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Abstract
We study the evolution of strictly mean-convex entire graphs over Rn by Inverse Mean
Curvature flow. First we establish the global existence of starshaped entire graphs with
superlinear growth at infinity. The main result in this work concerns the critical case of
asymptotically conical entire convex graphs. In this case we show that there exists a time
T < +∞, which depends on the growth at infinity of the initial data, such that the unique
solution of the flow exists for all t < T . Moreover, as t → T the solution converges to a flat
plane. Our techniques exploit the ultra-fast diffusion character of the fully-nonlinear flow,
a property that implies that the asymptotic behavior at spatial infinity of our solution plays
a crucial influence on the maximal time of existence, as such behavior propagates infinitely
fast towards the interior.
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1 Introduction

We consider a family of immersions Ft : Mn → R
n+1 of n-dimensional mean convex

hypersurfaces in R
n+1. We say that Mt := Ft (Mn) moves by inverse mean curvature flow

if

∂

∂t
F(z, t) = H−1(z, t) ν(z, t), z ∈ Mn (1.1)

where H(z, t) > 0 and ν(z, t) denote the mean curvature and exterior unit normal of the
surface Mt at the point F(z, t).

The compact case is well understood. It was shown by Gerhardt [13] that for smooth
compact star-shaped initial data of strictly positivemean curvature, the inversemean curvature
flow admits a smooth solution for all times which approaches a homothetically expanding
spherical solution as t → +∞, see also Urbas [22]. For non-starshaped initial data it is
well known that singularities may develop; in the case n = 2 Smoczyk [21] proved that such
singularities can only occur if the speed becomes unbounded, or, equivalently, when themean
curvature tends to zero somewhere during the evolution. In [16,17], Huisken and Ilmanen
developed a new level set approach to weak solutions of the flow, allowing “jumps” of the
surfaces and solutions of weakly positive mean curvature. Weak solutions of the flow can be
used to derive energy estimates in General Relativity, see [17] and the references therein.

In [18], Huisken and Ilmanen studied further regularity properties of inverse mean cur-
vature flow with compact starshaped initial data of nonnegative mean curvature by a more
classical approach than their works in [16,17]. They showed that starshapedness combined
with the ultra fast-diffusion character of the equation, imply that at time t > 0 the mean
curvature of the surface becomes strictly positive yielding to C∞ regularity. No extra regu-
larity assumptions on the initial data are necessary. This work is reminiscent of well known
estimates for the fast-diffusion equation

ϕt = ∇i (ϕ
m−1∇iϕ), on � × (0, T ) (1.2)

on a domain � ⊂ R
n and with exponents m < 1. We will actually see in the next section

that under inverse mean curvature flow, the mean curvature H satisfies an ultra-fast diffusion
equationmodeled on (1.2) withm = −1. Thework in [18] heavily uses that the initial surface
is compact which corresponds to the domain � in (1.2) being bounded. However, the case
of non-compact initial data has never been studied before.

Motivated by the theory for the Cauchy problem for the ultra-fast diffusion equation (1.2)
on R

n × (0, T ), we will study in this work equation (1.1) in the case that the initial surface
M0 is an entire graph over Rn , i.e. there exists a vector ω ∈ R

n+1, |ω| = 1 such that

〈ω, ν〉 < 0, on M0.

We will take from now on ω to be the direction of the xn+1 axis, namely ω = en+1 ∈ R
n+1.

A solution Mt of (1.1) can then be expressed (at each instant t) as the graph F̄(x, t) =
(x, ū(x, t)) of a function ū : Rn × [0, T ) → R. In this parametrization, the inverse mean
curvature flow (1.1) is, up to diffeomorphisms, equivalent to

(
∂

∂t
F̄(x, t)

)⊥
= H−1(x, t) ν(x, t), x ∈ R

n (1.3)
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where ⊥ denotes the normal component of the vector. Equation (1.3) can then be expressed
in terms of the height function xn+1 = ū(x, t) as the fully nonlinear equation

ūt = −
√
1 + |Dū|2

(
div

(
Dū√

1 + |Dū|2
))−1

. (1.4)

Entire graph solutions of the mean curvature flow have been studied by Ecker and Huisken
in [8,9]. It follows from these works, which are based on local a’priori estimates, that the
mean curvature flow behaves in some sense better than the heat equation on R

n : for an
initial data M0 which is an entire graph over Rn , no growth conditions are necessary to
guarantee the long time existence of the flow for all times t ∈ (0,+∞). See also in [11] for
evolution of entire convex graphs by powers of mean curvature. In the case of other flows,
the evolution of entire convex graphs was studied in the work by Alessandroni and Sinestrari
[1] and Holland [15]. Recently, entire graph solutions of fully-nonlinear flows by powers
of Gaussian curvature were studied by Choi, Daskalopoulos, Kim and Lee in [4]. This is
an example of slow diffusion which becomes degenerate at spatial infinity. Finally, entire
convex graph solutions of other fully-nonlinear flows which are homogeneous of degree one
were recently studied by Choi and Daskalopoulos in [3].

This work concerns with the long time existence of inverse mean curvature flow for an
initial data M0 which is an entire graph. In a first step we will establish in Theorem 4.1
the existence for all times t ∈ (0,+∞) of solutions with strictly meanconvex initial data
M0 = {xn+1 = ū0(x)} having superlinear growth at infinity, namely lim|x |→+∞ |Dū0(x)| =
+∞, and satisfying a uniform "δ-star-shaped" condition 〈F − x̄0, ν〉 H ≥ δ > 0 for some
x̄0 ∈ R

n+1. These conditions for example hold for initial data ū0(x) = |x |q , for q > 1. The
proof of this result uses in a crucial way the evolution of 〈F − x̄0, ν〉 H and the maximum
principle which guarantees that this quantity remains bounded from below at all times.

The main result of the paper proves long-time existence and uniform finite time singular
convergence for convex entire graphs with conical behavior at infinity. We will assume that
M0 lies between two rotationally symmetric cones xn+1 = ζi (·, 0), with ζ1(·, 0) := α0 |x |
and ζ2(·, 0) := α0 |x | + κ , x ∈ R

n , namely ū satisfies

α0 |x | ≤ ū(·, 0) ≤ α0 |x | + κ, on R
n (1.5)

for some constants α0 > 0 and κ > 0.

(1.6)

We will see that Mt will remain convex and will lie between the cones ζ1(x, t) = α(t) |x |
and ζ2(x, t) = α(t) |x | + κ which are explicit solutions of (1.1), namely

α(t) |x | ≤ ū(·, t) ≤ α(t) |x | + κ, on R
n . (1.7)

The coefficient α(t) is determined in terms of α0 by the ordinary differential equation (3.3).
We will see in Sect. 3 that α(t) ≡ 0 at a finite time T = T (α0), which means that the cone
solutions ζi become flat at time T (α0). Our goal in this work is to establish that the solution
Mt of (1.1) with initial data M0 will also exist up to this critical time T , as stated next.
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53 Page 4 of 37 P. Daskalopoulos, G. Huisken

Theorem 1.1 Let M0 be an entire convex C2 graph xn+1 = ū0(x) overRn which lies between
the two cones as in condition (1.5). Assume in addition that the mean curvature H of M0

satisfies the global bound

c0 ≤ H 〈F, ω〉 ≤ C0. (1.8)

Let T = T (α0) denote the lifetime of the cone with initial slope α0. Then, there exists a
unique C∞ smooth solution Mt of the (1.1) for t ∈ (0, T ) which is an entire convex graph
xn+1 = ū(x, t) over Rn and satisfies estimate (1.7) and has H > 0 for all t ∈ (0, T ). As
t → T , the solution converges in C1,α to some horizontal plane of height h ∈ [0, κ].
Remark 1.1 (Vanishing mean curvature) Condition (1.8) implies that the initial data M0 has
strictly positive mean curvature H > 0. Actually for generic initial data which is a graph
xn+1 = ū0(x) satisfying (1.5) one expects that H(x, ū0(x)) ∼ |x |−1 as |x | → +∞. Hence,
under the extra assumption H > 0 one has that (1.8) holds. It would be interesting to see if
it is possible that the result of Theorem 1.1 is valid under the weaker assumption that (1.8)
holds only near spatial infinity, thus allowing the mean curvature H to vanish on a compact
set of M0.

Remark 1.2 The solutions in Theorem 1.1 have linear growth at infinity and they are critical
in the sense that all other solutions are expected to live longer. For conical at infinity initial
data, one has 〈F − x̄0, ν〉 H ∼ |x |−1 as x → +∞. We will see that maximum principle
arguments do not apply in this case to give us the required bound from below on H which
will guarantee existence. One needs to use integral bounds involving H . Since our solutions
are non-compact special account needs to be given to the behavior at infinity of our solution.
This is one of the challenges in this work.

Remark 1.3 (Graphical parametrization) While we use the graphical parametrization in con-
ditions (1.5) and (1.7) and to establish the short time existence of our solution, for all the
a priori estimates, which will occupy the majority of this work, we will use the geometric
parametrization in (1.1) where ∂F(z, t)/∂t is assumed to be in the direction of the normal ν.
This is because the evolution of the various geometric quantities becomes more simplified
in the case of equation (1.1). In particular, ū := ū(x, t), x ∈ R

n will denote the height
function in the graph parametrization, while u := 〈F, ω〉 will denote the height function in
the geometric parametrization.

2 The geometric equations and preliminaries

We recall the evolution equations for various geometric quantities under the inverse mean
curvature flow. Let g = {gi j }1≤i, j≤n and A = {hi j }1≤i, j≤n be the first and second funda-
mental form of the evolving surfaces, let H = gi j hi j be the mean curvature, 〈F − x̄0, ν〉 be
the support function with respect to a point x̄0 ∈ R

n+1 and dμ the induced measure on Mt .

Lemma 2.1 (Huisken, Ilmanen [18]) Smooth solutions of (1.1) with H > 0 satisfy

(1)
∂

∂t
gi j = 2

H
hi j

(2)
∂

∂t
dμ = dμ

(3)
∂

∂t
ν = −∇H−1 = 1

H2 ∇H
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(4)
∂

∂t
hi j = 1

H2 �hi j − 2

H3∇i H∇ j H + |A|2
H2 hi j

(5)
∂

∂t
H = ∇i

( 1

H2 ∇i H
) − |A|2

H
= 1

H2 �H − 2

H3 |∇H |2 − |A|2
H

(6)
∂

∂t
H−1 = 1

H2 �H−1 + |A|2
H2 H−1

(7)
∂

∂t
〈F − x̄0, ν〉 = 1

H2 � 〈F − x̄0, ν〉 + |A|2
H2 〈F − x̄0, ν〉.

We will next assume that Mt is a graph in the direction of the vector ω and a smooth
solution of (1.1) on 0 < t ≤ τ with H > 0 and we will derive the evolution of other useful
geometric quantities under the IMCF. We will use the following identities that hold in terms
of a local orthonormal frame {ei}1≤i≤n on Mt :

∇eiν = hi j ej, ∇ei ej = −hi j ν, ∇ei ei = −H ν. (2.1)

Lemma 2.2 The norm of the position vector |F |2 satisfies(
∂

∂t
− 1

H2 �

)
|F |2 = −2nH−2 + 4H−1 〈F, ν〉. (2.2)

Proof We have

∇i |F |2 = 2〈F, ei〉, �|F |2 = 2n − 2H〈F, ν〉
and

∂

∂t
|F |2 = 2 〈F, Ft 〉 = 2 H−1 〈F, ν〉

which readily gives (2.2). ��
Lemma 2.3 For any x̄0 ∈ R

n+1 the support function H 〈F − x̄0, ν〉 satisfies the equation(
∂

∂t
− 1

H2 �

)
(H 〈F − x̄0, ν〉) = − 2

H3 ∇H · ∇(
H 〈F − x̄0, ν〉). (2.3)

Proof Readily follows by combining the evolution equations of H and 〈F − x̄0, ν〉. ��
Lemma 2.4 For a graph solution Mt , the quantity 〈ω, ν〉 satisfies(

∂

∂t
− 1

H2 �

)
〈ω, ν〉 = |A|2

H2 〈ω, ν〉. (2.4)

Proof We have

∂

∂t
〈ω, ν〉 = 〈ω,

∂

∂t
ν〉 = 1

H2 〈ω,∇H〉.
On the other hand

1

H2 � 〈ω, ν〉 = 1

H2 ∇i
(
hik 〈ω, ek〉

) = 1

H2 〈ω,∇H〉 − |A|2
H2 〈w, ν〉.

Hence, (2.4) holds. ��
Lemma 2.5 For a graph solution Mt , the function ϕ := −H〈ω, ν〉 > 0 satisfies(

∂

∂t
− 1

H2 �

)
ϕ = − 2

H3 ∇H · ∇ϕ. (2.5)
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Proof Readily follows by combining the evolution of H and (2.4). ��
Lemma 2.6 For a graph solution Mt , the height function u := 〈F, ω〉 satisfies the evolution
equation (

∂

∂t
− 1

H2 �

)
u = 2

H
〈ω, ν〉. (2.6)

Proof It follows from

∂

∂t
〈F, ω〉 = 1

H
〈ω, ν〉 and �〈F, ω〉 = ∇i 〈ei, ω〉 = −H 〈ω, ν〉.

��
We next consider the quantity

〈F̂, ν〉 := −〈F, ω〉 〈ω, ν〉
which will play a crucial role in this work.We will assume that our origin 0 ∈ R

n+1 is chosen
so that 〈F, ω〉 > 0 (in particular this holds if Mt lies above the cone xn+1 = α(t) |x | as in
the picture (1.6)). Since 〈ω, ν〉 < 0, we have 〈F̂, ν〉 > 0 on Mt for all 0 ≤ t < τ .

Lemma 2.7 The quantity 〈F̂, ν〉 := −〈F, ω〉 〈ω, ν〉 > 0 satisfies the equation(
∂

∂t
− 1

H2 �

)
〈F̂, ν〉 = |A|2

H2 〈F̂, ν〉 − 2

H
〈ω, ν〉2 + hi j

H2 〈ei, ω〉 〈ej, ω〉. (2.7)

Proof Using the evolution equations for 〈F, ω〉 and 〈ω, ν〉 shown in Lemmas 2.4 and 2.6
respectively, we conclude that(

∂

∂t
− 1

H2 �

)
〈F̂, ν〉 = |A|2

H2 〈F̂, ν〉 − 2

H
〈ω, ν〉2 + 1

H2 ∇i 〈F, ω〉∇i 〈ω, ν〉.

Since

∇i 〈F, ω〉∇i 〈ω, ν〉 = hi j 〈ei, ω〉 〈ej, ω〉
the above readily yields (2.7). ��
Lemma 2.8 The product v := 〈F̂, ν〉 H satisfies the evolution equation

∂

∂t
v − ∇i

(
1

H2 ∇iv

)
= −2 〈ω, ν〉2 + hi j

H
〈ei, ω〉 〈ej, ω〉. (2.8)

Proof Combining the evolution equation of H given in Lemma 2.1 with (2.7), gives(
∂

∂t
− 1

H2 �

)
v = − 2

H2 ∇〈F̂, ν〉∇H− 2

H3 〈F̂, ν〉 |∇H |2−2 〈ω, ν〉2+ hi j
H

〈ei, ω〉 〈ej, ω〉

= − 2

H3 ∇v∇H − 2 〈ω, ν〉2 + hi j
H

〈ei, ω〉 〈ej, ω〉
from which (2.8) readily follows. ��
Lemma 2.9 Under the additional assumption that Mt is convex, the function v−1 :=
(〈F̂, ν〉 H)−1 satisfies

∂

∂t
v−1 − ∇i

(
1

H2 ∇iv
−1

)
≤ − 2

H2v−1 |∇v−1|2 + 2 〈ω, ν〉2v−2. (2.9)
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Proof Let v := 〈F̂, ν〉 H as in Lemma 2.8. We have(
∂

∂t
− 1

H2 �

)
v−1 = − 1

v2

(
∂

∂t
− 1

H2 �

)
v − 2

H2v3
|∇v|2

= − 2

H3 ∇v−1∇H − 2

H2v3
|∇v|2

+ 2 〈ω, ν〉2v−2 − hi j
H

〈ei, ω〉 〈ej, ω〉 v−2

which implies (2.9) since hi j 〈ei, ω〉 〈ej, ω〉 ≥ 0 by convexity. ��
Throughout this paper we will make use of the comparison principle in our non-compact

setting. Although rather standard under our assumptions, for the convenience of the reader
we will show next a proposition which justifies this. The assumptions are made so that it is
applicable in our setting.

Proposition 2.10 (Comparison principle)Assume that f ∈ C2(Rn×(0, τ ))∩C0(Rn×(0, τ ))

satisfies the linear parabolic inequality

ft ≤ ai j Di j f + bi Di f + c f , on R
n × (0, τ )

for some τ > 0 with coefficients which are measurable functions and satisfy the bounds

λ|ξ |2 ≤ ai j (x, t) ξiξ j ≤ �|ξ |2 (|x |2 + 1), (x, t) ∈ R
n × [0, τ ], ξ ∈ R

n (2.10)

and

|bi (x, t)| ≤ �(|x |2 + 1)1/2, |c(x, t)| ≤ �, (x, t) ∈ R
n × [0, τ ] (2.11)

for some constants 0 < λ < � < +∞. Assume in addition that the solution f satisfies the
polynomial growth upper bound

f (x, t) ≤ C (|x |2 + 1)p, on R
n × [0, τ ]

for some p > 0. If f (·, 0) ≤ 0 on R
n, then f ≤ 0 on R

n × [0, τ ].
Proof To justify the application of the maximum principle it is sufficient to construct an
appropriate supersolution ϕ of our equation. We look for such a supersolution in the form

ϕ(x, t) = eθ t (|x |2 + 1)q

for some exponent q > p and θ = θ(�, q) > 0 to be determined in the sequel. Defining the
operator

Lϕ := ai j Di jϕ + bi Diϕ + c ϕ

a direct calculation shows that under the assumptions on our coefficients we have

ϕt − Lϕ ≥ (
θ − C(�, q)

)
ϕ

for some constantC(�, q) depending only on�, q and the dimension n. Hence, by choosing
θ := 2C(�, q) we conclude that ϕ satisfies the inequality

ϕt − Lϕ > 0.

Now, setting ϕε := ε ϕ, we have

f (x, t) ≤ ϕε(x, t), for |x | ≥ Rε, 0 ≤ t ≤ τ

123
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for Rε >> 1, since we have taken q > p. Since, fε ≤ 0 ≤ ϕε by assumption, the maximum
principle guarantees that f ≤ ϕε on R

n × (0, τ ) and by letting ε → 0 we conclude that
f ≤ 0 on on R

n × [0, τ ] as stated in our proposition. ��
We will establish next, using the maximum principle, local and global L∞ bounds from

above on the mean curvature of our solution Mt . We begin with the local bound. For the fixed
point x̄0 ∈ R

n+1 and number r > 1, we consider the cut off function

η := (r2 − |F − x̄0|2)2+.

Proposition 2.11 (Local bound from above on H) For a solution Mt of (1.1) on t ∈ [0, τ ],
τ > 0, if supM0

η(F(·, 0)) H(·, 0) ≤ C0, then

sup
Mt

η(F(·, t)) H(·, t) ≤ max(C0, 2n r
3). (2.12)

Proof We work on a local orthonormal frame {ei}1≤i≤n on Mt where identities (2.1) hold.
We have

∇iη = −4 (r2 − |F − x̄0|2)+ 〈F − x̄0, ei〉 = −4η1/2 〈F − x̄0, ei〉
and

�η = 8|(F − x̄0)
T |2 − 4n η1/2 + 4η1/2〈F − x̄0, ν〉 H

and

∂η

∂t
= −4η1/2 〈F − x̄0, Ft 〉 = −4η1/2 〈F − x̄0,

1

H
ν〉 = −4η1/2

1

H
〈F − x̄0, ν〉.

We recall the H evolves by the equation

∂

∂t
H = 1

H2 �H − 2

H3 |∇H |2 − |A|2
H

.

Using also the bound |A|2/H ≥ H/n, it follows that

∂(ηH)

∂t
≤ 1

H2 η �H − 2

H3 |∇H |2 η − H

n
η − 4η1/2〈F − x̄0, ν〉.

Since

1

H2 �(ηH) = 1

H2 η �H + 2

H2 ∇i H ∇iη + 1

H
�η

the above yields

∂(ηH)

∂t
≤ 1

H2 �(ηH) − 2

H2 ∇i H ∇iη − 8

H
|(F − x̄0)

T |2

+4n

H
η1/2 − 2

H3 |∇H |2η − H

n
η.

Using

2

H3∇i H∇i (ηH) = 2

H2 ∇i H ∇iη + 2

H3 |∇H |2 η

123
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we conclude that ϕ := ηH satisfies

∂ϕ

∂t
≤ 1

H2 �ϕ − 2

H3 ∇i H∇iϕ + 4n

ϕ
η3/2 − ϕ

n
.

For the fixed r > 0 and x̄0 ∈ R
n+1, let

m(t) := max
Mt

Hη = max
Mt

ϕ.

Since η ≤ r4, it follows from the above differential inequality that m(t) will decrease if

r6
4n

m(t)
− m(t)

n
≤ 0 ⇐⇒ m2(t) ≥ 4n2 r6 ⇐⇒ m(t) ≥ 2n r3.

Hence

m(t) ≤ max (m(0), 2n r3).

��
Remark 2.1 We note that Proposition 2.11 does not require the convexity of Mt .

Proposition 2.12 (Global bound from above on H) For a convex graph solution Mt of (1.1)
on t ∈ [0, τ ], if supM0

〈F, ω〉H(·, 0) < ∞, then

sup
t∈[0,τ ]

sup
Mt

〈F, ω〉H ≤ sup
M0

〈F, ω〉H . (2.13)

Proof We will compute the evolution of 〈F, ω〉H ≥ 0 from the evolution of H given in
Lemma 2.1 and the evolution of the height function 〈F, ω〉 given by (2.6). Indeed, combining
these two equations leads(

∂

∂t
− 1

H2 �

)
(〈F, ω〉H) = − 2

H3 |∇H |2 〈F, ω〉 − 2

H2 ∇H · ∇〈F, ω〉

−|A|2
H

〈F, ω〉 + 2 〈ω, ν〉.
Writing

2

H3 |∇H |2 〈F, ω〉 + 2

H2 ∇H · ∇〈F, ω〉 = 2

H3 ∇H · ∇(〈F, ω〉H)

and using 〈F, ω〉 ≥ 0 and 〈ω, ν〉 ≤ 0, we conclude that 〈F, ω〉H satisfies(
∂

∂t
− 1

H2 �

) (〈F, ω〉H) ≤ − 2

H3∇H · ∇(〈F, ω〉H)

and the bound (2.13) readily follows by the comparison principle. ��

3 Self-similar solutions

We will study in this section self-similar entire graph solutions xn+1 = ū(x, t) of the IMCF
equation (1.4) which have polynomial growth at infinity, namely ū(x, t) ∼ |x |q , with q ≥ 1.
These solutions are all rotationally symmetric.

First, we consider rotationally symmetric infinite cones in the direction of the vector
ω = en+1. If the vertex P ∈ R

n+1 of the cone is the origin 0 ∈ R
n+1 for its position vector
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F , then 〈F, ν〉 = 0, otherwise 〈F, ν〉 = 〈P, ν〉. Since the cone is a rotationally symmetric
graph, in its graph parametrization F̄(x, t) := (x, ζ(|x |, t)), x ∈ R

n it is given by a height
function

ζ(r , t) = α(t) r + κ, r := |x |, x ∈ R
n (3.1)

for a constant κ ∈ R. The function ζ is a solution of the equation

ζt = − (1 + ζ 2
r )2

ζrr + (n − 1) (1 + ζ 2
r ) ζr/r

(3.2)

which is satisfied by any rotationally symmetric graph F̄(x, t) := (x, ū(|x |, t)), x ∈ R
n

which evolves by equation (1.3).

It follows from (3.2) that α(t) satisfies the ODE

α′(t) = − 1

n − 1

(
α(t) + 1

α(t)

)
. (3.3)

On the conical solution we have

〈ω, ν〉 = − 1√
1 + α(t)2

(3.4)

and

H(r , t) = (n − 1) α(t)

r
√
1 + α(t)2

. (3.5)

We conclude that on the conical solution

v := −〈F, ω〉 〈ω, ν〉 H = γ (t) := (n − 1) α(t)2

1 + α(t)2
.

Setting

β(t) := 〈ω, ν〉2 = 1

1 + α(t)2

we have

γ (t) = (n − 1) (1 − β(t)).

To compute the evolution of γ (t) and β(t) it is simpler to use the equations (2.4) and (2.7)
which directly give

β ′(t) = 2

(n − 1)
β(t) and γ ′(t) = −2 β(t).
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This is correct since γ (t) and β(t) are independent of the parametrization. We conclude that

β ′(t) = 2

(n − 1)
β(t) and γ ′(t) = 2

(
γ (t)

n − 1
− 1

)
. (3.6)

Solving the last ODE’s with initial conditions β0 ∈ (0, 1) and γ0 := (n − 1) (1− β0) yields

β(t) = β0 e
2t/(n−1) and γ (t) = (n − 1)

(
1 −

(
1 − γ0

(n − 1)

)
e2t/(n−1)

)
. (3.7)

Finally, recalling that 1 + α2(t) = β(t)−1, we conclude that the slope α(t) of the conical
solution is

α(t) = (
(1 + α2

0) e
−2t/(n−1) − 1

)1/2
.

It is clear from the above equations that the conical solution will become flat at time T (α0)

given by

T (α0) = n − 1

2
log(1 + α2

0) = n − 1

2
log

(
n − 1

(n − 1) − γ0

)
. (3.8)

Next, let us briefly discuss other self-similar solutions of equation (1.4) which exists for
all time t > 0 and they are also rotationally symmetric. It is simple to observe that the time
t cannot be scaled in the fully-nonlinear equation (1.4). Nevertheless, equation (1.4) admits
(non-standard) self-similar solutions of the form

ūλ(x, t) = eλt ūλ(e
−λt x), (x, t) ∈ R

n × R (3.9)

for a suitable range of exponents λ > 0, where xn+1 = ūλ(x) are entire convex graphs over
R
n . The function xn+1 = ūλ(x), x ∈ R

n satisfies the fully-nonlinear elliptic equation

div

(
Dū√

1 + |Dū|2
)

= 1

λ

√
1 + |Du|2

x · Dū − ū
. (3.10)

Although equation (3.10) may possess non-radial solutions, restricting ourselves to rotation-
ally symmetric solutions xn+1 = ūλ(r), r = |x |, it follows that ū := ūλ(r) satisfies the
ODE

ūrr + (n − 1) (1 + u2r )
ūr
r

− 1

λ

((1 + ū2r )
2

r ūr − ū
= 0. (3.11)

One needs to impose condition ū(0) = κ < 0 to guarantee the existence of an entire convex
solution. The following was shown by the authors and J. King in [6].

Theorem 3.1 (The existence of self-similar solutions) For every λ > 1/(n − 1) and κ < 0,
there exists a unique rotationally symmetric entire convex solution xn+1 = ūλ(r) of (3.10)
onRn with ūλ(0) = κ . In addition, ū := ūλ satisfies the following flux condition at r = +∞

lim
r→∞

r ur (r)

u(r)
= q, q := λ (n − 1)

(n − 1) λ − 1
. (3.12)

The condition (3.12) shows that uλ(x) ∼ |x | λ (n−1)
(n−1) λ−1 as |x | → ∞. Notice that sinceλ is any

number λ > 1/(n − 1), the exponent q := λ (n−1)
(n−1) λ−1 covers the whole range q ∈ (1,+∞),

hence each solution uλ has a polynomial growth at infinity larger than that of the conical
solution xn+1 = α(t) |x | + κ . It would be interesting to see whether the limit limλ→+∞ uλ

gives the conical solution or possibly another solutionwith super linear behavior as |x | → ∞.
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4 The super-linear case and short time existence

In this section we assume that M0 is an entire graph {xn+1 = ū(·, 0)} overRn in the direction
of the vector ω := en+1. We first prove long-time existence for solutions to (1.1) with
superlinear growth that are δ-starshaped (see below) and then we establish the short-time
existence for the critical case of convex solutions that lie between the rotationally symmetric
cones xn+1 = ζi (·, 0), with ζ1(·, 0) := α0 |x | and ζ2(·, 0) := α0 |x | + κ , x ∈ R

n , as in (1.5).
The solutions Mt are then given as the graph of ū(·, t) satisfying (1.4).

In our first result, Theorem 4.1 below, we will assume that the initial data M0 is an entire
graph xn+1 = ū0(x) over Rn with superlinear growth at infinity, i.e.

|Dū0(x)| → ∞, ū0(x) → ∞, for |x | → ∞ (4.1)

and is strictly starshaped with a uniformity condition:
We say that M0 is δ-starshaped if there is a point x̄0 ∈ R

n+1 ∩ {(x, xn+1)|u0(x) < xn+1}
and a constant δ > 0 such that the mean curvature H satisfies

H〈F − x̄0, ν〉 ≥ δ > 0 (4.2)

everywhere on M0. By Lemma 2.3, this condition which provides a scaling invariant quan-
titative measure for the starshapedness of a hypersurface, is preserved under inverse mean
curvature flow whenever the maximum principle can be applied.

Theorem 4.1 (Existence for superlinear initial data) Assume that the initial surface M0 is
an entire graph {(x, xn+1)| x ∈ R

n, xn+1 = ū0(x)} with ū0 ∈ C2(Rn) and satisfying the
assumptions (4.1) and (4.2), for some x̄0 ∈ R

n+1. Then, there is a smooth solution F :
Mn × [0,∞) → R

n+1 of the inverse mean curvature flow (1.1) for all times t > 0 that can
be written as a graph Mt = F(·, t)(Mn) = {xn+1 = ū(x, t)} with initial data M0. If ū0 is
convex, then the solution Mt is also convex for all time.

Remark 4.1 (i) It is easy to see that the assumptions (4.1) and (4.2) are satisfied if ū0(x) =
|x |q , provided q > 1.

(ii) The condition “δ-starshaped" is reminiscent but different from the “δ-non-collapsed"
condition that has been used in mean curvature flow.

Remark 4.2 In the case of convex initial data, the condition ū0 ∈ C2(Rn) in Theorem 4.1may
be replaced by the weaker condition ū0 ∈ C2

loc(R
n), since the mean curvature is uniformly

controlled on compact sets.

Proof By translating the surface we may assume that x̄0 = 0 is the origin of Rn+1; then
ū0(x) ≥ C0 is bounded below everywhere by some negative constant. For the proof we will
assume that ū0 ∈ C2,α(Rn). For initial data just inC2 as our theorem states, the result follows
by approximation in view of the estimates we establish.

By the assumption (4.1) we may choose R0 > 1 such that |Dū0(x)| ≥ 100 provided
|x | ≥ R0. We want to approximate M0 with compact surfaces by replacing the region
{ū0 ≥ R} of the surface with the reflection of the region {ū0 ≤ R} on the plane at height R.
Set, for each R ≥ R0

û0,R(x) := 2R − ū0(x) (4.3)

and set

E0,R := {(x, xn+1) ∈ R
n × R : ū0(x) < xn+1 < û0,R(x)}, �0,R := ∂E0,R . (4.4)
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The outer unit normals ν and ν̂ to the lower and and upper part of �0,R are given by

(Dū0,−1)√
1 + |Dū0|2

and
(−Dû0,R, 1)√
1 + |Dû0,R |2 (4.5)

respectively, where by definition Dû0,R(x) = −Dū0(x) and the mean curvatures H and Ĥ
satisfy Ĥ(x, û0,R(x)) = H(x, ū0(x)). In particular we get that for (x, xn+1) ∈ �0,R with
xn+1 = R

〈ν, ν̂〉(x, xn+1) = |Dū0(x)|2 − 1

|Dū0(x)|2 + 1
≥ 1 − 10−3. (4.6)

In addition we compute that F̂R(x, 0) := (x, û0,R(x) satisfies

Ĥ(x, û0,R(x))〈F̂R(x, 0), ν̂〉(x, û0,R(x))

= H(x, ū0,R(x))√
1 + |Dū0,R(x)|2

(
〈(x, ū0,R(x), (−Dū0,R(x), 1)〉

)

= H(x, ū0(x))√
1 + |Dū0(x)|2

(
〈(x, 2R − ū0(x), (Dū0(x), 1)〉

)

= H(x, ū0(x))〈F(x), ν〉(x, ū0(x)) + 2R√
1 + |Dū0(x)|2

≥ δ > 0

such that the surface �R = ∂ER is again uniformly δ-starshaped. If the initial function u is
convex, all regions ER are convex as well.

Next we smoothen out the region xn+1 = ū0(x) = R using mean curvature flow:

Lemma 4.2 Given ū0 ∈ C2,α(Rn), for each �R = ∂ER as above there is a one-parameter
family of hypersurfaces � : Sn × [0, sR] → R

n+1, �(·, s)(Sn) = �R(s), sR > 0, with
initial data �R(0) = �R satisfying mean curvature flow

d

ds
�(p, s) = −→

H (�(p, s)), p ∈ Sn, s ∈ [0, sR]. (4.7)

The surfaces �R(s), s ∈ [0, sR], are smooth and approach �R in C0,1/2 as s → 0. For
small sR > 0 they are δ̃-starshaped with δ̃ ≥ δ − o(sα/2). We may choose σR ∈ (0, sR] such
that σR → 0 as R → ∞ and all�R(σR) are uniformly bounded in C2,α . If u0 is convex, then
�R(σR) is strictly convex with some lower bound λR > 0 for all its principal curvatures.

Proof of Lemma 4.2 �R is a uniformly Lipschitz hypersurface over its tangent spaces in view
of (4.6), so we may solve mean curvature flow for a short time with �R as initial data,
compare ([9], Theorems 3.4 and 4.2), to obtain a smooth solution �R(s) for (4.7) on some
time interval (0, sR], sR > 0 which approaches the initial data in C0,1/2 as s → 0. For small
s > 0 this solution has strictly positive mean curvature; this follows from the fact that �R

provides a barrier for Mean curvature flow and can be approximated by a smooth surface of
strictly positive mean curvature from the inside, e.g. by gluing in arbitrary small sectors of an
approximate cylinder along the edge xn+1 = R. Since ū0 ∈ C2,α(Rn), the interior regularity
estimates in [9] combined with Schauder theory yield∣∣∣H(�(p, s)) − H(�(p, 0))

∣∣∣ ≤ c(R) r(p)−1−α sα/2 (4.8)

where r(p) = |�n+1(p, 0)−R| is the distance to the singular set {xn+1 = R} and c(R) < ∞
depends on the C2,α- norm of ū0 on BR(0). If y = �(p0, 0) with yn+1 = R is a point on
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the edge formed between graph(ū0) and graph(û0,R), then in view of the uniform Lipschitz
estimates for small s a rescaling of �R(s) around y for s → 0 converges to the solution
of mean curvature flow �(s) × R

n−1, 0 < s < ∞, where �(s) is the unique selfsimilar
expanding solution of curve-shortening flow in the 2-plane containing en+1 and Dū0(p0)
that is associated with the angle between ν(p0) and ν̂(p0). The unit normal to this solution
interpolates between ν(p0) and ν̂(p0) while its geodesic curvature decays exponentially, in
fact it has been shown in ([12], Lemma 6.4 ) that its geodesic curvature κ(r , s) at time s and
distance r from y is given by

κ(r , s) = 1√
2s

κmax

(
1

2

)
exp

(
κ2
max

(
1

2

)
s − r2(p, s)

4s

)
. (4.9)

Here κmax(1/2) is determined by the opening angle between ν, ν̂ in such a way that
κmax(1/2) → 0 as this opening angle tends to 0, or, equivalently, |Dū0| → ∞ on the
edge {xn+1 = R} as R → ∞. Let κR be the largest such κmax (1/2) arising from an opening
angle on the edge {xn+1 = R}. If we then choose σR ∈ (0, SR] smaller than κ2

R we see that the
surfaces �R(σR) are uniformly bounded in C2,α in view of (4.9) and Schauder theory while
approximating M0 uniformly in C2,α as R → ∞ since σR ≤ κ2

R → 0. Combining then the
δ-starshapedness in (4.2), (4.7) with the estimates (4.8) and (4.9) we see that �R(σR) must
be δ̃-starshaped with δ̃ ≥ δ − o(σα/2

R ). If the function ū0 is convex then �R(s), s > 0 will
be uniformly convex by the strong parabolic maximum principle, i.e. there will be λR > 0
such that the eigenvalues λi , 1 ≤ i ≤ n of the second fundamental form all satisfy λi ≥ λR

everywhere on �R(σR). ��

Proof of Theorem 4.1 continued Given a sequence of radii Ri → ∞ we may choose param-
eters σi := σRi → 0 as in the preceding lemma with corresponding smooth approximating
surfaces�i := �Ri (σi )with�i = ∂Ei such that Ei ⊂ E j for i < j and�i is δi -starshaped
with δi → δ as i → ∞. From the work of Gerhardt [13] (see also Urbas [22]), for each
approximating surface �i there is a smooth solution �i (t), t ∈ [0,∞) of inverse mean cur-
vature flow starting from �i that approaches a homothetically expanding sphere as t → ∞.
We now combine the δi - starshapedness for each R > 0 with the local bound on the mean
curvature obtained in proposition 2.11 such that

0 < δi ≤ H〈F, ν〉 ≤ max

(
4 max
M0∩BR(0)

H ,
8n

R

)
〈F, ν〉 := C1(R)〈F, ν〉 (4.10)

and therefore

0 <
δi

C1(R)
≤ 〈F, ν〉 ≤ R (4.11)

holds everywhere on �i (t) ∩ BR/2(0) when Ri > 2R. Hence �i (t) is uniformly starshaped
in BR/2(0) and we may use the local curvature bound in ([14], Theorem 3.6 and Remark 3.7)
to conclude that

|A|2 ≤ C2 max( max
M0∩BR(0)

|A|2, R−1 max
M0∩BR(0)

H + R−2). (4.12)

holds everywhere on �i (t) ∩ BR/4(0) when Ri > 2R, where C2 depends on n and
(R maxM0∩BR(0) H). Thus the solutions satisfy uniform curvature estimates independent
of i on any compact set. Higher regularity then follows from known theory, see in [20]. To
obtain a subsolution we choose for each T < ∞ an 0 < α0 = α0(T ) < ∞, κ(T ) > −∞
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such that the conical solutions

ζ(x, t) = α(t) |x | + κ(T ), α(0) = α0

from Sect. 3 provide a lower barrier for all�i (t) on t ∈ [0, T ). Here α0 is chosen so that T is
the lifetimeof the cones ζ(·, t). It follows thatwe canpass to the limit to obtain a solutionMt of
the inversemean curvature flowwhich is defined for all t ∈ (0,+∞) and isC∞ smooth. Note
that Mt is again an entire graph: For each ρ > 0 the initial hypersurface M0 is δ-starshaped
also with respect to x̄ρ = ρω since H〈F − x̄ρ, ν〉 = H〈F, ν〉 − ρH〈ω, ν〉 ≥ δ > 0 as
〈ω, ν〉 ≤ 0. If Ri > ρ this will also be true for �i (0) and hence, by the maximum principle,
on all �i (t). Thus 〈F − ρω, ν〉 > 0 for all ρ > 0 everywhere on all Mt . Dividing by ρ and
letting ρ → ∞ on compact subsets yields 〈−ω, ν〉 ≥ 0 and hence 〈−ω, ν〉 > 0 by the strong
maximum principle as desired.

If the initial surface M0 is convex, then each �i (0) is uniformly convex by Lemma 4.2.
Then in view of the result of Urbas [22] the surfaces �i (t), t ∈ [0,∞) are also uniformly
convex proving that all limit surfaces Mt are convex in this case. This completes the proof
of the longtime existence of solutions with superlinear, δ-starshaped initial data, as stated in
Theorem 4.1. ��

We will give next a short time existence result for convex initial data M0 which lies
between two cones as in condition (1.5).

Theorem 4.3 (Short time existence of asymptotically conical solutions) Let M0 be an entire
convex graph xn+1 = ū0(x) over Rn which satisfies condition (1.5). Assume in addition that
the mean curvature H of M0 satisfies the global bounds

0 < c0 ≤ H 〈F, ω〉 ≤ C0. (4.13)

Then, there exists τ > 0 and a unique C∞ smooth solution Mt of (1.1) for t ∈ (0, τ ] which
is an entire convex graph xn+1 = ū(x, t) over Rn and satisfies condition (1.7). Moreover, on
Mt we have

cτ ≤ H 〈F, ω〉 ≤ C, for all t ∈ (0, τ ] (4.14)

for a constant cτ > 0 depending on τ and C := max (C0, 2n).

Remark 4.3 We note that on the graph M0 of any convex function ū0 ∈ C2
loc(R

n) which
satisfies condition (1.5) one has

0 ≤ −〈F, ν〉 ≤ C0 (4.15)

for some constant C0 which can be taken without loss of generality to be equal to C0 in
(4.13).

Proof For ε ∈ (0, 1), consider the approximations Mε
0 of the initial surface M0 defined as

entire graphs xn+1 = ū0,ε(x), with

ū0,ε(x) = ū0(x) + ε (|x |2 + 1), x ∈ R
n . (4.16)

Then, each ū0,ε satisfies the conditions of Theorem4.1 (with ūε,0 ∈ C2
loc instead of ū0,ε ∈ C2)

and in addition it is strictly convex. By Theorem 4.1 and Remark 4.2 there exists a solution
Mε

t to (1.1) on t ∈ (0,+∞) with initial data Mε
0 . In addition Mε

t are smooth entire convex
graphs given by xn+1 = ūε(x, t), x ∈ R

n . The functions ūε satisfy equation (1.4). Since ū0,ε
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satisfies α0 |x | ≤ ū0,ε(x) ≤ u0,1(x) for all ε ∈ (0, 1), the comparison principle implies that
for any 0 < ε1 < ε2 < 1 we have

α(t) |x | ≤ ūε1(x, t) ≤ ūε2(x, t) ≤ ū1(x, t), (x, t) ∈ R
n × [0, T )

where T denotes the extinction time ofα(t). In particular, themonotone limit ū := limε→0 ūε

exists and satisfies

α(t) |x | ≤ ū(x, t) ≤ ū1(x, t). (4.17)

We will show next that ū is a solution of (1.4) with initial data ū0.

Claim 4.1 There exists τ > 0 for which the limit ū is a smooth convex solution of (1.4) on
R
n × (0, τ ) with initial data ū0.

Proof of Claim 4.1 Consider the approximations ūε and denote by Hε the mean curvature of
Mε

t . Set vε := 〈F̂ε, ν〉 Hε , where 〈F̂ε, ν〉 denotes the quantity 〈F̂ε, ν〉 := −〈Fε, ω〉 〈ω, νε〉
on Mε

t . Each vε satisfies the equation (2.8) and since each Mε
t is convex the last term on the

righthand side of (2.8) is nonnegative. Since 〈ω, νε〉 ≤ 1, we conclude that each vε satisfies

∂

∂t
vε − ∇i

(
1

H2 ∇ivε

)
≥ −2. (4.18)

Moreover, our initial conditions on ū0 guarantee that vε ≥ c0 > 0 for a uniform in ε constant
c0. The differential inequality (4.18) implies that

vε := 〈F̂ε, ν〉 Hε ≥ c0/2 > 0, on Mε
t , t ∈ [0, τ ] (4.19)

if we choose τ := c0/4. On the other hand, our initial assumption that H 〈F, ω〉 ≤ C0 on M0

implies that H |F | ≤ C1 on M0, which in turn gives a uniform in ε bound Hε ≤ C2/(1+|x |)
on Mε

0 , for a uniform in ε constant C2. Proposition 2.11, implies the bound

Hε ≤ C (1 + |x |)−1, on Mε
t , t ∈ [0, τ ]. (4.20)

Combining the two estimates yields

0 < cR ≤ Hε(·, t) ≤ C, on |x | ≤ R, t ∈ [0, τ ], (4.21)

for uniform in ε and t constants cR,C . These bounds guarantee that the equation (1.4) is
uniformly parabolic in ε on compact sets and by standard regularity arguments the limit ū
will be a smooth convex solution of (1.4) with initial data ū0. By passing to the limit in (4.19)
and (4.20) we conclude that

〈F̂, ν〉 H ≥ c > 0 and H ≤ C (1 + |x |)−1, on Mt , t ∈ [0, τ ] (4.22)

for c := c0/2. ��
It remains to show that the solution ū satisfies the upper bound ū(x, t) ≤ α(t) |x | + κ in

(1.7). To this end, we will first show that ū(·, t) has linear growth at infinity which will allow
us to apply the comparison principle Proposition 2.10.

Claim 4.2 The limit ū satisfies the linear bound

ū(x, t) ≤ θ |x | + κ1

for some constants θ > 0 and κ1 > 0.
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Proof of Claim 4.2 First notice that for any pair (θ, κ) with θ > 0, κ ∈ R an elementary
calculation shows that the subgraph of the conical surface ζ(x) = θ r + κ, r = |x |, is equal
to the complement of a natural family of spheres lying above it:

{(x, xn+1) ∈ R
n × R | xn+1 < θ |x | + κ} =

⋂
ρ>0,κ̃≥κ

(
R
n+1\Bρ(0, ρ

√
1 + θ2 + κ̃)

)
.(4.23)

Since ū0(x) ≤ α0|x |+κ , for each ρ0 > 0 and ε̃ > 0wemay now choose ε0 = ε0(ρ0, ε̃)) > 0

such that for all 0 < ε < ε0, 0 < ρ < ρ0 the balls Bρ(0, ρ
√
1 + α2

0 + κ̃ + ε̃), κ̃ ≥ κ, are
contained in the epigraph

{(x, xn+1) ∈ R
n × R | xn+1 > ū0,ε(x)}

of the approximating functions ū0,ε given by (4.16). Using the barrier principle for IMCF

applied to the resulting graphs of ūt,ε and the balls expanding by IMCF, Bρ(t)(0, ρ
√
1 + α2

0+
κ̃ + ε̃), ρ(t) = ρ exp(t/n) we conclude from the monotone convergence of the ūt,ε in the

limit ε̃ → 0 that the balls Bρ(t)(0, ρ
√
1 + α2

0 + κ̃), κ̃ ≥ κ are contained in the epigraph of
ūt = lim ūt,ε for each ρ > 0. In other words,

{(x, xn+1) ∈ R
n × R | xn+1 = ū(x, t)} ⊂

⋂
ρ>0,κ̃≥κ

(
R
n+1\Bρ(t)(0, ρ

√
1 + α2

0 + κ̃)
)
.

Now note that

ρ

√
α2
0 + 1 = ρ(t) exp(−t/n)

√
α2
0 + 1 = ρ(t)

√
θ(t)2 + 1,

where

θ(t) =
√
exp

(−2t

n

)
(1 + α2

0) − 1, t ∈ [0, n log
√
1 + α2

0) ∩ [0, Tmax(ū)).

Since ∩ρ(t) = ∩ρ>0 we get

{(x, xn+1) ∈ R
n × R | xn+1 = ū(x, t)} ⊂

⋂
ρ(t),κ̃≥κ

(
R
n+1\Bρ(t)(0, ρ(t)

√
1 + θ2(t) + κ̃)

)

which implies the claim

ū(x, t) ≤ θ(t)|x | + κ

in view of (4.23) as required. Notice that θ(t) > α(t) for t > 0 such that this estimate cannot
yet yield the optimal upper bound. ��

It remains to show that ū(x, t) ≤ α(t) |x | + κ . This simply follows from the next claim,
by comparing ū with the conical solution ζ2(x, t) := α(t) |x | + κ .

Claim 4.3 Assume that ū1, ū2 are two smooth and convex entire graph solutions of equation
(1.4) on Rn × (0, τ ] for some τ > 0 which satisfy the bounds

α |x | ≤ ūi (x, t) ≤ θ |x | + κ, i = 1, 2, on R
n × [0, τ ] (4.24)

for some constants 0 < α ≤ θ and κ > 0. Assume in addition that ūi , i = 1, 2 both satisfy
conditions (4.22). If ū1(·, 0) ≤ ū2(·, 0), then ū1(·, t) ≤ ū2(·, t) on Rn × (0, τ ].
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Proof of Claim 4.3 To simplify the notation for any function ū on Rn × [0, τ ], we set

F(D2ū, Dū) := −
√
1 + |Dū|2

(
div

(
Dū√

1 + |Dū|2
))−1

= −
√
1 + |Dū|2

H
. (4.25)

Since both ū1 and ū2 satisfy

∂

∂t
ū = F(D2ū, Dū) (4.26)

setting ūs := s u1 + (1 − s)u2, we have

∂

∂t
(ū1 − ū2) = F(D2ū1, Dū1) − F(D2ū2, Dū2)

=
∫ 1

0

d

ds
F(D2ūs, Dūs) ds

=
∫ 1

0

∂F
∂σi j

Di j (ū1 − ū2) + ∂F
∂ pi

Di (ū1 − ū2) ds

= ai j Di j (ū1 − ū2) + bi Di (ū1 − ū2)

where

ai j :=
∫ 1

0

∂F
∂σi j

(D2ūs, Dūs) ds, bi :=
∫ 1

0

∂F
∂ pi

(D2ūs, Dūs) ds.

The uniqueness assertion of our theorem will directly follow from Proposition 2.10 if we
show that the coefficients ai j and bi satisfy conditions (2.10) and (2.11). To this end, we
observe using (4.25) that

∂F
∂σi j

=
√
1 + |Dū|2

H2

∂H

∂σi j
.

Since

H = 1√
1 + |Dū|2

(
δi j − Di ūD j ū

1 + |Dū|2
)
Di j ū

we conclude that

∂F
∂σi j

= 1

H2

(
δi j − Di ūD j ū

1 + |Dū|2
)

.

Moreover, a direct calculation shows that

∣∣ ∂F
∂ pi

∣∣ ≤ C |x |2 |D2ū|
(1 + |Dū|2)1/2 .

Observe next that (4.22), (1.7) and the convexity of ū imply the uniform bound H ≥ c/(1+
|x |) on Mt , t ∈ [0, τ ] for some c > 0 and we also have the uniform bound from above
H ≤ C/(1 + |x |). It is easy to conclude then that ai j satisfies

λ ξ2(1 + |x |2) ≤ ai j (x, t) ξiξ j ≤ �ξ2 (1 + |x |2)
for some positive constants λ,�. Also, convexity implies the bound |D2ū|/(1+|Dū|2)1/2 ≤
C H which in turn gives

|bi (x, t)| ≤ C |x |2 |D2ū|
(1 + |Dū|2)1/2 ≤ C |x |2 H ≤ C (1 + |x |).
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We can then apply Proposition 2.10 to conclude that ū1 ≤ ū2, as claimed. ��
Let us now conclude the proof of the Theorem 4.3. We have shown above that the limit ū

is a smooth convex solution of (1.4) which satisfies conditions (1.7) and (4.22), which in turn
imply (4.14). The uniqueness assertion of the theorem readily follows by Claim 4.3 since
(1.7) and (4.14) also imply (4.22). ��

We will next compute the behavior at infinity of v := 〈F̂, ν〉 H , where 〈F̂, ν〉 :=
−〈F, ω〉 〈ω, ν〉. This will be crucial for the proof of Theorem 6.2 which is the main a’priori
estimate in this work.

Proposition 4.4 Under the assumptions of Theorem 4.3, the function v := 〈F̂, ν〉 H on Mt

satisfies the asymptotic behavior

lim|F(z,t)|→+∞ v(F(z, t), t) = γ (t), for all t ∈ (0, τ ] (4.27)

with γ (t) given by (3.7).

Proof We will use the graph representation xn+1 = ū(x, t), (x, t) ∈ R
n × [0, T ), of the

solution Mt of (1.1) for t ∈ (0, τ ], as given by Theorem 4.3 and we will show that

lim|x |→+∞ v(x, ū(x, t), t) = γ (t), uniformly on [τ0, τ ] (4.28)

for all τ0 ∈ (0, τ/2), which readily yields (4.27). The function ū satisfies the equation
(1.4) and conditions (1.7) and (4.22). We may then consider H and 〈F̂, ν〉 as functions of
(x, t) ∈ R

n × [0, τ ]. Throughout the proof c,C will denote positive constants which may
change from line to line but always remain uniform in t , for t ∈ [0, τ ].

Since 〈F̂, ν〉 = ū/(1+ |Dū|2)1/2, by (1.7) we have 〈F̂, ν〉 ≤ C |x |, on [0, τ ]. Combining
this with (4.22) yields

c (1 + |x |)−1 ≤ H(x, t) ≤ C (1 + |x |)−1, on R
n × [0, τ ]. (4.29)

In addition, (1.7) and the convexity of ū imply the gradient estimate

sup
Rn×[0,τ ]

|Dū(x, t)| ≤ C . (4.30)

The function ū satisfies (4.26), where the fully nonlinear operatorF is given by (4.25). For
this proposition wewill use an a priori estimate for fully-nonlinear parabolic equations which
was proven by G. Tian and X-J. Wang in [22] (Theorem 1.1 in [22]) to show that the mean
curvature H of our surface remains sufficiently close to that of the cone ζ1(x, t) = α(t) |x |,
for |x | sufficiently large, because of condition (1.7). To this end, let ũ be the function defined
by

ū(x, t) = α(t) |x | (1 + ũ(x, t)
)
. (4.31)

We notice that the ellipticity of the operator F depends on H(x, t) ∼ |x |−1, for |x |
large. Hence, equation (4.26) becomes singular as |x | → ∞. To avoid this issue it is more
convenient to work in cylindrical coordinates for |x | ≥ ρ, with ρ large. Let ũ be the function
defined by (4.31) and express ũ in polar coordinates ũ(r , θ1, . . . , θn−1, t), r = |x |. We
introduce cylindrical (s, θ1, . . . , θn−1) with s := log r and define the function û(s, ψ, t) in
terms of ũ, setting

ũ(r , ψ, t) = û(s, ψ, t), s := log r , ψ := (θ1, . . . , θn−1) ∈ Sn−1.
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It follows by a direct calculation that û satisfies an equation of the form

ût = F̂(D2û, Dû, û)

where D2û := D2
s,ψ û and Dû := (ûs, Dψ û) denote first and second derivatives with respect

to the cylindrical variable (s, ψ). The nonlinearity F̂ also depends on γ̂ .
Observe first that (1.7) implies the bound

0 ≤ û(s, ψ, t) ≤ κ

α(t)
e−s ≤ C e−s, on R × Sn−1 × [0, τ ] (4.32)

with C = C(τ ). Also, a direct calculation shows that

〈F, ν〉 = α(t) es ûs√
1 + α2(t)(1 + û + ûs)2 + |Dψ û|2)

(4.33)

where by (4.30),
√
1 + α2(t)(1 + û + ûs)2 + |Dψ û|2) = 1 + |Dū|2 ≤ C . On the other

hand, the condition |〈F, ν〉| ≤ C0 on M0 (see in (4.15)) and the maximum principle on the
evolution of 〈F, ν〉 given in Lemma 2.1 implies that |〈F, ν〉| ≤ C on Mt for t ∈ [0, τ ].
Hence, (4.33) implies the bound

0 ≤ ûs(·, t) ≤ C e−s, on R × Sn−1 × [0, τ ]. (4.34)

For any s0 ≥ 0, and τ0 ∈ (0, τ ), we set

Q2
s0,τ0 := [s0 − 2, s0 + 2] × Sn−1 × [τ0/2, τ ],

Q1
s0,τ0 := [s0 − 1, s0 + 1] × Sn−1 × [τ0, τ ]

so that Q1
s0,τ0 ⊂ Q2

s0,τ0 . It is not difficult to verify (using (4.32) and (4.34)) that the non-

linearity F̂ satisfies the assumptions of Theorem 1.1 in [22] on Q2
s0,τ0 , for any s0 ≥ 0 with

bounds that are independent from s0 (as long as s0 ≥ 0). It follows that from Theorem 1.1 in
[22] that for any s0 ≥ 0

‖D2
s,ψ û‖Cα,α/2(Q1

s0,τ0
) ≤ Cτ0 ‖û‖L∞(Q2

s0,τ0
)

for an exponent α > 0. Here Cτ0 depends on the initial data, τ and τ0, but is independent of
s0. This also implies the bound

‖es0 û‖Cα,α/2(Q1
s0,τ0)

≤ Cτ0 ‖es0 û‖L∞(Q2
s0,τ0

). (4.35)

Combining (4.35) with the bounds (4.32) and (4.34) gives ‖es0 û‖C2+α
cyl (Q1

s0,τ0
)

≤ Cτ0 < ∞.

Since the constant Cτ1 is independent of s0 (as long as s0 ≥ 0) we finally obtain the bound

‖es û‖C2+α
cyl (C×[τ0,τ ]) ≤ Cτ0 < ∞ (4.36)

where C denotes the half cylinder given by C := [0,+∞)× Sn−1. This estimate shows that û
is uniformly small inC2+α

cyl norm as s → +∞. Expressing the mean curvature v := 〈F̂, ν〉 H
in cylindrical coordinates we readily deduce that (4.28) holds, which also implies (4.27). ��
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5 Lp bounds on 1/H

We will assume in this section that Mt is a solution of (1.1) on [0, τ ] as given by Theorem
4.3 which satisfies condition (1.7) and that τ < T − 3δ, for some δ > 0 and small, where
T = T (α0) denotes the extinction time of α(t) given in terms of α0 by (3.8). Recall that
v := 〈F̂, ν〉 H , where 〈F̂, ν〉 = −〈F, ω〉 〈ω, ν〉. Our goal is to establish a’priori bounds on
suitably weighted L p norms of v−1(·, t) on Mt , for any p ≥ 1, that depend on δ but are
independent of τ . In the next section we will use these L p bounds and a Moser iteration
argument to bound the L∞ norm of v−1 on Mt . This L∞ bound constitutes the main a priori
estimate on which the proof of the long time existence of the flow is based upon. We begin
with the following straightforward observation which will be frequently used in the sequel.

Lemma 5.1 Assume that Mt is an entire convex graph overRn satisfying (1.7)withα(t) ≤ α0.
Then, 〈F̂, ν〉 := −〈F, ω〉 〈ω, ν〉, satisfies

〈F̂, ν〉 ≥ λ(n, α0)
√

γ (t) |F |. (5.1)

Proof We begin by noticing that the lower bound in condition (1.7) implies the bound

〈F, ω〉 ≥ α(t)√
1 + α2(t)

|F |.

In addition, it follows from the convexity of Mt and (1.7) that−〈ω, ν〉 ≥ 1√
1 + α(t)2

. Thus,

〈F̂, ν〉 := −〈F, ω〉 〈ω, ν〉 ≥ α(t)

1 + α(t)2
|F | ≥ λ(α0, n)

√
γ (t) |F |.

The last inequality follows from the definition of γ (t) := (n − 1)α(t)2/(1 + α(t)2) and
α(t) ≤ α0. ��

We recall that v−1 := (〈F̂, ν〉 H)−1 satisfies equation (2.9) and by (4.27) lim|F |→∞ v(z, t)
= γ (t), where γ (t) satisfies the ODE (3.6) with initial condition γ (0) := γ0 := (n −
1)α2

0/(1 + α2
0).

Let γ̂ (t) denote the solution of the ODE (3.6) with initial condition γ̂ (0) := γ̂0 :=
(n − 1)α̂2

0/(1 + α̂2
0) for some number α̂0 that satisfies 0 < α̂0 < α0. Then, γ̂ (t) < γ (t).

Denote by T̂ = T̂ (α̂0) the vanishing time of γ̂ that clearly satisfies T̂ < T = T (α0). For a
given number δ > 0 (small) we will choose from now on α̂0 such that the vanishing time T̂
of γ̂ satisfies

T − 2δ ≤ T̂ ≤ T − δ.

For that choice of γ̂ we will have γ̂ (t) < γ (t), for all t < T̂ . Hence, if we set

w(·, t) := γ̂ (t) v(·, t)−1 = γ̂ (t) (〈F̂, ν〉 H)−1 (5.2)

then by (4.27) we have

lim|F(z,t)|→∞ w(z, t) = γ̂ (t) γ (t)−1 < 1, t ∈ [0, τ ], τ < T̂ . (5.3)

We will next compute the evolution of w from the evolution of v−1, shown in (2.9), and
the ODE for γ̂ , shown in (3.6). Indeed, if we multiply (2.9) by γ̂ (t) and use (3.6), we obtain

∂

∂t
w − ∇i

(
1

H2 ∇iw

)
≤ − 2

H2w
|∇w|2 + 2 〈ω, ν〉2γ̂ −1w2 + c1γ̂

−1 w (5.4)
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with

c1 := 2γ̂ (t)

n − 1
− 2 < 0, since γ̂ < γ (t) := (n − 1) α2(t)

1 + α2(t)
≤ (n − 1).

Next, we set

ŵ := (w − 1)+.

Because of (5.3), for each given t ∈ [0, τ ], τ < T̂ < T , the function ŵ(·, t) satisfies
ŵ(·, t) ≡ 0, for |F | ≥ R(t) (5.5)

for some R(t) < ∞. Notice that the main difficulty in our proof comes from the fact that we
don’t know that R(t) is uniform in t .

Lemma 5.2 (Energy inequality) Under the assumptions of Theorem 4.3, for any p ≥ 0,
q := (p + 3)/2 the function ŵ := (w − 1)+ with w := γ̂ (〈F̂, ν〉 H)−1 satisfies

d

dt

∫
Mt

ŵ p+1 dμ + 2λ2γ̂ −2γ

∫
Mt

|F |2|∇ŵq |2 dμ ≤

≤ C(p) γ̂ −1
(∫

Mt

ŵ p+2 dμ +
∫
Mt

ŵ p+1 dμ +
∫
Mt

c0(z, t) ŵ p dμ

) (5.6)

with λ,C(p) positive constants that depend on the initial data (and C(p) also on linearly
p) and

c0(z, t) := 2

(
〈ω, ν〉2 + γ̂

n − 1
− 1

)
+

. (5.7)

Proof If we first set w̄ := w − 1, we see from (5.4) that

∂

∂t
w̄ − ∇i

( 1

H2 ∇i w̄
) ≤ − 2

H2w
|∇w̄|2 + 2γ̂ −1〈ω, ν〉2(w̄ + 1)2 + γ̂ −1c1(w̄ + 1)

≤ − 2

H2w
|∇w̄|2 + 2γ̂ −1〈ω, ν〉2w̄2 + γ̂ −1(4〈ω, ν〉2 + c1)w̄

+ γ̂ −1(2〈ω, ν〉2 + c1).

We next observe that since 〈ω, ν〉2 ≤ 1 and c1 ≤ 0, we have 4〈ω, ν〉2 + c1 ≤ 4, thus

∂

∂t
w̄ − ∇i

( 1

H2 ∇i w̄
) ≤ − 2

H2w
|∇w̄|2 + 2γ̂ −1w̄2 + 4γ̂ −1w̄+ + γ̂ −1c0(z, t)

with c0(z, t) := (2〈ω, ν〉2 + c1)+, c1 = 2γ̂ /(n − 1) − 2, hence given by (5.7). Let ŵ :=
(w − 1)+ = w̄+. If we multiply the last inequality by ŵ p = w̄

p
+, for some number p ≥ 0,

and integrate by parts (recalling that by (5.5) ŵ(·, t) has compact support in Mt ), we obtain

1

p + 1

d

dt

∫
Mt

ŵ p+1 dμ ≤ − p
∫
Mt

1

H2 ŵ p−1|∇ŵ|2 dμ − 2
∫
Mt

1

H2w
ŵ p|∇ŵ|2 dμ

+ 2γ̂ −1
∫
Mt

ŵ p+2 dμ + (4γ̂ −1 + 1)
∫
Mt

ŵ p+1 dμ

+ γ̂ −1
∫
Mt

c0(z, t) ŵ p dμ.

(5.8)
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Here we also used that ∂(dμ)/∂t = dμ. Also, for p = 0 we use the inequality∫
Mt

∇i
( 1

H2 ∇i w̄
)
χ{w̄>0} dμ =

∫
Mt∩∂{w̄>0}

1

H2

∂w̄

∂ν
dσ ≤ 0.

We next remark that from the definition of w := (〈F̂, ν〉 H)−1γ̂ , we may express
H−1 = γ̂ −1w 〈F̂, ν〉. Also, w χ{w>1} ≥ (w − 1)+ = ŵ. Hence, we may combine the two
gradient terms on the right hand side of (5.8) to conclude

1

p + 1

d

dt

∫
Mt

ŵ p+1 dμ ≤ − (p + 2) γ̂ −2
∫
Mt

〈F̂, ν〉2ŵ p+1|∇ŵ|2 dμ

+ 2γ̂ −1
∫
Mt

ŵ p+2 dμ + (4γ̂ −1 + 1)
∫
Mt

ŵ p+1 dμ

+ γ̂ −1
∫
Mt

c0(z, t) ŵ p dμ.

Writing

ŵ p+1|∇ŵ|2 = 4

(p + 3)2
|∇w

p+3
2 |2

and using (5.1) we obtain

d

dt

∫
Mt

ŵ p+1 dμ ≤ −2 λ2 γ̂ −2γ

∫
Mt

|F |2|∇ŵ
p+3
2 |2 dμ + c2(p) γ̂ −1

∫
Mt

ŵ p+2 dμ

+ c1(p) γ̂ −1
∫
Mt

ŵ p+1 dμ + γ̂ −1(p + 1)
∫
Mt

c0(z, t) ŵ p dμ

for some new positive constants ci (p) depending (linearly) on p and the initial data. This
readily gives (5.6) by setting q := (p + 3)/2. ��

We will next prove the following variant of Hardy’s inequality adapted to our situation
(see in [2] and [19] for standard Hardy inequalities on complete non-compact manifolds).

Proposition 5.3 (Hardy inequality) Let Mt be a solution of (1.1) as in Theorem 4.3. Then,
there exists a constant Cn > 0 depending only on dimension n such that any function g that
is compactly supported on Mt , we have∫

Mt

g2 dμ ≤ C(n)

(∫
Mt

|∇g|2|F |2 dμ +
∫
Mt

g2|H | |F | dμ

)
. (5.9)

Proof To simplify the notation, set ρ(F) := |F | and recall that from our assumptions on Mt

we have ρ > 0 everywhere. We begin by computing �ρ. We have

�ρ = ∇i∇i (〈F, F〉1/2) = ∇i (〈F, F〉−1/2 〈ei, F〉) = n

|F | − |FT |2
|F |3 + H

〈F, ν〉
|F |

from which we conclude the lower bound

�ρ ≥ n − 1

ρ
− H . (5.10)

Let g := ργ ψ for some γ < 0 to be chosen momentarily. We then have

|∇g|2 = |∇(ργ ψ)|2 = |γργ−1ψ∇ρ + ργ ∇ψ |2 ≥ 2γρ2γ−1ψ∇ρ · ∇ψ.
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We next observe that it is convenient to choose γ = −1/2 which gives

|∇g|2 ≥ −ψρ−2∇ρ · ∇ψ

or equivalently (using that ψ2 = g2ρ)

|∇g|2ρ2 ≥ −1

2
∇ρ · ∇ψ2 = −1

2
∇ρ · ∇(g2ρ).

After integrating by parts we obtain∫
Mt

|∇g|2ρ2 dμ ≥ 1

2

∫
Mt

g2ρ �ρ dμ.

Combining this with inequality (5.10) yields∫
Mt

|∇g|2ρ2 dμ ≥ n − 1

2

∫
Mt

g2dμ − 1

2

∫
Mt

g2ρ Hdμ (5.11)

from which (5.9) readily follows. ��
We will now combine (5.6) with the above Hardy inequality to prove the following L p+1

bound on ŵ in terms of its initial data.

Theorem 5.4 (L p+1 estimate on ŵ) Assume that Mt is a solution to (1.1) as in Theorem 4.3
defined for t ∈ (0, τ ], and assume that τ < T −3δ with T given by (3.8) and δ > 0. Then, for
any p ≥ 0 there exists a constant C = C(p) depending on p, T , δ and also on the constants
κ, α0 such that

sup
t∈[0,τ ]

∫
Mt

ŵ p+1(·, t) dμ ≤ C(p, δ, T )

(
1 +

∫
M0

ŵ p+1 dμ

)
. (5.12)

Proof We recall that γ̂ (t) is a solution of the ODE (3.6) with initial value 0 < γ̂ (0) < γ (0)
so that that its vanishing time T̂ satisfies T − 2δ < T̂ < T − δ, for the given small number
δ > 0. For any number p > 0, set q := (p + 3)/2. Applying (5.11) for g = ŵq gives∫

Mt

|∇ŵq |2|F |2 dμ ≥ n − 1

2

∫
Mt

ŵ2qdμ − 1

2

∫
Mt

ŵ2q |F |Hdμ. (5.13)

We will next estimate |F |Hχ{ŵ>0} in terms of ŵ. Recall that by definition w(·, t) :=
γ̂ (t) (〈F̂, ν〉 H)−1 and that from (5.1) we have |F | ≤ λ−1 γ −1/2〈F̂, ν〉. Thus,

|F | H ≤ λ−1γ −1/2 〈F̂, ν〉H = λ−1 γ −1/2 γ̂ w−1.

Since w χ{w>1} ≤ (w − 1) χ{w>1} = (w − 1)+ = ŵ, we have

|F | H χ{w>1} ≤ λ−1 γ −1/2 γ̂ ŵ−1.

Thus (5.13) yields∫
Mt

|∇ŵq |2|F |2 dμ ≥ n − 1

2

∫
Mt

ŵ2qdμ − 1

2
λ−1 γ −1/2 γ̂

∫
Mt

ŵ2q−1dμ. (5.14)

Recall that q = (p + 3)/2, so that 2q − 1 = p + 2. If we now combine this last estimate
with (5.6) and also use that γ̂ −1γ > 1 and n − 1 ≥ 1, we obtain the differential inequality

d

dt

∫
Mt

ŵ p+1 dμ ≤ − λ2 γ̂ −1
∫
Mt

ŵ p+3dμ+

+ C(p) γ̂ −1
(∫

Mt

ŵ p+2 dμ +
∫
Mt

ŵ p+1 dμ +
∫
Mt

c0(z, t) ŵ pdμ

)
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for constantC(p) depending on p and also on κ, α0 and with c0(z, t) given by (5.7). We may
apply the interpolation inequality
∫
Mt

|g|p+2 dμ =
∫
Mt

|g| p+1
2 |g| p+3

2 dμ ≤ λ2

2C(p)

∫
Mt

|g|p+3 dμ + C(p)

2λ2

∫
Mt

|g|p+1 dμ

to g := ŵ to conclude that

d

dt

∫
Mt

ŵ p+1 dμ ≤ C(p) γ̂ −1
(∫

Mt

ŵ p+1 dμ +
∫
Mt

c0(z, t) ŵ pdμ

)
(5.15)

for a new constant C(p) that depends on p and also on our initial data α0, κ and dimension
n.

Because Mt is non-compact, in order to estimate the last term in (5.15) in terms of∫
Mt

ŵ p+1 dμ we will need to look more carefully into the coefficient c0(z, t). We claim

the following.

Claim 5.1 Assume that γ̂ (t) is chosen so that its vanishing time T̂ satisfies T−2δ < T̂ ≤ T−δ

for the given small number δ > 0. Then, there exists a number Rδ ≥ 1 (depending on δ) such
that

c0(·, t) ≡ 0 on Mt ∩ {|F | ≥ Rδ}, 0 ≤ t < T̂ . (5.16)

Proof of claim 5.1 Recall that c0(·, t) := 2
(〈ω, ν〉2+γ̂ (t)/(n−1)−1

)
+ and that γ̂ (t) < γ (t)

for all t < T̂ . Since by definition γ (t) = (n − 1) α(t)2/(1 + α(t)2) we may also express
γ̂ (t) = (n − 1) α̂(t)2/(1 + α̂(t)2) for some function of time function α̂(t). It follows from
the condition T − 2δ < T̂ ≤ T − δ that

0 < μ1(δ) ≤ α(t) − α̂(t) ≤ μ2(δ), ∀ t < T̂

for some positive constants μ1(δ), μ2(δ) that tend to zero as δ → 0. Consider the cones
defined by the graphs xn+1 = α(t) |x | and xn+1 = α̂(t) |x | + κ over x ∈ R

n . These cones
intersect at |x | = r(t) := κ/(α(t) − α̂(t)). Let R(t) := √

1 + α2(t) r(t). It follows from
(1.7) and a simple geometric consideration that uses the convexity of Mt that

c0(·, t) ≡ 0 on Mt ∩ {|F | ≥ R(t)}.
Since,

R(t) := κ

√
1 + α2(t)

α(t) − α̂(t)
≤ κ

√
1 + α2

0

μ1(δ)
:= Rδ, 0 ≤ t < T̂

the claim follows. ��
Using the above claim and the bound c0(z, t) ≤ 2, we may now estimate the term∫

Mt

c0(z, t) ŵ pdμ in (5.15) as

∫
Mt

c0(z, t) ŵ pdμ ≤ 2
∫
Mt∩{c0>0}

ŵ p dμ ≤ C(Rδ, p)

(∫
Mt

ŵ p+1 dμ

)p/(p+1)

≤ C(Rδ, p)

(∫
Mt

ŵ p+1 dμ + 1

)
.
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Combining the last estimate with (5.15), we obtain

d

dt

∫
Mt

ŵ p+1 dμ ≤ C(p, δ) γ̂ (t)−1
(
1 +

∫
Mt

ŵ p+1 dμ

)
. (5.17)

Since we have assumed that γ̂ (t) vanishes at T̂ and T − 2δ < T̂ < T − δ, it follows that
γ̂ (t)−1 ≤ C(δ) for all t < T − 3δ. We conclude from (5.17) that

d

dt

∫
Mt

ŵ p+1 dμ ≤ C(p, δ)

(
1 +

∫
Mt

ŵ p+1 dμ

)

for another constant C(p, δ). After integrating this inequality in time t we conclude that if
τ < T − 3δ, (5.12) holds. ��

6 L∞ estimates on 1/H

We will assume throughout this section that Mt is an entire graph convex solution of (1.1)
on [0, τ ] as in Theorem 4.3 and that τ < T − 3δ, for some δ > 0, where T is the number
given by (3.8). We will establish a local L∞ bound on (〈F̂, ν〉 H)−1 which holds on Mt for
all t ∈ [0, τ ] and depends only on the initial data, on T and on δ. This bound constitutes the
main step in the proof of the long time existence result Theorem 1.1. It states as follows.

Theorem 6.1 (L∞ bound on w in terms of its spatial averages) Assume that Mt is a solution
to (1.1) as in Theorem 4.3 defined for t ∈ (0, τ ], and assume that τ < T − 3δ with T
given by (3.8) and δ > 0. There exist absolute constants μ > 0 and σ > 0 and a constant
C that depends on α0, κ , on δ, and the initial bound supM0

〈F, ω〉 H, for which w :=
γ̂ (t) (〈F̂, ν〉 H)−1 satisfies the bound

sup
t∈(t0,τ ]

‖w‖L∞(Mt ) ≤ C t0
−μ

(
1 + sup

t∈(t0/4,τ ]
sup
R≥1

R−n
∫
Mt∩{|F |≤R}

w(·, t) dμ

)σ

. (6.1)

for any t0 ∈ (0, τ/2].
For the proof of this theorem we will use a parabolic variant of Moser’s iteration on the

differential inequality (5.4) that is satisfied by w := γ̂ (t) (〈F̂, ν〉 H)−1. Such technique was
first introduced in the nonlinear parabolic context by Dahlberg and Kenig in [5]. In fact we
will closely follow the proof in [5] (see also in the proof of Lemma 1.2.6 in [7]). For the
inverse mean curvature flow in the compact setting, a similar bound was shown in [18] via a
variant of the Stampacchia iteration method.

The estimate (6.1) will be shown in two steps Propositions 6.2 and 6.5 below. Let us begin
by introducing some notation. For any given number t0 ∈ (0, τ ] we set

St0 := {(P, t) ∈ R
n+1 × (0, t0] : P ∈ Mt , t ∈ (0, t0] } = ∪t∈(0,t0]Mt × {t}.

Also, for any given numbers ρ0 > 1, t0 ∈ (0, τ ] and r ∈ (0, 1) we consider the cylinders in
R
n+1 × (0,+∞) given by

Qr
ρ0,t0 := {(x, t) ∈ R

n+1×(0,+∞) : ρ0(1 − r) < |x| < ρ0(1 + r), (1 − r) t0< t ≤ t0}.
In particular, we set

Qρ0,t0 := Q1/4
ρ0,t0 , Q∗

ρ0,t0 := Q1/2
ρ0,t0 , Q∗∗

ρ0,t0 := Q3/4
ρ0,t0 .
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Notice that since in equation (1.4) one cannot scale the time t , it is not necessary to use the
standard parabolic scaling in the above cylinders, one can just use the same scale in x and t .

Proposition 6.2 Assume that Mt is a solution to (1.1) as in Theorem 4.3 defined for t ∈ (0, τ ],
and assume that τ < T − 3δ with T given by (3.8) and δ > 0. There exist absolute constants
μ > 0 and σ > 0 and a constant C that depends on α0, κ , on δ, and the initial bound
supM0

〈F, ω〉 H, for which w := γ̂ (t) (〈F̂, ν〉 H)−1 satisfies the bound

‖w‖L∞(Qρ0,t0∩St0 ) ≤ C t0
−μ

(
1 + sup

t∈(t0/4,t0]
ρ−n
0

∫
Mt∩Q∗∗

ρ0,t0

w(·, t) dμ

)σ

(6.2)

which holds for any ρ0 > 2 such that Qρ0,t0 ∩ St0 is not empty.

Remark 6.1 For the remaining of this section we will call uniform constants the constants
that may depend on the number δ > 0, the constants α0, κ , but that are independent of ρ0
and t0.

Since w satisfies the differential inequality (5.4), if we set w̄ := max(w, 1) it follows that
w̄ satisfies the same differential inequality and since w̄ ≤ w̄2 we have

∂

∂t
w̄ − ∇i

(
1

H2 ∇i w̄

)
≤ − 2

H2w̄
|∇w̄|2 + c2 γ̂ −1w̄2. (6.3)

for some new constant c2 > 0.

Remark 6.2 In the following we shall not distinguish between the image F(z, t) of a point
z ∈ M and its coordinate vector in Rn+1.

For the given numbers ρ0 > 1 and t0 ∈ (0, τ ] and any numbers 1/4 < r < r̄ < 1/2, we
consider a radial cutoff function ψ = ψ(ρ, t), ρ = |x|, x ∈ R

n+1 with ψ ∈ C∞
c (Qr̄

ρ0,t0)

satisfying

ψ ≡ 1 on Qr
ρ0,t0 , 0 ≤ ψ ≤ 1, ρ0 |ψρ | + t0 |ψt | ≤ C (r̄ − r)−1. (6.4)

We extend ψ to be equal to zero outside Qr̄
ρ0,t0 and define the function η on St0 by

η(F, t) := ψ(|F |, t), F ∈ Mt . (6.5)

Lemma 6.3 Under the assumptions of Theorem 6.2, for any p ≥ 1 and θ := (p + 2)/2, we
have

sup
t∈(0,t0]

∫
Mt

(η2w̄ p)(·, t) dμ +
∫ t0

0

∫
Mt

ρ2
0 |∇(ηw̄θ )|2dμ dt

≤ C t−1
0 (r̄ − r)−2

∫ t0

0

∫
Mt∩{η>0}

w̄2θdμ dt

(6.6)

where η ∈ Cc(St0) is the cutoff function defined by (6.5)

Proof We begin by observing that the cutoff function defined by (6.5) satisfies

|∇η| ≤ C ρ−1
0 (r̄ − r)−1 and |∂tη| ≤ C (r̄ − r)−1

(
ρ−2
0 H−1|〈F, ν〉| + t−1

0

)
(6.7)

where we have denoted by∇η the gradient of η on M . The first inequality follows from (6.4)
and the calculation

|∇iη| = 1

2
|ψρ | |F |−1 |∇i 〈F, F〉| ≤ C ρ−1

0 (r̄ − r)−1
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while the second inequality follows from (6.4) and the calculation

|∂tη| = |ψρ | |F |−1 |〈F, Ft 〉| + |ψt | ≤ C (r̄ − r)−1
(
ρ−2
0 H−1|〈F, ν〉| + t−1

0

)
.

Using equation (6.3) and that ∂(dμ)/∂t = dμ, w̄ ≥ 1 and H−1 = γ̂ −1〈F̂, ν〉 w, we have

d

dt

∫
w̄ pη2 dμ = p

∫
w̄ p−1 η2 w̄t dμ + 2

∫
w̄ pη ηt dμ +

∫
w̄ p η2 dμ

≤ −p(p − 1)
∫

1

H2 w̄ p−2η2 |∇w̄|2 dμ − 2p
∫

1

H2 w̄ p−2η2|∇w̄|2 dμ

− 2p
∫

1

H2 w̄ p−1η∇i w̄∇iη dμ + 2
∫

w̄ pη |ηt | dμ

+ c2 p γ̂ −1
∫

w̄ p+1 η2 dμ +
∫

w̄ p η2 dμ

≤ −p(p + 1)γ̂ −2
∫

〈F̂, ν〉2 w̄ pη2 |∇w̄|2 dμ

− 2p γ̂ −2
∫

〈F̂, ν〉2 w̄ p+1η∇i w̄∇iη dμ

+ 2
∫

w̄ pη |ηt | dμ + c̄2

∫
w̄ p+1 η2 dμ.

with c̄2 := c2 p γ̂ −1 + 1. Let θ = (p + 2)/2. Writing

w̄ p |∇w̄|2 = θ−2 |∇w̄θ |2 and w̄ p+1∇w̄ = θ−1w̄θ ∇w̄θ

we obtain

d

dt

∫
w̄ pη2 dμ ≤ −p(p + 1)θ−2γ̂ −2

∫
〈F̂, ν〉2η2|∇w̄θ |2 dμ

− 2p θ−1γ̂ −2
∫

〈F̂, ν〉2 η w̄θ |∇η| |∇w̄θ | dμ

+ 2
∫

w̄ pη |ηt | dμ + c̄2

∫
w̄ p+1 η2 dμ.

We estimate∫
〈F̂, ν〉2w̄θη|∇η| |∇w̄θ | dμ ≤ (p + 1)

4θ

∫
〈F̂, ν〉2η2|∇w̄θ |2 dμ

+ θ

(p + 1)

∫
w̄2θ 〈F̂, ν〉2|∇η|2 dμ

to conclude

d

dt

∫
w̄ pη2 dμ + 1

2
p (p + 1)θ−2γ̂ −2

∫
〈F̂, ν〉2η2 |∇w̄θ |2 dμ

≤ C

(
γ̂ −2 p

p + 1

∫
〈F̂, ν〉2w̄2θ |∇η|2 dμ + γ̂ −1

∫
w̄ p+1η2 dμ +

∫
w̄ pη |ηt | dμ

)

(6.8)

for a uniform constant C that is in particular independent of p. Also, by (6.7) we have∫
w̄ pη |ηt | dμ ≤ C (r̄ − r)−1

(
t−1
0

∫
w̄ pη dμ + ρ−2

0

∫
w̄ pη H−1|〈F, ν〉| dμ

)
.
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Using that

H−1 = γ̂ −1 〈F̂, ν〉 w ≤ γ̂ −1 〈F̂, ν〉 w̄

and

〈F̂, ν〉 |〈F, ν〉| ≤ C |F |2 ≤ C ρ2
0

on the support of η and also that w̄ ≥ 1, we obtain the bound
∫

w̄ pη |ηt | dμ ≤ C (r̄ − r)−1
(
t−1
0

∫
w̄ p η dμ +

∫
γ̂ −1 w̄ p+1 η dμ

)

≤ C t−1
0 (r̄ − r)−1

∫
γ̂ −1 w̄ p+1 η dμ.

(6.9)

Since p ≥ 1, we have

4

9
≤ p(p + 1)θ−2 = 4p(p + 1)

(p + 2)2
≤ 4.

Integrating (6.8) in time on (0, t] for all t ∈ (0, t0] and using (6.7) and (6.9) yields

sup
t∈(0,t0]

∫
Mt

w̄ p η2 dμ dt + γ̂ −2
∫ t0

0

∫
Mt

〈F̂, ν〉2η2|∇w̄θ |2 dμ dt

≤ C(r̄ − r)−2
(

ρ−2
0

∫ t0

0

∫
Mt∩{η>0}

γ̂ −2〈F̂, ν〉2w̄2θdμ dt

+t−1
0

∫ t0

0

∫
Mt∩{η>0}

γ̂ −1w̄ p+1dμ dt

)
.

Using the bounds w̄ ≥ 1, (5.1) and c ρ2
0 ≤ 〈F̂, ν〉2 ≤ |F |2 ≤ Cρ2

0 and γ̂ −1 ≤ Cδ , for
t0 < T − 3δ, we obtain

sup
t∈(0,t0]

∫
Mt

(η2w̄ p)(·, t) dμ +
∫ t0

0

∫
Mt

ρ2
0η

2 |∇w̄θ |2dμ dt

≤ C t−1
0 (r̄ − r)−2

∫ t0

0

∫
Mt∩{η>0}

w̄2θdμ dt .

Finally, using the estimate

∫ t0

0

∫
Mt

ρ2
0 η2|∇w̄θ |2dμ dt ≥ 1

2

∫ t0

0

∫
Mt

ρ2
0 |∇(ηw̄θ )|2dμ dt

− 4
∫ t0

0

∫
Mt

ρ2
0 |∇η|2w̄2θdμ dt

≥ 1

2

∫ t0

0

∫
Mt

ρ2
0 |∇(ηw̄θ )|2dμ dt

− C (r̄ − r)−2
∫ t0

0

∫
Mt∩{η>0}

w̄2θdμ dt

we conclude (6.6). ��
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We will prove next a variant of the following Sobolev inequality which holds on any
complete manifold Nn , with n ≥ 3

(∫
Nn

| f | 2n
n−2 dμ

) n−2
n ≤ C(n)

∫
Nn

|∇ f |2 + H2 f 2 dμ (6.10)

and for any f ∈ C1
c (N

n). When n = 2 we will use instead the inequality
(∫

N2
| f |4 dμ

)1/2

≤ C |N 2 ∩ supp f |1/2
∫
N2

|∇ f |2 + H2 f 2 dμ (6.11)

which holds for any f ∈ C1
c (N

2).

Lemma 6.4 We set q∗ := q/(q − 1) with q = n/2 if n ≥ 3 and q = 2 if n = 2. Then, for
any k ∈ (0, q∗) and h ∈ C1,0

c (St0) we have∫ t0

0

∫
Mt

h2k dμ dt ≤C

{∫ t0

0
|Mt ∩ supp h|λ

∫
Mt

|∇h|2 + H2h2 dμ dt

· sup
t∈(0,t0]

(∫
Mt

h2(k−1)q(·, t) dμ

)1/q
}

.

(6.12)

with λ = 0 if n ≥ 3 and λ = 1/2 if n = 2.

Proof Since h(·, t) ∈ C1
c (Mt ), it follows from (6.10) that for n ≥ 3 and any t ∈ (0, t0] we

have (∫
Mt

|h|q∗
dμ

)2/q∗

≤ C(n)

∫
Mt

|∇h|2 + H2h2 dμ.

Hence, for any t ∈ (0, t0] we have∫
Mt

h2k dμ =
∫
Mt

h2 h2(k−1) dμ

≤
(∫

Mt

|h|2q∗
dμ

)1/q∗ (∫
Mt

|h|2(k−1)q dμ

)1/q

≤ C

(∫
Mt

|∇h|2 + H2h2 dμ

)
sup

t∈(−0,t0]

(∫
Mt

h2(k−1)q(·, t) dμ

)1/q

.

Inequality (6.12) with λ = 0 now follows by integrating in t . When n = 2 one uses the same
calculation as above with the only difference that now q∗ = 2 and by (6.11) we have

(∫
Mt

|h|2q∗
dμ

)1/q∗

≤ C |Mt ∩ supp h|1/2
∫
Mt

|∇ f |2 + H2 f 2 dμ

leading to (6.12) with λ = 1/2. ��
Wewill next combine (6.6) and (6.12) to conclude the proof of Proposition 6.2 via aMoser

iteration argument.

Proof of Proposition 6.2 For the given numbers ρ0 > 1 and t0 ∈ (0, τ ] and any numbers
1/4 < r < r̄ < 1/2, we let η ∈ Cc(St0 ∩ Q∗∗

ρ0,r0) be the cutoff function given by (6.4)–(6.5).
Clearly,

ρ0

2
≤ |F | ≤ 2 ρ0, on St0 ∩ Q∗

ρ0,r0
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which includes the support of η.
We first apply (6.12) to h := η w̄θ ∈ C1,0(St0) to obtain

ρ−n
0

∫ t0

0

∫
Mt

(ηw̄θ )2k dμ ≤C

{
ρ−n
0

∫ t0

0

∫
Mt

ρ2
0 |∇(ηw̄θ )|2 + ρ2

0 H2(ηw̄θ )2 dμ dt

· sup
t∈(0,t0]

(
ρ−n
0

∫
Mt

(ηw̄θ )2(k−1)q(·, t) dμ

)1/q
}

.

(6.13)

Notice that we have multiplied by ρ−n
0 to make the inequality scaling invariant in space. For

n ≥ 3 inequality (6.13) simply follows from (6.12), since λ = 0 and q = n/2. When n = 2
we apply (6.12) with λ = 1/2 and q = 2 and use the fact that |Mt ∩ supp η| ≤ C ρ2

0 .
From Proposition 2.12 we have

ρ2
0 H2 ≤ C |F |2H2 ≤ C (6.14)

since |F | ≥ ρ0/2 on the support of η. We next choose k = k(p) > 1 such that

2θ(k − 1)q = p.

Since θ = (p+2)/2 this means that (p+2)(k−1)q = p, hence (k−1)q = p/(p+2) < 1
or k < (q + 1)/q < q/(q − 1) := q∗. In addition k > 1+ p/(p + 2)q ≥ 1+ 1/(3q), since
p ≥ 1. Summarizing, for future reference we have

1 + 1

3q
< k = k(p) < q∗ (6.15)

with q, q∗ as in Lemma 6.4. Thus, from (6.13) and (6.14) we obtain

ρ−n
0

∫ t0

0

∫
Mt

η2w̄2θk dμ ≤C

{
ρ−n
0

∫ t0

0

∫
Mt

ρ2
0 |∇(ηw̄θ )|2 + η2w̄2θ dμ dt

· sup
t∈(0,t0]

(
ρ−n
0

∫
Mt

η2(k−1)qw̄ p(·, t) dμ

)1/q
}

.

(6.16)

To simplify the notation, set

Srρ0,t0 := Qr
ρ0,t0 ∩ St0 and Sr̄ρ0,t0 := Qr̄

ρ0,t0 ∩ St0

and recall that from its definition η ≡ 1 on Qr
ρ0,t0 and η ≡ 0 outside Qr̄

ρ0,t0 . Also, set

B := (r̄ − r)−2 t−1
0

Combining (6.6) and (6.16) yields

ρ−n
0

∫∫
Srρ0,t0

w̄2θk dμdt ≤ C B1+1/q t−(1+1/q)
0

(
ρ−n
0

∫∫
Sr̄ρ0,t0

w̄2θ dμdt

)1+1/q

. (6.17)

We will now iterate this inequality to obtain the desired L∞ bound on w̄. To this end, we
define p0, p1, . . . and θ0, θ1, . . . by letting p0 = 1 and setting

θν = pν + 2

2
, θν+1 = kν θν, kν = kν(pν) = 1 + pν

(pν + 2) q
. (6.18)

We also define

ρν := (1 + ν)

2(1 + 2ν)
and Qν := Qrν

ρ0,t0 , Sν := Srρ0,t0 = Qρν
ρ0,t0 ∩ St0 .
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Observe that under this notation Q0 = Q∗
ρ0,t0 while limν→∞ Qν = Q∗

ρ0,t0 . Also, set

Mν :=
(

ρ−n
0

∫∫
Sν

v2θν dμ dt

)1/2θν

.

It then follows from (6.17) that

M2θν+1
ν+1 ≤ C B1+1/q

ν M2θν(1+1/q)
ν (6.19)

with

Bν = (rν − rν+1)
−2 t−1

0 ≤ C ν4 t−1
0 .

Since q > 1, it follows from (6.19) that

Mν+1 ≤ (C ν8 t0
−2)1/2θν+1 Mλν

ν (6.20)

with λν = (1 + 1/q)/k(pν). Since limν→∞ pν = +∞ we have limν→∞ k(pν) = 1 + 1/q .
It follows that

Eν < θν < (E∗)ν and Eν < pν < (E∗)ν

for some numbers 1 < E < E∗ < ∞. Also, 1 < λ̄ν < 1 + C E−ν . We conclude from the
bounds above that

lim
ν→∞ Mν ≤ C t−μ0

0 Mσ0
0

for some absolute constants μ0 and σ0. Thus,

‖w̄‖L∞(Qρ0,t0∩St0 ) ≤ C t−μ1
0

(
ρ−n
0

∫∫
Mt∩Q∗

ρ0,t0

w̄3 dμ dt

)σ1

(6.21)

with 2θ0 = p0+2 = 3 and for some new positive absolute constantsμ1 and σ1. The constant
C is independent of ρ0 and t0.

To finish the proof of the proposition it will be sufficient to estimate the integral on the
right hand side of (6.21) in terms of

I := sup
t∈(t0/4,t0]

(
ρ−n
0

∫
Mt∩Q∗∗

ρ0,t0

w̄(·, t) dμ

)
.

To this end, we set again B := (r̄ − r)−2 t−1
0 and combine (6.13) with (6.6) and the bound

(6.14), to obtain for θ0 := 3/2 the bound(
ρ−n
0

∫∫
Srρ0,t0

w̄2θ0k dμdt

)
≤ C B

(
ρ−n
0

∫∫
Sr̄ρ0,t0

w̄2θ0 dμ dt

)

· sup
t∈((1−r̄) t0,t0])

(
ρ−n
0

∫
Mt∩Qr̄

r0,t0

w̄2θ0(k−1)q(x, t) dμ

)1/q

.

(6.22)

If we choose k > 1 so that 2θ0(k − 1)q = 1, the above bound yields

ρ−n
0

∫∫
Srρ0,t0

w̄2θ0k dμ dt ≤ C B I 1/q
(

ρ−n
0

∫∫
Sr̄ρ0,t0

w̄2θ0 dμ dt

)
. (6.23)
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Setting,

m(r , k) :=
∫∫

Srρ0,t0

w̄2θ0k dμ dt

follows from (6.22) that for any 1/4 < r < r̄ < 3/4, we have

m(r , k) ≤ C (r̄ − r)−2 t̄0
−1 I 1/q m(r̄ , 1). (6.24)

Using Hölder’s inequality we have

m(r̄ , 1) ≤ m(r̄ , k)λ/k m(r̄ , s)(1−λ)/s

for any s ∈ (0, 1) with λ = (1−s)k
k−s . For γ > 1 and r ∈ [2/3, 1], (6.24) shows that

logm(3rγ /4, k) ≤ logC + log t0
−1 + 1

q
log I + log(3 (r − rγ )/4)−2

+ λ

k
logm(3r/4, k) + 1 − λ

q
logm(3/4, s)

sincem(3r/4, q) ≤ m(3/4, q). Integrating in r with respect to dr/r on [2/3, 1]we find after
a change of variable that

γ −1
∫ 1

2/3
logm(3r/4, k)

dr

r

≤ C1 log I + C2 log t0
−1 + C2 logm(3/4, s) + C3 + λ

k

∫ 1

2/3
m(3r/4, k)

dr

r
.

(6.25)

Now choose s so that 2θ0s = 1 (recall that we have set θ0 = 3) and γ so close to 1 so
that γ −1 > λ/k. If m(1/2, k) ≤ 1, then since k > 1 we conclude that m(1/2, 1) ≤ C and
the bound ‖w̄‖L∞(Qρ0,t0∩St0 ) ≤ C follows from (6.21). Otherwise, logm(3r4, k) > 0 for
r ∈ [2/3, 1] and from (6.25) we obtain

(
γ −1 − λ

k

) ∫ 1

2/3
logm(3r/4, k)

dr

r
≤ C1 log I + C2 log t0

−1 + C2 logm(3/4, s) + C3

which yields

m(1/2, k) ≤ C t−μ2
0 I σ4 m(3/4, s)

or equivalently

ρ−n
0

∫∫
Q∗

ρ0,t0
∩St0

w̄2θ0k dμ dt ≤ C t̄0
−μ2 I σ2

(
ρ−n
0

∫∫
Q∗∗

ρ0,t0
∩St0

w̄ dμ dt

)σ3

(6.26)

Since,
∫∫

Q∗∗
ρ0,t0

∩St0
w̄ dμ dt ≤ C I , combining (6.26) with (6.21) yields the bound

‖w̄‖L∞(Qρ0,t0∩St0 ) ≤ C t̄0
−μ I σ (6.27)

for some new absolute constants σ > 0 and μ > 0. The constant C is independent of r0 and
t̄0. Recalling that w̄ = max(w, 1) we conclude (6.2). ��
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Proposition 6.2 provides an L∞ bound on w(·, t) on Mt ∩ {|F | ≥ 2}, 0 < t ≤ τ . The
next result gives an L∞ bound on w(·, t) on Mt ∩ {|F | ≤ 1}. For any given t0 ∈ (0, τ ] and
r ∈ (0, 1) we consider the parabolic cylinders in R

n+1 × (0,+∞) given by

Qt0 := B2(0) × (t0/2, t0] and Q∗∗
t0 := B4(0) × (t0/4, t0]

where Br (0) := { x ∈ R
n+1 : |x| < r} denotes the ball in R

n+1 centered at the origin of
radius r . We have the following estimate.

Proposition 6.5 Assume that Mt is a solution to (1.1) as in Theorem 4.3 defined for t ∈ (0, τ ]
and assume that τ < T − 3δ with T given by (3.8) and δ > 0. There exist absolute constants
μ > 0 and σ > 0 and a constant C that depends on α0, κ , on δ, and the initial bound
supM0

〈F, ω〉 H, for which w := γ̂ (t) (〈F̂, ν〉 H)−1 satisfies the bound

‖w‖L∞(Qt0∩St0 ) ≤ C t0
−μ

(
1 + sup

t∈(t0/4,t0]

∫
Mt∩Q∗∗

t0

w(·, t) dμ

)σ

(6.28)

which holds for any t0 > 0 such that Qt0 ∩ St0 is not empty.

Proof The proof is the very similar as the proof of Proposition 6.2. It is actually simpler as
it doesn’t need to be scaled with respect to ρ0. ��
Proof of Theorem 6.1 Readily follows by combining the two estimates in Propositions 6.2
and 6.5. ��

We will next combine Theorems 5.4 and 6.1 to obtain the following L∞ bound on w in
terms of the initial data.

Theorem 6.6 (L∞ bound on w in terms of the initial data) Assume that Mt is a solution
to (1.1) as in Theorem 4.3 defined for t ∈ (0, τ ), and assume that τ < T − 3δ with
T = T (α0) given by (3.8) and δ > 0. Then, of any t0 ∈ (0, τ/2] there exists a constant
Cδ

(
t0, α0, κ, supM0

w, infM0 w
)
such that

sup
t∈(t0,τ )

‖w(·, t)‖L∞(Mt ) ≤ Cδ

(
t0, α0, κ, sup

M0

w, inf
M0

w
)
. (6.29)

Proof We recall the definition of ŵ := (w − 1)+, with w := γ̂ (t) v−1 = γ̂ (t) (〈F̂, ν〉 H)−1

and γ̂ as defined at the beginning of this section. Since 〈F̂, ν〉 = −〈F, ω〉 〈ω, ν〉 and

−〈ω, ν〉 := (
√
1 + |Dū|2)−1 satisfies (

√
1 + α2

0)
−1 ≤ 〈ω, ν〉 ≤ 1, it follows that the

assumed initial bound (1.8) and the definition of w imply the bound

c̄0 ≤ w(·, 0) ≤ C̄0 (6.30)

for some positive constants c̄0, C̄0 depending on the constants c0,C0 in (1.8) and α0, γ̂0 :=
γ̂ (0).

For any t0 ∈ (0, τ/2]we have that (6.1) holds. Hence, it is sufficient to bound the righthand
side of (6.1) in terms of the initial data and t0. Sincew ≤ ŵ+1 and ŵ is compactly supported
for each t ∈ (t0/4, τ ] (the latter follows from (5.3) and the fact that γ̂ (t) < γ (t)), we have

sup
t∈(t0/4,τ ]

sup
R≥1

R−n
∫
Mt∩{|F |≤R}

w(·, t) dμ ≤ 1 + sup
t∈(t0/4,τ ]

∫
Mt

ŵ(·, t) dμ. (6.31)

We next want to apply the L p+1 bound (5.12) for p = 0, to bound supt∈(t0/4,τ ]
∫
Mt

ŵ(·, t) dμ

in terms of the initial data and t0. Notice that we cannot use (5.12) on the interval [0, τ ], as
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we have not assumed that (5.3) holds at t = 0 which would imply that ŵ(·, 0) is compactly
supported. It holds only for t > 0 as a consequence of parabolic regularity (see Proposition
4.4). Thus, we first apply (5.12) on (t0/4, τ ] to obtain

sup
t∈(t0/4,τ ]

∫
Mt

ŵ(·, t) dμ ≤ C(δ, T )

(
1 +

∫
Mt0/4

ŵ(·, t0/4) dμ

)
. (6.32)

To conclude our proof we will bound
∫
Mt0/4

ŵ(·, t0/4) dμ in terms of supM0
w and the size of

the support of ŵ(·, t0/4). Let us first bound supMt0/4
w in terms of supM0

w.Wewill do that for
t0/4 ≤ τ0, for a τ0 > 0 depending only on the initial data. This is sufficient since t0 in (6.29)
can be chosen small. To this end, we will use the maximum principle on w to equation (5.4).
Indeed, settingm(t) := supMt

w, a straightforward application of the maximum principle on
equation (5.4), using also the facts that 〈ω, ν〉 ≤ 1, c1 < 0 and γ −1(t) ≤ γ −1(τ0) on [0, τ0],
gives that

dm(t)

dt
≤ 2〈ω, ν〉2 γ̂ −1(t)m(t)2 + c1 γ̂ −1(t)m(t) ≤ 2γ̂ −1(τ0)m(t)2

yielding

sup
t∈[0,τ0]

m(t) ≤ m(0) γ̂ (τ0)

γ̂ (τ0) − 2m(0) τ0
.

If τ0 is sufficiently small such that γ̂0/2 ≤ γ̂ (τ0) ≤ γ̂0, we conclude that

sup
t∈[0,τ0]

m(t) ≤ 2m(0) γ̂0

γ̂0 − 4m(0) τ0
.

By decreasing τ0 is necessary wemay assume that γ̂0−4m(0) τ0 ≥ γ̂0/2.We conclude using
also (6.30) that for such a τ0 we have

sup
t∈[0,τ0]

w(·, t) ≤ 2m(0) ≤ 2C̄0. (6.33)

Since we may assume without loss of generality that t0/4 ≤ τ0, the last bound and ŵ ≤ w

imply that supMt0/4
ŵ ≤ 2C̄0. On the other hand, by (5.3) and the fact that γ̂ (t) < γ (t),

we have that ŵ := (w − 1)+ is compactly supported for all t ∈ (0, τ ) and in particular for
t := t0/4. This means that its support is contained in a ball in Rn+1 of radius R0 := R0(t0).
Hence, ∫

Mt0/4

ŵ(·, t0/4) dμ ≤ C
(
R0, C̄0

)
. (6.34)

Finally, by combining (6.1) with (6.31), (6.32) and (6.34) we conclude that (6.29) holds. ��

7 Long time existence Theorem 1.1

In this final section we will give the proof of our long time existence Theorem 1.1, which
says that our solution Mt of the inverse mean curvature flow will exist up to time T , where
T denotes the critical time where the cone at infinity becomes flat and is given by (3.8).

Proof of Theorem 1.1 Our short time existence Theorem 4.3 implies the existence of a max-
imal time τmax > 0 for which a convex solution Mt of (1.1) exists on [0, τmax) and the
following hold:
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i. Mt , t ∈ [0, τmax) is an entire convex graph xn+1 = ū(x, t) over Rn which satisfies
condition (1.7);

ii. ū is C∞ smooth on Rn × (0, τmax);
iii. cτ1 < H 〈F, ω〉 ≤ C0, on t ∈ [0, τ1], for all 0 < τ1 < τmax.

It τmax = T , we are done, otherwise τmax < T − δ, for some δ > 0. We claim that

inf
t∈[0,τmax)

inf
Mt

H 〈F̂, ν〉 ≥ cδ > 0. (7.1)

To this end, we will combine (6.29) with (6.33). We have seen in the proof of Theorem 6.6
that there exists τ0 > 0 depending only on the initial data such that (6.33) holds. Assume
without loss of generality that τ0 < T /2. Since w := γ̂ (t)(H 〈F̂, ν〉)−1, it follows from
(6.33) that

inf
t∈[0,τ0]

inf
Mt

H 〈F̂, ν〉 ≥ c1(τ0) > 0.

Now we apply (6.29) for t0 := τ0 and τ := τmax to obtain the bound

sup
t∈(τ0,τmax)

‖w(·, t)‖L∞(Mt ) ≤ Cδ

(
τ0

)
.

This can be done since conditions i.–iii. above imply that Theorem 6.6 holds on (0, τmax). It
follows that

inf
t∈(τ0,τmax)

inf
Mt

H 〈F̂, ν〉 ≥ c2(δ, τ0) > 0.

Combining the last two bounds yields that (7.1) holds and since 〈F̂, ν〉 = −〈F, ω〉 〈ω, ν〉 ≤
〈F, ω〉 we also have

inf
t∈(0,τmax)

inf
Mt

H 〈F, ω〉 ≥ cδ > 0. (7.2)

In addition, by Proposition 2.12 we have

sup
Mt

H 〈F, ω〉 ≤ sup
Mt

H 〈F, ω〉 ≤ C0. (7.3)

On the other hand, ūt ≤ 0 and (1.7) imply that the pointwise limit ū(x, τmax) :=
limt→τmax ū(x, t) exists for all x ∈ R

n and it defines a convex graph. Moreover, it sat-
isfies (1.7) at t = τmax. Now the lower and upper bounds (7.1), (7.3) and (1.7) for
t ∈ [0, τmax], imply that the fully-nonlinear equation (1.4) satisfied by ū is strictly parabolic
on compact subsets ofRn ×[0, τmax]. It follows by standard local regularity results on fully-
nonlinear equations that ū(·, τmax) is C∞ smooth. Moreover, the above bounds show that
cδ ≤ H 〈F, ω〉 ≤ C0 on Mτmax . Also, since |〈F, ν〉| ≤ C0 on M0 (see in (4.15)) its evolution
equation given in Lemma 2.1 and convexity imply the bound |〈F, ν〉| ≤ C(T ) on Mτmax . We
conclude from the above discussion that at time t = τmax the entire graph Mτmax given by
xn+1 = ū(·, τmax) satisfies all the assumptions of our short time existence result Theorem
4.3, hence the flow can be extended beyond τmax contradicting its maximality. This shows
that τmax = T , showing that our solution exists for all t ∈ (0, T ).

Let us now observe that as t → T , the solution converges to a horizontal plane of height
h ∈ [0, κ]. First, the pointwise limit ū(x, T ) := limt→T ū(x, t) exists, since ūt (x, t) ≥ 0 for
all t < T . Second, ū(·, T ) is convex and lies between the two horizontal planes xn+1 = 0
and xn+1 = κ . The latter simply follows from (1.7) and the fact that α(T ) = 0. In addition,
our a’priori local bound from above on the mean curvature H shown in Proposition 2.11,
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which holds uniformly up to t = T , implies that ū(·, T ) ∈ C1,1
loc (Rn). It follows that ū(·, T )

must be a horizontal plane of height h ∈ [0, κ], and that the convergence limt→T ū(·, t) ≡ h
is in C1,α , on any compact subset of Rn and for all α < 1. ��
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