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Abstract
We develop the theory of torsional rigidity—a quantity routinely considered for Dirichlet
Laplacians on bounded planar domains—for Laplacians on metric graphs with at least one
Dirichlet vertex. Using a variational characterization that goes back to Pólya, we develop
surgical principles that, in turn, allow us to prove isoperimetric-type inequalities: we can
hence compare the torsional rigidity of general metric graphs with that of intervals of the
same total length. In the spirit of the Kohler-Jobin inequality, we also derive sharp bounds on
the ground-state energy of a quantumgraph in terms of its torsional rigidity: this is particularly
attractive since computing the torsional rigidity reduces to inverting a matrix whose size is
the number of the graph’s vertices and is, thus, much easier than computing eigenvalues.
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1 Introduction

Our aim in this article is to develop the theory of torsional rigidity for Laplacians on metric
graphs: Following the terminology introduced by Pólya in [52], we will call torsion function
(with respect to the Dirichlet set VD) of a metric graph G with vertex set V ⊃ VD �= ∅ the
unique solution v of the elliptic problem{

−�v(x) = 1, x ∈ G,

v(v) = 0, v ∈ VD,
(1.1)

and torsional rigidity its L1-norm T (G) := T (G;VD) := ‖v‖L1 .
General self-adjoint differential operators supported on metric graphs are a popular toy

model in both spectral theory and analysis of evolution equations [11, 38, 45]: they usually go
under the name of quantum graphs. In particular, much attention has been lately devoted to
the study of the interplay of graphs’ connectivity and metric properties on the one hand, and
Laplacian eigenvalues on the other; while torsional properties of metric graphs have been, to
the best of our knowledge, only discussed in [21].

The theory of torsional rigidity of three-dimensional bodies with constant section �⊂ R
2

goes back to Saint-Venant [56], but the first rigorousmathematical contributions can be found
in [52, 54]. In his early meaning, torsional rigidity is a quantity in rational mechanics: defined
as the L1-norm of the solution v of{

−�v(x) = 1, x ∈ �,

v(z) = 0, z ∈ ∂�,
(1.2)

it is proportional (by θμ, whereμ is the body’s shear modulus) to the couple resisting a given
twist θ . Pólya observes that the torsional rigidity is “a purely geometric constant, dependingon
size and shape of the domain” [52]: indeed, a classical result by Pólya—clearly reminiscent
of the Faber–Krahn inequality for the ground-state energy of the Dirichlet Laplacian and
already conjectured by Saint-Venant based on physical considerations—states that of all
open bounded domains � ⊂ R

2 of given area |�|, the circular one has the greatest torsional
rigidity, i.e.,

T (�) ≤ T (©) = |�|2
2π

.

The crucial idea in Pólya’s approach was the observation ([52, page 272], see also [54, § 9B])
that T (�) can be conveniently considered as a critical point of the Euler–Lagrange equation
associated with (1.2) and that, accordingly, T (�) admits a variational characterization as

T (�) = sup
v∈H1

0 (�)

(∫
�

v dx
)2

‖∇v‖2
L2

= sup
v∈H1

0 (�)

‖v‖2
L1

‖∇v‖2
L2

, (1.3)

see, e.g., [13, Proposition 2.2]. Indeed, these suprema are attained and the unique maximizer
of (1.3) is precisely the solution of (1.2): it is called torsion function in the literature (or
sometimes warping function, [4, Section II.2.3]). In the last decade it has attracted further
interest after its role in wave localization phenomena for general Schrödinger operators has
been greatly popularized by Filoche and Mayboroda [26]. Ever since Pólya’s pioneering
study, investigations by Makai, Payne, Kohler-Jobin, and further authors have convincingly
shown the rich theory of torsional rigidity in the context of shape optimization, often using
symmetrization and rearrangement techniques.
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This is the starting point of our article: Indeed, Pólya’s basic definitions and properties of
torsion on domains can be easily seen to carry over tometric graphs, up to replacing Lebesgue
and Sobolev spaces on planar domains by their counterparts on metric graphs, thus leading
to (1.1). We are going to consider the Laplacian �G on G with Dirichlet conditions on the
vertices in VD and study two classes of problems: on one hand, we will prove sharp estimates
on the torsional rigidity T (G) := T (G;VD) in its own right, like

|G|3
12|E|2 ≤ T (G;VD) ≤ |G|3

3
for all ∅ �= VD ⊂ V (1.4)

[see Eqs. (4.4) and (4.7)], where |G| is the total length of the metric graph G and |E| is the
number of its edges; in particular, the torsional rigidity scales as |G|3. (In the case of domains,
estimates like these are not available unless Dirichlet conditions are imposed on the whole
boundary. Because �G is not invertible in L2(G) if VD = ∅, formally T (G; ∅) = ∞: it is
hence remarkable that the uniform estimate in (1.4) holds as soon as VD �= ∅.)

On the other hand, by using techniques that are classical in the theory of of torsional
rigidity, we will provide estimates on the ground-state energy

λ1(G;VD) := min
f ∈H1

0 (G;VD)

‖ f ′‖2
L2

‖ f ‖2
L2

(i.e., the lowest eigenvalue of −�G) by other objects, like(
π

3
√
24‖pG;VD‖L1

)2

≤ λ1(G;VD) ≤ |G|
‖pG;VD‖L1

for all ∅ �= VD ⊂ V (1.5)

[see Eqs. (5.1) and (5.9)], where pG;VD ∈ L1(R+ ×G×G) is the heat kernel, i.e., the integral
kernel of the heat semigroup generated by �G with Dirichlet conditions on the vertices in
VD.

Not only will we replicate some of the most important results on torsion function and
torsional rigidity of planar domains in the context of metric graph; we are also going to
refine the direct counterparts of the classical results for special classes of metric graphs, like
trees (i.e., simply connected metric graphs) or doubly connected graphs. Indeed, in the one-
dimensional setting of metric graphs techniques can be applied that seem to not be available
in higher dimensional settings. On one hand, the Eq. (1.1) can be solved in a semi-explicit
way by solving an algebraic system of |V|−|VD| equations in |V|−|VD| unknowns, where |V|
is the number of vertices of G and |VD| is the number of Dirichlet vertices: this paves the road
to a geometric description of the torsion function that is much easier than for eigenfunctions.
At the same time, the last decade has witnessed strong advances in the refinement of surgical
principles for critical points of functionals defined on metric graphs: the recent article [10]
is a comprehensive collection of techniques that go far beyond elementary test-function
arguments. We are thus going to borrow some ideas proposed by several authors for the
study of spectral geometry of metric graphs, including [3, 17, 20, 28, 33], and combine them
with techniques more typical of higher dimensional torsional theory [13, 35, 52]. In this way,
not only can we reproduce in the metric graph context some well-known geometric bounds
on the torsional rigidity and its product with (a power of) the ground-state energy; we can
also sharpen some of them in the case of graphs of higher connectivity—a behavior that in
the context of Laplacian eigenvalues of metric graphs has been discovered in [3, 17], but
seems to have no counterpart in torsional theory of higher dimensional domains.

A further remarkable feature of torsional rigidity is its interplay with the heat equation,
already hinted at in (1.5). Indeed, for the Laplacian �G on a metric graph G with Dirichlet
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conditions on a non-empty set VD of vertices (and natural—i.e., continuity and Kirchhoff—
conditions at all other vertices V\VD), the quantity

QG(t) := ‖et�G1‖L1 =
∫
G

∫
G

pG;VD(t; x, y) dy dx, t > 0,

is called the heat content of G at time t : intuitively, the profile of t 
→ QG(t) describes
how fast a metric graph is dissipating heat. Because (et�G )t≥0 is known to satisfy Gaussian
estimates [44, Thm. 4.7], t 
→ QG(t) is of class L1(0,∞): we will call the L1-norm of QG ,
i.e.,

‖QG‖L1(0,∞) = ‖pG;VD‖L1 =
∫ ∞

0

∫
G

∫
G

pG;VD(t; x, y) dy dx dt, (1.6)

the integrated heat content of G (with respect to the Dirichlet vertex VD).While it is known at
latest since [6] that the heat content—at least in the case of domains inRd—carries interesting
geometric information, estimates on QG(t) are not easy to derive and will be discussed in
a companion paper [46]. However, the integrated heat content is a much more treatable
quantity: our main results in this paper can be interpreted as geometric estimates (from
above and below) of such integrated heat content, as in (1.5). Indeed, the integrated heat
content agrees with the torsional rigidity of G, in view of elementary results from semigroup
theory.

Let us present the plan of this article.
After recalling some basic definitions in the theory of metric graphs, we introduce the

torsional rigidity of a quantum graph in Sect. 2. We also compute the torsional rigidity in a
few simple examples.

In Sect. 3 we present a first simple, yet effective tool for our analysis: we show (Propo-
sition 3.1) that a quantum graph’s torsion function can be computed explicitly—unlike for
eigenfunctions, this is true even in the non-equilateral case!—upon passing to a discretized
problem: this boils down to solve an algebraic system of linear equations.

In Sect. 4 we introduce (Proposition 4.1) a new toolbox, mostly inspired by the spectral
surgical methods developed in [10, 17, 33]. We use them to prove two main bounds on the
torsional rigidity: a lower and an upper bound based on the inradius of G and on its total
length, respectively (Proposition 4.4 and Theorem 4.6): both bounds can be improved if G is
known to be simply connected (i.e., G is a tree graph) or doubly connected, respectively.

We then turn to our most significant topic: the derivation of estimates on the ground-
state energy of a quantum graph by means of its torsional rigidity. In Sect. 5 we present an
upper bound (Proposition 5.1) whose domain counterpart goes back to Pólya (and which
can be slightly modified to prove that the torsional rigidity also yields an upper estimate on
the Cheeger constant of a metric graph); and a lower bound (Theorem 5.8), whose much
more involved proof is based on a rearrangement technique introduced by Kohler-Jobin and
recently extended in [13].

Finally, in Sect. 6 we study a different but related topic: we discuss the possible use of the
torsion function as a landscape function, elaborating on known results from [2, 5, 26, 29, 58]
and extending them to the general setting of operators satisfying suitable forms of maximum
principles on Banach lattices. Our observations about landscape functions are applied to
metric graphs, but we offer an outlook to even more general settings.
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2 Preliminaries and notation

Throughout this article let G be a metric graph with edge set E = EG and vertex set V = VG .
We refer to [43] for a precise introduction of the canonical structure of metric measure space
induced on G by the Euclidean distance and the Lebesgue measure.

We impose the following assumption.

Assumption 2.1 The metric graph G is connected, i.e., there is a continuous path connecting
any two points on the graph. It is compact and finite, i.e., it consists of finitely many edges
of finite length.

For an edge e ∈ E, let �e denote its length, and, for a vertex v ∈ V, let degG(v) denote its
degree, i.e. the number of edges incident in v. Let distG : G × G → [0,∞) denote the path
metric on G. We suppose that G has at least one vertex of degree 1. Let VD = VD,G be a fixed
subset of

{v ∈ VG | degG(v) = 1}
and let VN := VN,G = V\VD be its complement in V.

Let �G be the Laplacian on G Dirichlet vertex condition in VD and natural (i.e., the
Kirchhoff-type condition

∑
e∈Ev

∂ue

∂n
(v) = 0, (2.1)

alongwith continuity across the vertices) vertex conditions on VN, i.e. its associated quadratic
form a = aG is given by

aG(u) :=
∫
G

|u′(x)|2dx =
∑
e∈E

∫ �e

0
|u′

e(xe)|2dxe

on the domain

H1
0 (G;VD) :=

{
u = (ue)e∈E ∈

⊕
e∈E

H1(0, �e)
∣∣∣ u(v) = 0 for all v ∈ VD,

u is continuous in every v ∈ VN

}
.

(Throughout this article, ue denotes the restriction of u to the edge e.) We refer to VD as the
set of Dirichlet vertices of G and to VN as the set of natural vertices of G.

Definition 2.2 Let G be a metric graph satisfying Assumptions 2.1 and let VD be a non-empty
subset of V. Then the torsion function v of G is the unique solution of{

−�v(x) = 1, x ∈ G,

v(v) = 0, v ∈ VD.
(2.2)

Additionally, we introduce the torsional rigidity

T (G;VD) :=
∫
G

v(x) dx .

Remark 2.3 By definition, VD is a set whose elements are all vertices of degree 1. At the
same time, as far as the quadratic form aG and hence the Laplacian spectrum are concerned,
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nothing changes if two or more Dirichlet vertices are glued, even though this certainly affects
the topology of the underlying graph. To avoid confusion, we thus introduce the quantity

# Dir(G) :=
∑
v∈VD

deg(v),

which is invariant under gluing of Dirichlet vertices.

At the danger or being redundant, we stress that the torsional rigidity T (G;VD) does
depend on the set VD of vertices on which Dirichlet conditions are imposed; and that the
associated torsion function v belongs to D(�G) ⊂ C(G) ∩⊕e∈E C1([0, �e]) and satisfies
the Dirichlet condition at the vertices in VD, hence in particular it belongs to H1

0 (G;VD).
If VD is clear from the context, we will in the following write H1

0 (G) and T (G) instead of
H1
0 (G;VD) and T (G;VD).
Pólya’s proof of (1.3) carries over verbatim to the case of compact metric graphs, leading

to

T (G) = sup
u∈H1

0 (G)

(∫
G u dx

)2
‖u′‖2

L2

= max
u∈H1

0 (G)

(∫
G u dx

)2
‖u′‖2

L2

. (2.3)

in the following, we will refer to the term on the right hand side as Pólya quotient.
The maxima of this Pólya quotient in (2.3) form a one-dimensional space spanned by the

torsion function v.
Since G is compact, and because H1

0 (G) is an ideal of H1(G) in the sense of Banach
lattices, see [49, Definition 2.19 and also Proposition 2.23] (in particular, u ∈ H1

0 (G) implies
|u| ∈ H1

0 (G)) and switching from u to |u| can only raise the quotient on the right hand side
of (2.3), we find that

T (G) = max
u∈H1

0 (G)

(∫
G u dx

)2
‖u′‖2

L2

= max
u∈H1

0 (G)

‖u‖2
L1

‖u′‖2
L2

. (2.4)

Example 2.4 In the 1-dimensional case the torsion function can be easily determined: if we
let a > 0 and consider the Poisson equation⎧⎪⎨

⎪⎩
−v′′(x) = 1, x ∈ (0, a),

−v′(0) = β0v(0),

v′(a) = β1v(a),

with Robin boundary conditions, then the solution is given by

v : (0, a) � x 
→ − x2

2
+ β0a(aβ1 − 2)x

2(aβ0β1 − β0 − β1)
− a(aβ1 − 2)

2(aβ0β1 − β0 − β1)
∈ R. (2.5)

(1) Let us now consider both relevant cases of a bounded interval of length a with either
mixed Dirichlet/Neumann conditions, or else with Dirichlet boundary conditions at both
endpoints, byspecializing (2.5) to the cases of β0 = ∞ and, additionally, either β1 = 0
(mixed Dirichlet/Neumann conditions) or β1 = ∞ (both Dirichlet conditions): We will
denote these configurations by J0 and J1, respectively, throughout this article (Fig. 1).

Fig. 1 The graph J0 (left) and the graph J1 (right); Dirichlet conditions are imposed at the white vertices
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We immediately see that the torsion function on J0 is

v : (0, a) � x 
→ 1

2
x (2a − x) ∈ R

and

T (J0) = a3

3
; (2.6)

whereas the torsion function on J1 is given by

v : (0, a) � x 
→ 1

2
x(a − x) ∈ R.

and

T (J1) = a3

12
. (2.7)

We observe that themaximum of the torsion function on J0 (resp., on J1) is a2
2

(
resp., a2

8

)
;

however, the product of the lowest Laplacian eigenvalue λ1 with the maximum of the torsion
function is scale invariant and satisfies

λ1‖v‖∞ = π2

8
. (2.8)

Also, let us observe that the quotient of the ground state ϕ = sin( π
a ·) and the torsion

function v satisfies on J1 the estimate

ϕ(x)

v(x)
≤ 8

a2 for all x ∈ (0, a).

(2) If � ⊂ R is a bounded but disconnected set, then its torsional rigidity is the sum of
its connected components’ torsional rigidity: the torsional rigidity of such a disconnected
domain is thus strictly lower than that of the interval with same total length. The same is
clearly true of disconnected graphs.

(3) Let Sk be an equilateral metric star with Dirichlet conditions imposed on all vertices
but the central one (or, equivalently, a pumpkin graph with Dirichlet conditions on one vertex
and natural conditions on the other one) (Fig. 2).

Fig. 2 A star graph with 5 edges:
Dirichlet conditions are imposed
at the white vertices

Let e1, . . . , ek denote the edges of Sk . Each edge e j will be identified with the interval
[0, |Sk |

k ] where 0 corresponds to the degree 1 vertex and |Sk |
k corresponds to the center vertex

respectively. It is then immediate to check that the torsion function v on Sk is given by

ve j

(
xe j

) = 1

2
xe j

(
2|Sk |

k
− xe j

)

123



27 Page 8 of 37 D. Mugnolo, M. Plümer

Fig. 3 The lasso graph

e1

e2

for all xe j ∈ [0, |Sk |
k ] � e j and j = 1, . . . , k. Thus, the torsional rigidity of Sk is

T (Sk) = k|Sk |3
3k3

= |Sk |3
3k2

.

(4) Let G be a lasso graph consisting of a pendant edge e1 of length �1 and a loop e2 of
length �2, see Fig. 3, with Dirichlet conditions imposed on the vertex of degree 1.

The torsion function v is necessarily given by

ve1(xe1) = − x2e1
2

+ a1xe1 + b1, xe1 ∈ [0, �1],

ve2(xe2) = − x2e2
2

+ a2xe2 + b2, xe2 ∈ [0, �2] :

imposing the boundary conditions allows us to determine the coefficients a1, a2, b1, b2, thus
concluding that the torsion function is

ve1(xe1) = − x2e1
2

+ (�1 + �2)xe1 , xe1 ∈ [0, �1],

ve2(xe2) = − x2e2
2

+ �2

2
xe2 + �1

2
(�1 + 2�2) , xe2 ∈ [0, �2] :

unsurprisingly, the maximum

‖v‖∞ = ve2

(
�2

2

)
= �21

2
+ �1�2 + �22

8

is attained at the midpoint of e2, i.e., at the point of maximal distance from the Dirichlet
vertex. A direct computation shows that the torsional rigidity is

T (G) = 1

12

(
�31 + �32

)+ 1

4
(�1 + 2�2)

2 �1. (2.9)

This procedure will be generalized in the next Section.

3 Reduction to a discrete problem

Let us now show how the computation of a metric graph’s torsion can be reduced to the
computation of the solution of an algebraic system of |V| − |VD| equations, as sketched
already in [21, Section 4]. In fact, we will see that the metric torsion and torsional rigidity
can be rewritten via discrete counterparts assigned to a correspondingweighted combinatorial
graph, see Definition 3.3 below.
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Proposition 3.1 Let v be the torsion function of G. Then the restriction g := v|V : V → R is
the unique solution of the system⎧⎪⎨

⎪⎩
g(v) = 0, v ∈ VD,

1

d�
v

∑
e={v,w}∈Ev

g(v) − g(w)

�e
= 1

2
, v ∈ VN, (3.1)

where d�
v :=∑e∈Ev �e denotes the metric degree of the vertex v.

In view of (3.2) below, Proposition 3.1 shows that solving (3.1) immediately delivers a
closed-form expression for the torsion function. Albeit elementary, this observation seems
to be novel: for example, the authors of [32] regret that

[…] except in rare cases of high symmetry, the torsion function […] [is] only compu-
tationally known.

See Example 3.10 for a class of (rather asymmetrical) graphs whose (discrete and, hence,
also continuous) torsion functions can be easily computed.

Proof Since the torsion function v solves the equation −v′′
e = 1 edgewise, it satisfies

ve(xe) = 1

2
(�e − xe)xe + ve(�e) − ve(0)

�e
xe + ve(0) for all xe ∈ [0, �e]. (3.2)

Then

v′
e(xe) = �e − 2xe

2
+ ve(�e) − ve(0)

�e
, xe ∈ [0, �e], (3.3)

holds. Therefore, the natural vertex conditions imposed on the elements v ∈ V\VD yield for
the restriction of v to VN

0 =
∑

e={v,w}∈Ev
−�e

2
+ f (v) − f (w)

�e

= −d�
v

2
+

∑
e={v,w}∈Ev

f (v) − f (w)

�e

This concludes the proof. ��

We can interpret the left-hand-side of the system considered in Proposition 3.1 as a self-
adjoint operator in a weighted �2-space. First, let EN denote the set of edges in E whose
incident vertices v,w are both elements of VN, and let ED denote the set of edges where at
least one incident vertex is a Dirichlet vertex, i.e., ED := E\EN. We consider vertex and edge
weights m, μ defined as follows:

m(v) = d�
v , v ∈ VN, and μ(e) = 1

�e
, e ∈ EN.

These weights have extensively discussed in [25, 37, 51], in the context of spectral theory
of quantum graphs. We refer to G = Gm,μ constructed above as the weighted combinatorial
graph underlying the metric graph G.
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Furthermore, we consider the non-negative discrete potential c : VN → [0,∞) defined
by

c(v) =
∑

e∈Ev∩ED

1

�e
, v ∈ VN.

On the weighted Hilbert space �2m(VN) of square summable functions f : VN → C whose
inner product is given by

( f , g)�2m (VN) :=
∑
v∈VN

m(v) f (v)g(v), f , g : VN → C,

we consider the quadratic form q = qm,μ,c given by

q( f ) =
∑

e={v,w}∈EN
μ(e)| f (v) − f (w)|2 +

∑
v∈VN

c(v)| f (v)|2, f ∈ �2m(VN).

The positive definite (in particular, invertible), self-adjoint operator L on �2m(VN) associated
with q is given by

(L f )(v) = 1

m(v)

⎡
⎣ ∑
e={v,w}∈Ev∩EN

μ(e)( f (v) − f (w)) + c(v) f (v)

⎤
⎦ , f ∈ �2m(VN), v ∈ VN.

(3.4)

The following result is an immediate consequence of Proposition 3.1.

Corollary 3.2 If v is the torsion function of G, then v|VN = 1
2L−11VN holds.

Definition 3.3 Given a metric graph G, we will refer to g := L−11VN as the discrete torsion
function of the underlying weighted combinatorial graph G. Its �1m-norm will be called the
discrete torsional rigidity

T (G) :=
∑
v∈V

m(v)g(v) = ∥∥L−11VN
∥∥

�1m (VN)
. (3.5)

As in the continuous case, it is straightforward to derive the variational characterization

T (G) = sup
f ∈�2m (VN)

(∑
v∈VN m(v) f (v)

)2
q( f )

= max
f ∈�2m (VN)

(∑
v∈VN m(v)| f (v)|)2

q( f )
(3.6)

where the discrete torsion function is—up to rescaling—the unique maximizer of the func-
tional appearing on the right-hand-side.

Lemma 3.4 The discrete torsion function g = L−11VN is strictly positive on VN.

Proof Let vmin be a vertex in VN with g(vmin) ≤ g(v) for all v ∈ VN. Then, by definition of
g, we have

c(vmin)g(vmin) = m(vmin) +
∑

e={v,w}∈Ev∩EN
μ(e)(g(w) − g(vmin)) > 0.

Since c is non-negative on VN, we obtain g(vmin) > 0 and thus g is strictly positive on VN. ��
As an immediate consequence of (3.2) and Lemma 3.4 we obtain:
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Corollary 3.5 The torsion function v on G is strictly positive on G\VD.

Let us now collect a few properties of the torsion function, for the sake of future reference.

Lemma 3.6 The torsion function is a Lipschitz continuous over the metric space G. It is
edgewise strictly concave and has no local minima outside VD.

Proof Because the torsion function satisfies edgewise −v′′
e = 1, and because it is twice (in

fact, infinitely often) differentiable in the interior of each edge, we conclude from (3.2) that
it is edgewise a strictly concave function; any critical point of v in the interior of an edge
would then necessarily be a strict local maximum, rather than a minimum.

Would a local minimum of v occur instead at a vertex v ∈ V, then v would be strictly
monotonically increasing, in a neighborhood of v, along all outgoing edges: hence the normal
derivatives at vwould all be strictly positive: a contradiction to the fact that v lies in the domain
of �G and, thus, satisfies the Kirchhoff-type condition.

Finally, it follows from Lemma 3.7 below that v is Lipschitz continuous. ��
In order to complete the proof of Lemma 3.6, we need the following fact: it is probably

already known, but we could not find it in the literature.

Lemma 3.7 Under the Assumptions 2.1, the space

C(G) ∩
⊕
e∈E

H2(0, �e)

is continuously embedded in the space Lip(G) of Lipschitz continuous functions over the
metric space G.

Proof Let u ∈ W 1,∞(G) = C(G) ∩⊕e∈E W 1,∞(0, �e). Let x, y ∈ G and let γ be a path in
G connecting x and y. We then have

|u(x) − u(y)| =
∣∣∣∣
∫

γ

u′(t) dt

∣∣∣∣ ≤ L(γ )‖u′‖∞

where L(γ ) denotes the length of γ . Since γ is arbitrary, we obtain

|u(x) − u(y)| ≤ ‖u′‖∞dG(x, y).

Therefore, W 1,∞(G) is continuously embedded in Lip(G). This however already yields the
assertion, because the embedding H2 ↪→ W 1,∞ is continuous edgewise. ��
Remark 3.8 (1) Trivially, Lemma 3.7 also implies that all eigenfunctions of self-adjoint real-

izations of metric graph Laplacians (or, in fact, Schrödinger operators) with continuity
and/or Dirichlet conditions at all vertices are Lipschitz continuous functions. Remark-
ably, this is also true of the heat kernel of (et�G )t≥0 with respect to each of its two spacial
variables. (Observe that joint Hölder continuity (with exponent 1

2 ) of the heat kernel has
been recently proved in [36, Theorem 5.2].)

(2) Observe that Lemma 3.7 also extends to infinite metric graphs, as the proof merely uses
that G is a length space.

The following result bridges the distance between the torsional rigidity of metric and
underlying weighted combinatorial graphs.
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Fig. 4 A stower graph with
|Ep | = 3 petals and |El | = 5
leaves: Dirichlet conditions are
imposed at the white vertices

Theorem 3.9 The discrete and metric torsional rigidity are related via the formula

T (G) =
∑
e∈E

�3e

12
+ 1

4
T (G). (3.7)

Proof Let v be the torsion function of G and let g be the discrete torsion function of G. By
Corollary 3.2 we have v|VN = 1

2 g. Then, using (3.2) we obtain

T (G) =
∑
e∈E

∫ �e

0
ve(xe) dxe

=
∑
e∈E

∫ �e

0

1

2
(�e − xe)xe dxe +

∑
e∈E

∫ �e

0

(
ve(�e) − ve(0)

�e
xe + ve(0)

)
dxe,

with ∫ �e

0

1

2
(�e − xe)xe dxe = �3e

12
,

cf. (2.7), and

∑
e∈E

∫ �e

0

(
ve(�e) − ve(0)

�e
xe + ve(0)

)
dxe = 1

2

∑
e∈E

�e(ve(�e) + ve(0))

= 1

2

∑
v∈V

d�
vv(v)

= 1

4

∑
v∈VN

m(v)g(v)

= 1

4
T (G).

This completes the proof. ��
Example 3.10 Let G be a stower graph, i.e. the edge set E consists of a finite number of loops
(the petals) and leaves, all of them connected to a single center vertex vc—see Fig. 4.

Let Ep denote the set of petals and El denote the set of leaves. We impose Dirichlet
conditions at all of the leaf vertices; in particular VN = {vc} and, in our notation, El = ED
and Ep = EN. The vertex weight m and discrete potential c associated with G are given by

m(vc) =
∑
e∈El

�e + 2
∑
e∈Ep

�e, c(vc) =
∑
e∈El

1

�e
,

and thus the discrete torsion function g and the discrete torsional rigidity are given by

g(vc) =
⎛
⎝∑

e∈El

�e + 2
∑
e∈Ep

�e

⎞
⎠ ·
⎛
⎝∑

e∈El

1

�e

⎞
⎠

−1
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and

T (G) = m(vc)g(vc) =
⎛
⎝∑

e∈El

�e + 2
∑
e∈Ep

�e

⎞
⎠

2

·
⎛
⎝∑

e∈El

1

�e

⎞
⎠

−1

.

Therefore, by Theorem 3.9, the torsional rigidity of the stower graph is

T (G) = 1

12

∑
e∈E

�3e + 1

4

⎛
⎝∑

e∈El

�e + 2
∑
e∈Ep

�e

⎞
⎠

2

·
⎛
⎝∑

e∈El

1

�e

⎞
⎠

−1

; (3.8)

in particular, in the equilateral case we find

T (G) = |G|3
4|E|3

( |E|
3

+ (|El | + |Ep|)2
|El |

)
. (3.9)

(Observe that we recover Example 2.4.(3) in the case of Ep = ∅.)
Because g(vc) is explicitly known, the torsion function v can be written down explicitly,

much like in the case of the lasso graph in Example 2.4.(4).

3.1 A Hadamard-type formula

As an application of the above results on the discrete torsion function, let us conclude this
section by studying the behavior of the torsion function and torsional rigidity under pertur-
bation of the graph’s edge lengths. We fix one edge e0 ∈ E. For s > 0, we consider the
perturbed graph Gs with the same topology as G and whose edge lengths (�s,e)e∈E are given
by

�s,e =
{

s, e = e0,

�e, e �= e0,

i.e., the lengths of the edges e �= e0 are fixed, while the lengths of the edge e0 is variable,
and for s = �e0 we obtain our original graph G. For s > 0, the torsion on Gs will be denoted
by vs = (vs,e)e∈E.

Analogously to known Hadamard-type formulas for eigenvalues for Laplacians on metric
graphs (see [28, Proof of the Lemma], [20, Appendix A], and [3, Lemma 5.2]), we can derive
a Hadamard-type formula for the torsional rigidity of metric graphs:

Proposition 3.11 The map (0,∞) � s 
→ T (Gs) is continuously differentiable and its deriva-
tive in s = �e0 is given by

d

ds |s=�e0

T (Gs) = v′(x)2 + 2v(x) > 0, (3.10)

where v is the torsion on G and x is an arbitrary element of e0. (In particular, the right-hand-
side in (3.10) does not depend on the particular choice of x ∈ e0.)

Proof We first observe that the right-hand-side in (3.10) is independent of x ∈ e0 � [0, e0],
since

d

dx
(v′(x)2 + 2v(x)) = 2v′′(x)v′(x) + 2v′(x) = 0,
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where we used that the torsion satisfies the equation −v′′ = 1 edgewise.
Next, we establish that (0,∞) � s 
→ T (Gs) is indeed continuously differentiable. For

that purpose, letLs be the discrete operator defined via (3.4) associated with the metric graph
Gs and let gs = L−1

s 1VN be the associated discrete torsion. Since the entries ofLs with respect
to the canonical basis of RVN are continuously differentiable functions of s it follows from
Cramer’s rule that the gs(v) is a continuously differentiable function of s. Therefore (3.5)
yields that (0,∞) � s 
→ T (Gs) is continuously differentiable. We obtain even more: by
Corollary 3.2 we have vs|VN = gs . It thus follows from (3.2) and (3.3) that for each edge
e ∈ E and each xe ∈ e � [0, �s,e] both vs,e(xe) and v′

s,e(xe) are continuously differentiable
functions of s.

Our next aim is to derive (3.10). Note that it suffices to derive it for one point on e0. We
first recall that the torsion vs satisfies

T (Gs) =
∫
Gs

vs(x) dx =
∫
Gs

v′
s(x)2 dx . (3.11)

Using the Leibniz rule we find

d

ds

∫
Gs

vs(x) dx =
∑
e∈E

d

ds

∫ �s,e

0
vs,e(x) dxe

= vs,e0(s) +
∑
e∈E

∫ �s,e

0

d

ds
vs,e(x) dxe

= vs,e0(s) +
∫
Gs

d

ds
vs(x) dx

(3.12)

and

d

ds

∫
Gs

|v′
s(x)|2 dx =

∑
e∈E

d

ds

∫ �s,e

0
v′

s,e(xe)
2 dxe

= v′
s,e0(s)

2 + 2
∑
e∈E

∫ �s,e

0
v′

s,e(xe)
d

ds
v′

s,e(xe) dxe

= v′
s,e0(s)

2 − 2
∑
e∈E

∫ �s,e

0
v′′

s,e(xe)
d

ds
vs,e(xe) dxe

+ 2
∑
e∈E

v′
s,e(�s,e)

d

ds
vs,e(�s,e) − v′

s,e(0)
d

ds
vs,e(0)

= v′
s,e0(s)

2 + 2
∫
Gs

d

ds
vs(x) dx

+ 2
∑
e∈E

v′
s,e(�s,e)

d

ds
vs,e(�s,e) − v′

s,e(0)
d

ds
vs,e(0)

where we used −�Gs vs = 1Gs in the last step. Now, for e ∈ E, we have

d

ds

(
vs,e(�s,e)

) =
{

d
ds vs,e(�e), e �= e0,
d
ds vs,e0(s) + v′

s,e0(s), e = e0.
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Using the boundary conditions imposed at the vertices of Gs we obtain∑
e∈E

v′
s,e(�s,e)

d

ds
vs,e(�s,e) − v′

s,e(0)
d

ds
vs,e(0)

= − v′
s,e0(s)

2 −
∑
v∈VN

d

ds
(vs(v))

∑
e∈Ev

∂vs,e

∂n
(v) = −v′

s,e0(s)
2.

We infer that

d

ds

∫
Gs

|v′
s(x)|2 dx = −v′

s,e0(s)
2 + 2

∫
Gs

d

ds
vs(x) dx . (3.13)

Using (3.11), (3.12) and (3.13), we finally obtain

d

ds
T (Gs) = d

ds

(
2
∫
Gs

vs(x) dx −
∫
Gs

v′
s(x)2 dx

)

= 2vs,e0(s) + v′
s,e0(s)

2

which proves the asserted equation. ��

4 Torsional surgery and inverse problems

The variational characterization of T (G) in (2.4) paves the way to the application of surgery
methods, similar to what has been systematically done for the ground-state energy since [48];
for instance we can easily derive the following useful surgery principles.

Proposition 4.1 Suppose G is a metric graph satisfying Assumption 2.1. Then the following
assertions hold.

(1) [Gluing vertices] If G̃ is obtained from G by gluing two different vertices v �= w in
VN, then T (G̃; VD) ≤ T (G; VD) with equality if and only if the torsion v on G satisfies
v(v) = v(w).

(2) [Imposing Dirichlet conditions on additional vertices] If v /∈ VD, then T (G; VD ∪ {v}) <

T (G; VD).
(3) [Attaching pendant graphs with no Dirichlet vertices] If G̃ is formed by attaching a

pendant graph G̃\G at only one vertex v ∈ VN of G, and if no Dirichlet conditions are
imposed on G̃\G, then T (G) ≤ T (G̃).

(4) [Adding edges between points where the torsion function attains the same value] If G̃
is obtained from G by adding an edge e = v′v′′ between two vertices v′, v′′ of G, then
T (G) ≤ T (G̃) provided the torsion function of G attains the same value on both v′, v′′.

(5) [Lengthening edges] If G̃ is obtained fromG by lengthening one edge, then T (G) < T (G̃).
(6) [Scaling the whole graph] If G̃ is obtained from G by scaling each edge with the factor

c > 0, then T (G) = c−3T (G̃).
(7) [Unfolding parallel edges] Let e1, e2 be two parallel edges with common endpoints

v1, v2 ∈ V. If G̃ is obtained from G by replacing e1, e2 with a single edge e0 of length
�e0 = �e1 + �e2 , then T (G̃) > T (G).

These surgery principles are taken over from [33, Lemma 2.3] and [10, Theorem 3.18.(2)],
where they were developed to prove similar relations for the eigenvalues of modified metric
graphs. The proof of the items in Proposition 4.1 is very similar to that of their eigenvalue
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counterparts, up to replacing the role of the respective eigenfunctions by the torsion, but we
prefer to formulate it for the sake of self-containedness.

Proof (1) For the inequality, we only need to observe that H1
0 (G̃) may be identified with

the subspace (of codimension 1) that consists of functions in H1
0 (G) that coincide in v

and w. For the characterization of equality observe first that v(v) = v(w) yields that
v is an admissible test function in the variational characterization of T (G̃;VD) which
yields T (G̃;VD) ≥ T (G;VD). If, on the other hand, T (G̃;VD) ≥ T (G;VD) holds, then
the torsion ṽ on G̃ considered as an element of H1

0 (G) maximizes the Polyá quotient on
G. Therefore, ṽ has to be a scalar multiple of v which implies v(v) = v(w).

(2) Likewise, here we observe that H1
0 (G;VD ∪ {v}) is a subspace of H1

0 (G;VD). Moreover,
the inequality has to be strict, since the torsion on G with respect to the smaller Dirichlet
vertex set VD has to be strictly positive in v by Corollary 3.5 and equality would yield
that the torsion ṽ with respect to the larger Dirichlet vertex set VD ∪{v} has to be a scalar
multiple of v in contradiction to ṽ(v) = 0.

(3) Let v be the torsion function of G and hence the maximizer of the Pólya quotient, and
suppose that we obtain G̃ by attaching a pendant graph to a vertex v ∈ G. We extend v

to a function ṽ ∈ H1
0 (G̃) by setting ṽ ≡ v(v) on G̃\G. Then v is a valid test function for

T (G̃), whose Pólya quotient is not smaller than T (G).
(4) Like in the proof of (3), extending on the new edge e ≡ v′v′′ the torsion function v of

G by a constant equal to the common value v(v′) = v(v′′) yields a test function for G̃
whose Pólya quotient is not smaller than T (G).

(5) This is a direct consequence of Proposition 3.11.
(6) The proof follows essentially (5). One needs to take into account that all edges are scaled

with the same factor.
(7) Let v be the torsion function of G. Suppose without loss of generality that v|e1∪e2 reaches

its maximum M > 0 at some point in e1, say x0 ∈ [0, �e1 ]. We define a test function ṽ

on G̃ by ṽ = v on G̃\e0, and, identifying e0 with the interval [0, �e0 ],

ṽ(x) :=

⎧⎪⎨
⎪⎩

v|e1(x), x ∈ [0, x0],
M, x ∈ (x0, x0 + �e2),

v|e1(x + �e2), x ∈ [x0 + �e2 , �e1 ].
One sees that ṽ ∈ H1

0 (G̃;VD), hence it is a valid test function for the Pólya quotient.
Additionally, we see that∫

G̃
|ṽ′|2 dx ≤

∫
G

|v′|2 dx and
∫
G̃

|ṽ| dx ≥
∫
G

|v| dx,

from which T (G̃;VD) > T (G;VD) follows.
The strictness of the inequality follows by noting that in each case we have constructed
a test function ṽ that cannot be a scalar multiple of the torsion, since ṽ is equal to a
nonzero constant on a subgraph of positive measure. Since the torsion function is the
only admissible test function in H1

0 (G̃;VD) whose Pólya quotient amounts to T (G̃;VD),
this proves the assertion. ��

Remark 4.2 Proposition 4.1.(1) can arguably solve a quantum version of Braess paradox. In
its original form in [12], the latter states that the efficiency of a traffic network may coun-
terintuitively decrease upon opening a new road; over the decades, it has been theoretically
demonstrated and observed in action in many different fields. In the context of diffusion on
quantum graphs, it can be reasonably formulated as follows:
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Fig. 5 A pumpkin chain

The heat kernel may be strictly increasing upon increasing the connectivity of a metric
graph G by gluing two points.

This is due to the fact that the heat kernel on G̃ (the metric graph arising by gluing two points
of G) is not dominated by the heat kernel on G; indeed, the former is not even eventually
dominated by the latter, as observed in [30]. So, at any time t there are two points xt , yt

in the metric graph that observe a decrease in diffusion features: in probabilistic terms, the
odds of reaching xt from yt within t decrease in the new graph configuration. This is perhaps
unexpected, given that by [10, Thm. 3.4] the k-th eigenvalue of G̃ is not larger than the
k-th eigenvalue of G, for k = 2 (so convergence to equilibrium is not slower in the new
configuration) and in fact for any further k, too. What Proposition 4.1.(1) shows is that, when
integrated in time and space as in (1.6), these pathological effects are indeed negligible.

As a consequence of Proposition 4.1 we mention the following lemma, which can be
proved like [33, Lemma 5.4]. It will be used to derive an estimate for the torsional rigidity
in terms of the inradius Inr(G;VD) of G with respect to |VD|, i.e.,

Inr(G) := Inr(G;VD) := sup{dist(x;VD) | x ∈ G}
where

dist(x;VD) := min
v∈VD

dG(x, v)

and dG denotes the path metric on G.

Lemma 4.3 Given any compact, connected, non-empty metric graphG, there exists a pumpkin
chain G̃ such that the following holds:

(1) Exactly one of the outside vertices of G̃ is a Dirichlet vertex. The degree of said Dirichlet
vertex is equal to # Dir(G).

(2) Inr(G̃) = Inr(G), |G̃| ≤ |G| and |VN(G̃)| ≤ |VN(G)| + 1;
(3) T (G̃) ≤ T (G).

Proof After gluing all vertices in VD(G) we may assume that there is exactly one Dirichlet
vertex v0 in G whose degree is # Dir(G). Since G is compact there exists some x ∈ G so that
Inr(G;VD) = dG(v0, x). Then, following the algorithm used in the proof of [33, Lemma 5.4]
and using Proposition 4.1, one can construct a pumpkin chain as stated. ��

We refer to [33, Definition 5.3] for a formal introduction of pumpkin chains, which can
be visualized as a concatenation of pumpkin graphs, see Fig. 5.

We are finally in the position to prove our main lower estimate on T (G) in terms of the
inradius of G.

Proposition 4.4 Suppose G is a metric graph satisfying Assumption 2.1. Then the torsional
rigidity with respect to an arbitrary Dirichlet vertex set ∅ �= VD ⊂ V admits the lower bound

T (G; VD) ≥ Inr(G; VD)3

3(|V\VD| + 1)3
. (4.1)
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Proof For the sake of notational simplicity, let us denote by |VN| the number of non-Dirichlet
vertices. By Lemma 4.3 it is sufficient to prove the estimate

T (G; {v0}) ≥ Inr(G;VD)3

3|VN|3
for any pumpkin chain G where Dirichlet conditions are imposed on exactly one extremal
vertex v0. For such a pumpkin chain, beginning from the Dirichlet vertex, let v0, v1, . . . , vm

denote the vertices of G where m = |VN| and let � j denote the length of the edges connecting
v j−1 and v j . Then

Inr(G;VD) = dG(v0, vm) =
m∑

j=1

� j

holds and thus, by the pigeonhole principle, there exists some k with �k ≥ Inr(G;VD)
m . We

now consider the following test function u on G: on an edge e � [0, � j ] connecting v j−1

and v j we set u(x) = 0 if 1 ≤ j < k, u(x) = 1
2 x(2� j − x) if j = k, and u(x) = �2k

2 if
k < j ≤ m. Then, it is immediate to check that the Pólya quotient of u is bounded from

below by Inr(G;VD)3

3|VN|3 . Therefore, using (2.3) yields the asserted estimate. ��
If G is a tree, then the previous estimate can be sharpened.

Proposition 4.5 Let G be a metric graph satisfying Assumption 2.1. Let, additionally, G be a
tree.

If G has precisely one Dirichlet vertex, then

T (G) ≥ 1

3
Inr(G; VD)3. (4.2)

If G has precisely two Dirichlet vertices v,w, then

T (G) ≥ 1

12
dist(v,w)3. (4.3)

Proof Since G is a tree, we can by Proposition 4.1 recursively prune it—only lowering
its torsion function, ending up with a path graph whose length is Inr(G;VD) or dist(v,w),
respectively. Now the claim follows by Example 2.4. ��

We have seen in Example 2.4 that the torsional rigidity of open subsets of R can be
explicitly computed. An interval is, of course, just a very elementary metric graph. Owing
to Proposition 4.1 we can extend (2.7) and (2.6) to an estimate valid for all metric graphs:
the following is the metric graph counterpart of the celebrated Saint-Venant inequality for
domains.

Theorem 4.6 For any metric graph G one has

T (G) ≤ |G|3
3

; (4.4)

the inequality is actually an equality if and only if G is an interval with mixed Dirich-
let/Neumann conditions.

If, additionally, G is doubly connected upon gluing all vertices in VD, then we have the
improved estimate

T (G) ≤ |G|3
12

; (4.5)
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Fig. 6 A caterpillar graph: we
recall that, as far as spectral or
torsional properties are
concerned, gluing Dirichlet
vertices makes no difference

in this case, the inequality is actually an equality if and only if G is a caterpillar graph.

We recall that a caterpillar graph is a 2-regular pumpkin chain where one of the two
endpoints (of degree two) is equipped with Dirichlet conditions, see Fig. 6. Note that the

torsional rigidity of a caterpillar graph of length |G| is indeed |G|3
12 . This follows from Propo-

sition 4.1(1), (2.7), and the fact that the torsion on an interval with Dirichlet conditions
imposed at both end points is symmetric with respect to the center point of the interval.

In the case of planar domains, this result was proved in [52, Section 5] using a method
based on Steiner symmetrization. We, too, will use a rearrangement method, but in this case
we will rather follow an approach first proposed in [28] and closer in spirit to Schwarz
symmetrization.

Proof First of all, take the torsion function v and observe that each value t between its
minimum 0 and its maximum ‖v‖∞ is attained n(t) times along G, where
• n(t) ≥ 1, since v is continuous on the metric space G;
• n(t) ≥ 2 for all t ∈ [0, ‖v‖∞]\v(V) if G is doubly connected, as one sees adapting (with

very minor modifications) the proof of [17, Lemma 3.7].

Now, define the symmetrized version v∗ of the torsion function v as in the proof of [28,
Lemma 3]: letting mv(t) be the measure of the superlevel set {x ∈ G : v(x) > t} we can
uniquely define a new function v∗ ∈ H1(0, |G|) in such a way that v∗(0) = v(0), v∗ is
monotonically increasing, and mv(t) = mv∗(t) for a.e. t ∈ [0, ‖v‖∞]. Then one checks as
in the proof of [3, Theorem 2.1] that∫

G
|v′(x)|2 dx ≥ ess inf

t∈[0,‖v‖∞] n(t)2
∫ |G|

0
|(v∗)′(y)|2 dy,

see [3, equation (3.13)]. On the other hand, by Cavalieri’s principle∫
G

|v(x)|p dx =
∫ |G|

0
|v∗(y)|p dy

for all p ≥ 1. It follows in particular that

‖v‖2
L1(G)

‖v′‖2
L2(G)

≤ 1

ess inf
t∈[0,‖v‖∞] n(t)2

‖v∗‖2
L1(0,|G|)

‖(v∗)′‖2
L2(0,|G|)

;

because v∗ is an admissible test function for the Pólya quotient of the interval (0, |G|) with
mixed Dirichlet/Neumann conditions, this yields the asserted estimates (4.4) and (4.5). Now
as in the proof of [17, Lemma 4.3] equality in (4.4) yields n(t) = 1 for all t ∈ [0, ‖v‖∞]
while equality in (4.5) yields n(t) = 2 for all t ∈ [0, ‖v‖∞]\ψ(V) from which we infer the
claimed characterizations on equality in (4.4) and (4.5) respectively. ��
Remark 4.7 (1) Theorem 4.6 is the metric graph counterpart of a celebrated isoperimetric
inequality, which for domains was conjectured by Saint-Venant and eventually proved in
[52]. Let us remark that Makai provided in [42] a different proof, which in turn yields an
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estimate in terms of volume and inradius: in our case, a hypothetical Makai-type inequality
would read T (G) < 4|G| Inr(G;VD)2, but we have not been able to prove it.

(2) The upper estimate in Theorem 4.6 does not have a lower counterpart. To see this, let
Gn be the graph consisting of n disjoint intervals of length n−1, each with Dirichlet conditions
at both endpoints. Then

|Gn | ≡ 1 but T (Gn) =
n∑

k=1

|Gn |3
12

= 1

12n2 ↘ 0.

(3) Let us stress that (4.4) can be regarded as a Faber–Krahn-type inequality: it states that

|J0|3T (J0)
−1 ≤ |G|3T (G)−1,

where J0 is the path graph with mixed Dirichlet/Neumann conditions; equality holds if and
only if G = J0 (up to isomorphism). Likewise, if G is doubly connected after gluing all
vertices in VD, then by (4.5)

|J1|3T (J1)
−1 ≤ |G|3T (G)−1,

where if J1 is the path graph with both Dirichlet conditions; equality if and only if G = J1
(up to isomorphism).

The variational formulation (2.4) makes it possible to derive lower estimates on T (G): for
instance, the distance function

G � x 
→ dist(x;VD) ∈ [0,∞)

is an admissible test function for the Pólya quotient. In fact, an even simpler test function is
given by

ψ :=
∑
e∈E

ve1e,

where 1e is the characteristic function of the edge e and ve is the torsion function of the
individual edge e ≡ (0, �e) (with Dirichlet conditions imposed at all endpoints), i.e.,

ve(x) := 1

2
x(�e − x), x ∈ (0, �e), e ∈ E :

the torsional rigidity of G is not smaller than the Pólya quotient evaluated at ψ , i.e.,

T (G) ≥ 1

12

∑
e∈E

�3e (4.6)

we know from Theorem 3.9 that the accuracy of this estimate is measured by the discrete
torsion function T (G).

By Jensen’s inequality, we deduce from (4.6) that

T (G) ≥ |G|3
12|E|2 : (4.7)

this estimate becomes an equality if and only if G is an equilateral flower with Dirichlet
conditions imposed in the (only) vertex (equivalently, if G is a disconnected metric graph
consisting of equilateral path graphs with Dirichlet conditions imposed at all endpoints): this
is arguably the metric graph counterpart of Makai’s inequality

T (�) >
4|�|3
3|∂�|2
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for convex planar domains �, see [40, 53].
The estimate (4.6) can indeed be improved. In Example 3.10 we have computed the

torsional rigidity of stowers: this class of graphs will prove useful when proving the following
lower bound.

Proposition 4.8 There holds

1

12

∑
e∈E

�3e + 1

4

⎛
⎝∑

e∈ED
�e + 2

∑
e∈E\ED

�e

⎞
⎠

2

·
⎛
⎝∑

e∈ED

1

�e

⎞
⎠

−1

≤ T (G),

where ED is the set of edges incident to vertices in VD; the inequality becomes an equality if
G is a stower graph.

Proof The proof is similar to that of [33, Theorem 4.2]. First of all, we glue all vertices in
VN: by Proposition 4.1, this can only reduce the torsional rigidity. In this way we obtain a
stower whose set of loop edges is E\ED and whose set of leaf edges is ED. The estimate now
immediately follows from (3.8). ��

5 Spectral estimates

In this section we are going to slightly change our viewpoint and study upper and lower
bounds on products of (suitable powers of) the torsional rigidity and the ground-state energy
in terms of metric quantities. Of course, this ansatz can still be understood as a kind of shape
optimization assignment, but it additionally paves the road to the use of torsional rigidity as
a spectral quantity in its own right, much like the Cheeger constant.

5.1 Upper estimates: Pólya–Szegö inequality

We being by observing that the product λ1(G) admits an upper bound only depending on the
total length of G and its torsional rigidity T (G).

Proposition 5.1 For any subset ∅ �= VD ⊂ V, there holds

λ1(G; VD)T (G; VD) < |G|. (5.1)

The corresponding estimate is well-known in the case of open domains � ⊂ R
d : indeed,

the proof in [54, Section 5.4] carries over verbatim to the case of metric graphs, yielding
(5.1). We write it down for the sake of self-containedness.

Proof Let v be the torsion function on G. Because v is also a valid test function for the
Rayleigh quotient, the stated inequality follows using the Cauchy–Schwarz inequality and
the variational characterization of λ1(G) from

T (G) = ‖v‖2
L1

‖v′‖2
L2

<
|G|‖v‖2

L2

‖v′‖2
L2

≤ |G|
λ1(G)

.

Indeed, the first inequality is strict, since equality in the Cauchy–Schwarz inequality

‖v · 1‖L1 ≤ ‖v‖L2‖1‖L2

holds precisely if v′ is a multiple of 1: this is not possible, since otherwise v′′ = 0, against
the definition of torsion. ��
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Remark 5.2 (1) Combining Proposition 5.1 and [50, Theorem 4.4.3] we get the upper bound

T (G;VD) < Inr(G;VD)|G|2.
This is partially reminiscent of the inequality

T (�) ≤ κ Inr(�)2|�|,
in terms of the inradius Inr(�) and volume |�|, proved by Makai for simply connected
(κ = 4, with strict inequality) or convex (κ = 4

3 ) domains � ⊂ R
2 [41, 42]; see also [15,

Section 6] for generalizations and historical remarks.
(2) Also, combining Propositions 4.4 and 5.1 we obtain the upper estimate

λ1(G;VD) <
3|G|(|V\VD| + 1)3

Inr(G;VD)3
. (5.2)

A lower estimate on λ1(G;VD) in terms of inradius for a special class of simply connected
metric graphs (viz, metric trees with a center point) has been recently observed in [24].

Let us elaborate on this simple method: in analogy with the case of manifolds with non-
empty boundary [19, 59], and following [55, Section 6], in the case of quantum graphs with
non-empty Dirichlet vertex set VD the Cheeger constant we define the Cheeger constant
h(G;VD) of G as

h(G) := h(G;VD) := inf
|∂G̃|
|G̃| .

where the infimum is taken over all non-empty subgraphs G̃ with G̃∩VD = ∅, and |∂G̃| is the
number of points in the boundary of G̃. (A different definition for graphs without Dirichlet
vertices appears in [48], but is not appropriate for our purposes.) A similar but more general
result for domains is already known, see [16, Theorem 2].

Proposition 5.3 There holds

h2(G; VD)T (G; VD) < |G|. (5.3)

Proof Again, let v be the torsion function onG and observe that, in particular, v is a function of
bounded variation vanishing in the Dirichlet vertices of the quantum graph. Again, the stated
inequality follows using the Cauchy–Schwarz inequality and the variational characterization
of the Cheeger constant in [23, Theorem 6.1] from

T (G) = ‖v‖2
L1

‖v′‖2
L2

<
|G|‖v‖2

L1

‖v′‖2
L1

≤ |G|
h2(G)

.

Again, the first inequality is strict, since equality in the Cauchy–Schwarz inequality

‖v′ · 1‖L1 ≤ ‖v′‖L2‖1‖L2

holds precisely if v′ is a multiple of 1: this is not possible, since the torsion function vanishes
on VD. ��

Different but comparable upper bounds for d-dimensional domains or manifolds can be
found in [29, Corollary 2.5] and [18, Theorem 1.10].
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Example 5.4 (1) It is unclear how sharp the estimate (5.1) is. For stars on k edges with natural
conditions in the center and Dirichlet conditions in the leaves (and in particular for intervals
with mixed Dirichlet/Neumann conditions, k = 1; or with both Dirichlet endpoints, k = 2)
we indeed have in view of Example 2.4.(3)

λ1(G)T (G) = π2k2

4|Sk |2
|Sk |3
3k2

= π2

12
|Sk | ≈ 0.8225 · |Sk |, k = 1, 2, . . . .

In the case of domains � ⊂ R
d , d ≥ 2, the improved estimate

λ1(�)T (�)

|�| ≤ 1 − 2dω
2
d
d

d + 2

T (�)

|�|1+ 2
d

(5.4)

was proved in [9, Theorem 1.1], where ωd is the measure of the ball of unit radius in R
d .

(However, again for d ≥ 2, by [9, Thm. 1.2] the quantity T (�)λ1(�)
|�| is known not to have a

maximizer.)
For d = 1, the formal metric graph counterpart

λ1(G)T (G)

|G| ≤ 1 − 8

3

T (G)

|G|3 is not true

in general, as one sees already considering the case of path graphs with either mixed or purely
Dirichlet boundary conditions.

(2) Also the estimate (5.3) seems to be far from sharp. Again for the class of metric graphs
considered in (1) (i.e., equilateral stars on k edges with natural conditions in the center and
Dirichlet conditions in the leaves), we can reason as in [23, Example 6.3] and immediately
see that h(G) = k

|G| : in view of Example 2.4.(3) we conclude that

h2(Sk)T (Sk) = k2

|Sk |2
|Sk |3
3k2

= 1

3
|Sk |, k = 1, 2, . . . .

(3) If, again, G is equilateral, then combining Propositions 4.8 and 5.3 we deduce

h2(G;VD) <
|G|

T (G)

≤ 4|E|2
|G|2

3|ED|
|ED| + 3(|ED| + 2|E\ED|)2 ,

(5.5)

this can be comparedwith the bound h(G) ≤ 2|E|
|G| observed in [34] forpossibly non-equilateral

quantum graphs without any Dirichlet vertices.

5.2 Lower estimates: Kohler-Jobin inequality

Like in [26] it can be proved that for any eigenfunction ϕ with associated eigenvalue λ of
�G the bound

|ϕ(x)| ≤ |λ|‖ϕ‖∞v(x) for all x ∈ G (5.6)

holds. In Sect. 6, we provide a general framework to obtain this estimate and, in particular,
a slightly sharper version, see Proposition 6.11.

A simple lower estimate on the ground-state energy λ1(G) based on the torsion function
can be easily deduced from (5.6), taking the supremum of both sides, see also Corollary 6.2
below.
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Corollary 5.5 There holds

1 ≤ λ1(G; VD)‖v‖∞. (5.7)

We have seen in Example 2.4.(1) that in the case of path graphs with one or two Dirichlet
endpoints, the torsion function v and the lowest Laplacian eigenvalue λ1 satisfy λ1‖v‖∞ =
π2

8 � 1.2337. For domains, it was conjectured in [5] that π2

8 is the optimal lower bound for
the product λ1‖v‖∞.

Example 5.6 If G is an equilateral star on k edges, then the estimate (5.7) yields, in view of
Example 2.4.(3),

λ1(G) ≥ 2k2

|G|2 :
this can be compared with

λ1(G) ≥ π2

|G|2 and λ1(G) ≥ k

|G|2 , (5.8)

cf. [17, Lemma 4.2] and [50, Theorem 4.4.3], which are worse for all k ≥ 3.

Remark 5.7 In the case where (λ, ϕ) is an eigenpair of a Schrödinger operator with a random
potential, the inequality (5.6) is the starting point in Filoche’s and Mayboroda’s theory of
landscape functions: it was interpreted in [26] as a means to control the localization of the
eigenfunctions ϕ by means of the “landscape” of the torsion function v: i.e., ϕ may be
large only in regions where so is v, and in fact it was numerically observed that the regions
of localizations for eigenfunctions correspond very well, at low energies, with the regions
enclosed by the “valleys” of v. The role of v as a landscape function in a more abstract setting
will be further discussed in Sect. 6.

If one tries to carry over these ideas to our quantum graph setting, the valleys of the
torsion function v are simply given by the discrete set of local minima of v. Unfortunately,
by Lemma 3.6 there exist no local minima of the torsion function outside VD: this seems to
underpin the belief that the scope of the usage of torsion function as a landscape function for
metric graphs is rather limited, as long as natural conditions are imposed outside VD; in the
last few years, the role of the “effective potential” 1

v
has been emphasized, instead, see [1,

32].

This section is devoted to prove a lower estimate of different flavor.
A breakthrough in the torsional theory of higher dimensional bodies came in the 1970s,

when Kohler-Jobin could finally prove a sharp bound on the product of the torsional rigidity
with the square of the ground-state energy: this bound, first conjectured by Pólya and Szegő
in [54], fully established the torsional rigidity as a relevant quantity in spectral geometry
and shape optimization. This section is devoted to derive a Kohler-Jobin-type estimate in the
context of metric graphs.

While λ1(G)T (G)
|G| = π2

12 for path graphs with either mixed or purely Dirichlet boundary

conditions, [8, Remark 2.4] suggests that the positive quantity λ1(G)T (G)
|G| can be arbitrarily

small, as a sequence (Gn)n∈N of metric graphs (with each Gn\VD disconnected) displaying
this behavior can be written down explicitly.

It turns out that the trouble with the product λ1(G)T (G) is simply a wrong scaling: as
suggested by Proposition 4.1.(6), we rather have to study

λ1(G)T (G)
2
3 .
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While Remark 4.7.(2) shows that a lower bound on this quantity cannot simply be obtained
as a straightforward corollary of the classical isoperimetric inequality for the ground-state
energy of quantum graphs in [48, Théorème 3.1], in the case of domains the celebrated
Kohler-Jobin inequality does state that “balls minimize the ground-state energy among sets
with given torsional rigidity”. Conjectured in [54], it was proved in [35] and extended in [7,
13] to rougher domains and nonlinear operators.

The followingKohler-Jobin-type inequality for connected, compact, finite quantumgraphs
is the main result of this section. Unlike in the case of domains, there are two isoperimetric
inequalities for the ground-state energy of �G with VD = ∅: one for the general (connected)
case ([48, Théorème 3.1]) and one for the doubly connected case ([17, Lemma 4.3]). We
have seen in Theorem 4.6 that the same is true of the torsional rigidity: in either case, the
optimizers are intervals (connected case) and caterpillar graphs (doubly connected case). The
same phenomenon appears in the following, too.

Theorem 5.8 We have (
π

3
√
24

)2

≤ λ1(G; VD)T (G; VD)
2
3 , (5.9)

with equality if and only if G is a path graph with mixed Dirichlet/Neumann boundary
conditions.

If, additionally, G is doubly connected after gluing all Dirichlet vertices, then(
π

3
√
12

)2

≤ λ1(G; VD)T (G; VD)
2
3 ,

with equality if and only if G is a caterpillar graph, see Fig. 6.

The proof is rather technical and will be subdivided in several Lemmata. We will fol-
low Kohler-Jobin’s construction [35, Section 1.3.1] in the modified and generalized version
proposed by Brasco in [13], thus eluding technical problem like the failure of analyticity of
eigenfunctions on metric graphs.

Throughout this section, let ψ be a positive eigenfunction for the lowest eigenvalue of
−�G on the metric graph G with Dirichlet conditions at VD. Moreover, given a function
u ∈ H1

0 (G;VD) with u ≥ 0 on G, we define for t ∈ [0, ‖u‖∞] the level and superlevel sets

{u = t} := {x ∈ G : u(x) = t} and {u > t} := {x ∈ G : u(x) > t}
as well as

γu(t) :=
∑

x∈{u=t}
|u′(x)| and αu(t) := |{u > t}|.

As in [13], we use the following notion of reference functions.

Definition 5.9 A function u ∈ H1
0 (G;VD) with u ≥ 0 on G is called a reference function if

the set {u = t} is finite for a.e. t ∈ (0, ‖u‖∞), and additionally

t 
→ αu(t)

γu(t)
∈ L∞(0, ‖u‖∞).

To begin with, we are going to prove that ψ ∈ H1
0 (G;VD) is indeed a reference function.

Following [13, Lemma 3.2, Remark 3.3], let us observe the following.
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Lemma 5.10 Let ψ ∈ H1
0 (G; VD) be a positive eigenfunction for the lowest eigenvalue

λ1(G; VD) of −�G . Then∑
x∈{ψ=t}

|ψ ′(x)| = λ1(G; VD)

∫
{ψ>t}

ψ(x) dx for a.e. t ∈ [0, ‖ψ‖∞].

Proof For all s ∈ [0, ‖ψ‖∞] the coarea formula yields immediately∫
{ψ>s}

|ψ ′(x)|2 dx =
∫ ‖ψ‖∞

s

∑
x∈{ψ=τ }

|ψ ′(x)| dτ =
∫ ‖ψ‖∞

s
γψ(τ) dτ.

Also, we see that∫
{ψ>s}

|ψ ′(x)|2 dx =
∫
G

ψ ′(x) ((ψ − s)+)′ (x) dx

= −
∫
G

�Gψ(x)(ψ − s)+(x) dx

= λ1(G;VD)

∫
G

ψ(x)(ψ − s)+(x) dx :

in particular, for a.e. t ∈ [0, ‖ψ‖∞] and small h we have∫ t+h

t
γψ(s) ds =

∫ ‖ψ‖∞

t
γψ(t) dt −

∫ ‖ψ‖∞

t+h
γψ(t) ds

=
∫

{ψ>t}
|ψ ′(x)|2 dx −

∫
G(=t+h)

|ψ ′(x)|2 dx

= λ1(G;VD)

∫
G

ψ(x) ((ψ − t)+(x) − (ψ − t − h)+(x)) dx .

Dividing by h and passing to the limit h → 0 we find

γψ(t) = λ1(G;VD)

∫
G

ψ(x) ((ψ − t)+)′ (x) dx

= λ1(G;VD)

∫
{ψ>t}

ψ(x) dx,

as we wanted to prove. ��
Corollary 5.11 The first eigenfunction ψ ∈ H1

0 (G; VD) for the lowest eigenvalue λ1(G; VD)

of −�G is a reference function.

Proof To begin with, observe that∫
{ψ>t}

ψ(x) dx ≥ tαψ(t),

whence by Lemma 5.10

0 ≤ αψ(t)

γψ(t)
= αψ(t)

λ
∫
{ψ>t} ψ(x) dx

≤ 1

λt
.

In particular, this shows that

αψ(t)

γψ(t)
≤ 2

λ‖ψ‖∞
for t ≥ 1

2
‖ψ‖∞.
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If however t < 1
2‖ψ‖∞, then∫

{ψ>t}
ψ(x) dx ≥

∫
{ψ= 1

2 ‖ψ‖∞}
ψ(x) dx ≥ 1

2
‖ψ‖∞

∣∣∣∣αψ

(
1

2
‖ψ‖∞

)∣∣∣∣ > 0

and, again by Lemma 5.10,

αψ(t)

γψ(t)
≤ 2|G|

λ‖ψ‖∞
for t ≥ 1

2
‖ψ‖∞.

This concludes the proof. ��

We follow Kohler-Jobin1 and introduce the following.

Definition 5.12 Let u be a reference function. Then the modified torsional rigidity with
respect to u is

Tmod(G, u) := sup
g∈C

(
2
∫
G
(g ◦ u)(x) dx −

∫
G

|(g ◦ u)′(x)|2 dx

)
, (5.10)

where

C := {g ∈ W 1,∞(0, ‖u‖∞) : g(0) = 0}.

Wewill mostly take u to beψ , a positive eigenfunction associated with the lowest positive
eigenvalue λ1; in this case, we will simply write

Tmod(G) := Tmod(G, ψ). (5.11)

Observe that

Tmod(G, u) ≤ T (G), (5.12)

holds for any reference function u as (C ◦ u) ⊂ H1
0 (G). The crucial observation by Kohler-

Jobin, which carries over to the Brasco’s generalized modified torsional rigidity, is that the
supremum in Tmod(G, u) is actually attained, see Lemma 5.15. Before proving it, we observe
that the quantity in (5.10) does not change upon taking the supremum on the even smaller
class

C̃ := {g ∈ W 1,∞(0, ‖u‖∞) : g(0) = 0, g′ ≥ 0},
i.e., C̃ is the convex cone of non-decreasing functions g ∈ W 1,∞(0, ‖u‖∞) with g(0) = 0.

Lemma 5.13 For any reference function u, there holds

Tmod(G, u) = sup
g∈C̃

(
2
∫
G
(g ◦ u)(x) dx −

∫
G

|(g ◦ u)′(x)|2 dx

)
.

1 Strictly speaking, Kohler-Jobin restricts in [35] to a class C that is actually smaller, as it consists of con-
tinuously differentiable functions only. In our context this raises a few technical issues, due to the fact that
neither the torsion function nor the eigenfunctions of G are continuously differentiable on the metric space G,
as long as G contains vertices of degree larger than 2. Brasco observed that defining C by means of Lipschitz
continuity is sufficient to make sense of the integrals in Tmod. This relaxation will be crucial for our study.
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Proof Clearly, it suffices to prove that

sup
g∈C

(
2
∫
G
(g ◦ u)(x) dx −

∫
G

|(g ◦ u)′(x)|2 dx

)

≤ sup
g̃∈C̃

(
2
∫
G
(g̃ ◦ u)(x) dx −

∫
G

|(g̃ ◦ u)′(x)|2 dx

)
.

Indeed, for all g ∈ C we can consider the function g̃ given by

g̃(t) :=
∫ t

0
|g′(τ )| dτ ; (5.13)

because g̃′ = |g′|, g̃ ∈ C̃. Now,

2
∫
G
(g ◦ u)(x) dx −

∫
G

|(g ◦ u)′(x)|2 dx ≤ 2
∫
G
(g̃ ◦ u)(x) dx −

∫
G

|(g̃ ◦ u)′(x)|2 dx

(5.14)

as g ≤ g̃. ��
Remark 5.14 Suppose g ∈ C\C̃, i.e., there is a measurable subset A ⊂ (0, ‖ψ‖∞) with
positive measure, so that g′ < 0 holds almost everywhere on A. Thus, there exists some
t0 ∈ (0, ‖ψ‖∞) with g̃(t) > g(t) for all t > t0 where g̃ is the function defined in (5.13). It
follows that the inequality in (5.14) is strict if g ∈ C\C̃, and therefore a maximizer of (5.10)
has to be an element of C̃. The following lemma proves the existence and uniqueness of such
a maximizer and characterizes said maximizer.

Lemma 5.15 For any reference function u, let g0 be the function defined by

g0(t) :=
∫ t

0

αu(s)

γu(s)
ds, t ∈ (0, ‖u‖∞).

Then g0 ∈ C and

‖g0‖1 = Tmod(G, u) =
∫ ‖ψ‖∞

0

αu(t)2

γu(t)
dt;

indeed, g0 is the unique maximizer of (5.10).

Proof We follow [13, Proposition 3.5]. For all g ∈ C̃ we find(
2
∫
G
(g ◦ u)(x) dx −

∫
G

|(g ◦ u)′(x)|2 dx

)

= 2
∫ ‖u‖∞

0

⎛
⎝g′(t) · |{u > t}| − g′(t)2

2

∑
x∈{u=t}

|u′(x)|
⎞
⎠ dt

= 2
∫ ‖u‖∞

0

(
g′(t)αu(t) − g′(t)2

2
γu(t)

)
dt

by Cavalieri’s principle (left addend) and the coarea formula (right addend). Now, one imme-
diately checks that the following the pointwise estimate

g′(t)αu(t) − g′(t)2

2
γu(t) ≤ max

s∈R

(
sαu(t) − s2

2
γu(t)

)
= 1

2

αu(t)2

γu(t)
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holds for almost every t ∈ (0, ‖u‖∞) with equality if and only if g′(t) = αu (t)
γu (t) . We obtain

(
2
∫
G
(g ◦ u)(x) dx −

∫
G

|(g ◦ u)′(x)|2 dx

)
≤
∫ ‖u‖∞

0

αu(t)2

γu(t)
dt,

with equality if and only if g = g0, hence g0 necessarily defines the unique maximizer of
(5.10) and

Tmod(G, u) =
∫ ‖u‖∞

0

αu(t)2

γu(t)
dt, (5.15)

and it is immediate to check that ‖g0‖L1 = Tmod(G, u). This concludes the proof. ��
We can now derive, as in [13, Proposition 3.8], a fundamental isoperimetric inequality.

Lemma 5.16 Let u ∈ H1(G, VD) be any reference function. If J0 is a path graph with mixed
Dirichlet/Neumann conditions with

T (J0) = Tmod(G, u),

then |J0| ≤ |G|, with equality if and only if G = J0.
If, additionally, G is doubly connected after gluing all Dirichlet vertices, and if J1 is an

interval with Dirichlet conditions at both endpoints with

T (J1) = Tmod(G, u),

then |J1| ≤ |G|, with equality if and only if G is a caterpillar graph.

Proof By the Faber–Krahn-type inequality for torsional rigidity in Remark 4.7.(3) we know
that

1 ≤ T (G)

T (J0)
≤ |G|3

|J0|3 ;

and likewise

1 ≤ T (G)

T (J1)
≤ |G|3

|J1|3 ,

in the doubly connected case, upon gluing all vertices in VD.
If moreover |J0| = |G| in the general case (resp., |J1| = |G| in the doubly connected

case), then T (J0) = T (G;VD) (resp., T (J1) = T (G;VD)) and we know from Theorem 4.6
that this implies that J0 = G (resp., G is caterpillar graph). ��

Let us now complete the last step before attacking the proof of theKohler-Jobin Inequality:
to this aim, we will need to construct the symmetrization ψ∗ of the the eigenfunction ψ .
We see next how to perform this construction, which differs from the classical Schwarz
symmetrization.

Lemma 5.17 There exists a monotonically decreasing function ψ∗ ∈ H1
(
0, 3

√
3Tmod(G)

)
with ψ∗( 3

√
3Tmod(G)) = 0, where Tmod(G) is defined as in (5.11), such that

∫ 3√3Tmod(G)

0
|ψ∗′

(x)|2 dx =
∫
G

|ψ ′(x)|2 dx and
∫ 3√3Tmod(G)

0
|ψ∗(x)|2 dx ≥

∫
G

|ψ(x)|2 dx .

(5.16)
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The second inequality in (5.16) is actually an equality if and only if G is a path graph of
length 3

√
3Tmod(G).

Let, additionally, G be doubly connected after gluing all Dirichlet vertices.
Then there exists a function ψ∗ ∈ H1

0

(− 1
2

3
√
12Tmod(G), 1

2
3
√
12Tmod(G)

)
that is

• monotonically decreasing on [0, 1
2

3
√
12Tmod(G)],

• symmetric about 0, and
• such that∫ 3√12Tmod(G)

0
|ψ∗′

(x)|2 dx=
∫
G

|ψ ′(x)|2 dx and
∫ 3√12Tmod(G)

0
|ψ∗(x)|2 dx≥

∫
G

|ψ(x)|2 dx .

(5.17)

The second inequality in (5.17) is an equality if and only if G is a caterpillar graph of length
3
√
12Tmod(G).

Proof We now follow [13, Proposition 4.1]. The main idea of the proof is to consider the
modified torsional rigidity of the set {ψ > t}, however with respect to the modified function
(ψ − t)+ restricted to the subgraph Gt = {ψ > t} with Dirichlet conditions imposed in the
boundary ∂Gt . The modified torsional rigidity Tmod(Gt , (ψ − t)+) can be computed using
the fact that

α(ψ−t)+(s) = αψ(t + s) and γ(ψ−t)+(s) = γψ(t + s) (5.18)

for s ∈ [0, ‖ψ‖∞ − t]. Corollary 5.11 and (5.18) yield that (ψ − t)+ is a reference function
on Gt . Using Lemma 5.15, we obtain

T (t) := Tmod(Gt , (ψ − t)+) =
∫ ‖ψ‖∞−t

0

α(ψ−t)+(s)2

γ(ψ−t)+(s)
ds =

∫ ‖ψ‖∞

t

αψ(τ)2

γψ(τ)
dτ ;

in particular T ∈ W 1,∞(0, ‖ψ‖∞) and

T ′(t) = −αψ(t)2

γψ(t)
< 0 for a.e. t ∈ [0, ‖ψ‖∞].

It follows that T is invertible as a function between [0, ‖ψ‖∞] and its range [0, Tmod(G)]; we
thus consider φ := T −1 ∈ W 1,∞ and find, by the coarea formula and a change of variables,∫
G

|ψ ′(x)|2 dx = −
∫ Tmod(G)

0
φ′(τ )

∑
x∈{ψ=φ(τ)}

|ψ ′(x)| dτ = −
∫ Tmod(G)

0
φ′(τ )γψ(φ(τ)) dτ

and

φ′(τ ) = − γψ(φ(τ))

αψ(φ(τ))2
.

We conclude that ∫
G

|ψ ′(x)|2 dx =
∫ Tmod(G)

0
αψ(φ(τ))2φ′(τ )2 dτ. (5.19)

Kohler-Jobin’s original idea was to rearrange the values of ψ using the torsional rigidity of
its superlevel sets {ψ > t}. In our context, the first step is to introduce the function R that
maps each τ ∈ [0, Tmod(G)] to the unique R(τ ) ∈ R such that
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τ
!= T ([−R(τ ), R(τ )]) = 2R(τ )3

3
(5.20)

in the doubly connected case where we impose Dirichlet conditions at ±R(t), or else

τ
!= T ([0, R(τ )]) = R(τ )3

3
. (5.21)

in the general case where we impose Dirichlet conditions at R(t) and Neumann condi-
tions at 0; i.e., the range of R(τ ) is [0, 1

2
3
√
12Tmod(G)] in the doubly connected case and

[0, 3
√
3Tmod(G)] in the general case.

We are finally in the position to introduce the Kohler-Jobin symmetrization of ψ : this
is the function ψ∗ with domain whose domain is [− 1

2
3
√
12Tmod(G), 1

2
3
√
12Tmod(G)] in the

doubly connected case and [0, 3
√
3Tmod(G)] in the general case and that is given by

ψ∗(x) = κ(τ) whenever |x | = R(τ ),

where the function κ will be chosen as the solution of{
− κ ′(τ ) · 2R(τ ) = −φ′(τ )αψ(φ(τ))

κ(Tmod(G)) = 0
(5.22)

in the doubly connected case, and{
− κ ′(τ ) · R(τ ) = −φ′(τ )αψ(φ(τ))

κ(Tmod(G)) = 0
(5.23)

in the general case, respectively. Then, by choice of ψ∗ we have αψ∗(κ(τ )) = 2R(τ ) in the
doubly connected case, and αψ∗(κ(τ )) = R(τ ) in the general case, and we obtain

− κ ′(τ ) · αψ∗(κ(τ )) = −φ′(τ )αψ(φ(τ)). (5.24)

Now, to abbreviate the notation, we set J := [− 1
2

3
√
12Tmod(G), 1

2
3
√
12Tmod(G)] in the doubly

connected case, and J := [0, 3
√
3Tmod(G)] in the general case. Then, using (5.20) and (5.21)

it can be shown that

|(ψ∗)′(x)| = 2κ ′(τ )R(τ )2 = 1

2
κ ′(τ )αψ∗(κ(τ ))2

and

|(ψ∗)′(x)| = κ ′(τ )R(τ )2 = κ ′(τ )αψ∗(κ(τ ))2

holds for all x ∈ J with |x | = R(τ ) in the doubly connected and general case, respectively.
Then, using the coarea formula along with (5.24) and (5.19) we obtain∫

J
|ψ∗′

(x)|2 dx =
∫ Tmod(G)

0
κ ′(τ )

∑
x∈{ψ∗=κ(τ)}

|ψ∗′
(x)| dτ

=
∫ Tmod(G)

0
κ ′(τ )2αψ∗(κ(τ ))2 dτ

=
∫ Tmod(G)

0
αψ(φ(τ))2φ′(τ )2 dτ

=
∫
G

|ψ ′(x)|2 dx .
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Now, note that for τ ∈ [0, Tmod(G)] we have
τ = Tmod(Gφ(τ), (ψ − φ(τ))+) = T (J ∩ [−R(τ ), R(τ )]).

Therefore, Lemma5.16 yieldsαψ(φ(τ)) ≥ αψ∗(κ(τ )). (In the doubly connected case, we use
that Gt is doubly connected after gluing all points in ∂Gt .) Using (5.24), we infer −φ′(τ ) ≤
−κ ′(τ ) which in turn yields—after integrating from τ to Tmod(G)—that φ(τ) ≤ κ(τ). Thus,
Cavalieri’s principle gives∫

G
|ψ(x)|2 dx = 2

∫ ‖ψ‖∞

0
tαψ(t) dt

= −
∫ Tmod(G)

0
φ(τ)φ′(τ )αψ(φ(τ)) dτ

≤ −
∫ Tmod(G)

0
κ(τ)κ ′(τ )αψ∗(κ(τ )) dτ

=
∫

J
|ψ∗(x)|2 dx .

To conclude the proof, we observe that equality in the previous inequality yields
αψ(φ(t)) = αψ∗(κ(τ )) for all τ . By Lemma 5.16 this is only possible if Gt is a caterpillar
graph in the doubly connected case or a path graph in the general case. ��

We are now finally in the position to complete the proof of Theorem 5.8.

Proof of Theorem 5.8 We now adapt the proof of [13, Theorem 1.1], see [13, Section 5].
To begin with, we consider the interval

J0 =
[
0, 3
√
3Tmod(G)

]
byLemma5.17wecan consider the decreasing functionψ∗ ∈ H1(J0)withψ∗( 3

√
3Tmod(G)) =

0 that satisfies (5.16). Therefore,(
π

3
√
24

)2

= λ1(J0)T (J0)
2
3 ≤ ‖ψ∗′‖22

‖ψ∗‖22
Tmod(G)

2
3 ≤ ‖ψ ′‖22

‖ψ‖22
Tmod(G)

2
3 ≤ λ1(G)T (G)

2
3

(5.25)

where we used the min–max principle and Lemma 5.16 for the first inequality, Lemma 5.17
for the second inequality, and the min–max principle and (5.12) for the third inequality.

Likewise, in the doubly connected case we consider the interval

J1 =
[
−1

2
3
√
12Tmod(G),

1

2
3
√
12Tmod(G)]

]
,

impose Dirichlet conditions on both endpoints, and consider the radially symmetric function
ψ∗ ∈ H1

0 (J1) that satisfies (5.17). Accordingly, using the same arguments as in (5.25), we
obtain(

π
3
√
12

)2

= λ1(J1)T (J1)
2
3 ≤ ‖ψ∗′‖22

‖ψ∗‖22
Tmod(G)

2
3 ≤ ‖ψ ′‖22

‖ψ‖22
Tmod(G)

2
3 ≤ λ1(G)T (G)

2
3 .

Equality in both chains of inequalities implies that

‖ψ∗′‖22
‖ψ∗‖22

= ‖ψ ′‖22
‖ψ‖22

,
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thus the statement about equality follows from the corresponding statement in Lemma 5.17.
��

6 Appendix: Torsion as landscape function

Let us formulate an abstract version of a comparison principle between eigenfunctions and
torsion function. The following generalizes known bounds for Laplace or Schrödinger oper-
ators with Dirichlet boundary conditions on open domains of Rd in [2, Theorem 1, Equation
(0.5)], [29, Lemma 1.1], [5, Theorem 5, Equations (23) and (25)], [26], and [58, Theorem 2].

Proposition 6.1 Let A be a closed linear operator on Cb(X), where X is a locally compact
metric space; or else on L p(X), for some p ∈ [1,∞] and some σ -finite measure space X.
Let (λ, ϕ) be an eigenpair of A.

Finally, let ρ be a positive function in C(X), resp. in L p(X), such that ϕ
ρ

is bounded, resp.
essentially bounded. Then the following assertions hold.

(1) If A has positive inverse (in the sense of Banach lattices), then

|ϕ(x)| ≤ |λ|
∥∥∥∥ϕ

ρ

∥∥∥∥∞
A−1ρ(x) for all/ a.e. x ∈ X . (6.1)

(2) If −A generates a positive semigroup, then

|ϕ(x)| ≤
∥∥∥∥ϕ

ρ

∥∥∥∥∞
et Re λe−t Aρ(x) for all/ a.e. x ∈ X and all t ≥ 0. (6.2)

(3) If A has a positive inverse and −A generates a positive semigroup, then

|ϕ(x)| ≤ |λ|
∥∥∥∥ϕ

ρ

∥∥∥∥∞
et Re λe−t A A−1ρ(x) for all/ a.e. x ∈ X and all t ≥ 0. (6.3)

Proof (1) We find for all/a.e. x ∈ X

|ϕ(x)| = |λA−1ϕ(x)| ≤ |λ|A−1
(∥∥∥∥ϕ

ρ

∥∥∥∥∞
ρ

)
(x) = |λ|

∥∥∥∥ϕ

ρ

∥∥∥∥∞
A−1æ(x). (6.4)

(2) In order to prove (6.2), observe that by the Spectral Mapping Theorem (e−λt , ϕ) is an
eigenpair of e−t A and, hence, due to positivity of (eRe λte−t A)t≥0,

|ϕ(x)| = |eλte−t Aϕ(x)| ≤
∥∥∥∥ϕ

ρ

∥∥∥∥∞
et Re λe−t Aρ(x) for all/ a.e. x ∈ X . (6.5)

Taking the infimum over t ≥ 0 concludes the proof of (6.2).
Finally, (3) is obtained by combining the arguments in (1) and (2). ��
Recall that, if A is invertible, then A−1 is certainly positive whenever −A generates a

positive contraction semigroup.
The following corollary is obtained by choosing ρ = 1 and ρ = A−11 in Proposition 6.1.

The assumptions on X in the following can clearly be weakened: we omit the details for the
sake of simplicity.

Corollary 6.2 Let A be a closed linear operator on C(X), where X is a compact metric space;
or else on L p(X), for some p ∈ [1,∞] and some finite measure space X. Let A have positive
inverse, and denote by v the abstract torsion function, i.e., the (positive) solution of Av = 1.

Then the following assertions hold for any eigenpair (λ, ϕ).
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(1) If ϕ is bounded, then

|ϕ(x)| ≤ |λ|‖ϕ‖∞v(x) for all/ a.e. x ∈ X . (6.6)

(2) If −A generates a positive semigroup and ϕ
v

is bounded, then

|ϕ(x)| ≤
∥∥∥ϕ

v

∥∥∥∞
et Re λe−t Av(x) for all/ a.e. x ∈ X and all t ≥ 0. (6.7)

(3) If −A generates a positive semigroup and ϕ is bounded, then

|ϕ(x)| ≤ |λ| ‖ϕ‖∞ et Re λe−t Av(x) for all/ a.e. x ∈ X and all t ≥ 0. (6.8)

In particular, we deduce from (6.6) and (6.7) that

1 ≤ |λ|min‖v‖∞ and 1 ≤ |λ|mine
t Re λmin‖e−t Av‖∞ for all t ≥ 0, (6.9)

if additionally v is bounded, where |λ|min := min{|λ| | λ ∈ σp(A)}: we have already
encountered the first of these estimates in (5.7).

Observe that if A admits compactly supported eigenfunctions—this is, e.g., often the case
for Laplacians on metric graphs—then the proof of Proposition 6.1 even yields the sharper
estimates

|ϕ(x)| ≤ |λ|‖ϕ‖∞ A−11suppϕ(x),

|ϕ(x)| ≤ ‖ϕ‖∞ et Re λe−t A1suppϕ(x),

|ϕ(x)| ≤
∥∥∥ϕ

v

∥∥∥∞
et Re λe−t A A−11suppϕ(x),

|ϕ(x)| ≤ |λ|‖ϕ‖∞et Re λe−t A A−11suppϕ(x),

for all/ a.e. x ∈ X and all t ≥ 0. (6.10)

Indeed, the assumptions of Proposition 6.1 are satisfied if we take X = G and A = −�G :
in fact, all eigenfunctions of −�G are bounded, since they belong to H1(G) ↪→ L∞(G);
furthermore, the quotient ϕ

v
is bounded for any eigenfunction ϕ, in view of the properties of

the torsion function discussed in Sect. 3 and the well-known fact that eigenfunctions of−�G
behave like o(x) as x → v ∈ VD, see Example 2.4.(1).

Bearing in mind that et�Gv is for all t ≥ 0 a continuous function, we hence obtain the
following, a close analog of [32, Theorem 4.1 and Remark 4.1].

Proposition 6.3 Let −�Gϕ = λϕ, and let as usual v denote the torsion function on a metric
graph G that satisfies the Assumption 2.1. Then

|ϕ(x)| ≤ λ ‖ϕ‖∞
(− �−1

G 1suppϕ

)
(x) ≤ λ ‖ϕ‖∞ v(x) for all x ∈ G. (6.11)

Furthermore,

|ϕ(x)| ≤
∥∥∥ϕ

v

∥∥∥∞
inf
t≥0

eλtet�G (− �−1
G 1suppϕ

)
(x) ≤

∥∥∥ϕ

v

∥∥∥∞
inf
t≥0

eλtet�Gv(x) for all x ∈ G
(6.12)

as well as

|ϕ(x)| ≤ λ ‖ϕ‖∞ inf
t≥0

eλtet�G
(− �−1

G 1suppϕ

)
(x) ≤ λ ‖ϕ‖∞ inf

t≥0
eλtet�Gv(x) for all x ∈ G.

(6.13)

Observe that Corollary 6.2 can be also applied to Laplacians on combinatorial graphs
(with Dirichlet conditions) or even more general Z -matrices; see also [27] for recent, more
sophisticated localization results for such matrices.
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Remark 6.4 (1) The proofs of estimates (6.6) and (6.9) already available in the literature
rely upon the additional assumption that A is self-adjoint and/or that it has compact
resolvent. The estimate (6.8) was first obtained in [58, Theorem 2], whose proof is based
on a Feynman–Kac-type formula that is assumed to hold with respect to the Brownian
motion generated by the relevant Schrödinger operator.

(2) Also, (6.6) yields

‖ϕ‖1
‖ϕ‖∞

≤ |λ|T (X) (6.14)

for the abstract torsional rigidity T (X) := ‖v‖1 and any eigenpair (λ, ϕ) of A.
The efficiency E(X) := ‖ϕ1‖1|X |‖ϕ1‖∞ is commonly studied for the ground stateϕ1 of domains,
see [14] and references therein.

(3) Following a suggestion in [32, Section 4], Proposition 6.1.(1) can be generalized by
observing that the inequality (6.4) is satisfied not only by the torsion function v = A−11,
but by any—possibly better behaved—“super-torsion function”, i.e., by any v ≥ A−11
(in fact, by any v ≥ A−11suppϕ). However, it is not clear if this brings any advantages in
our setting, given that a reasonably explicit formula for the torsion function is available
on metric graphs.

(4) Localization for operators that do not satisfy a maximum principle is a popular topic, see
[39] and references therein. Let us explicitly observe that if A is merely invertible but its
inverse is not positive, (6.1)–(6.6)–(6.2)–(6.7) can still be replaced by corresponding esti-
mates involving the terms |A−1|1(x), |A−1|1(x), |e−t A|ρ(x), |e−t A|v(x), respectively,
provided A−1 and e−t A have a modulus in the sense of [57, Section IV.1], see also [47,
Section C-II]: for instance, on C(X) or L p(X) as in Proposition 6.1, this is especially the
case if A−1, resp. e−t A, is a kernel operator, and in particular for general square matrices
with complex coefficients. These generalizations are straightforward and in line with
what was already observed in [26].
Furthermore, let us mention that Proposition 6.1.(2)–(3) and its corollaries can be
extended in a natural way to operators that generate semigroups which are merely indi-
vidually eventually positive: this is especially the case for distinguished realizations of
higher order elliptic operators on bounded domains, see [22], andmetric graphs, see [31].
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