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Abstract
We investigate the ground states for the focusing, subcritical nonlinear Schrödinger equation
with a point defect in dimension two, defined as the minimizers of the energy functional at
fixed mass. We prove that ground states exist for every positive mass and show a logarithmic
singularity at the defect. Moreover, up to a multiplication by a constant phase, they are
positive, radially symmetric, and decreasing along the radial direction. In order to overcome
the obstacles arising from the uncommon structure of the energy space, that complicates the
application of standard rearrangement theory, we move to the study of the minimizers of the
action functional on the Nehari manifold and then establish a connection with the original
problem. A refinement of a classical result on rearrangements is proved to obtain qualitative
features of the ground states.

Mathematics Subject Classification 35Q40 · 35Q55 · 35B07 · 35B09 · 35R99 · 49J40 ·
49N15

1 Introduction

TheNonlinear Schrödinger Equation (NLSE) has provided for almost fifty years the effective
description of the evolution of the wave function of a Bose-Einstein condensate (BEC) in the
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Gross-Pitaevskii regime. More recently, interest has grown in the possibility of modeling a
BEC in the presence of defects or impurities bymeans of aNLSEwith an additional pointwise
interaction located at the defect. If the spatial scale of the impurity is supposed to be much
smaller than the dispersion of the wave function, one can describe it by means of a Dirac’s
delta potential [29, 58, 59], obtaining the evolution equation

i
∂ψ

∂t
= (−� + αδ0)ψ + β|ψ |p−2ψ, α ∈ R \ {0}, β ∈ R \ {0}, p > 2, (1)

where the sign of β establishes the focusing or defocusing character of the equation, and,
correspondingly, the attractive or repulsive behaviour of the condensate.

A large part of the available results concerns the one-dimensional case, that models the
so-called cigar-shaped condensates. In particular, well-posedness was established in [12] for
the entire class of pointwise potentials, while existence and stability of standing waves were
shown in [11–13, 16, 37, 40, 50]. On the other hand, the well-posedness for the two and
three-dimensional models was established in [24]. Here we aim at discussing the existence
and the properties of ground states for the two-dimensional case in the focusing regime, i.e.
when β < 0.

In fact, Eq. (1) is just formal in dimension two. In order to state it rigorously, one has to
replace −� + αδ0 with a suitable self-adjoint operator Hα , acting on L2(R2) (see Sect. 1.2
below). Such operator acts as the Laplacian far from the origin and its domain contains
functions that exhibit a logarithmic singularity at the origin, like the fundamental solution
of the Laplacian. As shown in [18], the operator Hα can be also understood as the limit of
a sequence of Schrödinger operators −� + Vε, where, for every ε > 0, the potential Vε is
regular, peaked, shrinking around the origin as ε → 0, and suitably renormalized: this is
expected from an operator that aims at embodying a delta interaction at the origin.

Incidentally, let us mention that the literature on the NLSE with a potential is much wider
than the corresponding one about NLSE with singular potentials: among the others, we
mention the seminal works [35, 57] and the papers [38, 39] for their results about stability
and instability of standing waves.

Moreover, the analysis of models with point interactions like (1) is strictly connected with
the study of singular solutions for elliptic equations, that traces back to the eighties [22, 29,
41, 48, 52, 54, 55, 60]. In particular, it is well-known that solutions to the focusing stationary
NLSE

−�u − |u|p−2u − ωu = 0,

that are regular inR2\{0}, vanish at infinity and are singular at 0, behave like the fundamental
solution of the Laplacian at the origin.

Finally, we highlight that all results and proofs contained in the present paper concern the
space dimension two. In [2] we extend the results to the three-dimensional case.

1.1 Future developments

In our intention the present paper is the first step of a research programme devoted to the
study of the standing waves of the NLSE on multi-dimensional structures, that is domains
consisting of pieces of different space dimensions glued together through suitable boundary
conditions. Such structures are known in the literature as quantum hybrids and one of the
simplest models is provided by a plane attached to a half-line. It has been shown [27, 33, 34]
that the conditions to be imposed at the junction between the plane and the half-line prescribe
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a logarithmic singularity for the restriction of the wave function to the plane, exactly like
for the Schrödinger equation with a point interaction. Therefore, the present work lays the
foundations of our research plan towards nonlinear quantum hybrids.

A further branch of the same research project concerns a different family of singular
perturbation of the Laplacian, called concentrated nonlinearities, namely

i
∂ψ

∂t
= (−� + τ |ψ |p−2δ0)ψ, τ ∈ R \ {0}, p > 2. (2)

The standard nonlinearity is no longer there, while a pointwise nonlinearity is present at the
defect. Specifically, this can be done by replacing the strength of the delta interaction α by a
nonlinear term that depends on the solution. As a particular choice, we took τ |ψ |p−2. Such
equation has been studied in one [10, 17, 28, 45, 46], two [6, 7, 26] and three dimensions
[8, 9, 14, 15]. It is, then, natural to investigate the dynamics of a system in the presence of
both types of nonlinearity. The one-dimensional case and the case of the star graphs have
been already addressed in [20] and [3], respectively, while high-dimensional cases are still
unexplored.

1.2 Setting andmain results

Let us stress again that writing (1) is formal, as in two dimensions the delta interaction is
not a small perturbation of the Laplacian. It is well-known that a rigorous definition can be
given through the theory of self-adjoint extensions of hermitian operators. Eventually, one
finds [18] that there exists a family (Hα)α∈R of self-adjoint operators that realizes a nontrivial
point perturbation of −�.

The domains of such operators are

D(Hα) := {
v ∈ L2(R2) : ∃q ∈ C, λ > 0 s.t.

v − qGλ =: φλ ∈ H2(R2) and φλ(0) = (α + θλ) q
}
,

and the action reads

Hαv := −�φλ − qλGλ, ∀v ∈ D(Hα).

We denoted

θλ :=
log
(√

λ
2

)
+ γ

2π
, (3)

with γ denoting the Euler-Mascheroni constant, and Gλ the Green’s function of −� + λ,
namely

Gλ(x) := 1

2π
F−1[(|k|2 + λ)−1](x) = K0(

√
λx)

2π
. (4)

Here, K0 denotes the modified Bessel function of the second kind of order 0, also known as
Macdonald function (see [1, Section 9.6]), and F denotes the unitary Fourier transform. The
function Gλ has a singular behaviour at the origin, namely

Gλ(x) = − log |x|
2π

+ o(log |x|), x → 0

that prevents Gλ from belonging to H1(R2).
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Functions in D(Hα) consist then of a regular part φλ, on which the operator acts as the
standard Laplacian, and a singular part qGλ, on which the operator acts as the multiplication
by −λ. The two components are connected by the boundary condition φλ(0) = (α + θλ) q .
The strengthq of the singular part is called the charge.We highlight thatλ is a dumbparameter
as it does not affect neither the definition of Hα nor the charge q (see Remark 2.1).

Finally, we recall that the spectrum of Hα is given by

σ(Hα) = {�α} ∪ [0,+∞), with �α := −4e−4πα−2γ < 0 sole eigenvalue for any α ∈ R.

(5)

The rigorous form of the focusing NLSEwith a pointwise impurity (δ-NLSE) is therefore

i
∂ψ

∂t
= Hαψ − |ψ |p−2ψ, α ∈ R, p > 2. (6)

As proven in [24], the flow generated by (6) preserves the mass.

Remark 1.1 In getting (6) from (1), we fixed β = −1. No generality is lost since, given any

solution ψ of (6), then ψβ := (−β)
− 1

p−2 ψ solves

i
∂ψβ

∂t
= Hαψβ + β|ψβ |p−2ψβ, α ∈ R, β < 0.

In doing this, many relevant thresholds of the equation could a priori be affected, but this is
not actually the case since no threshold appears in the main results of the paper.

Standing waves are solutions to (6) of the form ψ = eiωt u(x), with ω ∈ R. An easy
computation shows that ψ is a standing wave for (6) whenever u is a bound state, i.e.

u ∈ D(Hα), (7)

Hαu + ωu − |u|p−2u = 0. (8)

Among all the bound states, we focus on ground states. The proof that a ground state satisfies
(7) and (8) is straightforward and is reported in Appendix 1.

In order to give a precise definition of the ground states of (8), we first introduce the
quadratic form associated with Hα , which has domain

D := {
v ∈ L2(R2) : ∃q ∈ C, λ > 0 s.t. v − qGλ =: φλ ∈ H1(R2)

}
, (9)

and action

Q(v) := ‖∇φλ‖22 + λ
(‖φλ‖22 − ‖v‖22

)+ (α + θλ) |q|2, ∀v ∈ D, (10)

where we denoted by 〈·, ·〉 the hermitian product in L2(R2) and by ‖ · ‖p the usual norm in
L p(R2). As (10) is the quadratic form of the self-adjoint operator Hα , it is independent of the
choice of λ. Notice that, as expected when passing from operator to quadratic form, functions
in D have a rougher regular part than functions in D(Hα) (from H2(R2) to H1(R2)), and
that in D there is no boundary condition linking the regular and the singular part. We observe
that Q(v) = 〈v, Hαv〉, whenever u ∈ D(Hα).

Let us introduce the main object of our study, the energy functional associated with the
δ-NLSE, which is another quantity conserved by the flow generated by (6) ([24]).

Definition 1.2 Given α ∈ R and p > 2, the δ-NLS energy is the functional E : D → R

defined by

E(v) :=1

2
Q(v) − 1

p
‖v‖p

p
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=1

2
‖∇φλ‖22 + λ

2

(‖φλ‖22 − ‖v‖22
)+ (α + θλ)

2
|q|2 − 1

p
‖v‖p

p. (11)

Remark 1.3 As a peculiar feature of point interactions in dimensions two and three, the energy
space D is strictly larger than H1. Furthermore, if v belongs to H1, i.e. it has no charge, then
its energy reduces to the standard NLS energy defined by

E0(v) := 1

2
‖∇v‖22 − 1

p
‖v‖p

p,

so that the δ-NLS energy is an extension of the NLS energy.

We can now give the following fundamental definition.

Definition 1.4 Given μ > 0, a function u belonging to the space

Dμ := {v ∈ D : ‖v‖22 = μ}.
and satisfying

E(u) = inf
v∈Dμ

E(v) =: E(μ),

is a ground state at mass μ for the NLSE with a point defect.

Thus, a ground state is a minimizer of the energy constrained to a submanifold of constant
mass μ. It turns out that the whole set of ground states at mass μ is orbitally stable for any
μ > 0: the result is proven by adapting the techniques introduced in [31] and is reported in
Appendix 1.

We can now state the main result of the paper.

Theorem 1.5 (δ-NLS ground states) Let p ∈ (2, 4) and α ∈ R. Then, for every μ > 0,

(i) there exists a ground state for the δ-NLS at mass μ;
(ii) if, fixed λ > 0, u = φλ + qGλ is a ground state, then:

(a) for any λ > 0 both φλ and q are not identically zero,
(b) u is positive, radially symmetric, and decreasing along the radial direction, up to

multiplication by a constant phase;moreover,φλ is nonnegative ifλ = ω, and positive
if λ > ω, with ω = μ−1(‖u‖p

p − Q(u)).

Remark 1.6 One can also see that if u is a ground state for the δ-NLSE, then the associated
frequency ω = μ−1(‖u‖p

p −Q(u)) is positive. Indeed, by the Lagrange Multiplier Theorem,
one has

〈E ′(u), v〉 + ω〈u, v〉 = 0, ∀v ∈ D,

so that, setting v = u and combining with (65), (10) and (11),

2E(u) − p − 2

p
‖u‖p

p = −ω‖u‖22. (12)

Then, by Remark 1.3,

E(u) = E(μ) � E0(μ) := inf
v∈H1

μ(R2)
E0(v),

with H1
μ(R2) := {v ∈ H1(R2) : ‖v‖22 = μ}, which is negative whenever p ∈ (2, 4) (see,

e.g., [53] or the proof of Proposition 3.3). Thus (12) implies that ω > 0 .
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We stress that Theorem 1.5 treats power nonlinearities with p ∈ (2, 4) only, namely
the subcritical nonlinearities of the NLSE, since as in the standard case this is necessary to
establish boundedness from below of the constrained energy without prescriptions on the
mass μ (see Proposition 3.1). In addition, also regarding existence, positivity, and symmetry,
Theorem 1.5 retraces the results on the NLSE. However, point (ii)(a) shows that δ-NLS
ground states and NLS ground states cannot coincide as the singular part of the former ones
cannot vanish.

As a final remark, we highlight that, while point (i) of Theorem 1.5 is proved by mini-
mization of E on Dμ, point (ii) is proved through minimization of another functional, called
Action, constrained to a set called Nehari manifold. More precisely,

Definition 1.7 Fixed ω ∈ R, the δ-NLS action at frequency ω is the functional Sω : D → R

defined by

Sω(v) := E(v) + ω

2
‖v‖22. (13)

We introduce the constraint

Definition 1.8 Fixed ω ∈ R, the Nehari manifold at frequency ω associated to the δ-NLS is
defined by

Nω := {v ∈ D \ {0} : Iω(v) = 0}, (14)

where Iω : D → R denotes the quantity

Iω(v) := 〈S′
ω(v), v〉 = ‖∇φλ‖22 + λ‖φλ‖22 + (ω − λ)‖v‖22 + (α + θλ) |q|2 − ‖v‖p

p. (15)

As a consequence, theminimizers of the δ-NLS action at frequencyω are all functions u ∈ Nω

such that

Sω(u) = d(ω) := inf
v∈Nω

Sω(v),

and, as showed in Appendix 1, they are bound states of the δ-NLS.

Remark 1.9 We use the notation

Qω(v) := Q(v) + ω‖v‖22, (16)

so that

Sω(v) = 1

2
Qω(v) − 1

p
‖v‖p

p and Iω(v) = Qω(v) − ‖v‖p
p. (17)

The link between minimizers of the action and ground states is provided by the following
Lemma, whose proof is an adaptation of what established in [32] and [47] for the NLSE. We
report it in Appendix 1.

Lemma 1.10 Let p > 2, α ∈ R and μ > 0. If u is a ground state of mass μ, then it is also a
minimizer of the action at the frequency ω = μ−1(‖u‖p

p − Q(u)).

We give the following result for the minimizers of the action functional.

Theorem 1.11 (δ-NLS action minimizers) Let p > 2 and α ∈ R. Then,

(i) a minimizer of the action (13) at frequency ω does exist if and only if ω > ω0 := −�α ,
with �α defined in (5);
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(ii) if, fixed λ, u = φλ + qGλ is a minimizer of the action (13) at frequency ω > ω0, then:

(a) for any λ > 0 both φλ and q are not identically zero,
(b) u is positive, radially symmetric, and decreasing along the radial direction, up to

multiplication by a constant phase factor; in particular, φλ is nonnegative if λ = ω,
and positive if λ > ω.

First, we note that, in view of Lemma 1.10, point (ii) of Theorem 1.5 is a straightforward
consequence of Theorem 1.11. Indeed, if there exists a ground state of mass μ, then by
Lemma 1.10 and point (i) of Theorem 1.11 it is also a minimizer of the action at frequency
ω > ω0. Hence, the conclusion follows by point (ii) of Theorem 1.11.

Furthermore, wemention that in order to establish (ii)(b) we use an equivalent formulation
of the problem of minimization of the action consisting in minimizing Qω on the functions
in D with fixed L p norm. More details on this point are given at the beginning of Sect. 5
and in Remark 5.1. The technique relies on the minimality of the ground states only and is
different from other classical techniques, such as the moving planes introduced in [42], and
from more recent variational methods like [36, 47], where the Euler-Lagrange equation is
used to enhance the regularity of the minimizers.

During the final draft of the present paper we got acquainted that the results of The-
orem 1.11 had been proved independently in the contemporary work [36]. In particular,
except from the overlap of point (i)(a) of Theorem 1.11 with [36, Theorem 1.2], the proof of
point (ii)(b) of Theorem 1.11 relies on different techniques, as explained above. Moreover,
the goals of the two papers are different: while the present paper is mainly focused on the
study of ground states of the energy at fixed mass, [36] deals with the minimizers of the
action under the Nehari’s constraint, discussing their orbital stability for asymptotic regimes
of the frequency ω.

Organization of the paper

– Sect. 2 introduces some preliminary results that are useful throughout the paper; more
precisely:

– in Sect. 2.1 we recall some well-known features of the Green’s function of −� + λ,
– inSect. 2.2weestablish twoextensions of theGagliardo-Nirenberg inequality (Propo-

sition 2.2),
– in Sect. 2.3 we establish a rearrangement inequality for the L p-norms of the sum of

nonnegative functions (Proposition 2.4);

– Sect. 3 addresses the existence of ground states (Theorem 1.5–(i));
– Sect. 4 addresses the existence of action minimizers (Theorem 1.11–(i));
– Sect. 5 establishes the main features both of the δ-NLS ground states and of the action

minimizers (Theorem 1.5 –(ii)/Theorem 1.11–(ii)).

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

123



195 Page 8 of 32 R. Adami et al.

2 Preliminary results

In this section we collect some preliminary results, that will be exploited in the proofs of
Theorem 1.5 and Theorem 1.11.

2.1 Further properties of the green’s function

First, we recall that Gλ ∈ L2(R2)\H1(R2), is positive, radially symmetric, decreasing along
the radial direction, has exponential decay at infinity, and is smooth up to the origin, where
it satisfies

Gλ(x) = − 1

2π
log

(√
λ|x|
2

)

+ γ

2π
+ o(1), as |x| → 0

(see [1, Sec. 9.6] and [25, Eq. (1.5)]). Thus Gλ belongs to L p(R2), 2 � p < ∞. Moreover,

‖Gλ‖22 = 1

4πλ
and ‖Gλ‖p

p = ‖G1‖p
p

λ
. (18)

On the other hand, using (4), one can prove that Gλ − Gν ∈ H2(R2). Also, by direct compu-
tation,

‖Gλ − Gν‖22 = 1

4π

(
1

λ
+ 1

ν
+ 2 log(ν/λ)

λ − ν

)
, (19)

‖∇(Gλ − Gν)‖22 = 1

4π

(
(λ + ν) log(ν/λ)

λ − ν
− 2

)
. (20)

Finally, we note that if ν < λ, then

Gλ(x) = K0(
√

λx)
2π

= Gν

(√
λ

ν
x

)

< Gν(x), ∀x ∈ R
2 \ {0}. (21)

2.2 Extensions of the Gagliardo-Nirenberg inequality

We need a generalization of Gagliardo-Nirenberg inequality to the energy space D.
Let us recall the standard two-dimensional Gagliardo-Nirenberg inequality ([30, Theorem

1.3.7]): there exists Cp > 0 such that

‖v‖p
p ≤ Cp‖∇v‖p−2

2 ‖v‖22, ∀ v ∈ H1(R2). (22)

First, the set of functions in the energy space with q �= 0 can be written as

D \ H1(R2) = {
u ∈ L2(R2) : ∃q ∈ C \ {0} s.t. u − qG |q|2

‖u‖22
=: φ ∈ H1(R2)

}
. (23)

In other words, functions in D \ H1(R2) admit the decomposition with λ = |q|2
‖u‖22

, where the

right-hand side is well defined as the next remark shows.

Remark 2.1 (Hα and q do not depend on λ > 0) Let us consider v ∈ D(Hα). By definition,
there exist q ∈ C and λ > 0 such that v = φλ + qGλ, φλ ∈ H2(R2) and φλ(0) = (α + θλ)q .
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Notice that

q := −2π lim|x|→0

v(x)
log |x| ,

therefore q does not depend on λ. Moreover, choosing 0 < ν �= λ, it is possible to decompose
the same function as v = φν + qGν . Since, as mentioned in Sect. 2.1, Gλ − Gν ∈ H2(R2),
one gets that φν := φλ + q(Gλ − Gν) belongs to H2(R2). Moreover, (4) also implies

(Gλ − Gν)(0) = (4π)−1 log(ν/λ), (24)

so that θλ + (Gλ − Gν)(0) = θν , whence φν(0) = (α + θν) q . Finally, by (4)

−�(Gλ − Gν) = νGν − λGλ,

so−�φλ −qλGλ = −�φν −qνGν and thus the decompositions with ν and λ are equivalent.

We can now state the following

Proposition 2.2 (Extended Gagliardo-Nirenberg inequalities) For every p > 2, there exists
K p > 0 such that

‖v‖p
p ≤ Kp

(
‖∇φλ‖p−2

2 ‖φλ‖22 + |q|p
λ

)
, ∀v = φλ + qGλ ∈ D, ∀λ > 0. (25)

Moreover, there exists Mp > 0

‖v‖p
p ≤ Mp

(
‖∇φ‖p−2

2 + |q|p−2
)

‖v‖22, ∀v = φ + qG |q|2
‖v‖22

∈ D \ H1(R2). (26)

Proof If we fix v = φλ + qGλ ∈ D, for some λ > 0, then (22) and (18) yield

‖v‖p
p = ‖φλ + qGλ‖p

p ≤ 2p−1 (‖φλ‖p
p + |q|p‖Gλ‖p

p
) ≤ Kp

(
‖∇φλ‖p−2

2 ‖φλ‖22 + |q|p
λ

)
,

that is (25).

If we suppose, in addition, that q �= 0 and set λ = λq := |q|2
‖v‖22

, then by (18), (25) and the

triangle inequality there results

‖v‖p
p ≤ Mp

(
‖∇φ‖p−2

2 ‖v‖22 + ‖∇φ‖p−2
2

|q|2
λq

+ |q|p
λq

)
≤Mp

(
‖∇φ‖p−2

2 + |q|p−2
)

‖v‖22
possibly redefining Mp , which concludes the proof. ��
Remark 2.3 Note that, whenever q = 0, i.e. v ∈ H1(R2), (25) reduces to (22).

2.3 A rearrangement inequality in Lp-spaces

Let us start by recalling the definition of radially symmetric nonincreasing rearrangement
of a function in R

2 and its main features (see e.g. [51, Chapter 3]). All the definitions and
the results in Sect. 2.3 are valid in every Rd , with d � 2.

First, given a measurable A ⊂ R
2 with finite Lebesgue measure, we denote by A∗ the

open ball centred at zero with Lebesgue measure equal to |A|, that is
A∗ := {x ∈ R

2 : π |x|2 < |A|}.
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Now, let f : R
2 → R be a nonnegative measurable function vanishing at infinity, i.e.

|{ f > t}| := |{x ∈ R
2 : f (x) > t}| < +∞, for every t > 0. We call the radially symmetric

nonincreasing rearrangement of f the function f ∗ : R2 → R defined by

f ∗(x) =
∫ ∞

0
1{ f >t}∗(x) dt, (27)

with 1{ f >t}∗ the characteristic function of { f > t}∗. Definition (27) clearly implies

|{ f > t}| = |{ f ∗ > t}| and { f > t}∗ = { f ∗ > t} (28)

and

1∗
A ≡ 1A∗ , for every measurable A ⊂ R

2, |A| < +∞. (29)

One can also check that

(� ◦ f )∗ ≡ � ◦ f ∗, for every nondecreasing � : R+ → R
+ (30)

and that (28) yields

‖ f ∗‖p = ‖ f ‖p, ∀ f ∈ L p(R2), f � 0, ∀ p � 1. (31)

Anotherwell knownproperty of rearrangements is theHardy-Littlewood inequality, which
states that, given two nonnegative measurable functions f , g : R2 → R vanishing at infinity,
there results

∫

R2
f (x)g(x) dx ≤

∫

R2
f ∗(x)g∗(x) dx (32)

and, if f is radially symmetric and decreasing, then the equality holds in (32) if and only if
g = g∗ a.e. on R2.

We also need to compare ‖ f + g‖p and ‖ f ∗ + g∗‖p and a related result is stated in the
next Proposition. The first statement is actually a special case of a well known result proved
in [19, Theorem 2.2]. The second statement is a refinement of that result and, as far as we
know, no proof of it is present in the literature. Our proof adapts the arguments used in [51,
Theorems 3.4 and 3.5].

Proposition 2.4 (Rearrangement inequality) For every pair of nonnegative functions f , g ∈
L p(R2), with p > 1, there results

∫

R2
| f + g|p dx ≤

∫

R2
| f ∗ + g∗|p dx. (33)

Moreover, if f is radially symmetric and strictly decreasing, then the equality in (33) implies
that g = g∗ a.e. on R2.

Proof First, we introduce the function

J+(t) :=
{
J (t) if t ≥ 0,

0 if t < 0,
with J (t) := |t |p.

It is straightforward that J+ is of class C1, with J ′+ nonnegative and nondecreasing inR and,
in particular, positive and increasing in R+. Therefore,

| f (x) + g(x)|p = J+( f (x) + g(x)) =
∫ g(x)

− f (x)
J ′+( f (x) + s) ds
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=
∫ +∞

−∞
J ′+( f (x) + s)1{g>s}(x) ds,

whence, integrating over R2 and using Tonelli’s theorem, we get
∫

R2
| f (x) + g(x)|p dx

=
∫

R2
J+( f (x) + g(x)) dx =

∫ +∞

−∞

(∫

R2
J ′+( f (x) + s)1{g>s}(x) dx

)
ds

=
∫ +∞

0

∫

R2
J ′+( f (x) − s) dx ds

︸ ︷︷ ︸
=:I1

+
∫ +∞

0

∫

R2
J ′+( f (x) + s)1{g>s}(x) dx ds

︸ ︷︷ ︸
=:I2

(34)

where we used the fact that 1{g>−s} ≡ 1 for every s > 0. Now, combining (28) and (30) with
�(·) = J ′+(· − s), one sees that

I1 =
∫ +∞

0

∫

R2
J ′+( f ∗(x) − s) dx ds. (35)

On the other hand, combining (28), (29), (30) with �(·) = J ′+(· + s) − J ′+(s) and (32), one
sees that

∫

R2
J ′+( f (x) + s)1{g>s}(x) dx

=
∫

R2

(
J ′+( f (x) + s) − J ′+(s)

)
1{g>s}(x) dx + J ′+(s)|{g > s}|

�
∫

R2

(
J ′+( f (x) + s) − J ′+(s)

)∗
1∗{g>s}(x) dx + J ′+(s)|{g∗ > s}|

=
∫

R2

(
J ′+( f ∗(x) + s) − J ′+(s)

)
1{g∗>s}(x) dx + J ′+(s)|{g∗ > s}|

=
∫

R2
J ′+( f ∗ + (x) + s)1{g∗>s}(x) dx, (36)

so that

I2 �
∫ +∞

0

∫

R2
J ′+( f ∗ + (x) + s)1{g∗>s}(x) dx ds. (37)

Hence, in view of (34), (35) and (37) one easily finds that (33) is satisfied.
It is left to prove that, if f is radially symmetric decreasing and the equality is fulfilled

in (33), then g = g∗ a.e. on R
2. To this aim, fix f radially symmetric and decreasing and

assume that the equality in (33) holds. Then, one can check that f = f ∗ a.e. on R2 and that,
by (36),
∫

R2
J ′+( f (x) + s)1{g>s}(x) dx =

∫

R2
J ′+( f (x) + s)1{g∗>s}(x) dx, for a.e. s � 0.

(38)

Since J ′+ is increasing on R
+ and and f is radially symmetric decreasing, J ′+( f (·) + s) is

radially symmetric decreasing too. Hence there exists a continuous bijection r : R+ → R
+

such that {x ∈ R
2 : J ′+( f (x) + s) − J ′+(s) > t} = Br(t)(0), namely the centered ball of
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radius r(t). In addition, by dominated converge, the function

FC (t) :=
∫

R2
1Br(t)(0)(x)1C (x) dx = |Br(t)(0) ∩ C |

is continuous on R+ for any measurable C ⊂ R
2 fixed.

Now, fix s > 0 such that (38) holds and set C = {x ∈ R
2 : g(x) > s}. Arguing as before,

one can find that FC (t) ≤ FC∗(t). From (36) and (38), using the layer-cake representation,
one obtains that

∫∞
0 FC (t) dt = ∫∞

0 FC∗(t) dt and, hence, FC (t) = F∗
C (t) for every t > 0.

As C∗ is a centered ball too, this implies that for every r > 0 either C,C∗ ⊂ Br (0) or
C,C∗ ⊃ Br (0) up to sets of zero Lebesgue measure, so that C = C∗. Finally, as this is valid
for every s > 0, using again (28) and the layer-cake representation, there results that g = g∗
a.e. on R2. ��

Remark 2.5 Up to someminor modifications, in order to prove the first part of Proposition 2.4
it suffices the simple convexity of J , the strict convexity being necessary for the sole second
part. Hence, (33) holds also for p = 1.

Before concluding the section, we also mention another well known result on rearrange-
ments that will be used in the sequel: if f ∈ H1(R2), then f ∗ ∈ H1(R2) and in particular

‖∇ f ∗‖2 ≤ ‖∇ f ‖2. (39)

Equation (39) is usually called the Pólya-Szegő inequality.

3 Ground states existence: proof of theorem 1.5–(i)

In this section, we prove point (i) of Theorem 1.5, that is the existence of δ-NLS ground
states of mass μ for every μ > 0.

To this aim, the first step is to establish boundedness from below of E|Dμ
in the L2(R2)-

subcritical case. Preliminarily, it is convenient to write the functional E as

E(u) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
‖∇φ‖22 + |q|2‖φ‖22

2‖u‖22
+
(

α − 1 +
log
( |q|
2‖u‖2

)
+ γ

2π

) |q|2
2

− ‖u‖p
p

p
, if u ∈ D \ H1(R2),

1

2
‖∇u‖22 − 1

p
‖u‖p

p, if u ∈ H1(R2),

(40)

whereweuse the decompositionu = φ+qG |q|2
‖u‖22

introduced in (23), for everyu ∈ D\H1(R2).

Proposition 3.1 Let p ∈ (2, 4) and α ∈ R. Then E(μ) > −∞, for every μ > 0.

Proof Let u ∈ Dμ. Assume, first, that u ∈ H1
μ(R2). Therefore, (22) entails

E(u) ≥ 1

2
‖∇u‖22 − Cp

p
‖∇u‖p−2

2 μ,

so that E is bounded from below on H1
μ(R2) since 2 < p < 4.
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Then, assume that u ∈ Dμ \ H1
μ(R2). By (26)

E(u) ≥
(
1

2
‖∇φ‖22 − Mp

p
‖∇φ‖p−2

2 μ

)
+ |q|2‖φ‖22

2μ

+
⎡

⎣

⎛

⎝α − 1 +
log
( |q|
2
√

μ

)
+ γ

2π

⎞

⎠ |q|2
2

− Mp

p
|q|p−2μ

⎤

⎦ , (41)

and here again E is bounded from below in Dμ \ H1
μ(R2) since 2 < p < 4 (note that

the log(|q|)|q|2 term balances the negatively diverging |q|2 term). Summing up, E is lower
bounded on the whole Dμ. ��

Further than boundedness from below, it is also useful to establish a comparison between
the δ-NLS energy infimum and the NLS energy infimum.

Proposition 3.2 Let p ∈ (2, 4) and α ∈ R. Then,

E(μ) < E0(μ) < 0, ∀μ > 0. (42)

In order to prove this, we preliminarily recall without proof a well known result about
NLS ground states (see [53, Theorem II.5] for a proof of the existence part, while the proof
of the properties satisfied by the ground states is a consequence of [43, Theorem 2]).

Proposition 3.3 Let p ∈ (2, 4) and μ > 0. Then, there exists a NLS ground state of mass μ,
i.e. u ∈ H1

μ(R2) such that E0(u) = E0(μ). Moreover, such minimizer is unique, positive and
radially symmetric decreasing, up to multiplication by a constant phase and translation.

The positive minimizer of the two-dimensional standard NLS functional at massμ is usually
called two-dimensional soliton and in the following it will be denoted by Sμ.

Proof of Proposition 3.2 Fix μ > 0 and let Sμ be the unique NLS ground state of mass μ

mentioned in Proposition 3.3. First, note that, as Sμ is positive, it cannot be a δ-NLS ground
state of mass μ. Indeed, if Sμ is a δ-NLS ground state, then Sμ has to satisfy (7) and, in
particular, φλ(0) = (α + θλ)q . However, as mentioned in Sect. 2.2, Sμ ∈ H1(R2) implies
q = 0, so that Sμ ≡ φλ and φλ(0) = 0. Hence, Sμ(0) = 0, which contradicts its positivity.
Summing up, Sμ is not a δ-NLS ground state at mass μ and, thus, there exists v ∈ Dμ such
that E(v) < E(Sμ) = E0(μ), which proves the left inequality in (42).

Concerning the right inequality, fix again μ > 0, and consider v ∈ H1
μ(R2). Now, using

the mass-preserving transformation

vσ (x) = σv(σ x),

there results

E0(vσ ) = σ 2

2
‖∇v‖22 − σ p−2

p
‖v‖p

p.

However, as p ∈ (2, 4), this immediately entails that E0(μ) ≤ E0(vσ ) < 0, for every σ � 1,
which completes the proof. ��

The second step of the proof of point (i) in Theorem 1.5 consists in a characterization of
theδ -NLS energy minimizing sequences of mass μ, i.e. sequences

(un)n ⊂ Dμ such that E(un) → E(μ), as n → +∞.

This is provided by the next two lemmas.
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Lemma 3.4 Let p ∈ (2, 4), α ∈ R and μ > 0. If un = φλ,n +qnGλ is a minimizing sequence
for the δ-NLS energy, then there exists n̄ ∈ N and a constant C > 0, such that |qn | > C for
every n ≥ n̄.

Proof We proceed by contradiction. Suppose that there exists a subsequence of qn , that we do
not rename, such that qn → 0. Then, ‖φλ,n‖22 is bounded since it converges to μ. Moreover,
applying Gagliardo-Nirenberg inequality (25) to definition (11) one obtains

E(un) � 1

2
‖∇φλ,n‖22 + λ

2
(‖φλ,n‖22 − μ) + (α + θλ)

2
|qn |2

−Cp

p

(
‖∇φλ,n‖p−2

2 ‖φλ,n‖22 + |q|p
λ

)

= 1

2
‖∇φλ,n‖22 + λ

2
(‖φλ,n‖22 − μ) + (α + θλ)

2
|qn |2 + o(1)

that guarantees the boundedness of ‖∇φλ,n‖2, since E(un) is bounded from above and p < 4.

We introduce the sequence ξn =
√

μ

‖φλ,n‖2 φλ,n , such that ‖ξn‖22 = μ and ‖∇ξn‖22 =
μ

‖φλ,n‖22
‖∇φλ,n‖22 is bounded. Then, using that and the fact that qn → 0 and φλ,n − un → 0

strongly in every space L p(R2) with 2 � p < ∞, one obtains

E(un) = E0(φλ,n) + o(1) = E0(ξn) + o(1)

� E0(Sμ) + o(1), as n → ∞,

where Sμ is a ground state for E0 at mass μ. So, passing to the limit,

E(μ) � E0(μ),

that contradicts Proposition 3.2 and then qn cannot converge to zero. This conclusion holds
for every subsequence of a minimizing sequence for E , therefore limit points of the complex
sequence qn must be separated from zero, and the proof is complete. ��

Lemma 3.5 Let p ∈ (2, 4), α ∈ R and μ > 0. Let also (un)n be a δ-NLS energy minimizing
sequence of mass μ. Then, it is bounded in Lr (R2), for every r � 2, and there exists
u ∈ D \ H1(R2) such that, up to subsequences,

• un⇀u in L2(R2),
• un → u a.e. in R

2,

as n → +∞. In particular, if one fixes λ > 0 and the decomposition un = φn,λ +qnGλ, then
(φn,λ)n and (qn)n are bounded in H1(R2) and C, respectively, and there exist φλ ∈ H1(R2)

and q ∈ C \ {0} such that u = φλ + qGλ and, up to subsequences,

• φn,λ⇀φλ in L2(R2),
• ∇φn,λ⇀∇φλ in L2(R2),
• qn → q in C,

as n → +∞.

Proof Let (un)n be a δ-NLS energy minimizing sequence of mass μ. By Banach-Alaoglu
Theorem, un⇀u in L2(R2) up to subsequences. Moreover, owing to Lemma 3.4 we can
suppose without loss of generality that for every n the charge qn satisfies |qn | > C > 0, then
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wecan rely on the decomposition introduced in (23) and used in (26), namely un = φn+qnGνn

with νn := |qn |2
‖un‖22

. This decomposition guarantees

‖φn‖2 � ‖un‖2 + |qn |‖Gνn‖2 �
(
1 + 1

2
√

π

)√
μ

for every n, so that the sequence φn is bounded in L2(R2).
Using (40) and (41), we have

E(un) �
(
1

2
‖∇φn‖22 − Mp

p
μ‖∇φn‖p−2

2

)
+ |qn |2‖φn‖22

2μ

+
⎛

⎝α − 1 +
log
( |qn |
2
√

μ
+ γ

)

2π

⎞

⎠ |qn |2
2

− Mp

p
μ|qn |p−2,

(43)

for a suitable Mp > 0. First, we note by (43) that (∇φn)n is bounded in L2(R2) and (qn)n is
bounded in C, so that, up to subsequences, qn → q and q �= 0 since |qn | > C > 0.

Fix λ � C2
μ

withC2 = 1+supn |qn | and consider the decomposition of each un according
to λ, that is un = φn,λ + qnGλ with φλ,n := φn + qn(Gνn −Gλ). Exploiting (19) and (20) and
the estimates on φn and qn , one finds that there exists M1, M2 > 0 such that for every n � n̄

‖φn,λ‖22 ≤ 2

[
‖φn‖22 + 1

4π

( |qn |2
λ

+ μ + 2|qn |2 log λ + log(μ) − 2 log(|qn |)
νn − λ

)]
≤ M1

and

‖∇φn,λ‖22 ≤ 2

[
‖∇φn‖22+

|qn |2
4π

((
λ + |qn |2

μ

)
log λ + log(μ) − 2 log(|qn |)

λ − νn
− 2

)]
≤M2.

Hence (φn,λ)n, (∇φn,λ)n are bounded in L2(R2), which implies, via the Banach-Alaoglu
theorem, thatφn,λ⇀φλ, ∇φn,λ⇀∇φλ in L2(R2), up to subsequences, and that u = φλ+qGλ.
Furthermore, by Rellich-Kondrakov theorem, φn,λ → φλ in Lr

loc(R
2), for every r > 2, so

that un → u a.e. in R
2.

It is then left to prove that (φn,λ)n, (∇φn,λ)n are bounded in L2(R2) also when the
decomposition parameter is smaller than C2

μ
. To this aim, let 0 < λ̃ < C2

μ
. We can use the

decomposition un = φn,̃λ +qnG̃λ, where φn,̃λ = φn,λ +qn(Gλ − G̃λ), with λ ≥ C2
μ
. However,

arguing as before, one can see that qn(Gλ − G̃λ) is bounded in H1(R2), which concludes the
proof. ��

Finally, we have all the tools to prove the existence part of Theorem 1.5

Proof of Theorem 1.5-(i) Let (un)n be a δ-NLS energy minimizing sequence of mass μ.
Assume also, without loss of generality, that it is a subset of Dμ \ H1(R2), so that we
can write un = φn,λ + qnGλ, with qn �= 0 and λ > 0. As a consequence, all the results of
Lemma 3.5 hold and all the following limits hold up to subsequences.

Set m := ‖u‖22. By weak lower semicontinuity of the L2(R2)-norm, m ≤ μ. Moreover,
as q �= 0, m �= 0. Assume, then, by contradiction, that 0 < m < μ. Note that, since un⇀u
in L2(R2), ‖un − u‖22 = μ − m + o(1), as n → +∞. On the one hand, since p > 2 and
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μ

‖un−u‖22
> 1 for n sufficiently large, there results that

E(μ) ≤ E

(√
μ

‖un − u‖22
(un − u)

)

= 1

2

μ

‖un − u‖22
Q(un − u)

− 1

p

(
μ

‖un − u‖22

) p
2

‖un − u‖p
p

<
μ

‖un − u‖22
E(un − u)

and thus

lim inf
n

E(un − u) ≥ μ − m

μ
E(μ). (44)

On the other hand, a similar computation yields

E(μ) ≤ E

(√
μ

‖u‖22
u

)

<
μ

‖u‖22
E(u),

so that

E(u) >
m

μ
E(μ). (45)

In addition, we can also prove that

E(un) = E(un − u) + E(u) + o(1) as n → +∞ (46)

Indeed, since, un⇀u, φn,λ⇀φλ, ∇φn,λ⇀∇φλ in L2(R2) and qn → q , we have that

Q(un − u) = Q(un) − Q(u) + o(1), n → +∞,

while ‖un‖p
p � C and un → u a.e. on R

2, enable one to use the well known Brezis-Lieb
lemma ([21]) in order to get

‖un‖p
p = ‖un − u‖p

p + ‖u‖p
p + o(1), n → +∞.

Combining (44), (45) and (46), one can see that

E(μ) = lim inf
n

E(un) = lim inf
n

E(un − u) + E(u) >
μ − m

μ
E(μ) + m

μ
E(μ) = E(μ),

which is a contradiction. Therefore, m = μ, so that u ∈ Dμ and, in particular, un → u in
L2(R2) and φn,λ → φλ in L2(R2).

It is, then, left to show that

E(u) ≤ lim inf
n

E(un) = E(μ). (47)

However, by all the limits obtained before, it suffices to prove that un → u in L p(R2), in
order to get (47). Now, from (25),

‖un − u‖p
p ≤ Kp

(
‖∇φn,λ − ∇φλ‖p−2

2 ‖φn,λ − φλ‖22 + |qn − q|p
λ

)

and then since ‖∇φn,λ − ∇φλ‖2 is bounded, φn,λ → φλ in L2(R2) and qn → q in C, the
claim is proved. ��
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4 Actionminimizers existence: proof of theorem 1.11 – (i)

The aim of this section is proving point (i) of Theorem1.11, that is the existence/nonexistence
of δ-NLS action minimizers at frequency ω.

Preliminarily, we recall that, in the standard case, NLS-action minimizers are those func-
tions u ∈ N 0

ω such that S0ω(v) = d0(ω), with

d0(ω) := inf
v∈N0

ω

S0ω(v),

S0ω(v) := E0(v) + ω

2
‖v‖22,

N 0
ω := {v ∈ H1(R2) \ {0} : I 0ω(v) = 0}, I 0ω(v) := ‖∇v‖22 + ω‖v‖22 − ‖v‖p

p.

We also note that

Sω(v) = S̃(v) > 0, ∀v ∈ Nω, (48)

with Sω and Nω given by (13) and (14), respectively, and

S̃(v) := p − 2

2p
‖v‖p

p.

Hence, combining with the fact that Sω |H1(R2)
= S0ω and Nω ∩ H1(R2) = N 0

ω, it is straight-
forward that

0 ≤ d(ω) ≤ d0(ω), ∀ω ∈ R. (49)

In addition, since d0(ω) = 0, for every ω � 0 (see, e.g., [32, Lemma 2.4 and Remark 2.5]),
one immediately sees that d(ω) = 0, for every ω ≤ 0, which entails that there cannot be
any δ-NLS action minimizer at frequency ω whenever ω � 0. In view of this we will focus
throughout only on the case ω > 0.

Now, the first step of our discussion is to detect for which ω > 0 the two inequalities in
(49) are strict. To this aim let us introduce the set

N̂ω := {qGλ : λ > 0, q ∈ C \ {0}, Iω(qGλ) = 0},
which is the subset of Nω containing those functions admitting a decomposition with the sole
singular part for at least one value of λ > 0. The next two lemmas characterize the set N̂ω

on varying ω > 0.

Lemma 4.1 Let p > 2, α ∈ R and ω > 0. Then, qGλ ∈ N̂ω if and only if λ > 0 and
q ∈ C \ {0} satisfy

ω − λ

4π
+ λ (α + θλ) > 0 (50)

(with θλ defined by (3)) and

|q| = 1

Kp

[
ω − λ

4π
+ λ (α + θλ)

] 1
p−2

, (51)

with K p = ‖G1‖
p

p−2
p .
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Proof Fix ψ = qGλ with q �= 0 and λ > 0. By (18), Iω(ψ) = 0 if and only if

ω − λ

4πλ
|q|2 + (α + θλ) |q|2 − K

λ
|q|p = 0,

with K := ‖G1‖p
p , which entails

|q|p−2 = 1

K

[
ω − λ

4π
+ λ (α + θλ)

]
.

Since |q|p−2 > 0, (50) and (51) follow. ��
Let us define, now,

ω0 := −�α, (52)

with �α defined by (5).

Lemma 4.2 Let p > 2, α ∈ R, ω > 0 and ω0 as in (52). Therefore:

(i) if ω ∈ (0, ω0), then

N̂ω = {qGλ : λ ∈ (0, λ1(ω)) ∪ (λ2(ω),+∞), q ∈ C \ {0} and satisfies (51)},
with λ1(ω) ∈ (0, ω0) and λ2(ω) > ω0 the sole solutions of the equation

ω − λ

4π
+ λ (α + θλ) = 0;

(ii) if ω = ω0, then

N̂ω = {qGλ : λ > 0, λ �= ω0, q ∈ C \ {0} and satisfies (51)};
(iii) if ω > ω0, then

N̂ω = {qGλ : λ > 0, q ∈ C \ {0} and satisfies(51)}
Proof Let ω > 0 and introduce the function

g(λ) := ω − λ

4π
+ λ (α + θλ) .

Recall that, in view of Lemma 4.1, qGλ ∈ N̂ω if and only if g(λ) > 0 and q satisfies (51),

namely |q| = K−1
p g

1
p−2 (λ). Now, it is straightforward (by (3)) that

lim
λ→0+ g(λ) = ω

4π
> 0 , lim

λ→+∞ g(λ) = +∞
and

g′(λ) = α + θλ.

Hence, one can easily see that g is decreasing for λ < ω0 and increasing for λ > ω0, has
a global minimizer at λ = ω0 and g(ω0) = ω−ω0

4π . Therefore, if ω > ω0, then condition
(50) can be satisfied for every λ > 0. On the contrary, if ω = ω0, then (50) can be satisfied
provided that λ > 0 and λ �= ω0. Finally, if ω < ω0, then g(ω0) < 0 and this implies that
there exist λ1(ω), λ2(ω) > 0 such that (50) does not hold if and only if λ ∈ [λ1(ω), λ2(ω)].
Note that λ1(ω) and λ2(ω) are the only values of λ > 0 for which g vanishes. ��

After this characterization of the set N̂ω, we can estimate the value of d(ω) forω ∈ (0, ω0].
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Proposition 4.3 Let p > 2, α ∈ R. Then, d(ω) = 0, for every ω ∈ (0, ω0].
Proof Let us discuss separately the cases ω ∈ (0, ω0) and ω = ω0. If ω ∈ (0, ω0), then in
view of Lemma 4.2 one can check that

lim
λ→λ1(ω)−,
qGλ∈Nω

|q| = lim
λ→λ1(ω)−

1

Kp

[
ω − λ

4π
+ λ (α + θλ)

] 1
p−2 = 0.

Hence, recalling and (48) and (18),

0 ≤ d(ω) ≤ inf
qGλ∈Nω

Sω(qGλ) � lim
λ→λ1(ω)−,
qGλ∈Nω

Sω(qGλ)

= lim
λ→λ1(ω)−,
qGλ∈Nω

S̃(qGλ) = lim
λ→λ1(ω)−,
qGλ∈Nω

p − 2

2p
‖G1‖p

p
|q|p
λ

= 0.

If, on the contrary, ω = ω0, then one obtains the same result, just arguing as before and
replacing the limits for λ → λ1(ω)− with the limits for λ → ω0. ��

This result has an immediate consequence on the existence of the δ-NLS actionminimizers
below ω0.

Corollary 4.4 Let p > 2, α ∈ R. Then, there exists no δ-NLS action minimizer at frequency
ω, for every ω ∈ (0, ω0].
Proof The claim follows by Proposition 4.3 and (48). ��

On the other hand, in order to discuss the behavior of d(ω)whenω > ω0, it is preliminarily
necessary to further investigate the relation between Sω and S̃.

Lemma 4.5 Let p > 2, α ∈ R and ω > ω0. Then

d(ω) = inf
v∈Ñω

S̃(v), (53)

with

Ñω := {v ∈ D \ {0} : Iω(v) ≤ 0}
(and Iω defined by (15)). Moreover, for any function u ∈ D \ {0},

{
S̃(u) = d(ω)

Iω(u) ≤ 0
⇐⇒

{
Sω(u) = d(ω)

Iω(u) = 0.
(54)

Remark 4.6 In view of this lemma, searching for δ-NLS action minimizers is equivalent to
searching for

u ∈ Ñω such that S̃(u) = inf
v∈Ñω

S̃(v) = d(ω).

Proof of Lemma 4.5 We divide in proof in two parts.
Part (i): proof of (53). On the one hand, if u ∈ Nω, then Sω(u) = S̃(u), so that

inf
v∈Ñω

S̃(v) ≤ d(ω),
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as Ñω ⊃ Nω. On the other hand, fix u ∈ D \ {0} such that Iω(u) < 0 (i.e. u ∈ Ñω \ Nω).
Now, for any fixed β > 0

Iω(βu) = β2Qω(u) − β p‖u‖p
p,

(see (16) for the definition of Qω), and thus Iω(βu) = 0 (i.e. u ∈ Nω) if and only

β = β(u) :=
(
Qω(u)

‖u‖p
p

) 1
p−2

(where we also used that Qω(u) > 0, for every u ∈ D \ {0}, whenever ω > ω0). Moreover,
since Iω(u) < 0, β(u) < 1 and hence

Sω(β(u)u) = S̃(β(u)u) = β(u)p S̃(u) < S̃(u).

As a consequence

d(ω) ≤ inf
v∈Ñω

S̃(v),

which completes the proof.
Part (ii): proof of (54). If u ∈ Nω and Sω(u) = d(ω), then clearly u ∈ Ñω and (by (48))

S̃(u) = d(ω). On the contrary, assume by contradiction that u ∈ Ñω \ Nω. If S̃(u) = d(ω),
then, arguing as before, one obtains that β(u)u ∈ Nω and

Sω(β(u)u) < d(ω),

which is impossible. Hence, if u ∈ Ñω and S̃(u) = d(ω), then u ∈ Nω and Sω(u) = d(ω). ��
We can now prove that the left inequality of (49) is strict.

Proposition 4.7 Let p > 2, α ∈ R. Then, d(ω) > 0, for every ω > ω0.

Proof First, let u ∈ Ñω ∩ H1(R2). By Sobolev inequality, for any p ∈ (1,+∞) there exists
Cp > 0, depending only on p, such that

0 ≥ Iω(u) = ‖∇u‖22 + ω‖u‖22 − ‖u‖p
p ≥ Cp‖u‖2p + ω‖u‖22 − ‖u‖p

p ≥ Cp‖u‖2p − ‖u‖p
p.

Hence, ‖u‖p−2
p ≥ Cp and so

S̃(u) ≥ p − 2

2p
C

p
p−2
p ,

whence

inf
v∈Ñω∩H1(R2)

S̃(v) ≥ p − 2

2p
C

p
p−2
p > 0 (55)

Consider now a function u = φλ + qGλ ∈ Ñω \ H1(R2) (so that q �= 0) and fix λ ∈ (ω0, ω).
Clearly (α + θλ) > 0, and thus there exists a constant C > 0 such that

‖∇φλ‖22 + λ‖φλ‖22 + (ω − λ)‖u‖22 + |q|2 (α + θλ) ≥ C
(‖φλ‖2H1 + |q|2) . (56)

Moreover, by Sobolev inequality we have that

‖u‖p
p ≤ Cp

(‖φλ‖p
p + |q|p) ≤ Cp

(
‖φλ‖p

H1 + |q|p
)

≤ Cp
(‖φλ‖2H1 + |q|2)

p
2 ,
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which implies

‖φλ‖2H1 + |q|2 ≥ 1

Cp
‖u‖2p. (57)

Then, combining (56) and (57),

0 ≥ Iω(u) ≥ C
(‖φλ‖2H1 + |q|2)− ‖u‖p

p ≥ C

Cp
‖u‖2p − ‖u‖p

p

and so, arguing as before, there exists Kp > 0, depending only on p, such that

S̃(u) ≥ Kp

and, consequently,

inf
v∈Ñω\H1(R2)

S̃(v) ≥ Kp > 0. (58)

Finally, combining (55) and (58), we obtain the claim. ��
For what concerns the right inequality in (49), we need to recall preliminarily some of the

main properties of the NLS action minimizers at frequency ω, that is functions u ∈ N 0
ω such

that S0ω(u) = d0(ω) (see Theorem 8.1.5 in [30]).

Proposition 4.8 Let p > 2 and ω > 0. Then, there exists at least an NLS action minimizer
at frequency ω. In particular, such minimizer u is unique, positive and radially symmetric
decreasing, up to gauge and translations invariances.

Then, we can prove that also the right inequality of (49) is strict.

Proposition 4.9 Let p > 2, α ∈ R. Then, d(ω) < d0(ω), for every ω > ω0.

Proof For a fixed ω > ω0, let u be the unique positive NLS action minimizer at frequency ω

provided by Proposition 4.8. Then, u cannot be also a δ-NLS action minimizer at frequency
ω. Indeed, if u were a δ-NLS action minimizer at frequency ω, then u would have to satisfy
(7) and, in particular, φλ(0) = (α + θλ)q , but this can be proved to be a contradiction
with the positivity of u by arguing as in the proof of Proposition 3.2. Hence, there exists
v ∈ Nω \ H1(R2) such that Sω(v) < Sω(u) = d0(ω), which concludes the proof. ��

Finally, we have all the tools to prove the existence part of Theorem 1.11.

Proof of Theorem 1.11-(i) The case ω � ω0 has been already proved by the remarks at the
beginning of the section and by Corollary 4.4. On the contrary, it is convenient to divide
the proof of the case ω > ω0 in four steps. We also note that, as in the proof of point (i) of
Theorem 1.5, many of the following limits has to bemeant as valid up to subsequences.We do
not repeat it for the sake of simplicity and since this does not give rise to misunderstandings.

Step 1: weak convergence of the minimizing sequences. Fix ω > ω0 and let (un)n be
a δ-NLS action minimizing sequence at frequency ω, that is (by Remark 4.6) (un)n ⊂ Ñω

and S̃(un) → d(ω), as n → +∞. In addition, for any fixed λ > 0 we can use for un the
decomposition un = φn,λ + qnGλ. First, we see that, since ‖un‖p

p → 2p
p−2d(ω), (un)n is

bounded in L p(R2). Moreover, as Iω(un) ≤ 0, we get

‖∇φn,λ‖22 + λ‖φn,λ‖22 + (ω − λ)‖un‖22 + (α + θλ) |qn |2 ≤ ‖un‖p
p.
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Now, if one sets λ = ω+ω0
2 , then the three constants in front of ‖φn,λ‖22, ‖un‖22 and |qn |2 are

all strictly positive. Hence, (∇φn,λ)n , (φn,λ)n and (un)n are bounded in L2(R2) and (qn)n is
bounded in C. Thus, there exists φλ ∈ H1(R2), q ∈ C and u ∈ D such that u = φλ + qGλ

and

∇φn,λ⇀∇φλ, φn,λ⇀φλ un⇀u in L2(R2) and qn → q in C.

Step 2: u ∈ D \ H1(R2). Assume, by contradiction, that u ∈ H1(R2), namely that q = 0,
and define the sequence wn := σnφn,λ ∈ H1(R2), with

σn :=
(

1 + Iω(un) − (α + θλ) |qn |2 + (‖un‖p
p − ‖φn,λ‖p

p) + (ω − λ)(‖φn,λ‖22 − ‖un‖22)
‖φn,λ‖p

p

) 1
p−2

,

so that I 0ω(σnφn,λ) = 0. Note that σn is well defined since there exists C > 0 such that
‖φn,λ‖p

p ≥ C for every n ∈ N. Indeed, by Proposition 4.7, ‖un‖p
p is uniformly bounded

away from zero and qn → 0. On the other hand, since |qn |2 → 0, it follows that both
‖φn,λ‖22 − ‖un‖22 → 0 and

∣∣‖un‖p
p − ‖φn,λ‖p

p
∣∣ ≤ C1

∣∣‖un‖p − ‖φn,λ‖p
∣∣ ≤ C2‖un − φn,λ‖p → 0.

As a consequence, since Iω(un) ≤ 0, (σ
p
n )n is bounded from above by a sequence (an)n

converging to 1. Thus, as I 0ω(wn) = 0 and S̃(un) → d(ω),

d0(ω) + o(1) = S̃(wn) = σ
p
n S̃
(
φn,λ

)
� an

(
S̃(un) + o(1)

) = S̃(un) + o(1) = d(ω) + o(1),

that implies that d(ω) ≥ d0(ω), which contradicts Proposition 4.9.
Step 3: u ∈ Ñω. In viewofStep2, it is left to prove that Iω(u) ≤ 0.Assumeby contradiction

that Iω(u) > 0. From boundedness of φn,λ in H1(R2) and qn → q , one sees that un → u
in L p

loc(R
2) and hence un → u a.e. in R

2. As (un)n is bounded in L p(R2), one can use
Brezis-Lieb lemma to get ‖un‖p

p − ‖un − u‖p
p − ‖u‖p

p → 0, and thus

S̃(un) − S̃(un − u) − S̃(u) → 0. (59)

Since, in addition, qn → q , ∇φn,λ⇀∇φλ, φn,λ⇀φλ and un⇀u in L2(R2) and Qω is
quadratic, one can also check that

Iω(un) − Iω(un − u) − Iω(u) → 0. (60)

Let us prove now that Iω(un) → 0. Assume by contradiction that Iω(un) �→ 0. As ‖un‖p
p ≤

C , for some C > 0,

−C ≤ Iω(un) ≤ 0.

Hence, without loss of generality, we can suppose that Iω(un) → −β, with β > 0. Consider,
then, the sequence vn := θnun , with

θn :=
(

1 + Iω(un)

‖un‖p
p

) 1
p−2

,

so that Iω(vn) = 0. Thus, an easy computation shows that

θn → l :=
(
1 − β(p − 2)

2pd(ω)

) 1
p−2

< 1.
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As a consequence,

S̃(vn) = S̃(θnun) = θ
p
n S̃(un) → l pd(ω) < d(ω),

which is a contradiction. Hence Iω(un) → 0. Finally, looking back at (60), since Iω(u) > 0
and Iω(un) → 0,

Iω(un − u) = Iω(un) − Iω(u) + o(1) = −Iω(u) + o(1),

entailing that Iω(un − u) → −Iω(u) < 0. Choose, then, n̄ such that Iω(un − u) < 0 for
every n ≥ n̄. Since d(ω) ≤ S̃(un − u) and S̃(u) > 0, (59) yields

d(ω) � lim
n

S̃(un − u) = d(ω) − S̃(u) < d(ω),

which is again a contradiction and entails Iω(u) � 0.
Step 4: conclusion. As boundedness in L p(R2) entails that un⇀u in L p(R2), by weak

lower semicontinuity

S̃(u) ≤ lim inf
n→+∞ S̃(un) = d(ω),

which concludes the proof. ��

5 Further properties: proof of point (ii) of theorems 1.5 and 1.11

In this section we prove point (ii) in Theorem 1.5 and Theorem 1.11, that concern the features
of δ-NLS ground states and δ-NLS action minimizers. We point out that, by Lemma 1.10,
proving Theorem 1.11 implies the conclusion of Theorem 1.5.

Before proving (ii) of Theorem 1.11, let us give an informal description of the strategy.
First, we establish that ground states minimize the functional Qω defined in (16) on the
constraint

Dp
ω :=

{
v ∈ D : ‖v‖p

p = 2p

p − 2
d(ω)

}
. (61)

Second, given a minimizer u of such a problem without the required property (i.e., positivity
and radially symmetric monotonicity), we exhibit through rearrangement a function ũ such
that

‖ũ‖p > ‖u‖p and Qω(̃u) ≤ Qω(u).

Moreover, noting that there exists β < 1 such that

‖βũ‖p
p = ‖u‖p

p and Qω(βũ) < Qω(̃u),

we find a better competitor with respect to the minimizer, and obtain a contradiction.

Remark 5.1 Unfortunately, such a strategy is not applicable directly to the minimizers of the
energy E or of the action Sω. More in detail, applying to E the method described above, we
obtain

‖ũ‖r > ‖u‖r for every r ≥ 2 and E (̃u) < E(u).

However, since the mass constraint is not fulfilled by ũ, we note that there exists β < 1 such
that ‖βũ‖22 = ‖u‖22, but here, since β2 > β p and E (̃u) < 0, this yields

E(βũ) = 1

2
β2Q(̃u) − 1

p
β p‖ũ‖p

p > β pE (̃u) > E (̃u),
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that provides an inequality in the opposite direction with respect to the aimed one.
Analogously, applying the same procedure to the minimization of the action Sω on the

Nehari manifold, there results

Iω(̃u) < 0 and Sω(̃u) < Sω(u).

However, if we set

β̄ :=
(
Qω(̃u)

‖ũ‖p
p

) 1
p−2

,

then β̄ < 1, Iω(β̄ũ) = 0 and

Sω(β̄ũ) = 1

2
β̄2Qω(̃u) − 1

p
β̄ p‖ũ‖p

p > Sω(̃u). (62)

Indeed, computing

d

dβ
Sω(βũ) = βQω(ũ) − β p−1‖ũ‖p

p,

we find that d
dβ

Sω(βũ) > 0 if and only if 0 < β < β̄, and d
dβ

Sω(βũ)|β=β̄ = 0, so that

Sω(β̄ũ) > Sω(̃u). In other words, here again (62) is an inequality in the opposite direction
with respect to the aimed one.

We now start by proving (ii)(a), namely the coexistence of the regular and the singular
part for a δ-NLS action minimizer.

Proposition 5.2 Let p > 2, α ∈ R and ω > ω0. Let also u be a δ-NLS action minimizer at
frequency ω. Then, q �= 0 and φλ := u − qGλ �= 0, for every λ > 0.

Proof Let λ > 0 and consider the decomposition u = φλ + qGλ. Assume by contradiction
that φλ = 0. Since u �= 0, clearly q �= 0. As u has to satisfy (7), then α + θλ = 0, so that
λ = ω0. Since u has to satisfy also (8), with some computations one obtains that q has to
satisfy

ω − ω0 + |q|p−2|Gω0(x)|p−2 = 0, ∀x ∈ R
2 \ {0},

which is clearly not possible.
On the other hand, assume by contradiction that q = 0, or equivalently that u ∈ H1(R2).

This would imply that d(ω) = d0(ω), which contradicts Proposition 4.9. ��
Remark 5.3 Proposition 5.2 marks a difference with the model (2). Indeed, it was proven in
[6, 7] that for any bound state there exists a value of λ > 0 such that the regular part of the
decomposition vanishes.

We can move to the proof of point (ii)(b). Preliminarily, we note that, up to the multipli-
cation by a phase factor, a δ-NLS action minimizer u = φλ + qGλ can be assumed to display
a charge q > 0. Indeed, since Gλ(x) > 0 for every x ∈ R

2 \ {0} and q �= 0, it is sufficient
to multiply u times eiθ in such a way that qeiθ > 0. In particular, if θ satisfies the equation
eiθ = q̄

|q| , then qe
iθ = |q|. As a consequence, we will always assume throughout that q > 0.

The first key point for the proof of (ii)(b) is the switch from the minimization of Sω

constrained on Nω to the minimization of Qω constrained on Dp
ω , which is introduced in the

next result.
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Proposition 5.4 Let p > 2, α ∈ R and ω > ω0. Then,

inf
v∈Dp

ω

Qω(v) = 2p

p − 2
d(ω),

with Dp
ω defined in (61), and there exists a function u ∈ Dp

ω such that Qω(u) = 2p
p−2d(ω).

In particular, there results that
⎧
⎨

⎩
Qω(w) = 2p

p − 2
d(ω)

w ∈ Dp
ω

⇐⇒
{
Sω(w) = d(ω)

w ∈ Nω
(63)

Remark 5.5 In view of this result, one sees that, in order to study the features of δ-NLS action
minimizers at frequency ω, it is sufficient (in fact, equivalent) to study the minimizers of Qω

on Dp
ω .

Proof of Proposition 5.4 Let u be δ-NLS action minimizer at frequency ω. Then, by
Lemma 4.5 u is a minimizer of S̃ on Ñω, so that ‖u‖p

p ≤ ‖v‖p
p for every v ∈ Ñω,

‖u‖p
p = 2p

p−2d(ω) and Iω(u) = 0.

Let v ∈ Dp
ω . First we see that Iω(v) ≥ 0 = Iω(u). Indeed, if we assume by contradiction

that there exists v ∈ D \{0} such that Iω(v) < 0, then by Lemma 4.5 v cannot be a minimizer
of S̃ on Ñω, and thus ‖v‖p

p >
2p
p−2d(ω), which contradicts the fact that v ∈ Dp

ω . Therefore,

u is a minimizer of Iω on Dp
ω , which yields, by using

Iω(u) = Qω(u) − ‖u‖p
p = Qω(u) − 2p

p − 2
d(ω),

that u is also a minimizer of Qω on Dp
ω and that Qω(u) = 2p

p−2d(ω).
This clearly proves the first part of the proposition and the reverse implication in (63). It is,

then, to prove that every minimizer of Qω on Dp
ω is a δ-NLS action minimizer at frequency

ω. To this aim, let w be a minimizer of Qω on Dp
ω . It is straightforward that

Sω(w) = S̃(w) = p − 2

2p
‖w‖p

p = d(ω)

and, by combining the two equations in (17),

Iω(w) = Qω(w) − ‖w‖p
p = 2Sω(w) − p − 2

p
‖w‖p

p = 2d(ω) − 2d(ω) = 0,

which conclude the proof. ��
We can now prove the first part of (ii)(b), which is the positivity up to gauge invariance.

Proposition 5.6 Let p > 2, α ∈ R and ω > ω0. Then, δ-NLS action minimizers at frequency
ω are positive, up to gauge invariance.

Proof Let u be a δ-NLS action minimizer at frequency ω. Up to gauge invariance, it is not
restrictive to assumeq > 0. In addition, byProposition 5.4,u is also aminimizer ofQω on Dp

ω .
Now, let us choose λ = ω in the decomposition of u and define � := {x ∈ R

2 : φω(x) �= 0}.
By Proposition 5.2, |�| > 0. Then, we can write

u(x) = φω(x) + qGω(x) = eiη(x)|φω(x)| + qGω(x), ∀x ∈ � \ {0},
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for some η : � → [0, 2π). If one can prove that η(x) = 0 for a.e. x ∈ � \ {0}, then the proof
is complete as this entails that φω(x) = |φω(x)| � 0 for every x ∈ R

2, whence u(x) > 0 for
every x ∈ R

2 \ {0}.
To this aim, assume by contradiction that η �= 0 on �1 ⊂ (� \ {0}), with |�1| > 0.

Letting ũ := |φω| + qGω (note that u = ũ in R
2 \ �1), there results that

|u(x)|2 = |φω(x)|2 + q2G2
ω(x) + 2 cos(η(x))|φω(x)|Gω(x)

< |φω(x)|2 + q2G2
ω(x) + 2|φω(x)|Gω(x) = |̃u(x)|2, ∀x ∈ �1.

Hence, as |�1| > 0,

‖u‖p
p =

∫

R2

(|u|2)
p
2 dx <

∫

R2

(|̃u|2)
p
2 dx = ‖ũ‖p

p. (64)

On the other hand, it is straightforward to check that Qω(̃u) ≤ Qω(u). Now, from (64) and
the positivity of Qω, there exists β ∈ (0, 1) such that ‖βũ‖p

p = ‖u‖p
p = 2p

p−2d(ω) and

Qω(βũ) = β2Qω(̃u) < Qω(u),

which contradicts the fact that u minimizes Qω on Dp
ω . Thus η = 0 a.e. on � \ {0}, which

concludes the proof. ��
The proof of the previous result also entails that for, λ = ω, the regular part φω of a

δ-NLS action minimizer at frequency ω is nonnegative. The following corollary points out
that, whenever λ > ω, it is in fact positive.

Corollary 5.7 Let p > 2, α ∈ R and ω > ω0. Let also u be a δ-NLS action minimizer at
frequency ω. Then the regular part φλ := u − qGλ is positive for every λ > ω, up to gauge
invariance.

Proof Let u be a positive δ-NLS action minimizer at frequency ω and consider the decom-
position u = φλ + qGλ for a fixed λ > ω. First, using (21) and q > 0, we see that

φλ(x) = φω(x) + q(Gω(x) − Gλ(x)) > 0, ∀x ∈ R
2 \ {0}.

Then, one concludes the proof just recalling (24). ��
Finally, we may address the problem of the radially symmetric monotonicity of δ-NLS

action minimizers.

Proposition 5.8 Let p > 2, α ∈ R and ω > ω0. Then, δ-NLS action minimizers at frequency
ω are radially symmetric decreasing, up to gauge invariance.

Proof Without loss of generality let u be a positive δ-NLS action minimizers at frequency
ω. Consider also the decomposition u = φω + qGω, corresponding to the choice λ = ω. In
order to prove the claim is is sufficient to show that φω = φ∗

ω, with φ∗
ω the radially symmetric

nonincreasing rearrangement of φω.
Assume, by contradiction, that φω �= φ∗

ω, that is φω is not radially symmetric nonincreas-
ing. Then, define the function ũ = φ∗

ω +qGω. By (39) and (31), we have ‖∇φ∗
ω‖2 ≤ ‖∇φω‖2

and ‖φ∗
ω‖2 = ‖φω‖2, so that

Qω(̃u) ≤ Qω(u).
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Now, applying Proposition 2.4 with f = qGω and g = φω, there results that ‖ũ‖p
p > ‖u‖p

p,
as φω �= φ∗

ω. Therefore, (as Qω is positive) there exists β < 1 such that ‖βũ‖p
p = ‖u‖p

p and

Qω(βũ) = β2Qω(̃u) < Qω(̃u) ≤ Qω(u),

but, via Proposition 5.4 (arguing as in the proof of Proposition 5.6), this contradicts that u is
a δ-NLS action minimizer, thus concluding the proof. ��

We can now sum up all the previous results to prove point (ii) of Theorems 1.5 and 1.11 .

Proof of Theorems 1.5 and 1.11 -(ii) Let u be a δ-NLS action minimizer at frequency ω > ω0.
Then, by Proposition 5.2, Proposition 5.6, Corollary 5.7 and Proposition 5.8, u satisfies all
the properties stated in (ii).

Let p ∈ (2, 4) and u be a δ-NLS ground state of mass μ. Combining Lemma 1.10 and
point (i) of Theorem 1.11 one sees that u is also a δ-NLS action minimizer at some frequency
ω > ω0 (in particular, ω = μ−1(‖u‖p

p − Q(u))). Then, one concludes by point (ii) of
Theorem 1.11. ��
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Appendix A. Ground states, actionminimizers and bound states

In this section, we show that both δ-NLS ground states and δ-NLS action minimizers are
δ-NLS bound states, i.e. they satisfy (7) and (8).

First, we note that (using either the Lagrange Multipliers theorem in the former case or
the simple Du Bois-Reymond equation in the latter case), if u is either a δ-NLS ground state
of mass μ or a δ-NLS action minimizers at frequency ω, then it satisfies, for any fixed λ > 0,

〈∇χλ,∇φλ〉 + λ〈χλ, φλ〉 + (ω − λ)〈χ, u〉 + ξ̄q (α + θλ) − 〈χ, |u|p−2u〉 = 0

∀χ = χλ + ξGλ ∈ D. (65)

Whenever u is a δ-NLS ground state of massμ, ω = μ−1(‖u‖p
p −Q(u)). Now, letting ξ = 0

in (65), so that χ = χλ ∈ H1(R2), there results

〈∇χ,∇φλ〉 + 〈χ,ωφλ + (ω − λ)qGλ − |u|p−2u〉 = 0 ∀χ ∈ H1(R2).

Hence, as ωφλ + (ω − λ)qGλ − |u|p−2u ∈ L2(R2), φλ ∈ H2(R2) and, by density,

− �φλ + ωφλ + (ω − λ)qGλ − |u|p−2u = 0 in L2(R2), (66)

which is equivalent to (8). On the other hand, letting χλ = 0 and ξ = 1 in (65), so that
χ = Gλ, there results

〈Gλ, (ω − λ)u − |u|p−2u〉 + q (α + θλ) = 0.

Finally, using (66), we obtain

〈Gλ, (−� + λ)φλ〉 = q (α + θλ) ,

which is equivalent to φλ(0) = q (α + θλ), so that also (7) is satisfied.
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Appendix B. Energy and action

Proof of Lemma 1.10 Let u be a δ-NLS ground state at massμ and letω > 0 be the associated
Lagrange multiplier, given by ω = μ−1(‖u‖p

p − Q(u)). Assume, by contradiction, that there
exists v = ηλ + ξGλ ∈ Nω such that Sω(v) < Sω(u) and let σ > 0 be such that ‖σv‖22 = μ.
Then

Sω(σv) = σ 2

2
Qω(v) − σ p

p
‖v‖p

p.

Computing the derivative with respect to σ and using that v ∈ Nω, we get

d

dσ
Sω(σv) = σQω(v) − σ p−1‖v‖p

p = σ Iω(v) + (σ − σ p−1)‖v‖p
p = σ(1 − σ p−2)‖v‖p

p,

which is greater than or equal to zero if and only if 0 < σ � 1. Hence Sω(σv) ≤ Sω(v), for
every σ > 0. Therefore, since Sω(σv) ≤ Sω(v) < Sω(u),

E(σv) + ω

2
‖σv‖22 < E(u) + ω

2
‖u‖22,

and using the fact that ‖σv‖22 = ‖u‖22 = μ, this entails E(σv) < E(u). However, as this
contradicts the assumptions on u, we obtain that u is a δ-NLS action minimizer at frequency
ω. ��

Appendix C. Stability of the set of ground states

In this section, we show that the set of ground states at mass μ, denoted by Aμ, is orbitally
stable. Although this is an expected result, we report it here for the sake of completeness. The
proof is obtained adaptating the arguments in [31] and collecting some other results already
present in the literature.

Fix λ > 0. Let us recall that the energy domain (9) can be endowed with the natural norm

‖ψ‖D := (‖∇φλ‖22 + λ‖φλ‖22 + (α + θλ)|q|2)
1
2 , (67)

and denote by D∗ the dual space of D. In view of (67), the expression of the energy E in
(11) can be written as

E(ψ) = 1

2
‖ψ‖2D − λ

2
‖ψ‖22 − 1

p
‖ψ‖p

p.

Let us then consider the Cauchy problem
{
i ∂ψ

∂t = Hαψ − |ψ |p−2ψ

ψ(0) = ψ0,
(68)

and define its weak solutions as follows.

Definition C.1 Let I be an open interval such that 0 ∈ I ⊂ R. A function ψ ∈ L∞(I ; D)

is called a local weak solution to (68) on I if ψ belongs to L∞(I ; D) ∩ W 1,∞(I ; D∗) and
satisfies (68) in the sense of L∞(I ; D∗). In particular, if I coincides with R, then ψ is called
a global weak solution to (68).
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The next result concerns the global well-posedness in D and is the first ingredient to prove
the orbital stability of Aμ via [31]. The proof is obtained by combining inequality [24, eq.
(2.11)] and the results about the local well-posedness obtained in [36, Appendix B].

Proposition C.2 (Global well-posedness in D) Let 2 < p < 4. Then, for any ψ0 ∈ D there
exists a unique global weak solution

ψ ∈ C(R; D) ∩ C1(R; D∗)

of (68). Moreover, the following conservation laws hold:

‖ψ(t)‖L2(R2) = ‖ψ0‖L2(R2), ∀ t ∈ R, (69)

E(ψ(t)) = E(ψ0), ∀ t ∈ R. (70)

Proof The proof is an application of [56, Theorem 2.4], that deals with abstract NLSE in the
spirit of [30], but with general self-adjoint operators in the place of the standard Laplacian.
The hypothesis to be verified are the six conditions [56, (G1)–(G6)] on the nonlinear term
g(ψ) = −|ψ |p−2ψ of the equation, together with a uniqueness result for the solutions to
(68). The first five conditions (G1)–(G5) and the uniqueness result are proved respectively
in [36, Lemma B.1] and [36, Lemma B.2] and are sufficient for the local well-posedness in
D. We are left to prove hypothesis (G6), that reads in our context as follows:

(G6) ∃ ε ∈ (0, 1] and C0(·) � 0 : 1

p
‖ψ‖p

p � 1 − ε

2
‖ψ‖2D + C0(‖ψ‖2), ∀ ψ ∈ D.

However, by using [24, eq. (2.11)] and inequality ab � εar + C(ε)b
r

r−1 , with r = 2
p−2 ,

there results

1

p
‖ψ‖p

p � Cp

p
‖ψ‖p−2

D ‖ψ‖22 � εCp

p
‖ψ‖2D + C(ε)Cp

p
‖ψ‖

4
4−p
2 ,

which proves (G6) and concludes the proof. ��
Now, we can introduce the definition of stability and prove the aimed result.

Definition C.3 Fix μ > 0. We say that the set of ground states Aμ is orbitally stable if for
any ε > 0 there exists δ > 0 such that for any ψ0 ∈ D satisfying infu∈Aμ ‖ψ0 − u‖D < δ,
the unique global solution ψ(t) of (68) satisfies infu∈Aμ ‖ψ(t) − u‖D < ε for any t ∈ R.

Proposition C.4 For any μ > 0 the set of ground states Aμ is orbitally stable.

Proof We prove it by contradiction as in [31]. Suppose that Aμ is not orbitally stable. This
means that there exists ε0 > 0, a sequence (ψn

0 )n ⊂ D and a sequence (tn)n ⊂ R such that

inf
u∈Aμ

‖ψn
0 − u‖D → 0, as n → +∞, (71)

but

inf
u∈Aμ

‖ψn(tn) − u‖D � ε0, for every n ∈ N, (72)

where ψn is the unique global solution of (68) with initial datum ψn
0 provided by Proposi-

tion C.2.
The convergence in (71) entails the existence of a sequence (un)n ⊂ Aμ such that ‖ψn

0 −
un‖D → 0 as n → +∞. It is straightforward to check that ‖ψn

0 ‖22 → μ as n → +∞.
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Moreover, being (un) ⊂ Aμ, they satisfy E(un) = E(μ) < 0 and, applying [24, eq. (2.11)],
it turns out that ‖un‖D and ‖un‖p are bounded. As a consequence, since ‖ψn

0 ‖D ≤ ‖ψn
0 −

un‖D + ‖un‖D , the boundedness of ‖ψn
0 ‖D follows. Moreover, the same argument together

with [24, eq. (2.11)] can be used to prove the boundedness of ‖ψn
0 ‖p . By using these estimates,

one can show that E(ψn
0 ) → E(μ). Indeed,

E(ψn
0 ) − E(un) � 1

2

∣∣‖ψn
0 ‖2D − ‖un‖2D

∣∣+ λ

2

∣∣‖ψn
0 ‖22 − ‖un‖22

∣∣+ 1

p

∣∣‖ψn
0 ‖p

p − ‖un‖p
p
∣∣

�
(‖ψn

0 ‖D + ‖un‖D
) ‖ψn

0 − un‖2D + (‖ψn
0 ‖2 + ‖un‖2

) ‖ψn
0 − un‖2

+ max{‖ψn
0 ‖p−1

p , ‖un‖p−1
p }‖ψn

0 − un‖p → 0 as n → +∞.

In view of (69) and (70), we have that

‖ψn(tn)‖22 → μ and E(ψn(tn)) → E(μ) as n → +∞. (73)

By (73) and [24, eq. (2.11)], both ‖ψn(tn)‖D and ‖ψn(tn)‖p are bounded. Moreover, if

we define ξn :=
√

μ

‖ψn(tn)‖2 ψ
n(tn), then ‖ξn‖22 = μ and, by using ‖ψn(tn)‖22 → μ and the

boundedness of ‖ψn(tn)‖D and ‖ψn(tn)‖p ,

E(ξn) = E(ψn(tn)) + o(1), as n → +∞.

This entails that ξn is a minimizing sequence for E of mass μ. Hence, arguing as in the proof
of Theorem 1.5, one has that there exists u ∈ Aμ such that ‖ξn − u‖D → 0 as n → +∞.
By the definition of ξn and the facts that ‖ψn(tn)‖22 → μ as n → +∞ and ‖ψn(tn)‖D is
bounded, there results that

‖ψn(tn) − u‖D → 0 as n → +∞,

being in contradiction with (72).

Remark C.5 Proposition C.4 deals with the orbital stability of the whole set of ground states
Aμ. As explained in [31], a natural improvement of such a result is the orbital stability of
a single ground state (up to gauge invariace), which is a straightforward consequence of
Proposition C.4 as soon as one can prove the uniqueness of the ground state (up to gauge
invariace). This is true, for instance, for the standard L2-subcritical NLSE [49] and could be
an interesting topic to be studied in the context of the δ−NLSE in a forthcoming paper.

��
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