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Abstract

This paper examines the stability of a 2D inviscid MHD system with anisotropic damping
near a background magnetic field. It is well known that solutions of the incompressible Euler
equations can grow rapidly in time and are thus unstable while solutions of the Euler equa-
tions with full damping are stable. Then naturally arises the question of whether solutions of
the Euler equations with partial damping are stable. The main purpose of this paper is to give
an affirmative answer to this question in the case when the fluid is coupled with the magnetic
field through the MHD system with one-component damping. The result presented in this
paper especially confirms the stabilizing effects of the magnetic field on the electrically con-
ducting fluids, a phenomenon that has been observed in physical experiments and numerical
simulations.

Mathematics Subject Classification 35A01 - 35B35 - 35B65 - 76D03 - 76E25

1 Introduction

The MHD system is composed of the Navier—Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetism. It describes the motion of electrically conducting
fluids such as plasmas, liquid metals and electrolytes in an electromagnetic field and has
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a wide range of applications in astrophysics, geophysics, cosmology and engineering (see,
e.g., [5, 13, 38]). The MHD equations not only share some mathematically important features
with the Euler/Navier—Stokes equations, but also exhibit many more fascinating properties
than the fluid equations without the magnetic field. Inspired by the phenomenon observed
in physical experiments and numerical simulations that the magnetic field can stabilize elec-
trically conducting fluids (see, e.g., [2, 3, 22, 23]), we aim to explore the smoothing and
stabilizing effects of magnetic field on the fluid motion. For this purpose, we consider the
following 2D MHD equations with only partial damping in the velocity and the magnetic
field,
U ~+U-VU+VP +vU;,00)" =B-VB, xeR?* >0,

%B+U-VB+n0,B)" =B VU, (1.1)
V-U=V-B=0,

where U = (U, Uy)T, B = (By, Bz)—r and P are the velocity field, the magnetic field,
and the pressure, respectively. The positive constants v > 0 and n > 0 are the damping
coefficients.

There have been substantial developments on two fundamental problems concerning the
MHD equations, the global (in time) regularity and stability. In particular, the stability prob-
lem near a background magnetic field have recently attracted considerable interests. For the
ideal MHD equations, Bardos et al. [4] took advantage of the Elsésser variables to establish the
global regularity (in Holder setting) of perturbations near a strong background magnetic field.
Cai and Lei [7] and He et al. [25], via different approaches, successfully solved the stability
problem on both the ideal MHD system and its fully dissipative counterpart (with identical
viscosity and resistivity) near a background magnetic field. Wei and Zhang [47] allowed the
viscosity and resistivity coefficients to be slightly different. The paper of Lin et al. [33] pio-
neered the study of the stability problem on the incompressible non-resistive MHD equation
near a background magnetic field. The 3D problem together with the large-time behavior was
solved by Abidi and Zhang [1] and Deng and Zhang [14] in the whole spaces case. Pan et al.
[37] dealt with this problem when the spatial domain is a 3D periodic box T>. Tan and Wang
[42] examined the case with the horizontally infinite flat layer R* x (0, 1). The approach of
Lin et al. [33] on the 2D non-resistive MHD problem is Lagrangian. Ren et al. [39] revisited
the stability problem by resorting to the Eulerian energy estimates in anisotropic Sobolev
space and obtained explicit time decay rates. Ren et al. [40] proved the global stability in a
strip domain, and Chen and Ren [12] considered two types of periodic domains T x R and
T x (0, 1). Zhang [56] proved the global existence of strong solutions to the Cauchy problem
with large initial perturbations, provided that the background magnetic field is sufficiently
large. Recently, Jiang and Jiang [28] extended the results [56] to the 2D periodic domains T2
by using the Lagrangian approach and the odevity conditions proposed in [37], and obtained
the asymptotic behaviors of global strong solutions with large initial perturbations. For the
2D inviscid and resistive MHD equations, Zhou and Zhu [57] investigated the stability of
perturbations near a background magnetic field on the periodic domain. For the ideal MHD
system with velocity damping, Wu et al. [52] studied the stability via the approach of wave
equations, and Du et al. [18] proved the exponential stability of a stratified flow in the strip-
type doamin R x [0, 1]. We also refer to [51] for the stability and large-time behavior of the
2D compressible MHD system without magnetic diffusion.

Due to its physical relevance and remarkable enhanced smoothing properties, the stability
problem for the incompressible MHD equations with partial dissipation has recently gener-
ated arich array of results. Lin et al. [34] obtained the stability of the 2D MHD equations with
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vertical velocity dissipation and horizontal magnetic diffusion (see also [31]). A new stability
result on 3D MHD equations with horizontal dissipation and vertical magnetic diffusion was
achieved by Wu and Zhu [53]. Boardman et al. [6] studied the stability of 2D inviscid and
resistive MHD equations with only vertical velocity damping. The stability and large-time
behavior of the 2D MHD equations with only vertical velocity dissipation and a damping
magnetic field was investigated in [21]. The paper [30] dealt with the anisotropic equations
with only (partially) vertical damping magnetic field. In comparison with [21] and [30], the
MHD system considered in this current paper contains the least dissipation and damping. It
appears that the anisotropic damping required in this paper can not be further reduced.

Many more results on the well-posedness and related issues concerning the incompressible
MHD equations are available in the literature. For example, various partial dissipation cases
are dealt with in [8, 9, 16, 17, 36], the non-resistive case in [11, 20, 32, 45, 55], the only
magnetic diffusion case in [10, 29] and the fractional dissipation case in [15, 44, 48-50, 54].

This paper aims to understand the stability of the 2D ideal MHD system (1.1) near the
equilibrium state (U (LN B(O)),

U0 =0, BY=¢ :=(1,0).
Let (u, b) be the perturbation of (U, B) near the steady state (U O, Oy,
w:=U-U%  p:=B-BO.
The system governing the perturbation is taken to be the following system
Qu+u-Vu+VP+vw,00) =b-Vb+ab, xeR>* >0,

b +u-Vb+n0,b)" =b-Vu+ du, (1.2)
V-u=V-b=0.

We shall focus on an initial value problem of (1.2) with the Cauchy data:
u(x,0) =up(x), b(x,0) = bo(x). (1.3)

The motivation for studying the stability problem of (1.2)—(1.3) is twofold. The first is
to reveal the phenomenon that the coupling and interaction between the velocity and the
magnetic field actually stabilize the fluid motion. Indeed, when B = 0, (1.1) becomes the
2D incompressible Euler equation with only horizontally damping velocity,

U1+ U -VU + 0P +vU; =0,
Uy +U-VUy + 3P =0, (1.4)
V-U =0.
The stability problem of (1.4) remains unsolved. To understand the difficulty, we reformulate
(1.4) in terms of the following vorticity equation

{ dyw+U -V = v’R%w, (15)

U=V+talo,

where Ry = 8k(—A)_% with k = 1, 2 denotes the standard Riesz transform (see, e.g., [24,
41]) and the fractional Laplacian operator is defined via the Fourier transform,

CDPfE) = £ T &)
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and V1 = (—9,, 8;). Unfortunately, the classical Yudovich’s approach used to study the 2D
incompressible Euler-like equations do not appear to work for (1.5), since the Riesz transform
R» is not known to be bounded in L. In fact, as pointed out by Elgindi [19], the L?-norms
of w are bounded for any 1 < ¢ < o0, but these L7-norms may grow exponentially in g.
Therefore, the question of whether the solutions of (1.5) will develop singularity in finite
time is an interesting and challenging problem. The first and main purpose of this paper is to
show that the magnetic field is able to stabilize the velocity field through the MHD system
(1.1). For the recent works on the magnetic inhibition phenomenon (or stability result), we
refer to [26, 27, 46] and the references cited therein.

The second motivation is to explore the hidden wave structure and to understand the
stability mechanism. To explain this clearly, we apply the Leray projection operator P =
I — VA~!V. to the equation (1.2) and separate it into the linear part and the nonlinear part.
DuetoV-u=V-b=0,

Pui,0)" = w1, 00" = VATV . (u,00" = 3A7u = —R3u,
and
P(0,b2)" = (0,b2)" —VATIV.(0,b)" = 87A" b = —R3b.
Thus the system (1.2) can be written as
du = vRIu+ b +P0b Vb —u-Vu),

&b =nR3b+ diu+P(b-Vu —u-Vb), (1.6)
V-u=V-b=0.
Differentiating (1.6) in # and making several substitutions, we find
Ot — (\)R% + nR%)Btu — 812u + vnR%R%u = Ny,
db — WRE 4+ nRdb — 87b + viRIR3b = Ny, (L.7)
Vu=V-b=0,
where N and N, are the nonlinear terms,
Ny = (0 — nR%)]P(b -Vb—u-Vu)+ 0P -Vu—u-Vb),
Ny = (0 — vR%)]P’(b -Vu—u-Vb)+ 0P -Vb—u-Vu).

It is surprising that u, b satisfy the same degenerate damped wave equation. The wave
structure of (1.7) for (u, b) provides much more stabilization and regularization properties
than the original system (1.1). In fact, the wave equation (1.7) indicates that there is a
horizontal regularization via the coupling and interaction, and hence, the stability result of
the solutions becomes possible.

The main result of this paper is the following stability theorem of global solutions to the
Cauchy problem (1.2)—(1.3).

Theorem 1.1 Assume the initial data (ug, by) € H?> with V-ug = V-by = 0. Then there
exists a positive constant ¢ > 0, depending only on v and n, such that if

| (o, Do)l g3 < &,

then the problem (1.2)—(1.3) has a unique global solution (u, b) on R? x [0, 00), satisfying

t
e, BYO)I7,5 +/O (I, b)) 175 + 1916(D)[13,2)dT < Ce*, Vi >0,
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where C > 0 is a generic positive constant independent of € and t.

Since the local-in-time existence result can be shown by the standard method (see, e.g.,
[35]), our main task is to derive the global-in-time a prior estimates of the solutions. The
framework is the bootstrapping argument [43]. Due to the lack of full damping, some serious
difficulties arise. To overcome these difficulties, we have to construct a suitable energy
functional. It consists of two parts. The first part is the natural H3-energy functional & (1),

t
£1(1) == sup ||(u,b><r)||i,3+2/0 (Vi @I + nllb2(©Is )z, (1.8)

0<t<t

The second part & (¢) includes the horizontal dissipation piece generated from dju and
indicated by the wave structure of (1.7),

13
(1) = /0 [1124() 127 (1.9)

When applying the standard L?-method to estimate & (r) and £>(), we encounter four of
the most difficult terms:

Diff, :=/31u1|823b1|2dx, Diff, :=/b18§b18§81u1dx,
Diff; ;:/blalu1|a§b1|2 dx, Diffy ::/bfagblagaluldx,

which cannot be well controlled by & (¢) and £, (¢) directly. The strategy here is to use (1.2),
and (1.2); to replace dju; and 9151 by

oyuy = oby +u-Vby —b-Vuy, (1.10)
01by = duy +u-Vuy +01P +vuy — b - Vby. (1.11)

For example, with the help of (1.10) and (1.11), we find
Diff :/(a,m +u-Vby —b-Vuy)|93bi|? dx
- %/b”agbnzdx —2/bla§bla§a,bl dx
+/u-Vb1|a§b1|2 dx—/b.w]|a§b1|2dx,
and
Diff, = —/
= _/alblagblagul dx

—fblagulag (Qui +u-Vuy +01P +vu; —b-Vby) dx

31b193b135u, dx—/b]agu]agalbl dx
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1d 1
= —[31b1823b1323u1 dx — 55/171'823“1'2 dx + 3 / |8§u1|28,b1 dx

—fblagulag (u-Vuy + 3P +vuy —b-Vby) dx.

The items associated with 9,51 will be handled by using (1.10) again. This process generates
many terms. Based upon integration by parts and the anisotropic Sobolev inequalities, it
is incredible that all the terms can be bounded by £ () and &,(¢), although the process is
complicated and lengthy. For the details, we refer to the treatments of D; withi =1,...,4
in Sect. 2. Collecting these estimates, we are able to establish the energy inequalities stated
in Proposition 2.1.

We also make efforts to exploit the full regularization and stabilization effects from the
wave structure to understand the large-time behavior of the linearized system. The linearized
system of (1.6) reads

du —VvR3u — b =0,
&b —nR3b — du =0,

1.12
Viu=V-b=0, ( )
u(x,0) = ug(x), b(x,0) = bo(x),
which can be converted to the linearized system of wave equations (1.7):
Ot — (vR% + nR%)B,u — Blzu + vnR%R%u =0,
deb — VRS + nRdb — 32b + vpRIR3b = 0, (113)

V-u=V-b=0,
u(x,0) =ug(x), b(x,0) = by(x).

We first aim to establish the decay rate of solution for the linearized system (1.12) in
negative Sobolev space by careful energy estimates. To state our result precisely, we first
define the fractional partial derivative operator Ag/ withi =1, 2and y € Rby

A F® = 57 FE).
Theorem 1.2 For o > 0, assume that (uo, bo) satisfies
(A7, Ao € HO, (A7, AS%)bo € H'™, V-ug =V -by = 0.
Then the corresponding solution (u, b) of (1.12) satisfies
(u,b) € L™(0, 00; H"), (Rou, R1b) € L*(0, 00; H").
Moreover,
@ YOl < CA+07F, Vi>0,
where C is a generic positive constant depending only on v, 1, o and the initial norms.

When the initial data is not in any Sobolev space of negative indices, we can still manage
to show the precise decay rates for several quantities.

Theorem 1.3 Assume that
(uo.bo) € L, (diug, dibg) € L>, V-ug =V by =0,
(R1Raug, R1Ro2bg) € Lz, (R%u(), R%bo) e L2
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Then for any t > 0, the solution (u, b) of (1.12) satisfies,
1
0@l 2 + 1014l 2 + IR1R2u (D)l f2 = C (A +1)72,
1
18:6@) Nl 2 + 10162 + IR1R2D(D]I 2 = C (A1 +1)72,
where C is a generic positive constant depending only on v,  and the initial norms.

Finally we show that any frequency away from a given area D decays exponentially in
time. To do this, we define D by

D:={£eR’: |&] <a and & > Bl& &l }, (1.14)

where « > 0 and B > 2 are fixed positive constants. In addition, we set fb\ (&) to be the
following cutoff function in the frequency space,

Fo-{ 0§t
Obviously,
V1) =6 F©). (1.15)
Theorem 1.4 Assume the initial data (ug, bg) with V - ug = V - by = 0 satisfies
( s uo, ¥ xbo, ¥ *diuo, V¥ *dibo) € L7,
(¥ * RiRauo, ¥ * R1Rabo, ¥ * Riug, ¥ * Ribg) € L.

Then the corresponding solution (u, b) of (1.12) obeys the following exponential decay
estimates,

I su, Yk D)2 + 1Y+ O1u, ¥ * 91D 12
+ I« RiRou, ¥ * RiRab) 2 + (Y 0ru, ¥ 3:D) 12
< Ce—c(r/,v,a,,B) t!

where ¢ = c(v, n, a, B) > 0 depends on v, n,a and B, and C = C(ug, bg, v,n,a, ) > 0
depends additionally on the initial norms.

Remark 1.1 1t is an interesting problem to study the decay rates of the solutions to the non-
linear system (1.2). Unfortunately, this seems not easy and is left for the future. In fact, the
large-time behavior of the solution depends crucially on the eigenvalues of the wave equation
(1.13). Indeed, the characteristic polynomial associated with (1.13) reads

";:2 7751 5152
a2 (=2 4 LY, —0,
+(|s|2+|s|2) Fng e =

and the roots A+ are given by

vEF+nER 2
— FT 2 2
hyi= —E— with D= (”52 G ) —4( ity +€1)

2 &2 el

28} (‘”7|s\4 + 1)

Ay = S -
v.i-’z i
R <Ié\2 €] )

By direct calculations, we find
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provided I' > 0 and |&]| is sufficiently small. As a result, the heat kernel only admits “one-
component" decay. This is the inherent difficulty in the decay analysis of the solutions.
Actually, it is also the reason that why we can only obtain the exponential decay away from
the domain D.

The rest of this paper is organized as follows. Theorem 1.1 is proven in Sect. 2. The proof
of Theorem 1.2 will be carried out in Sect. 3. Section 4 is devoted to the proofs of Theorems
1.3 and 1.4, based on the wave structure (1.13).

2 Proof of Theorem 1.1

This section aims to prove Theorem 1.1. As aforementioned, to establish the stability result
in Theorem 1.1, it suffices to prove Proposition 2.1 below.

Proposition 2.1 Ler £, (t) and &E>(t) be the same ones as defined in (1.8) and (1.9), respec-

tively. Then there exists a generic positive constant C, depending only on v and n, such
that

3
&0 =C (a0 +&0 +&07?)
3 3 3 3

+C (51 ()2 +52(t)2) +C (&) + &0)°) 2.1

and
3 3

&) = CEO)+CE@)+CE(H)2 +CE()2. (2.2)

With Proposition 2.1 at our disposal, Theorem 1.1 can be easily achieved by the bootstrap-

ping argument. For simplicity, we denote by C and C; (i = 1, 2, 3) various generic positive

constants, which may depend only on v and 1, and may change from line to line.

Proof of Theorem 1.1 1t follows from (2.1) and (2.2) that
3
&)+ &) = €1 (810) + &) +£0?)
+C (8102 +&07) + G (810 +&0)). 2.3)

The bootstrapping argument then allows us to establish the stability result of Theorem 1.1,
provided the initial data £1(0) is chosen to be sufficiently small such that

C (51(0) 1 £0)3 +51(0)2) <Lhinl L (1)5 2.4)
~ 4 16c2°\4c3) |

In fact, if we make the ansatz that for 0 < T < oo,

1

1 1 2
Et)+&EG) <min{ ——, | — ,
o 2<>_mm[mcg (4C3)]

then (2.3) implies
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1) + &0 = C (80 + &0 +&(07)
+C2 (E1() + &) + C3 (E1(1) + &)’
< ¢ (80 + 80 +£02) + 5 ED + &),
or
&) + &) =2C1 (£10) +&©O)F +&0?), 2.5)

which, combined with the smallness assumption (2.4) on the initial data, leads to

£1(0) + & (1) < lmn ! (1)%
! 20 ="M 96 \acs) [

Thus, the bootstrapping argument then asserts that (2.5) holds for all time, provided &1 (0)
fulfills (2.4). The proof of Theorem 1.1 is therefore complete. m}

It remains to prove Proposition 2.1. To deal with the nonlinear terms, we need to make
use of the anisotropic inequalities (cf. Lemmas 2.1 and 2.2), whose proofs rely on the basic
one-dimensional Sobolev inequality

1
2
lglzoe®) < V208l 2 gl ||L2(R),
and the Minkowski inequality
””f”L;’,(R”)”LP ®Rmy = ||||f||L1’ RM)”L‘i(Rn)’ VIi<g=<p<=oo,
where f = f(x, y) withx € R” and y € R" is a measurable function on R” x R”.
Lemma 2.1 Assume that f, 9\ f, g and dg are all in L*>(R?). Then,
1 1
||fg||L2(R2) = C”f”Lz(Rz) ”81f”L2(]R2 ||g||z2(R2) ||82g||12‘2(]R2)
Lemma 2.2 The following estimates hold when the right-hand sides are all bounded,
1
1 oy < ClLF g 19171 s o 192 gy 1912 1 g
In particular,
I fllLe < C||f|| 1||31f||H1,
I fllzee < Cllflli,] ||32f||,3|

We are now ready to prove Proposition 2.1. The proofs are split into two steps, which are
concerned with the derivations of (2.1) and (2.2), respectively.

2.1 Proof of (2.1)
Due to the equivalence of ||(u, b)||H3 with ||(u, D) || 2 + ||(u, b)| g3, it suffices to bound
the L?-norm and the homogeneous H?3-norm of (u, b). First, based on the divergence-free

conditions V - u = V- b = 0, it is easy to check that

t
I, D17 +2/0 (vllurll2 + nllb2ll72) dT = [[(uo. bo) |3 - (2.6)

@ Springer



126 Page 10 of 31 S.Laietal.

Next, to estimate the H 3_norm, applying 81.3 (i = 1,2) to (1.2) and dotting them with
(8?14, 81317) in L2, we have

2 2 2
1d
5 D 1@, 070) 17, + v Y 17uil. + 0 ) 187b2117,
i=1 i=1 i=1
=K+ K, + K3+ K4+ K5, 2.7
where
2
K= Z/ (97916 - 8u + 87 01u - 37b) dx,
i=1
2
Ky = _Z/aﬁ(u -Vu) - u dx,
i=1
2
K3 = Zf (37 (b - Vb) —b- VD) - 8u dx,
i=1
2
Ky = _Z/af(u - Vb) - 87b dx,
i=1
2
Ks = Z/ (37 (- Vu) —b-Vdiu) - 37b dx.
i=1
We are now in a position of estimating K7, ..., K5 term by term. First, integration by

parts directly gives
K; =0. (2.8)

To bound K>, we divide it into two parts,
Ky = —/813(u - Vu) - 3u dx — / 93 (u - Vu) - 3u dx = Kz + Ka.
Due to V - u = 0, by Holder’s and Sobolev’s inequalities, we obtain

Ky = — /(813u Vu +307u - Voju + 30 1u - Votu) - diu dx

< Cll3ull 2 (IVull L 1VOTull 2 + 18ull L+ VB1ull )
< Cllullgs191ull3e. (2.9)

and similarly,
K2 < Cllull g3 l102ull 32
which, together with (2.9), yields
Ky < Cllullgs (1912l + 102u3,2) - (2.10)

To estimate K3, we rewrite it into three items,
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2 2
K3=Z3/aib.va}b.a?udx+23/a}b.vaib.a?udx
i=1 i=1

2
+Z/ai3b.vzy-ai3u dx 1= K31 + K3 + K33,
i=1

where the first term K31 on the right-hand side can be bounded as follows,

K31 = 3/ (alb-val"‘b-a?u+azblala§b~a§u — 31b1823b-823u)dx

< Cl131bll= Vb 21187 ull 2
+ C (1820111 121131831l 12 + 18111l L 133D 11 2 ) 1832l .2
< Clblgs (181613, + 191u13,5 + 182ull3,2) -

In a similar manner,
_ 2 3 2 3 2 3
K3 = 3/ (81b - Vo1b - 0{u + 05010102b - 95u — 3102b105D - Bzu) dx

< Cl137bll IVl 4|37 ull 2 + Clld132b]| 411835 2 185 ull 12
< Clbllgs (19161132 + 131ul%,2 + 192ull3,2)

and
K33 = / (33b - Vb - 8u + 33b181b - 3u — 3103b12b - d5u) dx
< ClIVb| = 187bll 2 187 ull 2
+ C (1011121935111 12 + 182b 11 19193111 .2) 1183wl .2
< Clblgs (191613, + 191232 + 182ull3,2) -
Therefore,

K3 < Cllbll s (101013, + 191ull3,2 + 182ull3,2) - 2.11)
In order to estimate K4, we write it in the form:
Ky= —/ai*(u - Vb) - 3ib dx — / 33(u - Vb) - 83b dx := K41 + Kap,
where the first term K41 can be easily bounded by
Kiy=— [ 33u-Vvb-33bdx—3 2 2 3
4= {u-Vb-937bdx (07u - VO1b + d1u - VAib) - 97b dx

< C||Vbll L= 137bll 2187 ul 12
+ C (I0Full 4 IVarbl L+ + 191ull o< VTl 2) 187D 12
< Clblgs (181613, + 1d1ul%,) - (2.12)
The second term K4 needs more work. First, by virtue of the divergence-free condition

V -u = 0, we split it into three parts:
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K42:_/a§u~v19~a§bdx—3/a§u-vazb-a§bdx

-3 f du - Vzh - 3b dx := Kuo1 + Kazo + Kaos.
For K431, we have

K = afulalb-agbdx—/8§u282b-823bdx

—/agula]b-agb dx+fa§uzalbla§b2 dx

+ / 31322u132b13§b1 dx = K11 + Ka12 + Ka213.

where the first two terms K421 and K421> are bounded by
Kao11 + Kaoio < Cl101bll o< |33 ull 12118551 12
< Clbllgs (19161152 + N1d2u13,2) -

For K413, integration by parts twice gives
K3 = —/3%1418132[)133[71 dx + / 83u182b181822b1 dx

+ / 33u193b19103b dx
< C||33ur || 411318261 || 1411851 | 2
+ C (103l 2 182b1 [l oo + 193wl 4 1183b1 11 4) 11819351 12
< Clbllgs (191613, + 192l3,2)
which, together with the estimates of K421 and K4212, shows that
Kio1 < Clbll s (1016113, + 192u3,) -
Analogously,
Ky = -3 / d3u19102b - 35b dx + 3 / 33u10195b - 33b dx
< Clblgs (19151132 + 192u3,) -

For K433, duetoV-u =V - b = 0, we have

K3 = —3 / du19103b - 33b dx — 3 / dou2d103b10195by dx

+3/31u13§b133b1 dx = Ka31 + K430 + Dy
Based upon the Holder’s and Sobolev’s inequalities, it is easily deduced that
Kzt + Kz < Clldpul| < 19183611 2 [ V201 12
< Clbllys (1016113, + l102ul7;2) -

(2.13)

(2.14)

(2.15)

We now turn to deal with Dy, which is one of the most difficult terms. The strategy here

is to replace dju by using the equation of magnetic field,

oyuy = 0by +u-Vby —b-Vuy.
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In terms of (2.16), we can rewrite D; in the form:
D :3/(3,191 +u-Vby —b-Vuy)|93b|* dx
- 3%/b1|3§b1|2 dx —6/bla§bla§a,bl dx
+3/(u-Vb1)|a§b1|2dx—3/(b-wl)|a§b1|2dx,

where the second term associated with d;b; on the right side can be written as

(2.17)

—6/b1823b18238,b1 dx
= —6fb]a§b]a§(alu] —u- Vb +b-Vuy)dx
= —6/191331913331”1 dx+6/b1823b1823u - Vby dx
+ 18/b1323b1322u~V32b1 dx + 18/bla§b132u.va§bldx

+3/b1u - V|33b; | dx —6/b1823b1823(b-Vu1)dx. (2.18)

Noting that
/blu -V|33b1 > dx + / - Vbi|d3b1|* dx =0,

we obtain after plugging (2.18) into (2.17) that
Dy =3%/b1|8§b1|2dx —G/blagblagalul dx
+6/b1823b18§u-Vb1 dx + 18/b1823b1322u-V82b1 dx
+ 18/b18§’b182u181822b1 dx+27/blazu2|a§b1|2dx
— 3/b232u1|323b1|2 dx — 6/19182%132319232”1 dx

— 18/bla§bla§b.v32ul dx — 18/b18§b132b~V322u1 dx

—6/bla§b1b-va§ul dx. (2.19)

Two of the most difficult terms on the right-hand side of (2.19) are the second and sixth
terms,

D = —6/b]a§b]a§alu1 dx, Dj:= 27/b182u2|823b1|2 dx,

which will be handled by using (2.16) and the equation of velocity,

oby =u; +u-Vuy +01P+vuy —b-Vby. (2.20)
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For D», using (2.16), (2.20) and integrating by parts, we have
D zs/a,blagblagu] dx+6/b18§’u18238]b1 dx
=J +6/b1323u1823 Oy +u-Vuy +01P+vuy —b-Vby) dx
d

=J +3a/b1|8§’u1|2dx —3/|823u1|2(81u1 +b-Vuy) dx

3
+ 6Zc§/bla§ula§u.va§*kul dx

k=1

+ 6/bla§ula§alp dx+6v/b1|a§u1|2dx

3
- 6ZC§/b1823u18§b-V823_kb1 dx —6/bla§u1b-va§bl dx,
k=1

where the symbol CX denotes the standard combination number, and
Ji = 6/81b1823b1823u1 dx.
Here, we have also used the divergence-free condition V - u = 0 to get that
/blu - V|33ur | dx + / u- Vbi|d3ui|? dx = 0.
To deal with D3, we first infer from (2.16) that
D3 =27 / b1dauz 031 |* dx = =27 / b1d1u1|93b1|* dx
= - 27/b1|823b1|2(8,b1 +u-Vby —b-Vuy)dx
27 d

-5 b3193b1|* dx +27/b%a§b18238tb1 dx

27
- 7/|a§b1|2u-wﬁ dx+27fb1|823b1|2b-Vu1 dx,

221

(2.22)

where, similarly to the derivation of (2.21), the second term on the right-hand side can be

written as
27/1;%3231;13233,191 dx :27/b%a§bla§(alu1 —u-Vby +b-Vuy)dx

27
= 27/19%831713331”1 dx — 7/b%u -V|85b1|* dx

3
—27Zc§/b%a§bla§u V33 *by dx
k=1

3
+27Zc§/b%a§bla§b.va§—’<ul dx+27/b%a§b1b-va§u1 dx.
k=1
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Thus, inserting (2.23) into (2.22) and noting that
/b%u -V|83by)* dx + / u-Vbid3b1 > dx =0,

we find

27 d
Dy= =25 [vhiadni ax+27 [ sadbioton ax

3
+27/b1|323b1|2b-w1 dx —27Zc§/b$a§bla§u V3 by dx
k=1

3
+27Zc§/b%a§bla§b.va§—kul dx+27/b%a§b1b.va§ul dx.  (2.24)
k=1

Clearly, we still need to deal with the second term on the right-hand side of (2.24). In fact,
using (2.16) and (2.20) again, we have from integration by parts that

Dy :=27/b%a§bla§alul dx
= —54/blalbla§bla§u1 dx —27/b%a§ula§alb1 dx
=Jy — 27/1)%33”133 (1 +u-Vuy + 01 P +vuy —b - Vby) dx

=J — ——/bﬂagulﬁ dx+27/|823u1|2b1(81u1 —u-Vby +b-Vuy) dx

3
— 27/b%a§u1u - Vo3uy dx —27Zc§/b%a§ula§u V33 Fuy dx
k=1

— 27/b128§u18§81de —27v/b%|a§u]|2dx
3

+ 27/b%823u1b‘V823b1 dx +27ZC§/b%8§u18§b-V8§”kb1 dx, (2.25)
k=1

where J, is given by
Jy = _54/171311)13;171323”1 dx.

Now, plugging (2.21), (2.24) and (2.25) into (2.19), we obtain after careful rearrangement
that
d 27 d
D :3—[171 (1935117 + 183u1 1*) dx — 77/19% (183b11% dx + [83u; %) dx
dt 2 dt
+ Ji +Jz+6/bla§bla§u-vm dx + 18/bla§bla§u-vazb1 dx
— 24/b]a§b]azula§b2 dx — 3/b282u1|823b1|2 dx

— 18/bla§bla§b.va2u1 dx — 18/bla§blazb.va22u1 dx
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+ 6/b-Vb1(8§’u1823b1)dx —3/|823u1|2(81u1 +b-Vuy) dx

3
+ 6Zc§/bla§ula§u-va§*kul dx+6/b18§u18§’81P dx
k=1

3
+ 6v/b1|a§u1|2dx—6Zc§/bla§ula§b-va§*kbl dx
k=1

+ 27/|823u1|2b1(81u1 —u- Vb +b-w1)dx—27/b%a§u1u-va§u1 dx

3
— 27Zc§/b%a§ula§u V33 uy dx —27/b%a§ula§alp dx
k=1

3
- 27u/b%|a§u1|2 dx+27Zc§/b%a§ula§b.va§—kbl dx
k=1

3
+ 27fb1|a§b1|2b-w1 dx —27Zc§/b%a§bla§u.va§*kbl dx
k=1

+ 27ic§fb%a§bla§b-va§kul dx —54/b-v191(bla§ula§bl)dx
k=1
=IO+ N+ I+ + T, (2.26)
where we have also used V - b = 0 and the following simple facts that
27/b%a§b1b-va§u1 dx+27/b%a§u1b-va§b] dx
= 27/b%b-V(az3ula§b1)dx = —54/b-v191(bla§ula§’b1)dx,
and
—6/bla§b1b-va§u1 dx —6/bla§u1b.va§b1 dx
= —6/b]b.V(a§ula§b1)dx =6fb.Vb1(a§ula§b1)dx.

Next, we need to bound Jy, J2, ... and J>4 one by one. First, it follows from the Sobolev’s
embedding inequality that

i+ Do < Cldblre |93ull 2103611 2 (1 + b1l Lee)
< CUIbNgs + 1613, (1915113, + l1d2ul%,) -

For J3, Jg and Jg, by Lemma 2.2, we have
J3 4 Js + Jo < Clbllp Vbl l1d3b1 | 2 VO3 ull 12

1 1 1 1
< CIUbI 2 191D 2, 1VBI 2 181 VDI 1B 431122 2
< ClIbI3s (191613, + I1d2ul%,) -
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For J4 and J7, we use Lemmas 2.1 and 2.2 to deduce
Ja+ J7 < Clbll< 11831l 12 (105 - Vdoby |l 12 + 1836 - Viuy || 12)
1 1 1 1 1 1
< CIBIZ 1011 2, 1Bl g3 [V 2| 2, V0301 2, [V b |2, [ V31 2D 2,
< ClIbI, (191115, + l192ull3,5) -
Using V - b = 0 and the Sobolev’s embedding inequality, we obtain
Js 4+ J < Cliby || 193b1 1| 12 l182uy [l oo 183 b2 ] .2
+ Cllball o< 1 B2ur [l 18361112
< CIbI%,s (k21155 + l102ull?,2) -
For Jy9, J13, J15 and J19, the Sobolev’s embedding inequality yields
Jio + Jiz + Jis + Jig
< Cl33urll3, (191wl + bl I Vurllize + Ibillze + 16117 )
+ CIO3urll3 2 111l oo (lull oo VB | oo + (1Bl oo | Viey [ £oo)
< C (11, D)l g3 + 11, D)2 + 16115 1920113,
and similarly,
Ji1 < Cl3urll 2 b1 1L (I Vull oo [ V3ull 12 + [183ull L4l Vdoull L+)

< Cllu, b33 102ull 72

To estimate Ji, and Jig, we first need to deal with ||818§P|| 2. In fact, operating V- to
(1.2); yields

AP =V .-(b-Vb)—V - (u-Vu)—vduj,
from which it follows that
N3P =0105A7 V- (b-Vb) —0103A7 'V - (u- Vu) —v8;93 A djuy. (2.27)
Due to V - b = 0, one has
V- (b-Vb) = 9;(bjd;b;) = d;b;d;b;.

So, using the well known fact that the Riesz operator 9; (—A)_% withi = 1, 2 is bounded in
L" forany 1 < r < oo, we deduce

10103 A7V - (b V)|l 2 = (18103 A" (@b 0 )| 2 < 119192(3;bi 0B | 12
Noting that
3102(3;b;0;b;) = 01020b;d;bj + 0,0;b;019;bj + 010;b;029;bj + 3;b;01029;b,
and hence,

10193 AV - (b - Vb)Yl 2 < 118192(8;b: ;D) 12
< C(IVbllL=118182Vb| 12 + 102V DIl 141191 VB[ 14)
< CIVhl g2 1315] g2. (2.28)
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The analogous estimate also holds for |9 BSA*IV - (u - Vu)|l2, that is,

19103 A7V - (- Vi)l 2 < C(IVull oo 0102Vl 12 + 102 Vuell 41101 V]| )
= ClIVul g21|92ull 2. (2.29)

Thus, inserting (2.28) and (2.29) into (2.27), we arrive at

18183 Pll 2 < 19192(3;b;0ib )|l 12 + 11812 (D ju; 051 ) || 12 + v 97 Bour || .2
< CUIVbl g2llo1bll g2 + 1 Vull g2 | 02ull g2 + 102u 2)- (2.30)

With (2.30) at our disposal, we can now bound J;, and Jig by

Ji2+ J1s < Cl33utll 2110391 Pll 2 (b1l + 1611170 )
< C(I1bll s + I, D)3 + 15135 + 11611E) (1816115,2 + l182ull3,2) -

For J14, using Lemma 2.1 and Lemma 2.2, we find

Jia < Cla3urll2llbr e (VI Lo V3Dl 2 + 193 - Vbl 2)
1 1 1 1
< Cla3urll2l1b1 ] 2 191112, VB2 101 VI, [V 93b1 2

1 1 1 1 1 1
+ ClU3urll 216112, 10161113, 1056112, 11010511 2, 1 Voabr || 2, V93 b1 1
< CIbIAs (1916113, + 1d2ul%,) -

For Jig, it is easily seen that

27
Jig = —?/b%u V|83uy|? dx = 27/ 103u1?byu - Vb dx

3.2
< Clozurll2btliee lullLo | Vb1 L

2 4 2
< C (llullys 4 181175) 1926152
As the treatment of Jy4, we have

17 < Clbill7 o183 urll 2 (1Vull Lo V83 ull 12 + 183 ull L4l V dour || 14)

< C (llull?s + 161%5) 1920135,
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and
J20 < Clbil17 o l185ur | 2 (1VB oo VO3l 12 + 103b1] 14 | Vaby |l 14)
< ClBI3 161 g1 19161 g1 118301 ] 2
< CIbIE,s (191613, + 1d2ul%,) -
Due to V - u = 0, it holds that || Vu; ||z = ||2ulo. Thus,
Do+ Do < ClbIZeo 103D 17| Vi [l Lo
+ CIbI T 103Ut | 21835111 2| VBy | oo

< Clbll g 10161 g1 161135 11821 172
< CIbI3,s (19161152 + 12113, .

and
I+ o3 < Cllb1 117013361 |2 Va1 | V3Bl 2
+ Clb1 1170118551 | 2 IV ot 14V 32D 1
+ Clb1 117 118551 | 2 V30l 12 | VB 10
< CIbI25 b1 g1 1191l g1 l|82u ]l 172
< ClIbI3s (1916113, + 1d2ul1%,) -
Thus, noting that [|015|| 52 = || Vb2l 2, we conclude after inserting the above estimates
of Ji, ..., Joqa in (2.26) and using the Cauchy—Schwarz’s inequality that
d 27 d
Dy < 3—/1)1 (1836117 + 183u1 1) dx — ——/b% (1836117 + 183u1 %) dx
dt 2 dt
+C (I, D)l g + 1 D) Es) (12135 + N182ull3,2) - (2.31)
In view of (2.12), (2.13), (2.14), (2.15) and (2.31), we obtain
d 27 d
Ky < 35/171 (136117 + 10311 1%) dx — Tafb% (13b11% + [03u1|%) dx
+C (1, D)l s + 1, D)) (12135 + 181wl + 1d2ul3,) - (2.32)

It remains to estimate K5. To do this, noting that
Ks = [ (33 (b - Vu) — b - Vdiu) - 97b dx
- / (3(b-Vu) —b-Vd3u) - 93b dx := Ks; + K,
where the first term on the right-hand side can be easily bounded by
Ks) = /(33119 -VORu 439 - Voju+ 83b - Vu) - 97b dx

< C (116l IVTull 2 + 118761 o IVOrull o + | Vull Lo 19711 L2) 18761l 12
< Cllullgsl191b113,2. (2.33)

To deal with K55, we rewrite it as
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Ksy = f (302b - VO3u - 33b +303b - Vhu - 33b + 93b - Vu - 33b) dx
=3/32b.va§u.agbdx+3/a§b.vazu.agbdx
—/alagblazu‘agb dx—/agblaluzalagbl dx
+ / dui]d3b1 | dx == Ksa1 + Kspo + Kso3 4+ Kspg + %Dl-

Based upon integration by parts and the divergence-free condition V - b = 0, we deduce
from the Sobolev’s inequalities that

K521 =3/82b181822u-823b dx+3/azbza§u-a§b dx
= —3/313217132214.3317 dx+3/822b1822u-81822b dx

+3/32bla§u-ala§b dx —3/albla§u-a§b dx

< Cll0132b1 1|4 1183ull L4 1183D] 2 + Cll33D1 || L4 | 93ull 14111831l 2
+ Cl13abi |l oo 183 ull 12181 93b1 12 + Clldiby |z 185ull 2118551l 2
< Clbllgs (191613, + 1d2ul%,) . (2.34)

and similarly,
Ksp = 3/3221913132” -93b dx + 3/822b2322u -83b dx
= —3/313221;13214 - 33b dx +3/323b182u - 9103b dx

+3/822b1822u-81822b dx—3/alazbla§u-a§b dx

< C(10193b 1 2 182ul oo + 1819261 | L4183 ull ) 193 b1 12
+ Cl103b1 |l L4 |93 ull 1411131l 2
< Clblgs (191613, + 1d2ul3,) - (2.35)

For K53 and K554, we have

Ksy + Kspa < Cl10105b1 1 121105D 112 (12l Lo + (19102 £o0)
< Clbllgs (19151152 + 1921132 + 191ull3,2) - (2.36)

Thus, combining (2.33), (2.34), (2.35), (2.36) with (2.31) gives

d 9d
Ks < —/bl (1936117 +185u11?) dx — = — [ b2 (19361 1% + 185u1 %) dx
dt 2dt
+ C (1, DY g + 1 D) (12035 + 012l + 11213,2) - (2.37)

Now, substituting (2.8), (2.10), (2.11), (2.32) and (2.37) into (2.7), we find
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1d
an% VD)2, + vIIV3ur 2, + 0l V30212,
d d
545/191 (19361 1% + 1831 %) dx — 185/% (193117 + 183u1 %) dx

+C (11, D)l g + 1 D)) (162135 + 182wl + 11ul3,)

which, integrated over [0, 7] and combined with the Sobolev’s inequalities, yields

t
IV2 @, YOI 2 +2 / WIV3uill72 + nlVb217,) dt
0
< € (o, bo) I35 + o, bo) 133 + I1Guo. bo) 133)
+8/b1 (183b11% + |93u1|*) dx —36/b%(|a§b1|2+ |93u1|%) dx
t
+ C/o (1t D)1 ggs + 11, D)1 ,5) (1621135 + 1920 13,2 + 181ull3,) d

< C (|10 bo)135 + Il o, bo) 135 + [l o, bo)lI3)
+ C (Ib1D Iz + b1 1700 ) I, BYD13,5

t
+C sup (||<u,b>||m+||<u,b)||‘;,3)/ (11, b3, + I81ul?z) dT. (2.38)
0

0<t<t

due to the fact that [|02u|| g2 = || Vu1 || z2. Thus, it readily follows from (2.6) and (2.38) that

E1(t) < CE(0) + CE(0)? + CE(0)?
FCE)E + CEM? + CEWN® + CEM°.

The proof of the first assertion (2.1) in Proposition 2.1 is therefore complete.
2.2 Proof of (2.2)

Since [|01ull g2 ~ [|01u| 2+l V29 ul| 1.2, it suffices to establish the estimates of the following
two items:

t t
/ I14(2)]|7.d7 and / IV2@1u(g)|fdo,
0 0

whose proofs are based on the special struture of equation (1.2);,
u=30b+u-Vb+n0,b)" —b-Vu. (2.39)

First, to bound ||d;u(7)]| 2, we multiply (2.39) by 9ju in L? and integrate by parts over
R? to get

Ioul?, = /8m-8,bdx+/u-Vb~81udx

+n/b231u2dx—/b-Vu-81udx

=L+ L+ L3+ Lg. (2.40)
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Using the velocity equation in (1.2); and the fact that V - b = 0, we have
d T
Li== [ ow-bdx - b-al(alb—v(ul,O) +b~Vb—u-Vu>dx
=Ln+ L2+ Liz+Lia+ Lis.

It is easily seen that

Lo+ Liz= / 01b - 01b dx — v/81b1u1 dx
< Cl91b113, + Clldrbll 2 llurll 2.

Integrating by parts and using Sobolev’s embedding inequality, we find
L14:—/b-81(b~Vb)dx:/EM)-(b-Vb)dx

=/b131b~31b dx+/b282b~81bdx

< Clb1liLlld1bl1, + ClibaliL= 13261 12191511 12
< Clbll 21621132

where we have used the fact that |91 0] ;2 = [|Vb2|| ;2 due to V - b = 0. By virtue of Lemma
2.1, we have

L15:/b-al(u-Vu)dx:—/81b~(u~Vu)dx

1 1 1 1
< ClabI 2 llull o 12l 25 Vel 25 1191 Ve 2

< Cllull g2 (1916113,1 + 1821172 + 1912ll3,1) -
Thus, collecting the estimates of L2, ..., L5 together, we obtain
i 2 2
Ly < - [ dwbdx+C (Iballfn + lul2)
+ Cll, D)l g2 (12132 + 182ull,2 + 113, .
since ||01b|| g1 < ||b2]| 2. In a similar manner,
1 1 1 1
Ly < Clloyull g2 lull 25 102ull 2, VI 2, 1191 V| 2,
< CllG, D)l 2 (1316115,0 + 182ull3,2 + 191213, .
1
L3 < Cllball 2 l181uall 2 < E||a1u||i2 + Cliba 12,
and

1 1 1 1
Ly < Clloyull 216112, 1016112, 1 Vae]) 2, 102 Vel 2,
< Cll. Bl g2 (19161151 + 182ull 7,2 + 1912]7,1) -

which, combined with the estimate of L and (2.40), shows that
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d
lorul?, < 2 / diu-bdx + C(I1b2l3, + lurl3,)
+ Cl, )l g2 (12152 + 182ull%,2 + 113, - (2.41)

This leads to the desired estimate of ||9ju]| 2.
Next, we proceed to estimate || V2d;u|;2. To do this, applying V? to (2.39), and dotting
it with Vzalu in L2, we deduce

IV2aqull?, = /Vzalu.a,vzb dx+/V2(u-Vb)-V281u dx

+77/V281u2 -V2by dx — / V2(b - Vu) - V?du dx
=M+ My + M3 4+ My. (2.42)

Owing to (1.2); and V - b = 0, we see that

d
M, = —/Vzalu-vzbdx
dt

—/vzb-vzal (8117—v(ul,O)T+b-Vb—u-Vu)dx
=My + My + Mz + Mg+ Mis.
Integrating by parts gives
M+ M3 = / Vzalb . V231b dx — v/81V2b1 . V2M1 dx
< Clla1blI32 + Cldb I gl | 2
Due to ||Vba || gk = ||01b]| g« for k =1, 2, we have
My = —/vzb-vzal(b-w;) dx :/alv%-v?(b-%) dx
=/31V2b- (V2b181b+V2b232b) dx

+ 2[ 31V2b - (Vb101 Vb + Vb3, Vb) dx

+/(b1|81V2b|2+b282V2b~81V2b)dx
< C131V2bl 2 (131611 IV?b1 | 4 + 182Dl L4 1V b2l )
+ C31 V3Dl 2 (IVB1 2181 VDN o + IVB2 ]l 41182V D ]l 4)
+C (b1l 131 V25112, + Iboll L 102V2b] 121181 V2Dl 12)
< Clbll s lball%s.

Analogously, noting that [|[Vuz || gx = [|01ull g« and [|[Vuy || gx = [|02u|| gr for k = 1,2,
we obtain

Mis :/V2b~V231(u-Vu) dx = —/alvzb-vz(u-w) dx
< ClI3 Vbl (1181wl Lo IV er | o + 1ol oIV 0zl 14)
+ CI Vb2 (IVurll 41101 Vel o + [ Vuall 21132Vl )
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+ Cl131 V2Bl 2 (llur 1L 1181 V2ull 12 + lluall Lo 132V 2ul 12)
< Cllullys (162135 + I101ull%,2 + 1192113, -

Hence, in terms of the estimates of My; withi =2, ..., 5, we can bound M, by
My < %fvzalu V2 dx + C (621175 + llurll33)
+ Cll, D)l g (1b2135 + 191l 7 + 132ul2) -
For M», by Lemma 2.1 we infer from integration by parts that
M, :/VZ(u - Vb) - V23ju dx
=/V2u Vb - V2du dx +2/ Vu; - Vb - V3 u dx
+ / u191V2b - 31 V2u dx — / u20V2b - V2u dx
+ / hurd Vb - V2u dx + / w2 V2b - 9 V2u dx

1 1 1 1
2 2 2 2 2 2 2
< ClI9yV2ull 21921 25 182920 2, [ Vb1 2, 118, Vb,

+Cl13,Vull 2 ||Vu||i ||azwnfz ||v2b||,i ||alv2b||i

+ Cllutllzes 181 V2ull 21191 V2Dl 12 + Clldyuzll 1 102V2b]| 121V 7u]| o

+ Clldauz || 41191 V2Bl 2V 2u ]| o + Clluz || oo 131 V2B 12182V 7u | 12
< Cll. D)l (131ul%, + 182ull3, + 131613,) -

Obviously, M3, M4 can be bounded as follows.
1
M < CIV2ha |2 V20l < S0Vl + ClIV2b2 7,
and

My = —/V281u (Vb - Vu +2Vb; - 8;Vu + b;j3;VZu) dx

IA

1 1 1 1
Clla1V2ull 21 V25112, 191 V2 2 [ Vull 2, 182Vl 2,
1 1 1 1
+ ClOV2ull 2 IVB 2 181 VDI 2, IVl 2, 1182V ul 2,
+ Clbll L | V2drull 21V ull 12
< Cllu, D)l (19161132 + 1820l + 1912]13,5) -

Thus, it follows from (2.42) and the estimates of M; (i =1, ..., 4) that

d
191 V2ull7, < 2E/v281u V2bdx + C (b2l 35 + luill7s)
+ Cllw, D)l s (162135 + 181wl + 1d2ul%,) - (2.43)

Now, adding up (2.41) and (2.43), we deduce
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d
1ul?, < 2 / (01w - b+ V2u - V2b) dx + C (llurll,s + 1621%,)

+ Cll D)l (152135 + lurllzs + 101ul3,2)

where we have also used ||Vba || gk = (1015l gx and || 02u || gx = |Vuyllgx fork =1,2. As
an immediate result,

t t
fo I81ull?dT sC||<uo,bo)||§,3+C||(u,b>||%,3+C/O (lurlZs + 162113,5) d=

t
+C sup ||(u,b>||Hs/O (1621125 + et 12,5 + 191213, d,

0<t=<t
from which it readily follows that
&) < C&EO0)+CE@) + CEl(t)% + Cc‘fz(t)%.

The proof of (2.2) is therefore complete.

3 Proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2 by making full use of the symmetric
structure of linearized system (1.12).

Proof of Theorem 1.2 Taking the inner product of (1.12) with (u, b) in H', we have

d
EA(t)+B(z) =0, 3.1
where

AW = [, BYDON72 + (Vu, VBYD)17.
B(1) = 20| Rou(®)I2, + 20| R1b(D) 112, + 20 VR2u(D) |25 + 20 VR1b(1) |12

Next, we compute the norm of (u, b) in anisotropic Sobolev space with negative indices.
Applying A[7 and A5 7 to (1.12) and dotting them with (A °u, A7) and (A5 7 u, A;°b)
in H'*7 respectively, we find

d _ _ _ _
ST HO + 22 IR(ATT, A2 + 201 R1AT, A7 DbDII7

+ 20| R AT (AT A D)7 + 20l RIATT (AT ATBD)II =0,

(3.2)

where
H(@®) = (AT A Du®17, + (AT ASDbDI
+ AT TAT AT UM 7, + AT (AT ASDB@)7 .

We claim that there exists a generic positive constant C > 0, depending only on v and 7,
such that

A() < CB@)T7 H(1) 77 | (33)
In fact, using Plancherel theorem and Holder’s inequality, we have from direct calculations

that
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lu ()72 < CllVRzumn 1Ay u<r>|| 7 < CB() T H(1) T,
2 o
Va2 < CIVRauI: v ||A”"Az‘“u(t)|| R < BT H (T,

b7, < cnvnlb(z)n ||A] “b(n))F < cg(z)l%nmt)l%a,

I950)12, < CIVRIBOITE 1A AT7bOITE < BT HyTe,

from which the assertion (3.3) follows.
Itis easily seen from (3.2) that H (¢) is non-increasing, and H (t) < H(0). Hence, by (3.3)
we have

A(t) < CB(OTE HO)T= or B(t) > CH(O0)" 7 A(t)'+7,
which, inserted in(3.1), yields

iA(t)—kCH(O)‘*A(z) s <0,

so that
1 C 1\’
A(t) < (A(O) v +;H(O) nt) .

This finishes the proof of Theorem 1.2. O

4 Proofs of Theorems 1.3 and 1.4

This section aims to prove Theorems 1.3 and 1.4, based on the special wave structure of the
linearized system (1.13). To begin, we first recall the following elementary lemma, which
provides a precise decay rate for a nonnegative integrable function when it decreases in a
generalized sense.

Lemma 4.1 For given positive constants Co > 0 and C1 > 0, assume that f = f(t) isa
nonnegative function defined on [0, co) and satisfies,

o0
/ f(r)ydt <Co<oo, and f(t)<Cif(s), YVO<s <t.
0
Then there exists a positive constant C := max{2C1 f(0), 4CoC1} such that
f()<C(1+07" Vi=0.
Proof On the one hand, when 0 < ¢ < 1, it holds that

f@) = Cif0).

On the other hand, when ¢ > 1, one has
t t
t
COZ/ f(T)dTECfl/ S@) dt = —f(),
: : 2C1

which implies that
f(@t) <2CoCi1t7Y, Vi=>1.

Combining the above two cases leads to the desired decay estimate. O
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We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Dotting (1.13); with ;u in L2, we obtain

1
37 (13ull7 > + vl RiRaull > + 91ull32)
+ ]9 Roul? > + nlldRyull3, =0, (4.1)
and hence,
d 2 2 2
7 U9l Z + v R Raull o + 101l 72) < 0. (4.2)

Multiplying (1.13); by u in L? and integrating by parts, we have

1d
3 (IR 1ull35 + vIIR2ul 7> + 2(du, u))
+ 101ul?, + vl RiRoul2, — [19ul|3, = 0. (4.3)

where (-, -) denotes the standard L2-inner product.
Let § := min {v, n}. For a constant u > 0 to be specified later, we obtain after adding
(4.1) and px (4.3) together that

1d
Sar (||a,u||iz +unlRiul7s + pvlRoull? s + vl RiRaully, + 19117 2 + 2p(dpu, u>)
+ (8 — Wl dull72 + ponlRiRaull72 + plldrull;, <0, (4.4)

since ||8t722u||i2 + ||8,R1u||i2 = ||8,u||2Lz. By choosing u = %, we see that

1 2 1 2 2 2 2
SNullgs + S8%ullgs < 197 + uSlull s + 20 (@u, u)
< N3ull7s + il Ruullyz + wvlRoully + 20(du, u),  (4.5)

Thus, by virtue of (4.5), we deduce after integrating (4.4) over (0, ¢) that
1 1
Slullgs + 8% ulgs + vl RiRaull s + larul,

h(33 2 2 2
+2 leatulle+MVWIIR1R2MIIL2+M|l31M||Lz dr
0
< C (l0suoll 2. lluoll 2, IR1Rauoll 2, 1d1uollz2)

and consequently,

o0
f (13:uell7 > + IR Rou 3> + 181u]13,) dt < oo. (4.6)
0

In view of (4.2) and (4.6), it readily follows from Lemma 4.1 that
18ul7> + IR1Raull7> + 91ull;, < C(1+6)7"

Based upon (1.13),, one can obtain the same result for . The proof of Theorm 1.3 is thus
complete. O

We proceed to prove Theorem 1.4.
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Proof of Theorem 1.4 Let Y be the Fourier cutoff operator defined in (1.15). Taking the con-
volution of i with (1.13) leads to

B (Y *u) — (VRS + RT) (W % u) — T (W % u) + vyRIR3 (Y * u) = 0. 4.7)

Dotting (4.7) by 8,(¥ = u) in L? and integrating it by parts, we obtain

2 UB @ w5 + 101 152 + vl RiR2 (Y 5 0)][72)
+ 20[10 R (W % w)l|72 + 2018, R1 (W w)||7, = 0. (4.8)

Similarly, multiplying (4.7) by ¥ * u in L?, we have

d
7 WIR2( 02 + 0l R )17 +2 3 (W 5 0), Y 51)
+ 2000 xwll72 + 20| RIRa (Y x |72 — 28, (¥ xw)[[7, =0.  (49)
Let § := min{v, n}, and A > 0 be a positive constant to be determined later. Then,
operating (4.8)+A x (4.9) yields
d 2
EF([) + 2 = M0 (Y *u)lly»

+ 200181 (Y + w122 + 200n | R1R2 (Y % )25 < 0, (4.10)

where

F(t) = 0 w172 + 191 * w132 + vl RiR2 (W % w) |12,
+ R (W + w125 + AnlI Ry (W % w)l|25 + 24 (3 (Y % u), ¥+ u) .

Let D be the frequency domain defined in (1.14) and D¢ be its complement. Moreover,
we divide D¢ into two regions:

Al={teR?: &>}, Ay={teR®: ] <a and &> < BlEi]IE] ).

We can now bound ||  ul|7, by |91 ( * u) |17, and [R1Ra (¥ % u)]|3,. Indeed,
A~ 2 ~_ ~_
1 ull2s = |G = /A ialde +/A alde
1 2

-2 2,52 2 512522 )
<a g1ards + B | L2 |galde
Al 4, 1]
<o 0¥ * w72 + BHIRIR (Y +w)l7. (4.11)

Then, multiplying (4.11) by A% and then adding with (4.10), we obtain

d
T FO+26 = 0la W * w7, + Q=22 )0 (Y * w13,
+ @rvn = BHIRIR2 (Y * w) 172 + A2y % ull7, < 0. (4.12)

Thus, if L > 0 is chosen to be such that

1
A < min 78,(12,% s
2 B2
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then we infer from (4.12) that
iF(t) + 8113, (Y w12, + A3 (Y x )3
dr ! L : L
+ A RIRa (W x )72 + A2 [1W xull7, < 0. (4.13)
Recalling the definition of F and noting that
20 @ (W ok w), Yok u) < KD (W w)l|70 + Al xull7s, (4.14)
we obtain after operating (4.13)+A%x (4.14) that (¢ := max {v, n})
%F FAPF 4 (8 =22 =)0+ )72 + (A= 22) 1 x w17,
+ (avn — 22vn) IRIR2 (¥ * )35 + A2(1 — 9h = MY * ul|3, <0, (4.15)

If A > 0 is taken to be sufficiently small such that

. 1 2 vn 1
A=min}{ -6, a°,1, —, —— ¢, (4.16)
4 B2 v +1
then it follows from (4.15) that
d
F 1A2F <0 or F(r) < F(0)e ™. (4.17)

In view of the simple inequality,

1
20 @ (W w), o w) < x| 70 + 2021w ullg,
one easily has
1 1
S0 W 172 + S281 %z, + vl RIR2 (Y % )72 + 101 (W % w72 < F(@).

As an immediate consequence of (4.17), we conclude that for A satisfying (4.16),

19 s ull7s + 18, (W = w72 + 101 (W = w172 + IRIR2 (W kw)||7, < Ce P ePr

where
(1. v.a. B) P
c(n,v,a, B) ;== (miny -6, a", 1, 5, —— .
7 4 B9+ 1
The same result also holds for b. The proof of Theorem 1.4 is therefore finished. O
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