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Abstract
Consideration in this paper is the stability of exact smooth multi-solitons for the Camassa–
Holm equation. By constructing a suitable Lyapunov functional, it is found that the smooth
multi-solitons are non-isolated constrained minimizers satisfying a suitable variational non-
local elliptic equation and the dynamical stability issue is reduced to study of the spectrum
of explicit linearized systems. Our approach in the spectral analysis consists in an invariant
for the multi-solitons and new operator identities motivated by the bi-Hamilton structure of
the Camassa–Holm equation. The key ingredient in the spectral analysis is to use integrable
property of the recursion operator of the Camassa–Holm equation. It is demonstrated here
that orbital stability of shape of smooth single soliton implies that the shapes of all smooth
multi-solitons are dynamically stable under small disturbances in a suitable Sobolev space.

Mathematics Subject Classification 35Q35 · 35Q51 · 37K05 · 37K10

1 Introduction

We consider the Camassa–Holm (CH ) equation [5,27]

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, t > 0, x ∈ R (1.1)

with ω ≥ 0 and the function u(t, x) in dimensionless space-time variables (x, t), which is a
model to describe the unidirectional propagation of shallow water waves over a flat bottom
[5,31] (see also [19] for a rigorous justification in shallow water approximation). The CH
equation (1.1) is a completely integrable equation in the sense that it has an infinite number of
conserved quantities and a Lax pair [1,5,9,11,20], describing permanent and breaking waves
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[10,12,44]. Its solitary waves are orbitally stable smooth solitons (ω > 0) [23] or peakons
(ω = 0) [22,47] in the energy space. Equation (1.1) arises also as an equation of the geodesic
flow for the H1 right-invariant metric on the Bott-Virasoro group (if ω > 0) [45] and on the
diffeomorphism group (if ω = 0) [17,18]. The CH equation (1.1) has the bi-Hamiltonian
structure of the form (1.1) [5,27]:

∂m

∂t
= J2

δH2[m]
δm

= J1
δH1[m]

δm
, (1.2)

J1 := −(2ω∂x + m∂x + ∂xm), J2 := −(∂x − ∂3x ), (1.3)

with the momentum density m := u − uxx and the two Hamiltonians

H1[m] = H1(u) = 1

2

∫
R

mudx, and (1.4)

H2[m] = H2(u) = 1

2

∫
R

(u3 + uu2x + 2ωu2) dx . (1.5)

The CH equation (1.1) can be rewritten as an infinite dimensional Hamiltonian PDE as
follows,

ut = J
δH2(u)

δu
, J := (1 − ∂2x )

−1J2(1 − ∂2x )
−1 = −∂x (1 − ∂2x )

−1, (1.6)

the operator J is skew symmetric and bounded in L2(R).
In general, there exist infinite many conservation laws (multi-Hamiltonian structures)

Hn[m], n = 0,±1,±2, . . ., including (1.4) and (1.5), such that [35]

J2
δHn[m]

δm
= J1

δHn−1[m]
δm

. (1.7)

Schemes for the computation of the conservation laws can be found in [8,26,30,35].
From the Inverse Scattering Theory, the evolution of a rapidly decaying initial data can

be described by purely algebraic methods. Solutions are shown to decompose into a very
particular set of solutions.soliton resolution conjecture states that any global solutions of
dispersive equations will decompose as t → +∞ as a finite sum of (re-scaled and translated)
solitons plus a radiation (solution of the corresponding linear equation). For the CH equation,
such types of solutions consist of multi-solitons, which will describe in detail below.

It is known that the CH equation (1.1) possesses smooth solitary-wave solutions called
solitons if ω > 0 [6] or peaked solitons if ω = 0 [5]. These profiles are often regarded as
minimizers of a constrained functional in the H1-topology. In particular, when ω > 0, the
CH equation (1.1) possesses the smooth soliton for some x0 ∈ R,

u(t, x) = ϕc(x − ct + x0), c > 2ω, t ≥ 0, x ∈ R (1.8)

in a parametric form as follows [32,37],

u(t, x) = c − 2ω

1 + (2ω/c) sinh2 θ
,

θ = 1

2
√

ω

√
1 − 2ω

c

(
y − c

√
ωt

)
,

x = y√
ω

+ ln
cosh(θ − θ0)

cosh(θ + θ0)
, θ0 := tanh−1

√
1 − 2ω

c
.
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By inserting (1.8) into (1.1), it is observed that ϕc > 0 satisfies the following equation

− cϕc + cϕcxx + 3

2
ϕ2
c + 2ωϕc = ϕϕcxx + 1

2
ϕ2
cx , x ∈ R (1.9)

For ω > 0, solitary wave ϕc > 0 propagates to the right exist only with speed c > 2ω,
and, conversely, each such a speed c determines uniquely the profile ϕc of the soliton up to
translations. It is shown in [23] that these smooth solitary-wave profiles ϕc have the following
properties.

1) ϕc is smooth and positive with an even profile decreasing from its peak height c − 2ω.

2) ϕc is concave for values in the interval
[
c − ω/2 − √

cω + ω2/4, c − 2ω
]
and convex

elsewhere.
3) Multiplying both sides of (1.9) by ϕ′

c and integration, one has

ϕ2
cx (c − ϕc) = ϕ2

c (c − 2ω − ϕc).

Then it is found that |ϕ′
c| ≤ ϕc on R and

ϕc(x) = O
(
exp

( −
√
1 − 2ω

c
|x |)) for |x | → ∞.

Moreover, by combining (1.9), it is observed that

ϕc − ϕ′′
c = ωϕc(2c − ϕc)

(c − ϕc)2
> 0. (1.10)

4) Requiring that the profile ϕc reaches its maximum at x = 0, ϕc converges uniformly on
every compact subset of R as ω tends to zero to the peakon profile ce−|x |.

The CH equation (1.1) possesses even more complex solutions, such as multi-solitons
which can be given also in a parametric form like one soliton [7,14,37,43]. Moreover, in the
limit of t → ∞, the CH N -solitons U (N )

c behave like N decoupled one soliton ϕc j with

wave speeds c j > 0, j = 1, 2, . . . , N , in particular, U (N )
c is represented by a superposition

of N -solitons and has the following asymptotic behavior (see [43])

U (N )
c (t) ∼

N∑
n=1

ϕc j (· − c j t − x±
j ), t → ±∞, (1.11)

for some x±
j ∈ R depending on c j . As a consequence of the integrability property, the

multi-solitons interact elastically during the dynamics, and no dispersive effects are present
at infinity. The CH equation (1.1) also has the invariant property,ω > 0 andm(0, x)+ω > 0,
then m(t, x) + ω > 0 for all the time t [9,11,20].

The definition of the stability of solitons may be classified according to the following
four categories: (i) linear (or spectral) stability, (ii) Lyapunov (dynamical) stability, (iii)
orbital (nonlinear) stability, (iv) asymptotic stability. The dynamical stability implies that the
second variation of certain Lyapunov functional becomes strictly positive when evaluated
at the soliton solutions. It would also imply the linear stability since the second variation is
preserved for the linearized equation. In order to extend the Lyapunov stability to the orbital
stability which deals with small but finite amplitude perturbations, onemust take into account
the higher-order nonlinear terms neglected in evaluating the Lyapunov functional and this
makes the analysis more difficult to deal with, we refer to [39] for a nice exposition on this
issue for the general linear Hamiltonian PDEs. In accordance with the above classification
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of the stability, we shall briefly review some known results associated with the stability
characteristics of the CH solitons and multi-solitons. The nonlinear stability of the CH 1-
solitons ϕc is proved by Constantin and Strauss [23] by applying the general spectral method
developed by Benjamin [2] and Grillakis et al. [28]. It is noted that a general method to prove
the orbital stability of the train of N solitary waves for nonlinear Hamiltonian dispersive
equations was also introduced by Martel et al. [42], while the stability of the trains of N -
solitons for the generalized Korteweg-de Vries (gKdV) equation was proved. This was the
first result related to the stability of N solitary waves in the energy space H1(R). Using
this approach, El Dika and Molinet [24] investigated the orbital stability of the train of N
solitary waves of the CH equation in energy space H1(R), the main step in the proof is
an almost monotonicity property for the localized conservation laws related to H1 and H2.
However, to the best knowledge of the authors, there is no result for the stability of exact
N -solitons currently in the literature. The purpose of the present paper is to establish the
dynamical and orbital stability of the smooth multi-solitons of the CH equation. In particular,
for x = (x1, x2, . . . , xN ) ∈ R

N , and c ∈ SN , where

SN = {c; c = (c1, c2, . . . , cN ) ∈ (2ω,+∞)N , ci 
= c j for 1 ≤ i < j ≤ N },
without loss of generality, we assume that 0 < 2ω < c1 < c2 < c3 < · · · < cN . Denote
N -solitons by U (N )(t, x; c, x). Define

Gc = {u ∈ HN (R); Hk(u) = Hk(U
(N )(t, x; c, x)) for 1 ≤ k ≤ N + 1},

Mc = {u ∈ HN (R); u = U (N )(t, x; c, x) for some x ∈ R
N }.

Our goal is to prove the following dynamical stability of the smooth N -solitons to the inte-
grable CH equation.

Theorem 1.1 (dynamical stability of smooth N -solitons) For every ε > 0, there exists δ > 0
such that if u0 ∈ HN with m0(x) + ω = (1 − ∂2x )u0(x) + ω > 0, x0 ∈ R

N and c ∈ SN ,
such that ‖u0(x) − UN (0, x; c, x0)‖HN (R) < δ, then the corresponding solution u(t, x) of
the CH equation (1.1) with the initial data u(0) = u0 satisfies u(t) ∈ C([0,+∞), HN (R))

and for all t > 0,

inf
ψ∈Gc

‖u(t) − ψ(t)‖HN (R) < ε.

Remark 1.1 By the definition, the setGc is independent of x. It is easy to verify thatMc ⊆ Gc.
In particular, if N = 1, then Mc = Gc, Theorem 1.1 recovers the classical orbital stability
result in [23]. However, when N ≥ 2, the question Mc = Gc appears to be open. In view
of the statements above, orbital stability of 1-solitons implies dynamical stability directly.
Dynamical stability of multi-solitons of other integrable systems are proposed in [33] for the
NLS systems, in [46] for the BO equation and [36] for the mKdV equation.

As a direct consequence, we have the following result of the orbital stability of smooth
double solitons to the CH equation (1.1).

Theorem 1.2 (orbital stability of smooth double solitons) The CH smooth double solitons
U (2)
c1,c2(t, x; x1, x2) with 2ω < c1 < c2 are orbitally stable in H2(R) in the following sense:

There exist parameters ε0 and A0, depending on c1 and c2. If there exists ε ∈ (0, ε0) such
that for any u0 ∈ H2(R) with m0 + ω > 0,

‖u0 −U (2)
c1,c2(0; 0, 0)‖H2(R) < ε, (1.12)
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then there exist x1(t), x2(t) ∈ R, such that the corresponding solution u(t, x) of the CH
equation (1.1) with the initial data u(0) = u0 satisfies u(t) ∈ C([0,+∞), H2(R)) and

sup
t∈(0,+∞)

‖u(t) −U (2)
c1,c2(t; x1(t), x2(t))‖H2(R) < A0ε, (1.13)

with

sup
t∈(0,+∞)

(|x ′
1(t)| + |x ′

2(t)|) ≤ CA0ε. (1.14)

Remark 1.2 There are some interesting results of the stability of trains of smooth N -solitons
or peakons for the CH equations obtained in [24,25]. Such type of stability (which holds also
for other non-integrable models, see [42] for subcritical gKdV equations) does not include
the dynamical stability of smooth N -solitons in Theorem 1.1 or the orbital stability result in
Theorem 1.2. By minimizing the conserved quantities, we get the stability of the whole orbit
of smooth N -solitons for all the time.

The approach used in this paper originates from the stability analysis of the multi-solitons
of the Korteweg-de Vries (KdV) equation by means of the constrained variational principle
[41]. We first demonstrate that the Lyapunov functional of the CH N -solitons IN is given by

IN (u) = (−1)N
(
HN+1(u) +

N∑
n=1

μnHn(u)

)
(1.15)

andμn, n = 1, 2, . . . , N are the Lagrangemultipliers which will be expressed in terms of the
elementary symmetric functions of c1, c2, . . . , cN . The factor (−1)N ensures (−1)Nμ1 > 0.
See Sect. 2 for the detail. Then we show that U (N ) is realized as a critical point of the
functional IN . Using (1.15), this condition can be written as the following Euler-Lagrange
equation

δHN+1

δu
+

N∑
n=1

μn
δHn

δu
= 0, at u = U (N ). (1.16)

The Lyapunov stability of U (N ) may characterize U (N ) as a minimal point of the functional
HN+1 subjected to N constraints

Hn(u) = Hn(U
(N )), n = 1, 2, . . . , N , (1.17)

and consequently the second variation of IN is strictly positive at U (N ) when one modules
several directions.

The proof of Theorem 1.1 reduces to the spectrum analysis of the second variation of
IN (called LN := I ′′

N (U (N ))) around the smooth N -solitons U (N ) and the computation of

the eigenvalues of a Hessian matrix D := {
∂2 IN (U (N ))

∂μi ∂μ j

}
, we need to show that the number

of the negative eigenvalues of LN equals to the number of the positive eigenvalues of D
(see Propostion 3.4). The main ingredient in the proof is the spectrum analysis of linearized
operator LN around the N -solitons U (N ). It is noted that in the KdV case or similar semi-
linear models, the associated linearized operator is a 2N -th order self-adjoint linear ordinary
differential operator and the spectral information of which is obtained by the generalized
Sturm-Liouville theory in [41]. For the special case N = 2, Neves and Lopes [46] have given
an alternate method motivated by the Sylvester Law of Inertia to the spectral analysis part,
their method also works to the nonlocal self-adjoint operators and leads to a similar result for
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the Benjamin-Ono equation in the double solitons. To consider the spectra ofLN for arbitrary
N to the CH equation or similar quasilinear model equations, LN is nonlocal and difficult
to write the explicit form (even for N = 2). Moreover, the conjugate operator identities in
the work of [46] (for N = 2) and [36] (for arbitrary N ) seem difficult to derive for the CH
equation (1.1). To overcome this difficulty, we build up some new operator identities (see
Lemma 3.1). The spectral analysis of LN is then reduced to that of the operators JLN and
the CH recursion operators.

The main steps of our spectral analysis could be outlined in the following. Firstly, by
making use of the CH recursion operator R (see (2.45)), we establish an iterative opera-
tor identity (see the definition in (2.73)) between the higher order linearized Hamiltonians
−H ′′

n+1(ϕc) + cH ′′
n (ϕc) and −H ′′

n (ϕc) + cH ′′
n−1(ϕc). Secondly, motivated by the identity

derived in (3.4) which reduces to the spectrum problem of the adjoint recursion operator
R∗(ϕc) ( see the definition in (2.51)), we realize that the spectral problem of the operator
JLN is much easier to deal with than that ofLN . Thirdly, we show that the eigenfunctions of
R∗(ϕc) (JLN ) plus a generalized kernel of JLN form an orthogonal basis in L2(R), which
can be viewed a completeness relation similar to (2.38) and (2.39). Lastly, we calculate the
quadratic form 〈LN z, z〉 with function z to have a decomposition in the above basis. Hence
the inertia of Ln can be derived directly. In all, the above four steps make it possible for us
to show that for all N ∈ N, the operators LN possess [ N+1

2 ] simple negative, N -fold zero
eigenvalue and the rest of the spectra is positive.

The proof of Theorem 1.2 relies heavily on the spectral analysis of the linearized operator
L2 around the double solitons U (2), it follows that L2 possesses one simple negative eigen-
value and one zero eigenvalue which is double. Therefore, the CH smooth double-solitons
have 3 directions of instability, two of which are associated to translation invariance and the
third one to the scaling parameters c1 and c2. We then modulate in time in order to remove
the spatial instabilities. This is a necessary condition in order to gain an orbital stability
property. To handle the scaling instability, we do not modulate it but instead replace the asso-
ciated negative mode by a more tractable direction U (2) − U (2)

xx , then control the dynamics
by employing the conservation law of mass H1.

The reminder of the paper is organized as follows. In Sect. 2, we summarize the basic
properties of the the Hamiltonian formulation of the CH equation and present some results
with the help of inverse scatteringmethod,which provide the necessarymachinery in carrying
out the stability analysis. In Sect. 3, we give a detailed spectral analysis of the Hessian of IN
and hence establish the dynamical stability of the N -soliton solutions of the CH equation. The
proof of Theorem 1.2 will be given in Sect. 4. For the sake of completeness, in Sect. 1 which
is an appendix, an invariant of the multi-solitons and abstract framework are introduced to
handle the spectral analysis part of the linearized operator LN around the CH N -solitons.

2 Preliminaries

In this section we collect some preliminaries for the CH equation. Let us first introduce
some notations, given s ∈ R, by Hs := Hs(R) we denote the usual Sobolev space. In
particular H0(R) � L2(R). The scalar product in Hs will be denoted by (·, ·)Hs . This
Section is divided into five parts. At the first part, we present the equivalent eigenvalue
problem of the CH equation and the basic facts of which through the inverse scattering
transform, the conservation laws and multi-solitons of the CH equation are derived. Second,
the bi-Hamiltonian formation of the CH equation is considered, the recursion operators are
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introduced to the computation of the conservation laws at the multi-solitons; In Sect. 2.3,
we find the Euler-Lagrange equation of the CH multi-solitons by employing the squared
eigenfunctions which are functionally independent and thus the variational characterization
of the N -soliton profile. Section 2.4 devotes to the iteration formula of the linearized operators
(−H ′′

n+1(ϕ)+cH ′′
n (ϕ) for all n ∈ N, it follows that the recursion operators play an important

role. In the last subsection, some well-posedness results of the CH equations are presented
which will be of use in the proof of the main results.

2.1 Eigenvalue problem, conservation laws andmulti-solitons

The CH equation (1.1) can be expressed as a compatibility condition of the following two
linear problems [5]

	xx =
(
1

4
+ λ(m + ω)

)
	 (2.1)

	t =
(

1

2λ
− u

)
	x + ux

2
	 + η	 (2.2)

with a spectral parameter λ and a constant η for a proper normalization of the eigenfunctions.
(2.1) is the spectral problem associated to (1.1). Let k2 = − 1

4 − λω, i.e.

λ(k) = − 1

ω

(
k2 + 1

4

)
. (2.3)

The spectrum of the problem (2.1) is described in [9,11]. The continuous spectrum in
terms of k corresponds to k ∈ R. The discrete spectrum consists of finitely many points
kn = iκn , n = 1, . . . , N where κn is real and 0 < κn < 1/2.

A basis in the space of solutions of (2.1) can be introduced by the analogs of the Jost
solutions of the CH equation, f +(x, k) and f̄ +(x, k̄). For all real k 
= 0 it is fixed by its
asymptotic behavior when x → ∞ [11]:

lim
x→∞ e−ikx f +(x, k) = 1. (2.4)

Another basis can be introduced, f −(x, k) and f̄ −(x, k̄) fixed by its asymptotic when x →
−∞ for all real k 
= 0:

lim
x→−∞ eikx f −(x, k) = 1. (2.5)

Since m(x) and ω are real one gets that if f +(x, k) and f −(x, k) are solutions of (1.1)
then

f̄ +(x, k̄) = f +(x,−k), and f̄ −(x, k̄) = f −(x,−k), (2.6)

are also solutions of (1.1). The relations (2.6) are known as involutions. In particular, for real
k 
= 0 we get:

f̄ ±(x, k) = f ±(x,−k), (2.7)

and the vectors of the two bases are related:

f −(x, k) = a(k) f +(x,−k) + b(k) f +(x, k), Im k = 0. (2.8)
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From (2.8) with x → ±∞ one has

lim
x→−∞

(
f +(x, k) − a(k)eikx + b(−k)e−ikx) = 0, (2.9)

lim
x→+∞

(
f −(x, k) − a(k)e−ikx − b(k)eikx

) = 0. (2.10)

The Wronskian W ( f1, f2) ≡ f1∂x f2 − f2∂x f1 of any pair of solutions of (2.1) does not
depend on x . Therefore

W ( f −(x, k), f −(x,−k)) = W ( f +(x,−k), f +(x, k)) = 2ik (2.11)

Computing the WronskiansW ( f −, f +) andW ( f̄ +, f −) and using (2.8), (2.11) we obtain:

a(k) = (2ik)−1W ( f −(x, k), f +(x, k)), (2.12)

b(k) = −(2ik)−1W ( f −(x, k), f +(x,−k)). (2.13)

From (2.8) and (2.11) it follows that for real k

a(k)a(−k) − b(k)b(−k) = 1. (2.14)

It is well known [11] that f +(x, k)e−ikx and f −(x, k)eikx have analytic extensions in the
upper half of the complex k-plane. Likewise f̄ +(x, k̄)eik̄x and f̄ −(x, k̄)e−i k̄x allow analytic
extension in the lower half of the complex k-plane. An important consequence of these
properties is that a(k) also allows analytic extension in the upper half of the complex k-plane
and

ā(k̄) = a(−k), b̄(k̄) = b(−k), (2.15)

As a result (2.14) reduces to the form:

|a(k)|2 − |b(k)|2 = 1. (2.16)

At the points κn of the discrete spectrum, a(k) has simple zeroes [11],

a(k) = (k − iκn)ȧn + 1

2
(k − iκn)

2än + · · · , (2.17)

and the Wronskian W ( f −, f +), (2.12) vanishes. Thus f − and f + are linearly dependent:

f −(x, iκn) = bn f
+(x, iκn). (2.18)

In other words, the discrete spectrum is simple, there is only one (real) linearly independent
eigenfunction, corresponding to each eigenvalue iκn ,

f −
n (x) := f −(x, iκn). (2.19)

From (2.19) and (2.4), (2.5) it follows that f −
n (x) falls off exponentially for x → ±∞,

which allows one to show that fn(x) is square integrable. Moreover, for compactly supported
potentials m(x) (cf. (2.18) and (2.8))

bn = b(iκn), b(−iκn) = − 1

bn
. (2.20)

The above results can be extended to Schwarz-class potentials by an appropriate limiting
procedure. The asymptotic of f −

n , according to (2.7), (2.4), (2.18) is

f −
n (x) = eκn x + o(eκn x ), x → −∞; (2.21)

f −
n (x) = bne

−κn x + o(e−κn x ), x → ∞. (2.22)
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The sign of bn obviously depends on the number of the zeroes of f −
n . Suppose that 0 < κ1 <

κ2 < . . . < κN < 1/2. Then from the oscillation theorem for the Sturm-Liouville problem,
f −
n has exactly n − 1 zeroes. Therefore

bn = (−1)n−1|bn |. (2.23)

The sets

S± :=
{
b(±k)

a(k)
(k > 0), κn, C±

n ≡ b±1
n

i ȧn
, n = 1, . . . N

}
(2.24)

are called scattering data. Here the dot stands for a derivative with respect to k and ȧn ≡
ȧ(iκn), än ≡ ä(iκn), etc. The time evolution of the scattering data are obtained in [15] as
follows.

a(k, t) = a(k, 0), b(k, t) = b(k, 0)e
ik
λ
t ; (2.25)

1

a(k, t)
= 1

a(k, 0)
,

b(±k, t)

a(k, t)
= b(±k, 0)

a(k, 0)
e± ik

λ
t ; (2.26)

C±
n (t) = C±

n (0) exp

(
± 4ωκn

1 − 4κ2
n
t

)
. (2.27)

In other words, a(k) is independent on t and will serve as a generating function of the
conservation laws. In particular, the integral

α =
∫ ∞

−∞

(√
m(x) + ω

ω
− 1

)
dx, (2.28)

as well as all the coefficients Ik in the asymptotic expansion

ln a(k) = −iαk +
∞∑
s=1

Is
k2s+1 (2.29)

must be integrals ofmotion. The integralα is the uniqueCasimir function for theCHequation.
The densities ps of Is = ∫ ∞

−∞ psdx can be expressed in terms ofm(x) using a set of recurrent
relations obtained in [30].

Using the analyticity properties of a(k) one can prove that it satisfies the following dis-
persion relation (k ∈ C+) [15],

ln a(k) = −iαk +
N∑

n=1

ln
k − iκn
k + iκn

− k

π i

∫ ∞

0

ln(1 − | b(±k′)
a(k′) |2)

k′2 − k2
dk′, (2.30)

where iκn are the zeroes of a(k). The dispersion relation (2.30) allows one to express the
integrals of motion also in terms of the scattering data [16]:

Is = 1

π i

∫ ∞

0
ln(1 − |b(±k)

a(k)
|2) k2sdk −

N∑
n=1

2i(−1)sκ2s+1
n

2s + 1
, (2.31)

which are known as the trace identities. In addition the integral α is expressed through the
scattering data as follows. Note that for k = i/2, λ(i/2) = 0 from (2.3). In this case therefore
the spectral problem (2.1) does not depend on m, and the eigenfunctions are equal to their
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asymptotics: f ±(x, i/2) = e∓ x
2 . It is inferred from (2.12) that a(i/2) = 1 and it is deduced

from (2.30) for k = i/2 that

α =
N∑

n=1

ln

(
1 + 2κn
1 − 2κn

)2

+ 4

π

∫ ∞

0

ln(1 − | b(̃k)
a(̃k)

|2)
4̃k2 + 1

d̃k. (2.32)

For what follows, let us define the following squared eigenfunctions

F±(x, k) := ( f ±(x, k))2, F±
n (x) := F±(x, iκn). (2.33)

Another type of Wronskian relations is proposed in [16] which relates the variations of the
potential m(x) with the variation of the scattering data:

( f (x, k)δ fx − fxδ f (x, k))|∞x=−∞ =
∫ ∞

−∞
λδm(x) f 2(x, k)dx, (2.34)

where δ f (x, k) is the variation of the Jost solution f (x, k) corresponding to the variation
δm(x) of the potential. Using (2.34) one can also derive the following relations for the
variations of the scattering data, for details see [16]:

δa(k)

δm(x)
= − λ

2ik
f +(x, k) f −(x, k) (2.35)

δb(k)

δm(x)
= λ

2ik
f +(x,−k) f −(x, k) (2.36)

δ ln λn

δm(x)
= i F−

n (x)

ωbnȧn
(2.37)

Moreover, from the Proposition 5 of [15], there holds the following useful completeness
relation for the squared eigenfunctions.

ω

(
√
m(x) + ω)(

√
m(y) + ω)

θ(x − y) = − 1

2π i

∫
R

F−(x, k)F+(y, k)

ka2(k)
dk

+
N∑

n=1

1

iκnȧ2n

[
F−
n (x)Ḟ+

n (y) + F−
n (x)Ḟ+

n (y) −
(

1

iκn
+ än

ȧn

)
F−
n (x)F+

n (y)

]
,

(2.38)

where θ(x) is the step function. Now for any function f (x) which vanishes for x → ±∞,
one can expand which over the squared eigenfunctions F+(x, k) and F−(x, k). Indeed, we
multiply (2.38) with 1

2my f (y) + (m(y) + ω) fy and integrate over dy to have

±ω f (x) = − 1

2π i

∫
R

F∓(x, k)ξ±
f (k)

ka2(k)
dk +

N∑
n=1

1

iκnȧ2n

[
Ḟ∓
n (x)ξ±

f ,n + F∓
n (x)ξ̇±

f ,n

]
,

(2.39)

ξ±
f (k) =

∫
R

F±(y, k)

[
1

2
my f (y) + (m(y) + ω) fy

]
dy; (2.40)

ξ±
f ,n =

∫
R

F±
n (y)

[
1

2
my f (y) + (m(y) + ω) fy

]
dy; (2.41)

ξ̇±
f ,n =

∫
R

Ḟ±
n (y)

[
1

2
my f (y) + (m(y) + ω) fy

]
dy − (

1

iκn
+ än

ȧn
)ξ±

f ,n . (2.42)
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The inverse scattering is simplified into the important case of the so-called reflectionless
potentials, when the scattering data is confined to the case the reflection coefficient b(k)

a(k) = 0
for all real k. This class of potentials corresponds to the N -solitons of the CH equation. In this
case b(k) = 0 and |a(k)| = 1 (see (2.16)), the N -solitons can be calculated in a parametric
form [14] which depends on the discreet spectrum kn = iκn of (2.1) for n = 1, 2, . . . , N
and 0 < κ1 < κ2 < . . . < κN < 1/2, which are the zeros a(k) in the imaginary axis. In
particular, b(k) = 0, |a(k)| = 1 and i ȧn is real, by (2.32), one has

i ȧn = 1

2κn
eακn

∏
j 
=n

κn − κ j

κn + κ j
, where α =

N∑
n=1

ln

(
1 + 2κn
1 − 2κn

)2

.

The CH N -solitons can be expressed in a parametric form as follows [14]

u(t, x) = ω

2

∫ ∞

0
e−|x−g(t,ξ)|ξ−2g−1

ξ (t, ξ)dξ − ω, (2.43)

where g(t, ξ) can be expressed through the scattering data as

g(t, ξ) := ln
∫ ξ

0

(
1 −

∑
n,p

C+
n (t)y−2κn

κn + 1/2
Anp(t, y)

)−2

dy,

with

Anp(t, y) := δpn + C+
n (t)y−2κn

κn + κp
.

The CH N -solitons are showed also in [43] with a parametric form by elementary theory of
determinants and the author shows that the CH N -solitons possess the asymptotic behavior
(1.11) at the infinity time with the formula for the phase shift.

2.2 Hamiltonian formation

From the bi-Hamiltonian structure (1.2), Lenard relation (1.7) and the relation (1 −
∂2) δHn [m]

δm = δHn(u)
δu , one has the following relations for Hn ,

δHn+1[m]
δm

= (1 − ∂2x )
−1(2ω + m + ∂−1

x (m∂))
δHn[m]

δm
:= K[m]δHn[m]

δm
, (2.44)

δHn+1(u)

δu
= (2ω + m + ∂−1

x (m∂))(1 − ∂2x )
−1 δHn(u)

δu
:= R(u)

δHn(u)

δu
, (2.45)

where ∂−1 is the inverse derivative operator defined by ∂−1 f = ∫ x
−∞ f dx with f ∈ S(R).

If we take S∗(R) := {∂−1 f | f ∈ S(R)}, with a bilinear form given by

〈 f , g〉 =
∫ ∞

−∞
f (x)g(x)dx,

then ∂−1
x : S∗(R) → S(R) is skew-symmetric and ∂x∂

−1
x = id . The occurrence of ∂−1

x in
the expression of various operators is defined only modulo functions of the constants C ∈ R.
For simplicity, whenever ∂−1

x appears, we will choose the integration constant C to be zero
(see for example an exposition in [35]). We emphasize that this convention is only a technical
issue and does not cause any controversy and ambiguity in our main results.
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It is not difficult (from the bi-Hamiltonian structure (1.2)) to see

K[m] = J−1
2 J1. (2.46)

Moreover, the operator K(m) and R(u) are linear but nonlocal, satisfy

R(u) = (1 − ∂2x )K[m](1 − ∂2x )
−1, (2.47)

namely, they are similar to each other. Moreover, one can check that there holds

K[m]
(
1 −

√
ω

m + w

)
= u, (2.48)

R(u)(1 − ∂2x )

(
1 −

√
ω

m + w

)
= m. (2.49)

(2.48) and (2.49) can be viewed as in a special case n = 0 in (2.44) and (2.45) respectively,
the associated conservation law

H0[m] :=
∫
R

(√
m(x) + ω − √

ω
)2

dx,
δH0[m]

δm
= 1 −

√
ω

m + w
.

Therefore, the CH hierarchy with the choice of the dispersion law �(z) can be expressed as
follows:

mt + √
m + ω

(√
m + ω�(2K[m])

(
1 −

√
ω

m + w

))
x

= 0. (2.50)

In particular, if the dispersion law �(z) = z, then (2.50) becomes the CH equation.
The adjoint operator of K[m] which denoted by K∗[m] := J1J−1

2 , then the adjoint of
R(u) is

R∗(u) = (1 − ∂2x )
−1K∗[m](1 − ∂2x ) = (1 − ∂2x )

−1J1J−1
2 (1 − ∂2x ), (2.51)

and it is not difficult to see that the operators R(u) and R∗(u) satisfy

R∗(u)J = JR(u). (2.52)

It will be shown in Sect. 3 that understanding the spectral information of the recursion
operators R(u) and R∗(u) is essential in the (spectral) stability of multi-solitons of the CH
equation (1.1).

It is shown in [15] that the conservation laws Hj can be expressed as follows:

Hj (u) = −
∫ ∞

0
(−2)1− j kρ(k)

λ j
dk + (−2)2− j

ω

N∑
n=1

∫
κ2
n

λ
j+2
n

dκn, (2.53)

where ρ(k) := 2k
πωλ2

ln |a(k)|. The first term on the right-hand side of (2.53) is the contribu-
tion from radiations and the second term comes from solitons.

Let us consider the quantities Hj (ϕc) which are related to 1-soliton profile ϕc. Since (1.9)
and (2.45) imply that 1-soliton ϕc with speed c satisfies the following variational principle

δ

δu

(−Hj+1(u) + cHj (u)
) = 0, j ∈ Z+ (2.54)

that is, (
−H ′

j+1(ϕc) + cH ′
j (ϕc)

)
= 0. (2.55)
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Now multiply (2.55) with dϕc
dc , for each j one has

dHj+1(ϕc)

dc
= c

dHj (ϕc)

dc
= · · · = c j

dH1(ϕc)

dc
,

and therefore

Hj+1(ϕc) =
∫ c

0
y j dH1(ϕy)

dy
dy, (2.56)

The calculation of H1(ϕc) is not easy since ϕc is not so explicit. However, taking account of
the fact that the reflection coefficient ρ(k) becomes zero for u = U (N ), with the associated
discreet eigenvalue iκn for n = 1, 2, . . . , N and 0 < κn < 1/2. In particular, for one soliton
ϕc with discreet eigenvalue iκ , we can derive from (2.53) the formula

Hj (ϕc) = (−2)2− j

ω

∫
κ2

λ j+2 dκ, λ = − 1

ω

(
1

4
− κ2

)
< 0. (2.57)

More precisely, one has the following for the conservation laws H1 and H2

H1(ϕc) = ω2
(
ln

1 − 2κ

1 − 2κ
+ 4κ(1 + 4κ2)

(1 − 4κ2)2

)
; (2.58)

H2(ϕc) = ω3
(
ln

1 − 2κ

1 − 2κ
+ 4κ(3 + 32κ2 − 48κ4)

3(1 − 4κ2)3

)
. (2.59)

From (2.55) (multiply it with dϕc
dκ

) and (2.57), one has

(−2)1− jκ2

ωλ j+3 = dHj+1(ϕc)

dκ
= c

dHj (ϕc)

dκ
= c

(−2)2− jκ2

ωλ j+2 .

On the other hand, one can represent the wave velocity c with respect to κ as follows,

c = − 1

2λ
= 2ω

1 − 4κ2 > 2ω. (2.60)

Therefore, the quantities Hj (ϕc) can be computed explicitly with respect to the wave velocity
c. In particular, by (2.57) and (2.60) , the derivative of H1(ϕc) with respect to the wave speed
c can be computed in the following form,

dH1(ϕc)

dc
= dH1(ϕc)

dκ

dκ

dc
= −κ(1 − 4κ2)2

8ω2λ3
= 4κc > 0. (2.61)

2.3 Variational characterization of the N-solitons

We first show that the CH N -solitons U (N ) satisfies (1.16) if one prescribes the Lagrange
multipliers μn appropriately. This provides a variational characterization of U (N ). The idea
is by employing the variational derivatives of the scattering date with respect to the potential
(see (2.37)) and trace formula (2.53). The main result in this subsection is as follows:

Proposition 2.1 The profiles of the CH N-solitons U (N ) satisfy (1.16) if μn are symmetric
functions of wave velocities c1, c2, . . . , cN which satisfy the following:

N∏
n=1

(x − cn) = xN +
N∑

n=1

μnx
N−n, x ∈ R.
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Proof Since from the trace formula (2.53), one has the following variation derivative with
respect to the potential at the CH N -soliton profile U (N ) :

(
δHj (u)

δu

)
|u=U (N ) = (−2)2− j

ω

N∑
n=1

κ2
n

λ
j+2
n

(
δκn

δu

)
|u=U (N ) . (2.62)

By (2.37), one has
(

δκn

δu

)
|u=U (N ) = (1 − ∂2x )

(
δκn

δm

)
|u=U (N ) = iλn(1 − ∂2)F−

n (x)

2κnbnȧn
.

Therefore, (1.16) and (2.62) give a linear relation among
(

δκn
δu

)
|u=U (N ) ,

⎛
⎝(−2)1−N

N∑
j=1

κ2
j

λN+3
j

+
N∑

n=1

(−2)2−nμn

N∑
j=1

κ2
j

λn+2
j

⎞
⎠

(
δκn

δu

)
|u=U (N ) = 0. (2.63)

In view of the fact that
(

δκn
δu

)
|u=U (N ) are functionally independent squared eigenfunctions

F−
n (x), μn must satisfy the following system of linear algebraic equations:

N∑
n=1

(−2)−nμn
1

λn+2
j

+ (−2)−N−1 1

λN+3
j

= 0.

Recall from (2.60) that the wave velocities c j = − 1
2λ j

, then we obtain from above

N∑
n=1

μnc
n+2
j + cN+3

j = 0, j = 1, 2, . . . , N . (2.64)

It thus follows that μn = (−1)N−n+1σN−n+1, where σs(1 ≤ s ≤ N ) are elementary
symmetric functions of c1, c2, . . . , cN

σ1 =
N∑
j=1

c j , σ2 =
∑
j<k

c j ck, . . . , σN =
N∏
j=1

c j .

This completes the proof of Proposition 2.1. ��
We consider now the following CH N -solitons U (N )(t, x; c, x) variational principle

I ′
N (U (N )) := (−1)N

(
H ′
N+1(U

(N )) +
N∑

n=1

μnH
′
n(U

(N ))

)
= 0, (2.65)

where μ j = (−1)N− j+1σN− j+1 is the associated Lagrange multipliers proposed in Propo-
sition 2.1. The equation (2.65) is the gradient of the following functional

IN (u) := (−1)N
(
HN+1(u) +

N∑
n=1

μnHn(u)

)
,

evaluated at u = U (N ). In general, U (N ) is not a minimum of IN , rather, it is at best a
constrained and non-isolated minimum of the following variational problem

min HN+1(u) subject to Hj (u) = Hj (U
(N )), j = 1, 2, . . . , N . (2.66)
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Now define the self-adjoint second variation operator

LN := I ′′
N (U (N )), (2.67)

and n(LN ) the number of negative eigenvalues of LN . We define also the N × N Hessian
matrix as follows

D :=
{

∂2 IN (U (N ))

∂μi∂μ j

}
,

and p(D) the number of positive eigenvalues of D. Then by employing the approach in [41]
which deals with the stability of the KdV N -solitons case, the proof of Theorem 1.1 reduces
to calculate the exact value of n(LN ) and p(D). Concerning p(D), one has the following.

Lemma 2.1

p(D) =
[
N + 1

2

]
, (2.68)

where [x] is the largest integer part of x .

Proof The proof is inspired in theKdV N -solitons case in [41]. Thematrix D a real symmetric
matrix whose elements are calculated explicitly for the N -solitons. Indeed, by taking ρ = 0
in (2.53), the j-th conservation law corresponding to u = U (N ) reduces to

Hj (U
(N )) = (−2)2− j

ω

N∑
n=1

∫
κ2
n

λ
j+2
n

dκn . (2.69)

The Hessian matrix D of the solution surface is given by

Di j = ∂2 IN
∂μi∂μ j

=
∑
k

∂

∂ck

(
∂ IN
∂μi

)
∂ck
∂μ j

= (−1)N
∑
k

∂HN+1−i

∂ck

∂ck
∂μ j

= (−1)N (AB−1)i j .

where the matrices A and B are N × N with elements

Aik = ∂HN+1−i

∂ck
= ∂HN+1−i

∂κk

∂κk

∂ck
= 4κkc

N+1−i
k ,

Bjk = ∂μ j

∂ck
= (−1)N− j+1 ∂σN− j+1

∂ck
.

We find that BT MB = BT A, by Sylvester’s law of inertia, to find the number of positive
eigenvalues of D it suffices to consider the number of positive eigenvalues of the matrix
(−1)N BT A, we next evaluate this matrix product explicitly and observe that the answer is
a diagonal matrix with entries of alternating sign, which facts follow immediately from the
binomial expansion. The diagonal ( j, j) entry is

(−1)N+14κ j c j
∏
k 
= j

(ck − c j )

with all off-diagonal entries zero. With the assumed ordering of the speeds c j these diagonal
entries are of alternating sign, with

[ N+1
2

]
positive entries. ��

123



51 Page 16 of 36 Z. Wang, Y. Liu

2.4 Recursion operators around the smooth solitons

Let us recall that the soliton ϕc(x − ct) is a solution of the CH equation. For simplicity, we
denote ϕc by ϕ. Then by (2.45), we have

H ′
n+1(ϕ) = R(ϕ)H ′

n(ϕ), (2.70)

where R(ϕ) is the associated operator

R(ϕ) = (2ω + mϕ + ∂−1(mϕ∂x ))(1 − ∂2x )
−1, (2.71)

with mϕ := ϕ − ϕxx .
To analyze the second variation of the actions, we linearize the equation (2.45) to let

u = ϕ + εz, and obtain a relation between linearized Hamiltonian H ′′
n+1(ϕ) and H ′′

n (ϕ) for
all n ≥ 1. One has

Proposition 2.2 Suppose that ϕ is a soliton of the CH equation (1.1) with speed c > 2ω, if
z ∈ Hn, then there hold

H ′′
n+1(ϕ)z = R(ϕ)H ′′

n (ϕ)z + cn−1 (
zϕ − zxxϕ + ∂−1

x (zϕ − zxxϕ)
)
, (2.72)

and the following iteration operator identity
(−H ′′

n+1(ϕ) + cH ′′
n (ϕ)

)
z = R(ϕ)

(−H ′′
n (ϕ) + cH ′′

n−1(ϕ)
)
z. (2.73)

Proof Let u = ϕ + εz, by (2.45) and the definition of Gateaux derivative, one has

H ′′
n+1(ϕ)z = R(ϕ)H ′′

n (ϕ)z + (
R′(ϕ)z

)
(H ′

n(ϕ)), (2.74)

where

R′(ϕ)z = lim
ε→0

R(ϕ + εz) − R(ϕ)

ε
= (

z − zxx + ∂−1
x (z − zxx )

)
(1 − ∂2x )

−1.

Notice that by the variational principle of 1-soliton ϕ, one has
H ′
n(ϕ) = cn−1H ′

1(ϕ) = cn−1mϕ , then
(
R′(ϕ)z

)
(mϕ) = (

zϕ − zxxϕ + ∂−1(zϕ − zxxϕ)
)
. (2.75)

Combining (2.74) and (2.75), (2.72) is verified. (2.73) follows directly from (2.72). ��
Remark 2.1 One can also linearize (2.44) around mϕ to obtain the second variation of the
action with respect to mϕ , we have the associated iteration operator identity as follows

(−H ′′
n+1[mϕ] + cH ′′

n [mϕ]) z = K[mϕ] (−H ′′
n [mϕ] + cH ′′

n−1[mϕ]) z. (2.76)

Clearly, the operators K[mϕ] = (1 − ∂2x )
−1R(ϕ)(1 − ∂2x ) is similar to R(ϕ).

2.5 Well-posedness results

In this subsection, we recall some well-posedness results of the CH equation(1.1) which
will be of use in the proof of the main results. The Cauchy problem associated to the CH
equation (1.1) has been extensively investigated. Without trying to be exhaustive we quote
only a few of results and references therein for more literature about well-posedness to the
Camassa–Holm equation.
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For initial profiles u0 ∈ Hs(R) with s > 3
2 , it is known [38] that the CH equation (1.1)

has a unique local solution in C ([0, T ); Hs(R)) ∩ C1
([0, T ); Hs−1(R)

)
for some T > 0

with H1 and H2 conserved. Moreover, if the initial momentum potential m0 + ω > 0 with
m0 = u0 − ∂2x u0, then u is global in time [13]. However, if m0 changes sign (ω = 0),
singularities may appear in the solution in finite time in the form of wave breaking (the wave
profile remains bounded but its slope becomes unbounded) [10,12,38].

More recently, the unique local weak solution in H1(R) ∩ W 1,∞(R) was established in
the following result.

Proposition 2.3 [40] Let u0 ∈ H1(R) ∩ W 1,∞(R). Then there exists T > 0 and a unique
solution to the CH equation (1.1) such that

u ∈ C
([0, T ); H1(R) ∩ W 1,∞(R)

) ∩ C1((0, T ); L2(R)
)
.

The following existence and uniqueness result is derived in [21] (see also [48] for global
weak solution in H1).

Proposition 2.4 [21] Let u0 ∈ H1(R)with m0 = (1−∂2x )u0 ∈ M(R), whereM(R) denotes
the set of Radon measures with bounded total variation. Then there exists T = T (‖m0‖M)

and a unique solution to the CH equation (1.1) such that

u ∈ C
([−T , T ]; H1(R)

) ∩ L∞(
(−T , T );W 1,1(R)

);
ux ∈ L∞(

(−T , T ); BV (R)
)
,

with initial data u0. The functionals H1 and H2 are constant along the trajectory. Moreover,
if m0 is positive, then the weak solution u is uniquely global in time.

The existence and uniqueness of a H1 global solution of the CH equation (1.1) have been
established in [3,4] (see also [29]).

For initial profiles that are more regular, u0 ∈ Hs(R) with s > 3
2 , one has [12,13,38],

Proposition 2.5 Suppose that u0 ∈ Hs(R) with s > 3
2 . Then there exist T = T (‖u0‖Hs )

and a unique solution to CH equation with u ∈ C
([0, T ], Hs(R)

)
. When s ≥ 3, u becomes

a classical solution. Moreover, the solution u depends continuously on the initial data u0 in
the sense that the mapping of the initial data to the solution is continuous from Hs to the
space C

([0, T ], Hs(R)
)
. The functionals H1 and H2 are constant along the trajectory and

if m0 has a definite sign, then u is global in time.

3 Spectral analysis

Let U = U (N )
c,x be any N -soliton solution with shift parameter x = (x1, x2, . . . , xN ) and

wave speed c = (c1, c2, . . . , cN ). Our attention in this section is focused on a total spectral
analysis of the linearized operator around N -solitons LN ( defined in (2.67)) by employing
the recursion operator R(ϕ) in Sect. 2.

To obtain the spectral of LN , we follow the approach in [36,46] to study the iso-inertial
family of operators, which was used to prove stability of double solitons of the BO equations
and multi-solitons of the mKdV equation. This approach consists in using a new invariant
for multi-soliton solution (see Proposition 4.1), and certain new identities motivated by the
Sylvester Law of Inertia.
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Definition 1 The inertia in(L) of a self-adjoint operator L is the pair (n, z) of nonnegative
integers, where n is the dimension of the negative subspace of L (counted with geometric
multiplicities) and z is the dimension of the null space of L .

Since the multi-soliton solution fits in the framework of Proposition 4.1 in Appendix (see
also Theorem 3 in [46]), we conclude that the inertia in(LN (t)) of LN (t) is independent of t .
Therefore, we can choose a convenient t to calculate the inertia and the best way is to find out
the inertia in(LN (t)) as t goes to infinity. More precisely, the N -soliton solutionU splits into
N one-soliton ϕc j far apart. By Theorem 4.1 we infer that, as t goes to infinity, the spectrum
σ(LN (t)) of LN (t) converges to the union of the spectra σ(LN , j ) of LN , j := I ′′

N (ϕc j ). In
this section, we show that the inertia of the linearized operator LN related to the N -soliton
solutionU has exactly [ N+1

2 ] negative eigenvalues and the dimension of the null space equals
to N , namely, in(LN (t)) = ([ N+1

2 ], N ).
In view of the form of LN , j , it is nothing but the summation of the operators

−H ′′
n+1(ϕc j ) + c j H

′′
n (ϕc j ) 1 ≤ n ≤ N .

Or, what is the same,

LN , j =
N∑

n=1

(−1)n−1σ j,N−n
( − H ′′

n+1(ϕc j ) + c j H
′′
n (ϕc j )

)
, (3.1)

whereσ j,k are the elementally symmetric functions of c1, c2, . . . , c j−1, c j+1, . . . , cN defined
in the following,

σ j,0 = 1, σ j,1 =
N∑

l=1,l 
= j

cl , σ j,2 =
∑

l<k,k,l 
= j

cl ck, . . . , σ j,N =
N∏

l=1,l 
= j

cl .

We now first deal with the linearized operator around one soliton ϕc j associated linearized
operator

L1 = L1,1 = −H ′′
2 (ϕ) + cH ′′

1 (ϕ) = (ϕ − c)∂2x + ϕ′∂x − 3ϕ + ϕ′′ + c − 2ω,

here we denote ϕc j by ϕ in the rest of this manuscript for simplicity. By the Liouville substi-
tution, the linearized operator L1 with respect to the soliton profile ϕ, defined on H2(R), is
transformed into a regular self-adjoint Sturm-Liouville operator,which is a relatively compact
perturbation of a second order differential operator with constant coefficients, then the spec-
tral information of L1, namely, in(L1) = (1, 1), follows directly from the Sturm-Liouville

theory. In particular, define y = ∂−1
x

(
1√

2c−2ϕ

)
. Then one has the following factorization

(2c − 2ϕ)
1
4
(
2L1

)
(2c − 2ϕ)−

1
4 = L0 := −∂2y + 2c − 4ω + 3

2
ϕxx − 6ϕ − ϕ2

x

8(c − ϕ)
.

This indicates that the operator 2L1 is similar to L0 and both share the same inertia.
To obtain the spectrum of the operator LN , j (3.1), let us consider the spectral analysis of

the linearized Hamiltonian

Ln := −H ′′
n+1(ϕ) + cH ′′

n (ϕ), (3.2)

for all integers n ≥ 1, one of crucial ingredients to deal with this spectrum problem is the
following operator identities related to the recursion operatorR(ϕ) and the adjoint recursion
operator R∗(ϕ) (see (2.51)).
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Lemma 3.1 The recursion operator R(ϕ), the adjoint recursion operator R∗(ϕ) and the
linearized Hamiltonian Ln for all integers n ≥ 1 satisfy the following operator identities.

LnJR(ϕ) = R(ϕ)LnJ , (3.3)

J LnR∗(ϕ) = R∗(ϕ)J Ln, (3.4)

where J is the skew symmetric operator defined in (1.6).

Proof Weneed only to prove (3.4), since one takes the adjoint operation on (3.4) to have (3.3).
Notice that from Proposition 2.2, one has that the operator R(ϕ)Ln = Ln+1 is self-adjoint.
This in turn implies that

(R(ϕ)Ln)
∗ = R(ϕ)Ln = LnR∗(ϕ),

On the other hand, in view of (1.6) and (2.52), one has

J LnR∗(ϕ) = JR(ϕ)Ln = R∗(ϕ)J Ln,

as the advertised result in the lemma. ��
Remark 3.1 (3.3) and (3.4) hold for any solutions of the CH equation. In particular, letU (N )

be the CH N -soliton profile and LN be the second variation of the action in (1.15) with
the associated Lagrange multipliers μn given by Proposition 2.1. Then it is easy to see that
similar to Lemma 3.1, the following operator identities hold

LNJR(U (N )) = R(U (N ))LNJ ; (3.5)

JLNR∗(U (N )) = R∗(U (N ))JLN . (3.6)

An immediate consequence of the factorization results (3.3) and (3.4) is that the (adjoint)
recursion operators R(ϕ)(R∗(ϕ)) and LnJ (J Ln) are commutable. This in turn implies
that the operators J Ln andR∗(ϕ) share the same eigenfunctions, and LnJ shares the same
eigenfunctions with the recursion operator R(ϕ).

Our approach for the spectral analysis of the linearized Hamiltonian Ln is as follows.
Firstly, we derive the spectra of the operator J Ln which is easier than to have the spectra of
Ln . The idea is motivated by (3.4) to reduce to the spectra of the adjoint recursion operator
R∗(ϕ). We then show that the eigenfunctions of R∗(ϕ) (J Ln) plus a generalized kernel
of J Ln form an orthogonal basis in L2(R), which can be viewed a completeness relation
similar to (2.38) and (2.39). Finally we calculate the quadratic form 〈Lnz, z〉 with function
z has a decomposition in the above basis, and the inertia of Ln can be derived directly.

3.1 The spectra of the recursion operator around the CH one soliton

The spectra of the recursion operator

R(ϕ) = (mϕ + 2ω + ∂−1
x (mϕ∂x ))(1 − ∂2x )

−1,

and its adjoint operatorR∗(ϕ) are essential to analyze the linearized Hamiltonian Ln defined
in (3.2). Note that the recursion operators are nonlocal which are not easy to study directly.
However, by employing the operator identity (2.47) and the properties of the squared eigen-
functions F±(x, k), one could have the following result.

Lemma 3.2 The recursion operator R(ϕ) has only one eigenvalue c associated with the
eigenfunction mϕ , the essential spectrum is the interval (0, 2ω], and the corresponding
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eigenfunctions do not have spatial decay and not in L2(R). Moreover, the kernel of R(ϕ) is
empty, and the inverse of R(ϕ) reads

R−1(ϕ) = 1

2
(1 − ∂2x )

1√
mϕ + ω

∂−1
x

1√
mϕ + ω

∂x .

Proof Consider the Jost solutions f ±(x, k) of the spectral problem (2.1) with the potential
m(x) = mϕ = ϕ − ϕxx and the asymptotic expressions in (2.4) and (2.5). In this case there
is an eigenvalue k = iκ1 (0 < κ1 < 1

2 ) which generates the soliton. It is then found that the
squared eigenfunctions F±(x, k) = ( f ±(x, k))2 satisfy

(
− ∂2x + 1 + 2λ

(
mϕ(x) + 2ω + ∂−1

x (mϕ(x)∂x )
))

F±(x, k) = 0. (3.7)

This in turn implies that

(1 − ∂2x )
−1(mϕ(x) + 2ω + ∂−1

x (mϕ(x)∂x )
)
F±(x, k)

= K[mϕ]F±(x, k) = − 1

2λ
F±(x, k). (3.8)

By (3.8) and (2.47), it is adduced that

R(ϕ)(1 − ∂2x )F
±(x, k) = − 1

2λ
(1 − ∂2x )F

±(x, k), for k ∈ R, (3.9)

R(ϕ)(1 − ∂2x )F
±
1 (x) = − 1

2λ1
(1 − ∂2x )F

±
1 (x) = c(1 − ∂2x )F

±
1 (x). (3.10)

Moreover, in view of the element Ḟ±
1 (x) in the completeness relation (2.38), it follows that

there holds

R(ϕ)(1 − ∂2x )Ḟ
±
1 (x) = − 1

2λ1
(1 − ∂2x )Ḟ

±
1 (x) − iκ1

ωλ21
F±
1 (x). (3.11)

SinceR(ϕ)mϕ = cmϕ , from (3.10), it is inferred from (3.10) that F±
1 (x) ∼ ϕ(x). On account

of (3.9), the essential spectra of R(ϕ) given by the set − 1
2λ = ω

2k2+ 1
2
for k ∈ R, which is

equal to the interval (0, 2ω]. The associated generalized eigenfunctions (1 − ∂2x )F
±(x, k)

possess no spatial decay and not in L2(R) which can be seen from the asymptotic formulas
of f ±(x, k) in (2.4) and (2.5).

On the other hand, a simple direct computation shows that the kernel of R(ϕ) is empty
except for ω = 0. In particular, for the function v(x) := (1−∂2x )(1/

√
mϕ + ω), one deduces

that R(ϕ)v = ω > 0. The inverse of R(ϕ) can also be verified directly. The proof of the
lemma is complete. ��

Remark 3.2 In view of (2.47) or (3.8), one can conclude that the operator K[mϕ] shares the
same spectra with the operator R(ϕ), for instance, we have K(mϕ)ϕ = cϕ, the kernel of
which is empty and the inverse is

K−1[mϕ] = 1

2
√
mϕ + ω

∂−1
x

1√
mϕ + ω

(1 − ∂2x )
−1∂x .

Similar to the proof of Lemma 3.2, we have the following result concerning the spectra
of the composite operators Rn(ϕ) for n ≥ 1.
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Corollary 3.1 The composite operatorRn(ϕ) has only one eigenvalue cn associated with the
eigenfunction mϕ , the essential spectrum is the interval (0, 2nωn], and the corresponding
generalized eigenfunctions do not have spatial decay and not in L2(R).

We now consider the adjoint recursion operatorR∗(ϕ). In view of the factorization (3.4),
it shares the same eigenfunctions of J Ln and thus is more relevant to the spectral stability
problems of solitons. Recall from (2.51) that

R∗(u) = (1 − ∂2x )
−1J1J−1

2 (1 − ∂2x ).

The observation to (3.8) reveals that

J1J−1
2 J1F

±(x, k) = J1K[m]F±(x, k) = − 1

2λ
J1F

±(x, k).

From above one can verify that the eigenfunctions of R∗(u) are

(1 − ∂2x )
−1J1F

±(x, k) = −∂xK[m]F±(x, k) = 1

2λ
(F±(x, k))x . (3.12)

Lemma 3.3 The adjoint recursion operatorR∗(ϕ) has only one eigenvalue c associated with
the eigenfunction ϕx , the essential spectrum is the interval (0, 2ω], and the corresponding
eigenfunctions do not have spatial decay and not in L2(R). Moreover, the kernel of R∗(ϕ)

is empty, and the inverse of R∗(ϕ) is

(
R∗(ϕ)

)−1 = 1

2
∂x

1√
mϕ + ω

∂−1
x

1√
mϕ + ω

(1 − ∂2x )
−1.

Proof Consider the Jost solutions f ±(x, k) of the spectral problem (2.1) with the potential
mϕ and the asymptotic formulas in (2.4) and (2.5). The soliton profile ϕ is generated by the
eigenvalue k = iκ1 (0 < κ1 < 1

2 ). By (3.12), the following relations hold

R∗(ϕ)
(
F±(x, k)

)
x = − 1

2λ

(
F±(x, k)

)
x , for k ∈ R, (3.13)

R∗(ϕ)
(
F±
1 (x)

)
x = − 1

2λ1

(
F±
1 (x)

)
x = c

(
F±
1 (x)

)
x , (3.14)

R∗(ϕ)
(
Ḟ±
1 (x)

)
x = − 1

2λ1

(
Ḟ±
1 (x)

)
x − iκ1

ωλ21

(
F±
1 (x)

)
x . (3.15)

SinceR∗(ϕ)ϕx = cϕx , by (3.14), c is the only one eigenvalue. In view of (3.13), the essential
spectra of R∗(ϕ) is − 1

2λ = ω

2k2+ 1
2
for k ∈ R, which is the interval (0, 2ω]. The associated

generalized eigenfunctions
(
F±(x, k)

)
x possess no spatial decay and not in L2(R) which

can be seen from the asymptotic formulas of f ±(x, k) in (2.4) and (2.5).
Similarly, a direct computation shows that the kernel ofR∗(ϕ) is empty except for ω = 0.

The inverse of R∗(ϕ) can also be verified directly. This completes the proof of Lemma 3.3.
��

3.2 The spectra ofJ Ln, LnJ and Ln

In this subsection our attention is focused on the spectral analysis of the operatorsJ Ln , LnJ
and Ln (3.2), J is defined in (1.6). The main ingredients are (3.4) and the observation that
the eigenfunctions of the adjoint recursion operator R∗(ϕ) (see (3.13), (3.14) and (3.15))
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form an orthogonal basis in L2(R). It follows that the spectra of J Ln lies on the imaginary
axis which implies directly the spectral stability of solitons.

We now consider the operator J Ln . Since Ln = Rn−1(ϕ)L1 and the principle part of
which is (

2ω(1 − ∂2x )
−1)n−1

(−c∂2x + c − 2ω),

it thus transpires that the symbol of the principle part of the operator J Ln is

�n,c(ζ ) := −2n−1ωn−1 iζ(cζ 2 + c − 2ω)

(1 + ζ 2)n
(3.16)

We have the following statement related to the spectra of the operator J Ln .

Proposition 3.1 The operators J Ln for n ≥ 1 and the adjoint recursion operator R∗(ϕ)

share the same eigenfunctions. Moreover, the essential spectra of J Ln are contained in iR,
the kernel is spanned by the function ϕx and the generalized kernel is spanned by ∂ϕ

∂c .

Proof The operators J Ln for n ≥ 1 and the adjoint recursion operatorR∗(ϕ) share the same
eigenfunctions are inferred by the operator identity (3.4). By Lemma 3.3, one can compute
the spectra of the operatorJ Ln directly by employing the squared eigenfunctions as follows

J Ln
(
F±(x, k)

)
x = �n,c(±2k)

(
F±(x, k)

)
x , for k ∈ R; (3.17)

J Ln
(
F±
1 (x)

)
x ∼ J Lnϕx = 0, (3.18)

J Ln
(
Ḟ±
1 (x)

)
x ∼ J Ln

∂ϕ

∂c
= cn−1ϕx . (3.19)

In view of (3.16), the essential spectra of J Ln are �n,c(±2k) for k ∈ R which are contained
in the whole imaginary axis, which gives the desired result in Proposition 3.1. ��

For the adjoint operator of J Ln , namely, the operator −LnJ which is commutative with
the recursion operator R(ϕ)(3.3), we have the following result.

Proposition 3.2 The operators LnJ for n ≥ 1 and the recursion operator R(ϕ) share the
same eigenfunctions. Moreover, the essential spectra of LnJ are contained in iR, the kernel
is spanned by the function mϕ and the generalized kernel is spanned by ∂−1

x

( ∂mϕ

∂c

)
.

Proof The operators LnJ for n ≥ 1 and the adjoint recursion operatorR(ϕ) share the same
eigenfunctions are inferred by the operator identity (3.3). By Lemma 3.2, one can compute
the spectra of the operator LnJ directly by employing the squared eigenfunctions as follows

LnJ (1 − ∂2x )F
±(x, k) = −Ln

(
F±(x, k)

)
x = �n,c(±2k)(1 − ∂2x )F

±(x, k), (3.20)

LnJ (1 − ∂2x )F
±
1 (x) ∼ LnJmϕ = −Lnϕx = 0, (3.21)

LnJ (1 − ∂2x )Ḟ
±
1 (x) = −Ln

(
Ḟ±
1 (x)

)
x ∼ Ln

∂ϕ

∂c
= −cn−1mϕ. (3.22)

In view of (3.16), the essential spectra of LnJ is �n,c(±2k) for k ∈ R which is contained in
the whole imaginary axis. On the other hand, it is inferred from (3.22) that

(
Ḟ±
1 (x)

)
x ∼ ∂ϕ

∂c .
Hence the generalized kernel is

(1 − ∂2x )Ḟ
±
1 (x) ∼ ∂−1

x

(∂mϕ

∂c

)
,

which implies the advertised result in the proposition. ��
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On account of Propositions 3.1 and 3.2, we now have the two function sets as follows.
The first set {(

F±(x, k)
)
x , for k ∈ R; ϕx ; ∂ϕ

∂c

}
(3.23)

consists of linearly independent eigenfunctions and generalized kernel of the operator J Ln .
Moreover, they are essentially orthogonal under the L2-inner product. The second set

{
(1 − ∂2x )F

±(x, k), for k ∈ R; mϕ; ∂−1
x

(
∂mϕ

∂c

)}
(3.24)

consists of linearly independent eigenfunctions and generalized kernel of the operator LnJ .
Notice that from the expression of soliton profile (1.8) or (1.9), as the functions ϕ,mϕ are
even and localized, one sees that Ln

∂ϕ(−x)
∂c = −mϕ also holds, then the function ∂ϕ

∂c is also
localized and even. The nonzero inner product of the elements of the sets (3.23) and (3.24)
are the following:

∫
R

(
F±(x, k)

)
x (1 − ∂2x )F

±(x, l)dx = ∓2π ik|a(k)|2δ(k − l), for k, l ∈ R;
(3.25)∫

R

ϕx∂
−1
x

(
∂mϕ

∂c

)
dx = −

∫
R

ϕ
∂mϕ

∂c
dx = −dH1(ϕ)

dc
= −4κc, (3.26)

∫
R

∂ϕ

∂c
mϕdx = dH1(ϕ)

dc
= 4κc. (3.27)

The corresponding closure relation is

∓
∫
R

1

2π ik|a(k)|2
(
F±(x, k)

)
x (1 − ∂2y )F

±(y, k)dk

+ 1

4κc

(
ϕx∂

−1
y

(
∂mϕ

∂c

)
+ ∂ϕ

∂c
mϕ(y)

)
= δ(x − y), (3.28)

which indicates that any function z(x)which vanishes for x → ±∞ can be expanded over the
above two bases (3.23) and (3.24). By comparing (3.28) to (2.39), one can take the derivative
of (2.39) with respect to x and insert z(x) = f ′(x) to have the following decomposition:

z(x) =
∫
R

(
F±(x, k)

)
x P

±(k)dk + βϕx + γ
∂ϕ

∂c
, (3.29)

with the coefficients P±, β and γ which are related to the coefficients in (2.39). Similarly,
one can also decompose the function z(x) on the second set (3.24) by taking the operator
1 − ∂2x upon (2.39).

With the decomposition of function z(x), we can compute the quadratic form related to
the operator Ln and illustrate the spectral information. The following statement describes the
full spectrum of linearized Hamiltonian Ln = −H ′′

n+1(ϕ) + cH ′′
n (ϕ) (3.2) for n ≥ 1.

Lemma 3.4 For n ≥ 1 and any z ∈ Hn
odd , we have 〈Lnz, z〉 ≥ 0 and 〈Lnz, z〉 = 0 if and

only if z is a multiple of ϕx , and in Hn
ev the operator Ln has exactly one negative eigenvalue

and zero is not an eigenvalue any more.
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Proof For any z(x) ∈ Hn(R), in view of the decomposition (3.29), we can evaluate the
quadratic form 〈Lnz, z〉 as follows,

〈Lnz, z〉 =
〈∫

R

Ln
(
F±(x, k)

)
x P

±(k)dk,
∫
R

(
F±(x, k)

)
x P

±(k)dk

〉

+2γ

〈∫
R

Ln
(
F±(x, k)

)
x P

±(k)dk,
∂ϕ

∂c

〉
+ γ 2〈Ln

∂ϕ

∂c
,
∂ϕ

∂c
〉

= I + I I + I I I . (3.30)

First it is noticed from (3.20) and the zero inner product property of the two sets (3.23) and
(3.24) that

I I = −2γ

〈∫
R

(1 − ∂2x )F
±(x, k)P±(k)�n,c(±2k)dk,

∂ϕ

∂c

〉

= −2γ
∫
R

〈(1 − ∂2x )F
±(x, k),

∂ϕ

∂c
〉P±(k)�n,c(±2k)dk = 0. (3.31)

For the third term of (3.30), a direct computation by (2.61) shows that,

I I I = γ 2〈−cn−1mϕ,
∂ϕ

∂c
〉 = −γ 2cn−1 dH1(ϕ)

dc
= −4γ 2κcn < 0, for γ 
= 0.(3.32)

To deal with the first term in (3.30), using (3.20) and (3.25) yields that

I = −
〈∫

R

(1 − ∂2x )F
±(x, k)P±(k)�n,c(±2k)dk,

∫
R

(
F±(x, k)

)
x P

±(k)dk

〉

= −
∫
R2

�n,c(±2k)P±(k)P±(k1)〈(1 − ∂2x )F
±(x, k),

(
F±(x, k1)

)
x 〉dkdk1

=
∫
R

±2π ik|a(k)|2�n,c(±2k)|P±(k)|2dk

=
∫
R

2nπωn−1k2|a(k)|2(4ck2 + c − 2ω)

(1 + 4k2)n
|P±(k)|2dk ≥ 0, (3.33)

where I = 0 holds if and only if P±(k) = 0. Combining (3.33), (3.31) and (3.32), one has

(3.30) =
∫
R

2nπωn−1k2|a(k)|2(4ck2 + c − 2ω)

(1 + 4k2)n
|P±(k)|2dk − 4γ 2κcn . (3.34)

For z ∈ Hn
odd , we have γ = 0, then (3.34) and (3.33) reveal that 〈Lnz, z〉 ≥ 0. Moreover,

〈Lnz, z〉 = 0 infers that P±(k) = 0, therefore, z = βϕx for β 
= 0. If z ∈ Hn
even , we

then have β = 0, In the hyperplane γ = 0, 〈Lnz, z〉 ≥ 0 and 〈Lnz, z〉 = 0 if and only if
P±(k) = 0, then one has z = 0. Therefore, 〈Lnz, z〉 > 0 in the hyperplane γ = 0 and which
implies that Ln can have at most one negative eigenvalue. Since Ln

∂ϕ
∂c = −cn−1mϕ < 0

and
〈
Ln

∂ϕ
∂c ,

∂ϕ
∂c

〉
= −cn−1 dH1(ϕ)

dc = −4κcn < 0. Therefore, Ln has exactly one negative

eigenvalue. This completes the proof of Lemma 3.4. ��

As a direct consequence, one has the following spectrum information of higher order
linearized Hamiltonian Tn, j := H ′′

n+2(ϕc j )−(c1+c2)H ′′
n+1(ϕc j )+c1c2H ′′

n (ϕc j )with n ≥ 1,
j = 1, 2 and c1 ≤ c2, which are related closely to stability problem of the double solitons
U (2). Following the same line of the proof of Lemma 3.4, we have
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Corollary 3.2 For n ≥ 1 and c1 = c2 = c, we have Tn,1 = Tn,2 ≥ 0, and the eigenvalue
zero is double with eigenfunctions ϕ′

c and
∂ϕc
∂c . For n ≥ 1 and c1 < c2, the operator Tn,1 has

one negative eigenvalue and Tn,2 ≥ 0 is positive. Tn, j has zero as a simple eigenvalue with
associated eigenfunctions ϕ′

c j .

Proof By (2.73), one has

Tn, j = Rn−1(ϕc j )T1, j = Rn−1(ϕc j )
(
H′′

3(ϕc j ) − (c1 + c2)H
′′
2 (ϕc j ) + c1c2H

′′
1 (ϕc j )

)
.

Similar to the proof of Lemma 3.4, the study of the operator Tn, j is reduced to consider the
operator T1, j = ( − R(ϕc j ) + ck

)( − H ′′
2 (ϕc j ) + c j H ′′

1 (ϕc j )
)
where k 
= j . One can verify

that

T1, j
∂ϕc j

∂c j
= (c j − ck)

(
ϕc j − ϕ′′

c j

)
. (3.35)

In particular, if c1 = c2 = c, the function ∂ϕc
∂c degenerates to belong to the kernel of Tn,1

and Tn,2. Notice that ϕ′
c belongs always to the kernel of which, therefore, zero eigenvalue is

double with eigenfunctions ϕ′
c and

∂ϕc
∂c . The non-negativeness of Tn,1 and Tn,2 follow from

the same argument of Lemma 3.4.
If c1 < c2, then by (3.35), the operator T1,1 has a negative eigenvalue and T1,2 ≥ 0, their

zero eigenvalue are simple with associated eigenfunction ϕ′
c j . ��

3.3 The spectra of linearized operator around the CH N-solitons

In order to prove Theorem 1.1, we need to know the spectral information of the operator LN

(2.67). More precisely, the inertia of LN called in(LN ) has to be determined. The aim of this
subsection is to show the following result.

Lemma 3.5 The linearized operator around the CH N-solitons LN verifies

in(LN ) = (
n(LN ), z(LN )

) =
([

N + 1

2

]
, N

)
. (3.36)

To this aim, for j = 1, 2 . . . , N and recall that the operator LN , j = I ′′
N (ϕc j ) defined in

(3.1). By Theorem 4.1 (see Theorem 4 in [46] for the case N = 2), the spectrum of LN

tends to the unions of LN , j , that is σ(LN ) → ⋃N
j=1 σ(LN , j ) as t → +∞. The result (3.36)

follows directly from the following claim.

Proposition 3.3 (1). LN ,2k−1 has zero as a simple eigenvalue and exactly one negative eigen-
value for 1 ≤ k ≤ [ N+1

2 ], i.e, in(LN ,2k−1) = (1, 1); (2). LN ,2k has zero as a simple
eigenvalue and no negative eigenvalues for 1 ≤ k ≤ [ N2 ], i.e, in(LN ,2k) = (0, 1).

Proof The proof follows the same line of the proof of Lemma 3.4. We consider the operator
LN , j = I ′′

N (ϕc j ) for 1 ≤ j ≤ N and compute the quadratic form 〈LN , j z, z〉 under a special
decomposition of z (3.29). Recall from (3.1) that the form of LN , j which is a combination
of the operators −H ′′

n+1(ϕc j ) + c j H ′′
n (ϕc j ). Moreover, one has

LN , j
∂ϕc j

∂c j
= −

N∏
k 
= j

(ck − c j )(ϕc j − ϕ′′
c j ) := � j (ϕc j − ϕ′′

c j ). (3.37)
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The quadratic form 〈LN , j z, z〉 can be evaluated similar to (3.30) as follows

〈LN , j z, z〉 =
〈∫

R

LN , j
(
F±(x, k)

)
x P

±(k)dk,
∫
R

(
F±(x, k)

)
x P

±(k)dk

〉

+2γ 〈
∫
R

LN , j
(
F±(x, k)

)
x P

±(k)dk,
∂ϕc j

∂c j
〉 + γ 2〈LN , j

∂ϕc j

∂c j
,
∂ϕc j

∂c j
〉

=
N∑

n=1

(−1)n−1σ j,N−n

∫
R

2nπωn−1k2|a(k)|2(4k2 + c j − 2ω)

(1 + 4k2)n
|P±(k)|2dk + 4� jγ

2κc j .

It reveals that the symbol of the principle part of LN , j evaluated at 2k is

Î ′′
N (0)(2k) =

N∑
n=1

(−1)n−1σ j,N−n

(
2ω

)n−1
(4c j k2 + c j − 2ω)

(1 + 4k2)n−1

= (4c j k
2 + c j − 2ω)

N∑
n=1

(−1)n−1σ j,N−n
( 2ω

1 + 4k2
)n−1

. (3.38)

Recall that those σ j,k are the elementally symmetric functions of c1, c2, . . . , c j−1, c j+1,

. . . , cN as follows

σ j,0 = 1, σ j,1 =
N∑

l=1,l 
= j

cl , σ j,2 =
∑

l<k,l 
= j

clck, . . . , σ j,N =
N∏

l=1,l 
= j

cl .

Then for N ≥ 1, n = 1, 2, 3, . . . , N and cn ≥ c1 > 2ω > 2ω
1+4k2

, we can easily have

σ j,N−n − σ j,N−n−1
2ω

1 + 4k2
≥ σ j,N−n − 2ωσ j,N−n−1 > 0.

Therefore

(3.38) ≥ (4c j k
2 + c j − 2ω)

N∑
n=1

(−1)n−1σ j,N−n
(
2ω

)n−1
> 0.

Then the first term of the quadratic form 〈LN , j z, z〉 is nonnegative and equals to zero if and
only if P±(k) = 0.

If j is even, then in view of the definition of� j (3.37), one has� j > 0 and 〈LN , j z, z〉 ≥ 0
and 〈LN , j z, z〉 = 0 if and only if P±(k) = 0 and γ = 0, which indicates that z = βϕ′

c j .
Hence LN , j ≥ 0 and zero is simple with associated eigenfunction ϕ′

c j .

If j is odd, then one has � j < 0, we investigate z in HN
ev and HN

odd respectively. If
z ∈ HN

odd , then γ = 0. Then one has 〈LN , j z, z〉 ≥ 0 and 〈LN , j z, z〉 = 0 if and only if
P±(k) = 0. Then z = βϕ′

c j with β 
= 0, which indicates that zero is simple with associated
eigenfunction ϕ′

c j .

If z ∈ HN
ev , then β = 0. In the hyperplane γ = 0, 〈LN , j z, z〉 ≥ 0 and 〈LN , j z, z〉 = 0 if

and only if P±(k). Therefore, 〈LN , j z, z〉 > 0 in the hyperplane γ = 0 andwhich implies that

LN , j can have at most one negative eigenvalue. Since LN , j
∂ϕc j
∂c j

= � j (ϕc j − ϕ′′
c j ) < 0 and

〈LN , j
∂ϕc j
∂c j

,
∂ϕc j
∂c j

〉 = � j
dH1(ϕc j )

dc j
< 0. Therefore, LN , j has exactly one negative eigenvalue.

This implies the desired result as advertised in the statement of Proposition 3.3. ��
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Proof of Lemma 3.5 From the invariance of inertia stated in Corollary 4.2 and the results of
Proposition 3.3, we know that

in(LN ) = (
n(LN ), z(LN )

) =
N∑
j=1

in(LN , j ) =
([

N + 1

2

]
, N

)
.

The proof is concluded. ��
Remark 3.3 The spectral information of LN , j (3.1) indicates that the CH one-soliton ϕc j is
nonlinearly stable in the Sobolev space HN . Indeed, we can choose IN to be a Lyapunov
functional, at the HN level, which can describe the dynamics of small perturbations. Then
we modulate the ϕ′

c j direction to have the variation of space transition parameters x j (t),

compare to [23], which gives an alternative proof of nonlinearly stability of ϕc j in HN .

To prove Theorem 1.1, it suffices to verify the following proposition which can be viewed
as GSS framework [28] adapted to the multi-solitons case for nonlinear dispersive equations,
see Lemma 2.3 in [41].

Proposition 3.4 [41] Suppose that

n(LN ) = p(D). (3.39)

Then there exists a constant C > 0 such that U (N ) is a non-degenerate unconstrained
minimum of the augmented Lagrangian (Lyapunov function)

IN (u) + C

2

N∑
j=1

(
Hj (u) − Hj (U

(N ))
)2

, (3.40)

with IN defined in (1.15). The N-dimensional family of all N-soliton profiles U (N ) are
dynamically stable in the sense of Theorem 1.1.

Proof of Theorem 1.1 By Lemma 2.1 and Proposition 3.3, one has that n(LN ) = p(D) =
[ N+1

2 ]. The proof of Theorem 1.1 is obtained directly in view of Proposition 3.4, sinceU (N ) is
now an (non-isolated) unconstrained minimizers of the augmented Lagrangian (3.40) which
therefore serves as a Lyapunov function. ��

4 Orbital stability of the smooth double solitons

Our attention in this section is now turned to the proof of Theorem 1.2. We need to prove a
coercivity property on the Hessian of action related to the double-solitons profile U

I2(U ) = H3(U ) − (c1 + c2)H2(U ) + c1c2H1(U ),

which is crucial to control the difference between double solitons and a function in a neigh-
borhood of its orbit.

4.1 Coercivity of the linearized operator around the smooth CH double solitons

As showed in Corollary 3.2, the linearized operator L2 ((2.67) with N = 2) around the CH
double soliton possesses only one negative eigenvalue and the inertia ofL2 equals to (1, 2). It
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is natural to verify that the kernel ofL2 is spanned by functionsU( j) := ∂x j U , where j = 1, 2
and x j the spatial transitions. LetU−1 be an eigenfunction associated to the unique negative
eigenvalue of the operatorL2, as stated in Corollary 3.2.We assume that ‖U−1‖L2 = 1. Then
U−1 is unique and one has L2U−1 = −λ20U−1 with −λ20 the associated negative eigenvalue.
It is now easy to see the following result holds.

Lemma 4.1 Let U be the CH double-solitons with wave velocities 0 < 2ω < c1 < c2, and
U(1),U(2) be in the corresponding kernel of the operator L2. There exists ν1 > 0 depending
on c1 and c2 only, such that for any z ∈ H2(R) satisfying the following orthogonality
conditions

(z,U−1)L2 = (z,U(1))L2 = (z,U(2))L2 = 0, (4.1)

then we have 〈L2z, z〉 ≥ ν1‖z‖2H2 .

It is observed thatU−1 is hard to handle in our case, so we need a more applicable version
of Lemma 4.1. To see this, we consider the naturalmodes associated to the scaling parameters,
which are the best candidates to generate negative directions for the related quadratic form
defined from L2. More precisely, for t fixed, i, j = 1, 2 and i 
= j

L2∂c j U = ∂

∂c j

(
H ′
3(U ) − (c1 + c2)H

′
2(U ) + c1c2H

′
1(U )

) + H ′
2(U ) − ci H

′
1(U )

= H ′
2(U ) − ci H

′
1(U ). (4.2)

We now define a function 	 := ∂c1U−∂c2U
c1−c2

. It is then found that 	 is Schwartz and satisfies

L2	 = −H ′
1(U ) = −(U −Uxx ) := −mU , and (4.3)

〈L2	,	〉 = −1

(c2 − c1)

(∂H1(U )

∂c2
− ∂H1(U )

∂c1

)

= 4

c2 − c1
(κ1c1 − κ2c2) < 0, (4.4)

in view of (2.61) and 0 < κ1 < κ2 when 0 < 2ω < c1 < c2.
We have the following result which gives a coercivity property of 〈L2z, z〉.

Lemma 4.2 Let U be the CH double solitons with wave velocities 0 < 2ω < c1 < c2, and
U(1) and U(2) be in the corresponding kernel of the associated linearized operator L2. There
exists ν2 > 0 depending only on c1, c2, such that for any z ∈ H2(R) satisfying the following
orthogonality conditions

(z,U(1))L2 = (z,U(2))L2 = 0, (4.5)

then we have

〈L2z, z〉 ≥ ν2‖z‖2H2 − 1

μ1
(z,mU )2L2 .

Proof It suffices to show that under the conditions (4.5) and the orthogonality condition
(z,mU )L2 = 0, there holds

〈L2z, z〉 ≥ ν2‖z‖2H2 .

First notice that by (4.3) and (4.4), we have

(	,mU )L2 = −〈L2	,	〉 > 0. (4.6)
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The next step is to decompose z and	 in span(U−1,U(1),U(2)) and the associated orthogonal
subspace. We decompose

z = z̃ + pU−1, 	 = 	0 + nU−1 + aU(1) + bU(2), p, n, a, b ∈ R,

where the following orthogonal conditions hold

(z̃,U−1)L2 = (z̃,U(1))L2 = (z̃,U(2))L2 = (	0,U−1)L2 = (	0,U(1))L2 = (	0,U(2))L2 = 0.

And in addition,

(U−1,U(1))L2 = (U−1,U(2))L2 = 0.

From the above identities, we obtain

〈L2z, z〉 = 〈L2 z̃ − pλ20U−1, z̃ + pU−1〉 = 〈L2 z̃, z̃〉 − p2λ20. (4.7)

In view of (4.3) and the self-adjointness of L2, we deduce that

0 = (z,mU )L2 = −〈L2	, z〉 = −〈	,L2z〉 = −〈	0,L2 z̃〉 + pnλ20. (4.8)

On the other hand,

(	,mU )L2 = −〈L2	,	〉 = −〈L2	0, 	0〉 + λ20n
2. (4.9)

Combining (4.7),(4.8) and (4.9), it follows from the Cauchy-Schwartz inequality that

〈L2z, z〉 = 〈L2 z̃, z̃〉 − 〈L2 z̃, 	0〉2
〈L2	0, 	0〉 + (	,mU )L2

≥ 〈L2 z̃, z̃〉(	,mU )L2

〈L2	0, 	0〉 + (	,mU )L2
≥ γ1〈L2 z̃, z̃〉, (4.10)

where 0 < γ1 < 1. From (4.7), it is inferred that 〈L2 z̃, z̃〉 ≥ p2λ20 ≥ 0. This in turn implies
that there exists a constant C > 0 such that

〈L2z, z〉 ≥ γ1〈L2 z̃, z̃〉 ≥ γ1

2
〈L2 z̃, z̃〉 + γ1 p

2λ20

≥ C(2‖z̃‖2H2 + 2p2‖U−1‖2H2) ≥ C‖z‖2H2 , (4.11)

thereby concluding the proof of Lemma 4.2. ��

4.2 Proof of Theorem 1.2

In this subsection we give the proof of Theorem 1.2. To this end, we employ a natural
Lyapunov functional I2 for the CH equation, which is well-defined at the natural H2 level.
Indeed, for any u0 ∈ H2(R), we have global in time H2(R) solution u(t) [13,38]. Recall the
Lyapunov functional I2 defined by

I2(u(t)) = H3(u(t)) − (c1 + c2)H2(u(t)) + c1c2H1(u(t)) = I2(u0). (4.12)

It is clear that I2(u) represents a real-valued conservedquantity,well-defined for H2-solutions
of the CH equation. Moreover, one has the following Taylor-like expansion.
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Lemma 4.3 Let z ∈ H2(R) be any function with sufficiently small H2-norm, and U be the
2-solitons. Then, for all t ∈ R, one has

I2(U + z) = I2(U ) + 1

2
〈L2z, z〉 + N (z), |N (z)| = O(‖z‖3H2), (4.13)

where the operator L2 = I ′′
2 (U ) and N (z) is the remaining higher order nonlinear term.

Proof The proof is a direct consequence of the fact thatU is a critical point of the functional
I2, namely, I ′

2(U ) = 0. ��
The Lyapunov functional I2 allows us to describe the dynamics of small perturbations

and a direct control of the corresponding instability modes. The degenerate directions are
controlled by H1 conservation law H1.

Proof of Theorem 1.2 Let u0 ∈ H2 be a function such that u0 satisfying (1.12). Assume u(t)
is the solution of the Cauchy problem associated to the CH equation with initial data u0.
In view of the continuity of the CH flow for H2 data [13], there exists a time T0 > 0 and
continuous parameters x1(t), x2(t) ∈ R, defined for all t ∈ [0, T0], and such that the solution
u(t) of the Cauchy problem associated with the CH equation with initial data u0, satisfies

sup
t∈[0,T0]

‖u(t) −U (t; x1(t), x2(t))‖H2(R) < 2ε. (4.14)

We want to show that T0 = +∞. To this aim, let K > 2 be a constant, to be fixed later. Let
us suppose, by contradiction, that the maximal time of stability T �, that is

T � = sup{T > 0, for all t ∈ [0, T ], there exists x̃1(t), x̃2(t) ∈ R such that

sup
t∈[0,T ]

‖u(t) −U (t; x̃1(t), x̃2(t))‖H2(R) < K ε}, (4.15)

is finite. By (4.14), we see easily that T � is well-defined. Our idea is to find a suitable
contradiction to the assumption T � < +∞.

By taking ε0 smaller, if necessary, we can apply modulation theory for the solution u(t).
We now give the following claim.
Claim: There exists ε0 > 0, depending only on U , such that for all ε ∈ (0, ε0), the following
property is verified. There exist x1(t), x2(t) ∈ R defined on [0, T ∗], such that if we denote

ϒ(t) = u(t) −U (t), U (t) = U (t; x1(t), x2(t)), (4.16)

then for all t ∈ [0, T ∗], ϒ satisfies the orthogonality conditions

(ϒ,U(1))L2 = (ϒ,U(2))L2 = 0. (4.17)

Moreover, for all t ∈ [0, T ∗], we have
‖ϒ(t)‖H2 + |x ′

1(t)| + |x ′
2(t)| < CK ε, ‖ϒ(0)‖H2 ≤ Cε, (4.18)

for some constant C > 0, independent of K .
The proof of this claim relies on the Implicit Function Theorem. Indeed, let

J j (u(t), x1, x2) = 〈u −U (t; x1, x2),U( j)(t; x1, x2)〉.
We clearly have

J j (U (t; x1, x2), x1, x2) = 0.
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On the other hand, for j, k = 1, 2, we have

∂xk J j (u(t, x), x1, x2)|(U ,0,0) = −〈U(k)(t; 0, 0),U( j)(t; 0, 0)〉.
Let J be the 2 × 2 matrix with component J j,k := (∂xk J j ) j,k=1,2. We now compute

det J = ‖U(1)U(2)‖2L2 − ‖U(1)‖2L2‖U(2)‖2L2 
= 0,

since the fact that U(1) and U(2) are not parallel for all time. Therefore, we have the desired
invertibility, by the Implicit Function Theorem, we can write the decomposition (4.16) with
property (4.17) in a small H2 neighborhood ofU , for t ∈ [0, T �]. Now we verify (4.18). The
first bounds are consequence of the decomposition itself and the equations satisfied by the
derivatives of the parameters x1 and x2, after taking time derivative in (4.17) and using the
invertibility property of∇ J . More precisely, we first write the equation verified byϒ . Recall
that u satisfies the CH equation, then one replaces u by U (t) + ϒ(t) in the CH equation to
obtain

(ϒ − ϒxx )t + 2ωϒx + 3(Uϒ)x − 2(Uxϒx )x − (Uϒxxx +Uxxxϒ)

+(
(U(1) −U(1),xx )x

′
1(t) + (U(2) −U(2),xx )x

′
2(t)

) + N (ϒ) = 0, (4.19)

where N (ϒ) is the remaining nonlinear part.
Take now the scalar product of (4.19) with U( j). By the definition of U and the orthogo-

nality conditions (4.17), we have

A · (x ′
1(t), x

′
2(t))

T = B(ϒ) + O(‖ϒ‖2H2),

A =
(‖U(1)‖2H1 0

0 ‖U(2)‖2H1

)
+ small,

and |B(ϒ)| ≤ C‖ϒ‖H2 . As long as the modulation parameter do not vary too much and
‖ϒ‖H2 remains small, A is invertible and we can deduce that

|x ′
1(t)| + |x ′

2(t)| ≤ C‖ϒ‖H2 + O(‖ϒ‖2H2). (4.20)

This completes the proof of the claim.
Next, since ϒ(t) defined by (4.16) is small, by Lemma 4.3 and the claim above, it is

deduced that

I2(u(t)) = I2(U (t)) + 1

2
〈L2ϒ(t), ϒ(t)〉 + O(‖ϒ(t)‖3H2).

By Lemma 4.3, it follows from (4.12) that

〈L2ϒ(t), ϒ(t)〉 ≤ 〈L2ϒ(0), ϒ(0)〉 + O(‖ϒ(t)‖3H2) + O(‖ϒ(0)‖3H2)

≤ C‖ϒ(0)‖2H2 + C‖ϒ(t)‖3H2 .

Since ϒ(t) satisfies (4.17), it is thus inferred from Lemma 4.2 that

‖ϒ(t)‖2H2 ≤ C‖ϒ(0)‖2H2 + C‖ϒ(t)‖3H2 + C(mU (t), ϒ(t))2L2

≤ Cε2 + CK 3ε3 + C(mU (t), ϒ(t))2L2 . (4.21)

Using the conservation of mass, it is found that

‖u(t)‖2H1 =
∫

mu = ‖U (t)‖2H1 + ‖ϒ(t)‖2H1 + 2(mU (t), ϒ(t))L2

= ‖U (0)‖2H1 + ‖ϒ(0)‖2H1 + 2(mU (0), ϒ(0))L2 = ‖u(0)‖2H1 .
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For t ∈ [0, T �], it thus transpires that
|(mU (t), ϒ(t))L2 | ≤ C |(mU (0), ϒ(0))L2 | + C‖ϒ(0)‖2H2 + C‖ϒ(t)‖2H2 ≤ C(ε + K 2ε2).

Replacing this last identity in (4.21), by choosing K large, one has

‖ϒ(t)‖2H2 ≤ Cε2(1 + K 3ε + K 4ε2) ≤ 1

2
K 2ε2,

that is, ‖ϒ(t)‖H2 ≤
√
2

2
K ε.However, this estimate contradicts the definition of T � in (4.15)

and therefore the stability of U in H2 is established, which completes the proof of Theorem
1.2. ��
Remark 4.1 As we consider the linearized operators around one soliton if the wave velocities
c1 = c2 inCorollary 3.2, onemay consider the solutions of the following differential equation

H ′
3(u) − 2cH ′

2(u) + c2H ′
1(u) = 0, (4.22)

this equation has the usual one soliton ϕc as a solution. We can obtain another solution of this
differential equation in the limit c1, c2 → c from the solution of the differential equation

H ′
3(u) − (c1 + c2)H

′
2(u) + c1c2H

′
1(u) = 0.

One solution of this equation is the two-soliton U (2)
c1,c2(t, x; x1, x2) with asymptotic speeds

c1 and c2. However, as we point out in Sect. 2.1 (see (2.17)), the zeros of a(k) are all simple
and the solution of (4.22) will be trivially zero if the space transitions x1, x2 ∈ R (see (2.43)).
But this changes if we move the x1, x2 into the complex plane, such types of real solutions
are singular called resonant double solitons, the time evolution of this solution is far from
decomposing asymptotically into travelling waves. In the study of the KdV equation, solution
like this one is sometimes neglected because it has a pole (of second order).
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Appendix

The tools presented in this section have been developed in [34,36,46]. It is noted that the work
of Neves and Lopes [46] was devoted to the case of the double solitons and [36] extends their
results to the case of N -solitons with N an arbitrary integer. For the sake of completeness, we
give the most relevant elements of the statement only and refer to [34,36,46] for the details
of the proof and further discussion.

Iso-inertial family of operators

Wewill beworkingwith linearized operators around amulti-soliton,which fit in the following
more generic framework.

Consider the abstract evolution equation

du

dt
= f (u), (4.23)
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for u : R → X , and recall that the following frameworkwas set in [34,46]. Let X2 ⊂ X1 ⊂ X
be Hilbert spaces and V : X1 → R be such that the following assumptions are verified.

(H1) X2 ⊂ X1 ⊂ X are continuously embedded. The embedding from X2 to X1 is
denoted by i .

(H2) The functional V : X1 → R is C3.
(H3) The function f : X2 → X1 is C2.
(H4) For any u ∈ X2, we have V ′(i(u)) f (u) = 0. Moreover, given u ∈ C1(R, X1) ∩

C(R, X2) a strong solution of (4.23), we assume that there exists a self-adjoint operator
L(t) : D(L) ⊂ X → X with domain D(L) independent of t such that for h, k ∈ Z ,
where Z ⊂ D(L) ∩ X2 is a dense subspace of X , we have 〈L(t)h, k〉 = V ′′(u(t))(h, k).
We also consider the operators B(t) : D(B) ⊂ X → X such that for any h ∈ Z we have
B(t)h = − f ′(u(t))h. Then we assume moreover that

(H5) The closed operators B(t) and B∗(t) have a common domain D(B) which is inde-
pendent of t . The Cauchy problems

du

dt
= B(t)u,

dv

dt
= B∗(t)v,

are well-posed in X for positive and negative times.
We then have the following result (see [34,46]).

Proposition 4.1 Let u ∈ C1(R, X1) ∩ C(R, X2) be a strong solution of (4.23) and assume
that (H1)-(H5) are satisfied. Then the following assertions hold.

• Invariance of the set of critical points. If there exists t0 ∈ R such that V ′(u(t0)) = 0,
then V ′(u(t)) = 0 for any t ∈ R.

• Invariance of the inertia. Assume that u is such that V ′(u(t)) = 0 for all t ∈ R. Then
the inertia in(L(t)) of the operator L(t) representing V ′′(u(t)) is independent of t .

Calculation of the inertial

Given an t-dependent family of operators whose inertia we are interested in, Proposition 4.1
allows to choose for a specific t to perform the calculation of the inertia. This is however in
most situations not sufficient, as we would like to let t go to infinity and relate the inertia of
our family with the inertia of the asymptotic objects that we obtain. This is what is allowed
in the following framework.

Let X be a real Hilbert space. Let N ∈ N and (τ
j
n ) be sequences of isometries of X for

j = 1, . . . , N . For brevity in notation, we denote the composition of an isometry τ kn and the

inverse of τ
j
n by

τ
k/ j
n := τ kn (τ

j
n )−1.

Let A, (B j ) j=1,...,N be linear operators and (Rn) be a sequence of linear operators. Define

the sequences of operators based on (B j ) and (τ
j
n ) by

B j
n = (τ

j
n )−1Bj (τ

j
n ).

Define the operator Ln : D(A) ⊂ X → X by

Ln = A +
N∑
j=1

B j
n + Rn .
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We make the following assumptions.
(A1) For all j = 1, . . . , N and n ∈ N, the operators A, A + B j , A + B j

n and Ln are
self-adjoint with the same domain D(A).

(A2) The operator A is invertible. For all j = 1, . . . , N and n ∈ N, the operator A
commutes with τ

j
n (i.e. A = (τ

j
n )−1A(τ

j
n )).

(A3) There exists δ > 0 such that for all j = 1, . . . , N and n ∈ N, the essential spectrum
of A, A + Bj , A + B j

n and Ln are contained in (δ,+∞).
(A4) For every λ ∈ ∩N

j=1ρ(A+ B j ) and for all j = 1, . . . , N the operators A(A+ B j −
λI )−1 are bounded.

(A5) In the operator norm, ‖Rn A−1‖ → 0 as n → +∞.
(A6) For all u ∈ D(A) and j, k = 1, . . . , N and j 
= k one has

lim
n→+∞ ‖τ j/k

n Bkτ
k/ j
n ‖X = 0.

(A7) For all u ∈ X and j, k = 1, . . . , N and j 
= k we have τ
j/k
n u⇀0 weakly in X as

n → ∞.
(A8) For all j = 1, . . . , N , the operators B j A−1 is compact.

Theorem 4.1 Assume that assumptions (A1)-(A8) hold and let λ < δ. The following asser-
tions hold.

• If λ ∈ ∩N
j=1ρ(A + B j ), then there exists nλ ∈ N such that for all n > nλ we have

λ ∈ ρ(Ln).
• If λ ∈ ∪N

j=1σ(A+ B j ), then there exists ε0 > 0 such that for all 0 < ε < ε0 there exists
nε ∈ N such that for all n > nε we have

dim(Range(Pλ,ε(Ln))) =
N∑
j=1

dim(Range(Pλ,ε(A + B j ))),

where Pλ,ε(L) is the spectral projection of L corresponding to the circle of center λ and
radius ε.

Corollary 4.2 Under the assumptions of Theorem 4.1, if there exists nL such that for all
n > nL we have

dim(ker(Ln)) ≥
N∑
j=1

dim(ker(A + B j )),

then for all n > nL we have

in(Ln) =
N∑
j=1

in(A + B j ).

Moreover, a non-zero eigenvalue of Ln cannot approach 0 as n → ∞.

Theorem 4.1 and Corollary 4.2 were proved in [46] in the case N = 2. For the proof of
general N ∈ N cases, we refer to [36] for details.
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