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Abstract
Vertex scaling of piecewise linear metrics on surfaces introduced by Luo (Commun Contemp
Math 6: 765–780, 2004) is a straightforward discretization of smooth conformal structures
on surfaces. Combinatorial α-curvature for vertex scaling of piecewise linear metrics on
surfaces is a discretization of Gaussian curvature on surfaces. In this paper, we investigate
the prescribing combinatorial α-curvature problem on polyhedral surfaces. Using Gu-Luo-
Sun-Wu’s discrete conformal theory (J. Differ. Geom. 109: 223–256, 2018) for piecewise
linear metrics on surfaces and variational principles with constraints, we prove someKazdan-
Warner type theorems for prescribing combinatorial α-curvature problem, which generalize
the results obtained in Gu-Luo-Sun-Wu (J. Differ. Geom. 109: 223–256, 2018), Xu (Param-
eterized discrete uniformization theorems and curvature flows for polyhedral surfaces, I.
arXiv:1806.04516v2) on prescribing combinatorial curvatures on surfaces. Gu-Luo-Sun-Wu
(J. Differ. Geom. 109: 223–256, 2018) conjectured that one can prove Kazdan-Warner’s the-
orems in Kazdan (Ann Math 99: 14–47, 1974), Kazdan (Ann Math 101: 317-331, 1975) via
approximating smooth surfaces by polyhedral surfaces. This paper takes the first step in this
direction.

Mathematics Subject Classification 52C26

1 Introduction

1.1 Motivation

A classical problem in differential geometry asks the following question on prescribing
Gaussian curvature on closed surfaces.
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Prescribing Gaussian curvature problem. Let S be a smooth connected closed surface.
Which functions are Gaussian curvatures of Riemannian metrics on S?

This problem has been extensively studied by lots of mathematicians by deforming Rie-
mannian metric in its conformal structure. See, for instance, [3, 6, 24, 25, 30] and others.

Polyhedral metric on surfaces is a discrete analogue of the Riemannianmetric on surfaces,
which is a constant curvature (1, 0 or−1)metricwith cone singularities. The classical discrete
Gaussian curvature for a polyhedralmetric on a surface is the corresponding discrete analogue
of the smooth Gaussian curvature, which is defined to be the angle defect at the cone points.
Prescribing discrete Gaussian curvature problem on polyhedral surface asks the following
question parallelling to the classical prescribing Gaussian curvature problem on smooth
surfaces.

Prescribing discerete Gaussian curvature problem. Suppose S is a connected closed sur-
face and V is a finite nonempty subset of S. Which functions defined on V are discrete
Gaussian curvatures of polyhedral metrics on (S, V )?

In discrete conformal geometry, parallelling to the smooth case, the prescribing discrete
Gaussian curvature problem on surfaces is usually studied by deforming a polyhedral metric
in its discrete conformal structure, which is a discrete analogue of the smooth conformal
structure on surfaces defining polyhedral metrics by functions defined on the cone points.
The discrete conformal structures on surfaces that have been extensively studied. These
include Thurston’s circle packings [36], Luo’s vertex scaling [26] and others. For Thurston’s
circle packings on surfaces, the solution of prescribing discrete Gaussian curvature problem
gives rise to the famous Koebe-Andreev-Thurston Theorem, which plays a fundamental role
in the study of geometry and topology of 3-dimensional manifolds [36]. For vertex scaling of
piecewise linear and piecewise hyperbolic metrics on surfaces, the recent complete solution
of prescribing discrete Gaussian curvature problem by Gu-Luo-Sun-Wu [19] and Gu-Guo-
Luo-Sun-Wu [18] provides a new constructive proof of the classical uniformization theorem
on closed surfaces with genus g ≥ 1, which is computable and has lots of applications [10,
20, 21, 28, 35, 45]. In the framework of vertex scaling, Springborn [34] recently proved that
the discrete uniformization theorem on the sphere is equivalent to Rivin’s realization theorem
for ideal hyperbolic polyhedra [33].

However, the classical discrete Gaussian curvature is not a proper discretization of the
smooth Gaussian curvature on surfaces. For example, it is scaling invariant, which is different
from the transformation of smooth Gaussian curvatures under scaling of Riemannianmetrics,
and does not approximate the smooth Gaussian curvature pointwisely as the triangulations
become finer and finer [17]. In [40], the first author introduced combinatorial α-curvature for
vertex scaling of piecewise linearmetrics (PLmetrics for short in the following) on surfaces to
avoid the disadvantages of classical discrete Gaussian curvature alluded to above, where the
rigidity and Yamabe problem for combinatorial α-curvature were also studied. In this paper,
we study the prescribing combinatorial α-curvature problem for PL metrics on surfaces and
prove some Kazdan-Warner type theorems. It is conjectured by Gu-Luo-Sun-Wu [19] that
one can prove Kazdan-Warner’s theorems in [24, 25] by approximating smooth surfaces by
polyhedral surfaces involving vertex scaling. This paper takes the first step in this direction.

1.2 Statements of main results

Suppose S is a connected closed surface and V is a finite non-empty subset of S. We call
(S, V ) a marked surface. A PL metric d on the marked surface (S, V ) is a flat cone metric
on S with conic singularities contained in V . A triangulation T of the marked surface (S, V )
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is a triangulation of S with the vertex set equal to V . Denote a vertex, an edge and a face
in the triangulation T by i, {i j}, {i jk} respectively and denote the sets of edges and faces
of T by ET and FT respectively. A triangulation T of (S, V , d) is geometric if every edge
in ET is a geodesic in the PL metric d . A PL metric d on a triangulated surface (S, V , T )

with T geometric defines a map l : ET → (0,+∞) such that li j , lik, l jk satisfy the triangle
inequalities for any triangle {i jk} ∈ FT . The map l : ET → (0,+∞) is called as a discrete
metric and the logarithm of the discrete metric l, λi j = 2 log li j , is called as the logarithmic
length. One can also obtain discrete PL metrics on a triangulated surface (S, V , T ) by gluing
triangles in 2-dimensional Euclidean space isometrically along the edges in pair, which gives
rise to PL metrics on the marked surface (S, V ). Note that a PL metric d on a marked
surface (S, V ) is intrinsic in the sense that it is independent of the geometric triangulations
of (S, V , d). Every PL metric d on (S, V ) has a Delaunay triangulation T of (S, V , d) such
that each triangle in T is Euclidean and the sum of two angles facing each edge is at most π .
See [2, 5, 19, 32] for further discussion on Delaunay triangulation of polyhedral surfaces.

Suppose (S, V , d) is amarked surfacewith aPLmetricd andT is a geometric triangulation
of (S, V , d). The classical discrete Gaussian curvature K : V → (−∞, 2π) for (S, V , d) is
defined as

Ki = 2π −
∑

{i jk}∈FT
θ
jk
i (1)

with summation taken over all the triangles at i ∈ V and θ
jk
i being the inner angle of the

triangle {i jk} ∈ FT at the vertex i . Sometimes we call K as combinatorial curvature for
simplicity. Note that the classical discrete Gaussian curvature K is intrinsic in the sense that
it is independent of the geometric triangulations of (S, V , d). The classical combinatorial
curvature K for PL metrics on (S, V ) satisfies the following discrete Gauss-Bonnet formula
( [7], Proposition 3.1)

∑

i∈V
Ki = 2πχ(S). (2)

The discrete Gauss-Bonnet formula (2) provides a necessary condition for a function to be the
discrete Gaussian curvature of some PL metric on (S, V ). The classical prescribing discrete
Gaussian curvature problem on surfaces can be taken as a converse problem to the discrete
Gauss-Bonnet formula (2), which asks the following question.

Question 1.1 Is the discrete Gauss-Bonnet formula (2) sufficient condition for a function
K : V → (−∞, 2π) to be the discrete Gaussian curvature of some PL metric on (S, V )?

The prescribing discrete Gaussian curvature problem is usually studied in the frame of
discrete conformality of polyhedral metrics on surfaces. See, for instance, [18, 19, 26, 36] and
others. Vertex scaling of PL metrics on surfaces introduced by Luo [26] is a straightforward
discrete analogue of the conformal transformation in Riemannian geometry.

Definition 1.2 ( [26]) Suppose l, l̃ : ET → (0,+∞) are two discrete PL metrics on a
triangulated surface (S, V , T ). l̃ is called as a vertex scaling of l if there exists a function
u : V → R such that

l̃i j = li j exp

(
ui + u j

2

)

for any edge {i j} ∈ ET .
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Among other things, Luo [26] further established a variational principle for vertex scaling
of PLmetrics on surfaces and proved that there exists some combinatorial obstructions for the
existence of PL metric with constant discrete Gaussian curvature K in a discrete conformal
class on a triangulated surface (S, V , T ) in the sense of Definition 1.2. This implies that there
exist some combinatorial obstructions for the solvability of the prescribing discrete Gaussian
curvature problem in a discrete conformal class on a triangulated surface (S, V , T ) in the
sense of Definition 1.2. To overcome this difficulty, Gu-Luo-Sun-Wu [19] introduced the
following new definition of discrete conformality of PL metrics on marked surfaces, which
allows the triangulation of the marked surface to be changed under the Delaunay condition.

Definition 1.3 ( [19], Definition 1.1) Two PL metrics d, d ′ on a marked surface (S, V ) are
discrete conformal if there exist a sequence of PL metrics d1 = d, d2, ..., dm = d ′ on (S, V )

and triangulations T1, ..., Tm of (S, V ) satisfying

(a) (Delaunay condition) each Ti is Delaunay in di ,
(b) (Vertex scaling condition) if Ti = Ti+1, there exists a function u : V → R, called a

conformal factor, so that if e is an edge in Ti with end points v and v′, then the lengths
ldi (e) and ldi+1(e) of e in metrics di and di+1 are related by

ldi+1(e) = ldi (e) exp

(
u(v) + u(v′)

2

)
,

(c) if Ti �= Ti+1, then (S, di ) is isometric to (S, di+1) by an isometry homotopic to the
identity in (S, V ).

Definition 1.3 defines an equivalence relationship for PLmetrics on a marked surface (S, V ).
The equivalence class of a PL metric d on (S, V ) is called as the discrete conformal class
of d and denoted by D(d). Using the new discrete conformality in Definition 1.3, Gu-Luo-
Sun-Wu [19] completely solved the prescribing discrete Gaussian curvature problem for PL
metrics on closed surfaces in the following well-known theorem. This theorem shows that
the discrete Gauss-Bonnet formula (2) is a necessary and sufficient condition for a function
K : V → (−∞, 2π) to be the classical discrete Gaussian curvature of some PL metric on
(S, V ).

Theorem 1.4 ( [19] Theorem 1.2) Suppose (S, V ) is a closed connected marked surface and
d is a PL metric on (S, V ). Then for any K : V → (−∞, 2π)with

∑
v∈V K (v) = 2πχ(M),

there exists a PL metric d, unique up to scaling and isometry homotopic to the identity on
(S, V ), such that d is discrete conformal to d and the discrete curvature of d is K .

The classical discrete Gaussian curvature defined by (1) is not a proper discretization
of the smooth Gaussian curvature on surfaces, which is supported by the discussions in [4,
17]. To overcome the disadvantages of the classical discrete Gaussian curvature, Ge and the
first author [17] introduced the combinatorial α-curvature for Thurston’s Euclidean circle
packing metrics on surfaces. After that, there are lots of research activities on combinatorial
α-curvature on surfaces and 3-manifolds. See, for instance, [9, 13–16, 37, 38, 40, 43, 44]
and others. Following [17], the first author [40] introduced the following combinatorial α-
curvature for vertex scaling of PL metrics on triangulated surfaces.

Definition 1.5 ([40]) Suppose (S, V , T ) is a triangulated surface with a discrete PL metric
l, α ∈ R is a constant and u : V → R is a discrete conformal factor for l. The combinatorial
α-curvature at i ∈ V is defined to be

Rα,i = Ki

eαui
,
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where Ki is the classical combinatorial curvature at i ∈ V defined by (1).

Remark 1 Ifα = 0, the combinatorialα-curvature Rα inDefinition 1.5 is the classical discrete
Gaussian curvature K . Taking gi = eui as a discrete analogue of the smooth Riemannian
metric, we have Rα,i (λg1, . . . , λgV ) = λ−αRα,i (g1, . . . , gV ) for any constant λ > 0. In
the special case of α = 1, we have R1,i (λg1, . . . , λgV ) = λ−1R1,i (g1, . . . , gV ), which is
parallelling to the transformation of smooth Gaussian curvature Kλg = λ−1Kg with g being
the Riemannian metric.

By the discrete Gauss-Bonnet formula (2) for the classical discrete Gaussian curvature
K , the combinatorial α-curvature Rα in Definition 1.5 satisfies the following discrete Gauss-
Bonnet formula

∑
i∈V Rα,i eαui = 2πχ(S). Therefore, if R ∈ R

V is the combinatorial
α-curvature of some discrete PL metric discrete conformal to l on (S, V , T ) with conformal
factor u, then

∑

i∈V
Ri e

αui = 2πχ(S), (3)

which is a discrete analogue of the constraint equation
∫
S Ke2udV = 2πχ(S) in the smooth

case [3, 24]. Following Kazdan-Warner’s arguments in [24], the constraint equation (3)
imposes the following sign conditions on R depending on χ(S):

(a) χ(M) > 0: R is positive somewhere,
(b) χ(M) = 0: R changes sign (unless R ≡ 0),
(c) χ(M) < 0: R is negative somewhere.

It is natural to ask the following discrete version of Kazdan-Warner’s question for combina-
torial α-curvature.

Question 1.6 (Discrete Kazdan-Warner Question) Suppose (S, V ) is a marked surface with a
PL metric d . Are the sign conditions, depending on χ(S), sufficient conditions for a function
R defined on V to be the combinatorial α-curvature of some polyhedral metric d ′ discrete
conformal to d?

We prove the following discrete Kazdan-Warner type theorem for Discrete Kazdan-Warner
Question 1.6.

Theorem 1.7 Suppose (S, V , d) is a marked surface with a PL metric d, α ∈ R is a constant
and R is a given function defined on V . Then there exists a PL metric with combinatorial
α-curvature R in the discrete conformal class D(d) if one of the following conditions is
satisfied :

(1) χ(S) > 0, α < 0, R > 0;
(2) χ(S) < 0, α �= 0, R ≤ 0, R �≡ 0;
(3) χ(S) = 0, α �= 0, R ≡ 0;
(4) α = 0, R ∈ (−∞, 2π),

∑
i∈V Ri = 2πχ(S).

Remark 2 If R is a constant and αR ≤ 0, the existence of PL metric with combinatorial α-
curvature R in the discrete conformal classD(d) has been proved in [40]. In the case of αR ≤
0, the uniqueness of PL metric with combinatorial α-curvature R in the discrete conformal
classD(d) has been proved in [19, 40]. For the case αR > 0, the uniqueness is unknown. By
the relationship of combinatorial α-curvature and the classical discrete Gaussian curvature,
the cases (3) and (4) in Theorem 1.7 are covered by Gu-Luo-Sun-Wu [19]. Therefore, we
just need to prove the cases (1) and (2) of Theorem 1.7.
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The main tools for the proof of Theorem 1.7 are Gu-Luo-Sun-Wu’s discrete confor-
mal theory for PL metrics on surfaces [19] and variational principles with constraints. The
main ideas of the paper come from reading of Gu-Luo-Sun-Wu [19] and Kouřimská [23]. A
hyperbolic version of Theorem1.4 has been proved byGu-Guo-Luo-Sun-Wu [18],which per-
fectly solves the classical prescribing discerete Gaussian curvature problem in the hyperbolic
background geometry. For prescribing combinatorial α-curvature problem in the hyperbolic
background geometry, the authors [43] recently obtained a hyperbolic version of Theorem
1.7 using Luo’s combinatorial Yamabe flow and Gu-Guo-Luo-Sun-Wu’s discrete conformal
theory for piecewise hyperbolic metrics on surfaces [18].

1.3 Organization of the paper

The paper is organized as follows. In Sect. 2, we recall the variational principle introduced by
Luo [26] for vertex scaling and Bobenko-Pinkall-Spingborn’s development of Luo’s varia-
tional principle, and then recall the discrete conformal theory established byGu-Luo-Sun-Wu
[19]. In Sect. 3, we translate Theorem 1.7 into an optimization problem with constraints. In
Sect. 4, we prove Theorem 1.7.

2 Discrete conformality of PLmetrics on surfaces

In this section, we recall some facts about discrete conformality of PL metrics that we need
to use in the proof of Theorem 1.7.

2.1 The energy functions

Suppose {i jk} ∈ FT is a triangle and l : ET → R>0 is a discrete PL metric on (S, V , T ).
Denote the inner angle in the triangle {i jk} at the vertex i as θi . Luo [26] proved the following
result.

Lemma 2.1 ([26]) Suppose {i jk} ∈ FT is a triangle and l : ET → R>0 is a discrete PL
metric on (S, V , T ).

(1) The admissible space of the discrete conformal factors for a triangle {i jk} ∈ FT

�i jk = {(ui , u j , uk) ∈ R
3 |̃li j , l̃ik, l̃ jk satisfy the triangle inequality}

is simply connected.

(2) The Jacobian matrix
∂(θi ,θ j ,θk )

∂(ui ,u j ,uk )
is symmetric and negative semi-definite with kernel

{t(1, 1, 1)T |t ∈ R} for any discrete conformal factor (ui , u j , uk) ∈ �i jk .

Based on Lemma 2.1, Luo [26] constructed the following energy function for a triangle
{i jk} ∈ FT

Fi jk(ui , u j , uk) = −
∫ (ui ,u j ,uk )

(0,0,0)
θi dui + θ j du j + θkduk, (4)

which is a well-defined smooth locally convex function defined on �i jk with ∇Fi jk =
(−θi ,−θ j ,−θk) and

Fi jk((ui , u j , uk) + t(1, 1, 1)) = Fi jk(ui , u j , uk) − π t (5)
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for t ∈ R. Motivated by [8], Luo [26] further introduced the following energy function

FT (u) =
∫ u

0

∑

i∈V
Kidui =

∑

{i jk}∈FT
Fi jk(ui , u j , uk) + 2π

∑

i∈V
ui , (6)

which is a locally convex smooth functionof the discrete conformal factorsu ∈ ∩{i jk}∈FT �i jk

with ∇FT (u) = K . By (5) and the Gauss-Bonnet formula, the energy function FT (u) has
the following property

FT (u + c(1, . . . , 1)) = FT (u) + 2cπχ(S) (7)

for c ∈ R [26].
In the following of the paper, we need to use the explicit expression of FT (u), which was

first constructed up to a constant by Bobenko-Pinkall-Spingborn [4] as follows. Set

� = {(x, y, z) ∈ R
3| ex + ey > ez, ey + ez > ex , ez + ex > ey}.

For (x, y, z) ∈ �, ex , ey, ez form the edge lengths of a Euclidean triangle. Denote the inner
angles facing ex , ey, ez as α, β, γ respectively and set

L(x) = −
∫ x

0
log |2 sin(t)|dt

to be Milnor’s Lobachevsky function [29]. Bobenko-Pinkall-Spingborn [4] then defined the
following function

f : � → R

(x, y, z) �→ f (x, y, z) = αx + β y + γ z + L(α) + L(β) + L(γ ).

Using f as building blocks, Bobenko-Pinkall-Spingborn [4] further constructed the following
function

ET (u) =
∑

{i jk}∈FT

(
2 f (

λ̃i j

2
,
λ̃ jk

2
,
λ̃ki

2
) − π

2
(̃λi j + λ̃ jk + λ̃ki )

)
+ 2π

∑

i∈V
ui (8)

for u ∈ ∩{i jk}∈FT �i jk , where λ̃i j is the logarithm length of l̃i j = li j e
ui+u j

2 . Bobenko-Pinkall-
Springborn [4] proved that∇ET = K , which implies that ET (u) and FT (u) differs by some
constant.

Bobenko-Pinkall-Springborn’s construction of ET (u) in [4] is very elegant, but a lit-
tle mysterious. It seems that Bobenko-Pinkall-Springborn’s construction comes from their
observation on the relationships of vertex scaling and 3-dimensional hyperbolic geometry
and can be taken as a consequence of the Schläfli formula [32]. Once one has the explicit
form of the function ET (u), it is easy to check that ∇ET = K . However, the construction
of ET (u) is not so easy. As Luo’s construction of the energy function FT (u) in [26] is rela-
tively direct and easy, a natural question of independent interest is whether one can derive an
explicit form of FT (u) directly, which differs from the explicit form of ET (u) by a constant.
In the following, we give such an argument, the idea of which comes from Yuhao Xue from
summer school 2017 at Tsinghua University. In fact, we just need to derive an explicit form
of the energy function Fi jk(ui , u j , uk) for a triangle {i jk} ∈ FT .

Proposition 2.2 Suppose l̃ is vertex scaling of l on the triangle {i jk} ∈ FT with a conformal
factor (ui , u j , uk) ∈ �i jk . Denote the inner angle of the triangle with edge lengths li j , lik, l jk
as �i ,� j ,�k respectively and denote the inner angle of the triangle with edge lengths
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l̃i j , l̃ik, l̃ jk as �i ,� j ,�k respectively. Then the energy function Fi jk(ui , u j , uk) defined by
(4) has the following explicit form

Fi jk(ui , u j , uk)

= −(�i ui + � j u j + �kuk)

+ 2L(�i ) + 2L(� j ) + 2L(�k) + 2�i ln l jk + 2� j ln lik + 2�k ln li j

− 2L(�i ) − 2L(� j ) − 2L(�k) − 2�k ln li j − 2� j ln lik − 2�i ln l jk .

Proof As �i jk is simply connected by Lemma 2.1 and (0, 0, 0), (ui , u j , uk) ∈ �i jk , we
can assume that γ : [0, 1] → �i jk is a smooth path from (0, 0, 0) to (ui , u j , uk). Denote
the corresponding quantities along the path γ (t) as ui (t), θi (t), li j (t) et al. Then ui (1) =
ui , ui (0) = 0, θi (1) = �i , θi (0) = �i , li j (1) = l̃i j , li j (0) = li j . By Definition 1.2, one can
solve ui (t), u j (t), uk(t) as follows

ui (t) = ln
li j (t)lik(t)l jk(0)

li j (0)lik(0)l jk(t)
, u j (t) = ln

li j (t)lik(0)l jk(t)

li j (0)lik(t)l jk(0)
, uk(t) = ln

li j (0)lik(t)l jk(t)

li j (t)lik(0)l jk(0)
.(9)

Suppose the circumcircle radius of the triangle with edge lengths li j (t), lik(t), l jk(t) is R(t),
then

li j (t) = 2R(t) sin θk(t), lik(t) = 2R(t) sin θ j (t), l jk(t) = 2R(t) sin θi (t). (10)

Submitting (10) into (9) gives

ui (t) = 3 ln R(t) + ln sin θ j (t) + ln sin θk(t) − ln sin θi (t) − ln li j (0)

− ln lik(0) + ln l jk(0),

u j (t) = 3 ln R(t) + ln sin θi (t) + ln sin θk(t) − ln sin θ j (t) − ln li j (0)

− ln l jk(0) + ln lik(0),

uk(t) = 3 ln R(t) + ln sin θi (t) + ln sin θ j (t) − ln sin θk(t) − ln lik(0)

− ln l jk(0) + ln li j (0).

(11)

By the definition of Fi jk(ui , u j , uk) in (4), we have

Fi jk(ui , u j , uk)

= −
∫ 1

0
θi (t)dui (t) + θ j (t)du j (t) + θk(t)duk(t)

= −[θi (t)ui (t) + θ j (t)u j (t) + θk(t)uk(t)]|10
+

∫ 1

0
ui (t)dθi (t) + u j (t)dθ j (t) + uk(t)dθk(t)

(12)
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Prescribing discrete Gaussian curvature... Page 9 of 17 80

by integration by parts. Submitting (11) into (12) gives

Fi jk(ui , u j , uk)

= −[θi (t)ui (t) + θ j (t)u j (t) + θk(t)uk(t)]|10
− 2

∫ 1

0
[θ ′

i (t) ln sin θi (t) + θ ′
j (t) ln sin θ j (t) + θ ′

k(t) ln sin θk(t)]dt

+ 2
∫ 1

0
[ln li j (0)θ ′

k(t) + ln lik(0)θ
′
j (t) + ln l jk(0)θ

′
i (t)]dt

= −(�i ui + � j u j + �kuk)

+ 2L(�i ) + 2L(� j ) + 2L(�k) − 2L(�i ) − 2L(� j ) − 2L(�k)

+ 2 ln li j (0)(�k − �k) + 2 ln lik(0)(� j − � j ) + 2 ln l jk(0)(�i − �i ),

where the identity θ ′
i (t) + θ ′

j (t) + θ ′
k(t) ≡ 0 is used in the first equality. �

Remark 3 Set

h(ui , u j , u j ) = 2 f

(
λ̃i j

2
,
λ̃ jk

2
,
λ̃ki

2

)
− π

2
(̃λi j + λ̃ jk + λ̃ki ),

which is a building block of ET (u) in (8). By direct calculations, we have

h(ui , u j , u j ) = − (�i ui + � j u j + �kuk)

+ 2L(�i ) + 2L(� j ) + 2L(�k) + 2�i ln l jk + 2� j ln lik + 2�k ln li j
− π(ln li j + ln lik + ln l jk),

which implies that Fi jk(ui , u j , uk) differ from h(ui , u j , u j ) by a constant depending on the
background discrete PL metric l. As a direct consequence, Luo’s energy function FT (u) in
(6) differs from Bobenko-Pinkall-Springborn’s energy function ET (u) in (8) by a constant
depending on the background discrete PL metric l.

Remark 4 There are two approaches to extend the energy function FT (u) or ET (u) to be
a convex function defined on R

V introduced by Bobenko-Pinkall-Springborn [4] and Gu-
Luo-Sun-Wu [19] independently. In [4], the function ET (u) is extended to be a C1 smooth
convex function defined on R

V by exploiting the fact that the function f defined on �

could be extended to a C1 smooth convex function on R
3 by extending the inner angles

of a triangle by constants. Using Luo’ development [27] of Bobenko-Pinkall-Spingborn’s
extension [4], Ge-Jiang [11] similarly extended the potential function FT (u) defined by (6)
to be a C1-smooth convex function defined on R

V . Luo’s development [27] of Bobenko-
Pinkall-Spingborn’s extension [4] has recently been further developed to handle other cases.
See, for instance, [38, 39, 41, 42] and others. In [19], the function FT (u) is extended to be
a C2-smooth convex function defined on R

V by changing the triangulation of the marked
surface under the Delaunay condition, based on which Gu-Luo-Sun-Wu proved the Discrete
Uniformization Theorem 1.4 for PL metrics on closed surfaces. The first approach could not
ensure the triangles being non-degenerate, while the second approach could.

2.2 Gu-Luo-Sun-Wu’s discrete conformal theory

Based on Penner’s decorated Teichimüller space theory [31], Gu-Luo-Sun-Wu [19] estab-
lished the discrete conformal theory for PLmetrics on compact surfaces and proved Theorem
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1.4. In the following, we recall some results in [19] that we need. We will not formally
involve too much notions and results on decorated Teichimüller space. For more details of
these results, please refer to Gu-Luo-Sun-Wu’s original work [19].

Theorem 2.3 ([19] Corollary 4.7) Suppose d is a PL metric on the marked surface (S, V ).
Then there exists a C1 diffeomorphism φ : D(d) → R

V .

ByTheorem2.3, the discrete conformal classD(d) is parameterized byRV . For simplicity,
for any d ′ ∈ D(d), we denote it by d(u) for some u ∈ R

V . Suppose T is a triangulation of
the marked surface (S, V ). Set

AT = {u ∈ RV | T is isotopic to a Delaunay triangulation of (S, V , d(u))}.

Based on Akiyoshi’s finiteness theorem in [1] (see also Appendix in [19] for a new proof),
Gu-Luo-Sun-Wu [19] proved the following result.

Theorem 2.4 ([19] Lemma 5.1) Let

J = {T |AT has nonempty interior in RV }.

Then J is a finite set,RV = ∪Ti∈JATi andATi is real analytically diffeomorphic to a closed
convex polytope in R

V .

By Theorem 2.3, Gu-Luo-Sun-Wu [19] introduced the following globally defined C1

smooth combinatorial curvature function

F : RV → (−∞, 2π)V

u �→ K (d(u)).

Combining with Lemma 2.1, Gu-Luo-Sun-Wu [19] further constructed a globally defined
energy function with F as gradient, which plays an important role in the proof of Theorem
1.4.

Theorem 2.5 ([19] Proposition 5.2) There exists a C2-smooth convex function

E : RV → R

u �→
∫ u

0

∑

i∈V
Fi dui

(13)

so that its gradient∇E = F and the restriction ofE to the hyperplane {u ∈ R
V | ∑i∈V ui = 0}

is strictly convex.

Remark 5 By the construction in Theorem 2.5, for T ∈ J , the restriction E|AT differs from
FT in (6) by a constant. As a consequence of (7), E has the following property

E(u + c(1, . . . , 1)) = E(u) + 2cπχ(S) (14)

for any c ∈ R.
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3 Variational principles with constraints

In this section, we translate Theorem 1.7 into an optimization problem with inequality con-
straints by variational principles, which involve the function E defined in (13).

Suppose (S, V , d) is a marked surface with a PL metric d , α ∈ R is a non-zero constant
and R is a given function defined on V . Set

A =
{
u ∈ R

V |0 >
∑

i∈V
Ri e

αui ≥ 2πχ(S), R ≤ 0, R �≡ 0

}
, (15)

B =
{
u ∈ R

V |0 <
∑

i∈V
Ri e

αui ≤ 2πχ(S), R > 0

}
, (16)

C =
{
u ∈ R

V |
∑

i∈V
Ri e

αui ≤ 2πχ(S) < 0, R ≤ 0, R �≡ 0

}
. (17)

Proposition 3.1 The sets A, B and C are unbounded closed subsets of RV .

Proof It is obvious that the setsA, B and C are closed subsets ofRV . For the setA, by direct
calculations,

∑

i∈V
Ri e

α(ui+c) = eαc
∑

i∈V
Ri e

αui ≥ 2πχ(S)

is equivalent to

c ≥ 1

α
log

2πχ(S)
∑

i∈V Ri eαui

under the condition α < 0;
∑

i∈V
Ri e

α(ui+c) = eαc
∑

i∈V
Ri e

αui ≥ 2πχ(S)

is equivalent to

c ≤ 1

α
log

2πχ(S)
∑

i∈V Ri eαui

under the condition α > 0. Therefore, the set A is unbounded. Similarly, the sets B and C
are unbounded. �

According to Proposition 3.1, we have following result.

Lemma 3.2 Suppose (S, V , d) is a marked surface with a PL metric d, α ∈ R is a constant
and R is a given function defined on V . If one of the following three conditions is satisfied

(1) α > 0 and the energy function E attains a minimum in the set A,
(2) α < 0 and the energy function E attains a minimum in the set B,
(3) α < 0 and the energy function E attains a minimum in the set C,

then the minimum value point of E lies in the set {u ∈ R
V | ∑i∈V Ri eαui = 2πχ(S)}.
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Proof Let α > 0 and suppose the function E attains a minimum at u ∈ A. The definition of
A in (15) implies χ(S) < 0. Taking c0 = 1

α
log 2πχ(S)∑

i∈V Ri eαui
, then c0 ≥ 0. By the proof of

Proposition 3.1, u + c0I ∈ A. Therefore, by the additive property of the function E in (14),
we have

E(u) ≤ E(u + c0I) = E(u) + 2πc0χ(S),

which implies c0 ≤ 0 by χ(S) < 0. Hence c0 = 0 and
∑

i∈V Ri eαui = 2πχ(S). This proves
the case of (1). The proofs for the cases (2) and (3) are similar, we omit the details here. �

By Lemma 3.2, we translate Theorem 1.7 into the following theorem, which is a non-
convex optimization problem with inequality constraints.

Theorem 3.3 Suppose (S, V , d) is a marked surface with a PL metric d and χ(S) �= 0,
α ∈ R is a non-zero constant and R is a given function defined on V .

(1) If α > 0 and the energy function E attains a minimum inA, then there exists a PL metric
in the conformal class D(d) with combinatorial α-curvature R ≤ 0 and R �≡ 0;

(2) If α < 0 and the energy function E attains a minimum in B, then there exists a PL metric
in the conformal class D(d) with combinatorial α-curvature R > 0;

(3) If α < 0 and the energy function E attains a minimum in C, then there exists a PL metric
in the conformal class D(d) with combinatorial α-curvature R ≤ 0 and R �≡ 0.

Proof Lemma 3.2 shows that if u ∈ R
V is a minimum of the energy function E defined on

one of these sets, then
∑

i∈V Ri eαui = 2πχ(S). The conclusion follows from the following
claim.

Claim : Up to scaling, the PL-metrics with prescribed combinatorial α-curvature in the
discrete conformal class D(d) are in one-to-one correspondence with the critical points of
the function E under the constraint

∑
i∈V Ri eαui = 2πχ(S).

We use the method of Lagrange multipliers to prove this claim. Set

H(u, λ) = E(u) + λ

(
∑

i∈V
Ri e

αui − 2πχ(S)

)
,

where λ ∈ R is a Lagrange multiplier. If u is a critical point of the function E under the
constraint

∑
i∈V Ri eαui = 2πχ(S), then

0 = ∂H(u, λ)

∂ui
= Ki + λαRie

αui ,

which implies

Rα,i = Ki

eαui
= −λαRi .

By the discrete Gauss-Bonnet formula (2), the Lagrange multiplier λ satisfies

λ = − 2πχ(S)

α
∑

i∈V Ri eαui
= − 1

α

under the constraint
∑

i∈V Ri eαui = 2πχ(S), which implies the combinatorial α-curvature

Rα,i = −λαRi = 2πχ(S)
∑

i∈V Ri eαui
Ri = Ri

under the constraint
∑

i∈V Ri eαui = 2πχ(S). �
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4 Proof of Theorem 1.7

In this section, we give a proof for Theorem 1.7. By Theorem 3.3, we just need to prove
that the energy function E attains the minimum in the sets A, B and C. Recall the following
classical result from calculus.

Theorem 4.1 Let A ⊆ R
m be a closed set and f : A → R be a continuous function. If every

unbounded sequence {un}n∈N in A has a subsequence {xnk }k∈N such that limk→+∞ f (xnk ) =
+∞, then f attains a minimum in A.

One can refer to [22] (Section 4.1) for a proof of Theorem 4.1. The majority of the
conditions in Theorem 4.1 are satisfied, including the sets A, B and C are closed subsets of
R
V by Proposition 3.1 and the energy function E is continuous by Theorem 2.5. To prove

Theorem 1.7, we just need to prove the following theorem by Theorem 3.3 and Theorem 4.1.

Theorem 4.2 Suppose (S, V , d) is a marked surface with a PL metric d, α ∈ R is a constant
and R is a given function defined on V . If one of the following three conditions is satisfied,

(1) α > 0 and {un}n∈N is an unbounded sequence in A,
(2) α < 0 and {un}n∈N is an unbounded sequence in B,
(3) α < 0 and {un}n∈N is an unbounded sequence in C,

then there exist a subsequence {unk }k∈N of {un}n∈N such that limk→+∞ E(unk ) = +∞.

Let {un}n∈N be an unbounded sequence in R
V , denote its coordinate sequence at j ∈ V

by {u j,n}n∈N. Motivated by [23], we call the sequence {un}n∈N with the following properties
as a “good" sequence.

(1) It lies in one cell AT of RV for some T ∈ J given by Theorem 2.4;
(2) There exists a vertex i∗ ∈ V such that ui∗,n ≤ u j,n for all j ∈ V and n ∈ N;
(3) Each coordinate sequence {u j,n}n∈N either converge, diverge properly to+∞, or diverges

properly to −∞;
(4) For all j ∈ V , the sequence {u j,n − ui∗,n}n∈N either converge or diverge properly to

+∞.

By Theorem 2.4, it is obvious that every sequence inRV possesses a “good" subsequence,
hence the “good" sequence could be chosen without loss of generality. To prove Theorem
4.2, we further need the following two results obtained by Kouřimská [23].

Lemma 4.3 ([23] Corollary 5.6) In every triangle {i jk} ∈ FT , at least two of the three
sequences (ui,n − ui∗,n)n∈N, (u j,n − ui∗,n)n∈N and (uk,n − ui∗,n)n∈N converge.

Lemma 4.4 ([23] Lemma 5.11) There exists a convergent sequence {Cn}n∈N such that the
energy function E satisfies

E(un) = Cn + 2π

⎛

⎝ui∗,nχ(S) +
∑

j∈V
(u j,n − ui∗,n)

⎞

⎠ .

The proof of Lemma 4.4 is based on an interesting analysis of the explicit form of the energy
function FT or ET . Readers can refer to [22, 23] for the proof.

Proof of Theorem 4.2 Let {un}n∈N be an unbounded “good" sequence. We just need to prove
that limn→+∞ E(un) = +∞.
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(1) Let α > 0 and {un}n∈N be an unbounded sequence in A. The definition of A in (15)
implies χ(S) < 0, R ≤ 0 and R �≡ 0. Since the sequence {un}n∈N lies in A, we have

0 >
∑

j∈V
R j e

α(u j,n−ui∗,n) = e−αui∗,n ·
∑

j∈V
R j e

αu j,n ≥ 2πχ(S)e−αui∗,n . (18)

Note that
(∑

j∈V (u j,n − ui∗,n)
)

n∈N converges to a finite number or diverges properly

to +∞ by the definition of “good" sequence.

If
(∑

j∈V (u j,n − ui∗,n)
)

n∈N converges to a finite number, then the sequence (u j,n −
ui∗,n)n∈N converges for all j ∈ V , which implies

∑
j∈V R j eα(u j,n−ui∗,n) converges to a

finite negative number by R ≤ 0 and R �≡ 0. Therefore, {ui∗,n}n∈N is bounded from above
by (18), α > 0 and χ(S) < 0, which implies {ui∗,n}n∈N converges to a finite number or
diverges to −∞. If {ui∗,n}n∈N converges to a finite number, then {u j,n}n∈N are bounded
for all j ∈ V by (u j,n − ui∗,n)n∈N converges for all j ∈ V , which implies {un}n∈N
is bounded. This contradicts the assumption that {un}n∈N is unbounded. Therefore, the
sequence {ui∗,n}n∈N diverges properly to −∞. Combining this with χ(S) < 0 and
Lemma 4.4, we have limn→+∞ E(un) = +∞.

If
(∑

j∈V (u j,n − ui∗,n)
)

n∈N diverges properly to+∞, then there exists at least one ver-

tex j ∈ V such that the sequence (u j,n −ui∗,n)n∈N diverges properly to+∞. By Lemma
4.3, there exists at least one vertex k ∈ V such that the sequence (uk,n − ui∗,n)n∈N
converges (for example (ui∗,n − ui∗,n)n∈N). Therefore, eα(u j,n−ui∗,n) converges to a
finite positive number or diverges properly to +∞ and for at least one vertex j ∈ V
the term eα(u j,n−ui∗,n) converges to a finite positive number. Combining R ≤ 0 and
R �≡ 0,

∑
j∈V R j eα(u j,n−ui∗,n) tends to either a finite negative number or −∞. If∑

j∈V R j eα(u j,n−ui∗,n) tends to a finite negative number, then ui∗,n is bounded from
above by (18), which implies that ui∗,nχ(S) is bounded from below. Combining with

the assumption that
(∑

j∈V (u j,n − ui∗,n)
)

n∈N diverges properly to +∞, we have

limn→+∞ E(un) = +∞ by Lemma 4.4. If
∑

j∈V R j eα(u j,n−ui∗,n) tends to−∞, we have
{ui∗,n}n∈N diverges properly to −∞ by (18), which implies limn→+∞ E(un) = +∞ by
χ(S) < 0 and Lemma 4.4.

(2) Let α < 0 and {un}n∈N be an unbounded sequence in B. The definition of B in (16)
implies χ(S) > 0 and R > 0. Since the sequence {un}n∈N lies in B, we have

0 <
∑

j∈V
R j e

α(u j,n−ui∗,n) = e−αui∗,n ·
∑

j∈V
R j e

αu j,n ≤ 2πχ(S)e−αui∗,n . (19)

If
(∑

j∈V (u j,n − ui∗,n)
)

n∈N converges, then the sequence (u j,n−ui∗,n)n∈N converges

for all j ∈ V . Note that α < 0, χ(S) > 0 and R > 0, we have {ui∗,n}n∈N is bounded from
below by (19), which implies {ui∗,n}n∈N converges to a finite number or diverges properly
to +∞. Combining this with {un}n∈N is unbounded and (u j,n − ui∗,n)n∈N converges for
all j ∈ V , we have the sequence {ui∗,n}n∈N diverges properly to +∞. As a result, we
have limn→+∞ E(un) = +∞ by Lemma 4.4 and χ(S) > 0.

If the sequence
(∑

j∈V (u j,n − ui∗,n)
)

n∈N diverges properly to +∞, then there exists

at least one vertex j ∈ V such that the sequence (u j,n − ui∗,n)n∈N diverges properly to
+∞. By Lemma 4.3, there exists at least one vertex k ∈ V such that the sequence (uk,n −
ui∗,n)n∈N converges (for example (ui∗,n − ui∗,n)n∈N). Therefore,

∑
j∈V R j eα(u j,n−ui∗,n)
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has a positive lower bound by R > 0 and α < 0, which implies 2πχ(S)e−αui∗,n has
a positive lower bound by (19). Therefore, {ui∗,n}n∈N is bounded from below by α <

0 and χ(S) > 0 and hence ui∗,nχ(S) is bounded from below. Combining this with(∑
j∈V (u j,n − ui∗,n)

)

n∈N diverges properly to +∞, we have limn→+∞ E(un) = +∞
by Lemma 4.4.

(3) Let α < 0 and {un}n∈N be an unbounded sequence in C. The definition of C in (17)
implies χ(S) < 0, R ≤ 0 and R �≡ 0. Since the sequence {un}n∈N lies in C, we have

∑

j∈V
R j e

α(u j,n−ui∗,n) = e−αui∗,n ·
∑

j∈V
R j e

αu j,n ≤ 2πχ(S)e−αui∗,n < 0. (20)

If
(∑

j∈V (u j,n − ui∗,n)
)

n∈N converges, then the sequence (u j,n−ui∗,n)n∈N converges

for all j ∈ V , which implies that
∑

j∈V R j eα(u j,n−ui∗,n) converges to a finite negative

number by R ≤ 0 and R �≡ 0. Combining this with α < 0 and χ(S) < 0, we have
{ui∗,n}n∈N is bounded from above by (20). As {un}n∈N is unbounded, then similar to
the arguments above, the sequence {ui∗,n}n∈N diverges properly to −∞. Combining this
with χ(S) < 0 and Lemma 4.4, we have limn→+∞ E(un) = +∞.

If
(∑

j∈V (u j,n − ui∗,n)
)

n∈N diverges properly to +∞, then there exists at least one

vertex j ∈ V such that the sequence (u j,n − ui∗,n)n∈N diverges properly to +∞. By
Lemma 4.3, there exists at least one vertex k ∈ V such that the sequence (uk,n −
ui∗,n)n∈N converges (for example (ui∗,n − ui∗,n)n∈N). Therefore,

∑
j∈V R j eα(u j,n−ui∗,n)

either tends to zero or to a finite negative number by α < 0, R ≤ 0 and R �≡ 0. If∑
j∈V R j eα(u j,n−ui∗,n) tends to zero, then 2πχ(S)e−αui∗,n tends to zero by (20), which

implies {ui∗,n}n∈N diverges properly to−∞ byα < 0 andχ(S) < 0.Combining thiswith
χ(S) < 0 and Lemma 4.4, we have limn→+∞ E(un) = +∞. If

∑
j∈V R j eα(u j,n−ui∗,n)

tends to a finite negative number, we have 2πχ(S)e−αui∗,n has a negative lower bound
by (20), which implies ui∗,n is bounded from above by α < 0 and χ(S) < 0. Combining

this with χ(S) < 0 and
(∑

j∈V (u j,n − ui∗,n)
)

n∈N diverges properly to +∞, we have

limn→+∞ E(un) = +∞ by Lemma 4.4.
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