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Abstract
We consider an incompressible chemotaxis-Navier-Stokes system with nonlinear diffusion
and rotational flux

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = �nm − ∇ · (nS(x, n, c) · ∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − nc, x ∈ �, t > 0,
ut + κ(u · ∇)u + ∇ P = �u + n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0

in a bounded domain � ⊂ R
N (N = 2, 3) with smooth boundary ∂�, where κ ∈ R. The

chemotaxtic sensitivity S is a given tensor-valued function fulfilling |S(x, n, c)| ≤ S0(c) for
all (x, n, c) ∈ �̄ × [0,∞) × [0,∞) with S0(c) nondecreasing on [0,∞). By introducing
some new methods (see Sect. 4 and Sect. 5), we prove that under the condition m > 1 and
some other proper regularity hypotheses on initial data, the corresponding initial-boundary
problem possesses at least one global weak solution. The present work also shows that
the weak solution could be bounded provided that N = 2. Since S is tensor-valued, it
is easy to see that the restriction on m here is optimal, which answers the left question in
Bellomo-Belloquid-Tao-Winkler (MathModelsMethods Appl Sci 25:1663–1763, 2015) and
Tao-Winkler (Ann Inst H Poincaré Anal Non Linéaire 30:157–178, 2013). And obviously,
this work improves previous results of several other authors (see Remark 1.1).
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1 Introduction

In this paper, we consider the following chemotaxis-Navier-Stokes system with nonlinear
diffusion and general sensitivity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = �nm − ∇ · (nS(x, n, c) · ∇c), x ∈ �, t > 0,

ct + u · ∇c = �c − nc, x ∈ �, t > 0,

ut + κ(u · ∇)u + ∇ P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

(∇nm − nS(x, n, c) · ∇c) · ν = ∂νc = 0, u = 0, x ∈ ∂�, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ �

(1.1)

in a bounded domain � ⊂ R
N with smooth boundary ∂�, where m > 1, κ ∈ R and ν

denotes the unit outward normal vector field on ∂�. The chemotaxis sensitivity S(x, n, c) is
a tensor-valued function satisfying

S ∈ C2(�̄ × [0,∞)2;RN×N ) (1.2)

and
|S(x, n, c)| ≤ S0(c) for all (x, n, c) ∈ � × [0,∞)2 (1.3)

with some nondecreasing S0 : [0,∞) → R.Here N denotes the space dimension, N = 2, 3.
Such system, coupling chemotaxis equations with fluid equations, is proposed to describe
the populations of bacteria (or cells) suspended in sessile drops of liquid ([3, 4, 9, 36]).
It takes into account not only the convection of bacteria and signal, but also the influence
of fluid. In this model, n = n(x, t), c = c(x, t), u = u(x, t) and P = P(x, t) represent
the population density, the concentration of chemical signals, the fluid velocity field and
the associated pressure, respectively. φ is the potential of gravitational field and κ denotes
the strength of nonlinear fluid convection. Before establishing our main results, we give the
following background knownledge.
Keller-Segel model. In 1970, Keller and Segel ([17]) proposed the mathematical system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nt = ∇ · (D(n)∇n) − ∇ · (nS(n)∇c), x ∈ �, t > 0,

ct = �c − c + n, x ∈ �, t > 0,

(D(n)∇n − nS(n)) · ν = ∇c · ν = 0, x ∈ ∂�, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), x ∈ �

in a bounded domain � ⊂ R
N , where n and c are defined as before. The model reflects

the interaction between the random diffusion and aggregation of bacteria to the high con-
centration chemical signals. Extensive mathematical literature has grown on this model and
its variants, and the results are rather complete. The most important results are around the
existence/boundedness, blow-up and large time behavior. For example, it is well-known that,
when D(n) ≡ 1 and S(n) ≡ 1, solutions to this system may blow up for suitably large initial
data in the case N ≥ 3 ([45]) and N = 2 ([12]). When D(n) decays exponentially and
satisfies S(s)

D(s) ≤ K sα with constant K > 0 and α ∈ (0, 1), the solution is globally bounded
in a two-dimensional bounded domain ([6]). Horstmann and Winkler also showed that all
solutions to the system are global and uniformly bounded in the case S(n) ≤ C(1 + n)−α

with α > 1− 2
N , while they may blow up under the requirements that � ⊂ R

N (N ≥ 2) is a
ball and S fulfills S(n) > Cn−α with α < 1 − 2

N ([14]). Readers can refer to [1, 13, 18, 35,
37, 41, 42, 56–61] for more revelent results about this model and its variants.
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Chemotaxis-fluid model. There are many more complex situations in the real life. The
change of living environment also plays an important role in immigration. For example,
bacteria, such as Bacillus subtilis, live in a thin layer of liquid near solid air-water contact.
In such a flow environment, the mutual interaction between cell and fluid may be significant.
Considering that the motion of fluid is described by the incompressible (Navier-)Stokes
equations, such cell-fluid interaction is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nt + u · ∇n = ∇ · (D(n)∇n) − ∇ · (nS(x, n, c) · ∇c), x ∈ �, t > 0,

ct + u · ∇c = �c + h(n, c), x ∈ �, t > 0,

ut + κ(u · ∇)u + ∇ P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

where n, c, u, κ and P as well as φ are defined the same as before. Results around this model
are influenced by the scalar function S, h andφ.When h(n, c) = n−c, whichmeans the signal
is produced by cells, Liu and Wang ([23]) showed that the solution of this model is global in
time and bounded for κ 
= 0 and N = 3 or κ = 0 and N = 2, 3with S(x, n, c) = ξ0

(1+μc)2
. On

the other hand, in a three-dimensional setup involving the tensor-valued sensitivity S(x, n, c)
satisfying |S(x, n, c)| ≤ S0(1 + n)−α , global weak solutions have been shown to exist in
[25] for α > 3

7 and global very weak solutions were obtained for α > 1
3 in [39] (see also

[16]), which in light of the known results for the fluid-free system mentioned above is an
optimal restriction on α. We next address the case that m 
= 1. For D(n) = mnm−1 and
S(x, n, c) = 1, a globally defined weak solution and at least one global bounded solution
can be asserted in the case m > 2 ([58]) and κ = 0 and m > 4

3 ([59]), respectively. Black [2]
showed existence of global (very) weak solutions in the systemwithm 
= 1 and tensor-valued
sensitivity under some largeness condition for m. When h(n, c) = −ng(c), cells consume
the signal only, where g(c) models the per capita consumption rate. One well-known result
is that the system possesses a unique global classical solution converging to the spatially
homogeneous equilibrium (n̄0, 0, 0) with n̄0 = 1

|�|
∫

�
n0 as t → ∞ in two-dimensional

space ([44, 46]). In the case N = 3, a globally defined weak solution exists under the
requirements that S(x, n, c) = 1, D(n) = 1 and κ 
= 0 ([49]). After this, it was shown by
Zhang and Li that the same result held in the case m > 2

3 and D(n) = nm−1 ([54]). For more
literature, readers can refer to [5, 7, 8, 22, 26, 47, 55, 63, 65] and the references therein.

In order to adapt to more realistic modeling assumptions, further simulation shows that the
directional migration of cells may not be parallel to the gradient of the chemical substances.
Instead, it involves the rotational flux component, which requires S to be a matrix-valued
function in the prototype, for example,

S = α

(
1 0

0 1

)

+ β

(
0 −1

1 0

)

, α > 0, β ∈ R

in two-dimensional case. It brings a great mathematical challenge to the proof, since the loss
of some energy structure, which is the key to analyze the scalar-valued S. Consequently, new
methods should be found. Themost difficult part is to deal with the term∇ ·(nS(x, n, c)·∇c).
In the case of scalar-valued S = S(c), the main estimates on S are based on the following
inequality (see [44, 46])

d

dt

{∫

�

n ln n + 1

2

∫

�

S(c)|∇c|2
g(c)

}

+
∫

�

|∇n|2
n

+ 1

C

∫

�

|∇c|4
c3

≤ C
∫

�

|u|4, t > 0

(1.4)
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with some constant C . While if S is of tensor-value, the natural energy inequality like (1.4)
would not be available. Indeed, if S is of tensor-value, the following strongly coupling term

∫

�

n p−1|S(x, n, c)||∇n||∇c| (p > 1)

is indispensable. For example, in [48],Winkler constructs a generalized solution to the system
{

nt = �n − ∇ · (nS(x, n, c) · ∇c), x ∈ �, t > 0,

ct = �c − nc, x ∈ �, t > 0,

where S is a tensor-valued sensitivity with |S(x, n, c)| ≤ C S0(c) with S0 nondecreasing on
[0,∞). And in two-dimensional situations, for a chemotaxis-Stokes system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nt + u · ∇n = ∇ · (D(n)∇n) − ∇ · (nS(x, n, c) · ∇c), x ∈ �, t > 0,

ct + u · ∇c = �c − nc, x ∈ �, t > 0,

ut + κ(u · ∇)u + ∇ P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0

(1.5)

with D(n) = 1, it is proved that a global mass-preserving generalized solution could be
established; besides, there exists T > 0 such that the solution satisfies

(n, c, u) ∈ C2,1(�̄ × [T ,∞)) × C2,1(�̄ × [T ,∞)) × C2,1(�̄ × [T ,∞);R2)

and
(n(·, t), c(·, t), u(·, t)) → (n̄0, 0, 0) in L∞(�) as t → ∞

in [52, 53]. When N = 3, D(n) = mnm−1 and S is scalar-value, many authors study the
global existence and boundedness of the solution of (1.5) and weaken the restriction on

m step by step. In [9], it requires m ∈ [ 7+
√
217

12 , 2]. In 2013, m > 8
7 is need for locally

bounded solutions ([34]). In [51], the lower bound of m is extended to 9
8 . Without regard

to boundedness, the range of m could be extended to cover the whole range m ∈ (1,∞)

([8]) and then m ∈ ( 23 ,∞) ([54]). In the case of tensor-valued S, Winkler ([47]) obtained
uniform-in-time boundedness of global weak solutions in some bounded and convex domain
� with m > 7

6 . Later, this restriction was improved to m > 10
9 ([64]) by one of the current

authors. For |S(x, n, c)| ≤ S0(1 + n)−α and non-decreasing S0, it is proved that m ≥ 1
and m + α > 7

6 are required for the global existence of bounded weak solutions ([40]) with
α > 0. The same result could be established under the requirements that m + α > 10

9 and
m + 5

4α > 9
8 byWang ([39]), and m +α > 10

9 by Zheng and Ke ([66]). Inspired by the results
mentioned above, we create a new method to further weaken the restriction on m, under the
circumstance that S is a tensor-valued function.

Notations. Here and below, for given vectors v ∈ R
N and w ∈ R

N , we define the
matrix v ⊗ w by letting (v ⊗ w)i j := viw j , for i, j ∈ {1, · · · , N }. We write W 1,2

0,σ (�) :=
W 1,2

0 (�) ∩ L2
σ (�) with L2

σ (�) := {ϕ ∈ L2(�;RN )|∇ · ϕ = 0} (see [30]).
In order to prepare a precise statement of our main results in these respects, let us assume

throughout that the initial data satisfy
⎧
⎪⎨

⎪⎩

n0 ∈ C ι(�̄) for certain ι > 0 with n0 ≥ 0 in �,

c0 ∈ W 1,∞(�) is nonnegative and such that
√

c0 ∈ W 1,2(�),

u0 ∈ D(Aγ ) for some γ ∈ (
N

4
, 1),

(1.6)
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where A denotes the Stokes operator with domain D(A) := W 2,2(�) ∩ W 1,2
0 (�) ∩ L2

σ (�).
As for the time-independent gravitational potential function φ, we assume for simplicity that

φ ∈ W 2,∞(�). (1.7)

Within the above frameworks, our main results concerning global existence of solutions
to (1.1) are as follows.

Theorem 1.1 Let m > 1, � ⊂ R
2 be a bounded domain with smooth boundary, and assume

(1.2)–(1.3) and (1.6)–(1.7) hold. Then the problem (1.1) admits a global-in-time weak solution
(n, c, u, P), which is uniformly bounded in the sense that

‖n(·, t)‖L∞(�) + ‖c(·, t)‖W 1,∞(�) + ‖u(·, t)‖L∞(�) ≤ C for all t > 0

with some positive constant C.

Theorem 1.2 Let � be a bounded domain in R
3 with smooth boundary and S satisfies the

hypotheses (1.2)–(1.3). Assume φ satisfies (1.7), and suppose the initial data n0, c0, u0 satisfy
(1.6). If m > 1, then there exist functions satisfying

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n ∈ L
8m−3

3
loc (�̄ × [0,∞)),

nm ∈ L
8m−3
4m

loc ([0,∞); W 1, 8m−3
4m (�)),

c ∈ L4
loc([0,∞); W 1,4(�)) ∩ L∞(� × (0,∞)),

u ∈ L2
loc([0,∞); L2

σ (�;R3)) ∩ L
10
3

loc(� × [0,∞);R3) ∩ L2
loc([0,∞); W 1,2

0,σ (�)),

such that (n, c, u) is a global weak solution of the problem (1.1) in the sense of Definition
2.1. This solution can be obtained as the pointwise limit a.e. in � × (0,∞) of a suitable
sequence of classical solutions to the regularized problem (2.5) below.

Remark 1.1

(i) Theorem 1.1 extends the results of Tao andWinkler [33], in which the authors discussed
the chemotaxis-Stokes system (κ = 0) in a 2D domain. As mentioned earlier, we not
only extend the results to the chemotaxis-Navier-Stokes system (κ 
= 0), but also
remove the convexity assumption on the domain.

(ii) In the case κ 
= 0 in system (1.1), it is hard to obtain the boundedness of the solution
of system (1.1).

(iii) We should point out that the ideas of [41, 46, 50, 51] can not deal with (1.1). In fact, (1.1)
with rotation loses the natural energy structure, so the relevant study is challenging.

2 Preliminaries andMain Results

Our main efforts center on the discussion of the weak solutions, because of the degeneracy
of the system (1.1).

Definition 2.1 (Weak solutions) By a global weak solution of (1.1) wemean a triple (n, c, u)

of functions ⎧
⎨

⎩

n ∈ L1
loc(�̄ × [0,∞)),

c ∈ L1
loc([0,∞); W 1,1(�)),

u ∈ L1
loc([0,∞); W 1,1

0 (�;RN )),

(2.1)
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150 Page 6 of 46 J. Zheng et al.

such that n ≥ 0 and c ≥ 0 a.e. in � × (0,∞),

nc, nm ∈ L1
loc(�̄ × [0,∞)) and

nS(x, n, c) · ∇c, cu and nu belong to L1
loc(�̄ × [0,∞);RN ),

(2.2)

∇ · u = 0 a.e. in � × (0,∞), and that

−
∫ ∞

0

∫

�

nϕt −
∫

�

n0ϕ(·, 0)

=
∫ ∞

0

∫

�

nm�ϕ +
∫ ∞

0

∫

�

n(S(x, n, c) · ∇c) · ∇ϕ +
∫ ∞

0

∫

�

nu · ∇ϕ

for any ϕ ∈ C∞
0 (�̄ × [0,∞)) as well as

−
∫ ∞

0

∫

�

cϕt −
∫

�

c0ϕ(·, 0)

= −
∫ ∞

0

∫

�

∇c · ∇ϕ −
∫ ∞

0

∫

�

nc · ϕ +
∫ ∞

0

∫

�

cu · ∇ϕ

for each ϕ ∈ C∞
0 (�̄ × [0,∞)) and

−
∫ ∞

0

∫

�

uϕt −
∫

�

u0ϕ(·, 0) − κ

∫ ∞

0

∫

�

u ⊗ u· ∇ϕ

= −
∫ ∞

0

∫

�

∇u · ∇ϕ −
∫ ∞

0

∫

�

n∇φ · ϕ

for all ϕ ∈ C∞
0 (� × [0,∞);RN ) fulfilling ∇ · ϕ ≡ 0.

In order to solve the difficulties caused by the degenerate diffusion, the nonlinear boundary
conditions and the convection terms in Navier-Stokes equation, we consider an appropriately
regularized problem of (1.1). To this end, we fix a family (ρε)ε∈(0,1) ∈ C∞

0 (�) of standard
cut-off functions satisfying 0 ≤ ρε ≤ 1 in � and ρε ↗ 1 in � as ε ↘ 0, and define

Sε(x, n, c) := ρε(x)S(x, n, c), x ∈ �̄, n ≥ 0, c ≥ 0 (2.3)

for ε ∈ (0, 1) to approximate the sensitivity tensor S, which ensures that Sε(x, n, c) = 0 on
∂�. Note that if S complies with (1.3), then so does Sε, that is,

|Sε(x, n, c)| ≤ S0(c) for all (x, n, c) ∈ � × [0,∞)2, (2.4)

where S0 is the same as that in (1.3). Then for any ε ∈ (0, 1), the regularized problem of
(1.1) is presented as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = �(nε + ε)m − ∇ · (nε Fε(nε)Sε(x, nε, cε) · ∇cε), x ∈ �, t > 0,

cεt + uε · ∇cε = �cε − nεcε, x ∈ �, t > 0,

uεt + ∇ Pε = �uε − κ(Yεuε · ∇)uε + nε∇φ, x ∈ �, t > 0,

∇ · uε = 0, x ∈ �, t > 0,

∇nε · ν = ∇cε · ν = 0, uε = 0, x ∈ ∂�, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ �,

(2.5)
where

Fε(s) = 1

1 + εs
for all s ≥ 0 (2.6)
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as well as
Yεw := (1 + εA)−1w for all w ∈ L2

σ (�)

and m > 1.
Let us begin with the following statement on local well-posedness of (2.5), along with a

convenient extensibility criterion. The proof is based on a well-established method involving
the Schauder fixed point theorem and standard regularity theory of parabolic equations. For
more details, we refer to Lemma 2.1 of [31] (see also Lemma 2.1 of [44] and Lemma 2.1 of
[21]).

Lemma 2.1 Assume that ε ∈ (0, 1). Then there exist Tmax,ε ∈ (0,∞] and functions
⎧
⎪⎪⎨

⎪⎪⎩

nε ∈ C0(�̄ × [0, Tmax,ε)) ∩ C2,1(�̄ × (0, Tmax,ε)),

cε ∈ C0(�̄ × [0, Tmax,ε)) ∩ C2,1(�̄ × (0, Tmax,ε)),

uε ∈ C0(�̄ × [0, Tmax,ε)) ∩ C2,1(�̄ × (0, Tmax,ε)),

Pε ∈ C1,0(�̄ × (0, Tmax,ε))

such that (nε, cε, uε, Pε) solves (2.5) classically on �×[0, Tmax,ε) with nε ≥ 0 and cε ≥ 0,
and such that

‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,∞(�) + ‖Aγ uε(·, t)‖L2(�) → ∞ as t → Tmax,ε,

where γ is given by (1.6).

Next, we are going to introduce some elementary properties of the solutions to (2.5).

Lemma 2.2 The solution of (2.5) satisfies

‖nε(·, t)‖L1(�) = ‖n0‖L1(�) for all t ∈ (0, Tmax,ε) (2.7)

and
‖cε(·, t)‖L∞(�) ≤ ‖c0‖L∞(�) for all t ∈ (0, Tmax,ε). (2.8)

Proof (2.7) and (2.8) follow froman integration of the first equation in (2.5) and an application
of the maximum principle to the second equation. ��

For simplicity, here and hereafter, we denote

CS := S0(‖c0‖L∞(�)) (2.9)

by using (2.8) and the nondecreasing of S.
Now, let us present the following elementary lemma as a preparation for some estimates

in the sequel. The proof of this lemma can be found in [20, 28].

Lemma 2.3 (Lemma 2.7 in [20]) Let w ∈ C2(�̄) satisfy ∇w · ν = 0 on ∂�.

(i) Then

∂|∇w|2
∂ν

≤ C∂�|∇w|2,
where C∂� is an upper bound on the curvature of ∂�.

(ii) Furthermore, for any η > 0 there is C(η) > 0 such that for every w ∈ C2(�̄) with
∇w · ν = 0 on ∂� fulfills

‖∇w‖L2(∂�) ≤ η‖�w‖L2(�) + C(η)‖w‖L2(�).

123



150 Page 8 of 46 J. Zheng et al.

(iii) For any positive w ∈ C2(�̄),

‖�w
1
2 ‖L2(�) ≤ 1

2
‖w 1

2 � lnw‖L2(�) + 1

4
‖w− 3

2 |∇w|2‖L2(�).

(iv) There are C0 > 0 and μ0 > 0 such that every positive w ∈ C2(�̄) fulfilling ∇w · ν = 0
on ∂� satisfies

− 2
∫

�

|�w|2
w

+
∫

�

|∇w|2�w

w2 ≤ −μ0

∫

�

w|D2 lnw|2 − μ0

∫

�

|∇w|4
w3 + C0

∫

�

w.

(2.10)

Now, we display an important auxiliary interpolation lemma by using the idea which comes
from the references [47, 62].

Lemma 2.4 (Lemma 3.8 in [47] and Lemma 2.2 in [62]) Let q ≥ 1,

λ ∈ [2q + 2, 4q + 1]
and � ⊂ R

3 be a bounded domain with smooth boundary. Then there exists C > 0 such that
for all ϕ ∈ C2(�̄) fulfilling ϕ · ∂ϕ

∂ν
= 0 on ∂�, we have

‖∇ϕ‖Lλ(�) ≤ C
∥
∥
∥|∇ϕ|q−1D2ϕ

∥
∥
∥

2(λ−3)
(2q−1)λ

L2(�)

∥
∥
∥ϕ

∥
∥
∥

6q−λ
(2q−1)λ

L∞(�)
+ C‖ϕ‖L∞(�).

Along with (2.8), Lemma 2.4 asserts the following:

Lemma 2.5 Let β ∈ [1,∞). There exists a positive constant λ0,β such that the solution of
(2.5) satisfies

‖∇cε‖2β+2
L2β+2(�)

≤ λ0,β(‖|∇cε|β−1D2cε‖2L2(�)
+ 1) for all t ∈ (0, Tmax,ε).

Finally we recall the following elementary inequality (see Lemma 2.3 in [66]).

Lemma 2.6 Let T > 0, τ ∈ (0, T ), A > 0, α > 0 and B > 0, and suppose that y : [0, T ) →
[0,∞) is absolutely continuous such that

y′(t) + Ayα(t) ≤ h(t) for a.e. t ∈ (0, T )

with some nonnegative function h ∈ L1
loc([0, T )) satisfying

∫ t+τ

t
h(s)ds ≤ B for all t ∈ (0, T − τ).

Then

y(t) ≤ max

{

y0 + B,
1

τ
1
α

(
B

A
)
1
α + 2B

}

for all t ∈ (0, T ).

Firstly, as a basic step of the a priori estimates, we establish themain inequality by applying
standard testing procedures to the first equation in (2.5).

Lemma 2.7 Let p > 1 and m > 0. Then the solution of (2.5) from Lemma 2.1 satisfies

1

p

d

dt
‖nε + ε‖p

L p(�) + m(p − 1)

2

∫

�

(nε + ε)m+p−3|∇nε|2

≤ (p − 1)C2
S

2m

∫

�

(nε + ε)p+1−m |∇cε|2
(2.11)

for all t > 0, where CS is given by (2.9).
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Proof Wemultiply the first equation in (2.5) by (nε + ε)p−1 and integrate the result by parts,
and then use the Young inequality to obtain

1

p

d

dt
‖nε + ε‖p

L p(�) + m(p − 1)
∫

�

(nε + ε)m+p−3|∇nε|2

≤ (p − 1)
∫

�

(nε + ε)p−2nε∇nε · (Fε(nε)Sε(x, nε, cε) · ∇cε)

≤ (p − 1)CS

∫

�

(nε + ε)p−1|∇nε||∇cε|

≤ m(p − 1)

2

∫

�

nε(nε + ε)m+p−3|∇nε|2 + (p − 1)C2
S

2m

∫

�

(nε + ε)p+1−m |∇cε|2,

where we use the fact that Sε(x, nε, cε) = 0 on ∂� and ∇ · uε = 0, as well as (2.9) and
|Fε| ≤ 1 (see (2.6)). ��

Now we are in the position to show that the solution of the approximate problem (2.5) is
actually global in time. That is, Tmax,ε = ∞ for all ε ∈ (0, 1).

Lemma 2.8 Let m ≥ 1 and N = 2, 3. Then for all ε ∈ (0, 1), the solution of (2.5) is global
in time.

Proof Multiplying the first equation in (2.5) by (nε + ε)m , using ∇ · uε = 0 and the Young
inequality, we obtain

1

m + 1

d

dt
‖nε + ε‖m+1

Lm+1(�)
+ m2

∫

�

(nε + ε)2m−2|∇nε|2

= −
∫

�

(nε + ε)m∇ · (nε Fε(nε)Sε(x, nε, cε) · ∇cε)

= −
∫

�

(nε + ε)m∇ · (nε

1

(1 + εnε)
Sε(x, nε, cε) · ∇cε)

≤ m
∫

�

(nε + ε)m−1nε

1

(1 + εnε)
|Sε(x, nε, cε)||∇nε||∇cε|

≤ m
1

ε
CS

∫

�

(nε + ε)m−1|∇nε||∇cε|

≤ m2

2

∫

�

(nε + ε)2m−2|∇nε|2 + C1(ε)

∫

�

|∇cε|2 for all t ∈ (0, Tmax,ε),

(2.12)

by using (1.3) and (2.9), where C1(ε) is a positive constant possibly depending on ε. Next,
multiplying the second equation with cε in (2.5), integrating by parts over � and using
∇ · uε = 0, we have

1

2

d

dt
‖cε‖2L2(�)

+
∫

�

|∇cε|2 = −
∫

�

nεc2ε , (2.13)

which combined with the Poincaré inequality, nε ≥ 0 and cε ≥ 0 implies that there exists
C2(ε) > 0 such that

∫

�

c2ε ≤ C2(ε) for all t ∈ (0, Tmax,ε).

Then integrating (2.13), it yields that for any ς ∈ (0, Tmax,ε), there is
∫ t+ς

t

∫

�

|∇cε|2 ≤ C3(ε) for all t ∈ (0, Tmax,ε − ς) (2.14)
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with some positive constant C3(ε). Recalling (2.7), we derive from the Gagliardo–Nirenberg
inequality that for some positive constants C4(ε) and C5(ε)

∫

�

(nε + ε)m+1

= ‖(nε + ε)m‖
m+1

m

L
m+1

m (�)

≤ C4(ε)‖∇(nε + ε)m‖
2Nm

2Nm−N+2

L2(�)
‖(nε + ε)m‖

m+1
m − 2Nm

2Nm−N+2

L
1
m (�)

+C4(ε)‖(nε + ε)m‖
m+1

m

L
1
m (�)

≤ C5(ε)(‖∇(nε + ε)m‖
2Nm

2Nm−N+2

L2(�)
+ 1) for all t ∈ (0, Tmax,ε).

(2.15)
Combining (2.12), (2.15) and the Young inequality, we obtain some positive constant C6(ε)

satisfying

1

m + 1

d

dt
‖nε + ε‖m+1

Lm+1(�)
+

∫

�

(nε + ε)m+1 + m2

4

∫

�

(nε + ε)2m−2|∇nε|2

≤ C1(ε)

∫

�

|∇cε|2 + C6(ε) for all t ∈ (0, Tmax,ε).

(2.16)

Since
∫ t+ς

t [∫
�

|∇cε|2 + C6(ε)] is bounded (by (2.14)), we infer from (2.16) and Lemma 2.6
that ∫

�

(nε + ε)m+1 ≤ C7(ε) for all t ∈ (0, Tmax,ε) (2.17)

with some positive constant C7(ε).
Testing the third equation of (2.5) against uε, integrating by parts and using ∇ · uε = 0

and ∇ · (1 + εA)−1uε ≡ 0 (see also Lemma 3.5 in [49]), we have

1

2

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2

=
∫

�

nεuε · ∇φ for all t ∈ (0, Tmax,ε),

which in light of (1.6), (1.7) and (2.17) implies that there is C8(ε) such that

∫

�

|uε|2 ≤ C8(ε) for all t ∈ (0, Tmax,ε)

and ∫ t+ς

t

∫

�

|∇uε|2 ≤ C8(ε) for all t ∈ (0, Tmax,ε − ς). (2.18)

Therefore, basedon the properties of theYosida approximation ([27]) ofYε , there isC9(ε) > 0
such that

‖Yεuε‖L∞(�) ≤ C9(ε) for all t ∈ (0, Tmax,ε). (2.19)

Testing the projected Navier-Stokes equation uεt + Auε = P[−κ(Yεuε · ∇)uε + nε∇φ]
against Auε, we derive from m > 1 as well as (2.19) and (2.17) that for some positive
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constant C10(ε), there is

1

2

d

dt
‖A

1
2 uε‖2L2(�)

+
∫

�

|Auε|2

=
∫

�

AuεP(−κ(Yεuε · ∇)uε) +
∫

�

P[nε∇φ]Auε

≤ 1

2

∫

�

|Auε|2 + κ2
∫

�

|(Yεuε · ∇)uε|2 + ‖∇φ‖2L∞(�)

∫

�

n2
ε

≤ 1

2

∫

�

|Auε|2 + C10(ε)

∫

�

|∇uε|2 + C10(ε) for all t ∈ (0, Tmax,ε).

Hence, applying (2.18) and Lemma 2.6 also implies that for some positive constant C11(ε),
∫

�

|∇uε|2 ≤ C11(ε) for all t ∈ (0, Tmax,ε). (2.20)

Let hε(x, t) = P[nε∇φ − κ(Yεuε · ∇)uε]. Then employing m > 1, (2.17) as well as (1.7)
and (2.19)–(2.20), we obtain

‖hε(·, t)‖L2(�) ≤ C12(ε) for all t ∈ (0, Tmax,ε)

with some positive constant C12(ε). Due to the regularizing actions of Yosida approximation
in the third equation, we can obtain the bounds for Aγ uε(·, t) in L2(�) (see e.g. Lemma 3.9
of [49]) with γ ∈ ( N

4 , 1). Since D(Aγ ) is continuously embedded into L∞(�) with γ > N
4 ,

thus, there is C13(ε) > 0 such that

‖uε(·, t)‖L∞(�) ≤ C13(ε) for all t ∈ (0, Tmax,ε). (2.21)

We multiply the second equation in (2.5) by −�cε and use the Young inequality to derive

1

2

d

dt
‖∇cε‖2L2(�)

+
∫

�

|�cε|2

=
∫

�

cεnε�cε +
∫

�

�cεuε · ∇cε

≤ 1

2

∫

�

|�cε|2 + ‖cε‖2L∞(�)

∫

�

n2
ε + ‖uε‖2L∞(�)

∫

�

|∇cε|2 for all t ∈ (0, Tmax,ε),

which together with (2.17) as well as (2.21) and (2.14) yields that
∫

�

|∇cε(·, t)|2 ≤ C14(ε) for all t ∈ (0, Tmax,ε) (2.22)

with some positive constant C14(ε). An application of the variation of constants formula to
cε leads to

‖∇cε(·, t)‖L4(�)

≤ ‖∇et(�−1)c0‖L4(�) +
∫ t

0
‖∇e(t−s)(�−1)(cε(·, s) − nε(·, s)cε(·, s))‖L4(�)ds

+
∫ t

0
‖∇e(t−s)(�−1)∇ · (uε(·, s)cε(·, s))‖L4(�)ds for all t ∈ (0, Tmax,ε).

Now, in view of (1.6), (2.17) as well as (2.21) and (2.22), empolying the L p-Lq estimates
associated heat semigroup, we have some C15(ε) > 0 such that

‖∇cε(·, t)‖L4(�) ≤ C15(ε) for all t ∈ (0, Tmax,ε). (2.23)
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Let p > 1+ m. Taking (nε + ε)p−1 as the test function for the first equation of (2.5) and
using Lemma 2.7, the Hölder inequality and (2.23), there exists a positive constant C16(ε)

such that
1

p

d

dt
‖nε + ε‖p

L p(�) + m(p − 1)

2

∫

�

(nε + ε)m+p−3|∇nε|2

≤ (p − 1)C2
S

2m

(∫

�

(nε + ε)2(p+1−m)

) 1
2
(∫

�

|∇cε|4
) 1

2

≤ C16(ε)

(∫

�

(nε + ε)2(p+1−m)

) 1
2

for all t ∈ (0, Tmax,ε).

(2.24)

On the other hand, in view of m > 1 and p > 1+ m, and applying the Gagliardo-Nirenberg
inequality and the Young inequality, we derive that there exist positive constants C17(ε) and
C18(ε) such that

C16(ε)‖(nε + ε)
p+m−1

2 ‖
2(p+1−m)

p+m−1

L
4(p+1−m)

p+m−1 (�)

≤ C17(ε)‖∇(nε + ε)
p+m−1

2 ‖
N (2p−2m+1)
N (m+p−2)+2

L2(�)
‖(nε + ε)

p+m−1
2 ‖

2(p+1−m)
p+m−1 − N (2p−2m+1)

N (m+p−2)+2

L
2

p+m−1 (�)

+ C17(ε)‖(nε + ε)
p+m−1

2 ‖
2(p+1−m)

p+m−1

L
2

p+m−1 (�)

≤ C18(ε)(‖∇(nε + ε)
p+m−1

2 ‖
N (2p−2m+1)
N (m+p−2)+2

L2(�)
+ 1)

≤ m(p − 1)

4

∫

�

(nε + ε)m+p−3|∇nε|2 + C18(ε) for all t ∈ (0, Tmax,ε),

which together with (2.24) and an ODE comparison argument entails that

‖nε(·, t)‖L p(�) ≤ C19(ε) for all t ∈ (0, Tmax,ε) and p > 1 + m, (2.25)

where C19(ε) is a positive constant.
In light of Lemma2.1 of [15] and theHölder inequality,we derive that there areC20(ε) > 0

and C21(ε) > 0 such that

‖∇cε(·, t)‖L∞(�)

≤ C20(ε)(1 + sup
s∈(0,Tmax,ε)

‖ − nε(·, s)cε(·, s) − uε(·, s) · ∇cε(·, s)‖L4(�))

≤ C20(ε)(1 + ‖c0(·, s)‖L∞(�) sup
s∈(0,Tmax,ε)

‖nε(·, s)‖L4(�)

+ sup
s∈(0,Tmax,ε)

‖uε(·, s)‖L∞(�) sup
s∈(0,Tmax,ε)

‖∇cε(·, s)‖L4(�))

≤ C21(ε) for all t ∈ (0, Tmax,ε).

(2.26)

In view of (2.26) and using the outcome of (2.24) with suitably large p as a starting point,
we employ a Moser-type iteration (see e.g. Lemma A.1 of [32]) applied to the first equation
of (2.5) and obtain some C22(ε) > 0 such that

‖nε(·, t)‖L∞(�) ≤ C22(ε) for all t ∈ (τ, Tmax,ε) (2.27)

with τ ∈ (0, Tmax,ε).
Assume that Tmax,ε < ∞. In view of (2.21), (2.26) and (2.27), we apply Lemma 2.1 to

reach a contradiction. ��
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3 A Quasi-energy Functional

In this section we establish some suitable ε-independent bounds for solutions to (2.5), which
will be a starting point of a series of arguments. Next, in consequence of the space-time L∞
estimate for cε contained in the latter, recalling (iv) of Lemma 2.3, we directly obtain the
following result.

Lemma 3.1 Let m > 1. There exists κ1 > 0 such that for every ε ∈ (0, 1)

d

dt

∫

�

|∇cε|2
cε

+ μ0

∫

�

cε|D2 ln cε|2 + 3μ0

4

∫

�

|∇cε|4
c3ε

+
∫

�

nε|∇cε|2
cε

≤ −2
∫

�

∇nε · ∇cε + 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + κ1 for all t > 0,

(3.1)

where μ0 is the same as in (2.10).

Proof From the second equation in (2.5) we see

d

dt

∫

�

|∇cε|2
cε

= 2
∫

�

∇cε · ∇cεt

cε

−
∫

�

|∇cε|2cεt

c2ε

= −2
∫

�

�cεcεt

cε

+
∫

�

|∇cε|2cεt

c2ε

= −2
∫

�

|�cε|2
cε

+ 2
∫

�

�cεnε + 2
∫

�

�cε

cε

(uε · ∇cε)

+
∫

�

|∇cε|2�cε

c2ε
−

∫

�

|∇cε|2nε

cε

−
∫

�

|∇cε|2(uε · ∇cε)

c2ε
.

(3.2)

Together with (2.8), an application of (iv) in Lemma 2.3 yields

−2
∫

�

|�cε|2
cε

+
∫

�

|∇cε|2�cε

c2ε

≤ −μ0

∫

�

cε|D2 ln cε|2 − μ0

∫

�

|∇cε|4
c3ε

+ C(μ0)

∫

�

cε

≤ −μ0

∫

�

cε|D2 ln cε|2 − μ0

∫

�

|∇cε|4
c3ε

+ C(μ0)‖cε‖L∞(�)|�| for all t > 0

(3.3)

with some positive constant μ0 > 0 and C(μ0) > 0. As to the terms containing uε, we note
that for all ε > 0

2
∫

�

�cε

cε

(uε · ∇cε)

= 2
∫

�

|∇cε|2
c2ε

(uε · ∇cε) − 2
∫

�

1

cε

∇cε · (∇uε · ∇cε)

− 2
∫

�

1

cε

uε · (D2cε · ∇cε) for all t > 0

and by writing ∇cε

c2ε
= ∇( 1

cε
) also

∫

�

|∇cε|2
c2ε

(uε · ∇cε) = 2
∫

�

1

cε

uε · (D2cε · ∇cε) for all t > 0.
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So that, due to the Young inequality and Lemma 2.2, we conclude that

2
∫

�

�cε

cε

(uε · ∇cε) −
∫

�

|∇cε|2
c2ε

(uε · ∇cε)

= −2
∫

�

1

cε

∇cε · (∇uε · ∇cε)

≤ μ0

4

∫

�

|∇cε|4
c3ε

+ 4

μ0

∫

�

cε|∇uε|2

≤ μ0

4

∫

�

|∇cε|4
c3ε

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 for all t > 0,

(3.4)

where μ0 > 0 is the same as in (2.10). Integrating by parts, we have

2
∫

�

�cεnε = −2
∫

�

∇nε · ∇cε. (3.5)

Finally, in light of (3.2)–(3.5), we can derive that (3.1) holds. ��

In order to absorb the second integral on the right side hand of (3.1), it is necessary to gain
the time evolution of

∫

�
|uε|2, which is the same as most-studied on the chemotaxis-fluid

system (see e.g. [64]).

Lemma 3.2 Let m > 1. There exists κ2 > 0 such that for any ε ∈ (0, 1), the solution of (2.5)
satisfies

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 ≤ κ2‖nε + ε‖2
L

2N
N+2 (�)

for all t > 0. (3.6)

Proof Firstly, multiplying the third equation in (2.5) by uε, integrating by parts and using
∇ · uε = 0, we have

1

2

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 =
∫

�

nεuε · ∇φ for all t > 0. (3.7)

Here we use the Hölder inequality, (1.6) and the continuity of the embedding W 1,2(�) ↪→
L

2N
N−2 (�) and find C1 > 0 such that

∫

�

nεuε · ∇φ ≤ ‖∇φ‖L∞(�)‖nε‖
L

2N
N+2 (�)

‖∇uε‖L2(�)

≤ C1‖nε‖
L

2N
N+2 (�)

‖∇uε‖L2(�)

≤ C1‖nε + ε‖
L

2N
N+2 (�)

‖∇uε‖L2(�)

≤ 1

2
‖∇uε‖2L2(�)

+ 1

2
C2
1‖nε + ε‖2

L
2N

N+2 (�)
for all t > 0,

which together with (3.7) entails (3.6) by choosing κ2 = C2
1 . ��
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Lemma 3.3 Let m > 1 and S satisfy (1.2)–(1.3). Suppose that (1.6)–(1.7) hold. Then the
solution of (2.5) satisfies

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2
)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2 +
∫

�

nε|∇cε|2
cε

+ μ0

4

∫

�

|∇cε|4
c3ε

≤ 2
∫

�

|∇nε||∇cε| + 8

μ0
‖c0‖L∞(�)κ2‖nε + ε‖2

L
2N

N+2 (�)
+ κ1 for all t > 0,

(3.8)
where μ0 is as in (2.10).

Proof Taking an evident linear combination of the inequalities provided by Lemmas 3.1–3.2,
and using the fact that −2

∫

�
∇nε · ∇cε ≤ 2

∫

�
|∇nε||∇cε|, it implies that (3.8) holds. ��

Lemma 3.4 For T > 0, there is C > 0 such that for each ε ∈ (0, 1), the solution of (2.5)
satisfies ∫

�

c2ε ≤ C for all t > 0 (3.9)

and ∫ T

0

∫

�

|∇cε|2 ≤ C(T + 1) for all T > 0. (3.10)

Proof We multiply the second equation in (2.5) by cε to see that

1

2

d

dt
‖cε‖2L2(�)

+
∫

�

|∇cε|2 = −
∫

�

nεc2ε ≤ 0 for all t > 0

by using ∇ · uε = 0 and nεc2ε ≥ 0. From the above inequality, (3.9)–(3.10) immediately
follows by integrating with respect to time. ��

Next we can estimate the integrals on the right-hand sides of (3.8) by taking a totally
different approach from [64]. In fact, different from [64], in this paper, we try to use the

terms
∫

�
nε |∇cε |2

cε
and

∫

�
(nε + ε)m+p−3|∇nε|2 by using some careful analysis and a clever

choose of p > 1, which will be a new step and method to solve the chemotaxis system.

Lemma 3.5 Let 1 < m < 2 and N = 2, 3. Moreover, assume that S satisfy (1.2)–(1.3).
Suppose that (1.6)–(1.7) hold. Then for any p ∈ (1,min{m, 3 − m}), there exists C > 0
independent of ε such that the solution of (2.5) satisfies

∫

�

(nε + ε)p +
∫

�

|∇cε|2 +
∫

�

|∇cε|2
cε

+
∫

�

|uε|2 ≤ C for all t > 0. (3.11)

Moreover, for each T > 0, one can find a constant C > 0 independent of ε such that
∫ T

0

∫

�

[
nε + ε

‖c0‖L∞(�)

|∇cε|2 + (nε + ε)m+p−3|∇nε|2
]

≤ C(T + 1), (3.12)

∫ T

0

∫

�

[

|∇uε|2 + |∇cε|4
c3ε

]

≤ C(T + 1) (3.13)

and ∫ T

0

∫

�

|∇cε|4 ≤ C(T + 1) (3.14)
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as well as ∫ T

0

∫

�

[
cε|D2 ln cε|2 + (nε + ε)m+p−1+ 2

N

]
≤ C(T + 1). (3.15)

Proof Since 1 < m < 2 ensures that

1 < min{m, 3 − m},

one can fix

p ∈ (1,min{m, 3 − m}).

Therefore, (2.11) entails

1

p

d

dt
‖nε + ε‖p

L p(�) + m(p − 1)

2

∫

�

(nε + ε)m+p−3|∇nε|2

≤ (p − 1)C2
S

2m

∫

�

(nε + ε)p+1−m |∇cε|2 for all t > 0,

(3.16)

which in light of (3.8) yields that

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2 +
∫

�

nε|∇cε|2
cε

+μ0

4

∫

�

|∇cε|4
c3ε

+ m(p − 1)

2

∫

�

(nε + ε)m+p−3|∇nε|2

≤ (p − 1)C2
S

2m

∫

�

(nε + ε)p+1−m |∇cε|2 + 2
∫

�

|∇nε||∇cε|

+ 8

μ0
‖c0‖L∞(�)κ2‖nε + ε‖2

L
2N

N+2 (�)
for all t > 0.

(3.17)

In the following, we derive the estimates on the right-hand sides in (3.17) underlying an
appropriate interpolation type inequality and basic estimates established in Sect. 2. Indeed,
in view of the Young inequality, we have

2
∫

�

|∇nε||∇cε|

≤ m(p − 1)

4

∫

�

(nε + ε)m+p−3|∇nε|2 + 4

m(p − 1)

∫

�

(nε + ε)3−m−p|∇cε|2
(3.18)

for all t > 0. Inserting (3.18) into (3.17), we derive that
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d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2 +
∫

�

nε|∇cε|2
cε

+μ0

4

∫

�

|∇cε|4
c3ε

+ m(p − 1)

4

∫

�

(nε + ε)m+p−3|∇nε|2

≤ (p − 1)C2
S

2m

∫

�

(nε + ε)p+1−m |∇cε|2 + 4

m(p − 1)

∫

�

(nε + ε)3−m−p|∇cε|2

+ 8

μ0
‖c0‖L∞(�)κ2‖nε + ε‖2

L
2N

N+2 (�)
for all t > 0.

(3.19)

Next, with the help of the Gagliardo–Nirenberg inequality and (2.7), we derive that there are
C1 > 0 and C2 > 0 such that

‖nε + ε‖2
L

2N
N+2 (�)

= ‖(nε + ε)
m+p−1

2 ‖
4

(m+p−1)

L
4N

(N+2)(m+p−1) (�)

≤ C1‖∇(nε + ε)
m+p−1

2 ‖2
N−2

N (m+p−2)+2

L2(�)
‖(nε + ε)

m+p−1
2 ‖

4
m+p−1−2 N−2

N (m+p−2)+2

L
2

m+p−1 (�)

+C1‖(nε + ε)
m+p−1

2 ‖
4

(m+p−1)

L
2

m+p−1 (�)

≤ C2(‖∇(nε + ε)
m+p−1

2 ‖2
N−2

N (m+p−2)+2

L2(�)
+ 1) for all t > 0.

This combined with m > 1 and N = 2, 3 implies that there exists a positive constant C3

such that
8

μ0
‖c0‖L∞(�)κ2‖nε + ε‖2

L
2N

N+2 (�)

≤ m(p − 1)

8

∫

�

(nε + ε)m+p−3|∇nε|2 + C3 for all t > 0
(3.20)

by using the Young inequality. Next, inserting (3.20) into (3.19) yields that

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2 +
∫

�

nε|∇cε|2
cε

+μ0

4

∫

�

|∇cε|4
c3ε

+ m(p − 1)

8

∫

�

(nε + ε)m+p−3|∇nε|2

≤
∫

�

[
(p − 1)C2

S

2m
(nε + ε)p+1−m + 4

m(p − 1)
(nε + ε)3−m−p

]

|∇cε|2

+C3 for all t > 0,
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which together with (2.8) implies that

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2

+μ0

4

∫

�

|∇cε|4
c3ε

+ m(p − 1)

8

∫

�

(nε + ε)m+p−3|∇nε|2

≤
∫

�

[
(p − 1)C2

S

2m
(nε + ε)p+1−m + 4

m(p − 1)
(nε + ε)3−m−p − nε

‖c0‖L∞(�)

]

|∇cε|2 + C3

≤
∫

�

[
(p − 1)C2

S

2m
(nε + ε)p+1−m + 4

m(p − 1)
(nε + ε)3−m−p − nε + ε

‖c0‖L∞(�)

]

|∇cε|2

+
∫

�

|∇cε|2
‖c0‖L∞(�)

+ C3 for all t > 0

(3.21)
by using ε ∈ (0, 1). Therefore,

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2

+μ0

4

∫

�

|∇cε|4
c3ε

+ m(p − 1)

8

∫

�

(nε + ε)m+p−3|∇nε|2

≤
∫

�

(nε + ε)

[
(p − 1)C2

S

2m
(nε + ε)p−m + 4

m(p − 1)
(nε + ε)2−m−p − 1

‖c0‖L∞(�)

]

|∇cε|2

+
∫

�

|∇cε|2
‖c0‖L∞(�)

+ C3 for all t > 0.

(3.22)
On the other hand, recalling m ∈ (1, 2) and p ∈ (1,min{m, 3 − m}), a direct computation
shows

lim
s→+∞

[
(p − 1)C2

S

2m
(s + ε)p−m + 4

m(p − 1)
(s + ε)2−m−p

]

= 0.

So that, there exists η0 > 0, such that for any s > η0,

[
(p − 1)C2

S

2m
(s + ε)p−m + 4

m(p − 1)
(s + ε)2−m−p

]

<
1

2‖c0‖L∞(�)

.
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Therefore, by some basic calculations, we have
∫

�

(nε + ε)[ (p − 1)C2
S

2m
(nε + ε)p−m + 4

m(p − 1)
(nε + ε)2−m−p]|∇cε|2

≤
∫

nε>η0

(nε + ε)[ (p − 1)C2
S

2m
(nε + ε)p−m + 4

m(p − 1)
(nε + ε)2−m−p]|∇cε|2

+
∫

nε≤η0

(nε + ε)[ (p − 1)C2
S

2m
(nε + ε)p−m + 4

m(p − 1)
(nε + ε)2−m−p]|∇cε|2

≤
∫

nε>η0

nε + ε

2‖c0‖L∞(�)

|∇cε|2

+
∫

nε≤η0

(nε + ε)[ (p − 1)C2
S

2m
(nε + ε)p−m + 4

m(p − 1)
(nε + ε)2−m−p]|∇cε|2

≤
∫

�

nε + ε

2‖c0‖L∞(�)

|∇cε|2

+
∫

nε≤η0

[ (p − 1)C2
S

2m
(nε + ε)p+1−m + 4

m(p − 1)
(nε + ε)3−m−p]|∇cε|2

≤
∫

�

nε + ε

2‖c0‖L∞(�)

|∇cε|2 + γ0

∫

nε≤η0

|∇cε|2

≤
∫

�

nε + ε

2‖c0‖L∞(�)

|∇cε|2 + γ0

∫

�

|∇cε|2
(3.23)

with

γ0 = (p − 1)C2
S

2m
(η0 + 1)p+1−m + 4

m(p − 1)
(η0 + 1)3−m−p

by using ε ∈ (0, 1) as well as m ∈ (1, 2) and p ∈ (1,min{m, 3 − m}). Substituting (3.23)
into (3.22), we have

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+ 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2

+μ0

4

∫

�

|∇cε|4
c3ε

+ m(p − 1)

8

∫

�

(nε + ε)m+p−3|∇nε|2 +
∫

�

nε + ε

2‖c0‖L∞(�)

|∇cε|2

≤ (γ0 + 1

‖c0‖L∞(�)

)

∫

�

|∇cε|2 + C3 for all t > 0.

(3.24)
Recalling (2.7), we derive from the Gagliardo–Nirenberg inequality that for some positive
constants C4 and C5 such that

∫

�

(nε + ε)m+p−1+ 2
N

= ‖(nε + ε)
m+p−1

2 ‖(m+p−1+ 2
N ) 2

m+p−1

L
(m+p−1+ 2

N ) 2
m+p−1 (�)

≤ C4‖∇(nε + ε)
m+p−1

2 ‖2L2(�)
‖(nε + ε)

m+p−1
2 ‖(m+p−1+ 2

N ) 2
m+p−1−2

L
2

m+p−1 (�)
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+C4‖(nε + ε)
m+p−1

2
ε ‖(m+p−1+ 2

N ) 2
m+p−1

L
2

m+p−1 (�)

≤ C5(‖∇(nε + ε)
m+p−1

2 ‖2L2(�)
+ 1),

which implies that there exist positive constants C6 and C7 such that

‖∇(nε + ε)
m+p−1

2 ‖2L2(�)
≥ 1

C6

∫

�

(nε + ε)m+p−1+ 2
N − 1 ≥ 1

C6

∫

�

(nε + ε)p − C7

(3.25)

by using m > 1, N = 2, 3 and the Young inequality.
According to the Young inequality and the Poincaré inequality, (3.25) and (2.8), we con-

clude that with some C8 > 0 and C9 > 0, it follows

∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

+
∫

�

(nε + ε)m+p−1+ 2
N +

∫

�

|∇cε|4

≤ C8(

∫

�

(nε + ε)m+p−3|∇nε|2 +
∫

�

|∇cε|4
c3ε

+
∫

�

|∇uε|2) + C9 for all t > 0.

(3.26)
Thus, we infer from (3.24) and (3.26) that there exist C10 > 0 and C11 > 0 such that for all
ε ∈ (0, 1),

d

dt

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+C10

(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 1

p
‖nε + ε‖p

L p(�)

)

+C11

(∫

�

(nε + ε)m+p−1+ 2
N +

∫

�

|∇cε|4
)

+ 2

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2

+μ0

8

∫

�

|∇cε|4
c3ε

+ m(p − 1)

16

∫

�

(nε + ε)m+p−3|∇nε|2 +
∫

�

nε + ε

2‖c0‖L∞(�)

|∇cε|2

≤ (γ0 + 1

‖c0‖L∞(�)

)

∫

�

|∇cε|2 + C11 for all t > 0.

(3.27)
Now, we define

yε(t) :=
(∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 2

m + 1
‖nε + ε‖p

L p(�)

)

(·, t) for all t > 0
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and

hε(t)

:= C11

(∫

�

(nε + ε)m+p−1+ 2
N +

∫

�

|∇cε|4
)

(·, t)

+
(

2

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + μ0

∫

�

cε|D2 ln cε|2 +
∫

�

nε|∇cε|2
cε

)

(·, t)

+
(

μ0

8

∫

�

|∇cε|4
c3ε

+ m(p − 1)

16

∫

�

(nε + ε)m+p−3|∇nε|2 +
∫

�

nε + ε

2‖c0‖L∞(�)

|∇cε|2
)

(·, t).

For all t > 0, (3.27) implies that yε satisfies

y′
ε(t) + C10yε(t) + hε(t) ≤ (γ0 + 1

‖c0‖L∞(�)

)

∫

�

|∇cε|2 + C12 for all t > 0.

Since hε(t) ≥ 0 and
∫ t+1

t

[
(γ0 + 1

‖c0‖L∞(�)
)
∫

�
|∇cε|2 + C12

]
is bounded, from (3.10) as

well as (1.6) and Lemma 2.6, we firstly achieve

∫

�

|∇cε|2
cε

+ 8

μ0
‖c0‖L∞(�)

∫

�

|uε|2 + 2

m + 1
‖nε + ε‖p

L p(�) ≤ C13 for all t > 0,

and thus proves (3.11) by using the fact that

|∇cε|2 ≤ |∇cε|2
cε

‖cε(·, t)‖L∞(�).

Then another integration of (3.27) thereupon shows that (3.12)–(3.15) hold. ��

When the nonlinear diffusion is strong enough, the energy type inequality is relatively
easy. Actually, for the case of m > 2, we have the following energy-type inequality by using
the Young inequality and the second equation in (2.5).

Lemma 3.6 Let m > 2 and N = 2, 3. Then there exists C > 0 independent of ε such that
the solution of (2.5) satisfies

∫

�

(nε + ε)m−1 ≤ C for all t > 0. (3.28)

In addition, for any T > 0, one can find a constant C > 0 independent of ε such that

∫ T

0

∫

�

[
(nε + ε)2m−2+ 2

N + (nε + ε)2m−4|∇nε|2
]

≤ C(T + 1) for all T > 0. (3.29)

Proof Firstly, picking p as m − 1 in (2.11), we arrive that

1

m − 1

d

dt
‖nε + ε‖m−1

Lm−1(�)
+ m(m − 2)

2

∫

�

(nε + ε)2m−4|∇nε|2

≤ (m − 2)C2
S

2m

∫

�

|∇cε|2 for all t > 0.

(3.30)
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Due to (2.7), one has for any ε ∈ (0, 1), ‖nε + ε‖L1(�) ≤ ‖n0‖L1(�) + |�|. Since m > 2,
by using the Gagliardo-Nirenberg inequality, we can find some positive C2, C3, C4 and C5
such that
∫

�

(nε + ε)m−1

= ‖(nε + ε)m−1‖
m−1
m−1

L
m−1
m−1 (�)

≤ C2‖∇(nε + ε)m−1‖
N (m−2)

1− N
2 +N (m−1)

L2(�)
‖(nε + ε)m−1‖

m−1
m−1− N (m−2)

1− N
2 +N (m−1)

L
1

m−1 (�)

+C2‖(nε + ε)m−1‖
m−1
m−1

L
1

m−1 (�)

≤ C3(‖∇(nε + ε)m−1‖
N (m−2)

1− N
2 +N (m−1)

L2(�)
+ 1) for all t > 0

and ∫

�

(nε + ε)2m−2+ 2
N

= ‖(nε + ε)m−1‖
2m−2+ 2

N
m−1

L
2m−2+ 2

N
m−1 (�)

≤ C4‖∇(nε + ε)m−1‖2L2(�)
‖(nε + ε)m−1‖

2m−2+ 2
N

m−1 −2

L
1

m−1 (�)

+C4‖(nε + ε)m−1‖
2m−2+ 2

N
m−1

L
1

m−1 (�)

≤ C5(‖∇(nε + ε)m−1‖2L2(�)
+ 1) for all t > 0.

(3.31)

The fact
N (m−2)

1− N
2 +N (m−1)

< 2 enables us to use the Young inequality to deduce that there exists

a positive constant C6 such that
∫

�

(nε + ε)m−1 ≤m(m − 2)

8
× 1

(m − 1)2
‖∇(nε + ε)m−1‖2L2(�)

+ C6

=m(m − 2)

8

∫

�

(nε + ε)2m−4|∇nε|2 + C6 for all t > 0.

Substituting the above inequality and (3.31) into (3.30), we derive

1

m − 1

d

dt
‖nε + ε‖m−1

Lm−1(�)
+

∫

�

(nε + ε)m−1

+m(m − 2)

8

∫

�

(nε + ε)2m−4|∇nε|2 + C7

∫

�

(nε + ε)2m−2+ 2
N

≤ (m − 2)C2
S

2m

∫

�

|∇cε|2 + C8 for all t > 0

(3.32)

with some positive constants C7 and C8. Recalling (3.10), in light of a basic calculation, this
firstly entails (3.28). And thereafter, an integration of (3.32) yields (3.29). ��
Lemma 3.7 Let m = 2 and N = 2, 3. Then there exists C > 0 independent of ε such that
the solution of (2.5) satisfies

∫

�

nε ln nε ≤ C for all t > 0. (3.33)
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In addition, for any T > 0, one can find a constant C > 0 independent of ε such that

∫ T

0

∫

�

[

n
2m−2+ 2

N
ε + |∇nε|2

]

≤ C(T + 1) for all T > 0. (3.34)

Proof Using the first equation of (2.5), from integration by parts we obtain

d

dt

∫

�

nε ln nε =
∫

�

nεt ln nε +
∫

�

nεt

=
∫

�

�(nε + ε)2 ln nε −
∫

�

ln nε∇ · (nε Fε(nε)Sε(x, nε, cε) · ∇cε)

−
∫

�

ln nεuε · ∇nε

≤−2
∫

�

(nε + ε)|∇nε|2
nε

+
∫

�

S0(cε)|∇nε||∇cε|

≤−2
∫

�

|∇nε|2 + CS

∫

�

|∇nε||∇cε|

≤−
∫

�

|∇nε|2 + 1

4
C2

S

∫

�

|∇cε|2 for all t > 0

by using (2.6). Based on the elementary inequality z ln z ≤ 3
2 z

5
3 for all z ≥ 0, and from

2
m < 10

3m < 2N
N−2 for m = 2, we apply the Gagliardo-Nirenberg inequality to obtain positive

constants C1 and C2 independent of ε ∈ (0, 1) such that

∫

�

nε ln nε

≤ 3

2

∫

�

n
5
3
ε

= 3

2
‖nε‖

5
3

L
5
3

≤ C1‖∇nε‖
5
3

N− 3N
5

1− N
2 +N

L2(�)
‖nε‖

5
3− 5

3
N− 3N

5
1− N

2 +N

L1(�)
+ C1‖nε‖

5
3
L1(�)

≤ C2(‖∇nε‖
5
3

N− 3N
5

1− N
2 +N

L2(�)
+ 1) for all t > 0.

Since N ≤ 3 also indicates that

0 <
5

3

N − 3N
5

1 − N
2 + N

< 2,

whence by means of the Young inequality we obtain

d

dt

∫

�

nε ln nε +
∫

�

nε ln nε + 1

2

∫

�

|∇nε|2

≤ 1

4
C2

S

∫

�

|∇cε|2 + C3 for all t > 0
(3.35)
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with some positive constantC3. Recalling m = 2, by using the Gagliardo-Nirenberg inequal-
ity and (2.7), we can find some positive constants C4 and C5 such that

∫

�

n
2m−2+ 2

N
ε =

∫

�

n
2+ 2

N
ε

≤ C4‖∇nε‖2L2(�)
‖nε‖

2
N
L1(�)

+C4‖nε‖2+
2
N

L1(�)

≤ C5(‖∇nε‖2L2(�)
+ 1) for all t > 0,

which combined with (3.35) implies that

d

dt

∫

�

nε ln nε +
∫

�

nε ln nε + 1

4C5

∫

�

n
2m−2+ 2

N
ε + 1

4

∫

�

|∇nε|2

≤ 1

4
C2

S

∫

�

|∇cε|2 + C6 for all t > 0
(3.36)

with some C6 > 0. According to Lemma 3.4, there exists C7 > 0 such that
∫ t+1

t [ 14C2
S

∫

�
|∇cε|2 + C6] ≤ C7 for all t > 0. Thanks to Lemma 2.6, it derives (3.33),

and then (3.34) follows by integrating (3.36) in time. This completes the proof of Lemma
3.7. ��
Lemma 3.8 Let m ≥ 2 and N = 2, 3. Then there exists C > 0 such that the solution of (2.5)
satisfies ∫

�

[|uε|2 + |∇cε|2] ≤ C for all t > 0. (3.37)

Moreover, for any T > 0, it holds that
∫ T

0

∫

�

[|∇cε|4 + |∇uε|2 + |�cε|2
] ≤ C(T + 1). (3.38)

Proof We multiply the second equation in (2.5) by −�cε and integrate by parts to see that

1

2

d

dt
‖∇cε‖2L2(�)

+
∫

�

|�cε|2

=
∫

�

nεcε�cε +
∫

�

(uε · ∇cε)�cε

=
∫

�

nεcε�cε −
∫

�

∇cε · ∇(uε · ∇cε)

=
∫

�

nεcε�cε −
∫

�

∇cε · (∇uε · ∇cε),

(3.39)

where we have used the fact that
∫

�

∇cε · (D2cε · uε) = 1

2

∫

�

uε · ∇|∇cε|2 = 0 for all t > 0.

On the other hand, we make use of Lemma 2.2 and the Young inequality to derive
∫

�

nεcε�cε ≤C2
1

∫

�

n2
ε + 1

4

∫

�

|�cε|2 for all t > 0, (3.40)

with some positive constant C1. In the last equation in (3.39), we use the Cauchy-Schwarz
inequality to obtain

−
∫

�

∇cε · (∇uε · ∇cε) ≤‖∇uε‖L2(�)‖∇cε‖2L4(�)
for all t ∈ (0, Tmax,ε).
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Now thanks to Lemma 2.2 and the Gagliardo-Nirenberg inequality, we have

‖∇cε‖2L4(�)
≤C2‖�cε‖L2(�)‖cε‖L∞(�) + C2‖cε‖2L∞(�)

≤C3‖�cε‖L2(�) + C3 for all t > 0
(3.41)

with some positive constants C2 > 0 and C3 > 0. Thus, we use the Young inequality to
derive

−
∫

�

∇cε · (∇uε · ∇cε)

≤ ‖∇uε‖L2(�)[C3‖�cε‖L2(�) + C3]
≤ C4‖∇uε‖2L2(�)

+ 1

4
‖�cε‖2L2(�)

+ C4 for all t > 0

(3.42)

with some positive constant C4. Inserting (3.40) and (3.42) into (3.39), we have

1

2

d

dt
‖∇cε‖2L2(�)

+ 1

2

∫

�

|�cε|2 ≤C4‖∇uε‖2L2(�)
+ C2

1

∫

�

n2
ε + C5. (3.43)

Apart from that, (3.41) and the Young inequality also guarantee the existence of C6 such that

‖∇cε‖2L2(�)
+ ‖∇cε‖4L4(�)

≤C6‖�cε‖2L2(�)
+ C6 for all t > 0,

which along with (3.43) implies that there is C7 > 0 such that

1

2

d

dt
‖∇cε‖2L2(�)

+ 1

4

∫

�

|�cε|2 + 1

4C6
‖∇cε‖4L4(�)

+ 1

4C6
‖∇cε‖2L2(�)

≤ C4‖∇uε‖2L2(�)
+ C2

1

∫

�

n2
ε + C7 for all t > 0.

(3.44)

Now, we try to analyze the evolution of
∫

�
|uε|2, which contributes to absorbing ‖∇uε‖2L2(�)

on the right-hand side of (3.44). To this end, multiplying the third equation of (2.5) by uε,
integrating by parts and using ∇ · uε = 0, we have

1

2

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 =
∫

�

nεuε · ∇φ for all t > 0.

Recalling the Poincaré inequality we can find a constant C� > 0 fulfilling

‖ψ‖2L2(�)
≤ C�‖∇ψ‖2L2(�)

for all ψ ∈ W 1,2
0 (�).

Then the Young inequality along with the assumed boundedness of ∇φ yields

1

2

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 + 1

4C�

∫

�

|uε|2

≤ 1

4C�

∫

�

|uε|2 + 1

4C�

∫

�

|uε|2 + C�‖∇φ‖2L∞(�)

∫

�

n2
ε

≤ 1

2

∫

�

|∇uε|2 + C�‖∇φ‖2L∞(�)

∫

�

n2
ε for all t > 0.

(3.45)

Noticing that m ≥ 2 and N ≤ 3 imply 2m − 2 + 2
N ≥ 2, then by using Lemma 2.6, Lemma

3.6 and Lemma 3.7, we obtain that there is a positive constant C8 such that
∫

�

u2
ε ≤ C8 for all t > 0.
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Therefore, integration of (3.45) entails that
∫ T

0

∫

�

|∇uε|2 ≤ C9 for all T > 0

with some C9 > 0. This combined with Lemma 3.6 and Lemma 3.7 implies that
∫ T

0
[C4‖∇uε‖2L2(�)

+ C2
1

∫

�

n2
ε + C7] ≤ C10(T + 1) for all T > 0.

Thereupon an integration of (3.44) yields for some C11
∫

�

|∇cε|2 ≤ C11 for all t > 0

and
∫ T

0

∫

�

[|�cε|2 + |∇cε|4
] ≤ C11(T + 1) for all T > 0.

��
Now we can obtain the staring point through the following lemma.

Lemma 3.9 Let (nε, cε, uε) be the solution of (2.5) and m ≥ 2. Then there exists a positive
constant C such that

sup
t∈(0,∞)

∫

�

(nε + ε)3m−3+ 2
N ≤ C . (3.46)

Proof Choosing p as 3m − 3 + 2
N in (2.11), implies that

1

3m − 3 + 2
N

d

dt
‖nε + ε‖3m−3+ 2

N

L3m−3+ 2
N (�)

+ m(3m − 4 + 2
N )

2

∫

�

(nε + ε)m+3m−3+ 2
N −3|∇nε|2

≤ (3m − 4 + 2
N )C2

S

2m

∫

�

(nε + ε)3m−3+ 2
N +1−m |∇cε|2 for all t > 0.

(3.47)

Due to (2.7), one has for any ε ∈ (0, 1), ‖nε + ε‖L1(�) ≤ ‖n0‖L1(�) + |�|. Therefore,
an application of the Gagliardo-Nirenberg inequality yields that there are positive constants
Ci (i = 1, 2, 3, 4) such that

∫

�

(nε + ε)3m−3+ 2
N

= ‖(nε + ε)2m−2+ 1
N ‖

3m−3+ 2
N

2m−2+ 1
N

L

3m−3+ 2
N

2m−2+ 1
N (�)

≤ C1‖∇(nε + ε)2m−2+ 1
N ‖

N (3m−4+ 2
N )

1− N
2 +N (2m−2+ 1

N )

L2(�)
‖(nε + ε)2m−2+ 1

N ‖
3m−3+ 2

N
2m−2+ 1

N
− N (3m−4+ 2

N )

1− N
2 +N (2m−2+ 1

N )

L

1
2m−2+ 1

N (�)

+C1‖(nε + ε)2m−2+ 1
N ‖

3m−3+ 2
N

2m−2+ 1
N

L

1
2m−2+ 1

N (�)
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≤ C2(‖∇(nε + ε)2m−2+ 1
N ‖

N (3m−4+ 2
N )

1− N
2 +N (2m−2+ 1

N )

L2(�)
+ 1) for all t > 0

and ∫

�

(nε + ε)4m−4+ 4
N

= ‖(nε + ε)2m−2+ 1
N ‖

4m−4+ 4
N

2m−2+ 1
N

L

4m−4+ 4
N

2m−2+ 1
N (�)

≤ C3‖∇(nε + ε)2m−2+ 1
N ‖2L2(�)

‖(nε + ε)2m−2+ 1
N ‖

4m−4+ 4
N

2m−2+ 1
N

−2

L

1
2m−2+ 1

N (�)

+C3‖(nε + ε)2m−2+ 1
N ‖

4m−4+ 4
N

2m−2+ 1
N

L

1
2m−2+ 1

N (�)

≤ C4(‖∇(nε + ε)2m−2+ 1
N ‖2L2(�)

+ 1) for all t > 0.

(3.48)

Apart from these, (3.48) also implies that

‖∇(nε + ε)2m−2+ 1
N ‖2L2(�)

+ 1 ≥ 1

C4

∫

�

(nε + ε)4m−4+ 4
N for all t > 0,

which in view of the Young inequality implies that

(3m − 4 + 2
N )C2

S

2m

∫

�

(nε + ε)3m−3+ 2
N +1−m |∇cε|2

≤ 1

2C4
× 1

(2m − 2 + 1
N )2

× m(3m − 4 + 2
N )

8

∫

�

(nε + ε)4m−4+ 4
N

+ C5

∫

�

|∇cε|4

≤ 1

(2m − 2 + 1
N )2

× m(3m − 4 + 2
N )

8
[‖∇(nε + ε)2m−2+ 1

N ‖2L2(�)
+ 1]

+ C5

∫

�

|∇cε|4

= m(3m − 4 + 2
N )

8

∫

�

(nε + ε)m+3m−3+ 2
N −3|∇nε|2

+ 1

(2m − 2 + 1
N )2

× m(3m − 4 + 2
N )

8
+ C5

∫

�

|∇cε|4 for all t > 0

(3.49)

with some C5 > 0. Due to m ≥ 2, we observe that

N (3m − 4 + 2
N )

1 − N
2 + N (2m − 2 + 1

N )
< 2,
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and thus by another application of the Young inequality we obtain that there is C6 > 0 such
that

∫

�

(nε + ε)3m−3+ 2
N

≤ m(3m − 4 + 2
N )

8
× 1

(2m − 2 + 1
N )2

‖∇(nε + ε)2m−2+ 1
N ‖2L2(�)

+ C6

= m(3m − 4 + 2
N )

8

∫

�

(nε + ε)m+3m−3+ 2
N −3|∇nε|2 + C6 for all t > 0.

Substituting the above inequality and (3.49) into (3.47), we have

1

3m − 3 + 2
N

d

dt
‖nε + ε‖3m−3+ 2

N

L3m−3+ 2
N (�)

+
∫

�

(nε + ε)3m−3+ 2
N

+m(3m − 4 + 2
N )

4

∫

�

(nε + ε)m+3m−3+ 2
N −3|∇nε|2

≤ C5

∫

�

|∇cε|4 + C7 for all t > 0

with some positive constant C7. This combined with (3.38) and Lemma 2.6 yields that there
exists a positive constant C8 such that

∫

�

(nε + ε)3m−3+ 2
N ≤C8 for all t > 0. (3.50)

��
Lemma 3.10 Let (nε, cε, uε) be the solution of (2.5) and m > 1. Then there are C > 0 and
p0 > 1 such that

sup
t∈(0,∞)

∫

�

(nε + ε)p0 ≤ C . (3.51)

Proof Let

p0 =
{

p if 1 < m < 2
3m − 3 + 2

N if m ≥ 2,

where p ∈ (1,min{m, 3−m}) is the same as that in (3.11). Then an elementary computation
shows that p0 > 1, so that, (3.50) and (3.11) entails (3.51). ��
Lemma 3.11 Let m ≥ 2 and N = 2, 3. Then for each T > 0, one can find a constant C > 0
independent of ε such that the solution of (2.5) satisfies

∫ T

0

∫

�

nε

cε

|∇cε|2 ≤ C(T + 1). (3.52)

Proof Recalling (3.1), we integrate by parts to derive

d

dt

∫

�

|∇cε|2
cε

+ μ0

∫

�

cε|D2 ln cε|2 + 3μ0

4

∫

�

|∇cε|4
c3ε

+
∫

�

nε|∇cε|2
cε

≤ 2
∫

�

nε�cε + 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + κ1

≤
∫

�

n2
ε +

∫

�

|�cε|2 + 4

μ0
‖c0‖L∞(�)

∫

�

|∇uε|2 + κ1 for all t > 0

(3.53)
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by using the Young inequality. Next, m ≥ 2 entails that

3m − 3 + 2

N
≥ 2,

so that, using (3.46) and (3.38), we derive that
∫ T

0

∫

�

[

n2
ε + |�cε|2 + 4

μ0
‖c0‖L∞(�)|∇uε|2 + κ1

]

≤ C(T + 1) for all T > 0.

Then the result of (3.52) can be obtained by an integration of (3.53) and using (1.6). ��

4 Boundedness for the Case N = 2

In this subsection, we obtain some regularity properties for nε, cε, and uε in the following
form on the basis of Lemma 3.5.

Lemma 4.1 Let m > 1 and N = 2. Then there exists C > 0 independent of ε such that the
solution of (2.5) satisfies ∫

�

|∇uε|2 ≤ C for all t > 0. (4.1)

Proof In view of (3.11), from D(1 + εA) := W 2,2(�) ∩ W 1,2
0,σ (�) ↪→ L∞(�), there are

positive constants C1 and C2 such that

‖Yεuε‖L∞(�) = ‖(I + εA)−1uε‖L∞(�) ≤ C1‖uε(·, t)‖L2(�) ≤ C2 for all t > 0. (4.2)

Next, testing the projected Navier-Stokes equation uεt + Auε = P[−κ(Yεuε ·∇)uε +nε∇φ]
by Auε, we derive

1

2

d

dt
‖A

1
2 uε‖2L2(�)

+
∫

�

|Auε|2

=
∫

�

AuεP(−κ(Yεuε · ∇)uε) +
∫

�

P(nε∇φ)Auε

≤ 1

2

∫

�

|Auε|2 + κ2
∫

�

|(Yεuε · ∇)uε|2 + ‖∇φ‖2L∞(�)

∫

�

n2
ε for all t > 0.

(4.3)

In view of the Young inequality and (4.2), there is C3 > 0 such that

κ2
∫

�

|(Yεuε · ∇)uε|2 ≤κ2‖Yεuε‖2L∞(�)

∫

�

|∇uε|2

≤C3

∫

�

|∇uε|2 for all t > 0,

which togetherwith (4.3) and the fact that ‖A(·)‖L2(�) defines a norm equivalent to ‖·‖W 2,2(�)

on D(A) (see Theorem 2.1.1 of [30]) yields

1

2

d

dt
‖∇uε‖2L2(�)

+
∫

�

|�uε|2 ≤ C4

∫

�

|∇uε|2 + ‖∇φ‖2L∞(�)

∫

�

n2
ε for all t > 0

(4.4)
with some C4. Let

q0 =
{
2m − 1 if m ≥ 2,
m + p if 1 < m < 2,

123



150 Page 30 of 46 J. Zheng et al.

where p ∈ (1,min{m, 3 − m}) is the same as that in (3.11). For any m > 1 ensures that

q0 > 2,

therefore, in view of Lemmas 3.5–3.7 and the Young inequality, (4.4) directly leads to (4.1)
by performing some basic calculations. ��
Lemma 4.2 Let m > 1 and N = 2. Then there exists a positive constant C independent of ε

such that the solution of (2.5) from Lemma 2.1 satisfies

‖Aγ uε(·, t)‖L2(�) ≤ C for all t > 0

as well as
‖nε(·, t)‖L∞(�) ≤ C for all t > 0

and
‖cε(·, t)‖W 1,∞(�) ≤ C for all t > 0,

where γ is the same as that in (1.6).

Proof Now, involving the variation-of-constants formula for cε and applying ∇ · uε = 0 in
x ∈ �, t > 0, we have

cε(·, t) = et(�−1)c0+
∫ t

0
e(t−s)(�−1)(−nε(·, s)cε(·, s)+cε(·, s)+∇·(uε(·, s)cε(·, s))ds, t > 0.

So that, for any 2 < q < min{ 2p0
(2−p0)+ , 4}, where p0 > 1 is the same as (3.51), there is

‖∇cε(·, t)‖Lq (�)

≤ ‖∇et(�−1)c0‖Lq (�) +
∫ t

0
‖∇e(t−s)(�−1)[−nε(·, s)cε(·, s) + cε(·, s)]‖Lq (�)ds

+
∫ t

0
‖∇e(t−s)(�−1)∇ · (uε(·, s)cε(·, s))‖Lq (�)ds.

(4.5)

To address the right-hand side of (4.5), in view of (1.6), it can be derived through the standard
L p-Lq estimates on Neumann heat semigroup (see Lemma 1.3 of [43])

‖∇et(�−1)c0‖Lq (�) ≤ C5 for all t > 0

with some positive constant C5. Since

−1

2
− 2

2

(
1

p0
− 1

q

)

> −1,

recalling (3.51) and (2.8), we deduce from the standard L p-Lq estimates on Neumann heat
semigroup that there are λ1 > 0, C6 > 0 and C7 > 0 such that

∫ t

0
‖∇e(t−s)(�−1)[−nε(·, s)cε(·, s) + cε(·, s)]‖Lq (�)ds

≤ C6

∫ t

0
[1 + (t − s)

− 1
2− 2

2 ( 1
p0

− 1
q )]e−λ1(t−s)‖cε(·, s)‖L∞(�)[‖nε(·, s)‖L p0 (�) + 1]ds

≤ C6‖c0‖L∞(�)

∫ t

0
[1 + (t − s)

− 1
2− 2

2 ( 1
p0

− 1
q )]e−λ1(t−s)[‖nε(·, s)‖L p0 (�) + 1]ds

≤ C7 for all t > 0.
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Now, we estimate the third term on the right-hand side of (4.5). In fact, since, W 1,2(�) ↪→
L p(�) for any p > 1, the boundedness of ‖∇uε(·, t)‖L2(�) (see (4.1)) as well as
‖∇cε(·, t)‖L2(�) (see (3.11) and (3.37)) and ‖cε(·, t)‖L2(�) (see (3.9)) yields that there exists
a positive constant C8 such that

‖uε(·, t)‖L16(�) + ‖cε(·, t)‖L16(�) ≤ C8 for all t > 0.

Pick 0 < ι < 1
2 satisfying

1
2 + 2

2 (
1
8 − 1

4 ) < ι and κ̃ ∈ (0, 1
2 −ι). In light of Hölder’s inequality,

we derive from the standard L p-Lq estimates on Neumann heat semigroup that there exist
constants λ2, C9, C10, as well as C11 and C12 such that

∫ t

0
‖∇e(t−s)(�−1)∇ · (uε(·, s)cε(·, s))‖Lq (�)ds

≤ C9

∫ t

0
‖(−� + 1)ιe(t−s)(�−1)∇ · (uε(·, s)cε(·, s))‖L4(�)ds

≤ C10

∫ t

0
(t − s)−ι− 1

2−κ̃e−λ2(t−s)‖uε(·, s)cε(·, s)‖L8(�)ds

≤ C11

∫ t

0
(t − s)−ι− 1

2−κ̃e−λ2(t−s)‖uε(·, s)‖L8(�)‖cε(·, s)‖L∞(�)ds

≤ C11‖c0‖L∞(�)

∫ t

0
(t − s)−ι− 1

2−κ̃e−λ2(t−s)‖uε(·, s)‖L8(�)ds

≤ C12 for all t > 0

by using (2.8). Combining the above estimates, we obtain a positive constant C13 such that

∫

�

|∇cε(x, t)|q ≤ C13 for all t > 0 and some q ∈
(

2,min

{
2p0

(2 − p0)+
, 4

})

. (4.6)

For any p > 2 + m, in view of (2.11) and (4.6), we derive from the Hölder inequality that
there exists a positive constant C14 such that

1

p

d

dt
‖nε + ε‖p

L p(�) + m(p − 1)

2

∫

�

(nε + ε)m+p−3|∇nε|2 + ‖nε + ε‖p
L p(�)

≤ (p − 1)C2
S

2m

∫

�

(nε + ε)p+1−m |∇cε|2 + ‖nε + ε‖p
L p(�)

≤ (p − 1)C2
S

2m

(∫

�

(nε + ε)
q

q−2 (p+1−m)

) q−2
q

(∫

�

|∇cε|q
) 2

q + ‖nε + ε‖p
L p(�)

≤ (p − 1)C2
SC14

2m

(∫

�

(nε + ε)
q

q−2 (p+1−m)

) q−2
q + ‖nε + ε‖p

L p(�) for all t > 0,

where CS is the same as that in (2.9). Recalling (2.7), we employ the Gagliardo-Nirenberg
inequality and find positive constants C15 > 0, C16 > 0 as well as C17 > 0 and C18 > 0
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satisfying

(p − 1)C2
SC14

2m

(∫

�

(nε + ε)
q

q−2 (p+1−m)

) q−2
q

= (p − 1)C2
SC14

2m
‖(nε + ε)

m+p−1
2 ‖

2(p+1−m)
m+p−1

L
2q(p+1−m)

(q−2)(m+p−1) (�)

≤ C15‖∇(nε + ε)
m+p−1

2 ‖2
p−m+ 2

q
m+p−1

L2(�)
‖(nε + ε)

m+p−1
2 ‖

2(p+1−m)
m+p−1 −2

p−m+ 2
q

m+p−1

L
2

m+p−1 (�)

+C15‖(nε + ε)
m+p−1

2 ‖
2(p+1−m)

m+p−1

L
2

m+p−1 (�)

≤ C16(‖∇(nε + ε)
m+p−1

2 ‖2
p−m+ 2

q
m+p−1

L2(�)
+ 1) for all t > 0

and ∫

�

(nε + ε)p

= ‖(nε + ε)
m+p−1

2 ‖
2p

m+p−1

L
2p

m+p−1 (�)

≤ C17‖∇(nε + ε)
m+p−1

2 ‖2
p−1

m+p−1

L2(�)
‖(nε + ε)

m+p−1
2 ‖

2p
m+p−1−2 p−1

m+p−1

L
2

m+p−1 (�)

+C17‖(nε + ε)
m+p−1

2 ‖
2p

m+p−1

L
2

m+p−1 (�)

≤ C18(‖∇(nε + ε)
m+p−1

2 ‖2
p−1

m+p−1

L2(�)
+ 1) for all t > 0.

Since p > 2 + m as well as q > 2 and m > 1, we see that

2
p − m + 2

q

m + p − 1
< 2 and 2

p − 1

m + p − 1
< 2,

which allow for an application of the Young inequality to entail some positive constant C19

such that

1

p

d

dt
‖nε + ε‖p

L p(�) + ‖nε + ε‖p
L p(�) ≤ C19 for all t > 0.

By a comparison argument, this in particular entails that there is C20 > 0 such that
∫

�

(nε + ε)p ≤ C20 for all t > 0 and p > 2. (4.7)

Fix γ ∈ ( 12 , 1) and define

M(T ) := sup
t∈(0,T )

‖Aγ uε(·, t)‖L2(�) for all T > 0.

Let t0 := (t − 1)+ for any t ∈ (0, T ), then from the variation-of-constants formula of uε and
the regularization estimates on Stokes semigroup ([11]), one can find C21 > 0 and λ3 > 0
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fulfilling

‖Aγ uε(·, t)‖L2(�)

≤ ‖Aγ e−(t−t0)Auε(·, t0)‖L2(�) +
∫ t

t0
‖Aγ e−(t−τ)Ahε(·, τ )dτ‖L2(�)dτ

≤ ‖Aγ u0‖L2(�) + C21

∫ t

t0
(t − τ)−γ− 2

2 ( 12− 1
2 )e−λ3(t−τ)‖hε(·, τ )‖L2(�)dτ,

(4.8)

where hε(·, τ ) = P[nε(·, τ )∇φ − κ(Yεuε(·, τ ) · ∇)uε(·, τ )]. If t ∈ (0, 1], then by (1.6),
there is C22 such that

‖Aγ e−(t−t0)Auε(·, t0)‖L2(�) = ‖Aγ e−Au0‖L2(�) ≤ C22.

Whereas if t > 1, due to t − t0 = 1 and using the boundedness of
∫

�
|∇uε|2 (see (4.1)), we

have
‖Aγ e−(t−t0)Auε(·, t0)‖L2(�) ≤ C23(t − t0)

−γ ‖uε(·, t0)‖L2(�) ≤ C24 (4.9)

with C23 > 0 and C24 > 0. In the following we will estimate ‖hε(·, τ )‖L2(�). Choose
β ∈ ( 12 , γ ). Then we have the embedding D(Aβ) ↪→ L∞(�) (see [11]). Thus, there exist
C25 > 0, C26 > 0 and C27 > 0 such that

‖hε(·, t)‖L2(�) ≤ C25‖(Yεuε · ∇)uε(·, t)‖L2(�) + C25‖nε(·, t)‖L2(�)

≤ C26‖uε‖L∞(�)‖∇uε(·, t)‖L2(�) + C26

≤ C27‖Aβuε‖L2(�)‖∇uε(·, t)‖L2(�) + C26 for all t > 0.

(4.10)

On the other hand, recalling (4.1), then by using the interpolation between D(Aγ ) and D(A
1
2 )

(see [10]), we have C28 > 0 and C29 > 0 such that

‖Aβuε‖L2(�) ≤ C28‖Aγ uε‖a
L2(�)

‖∇uε‖1−a
L2(�)

≤ C29Ma(T )

with a = 2β−1
2γ−1 ∈ (0, 1). This together with (4.10) and (4.1) implies that there exists some

C30 > 0 such that

‖hε(·, t)‖L2(�) ≤C30Ma(T ) + C26 for all t ∈ (0, T ). (4.11)

Due to γ < 1, t − t0 ≤ 1, (4.8)–(4.9) and (4.11), we have

‖Aγ uε(·, t)‖L2(�) ≤C31 + C32Ma(T )

for some positive constants C31 and C32. Since t ∈ (0, T ) is arbitrary, we further have

M(T ) ≤ C31 + C32Ma(T ).

Then a standard ODE comparison argument implies that there is C33 > 0 such that

‖Aγ uε(·, t)‖L2(�) ≤C33 for all t > 0,

which combined with the fact that D(Aγ ) is continuously embedded into L∞(�) implies
that for some positive constant C34 such that

‖uε(·, t)‖L∞(�) ≤ C34 for all t > 0. (4.12)
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To prove the boundedness of ‖∇cε(·, t)‖L∞(�), we rewrite the variation-of-constants for-
mula for cε in the form

cε(·, t) = et(�−1)c0 +
∫ t

0
e(t−s)(�−1)[ − nε(·, s)cε(·, s)

+ cε(·, s) − uε(·, s) · ∇cε(·, s)]ds for all t > 0.

Thanks to q > 2 (by 2 < q < min{ 2p0
(2−p0)+ , 4}), one has

1

2
+ 2

2q
< 1.

So that, one can pick

θ ∈ (
1

2
+ 2

2q
, 1),

and by N = 2, one can derive that D((−� + 1)θ ) ↪→ W 1,∞(�) (see [14]). Therefore, in
light of L p–Lq estimates associated with the heat semigroup, (4.7) as well as (4.12) and
(2.8), we derive that there exist positive constants λ4, C35, C36, C37, and C38 such that

‖cε(·, t)‖W 1,∞(�)

≤ C35‖(−� + 1)θ cε(·, t)‖Lq (�)

≤ C36t−θ e−λ4t‖c0‖Lq (�)

+ C36

∫ t

0
(t − s)−θ e−λ4(t−s)‖ − nε(·, s)cε(·, s) + cε(·, s) − uε(·, s) · ∇cε(·, s)‖Lq (�)ds

≤ C37 + C37

∫ t

0
(t − s)−θ e−λ4(t−s)‖c0(·, s)‖L∞(�)(‖nε(·, s)‖Lq (�) + 1)ds

+ C37

∫ t

0
(t − s)−θ e−λ4(t−s)‖uε(·, s)‖L∞(�)‖∇cε(·, s)‖Lq (�)ds

≤ C38 for all t > 0.
(4.13)

Next, using the outcome of (4.7) with suitably large p as a starting point, recalling the
boundedness of ‖cε(·, t)‖W 1,∞(�) (see (4.13)), we may invoke Lemma A.1 in [32] which by
means of a Moser-type iteration applied to the first equation in (2.5) and establish

‖nε(·, t)‖L∞(�) ≤ C39 for all t > 0

with some positive constant C39. The proof of Lemma 4.2 is thus completed. ��
Now we can establish global existence and boundedness in the approximate problem (2.5)
by using Lemma 4.2 and an idea of [60] (see also [24, 47]).

Proof of Theorem 1.1. Firstly, according to the standard parabolic regularity theory (see e.g.
Theorem IV.5.3 of [19]) to the second equation and third equation in system (2.5), there exists
a positive constant Cε such that

‖cε(·, t)‖
Cμ,

μ
2 (�×[t,t+1]) ≤ Cε for all t ∈ (0,∞) (4.14)

and
‖uε(·, t)‖

Cμ,
μ
2 (�×[t,t+1]) ≤ Cε for all t ∈ (0,∞).
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Next, employing the same arguments as that in the proof of Lemmas 3.22–3.23 in [47], and
taking advantages of Lemma 4.2, we conclude that for all T > 0 and ε ∈ (0, 1), there exists
C(T ) independent of ε such that

∫ T

0
‖∂t (nε + ε)ς (·, t)‖

(W 2,2
0 (�))∗dt ≤ C(T ) for all t ∈ (0, T )

and ∫ T

0

∫

�

|∇(nε + ε)ς |2 ≤ C(T ) for all t ∈ (0, T ) (4.15)

with ς > max{m, 2(m − 1)}. Then combined with (4.14)–(4.15) as well as Lemma 4.2, the
Aubin-Lions compactness lemma (see e.g. Simon [29]) and the Egorov theorem, one can
derive the existence of a sequence of numbers ε = ε j ↘ 0 such that

nε⇀n weakly star in L∞(� × (0,∞)),

nε → n in C0
loc([0,∞); (W 2,2

0 (�))∗),
cε → c in C0

loc(�̄ × [0,∞)),

nε → n a.e. in � × (0,∞)

as well as
uε → u in C0

loc(�̄ × [0,∞))

and
Duε⇀Du weakly star in L∞(� × (0,∞))

hold for some limit (n, c, u) ∈ (L∞(� × (0,∞)))4 with nonnegative n and c. Based on the
above convergence properties, we can pass to the limit in each term of weak formulation
for (2.5) to construct a global weak solution of (1.1). Finally, the boundedness of (n, c, u)

may result from the boundedness of (nε, cε, uε) (see Lemma 4.2) and the Banach-Alaoglu
theorem. This completes the proof of Theorem 1.1. ��

5 Further "-independent Estimates on (2.5) in the Case N = 3

In order to pass to limits in (2.5) with safety in the case N = 3, we need some more ε-
independent estimates for the solution. Indeed, by means of the interpolation, the estimates
from Lemma 3.5 imply bounds for further spatio-temporal integrals.

Lemma 5.1 Let m > 1 and N = 3. Then there exists a positive constant C such that the
solution of (2.5) satisfies ∫

�

(nε + ε)m ≤ C for all t > 0 (5.1)

as well as ∫ T

0

∫

�

(nε + ε)2m−3|∇nε|2 ≤ C for all T > 0 (5.2)

and ∫ T

0

∫

�

(nε + ε)2m−1+ 2
N m ≤ C for all T > 0. (5.3)
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Proof Picking p = m in (2.11), one has

1

m

d

dt
‖nε + ε‖m

Lm (�) + m(m − 1)

2

∫

�

(nε + ε)2m−3|∇nε|2

≤ (m − 1)C2
S

2m

∫

�

(nε + ε)|∇cε|2
(5.4)

for all t > 0. In the following, we will estimate the right-side of (5.4). Recalling (2.7), in
light of the Gagliardo-Nirenberg inequality, there exist positive constants C1, C2 and C3

independent of ε ∈ (0, 1) such that
∫

�

(nε + ε)m

= ‖(nε + ε)
2m−1

2 ‖
2m

2m−1

L
2m

2m−1 (�)

≤ C1(‖∇(nε + ε)
2m−1

2 ‖
3m−3
3m−2

L2(�)
‖(nε + ε)

2m−1
2 ‖

2m
2m−1− 3m−3

3m−2

L
2

2m−1 (�)

+ ‖(nε + ε)
2m−1

2 ‖
2m

2m−1

L
2

2m−1 (�)

)

≤ C2(‖∇(nε + ε)
2m−1

2 ‖
3m−3
3m−2

L2(�)
+ 1)

≤ m(m − 1)

2
× 2

(2m − 1)2
‖∇(nε + ε)

2m−1
2 ‖2L2(�)

+ C3,

where in the last inequality we have used the Young inequality. Inserting the above inequality
into (5.4), one has some positive constant C4 such that

1

m

d

dt
‖nε + ε‖m

Lm (�) + m(m − 1)

4

∫

�

(nε + ε)2m−3|∇nε|2 +
∫

�

(nε + ε)m

≤ (m − 1)C2
S

2m

∫

�

(nε + ε)|∇cε|2 + C4 for all t > 0.

(5.5)

In the case when m ≥ 2, by virtue of ε ∈ (0, 1), (3.10) as well as (3.52) and (2.8), we can
find C5 > 0 such that for all T > 0,

∫ T

0

∫

�

(nε + ε)|∇cε|2

≤
∫ T

0

∫

�

nε + 1

cε

cε|∇cε|2

≤ ‖c0‖L∞(�)

∫ T

0

∫

�

nε

cε

|∇cε|2 + ‖c0‖L∞(�)

∫ T

0

∫

�

|∇cε|2

≤ C5(T + 1).

(5.6)

Whereas for 1 < m < 2, by means of (3.12) we derive

∫ T

0

∫

�

(nε + ε)|∇cε|2 ≤‖c0‖L∞(�)

∫ T

0

∫

�

nε + ε

‖c0‖L∞(�)

|∇cε|2

≤C6(T + 1) for all T > 0

with some C6 > 0. This combining with (5.5)–(5.6) yields (5.1)–(5.2) by means of an ODE
comparison argument. In view of (5.1), the Gagliardo-Nirenberg inequality entails that there
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exist C7 > 0, C8 > 0 and C9 > 0 such that

∫ T

0

∫

�

(nε + ε)m+m−1+ 2
N mds

=
∫ T

0
‖(nε + ε)

m+m−1
2 ‖

2(m+m−1+ 2
N m)

m+m−1

L
2(m+m−1+ 2

N m)

m+m−1 (�)

ds

≤ C7

∫ T

0
‖∇(nε + ε)

m+m−1
2 ‖2L2(�)

‖(nε + ε)
m+m−1

2 ‖
2(m+m−1+ 2

N m)

m+m−1 −2

L
2m

m+m−1 (�)

ds

+C7

∫ T

0
‖(nε + ε)

m+m−1
2 ‖

2(m+m−1+ 2
N m)

m+m−1

L
2m

m+m−1 (�)

ds

≤ C8(

∫ T

0
‖∇(nε + ε)

m+m−1
2 ‖2L2(�)

ds + 1)

≤ C9(T + 1) for all T > 0. (5.7)

The proof is completed. ��

Next, an application of Lemma 5.1 also enables us to get a higher order regularity of nε

and uε in the case N = 3.

Lemma 5.2 Let m > 1 and N = 3. Then there exists a positive constant C such that the
solution of (2.5) satisfies

∫ T

0

∫

�

|∇(nε + ε)m | 8m−3
4m ≤ C for all T > 0

and ∫ T

0

∫

�

|uε| 103 ≤C(T + 1) for all T > 0. (5.8)

Proof Recalling N = 3, then the Young inequality, (5.2) and (5.7) enable us to obtain that

∫ T

0

∫

�

|∇(nε + ε)m | 8m−3
4m

= m
8m−3
4m

∫ T

0

∫

�

(nε + ε)
(m−1)(8m−3)

4m |∇(nε + ε)| 8m−3
4m

= m
8m−3
4m

∫ T

0

∫

�

(nε + ε)
(m−1)(8m−3)

4m − (2m−3)(8m−3)
8m (nε + ε)

(2m−3)(8m−3)
8m |∇(nε + ε)| 8m−3

4m

= m
8m−3
4m

∫ T

0

∫

�

(nε + ε)
(8m−3)

8m (nε + ε)
(2m−3)(8m−3)

8m |∇(nε + ε)| 8m−3
4m

≤ C1

∫ T

0
[
∫

�

(nε + ε)2m−3|∇nε|2 +
∫

�

(nε + ε)m+m−1+ 2
N m]

≤ C2(T + 1) for all T > 0

with some positive constants C1 and C2. Finally, due to (3.11) and (3.13), employing the
Hölder inequality and the Gagliardo-Nirenberg inequality, we conclude that there exist pos-
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itive constants C3 and C4 such that

∫ T

0

∫

�

|uε| 103 =
∫ T

0
‖uε‖

10
3

L
10
3 (�)

≤ C3

∫ T

0

(

‖∇uε‖2L2(�)
‖uε‖

4
3
L2(�)

+ ‖uε‖
10
3

L2(�)

)

≤ C4(T + 1) for all T > 0.

The proof is completed. ��

6 Regularity Properties of Time Derivatives

In preparation of an Aubin-Lions type compactness argument, besides the ε-independent
estimates derived before (see Lemma 3.5 and Lemma 5.2), the time regularity is also indis-
pensable.

Lemma 6.1 Let m > 1 and N = 3. Assume that (1.6) and (1.7) hold. Then for any T > 0,
one can find C > 0 independent of ε such that

∫ T

0
‖∂t (nε + ε)m(·, t)‖(W 2,q (�))∗dt ≤ C(T + 1) (6.1)

as well as ∫ T

0
‖∂t cε(·, t)‖

5
3

(W 1, 52 (�))∗
dt ≤ C(T + 1) (6.2)

and ∫ T

0
‖∂t uε(·, t)‖

5
3

(W
1, 52
0,σ (�))∗

dt ≤ C(T + 1). (6.3)

Proof Fix t > 0. Multiplying the first equation in (2.5) by m(nε + ε)m−1ϕ ∈ C∞(�̄), it
follows

∣
∣
∣
∣

∫

�

[(nε + ε)m]tϕ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

[
�(nε + ε)m − ∇ · (nε Fε(nε)Sε(x, nε, cε) · ∇cε) − uε · ∇nε

] · m(nε + ε)m−1ϕ

∣
∣
∣
∣

≤
∣
∣
∣
∣−m2

∫

�

(nε + ε)m−1(nε + ε)m−1∇nε · ∇ϕ

∣
∣
∣
∣

+
∣
∣
∣
∣−m2(m − 1)

∫

�

(nε + ε)m−1(nε + ε)m−2|∇nε|2ϕ
∣
∣
∣
∣
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+m

∣
∣
∣
∣

∫

�

Fε(nε)Sε(x, nε, cε)(m − 1)nε(nε + ε)m−2∇nε · ∇cεϕ

∣
∣
∣
∣

+m

∣
∣
∣
∣

∫

�

Fε(nε)Sε(x, nε, cε)nε(nε + ε)m−1∇cε · ∇ϕ

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

(nε + ε)muε · ∇ϕ

∣
∣
∣
∣

≤ m2
{∫

�

(nε + ε)m−1(nε + ε)m−1|∇nε|
}

‖ϕ‖W 1,∞(�)

+m3
{∫

�

(nε + ε)m−1(nε + ε)m−2|∇nε|2
}

‖ϕ‖W 1,∞(�)

+
{∫

�

m2CS(nε + ε)m−1|∇nε||∇cε|
}

‖ϕ‖W 1,∞(�)

+
{∫

�

[CSm(nε + ε)m |∇cε| + (nε + ε)m |uε|]
}

‖ϕ‖W 1,∞(�).

Due to the embedding W 2,q(�) ↪→ W 1,∞(�) for q > 3, we deduce from the Young
inequality that there exist positive constants C1 and C2 such that

∫ T

0
‖∂t n

m
ε (·, t)‖(W 2,q (�))∗dt

≤ C1

{∫ T

0

∫

�

(nε + ε)2m−3|∇nε|2 +
∫ T

0

∫

�

(nε + ε)2m−1 +
∫ T

0

∫

�

(nε + ε)|∇cε|2
}

+ C1

{∫ T

0

∫

�

|∇cε|4 +
∫ T

0

∫

�

(nε + ε)
4
3 m +

∫ T

0

∫

�

(nε + ε)
10
7 m +

∫ T

0

∫

�

|uε| 103
}

≤ C2

{∫ T

0

∫

�

(nε + ε)2m−3|∇nε|2 +
∫ T

0

∫

�

|∇cε|4 +
∫ T

0

∫

�

(nε + ε)
8m
3 −1

}

+ C2

{∫ T

0

∫

�

|uε| 103 +
∫ T

0

∫

�

(nε + ε)|∇cε|2 + T

}

for all T > 0.

According to the bounds provided by Lemma 3.5 and Lemma 5.2, it readily yields (6.1). For
any chosen ϕ ∈ C∞(�̄), we use it to test nε-equation in (2.5) and use (2.8) to obtain

∣
∣
∣
∣

∫

�

∂t cε(·, t)ϕ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�

[�cε − cε + nε − uε · ∇cε] · ϕ

∣
∣
∣
∣

=
∣
∣
∣
∣−

∫

�

∇cε · ∇ϕ −
∫

�

nεcεϕ +
∫

�

cεuε · ∇ϕ

∣
∣
∣
∣

≤
{

‖∇cε‖
L

5
3 (�)

+ ‖nεcε‖
L

5
3 (�)

+ ‖nε‖
L

5
3 (�)

+ ‖cεuε‖
L

5
3 (�)

}

‖ϕ‖
W 1, 52 (�)

≤
{

‖∇cε‖
L

5
3 (�)

+ ‖c0‖L∞(�)‖nε‖
L

5
3 (�)

+ ‖c0‖L∞(�)‖uε‖
L

5
3 (�)

}

‖ϕ‖
W 1, 52 (�)

(6.4)
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for all t > 0. In view of the Young inequality and m > 1, (6.4) implies that there exists
C3 > 0 fulfilling

∫ T

0
‖∂t cε(·, t)‖

5
3

(W 1, 52 (�))∗
dt

≤ C3

(∫ T

0

∫

�

|∇cε|2 +
∫ T

0

∫

�

(nε + ε)
8m
3 −1 +

∫ T

0

∫

�

|uε| 103 + T

)

for all T > 0,

which combined with Lemma 3.5 and Lemma 5.2 implies (6.2).
Finally, for the proof of (6.3), we pick t > 0 and multiply the third equation in (2.5) by

an arbitrary solenoidal ϕ ∈ C∞
0,σ (�;R3). Then by using the Hölder inequality, we obtain

∣
∣
∣
∣

∫

�

∂t uε(·, t)ϕ

∣
∣
∣
∣

=
∣
∣
∣
∣−

∫

�

∇uε · ∇ϕ − κ

∫

�

(Yεuε ⊗ uε) · ∇ϕ +
∫

�

nε∇φ · ϕ

∣
∣
∣
∣

≤
{

‖∇uε‖
L

5
3 (�)

+ |κ|‖Yεuε ⊗ uε‖
L

5
3 (�)

+ ‖nε∇φ‖
L

5
3 (�)

}

‖ϕ‖
W 1, 52 (�)

for all t > 0.

(6.5)
Since ‖Yεv‖L2(�) ≤ ‖v‖L2(�) for all v ∈ L2

σ (�), together with (1.7) and the Young inequal-
ity, (6.5) further implies that there exist positive constants C4 and C5 such that

∫ T

0
‖∂t uε(·, t)‖

5
3

(W
1, 52
0,σ (�))∗

dt

≤ C4

(∫ T

0

∫

�

|∇uε| 53 +
∫ T

0

∫

�

|Yεuε ⊗ uε| 53 +
∫ T

0

∫

�

n
5
3
ε

)

≤ C5

(∫ T

0

∫

�

|∇uε|2 +
∫ T

0

∫

�

|Yεuε|2 +
∫ T

0

∫

�

(nε + ε)
8m
3 −1 + T

)

for all T > 0.

This combined with the outcome of Lemma 3.5 and Lemma 5.2, we immediately obtain
(6.3). ��

In order to guarantee the pointwise convergence for each component of the approximate
solution, some further estimates on nεuε, uε · ∇cε and nε Sε(x, nε, cε)∇cε are also needed.

Lemma 6.2 Let m > 1 and N = 3, and suppose that (1.6) and (1.7) hold. Then for any
T > 0, one can find C > 0 independent of ε such that

∫ T

0

∫

�

|nεuε|
10(8m−3)
3(8m+7) ≤ C(T + 1) (6.6)

as well as ∫ T

0

∫

�

|uε · ∇cε| 2011 ≤ C(T + 1) (6.7)

and ∫ T

0

∫

�

|nε Sε(x, nε, cε) · ∇cε|
4(8m−3)
9+8m ≤ C(T + 1). (6.8)
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Proof In light of (2.9), (3.14), (5.3), (5.8) and the Young inequality, we derive that there exist
positive constants C6, C7 and C8 such that

∫ T

0

∫

�

|nεuε|
10(8m−3)
3(8m+7) ≤

(∫ T

0

∫

�

|∇cε|4
) 5(8m−3)

6(8m+7)
(∫ T

0

∫

�

n
8m−3

3
ε

) 12
8m+9

≤ C6(T + 1) for all T > 0,
∫ T

0

∫

�

|uε · ∇cε| 2011 ≤
(∫ T

0

∫

�

|∇cε|4
) 5

11
(∫ T

0

∫

�

|uε| 103
) 6

11

≤ C7(T + 1) for all T > 0

and

∫ T

0

∫

�

|nε Sε(x, nε, cε) · ∇cε|
4(8m−3)
9+8m ≤

(∫ T

0

∫

�

|∇cε|4
) 8m−3

9+8m
(∫ T

0

∫

�

n
8m−3

3
ε

) 12
9+8m

≤ C8(T + 1) for all T > 0.

These already establish (6.6)–(6.8). ��

7 Passing to the Limit. Proof of Theorem 1.2

Now, let us take the limit of the approximate solution (nε, cε, uε)ε∈(0,1), and prove that the
limit functions of each component make up the solution of the problem (1.1) in the sense of
Definition 2.1.

We are now in the position to extract a suitable sequence of numbers ε along which the
respective solutions approach a limit in convenient topologies.

Proof of Theorem 1.2 First, based on Lemma 5.2, we see that (nε + ε)m
ε∈(0,1) is bounded in

L
8m−3
4m

loc ([0,∞); W 1, 8m−3
4m (�)), whereas ∂t (nε + ε)m is bounded in L1

loc([0,∞); (W 2,q(�))∗)
thanks to Lemma 6.1. Therefore, a variant of the Aubin-Lions lemma ([29]) asserts that

(nε +ε)m
ε∈(0,1) is relatively compact in L

8m−3
4m

loc (�̄×[0,∞))with respect to the strong topology
therein. Thus, one can choose ε = ε j ⊂ (0, 1) j∈N such that ε j ↘ 0 as j → ∞ and
(nε + ε)m → zm

1 , and hence nε → z1 a.e. in � × (0,∞) for some nonnegative measurable
z1 : �×(0,∞) → R. Now,with the help of theEgorov theorem,we conclude that necessarily
z1 = n, thus

nε → n a.e. in � × (0,∞). (7.1)

Therefore, due to (5.3)–(5.8), 8m−3
4m > 1 and 8m−3

3 > 1, there exists a subsequence ε = ε j ⊂
(0, 1) j∈N such that ε j ↘ 0 as j → ∞

(nε + ε)m−1∇nε⇀nm−1∇n in L
8m−3
4m

loc (�̄ × [0,∞)) (7.2)

and
nε⇀n in L

8m−3
3

loc (�̄ × [0,∞)). (7.3)

Likewise, Lemma 3.5, Lemma 5.2 and Lemma 6.1 also imply that there is C1 > 0 such that

‖cε‖L2
loc([0,∞);W 1,2(�)) ≤ C1(T + 1), ‖∂t cε‖

L
5
3
loc([0,∞);(W 1, 52 (�)))∗)

≤ C1(T + 1)
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and

‖uε‖L2
loc([0,∞);W 1,2(�)) ≤ C1(T + 1), ‖∂t uε‖

L
5
3
loc([0,∞);(W

1, 52
0,σ (�))∗)

≤ C1(T + 1).

In view of the embeddings W 1,2(�) ↪→ L2(�) ↪→ (W 1, 52 (�)))∗, we can again infer from
the Aubin-Lions lemma ([29]) that there indeed exist ε = ε j ⊂ (0, 1) j∈N and the limit
functions c and u such that

cε → c in L2
loc(�̄ × [0,∞)) and a.e. in � × (0,∞), (7.4)

uε → u in L2
loc(�̄ × [0,∞)) and a.e. in � × (0,∞) (7.5)

as well as
∇cε⇀∇c in L2

loc(�̄ × [0,∞)) (7.6)

and
∇uε⇀∇u in L2

loc(�̄ × [0,∞)). (7.7)

For the same u as that in (7.5), in view of (5.8) and (3.11), one can thus pick ε = ε j ⊂
(0, 1) j∈N such that ε j ↘ 0 as j → ∞ and

uε⇀u in L
10
3

loc(�̄ × [0,∞)),

uε

∗
⇀ u in L∞

loc((0,∞); L2(�)).

Similarly, for the same c as that in (7.4), recalling (2.8) and (3.14), we can also choose
ε = ε j ⊂ (0, 1) j∈N such that ε j ↘ 0 as j → ∞ and

cε⇀c in L4
loc([0,∞); W 1,4(�)),

cε

∗
⇀ c in L∞(� × (0,∞)).

Next, let gε(x, t) := −nεcε − uε · ∇cε. Together with Lemma 2.2 and Lemma 5.2, we make
use of the Young inequality and obtain some C2 > 0 such that

∫ T

0

∫

�

|nεcε| 8m−3
3 ≤ ‖c0‖L∞(�)

∫ T

0

∫

�

|nε| 8m−3
3

≤ C2(T + 1) for all T > 0

(7.8)

and therefore, we further deduce from (6.7) that cεt − �cε = gε is bounded in

Lmin{ 2011 , 8m−3
3 }(�× (0, T )) for any ε ∈ (0, 1). So that, one may invoke the standard parabolic

regularity theory to infer that (cε)ε∈(0,1) is bounded in Lmin{ 2011 , 8m−3
3 }((0, T ); W 2,min{ 2011 , 8m−3

3 }(�)).
This together with (6.2) and the Aubin-Lions lemma enables us to find a subsequence

ε = ε j ⊂ (0, 1) j∈N such that ε j ↘ 0 as j → ∞ and∇cε j → z2 in Lmin{ 2011 , 8m−3
3 }(�×(0, T ))

for all T ∈ (0,∞) and some z2 ∈ Lmin{ 2011 , 8m−3
3 }(� × (0, T )) as j → ∞, hence ∇cε j → z2

a.e. in � × (0,∞) as j → ∞. In view of (7.6) and the Egorov theorem, we conclude that
z2 = ∇c, and

∇cε → ∇c a.e. in � × (0,∞) as ε = ε j ↘ 0. (7.9)

Thereupon, in view of (1.2), (2.3) and (7.1), we may further infer that

nε Sε(x, nε, cε) · ∇cε → nS(x, n, c) · ∇c a.e. in � × (0,∞) as ε := ε j ↘ 0. (7.10)
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On the other hand, it follows from (6.8) and the Aubin-Lions lemma that there exists a further
subsequence ε = ε j ⊂ (0, 1) j∈N such that

nε Sε(x, nε, cε) · ∇cε⇀z3 in L
4(8m−3)
9+8m

loc (� × (0,∞)),

which together with the Egorov theorem and (7.10) implies that z3 = nS(x, n, c)∇c, and
therefore, (7.10) can be rewritten as

nε Sε(x, nε, cε) · ∇cε⇀nS(x, n, c)∇c

in L
4(8m−3)
9+8m

loc (� × (0,∞)) as ε = ε j ↘ 0. (7.11)

Employing the same arguments as those in the proof of (7.11), and taking advantage of (6.6),
(6.7), (7.1), (7.4), (7.5), (7.8) and (7.9), we conclude that

nεcε → nc in L
8m−3

3
loc (�̄ × (0,∞)) as ε = ε j ↘ 0, (7.12)

nεuε⇀nu in L
10(8m−3)
3(8m+7)

loc (� × (0,∞)) as ε = ε j ↘ 0 (7.13)

as well as

uε · ∇cε⇀u · ∇c in L
20
11
loc(� × (0,∞)) as ε = ε j ↘ 0

and

cεuε⇀cu in L
10
3

loc(�̄ × (0,∞)) as ε = ε j ↘ 0. (7.14)

Here we have used the fact that
∫ T

0

∫

�

|cεuε| 103 ≤ ‖c0‖L∞(�)

∫ T

0

∫

�

|nε| 103
≤ C3(T + 1) for all T > 0 with some positive constant C3

(7.15)

by (2.8) and (5.8). According to a well-established argument (see e.g. [16, 49, 58]), one can
infer from (7.5) and the Lebesgue dominated convergence theorem that

Yεuε ⊗ uε → u ⊗ u in L1
loc(�̄ × [0,∞)) as ε = ε j ↘ 0. (7.16)

Now (7.2), (7.11), (7.12), (7.13) and (7.14) firstly warrant that the integrability requirements
in (2.2) are satisfied. Secondly, the regularity properties (2.1) therein are obvious from (7.3)–
(7.7). Finally, relying on the above convergence properties, one can pass to the limit in each
term of weak formulation for (2.5) to construct a global weak solution of (1.1) and thereby
completes the proof. ��
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