≤)

and assume that there is F ⊂ L2(M, μ) such that (Et ,F) is a regular Dirichlet form on
L2(M, μ) for every t ∈ (0, T ), where for every u, v ∈ F ,

Et (u, v) =
∫
M

∫
M

(u(x) − u(y))(v(x) − v(y))k(t; x, y)dxdy
is defined in the usual way. For simplicity, we write dx :=μ(dx).

Moreover, we assume that the Faber-Krahn inequality holds true, i.e., that there exist
c, ν > 0 such that for all t ∈ (0, T ), R > 0, x0 ∈ M , D ⊂ BR(x0) and every u ∈ F with
u ≡ 0 in M \ D:

Et (u, u) ≥ cφ(R)−1
(

μ(BR(x0))

μ(D)

)ν

‖u‖2L2(D)
. (FK)

Let Lt be the operator associated with Et and p(y, s; x, η) be the fundamental solution to
the equation ∂t u − Ltu = 0.

Theorem 4.1 Let (M, d, μ) and φ be as above, and assume (VD) , (4.1). Assume that k
satisfies (k≤) and (FK) . Then there exists c > 0 such that for every 0 ≤ η < s < T ,
x, y ∈ M :

p(y, s; x, η) ≤ c

[
μ(Bφ−1(s−η)(x))

−1 ∧ s − η

μ(Bd(x,y)(x))φ(d(x, y))

]
. (4.2)

We remark that variants of Theorem 4.1 for time-homogeneous jumping kernels of mixed
type on doubling metric measure spaces can be found in several articles, e.g., [14, 15, 17].

We will provide a proof of Theorem 4.1 below. A central ingredient in the proof is the
L∞ − L2-estimate (4.8) for subsolutions to ∂t u − Lρ

t u = 0. Its proof is similar to the proof
of Lemma 2.4. However we will provide some details since this seems to be the first time that
(FK) is used for nonlocal parabolic L∞ − L2-estimates. Moreover, we provide an L∞ − L1-
estimate for subsolutions to ∂t u − Ltu = 0 which allows us to give a direct proof of the
on-diagonal upper heat kernel estimate. In the elliptic case, L∞−L2- and L∞−L1-estimates
are established via (FK) for example in [17].

Lemma 4.2 Let (M, d, μ) and k be as in Theorem 4.1. Then there exists C1 > 0 such that
for every t0 ∈ (0, T ), x0 ∈ M, ρ, R > 0 with R ≤ ρ/2 ∧ φ−1(t0) and every subsolution u
to ∂t u − Lρ

t u = 0 in IR(t0) × BR(x0) it holds:

sup
IR/2(t0)×BR/2(x0)

u ≤ C1

(
μ(Bρ(x0))

μ(BR(x0))

) 1
2

μ(BR(x0))
− 1

2 sup
t∈IR(t0)

(∫
B2ρ(x0)

u2(t, x)dx

)1/2

.

(4.3)

Moreover, there exists C2 > 0 such that for every t0 ∈ (0, T ), x0 ∈ M, R ≤ φ−1(t0) and
every subsolution u to ∂t u − Ltu = 0 in IR(t0) × BR(x0), with u ≥ 0 in IR(t0) × BR(x0), it
holds:

sup
IR/2(t0)×BR/2(x0)

u ≤ C2μ(BR(x0))
−1 sup

t∈IR(t0)

∫
M

|u(t, x)|dx . (4.4)
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We refer to Sect. 1 for the definition of a subsolution. Hα/2(Rd) should be replaced by
F .

Proof First, we prove (4.3). Let l > k > 0, 0 < r ≤ R ≤ ρ/2, A(l, R) := |{(t, x) ∈
IR × BR(x0) : u(t, x) > l}|. Let u be a subsolution to ∂t u − Lρ

t u = 0. First, observe that for
every t ∈ IR+r :

sup
x∈BR(x0)

∫
Bæ(x)\BR+ r

2
(x0)

|u(t, y)|k(t; x, y)dy ≤ c1œ
′(R, r)−

∫
B2æ(x0)

|u(t, y)|dy,

where c1 > 0, σ ′(R, r):= supx∈BR(x0) φ(r)−1 μ(Bρ(x0))
μ(Br (x))

and we used (k≤) . By Caccioppoli’s
inequality and (4.7), every subsolution u to ∂t u − Lρ

t u = 0 in IR × BR(x0) satisfies:

sup
t∈IR

∣∣∣A
(
l, R + r

2

)∣∣∣ ≤ 1

2
(l − k)−2 sup

t∈IR

∫
BR+ r

2
(x0)

w2
k+l
2

(t, x)dx

≤ c2(l − k)−2

(
σ(R, r) + σ ′(R, r)

l − k
sup

t∈IR+r

−
∫
B2ρ (x0)

|u(t, x)|dx
)∫

IR+r

∫
BR+r (x0)

w2
k (t, x)dxdt,

where c2 > 0, σ(R, r) = φ(r)−1 ∨ (φ(R + r) − φ(R))−1 and

Œ
(
R + r

2

)−1
∫
IR

(
μ(BR+ r

2
(x0))

A(l, R + r
2 )

)ν ∫
BR (x0)

w2
l (t, x)dxdt ≤ c3

∫
IR
Et (τwl (t), τwl(t))dt

≤ c4

(
σ(R, r) + σ ′(R, r)

l − k
sup

t∈IR+r

−
∫
B2ρ (x0)

|u(t, x)|dx
)∫

IR+r

∫
BR+r (x0)

w2
k (t, x)dxdt,

where c3, c4 > 0, τ ∈ C∞
c (Rd) is an arbitrary function such that τ ≡ 1 in BR(x0), τ ≡ 0

in BR+ r
2
(x0), ‖∇τ‖∞ ≤ 4r−1, and we used (FK) . By combination of the foregoing two

estimates, we obtain for some c5 > 0:
∫
IR

∫
BR(x0)

w2
l (t, x)dxdt ≤ c5

(∫
IR+r

∫
BR+r (x0)

w2
k (t, x)dxdt

)1+ν

× φ(R + r
2 )

μ(BR+ r
2
(x0))ν

(l − k)−2ν

(
σ(R, r) + σ ′(R, r)

l − k
sup

t∈IR+r

−
∫
B2ρ(x0)

|u(t, x)|dx
)1+ν

.

(4.5)

Let us now fix R ∈ (0, ρ/2] and define sequences li = M(1 − 2−i ), for M > 0 to be
defined later, ri = 2−i−1R, Ri+1 = Ri − ri+1, R0:=R, Ai = ∫IRi

∫
BRi (x0)

w2
li
(t, x)dxdt . We

deduce:

Ai ≤ c6(li − li−1)
−2ν φ(Ri )

μ(BRi−1 (x0))
ν

(
σ(Ri , ri ) + σ ′(Ri , ri )

li − li−1
sup

t∈IRi−1

−
∫
B2ρ (x0)

|u(t, x)|dx
)1+ν

A1+ν
i−1

≤ c72
γ i M−2ν(φ(R)μ(BR(x0)))

−ν

(
1 + M−1 μ(Bρ(x0))

μ(BR(x0))
sup
t∈IR

−
∫
B2ρ (x0)

|u(t, x)|dx
)1+ν

A1+ν
i−1

for some γ, c6, c7 > 0, using that σ(Ri , ri ) ≤ c82γ1iφ(R)−1, σ ′(Ri , ri ) ≤ c92γ2iφ(R)−1

μ(Bρ(x0))
μ(BR(x0))

for some c8, c9, γ1, γ2 > 0. The latter follows from the fact that for all x ∈ BR(x0):
μ(Bρ(x0))
μ(Bri (x))

= μ(Bρ(x0))
μ(BR(x))

μ(BR(x))
μ(Bri (x))

≤ c102γ3i μ(Bρ(x0))
μ(BR(x0))

, where c10, γ3 > 0. Let us choose c11 =
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c721+γ , and

M:= ¯(Bæ(x0))

¯(BR(x0))
sup
t∈IR

−
∫
B2æ(x0)

|u(t, x)|dx + 2−
2˚2 c

1
2˚
11(Œ(R)¯(BR(x0)))

− 1
2 A1/2

0 .

Hence:

Ai ≤ (c11M
−2ν(φ(R)μ(BR(x0)))

−ν)2γ i A1+ν
i−1 , A0

≤ 2− γ

ν2 (c11M
−2ν(φ(R)μ(BR(x0)))

−ν)−
1
ν ,

and we can apply Lemma 7.1 in [31] to deduce that for some c12 > 0:

sup
IR/2×BR/2(x0)

u ≤ μ(Bρ(x0))

μ(BR(x0))
sup
t∈IR

−
∫
B2ρ(x0)

|u(t, x)|dx + c7

(
−
∫
IR

−
∫
BR(x0)

u2(t, x)dxdt

)1/2

≤ c12

(
μ(Bρ(x0))

μ(BR(x0))

) 1
2

(μ(BR(x0))
− 1

2 sup
t∈IR

(∫
B2ρ(x0)

u2(t, x)dx

)1/2

.

This proves (4.3). Let us now demonstrate how to prove (4.4). Let u be a subsolution to
∂t u − Ltu = 0. First, we provide a different estimate of the tail term. For every t ∈ IR+r :

sup
x∈BR(x0)

∫
M\BR+ r

2
(x0)

|u(t, y)|k(t; x, y)dy ≤ c13σ̃
′(R, r)

∫
M

|u(t, y)|dy,

where σ̃ ′(R, r):= supx∈BR(x0) μ(Br (x))−1φ(r)−1 and we applied (k≤) . As in (4.5), we get:

∫
IR

∫
BR(x0)

w2
l (t, x)dxdt ≤ c14

(∫
IR+r

∫
BR+r (x0)

w2
k (t, x)dxdt

)1+ν

×

× φ(R + r
2 )

μ(BR+ r
2
(x0))ν

(l − k)−2ν

(
σ(R, r) + σ̃ ′(R, r)

l − k
sup

t∈IR+r

∫
M

|u(t, x)|dx
)1+ν

for some c14 > 0. From now on, let R > 0 be fixed. Moreover, let 0 < R/2 ≤ r < R ≤ R
and define sequences li = M(1 − 2−i ), for M > 0 to be defined later, ri = 2−i−1(R − r),
Ri+1 = Ri − ri+1, R0:=R, Ai = ∫IRi

∫
BRi (x0)

w2
li
(t, x)dxdt and deduce

Ai ≤ c16
2γ i

M2ν

φ(R)

μ(BR(x0))ν

(
R

R − r

1

φ(R − r)
+ 1

M

(
R

R − r

)d
φ(R − r)−1

μ(BR(x0))
sup
t∈IR

∫
M

|u(t, x)|dx
)1+ν

A1+ν
i−1

≤ c17
2γ i

M2ν

(
R

R−r

)α2+1

(φ(R − r)μ(BR(x0)))ν

⎛
⎜⎝1 + 1

M

(
R

R−r

)d−1

μ(BR(x0))
sup
t∈IR

∫
M

|u(t, x)|dx
⎞
⎟⎠

1+ν

A1+ν
i−1 ,

for c16, c17, γ > 0, using (4.1) and that by (VD) : μ(BRi (x0)) ≥ μ(BR/2(x0)) ≥
c18μ(BR(x0)) ≥ c18μ(BR(x0)), σ(Ri , ri ) ≤ c192γ4i R

R−r φ(R − r)−1, σ̃ ′(Ri , ri ) ≤
c202γ5iφ(R − r)−1

(
R

R−r

)d
μ(BR(x0))−1. The latter follows from the fact that for all

x ∈ BR(x0): μ(Bri (x))
−1 = μ(BR)(x)

μ(Bri (x))
μ(BR(x))−1 ≤ c212γ6i

(
R

R−r

)d
μ(BR(x0))−1. We
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choose c22 = c1721+γ and

M :=
(

R
R−r

)d−1

μ(BR(x0))
sup
t∈IR

∫
M

|u(t, x)|dx + 2− γ

2ν2 c
1
2ν
22

⎡
⎢⎣

(
R

R−r

)α2+1

(φ(R − r)μ(BR(x0)))ν

⎤
⎥⎦

1
2ν

A1/2
0

and deduce by arguments analogous to those in the first part of the proof:

sup
Ir×Br (x0)

u ≤
(

R

R − r

)d−1 1

μ(BR(x0))
sup
t∈IR

∫
M

|u(t, x)|dx

+ c23

⎡
⎢⎣

(
R

R−r

)α2+1

(φ(R − r)μ(BR(x0)))ν

⎤
⎥⎦

1
2ν (∫

IR

∫
BR(x0)

u2(t, x)dxdt

)1/2

= I1 + I2,

where c23 > 0. We further estimate

I2 ≤
(

R

R − r

) α2(1+ν)+1
2ν

sup
t∈IR

(
−
∫
BR(x0)

u2(t, x)dx

)1/2

≤ 1

2
sup

IR×BR(x0)
u + c24

(
R

R − r

) α2(1+ν)+1
ν

sup
t∈IR

−
∫
BR(x0)

|u(t, x)|dx,

where c24 > 0 and we applied (4.1) and Hölder’s and Young’s inequality. Together, we
obtain

sup
Ir×Br (x0)

u ≤ 1

2
sup

IR×BR(x0)
u + c25

(
R

R − r

)δ 1

μ(BR(x0))
sup
t∈IR

∫
M

|u(t, x)|dx

for c25 > 0 and δ:=d − 1 ∨ α2(1+ν)+1
ν

. We can apply Lemma 1.1 in [26] to the estimate
above and deduce that there exists c26 > 0 such that for every 0 < R/2 ≤ r < R ≤ R:

sup
Ir×Br (x0)

u ≤ c26

(
R

R − r

)δ
1

μ(BR(x0))
sup
t∈IR

∫
M

|u(t, x)|dx . (4.6)

Choosing r = R/2, R = R implies the desired result (4.4). ��
Now, having established the L∞−L2-estimate Lemma4.2,we are ready to proveTheorem

4.1.

Proof of Theorem 4.1 First of all, we observe that by (VD) , (4.1), (k≤) :∫
BR(x)

d(x, y)2k(t; x, y)dy ≤ cR2φ(R)−1,

∫
M\BR(x)

k(t; x, y)dy ≤ cφ(R)−1. (4.7)

for every t ∈ (0, T ), x ∈ M , R > 0. For a proof, see [17]. Given y ∈ M , ρ > 0, 0 ≤ η <

s < T , ν > 1 with s − η ≤ 1
4ν φ(ρ), we define Hy,ρ,η,s,ν = H : [η, s] × M → [0,∞) via

H(t, x):=
(

φ(ρ)

ν[2(s − η) − (t − η)]
)−1

∧
(

φ(ρ)

ν[2(s − η) − (t − η)]
)− d(x,y)

3ρ

.
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With the help of (4.7), (4.1) it is easy to check along the lines of Lemma 3.3 that H satisfies
the assumptions of Lemma 3.1, namely for every C > 0 there exists ν > 1 such that

C�φ
ρ (H1/2, H1/2) ≤ −∂t H in (η, s) × M, H1/2 ∈ L2((η, s);F),

where

�φ
ρ (H1/2, H1/2)(t, x) =

∫
Bρ(x)

(H1/2(t, x) − H1/2(t, z))2μ(Bd(x,z)(x))
−1φ(d(x, z))−1dz.

Next, we recall from Lemma 4.2 that the following L∞ − L2-estimate holds true for local
subsolutions u to ∂t u − Lρ

t u = 0 in IR(t0) × BR(x0), where IR(t0) = (t0 − φ(R), t0):

sup
IR/2(t0)×BR/2(x0)

u ≤ C

(
μ(Bρ(x0))

μ(BR(x0))

) 1
2

μ(BR(x0))
− 1

2 sup
t∈IR(t0)

(∫
B2ρ(x0)

u2(t, x)dx

)1/2

.

(4.8)

Applying H to Lemma 3.1, we obtain from (4.8) and the definition of H :

|u(s, y)| ≤ c1

(
μ(Bρ(y))

μ(Bφ−1(s−η)(y))

) 1
2

μ(Bφ−1(s−η)(y))
− 1

2 2
σ
6ρ

(
φ(ρ)

ν(s − η)

)− σ
6ρ + 1

2 ‖u0‖L2(D)

(4.9)

for c1 > 0, where u, u0 are as in Lemma 3.1, and 0 ≤ η < s < T with s − η ≤ 1
4ν φ(ρ),

σ > 0.
Moreover, the following on-diagonal estimates hold for every 0 ≤ η < s < T , x, y ∈ M ,

ρ > 0:

p(y, s; x, η) ≤ cμ(Bφ−1(s−η)(x))
−1, (4.10)

pρ(y, s; x, η) ≤ cec(s−η)φ(ρ)−1
μ(Bφ−1(s−η)(x))

−1, (4.11)

for some c > 0. These estimates are proved in Lemma 5.1 and Section 4.4 in [17] using a
stochastic approach. A more direct proof, using only analysis tools, goes via the L∞ − L1-
estimate (4.4).

In fact, given 0 ≤ η < s < T , x, y ∈ M , we apply (4.4) to (t, z) �→ p(y, t; z, η),
choosing R:=φ−1(s − η), x0:=x , t0:=s. Using (2.7), we obtain

p(y, s; x, η) ≤ cμ(Bφ−1(s−η)(x))
−1 sup

t∈I
φ−1(s−η)

(s)

∫
M

p(y, t; z, η)dz ≤ cμ(Bφ−1(s−η)(x))
−1,

as desired. (4.11) is a direct consequence of (4.10) in the light of (5.7) and (4.7). Note that
the proof of (5.7) is written for M = Rd but works in the same way in the current setup.

Combining (4.9) and (4.11), we derive as in Theorem 3.4 for every 0 ≤ η < s < T with
s − η ≤ 1

4ν φ(ρ), x, y ∈ M :

pρ(y, s; x, η) ≤ c2

(
ρ

φ−1(s − η)

) d
2

μ(Bφ−1(s−η)(x))
− 1

2

μ(Bφ−1(s−η)(y))
− 1

2 2
d(x,y)
12ρ

(
φ(ρ)

ν(s − η)

)− d(x,y)
12ρ + 1

2
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for c2 > 0. Finally, we explain how to deduce off-diagonal bounds for p. We get from (5.6):

p(y, s; x, η) ≤ pρ(y, s; x, η) +
∫ s

η

Pρ
τ Kρ(y)dτ. (4.12)

We choose ρ = d(x,y)
12

(
d+α1

α1
+ 1

2 + d
2α1

)−1
and obtain by (VD) , (4.1):

pρ(y, s; x, η)

≤ c2

(
ρ

φ−1(s − η)

) d
2 [

μ(Bφ−1(s−η)(x))μ(Bφ−1(s−η)(y))
]− 1

2 2
d(x,y)
12ρ

(
φ(ρ)

ν(s − η)

)− d(x,y)
12ρ + 1

2

≤ c3

(
d(x, y)

φ−1(s − η)

) d
2 [

μ(Bφ−1(s−η)(x))μ(Bφ−1(s−η)(y))
]− 1

2

(
φ(d(x, y))

s − η

)− 3d
2α1

−1

≤ c4

(
φ−1(φ(d(x, y)))

φ−1(s − η)

) d
2
(

μ(Bφ−1(φ(d(x,y)))(x))μ(Bφ−1(φ(d(x,y)))(y))

μ(Bφ−1(s−η)(x))μ(Bφ−1(s−η)(y))

) 1
2

(
φ(d(x,y))

s−η

)− 3d
2α1

−1

μ(Bd(x,y)(x))

≤ c5

(
φ(d(x, y))

s − η

) 3d
2α1
(

φ(d(x, y))

s − η

)− 3d
2α1

−1

μ(Bd(x,y)(x))
−1

= c5
s − η

μ(Bd(x,y)(x))φ(d(x, y))

(4.13)

for c3, c4, c5 > 0. Next, we estimate
∫ s
η
Pρ

τ Kρ(y)dτ . For this, we compute by (k≤) and
(VD) :

∫ s

η

Pρ
τ Kρ(y)dτ =

∞∑
k=1

∫ s

η

Pρ
τ

[
1Bckρ(y)\Bc(k−1)ρ (y)Kρ

]
(y)dτ

≤ c6φ(d(x, y))−1
∞∑
k=1

∫ s

η

Pρ
τ

[
1Bckρ(y)\Bc(k−1)ρ (y)μ(Bρ(·))−1] (y)dτ

≤ c7μ(Bρ(x))−1φ(d(x, y))−1
∞∑
k=1

kd
∫ s

η

Pρ
τ 1Bckρ(y)\Bc(k−1)ρ (y)(y)dτ

for c6, c7 > 0, and c > 3 + 6d
α1
. Using (4.9), (VD) and (4.1), we estimate for τ ∈ (η, s),

k ≥ 2:

kd Pρ
τ 1Bckρ(y)\Bc(k−1)ρ (y)(y) ≤ c8k

d

(
μ(Bkρ(y))

μ(Bφ−1(τ−η)(y))

)
2

c(k−1)
6

(
φ(ρ)

ν(τ − η)

)− c(k−1)
6 + 1

2

≤ c9k
2d2

c(k−1)
6

(
φ(ρ)

ν(τ − η)

)− c(k−1)
6 + 1

2+ d
α1

≤ c10k
2d2

c(k−1)
6 4

− c(k−1)
6 + 1

2+ d
α1
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for c8, c9, c10 > 0, where we use s − η ≤ 1
4ν φ(ρ). From (2.7), it follows

∫ s

η

Pρ
τ Kρ(y)dτ ≤ c11μ(Bρ(x))−1φ(d(x, y))−1

∫ s

η

(
Pρ

τ 1Bcρ(y)(y) +
∞∑
k=2

k2d2
ck
6 4− ck

6

)
dτ

≤ c12
s − η

μ(Bd(x,y)(x))φ(d(x, y))

(4.14)

for c11, c12 > 0. Combining (4.12), (4.13), (4.14) we obtain the desired off-diagonal estimate
for s − η ≤ 1

4ν φ(ρ). Together with the on-diagonal estimate (4.10), we deduce the desired
result. ��
Remark Note that the proof of Theorem 4.1 does not require the scaling argument from [14]
since we are working with an on-diagonal estimate and an L∞ − L2-estimate that take into
account the parabolic scaling of the corresponding equation, see also [15].
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Appendix

The main goal of this section is to give a proof of Lemma 2.2 via analysis methods. We
mainly follow the strategy carried out in [27] modifying some of their arguments due to the
time-inhomogeneity of the jumping kernel.

First, we introduce the notion of a subsolution to ∂t u − Ltu = 0 in I × � for some open
interval I ⊂ (η, T ) and some open set � ⊂ Rd .

Definition 5.1 Let � ⊂ Rd be open and bounded. We say that a function u ∈
L2
loc(I ; Hα/2(Rd)) with ∂t u ∈ L1

loc(I ; L2
loc(�)) is a subsolution to

∂t u − Ltu = 0, in I × �, (5.1)
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if for every φ ∈ Hα/2(Rd) with φ ≡ 0 in Rd \ � and φ ≥ 0:∫
Rd

∂t u(t, x)φ(x)dx + Et (u(t), φ) ≤ 0, a.e. t ∈ I . (5.2)

In this case we say that u solves ∂t u − Ltu ≤ 0 in I × �. u is a solution to (5.1) if (5.2)
holds for any φ ∈ Hα/2(Rd) with φ ≡ 0 in Rd \ �. (Sub-)solutions to the corresponding
ρ-truncated problem are defined accordingly, replacing k by kρ .

The main ingredient in the proof of Lemma 2.2 is the following parabolic maximum
principle, which is an analog of Proposition 4.11 in [27]:

Lemma 5.2 (parabolic maximum principle) Let � ⊂ Rd be open. Assume that k satisfies
(k≤) , (E≥) . Assume that u solves

⎧⎪⎨
⎪⎩

∂t u − Ltu ≤ 0, in (η, T ) × �,

u+(t) ∈ Hα/2
� (Rd), ∀t ∈ (η, T ),

u+(t) → 0, in L2(�), as t ↘ η.

(5.3)

Then u ≤ 0 a.e. in (η, T ) × �. The same result holds for subsolutions to ∂t u − Lρ
t u = 0.

Proof By assumptions (k≤) , (E≥) and dominated convergence theorem, we have for f ∈
L2(Rd)

λ[ f ]2Hα/2(Rd )
≤ Et ( f , f ) ≤ �[ f ]2Hα/2(Rd )

, ∀t ∈ (0, T ).

Thus, (Et , Hα/2(Rd)) is a regular Dirichlet form for every t ∈ (0, T ). Along the lines of
Lemma 4.3 in [27] one can prove∫

Rd
∂t u(t, x)φ(u(t, x))dx ≤ 0, a.e. t ∈ (η, T ),

where φ ∈ C∞(R) such that φ ≡ 0 in (−∞, 0], φ > 0 on (0,∞), and 0 ≤ φ′ ≤ 1. From
here, the remainder of the proof follows along the lines of Proposition 4.11 in [27]. The proof
for subsolutions to ∂t u − Lρ

t u = 0 is carried out via similar arguments, using that for some
c > 0:

[ f ]2Hα/2(Rd )
≤ cρ−α‖ f ‖2L2(Rd )

+ Eρ
t ( f , f ), t ∈ (0, T ). (5.4)

��
In the following, for f ∈ L2(�), we will denote by (s, x) �→ P�

η,s f (x) the solution to
∂t u − Ltu = 0 in (η, T ) × � with ‖P�

η,s f − f ‖L2(�) → 0 as s ↘ η, and P�
η,s f ≡ 0

in Rd \ �. We define (s, x) �→ P�,ρ
η,s f (x) to be solution to the corresponding ρ-truncated

problem.
In order to prove Lemma 2.2, we need an approximation result for Pη,s f . In the time-

homogeneous case, its proof is given in Lemma 4.17 in [27]. However, their argument does
not work in our situation due to the lack of a resolvent operator associated with Pη,s .

Lemma 5.3 Let (�n)n∈N be an increasing sequence of open subsets ofRd with
⋃

n∈N �n =
Rd , and η ≥ 0. Assume that k satisfies (k≤) , (E≥) . Then for every f ∈ L2(Rd) it holds
P�n

η,s f → Pη,s f , P
�n ,ρ
η,s f → Pρ

η,s f pointwise a.e. for a.e. s ∈ (η, T ), and every ρ > 0.
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Proof Wedenote un(s):=P�n
η,s f . By the parabolicmaximumprinciple it follows that un(s) ≤

un+1(s) ≤ · · · ≤ Pη,s f . Consequently, there exists a function u ∈ L2((η, T )×Rd) such that
un(s) ↗ u(s) ≤ Pη,s f a.e., and by dominated convergencewe have ‖un−u‖L2((η,T )×Rd ) →
0.

It remains to prove u(s) = Pη,s f . Note that by (5.2) it is sufficient to prove that un⇀u
in L2((η, T ); Hα/2(Rd)). Let us test the equation for un with φ = un , integrate over (η, T ).
Then:

∫
Rd

u2n(T , x)dx + 2
∫ T

η

Et (un(t), un(t))dt ≤
∫
Rd

f 2(x)dx .

By uniform boundedness of ‖un‖L2((η,T )×Rd ), we conclude that also ‖un‖L2((η,T );Hα/2(Rd ))

is uniformly bounded, which implies un⇀u in L2((η, T ); Hα/2(Rd)), as desired.
The desired result for P�n ,ρ

η,s follows by the same argument, using (5.4) to conclude
boundedness in L2((η, T ); Hα/2(Rd)). ��

Proof of Lemma 2.2 Let f ∈ L2(Rd) with f ≥ 0, and �n ⊂ Rd as in Lemma 5.3. We
proceed as in the proof of Proposition 4.4 in [30] to deduce for a.e. 0 ≤ η < s < T and
n ∈ N:

P�n
η,s f ≤ P�n ,ρ

η,s f +
∫ s

η

[∫
Rd

P�n ,ρ
η,τ f (y)Kρ(y)dy

]
dτ, (5.5)

where Kρ(y) = supz∈Rd ,t∈(η,T ) k(t; z, y)1{|z−y|≥ρ}(y). The proof of (5.5) directly follows
by application of the parabolic maximum principle Lemma 5.2 for Lt to

u(s, x) = P�n
η,s f (x) − P�n ,ρ

η,s f (x) − φn(x)
∫ s

η

[∫
Rd

P�n ,ρ
η,τ f (y)Kρ(y)dy

]
dτ,

where φn ∈ C∞
c (Rd) with 0 ≤ φn ≤ 1 and φn ≡ 1 in �n . Taking n → ∞ in (5.5) implies

Pη,s f ≤ Pρ
η,s f +

∫ s

η

[∫
Rd

Pρ
η,τ Kρ(y) f (y)dy

]
dτ,

where we used Lemma 5.3 and (2.6).
By (2.9) it is easy to deduce for a.e. 0 ≤ η < s < T and a.e. x, y ∈ Rd :

p(y, s; x, η) ≤ pρ(y, s; x, η) +
∫ s

η

Pρ
η,τ Kρ(y)dτ. (5.6)

(2.11) is now a direct consequence of (2.7) and (k≤) . The proof of (2.12) follows by carrying
out the same arguments as in the proof of Proposition 4.4 in [30] with

u(s, x) = P�n ,ρ
η,s f (x) − P�n

η,s f (x)e(s−η)K ′
ρ ,

where K ′
ρ := sup(t,x)∈(0,T )×Rd

∫
Rd\Bρ(x) k(t; x, y)dy. This time,we apply the parabolicmax-

imum principle Lemma 5.2 for Lρ
t and obtain for a.e. 0 ≤ η < s < T and a.e. x, y ∈ Rd :

pρ(y, s; x, η) ≤ p(y, s; x, η)e(s−η)K ′
ρ . (5.7)

Note that by Hölder regularity of weak solutions to (1.3), it is possible to obtain the desired
results for every η, s, x, y. ��
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