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Abstract
We use blow up analysis for local integral equations to provide a blow up rates of solutions
of higher order Hardy–Hénon equation in a bounded domain with an isolated singularity,
and show the asymptotic radial symmetry of the solutions near the singularity. This work
generalizes the correspondence results of Jin–Xiong (in, Asymptotic symmetry and local
behavior of solutions of higher order conformally invariant equations with isolated singu-
larities. arXiv:1901.01678) on higher order conformally invariant equations with an isolated
singularity.

Mathematics Subject Classification 35G20 · 35B44 · 45M05

1 Introduction

This article aims to study the local behaviors of positive solutions for the higher order Hardy–
Hénon equation

(−�)σ u = |x |τu p in B1\{0}, (1)

where 1 ≤ σ < n
2 is an integer, τ > −2σ , p > 1 and the punctured unit ball B1\{0} ⊂ R

n ,
n ≥ 2.

In the special case of σ = 1, the local behavior of the positive solutions for (1) with
isolated singularity has been very well understood. For τ > −2, 1 < p ≤ n+2

n−2 , the blow up
rate of the solution

u(x) ≤ C |x |− 2+τ
p−1 , |∇u(x)| ≤ C |x |− p+1+τ

p−1 near x = 0,
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is obtained by a number of authors, where ∇u denotes the gradient of u and C is the positive
constant. See [1,2,5,9,12–14,17] for more precise estimates and details. In the classical paper
[3], Caffarelli-Gidas-Spruck proved that every local solution of (1) is asymptotically radially
symmetric

u(x) = ū(|x |)(1 + O(|x |)) as x → 0,

where τ = 0, n
n−2 ≤ p ≤ n+2

n−2 and ū(|x |) := −
∫
Sn

u(|x |θ)dθ is the spherical average of u. Li

[10] improved their results for τ ≤ 0, 1 < p ≤ n+2+τ
n−2 , and simplified the proofs. Recently,

Han et al. [6] studied the asymptotic behavior of solutions to the Yamabe equation with an
asymptotically flat metric. For the fractional case 0 < σ < 1, Caffarelli–Jin–Sire–Xiong [4]
studied the blow up rate, asymptotically radially symmetric and removability of the positive
solution for the fractional Yamabe equation with an isolated singularity

(−�)σ u = u
n+2σ
n−2σ in B1\{0}.

Motivated by this work, in our previous work [11], we have studied the fractional Hardy–
Hénon equations and not only derived that there exists a positive constant C such that the
blow up rates

u(x) ≤ C |x |− 2σ+τ
p−1 , |∇u(x)| ≤ C |x |− 2σ+τ+p−1

p−1 near x = 0,

for τ > −2σ , 1 < p < n+2σ
n−2σ , but also obtained the asymptotically radially symmetric

u(x) = ū(|x |)(1 + O(|x |)) as x → 0,

for −2σ < τ ≤ 0, n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ , which is consistent with the classic case σ = 1.
Recently, by using blow up analysis Jin–Xiong [8] proved sharp blow up rates of the

positive solutions of higher order conformally invariant equationswith an isolated singularity

(−�)σ u = u
n+2σ
n−2σ in B1\{0},

where 1 ≤ σ < n
2 is an integer, and showed the asymptotic radial symmetry of the solutions

near the singularity. That is, they proved that there exists a positive constant C such that

u(x) ≤ C |x |− n−2σ
2 near x = 0,

and

u(x) = ū(|x |)(1 + O(|x |)) as x → 0.

This is an extension of the celebrated theorem of Caffarelli–Gidas–Spruck [3] for the second
order Yamabe equation andCaffarelli–Jin–Sire–Xiong [4] for the fractional Yamabe equation
with isolated singularity to higher order equations.

Inspired by the above work, we are interested in the higher order Hardy–Hénon equation,
that is, 1 ≤ σ < n

2 is an integer, in a bounded domainwith an isolated singularity in this paper.
Our result provides a blow up rate estimate and show that the solution of (1) is asymptotically
radially symmetric near an isolated singularity, which is consistent with 0 < σ ≤ 1.

Theorem 1.1 Suppose that 1 ≤ σ < n
2 is an integer, and u ∈ C2σ (B1\{0}) is a positive

solution of (1).
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(i) If −2σ < τ , n+τ
n−2σ < p < n+2σ

n−2σ and

(−�)mu ≥ 0 in B1\{0}, m = 1, 2, · · · , σ − 1, (2)

then there exists a positive constant C = C(n, σ, τ, p, ) such that

u(x) ≤ C |x |− 2σ+τ
p−1 , |∇u(x)| ≤ C |x |− 2σ+τ+p−1

p−1 near x = 0.

(ii) If −2σ < τ ≤ 0, n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ and the solution satisfies (2), then

u(x) = ū(|x |)(1 + O(|x |)) as x → 0,

where ū(|x |) := −
∫
Sn

u(|x |θ)dθ is the spherical average of u.

The main idea of our approach is to carry out blow up analysis to get the blow up rate
estimate near the isolated singularity, and by the method of moving spheres to study the
asymptotically radially symmetric as inCaffarelli–Jin–Sire–Xiong [4] for the fractionalYam-
abe equation 0 < σ < 1. The method of moving spheres has become a very powerful tool
in the study of nonlinear elliptic equations, i.e. the method of moving planes together with
the conformal invariance, which fully exploits the conformal invariance of the problem. It is
known that one of the conformal invariance, i.e. the Kelvin transform of u defined as

ux,λ(y) :=
(

λ

|y − x |
)n−2σ

u

(

x + λ2(y − x)

|y − x |2
)

in R
n,

with λ > 0, x ∈ R
n , plays an important part in our proof. On the other hand, the sign

conditions (2) will ensure the maximum principle and are essential for applying the moving
spheres method. However, in our local situation (1), the sign conditions (2) may change when
performing the Kelvin transforms. Inspired by a unified approach to solve the Nirenberg
problem and its generalizations by the authors Jin–Li–Xiong in [7], we shall make use of
integral representations. In details, we first prove |x |τu p ∈ L1(B1) under the assumptions of
Theorem 1.1, and then we can rewrite the differential equations (1) into the integral equation
involving the Riesz potential

u(x) =
∫

B1

|y|τu p(y)

|x − y|n−2σ dy + h(x) in B1\{0},

where h ∈ C1(B1) is a positive function. As a result, we just need to study the integral
equation.

This paper is organized as follows. In Sect. 2, we shall show that (1) can be written as
the form of (3), and then give some results about the integral equation, which implies that
Theorem 1.1 follows from these results. In Sect. 3, we prove the upper bound near the isolated
singularity for the solution of (3), and the asymptotic radial symmetry will be obtained in
Sect. 4.

2 Proof of themain results

For 0 < σ < n
2 , −2σ < τ , p > 1, u ∈ C(B1\{0}), and |x |τu p(x) ∈ L1(B1), before that we

consider the integral equation involving the Riesz potential

u(x) =
∫

B1

|y|τu p(y)

|x − y|n−2σ dy + h(x) in B1\{0}, (3)
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where h ∈ C1(B1) is a positive function, otherwise we consider the equation in a smaller
ball. About the integral Eq. (3), we shall first show some results, which will recover our
previous work [11] for the fractional Yamabe equation 0 < σ < 1, and the proof will be
given later in Sects. 3 and 4. Now we first introduce the upper bound of the positive solution
near the singularity.

Theorem 2.1 For −2σ < τ , 1 < p < n+2σ
n−2σ , suppose that u is a positive solution of (3),

then there exists a positive constant C = C(n, σ, τ, p) such that

u(x) ≤ C |x |− 2σ+τ
p−1 , |∇u(x)| ≤ C |x |− 2σ+τ+p−1

p−1 near x = 0. (4)

One consequence of the upper bound of the solution near the singularity in Theorem 2.1 is
the following Harnack inequality.

Corollary 2.2 Assume as in Theorem 2.1, then for all 0 < r < 1
4 , then there exists a positive

constant C independent of r such that

sup
B3r/2\Br/2

u ≤ C inf
B3r/2\Br/2

u.

The following theorem shows the asymptotic radial symmetry of the positive solution near
the singularity.

Theorem 2.3 For−2σ < τ ≤ 0, n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ , suppose that u is a positive solution
of (3), then

u(x) = ū(|x |)(1 + O(|x |)) as x → 0,

where ū(|x |) := −
∫
Sn

u(|x |θ)dθ is the spherical average of u.

Next we shall show that we can rewrite the differential Eq. (1) into the integral Eq. (3)
involving the Riesz potential, which implies that Theorem 1.1 follows by Theorems 2.1 and
2.3.

2.1 Proof of Theorem 1.1

To prove Theorem 1.1, we first need the following proposition.

Proposition 2.4 Suppose that 1 ≤ σ < n
2 is an integer, τ > −2σ , p > n+τ

n−2σ , and u ∈
C2σ (B1\{0}) is a positive solution of (1), then |x |τu p ∈ L1(B1).

Proof Let η be a smooth function defined in R satisfying η(t) = 0 for |t | ≤ 1, η(t) = 1 for
|t | ≥ 2, and 0 ≤ η(t) ≤ 1 for 1 ≤ t ≤ 2. For small ε > 0, let ϕε(x) = η(ε−1|x |)q with
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q = 2σ p
p−1 . Multiplying both sides by ϕε(x) and using integration by parts, we have

∫

B1
|x |τu pϕε =

∫

B1
u(−�)σ ϕε +

∫

∂B1

∂(−�)σ−1u

∂ν
ds

≤ Cε−2σ
∫

ε≤|x |≤2ε
uη(ε−1|x |)q−2σ + C

= Cε−2σ
∫

ε≤|x |≤2ε
uϕ

1
p
ε + C

= Cε−2σ
∫

ε≤|x |≤2ε
|x | τ

p uϕ
1
p
ε |x |− τ

p + C

≤ Cε
−2σ− τ

p

∫

ε≤|x |≤2ε
|x | τ

p uϕ
1
p
ε + C

≤ Cε
−2σ− τ

p +n− n
p

(∫

B1
|x |τu pϕε

) 1
p + C .

Since p > n+τ
n−2σ , we have

∫

2ε≤|x |≤1
|x |τu p <

∫

B1
|x |τu pϕε ≤ C .

By sending ε → 0, we obtain
∫

B1
|x |τu p ≤ C .

Thus, we complete the proof. �	
Next, we return to prove that if u ∈ C2σ (B1\{0}) is a positive solution of (1), then

u(x) = B(n, σ )

∫

Br

|y|τu p(y)

|x − y|n−2σ dy + h1(x), (5)

with

B(n, σ ) := �
( n−2σ

2

)

22σ πn/2�(σ)
,

where � is the Gamma function, and h1 is smooth in Br and satisfies (−�)σ h1 = 0 in Br . As
a result, we can finish the proof of Theorem 1.1 by Theorems 2.1 and 2.3. For the purpose,
we recall the green function of −� on the unit ball is

G1(x, y) = 1

(n − 2)wn−1

(

|x − y|2−n −
∣
∣
∣
∣
x

|x | − |x |y
∣
∣
∣
∣

2−n
)

for x, y ∈ B1,

and

H1(x, y) := − ∂

∂νy
G1(x, y) = 1 − |x |2

wn−1|x − y|n for x ∈ B1, y ∈ ∂B1,

where wn−1 is the surface area of the unit sphere in Rn . Define

Gσ (x, y) :=
∫

B1×···×B1
G1(x, y1)G1(y1, y2) · · ·G1(yσ−1, y)dy1 · · · dyσ−1,
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then we have

Gσ (x, y) = B(n, σ )|x − y|2σ−n + Aσ (x, y),

where Aσ (·, ·) is smooth in B1 × B1. For 2 ≤ i ≤ σ , define

Hi (x, y) :=
∫

B1×···×B1
G1(x, y1)G1(y1, y2) · · ·G1(yi−2, yi−1)H1(yi−1, y)dy1 · · · dyi−1.

Proof of Theorem 1.1 We can suppose that u ∈ C2σ (B1\{0}) and u > 0 in B1, otherwise we
just consider the equation in a smaller ball. By the above argument, we know that we only
need to obtain (5), then we can finish the proof. To prove (5), let

v(x) :=
∫

B1
Gσ (x, y)|y|τu p(y)dy +

m∑

i=1

∫

∂B1
Hi (x, y)(−�)σ−i u(y)dSy,

and

w := u − v.

Then

(−�)σ w = 0 in B1\{0}.
Combiningwith |y|τu p(y) ∈ L1(B1) fromProposition2.4 and the fact that theRiesz potential

|y|2σ−n is weak type
(
1, n

n−2σ

)
, v ∈ L

n
n−2σ
weak (B1) ∩ L1(B1). Moreover, for every ε > 0 we

can choose ρ > 0 such that
∫
B2ρ

|y|τu p(y)dy < ε. Then for all sufficiently large λ, we have

∣
∣x ∈ Bρ : |v(x)| > λ

∣
∣ ≤

∣
∣
∣
∣
∣
x ∈ Bρ :

∫

B2ρ
Gσ (x, y)|y|τu p(y)dy >

λ

2

∣
∣
∣
∣
∣
≤ C(n, σ )ελ− n

n−2σ .

Hence, w ∈ L
n

n−2σ
weak (B1) ∩ L1(B1) and for every ε > 0 there exist ρ > 0 such that for all

sufficiently large λ,

∣
∣x ∈ Bρ : |w(x)| > λ

∣
∣ ≤

∣
∣
∣
∣x ∈ Bρ : |u(x)| >

λ

2

∣
∣
∣
∣ +

∣
∣
∣
∣x ∈ Bρ : |v(x)| >

λ

2

∣
∣
∣
∣ .

It follows that
∣
∣x ∈ Bρ : |w(x)| > λ

∣
∣ ≤ C(n, σ )ελ− n

n−2σ .

By the generalized Bocher’s Theorem for polyharmonic function, (−�)σ w(x) = 0 in B1.
Since w = �w = · · · = �σ−1w = 0 on ∂B1, w = 0 and thus u = v. Since −�u ≥ 0
in B1\{0}, and u > 0 in B1, we know from the Maximum Principle that c1 := infB1 u =
min∂B1 u > 0. By |y|τu p(y) ∈ L1(B1), we can find that r < 1

4 such that for x ∈ Br ,
∫

Br
|Aσ (x, y)||y|τu p(y)dy ≤ c1

2
,

then

u(x) = B(n, σ )

∫

Br

|y|τu p(y)

|x − y|n−2σ dy + h1(x),
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where

h1(x) =
∫

Br
Aσ (x, y)|y|τu p(y)dy +

∫

B1\Br
Gσ (x, y)|y|τu p(y)dy

+
σ∑

i=1

∫

∂B1
Hi (x, y)(−�)i−1u(y)dSy .

Hence, we have for x ∈ Br ,

h1(x) ≥ −c1
2

+
∫

∂B1
Hi (x, y)u(y)dSy

≥ −c1
2

+ inf
B1

u = c1
2

.

On the other hand, h1 is smooth in Br and satisfies (−�)σ h1 = 0 in Br . We complete the
proof. �	

3 The upper bound near the isolated singularity

In this section, we shall give proofs of Theorem 2.1 and Corollary 2.2 respectively. The
following we start our proof.

3.1 Proof of Theorem 2.1

First, we recall the Doubling Property [15, Lemma 5.1] and denote BR(x) as the ball in R
n

with radius R and center x . For convenience, we write BR(0) as BR for short.

Proposition 3.1 Suppose that ∅ �= D ⊂ � ⊂ R
n, � is closed and � = � \ D. Let

M : D → (0,∞) be bounded on compact subset of D. If for a fixed positive constant k,
there exists y ∈ D satisfying

M(y)dist(y, �) > 2k,

then there exists x ∈ D such that

M(x) ≥ M(y), M(x)dist(x, �) > 2k,

and for all z ∈ D ∩ BkM−1(x)(x),

M(z) ≤ 2M(x).

Next, in order to prove Theorem 2.1, we start with the following lemma.

Lemma 3.2 Let 1 < p < n+2σ
n−2σ , 0 < α ≤ 1 and c(x) ∈ C2σ,α(B1) satisfy

‖c‖C2,α(B1)
≤ C1, c(x) ≥ C2 in B1 (6)

for some positive constants C1, C2. Suppose that h ∈ C1(B1) and u ∈ C2σ (B1) is a nonneg-
ative solution of

u(x) =
∫

B1

c(y)u p(y)

|x − y|n−2σ dy + h(x) in B1, (7)
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then there exists a positive constant C depending only on n, σ , p, C1, C2 such that

|u(x)| p−1
2σ + |∇u(x)| p−1

p+2σ−1 ≤ C[dist(x, ∂B1)]−1 in B1.

Proof Arguing by contradiction, for k = 1, 2, · · · , we assume that there exist nonnegative
functions uk satisfying (7) and points yk ∈ B1 such that

|uk(yk)|
p−1
2σ + |∇uk(yk)|

p−1
p+2σ−1 > 2k[dist(yk, ∂B1)]−1. (8)

Define

Mk(x) := |uk(x)|
p−1
2σ + |∇uk(x)|

p−1
p+2σ−1 .

Via Proposition 3.1, for D = B1, � = ∂B1, there exists xk ∈ B1 such that

Mk(xk) ≥ Mk(yk), Mk(xk) > 2k[dist(xk, ∂B1)]−1 ≥ 2k, (9)

and for any z ∈ B1 and |z − xk | ≤ kM−1
k (xk),

Mk(z) ≤ 2Mk(xk). (10)

It follows from (9) that

λk := M−1
k (xk) → 0 as k → ∞, (11)

dist(xk, ∂B1) > 2kλk, for k = 1, 2, · · · . (12)

Consider

wk(y) := λ
2σ
p−1
k uk(xk + λk y), vk(y) := λ

2σ
p−1
k hk(xk + λk y) in Bk .

Combining (12), we obtain that for any y ∈ Bk ,

|xk + λk y − xk | ≤ λk |y| ≤ λkk <
1

2
dist(xk, ∂B1),

that is,

xk + λk y ∈ B 1
2 dist(xk ,∂B1)

(xk) ⊂ B1.

Therefore, wk is well defined in Bk and

|wk(y)|
p−1
2σ = λk |uk(xk + λk y)|

p−1
2σ ,

|∇wk(y)|
p−1

2σ+p−1 = λk |∇uk(xk + λk y)|
p−1

2σ+p−1 .

From (10), we find that for all y ∈ Bk ,

|uk(xk + λk y)|
p−1
2σ + |∇uk(xk + λk y)|

p−1
2σ+p−1 ≤ 2

(

|uk(xk)|
p−1
2σ + |∇uk(xk)|

p−1
p+2σ−1

)

.

That is,

|wk(y)|
p−1
2σ + |∇wk(y)|

p−1
2σ+p−1 ≤ 2λkMk(xk) = 2. (13)

Moreover, wk satisfies

wk(x) =
∫

Bk

ck(y)w
p
k (y)

|x − y|n−2σ dy + vk(x) in Bk, (14)

123



The local behavior of positive solutions for higher order equation… Page 9 of 19 201

and

|wk(0)|
p−1
2σ + |∇wk(0)|

p−1
2σ+p−1 = 1,

where ck(y) := c(xk + λk y). By (11) it follows that

‖vk‖C1(Bk ) → 0.

By condition (6), we obtain that {ck} is uniformly bounded in R
n . For each R > 0, and

for all y, z ∈ BR , we have

|Dβck(y) − Dβck(z)| ≤ C1λ
|β|
k |λk(y − z)|α ≤ C1|y − z|α, |β| = 0, 1, · · · , 2σ

for k is large enough. Therefore, by Arzela-Ascoli’s Theorem, there exists a function c ∈
C2σ (Rn), after extracting a subsequence, ck → c in C2σ

loc(R
n). Moreover, by (11), we obtain

|ck(y) − ck(z)| → 0 as k → ∞. (15)

This implies that the function c actually is a constant C . By (6) again, ck ≥ C2 > 0, we
conclude that C is a positive constant.

On the other hand, applying the regularity results in Section 2.1 of [7], after passing to a
subsequence, we have, for some nonnegative function w ∈ C2,α

loc (Rn),

wk → w in Cα
loc(R

n)

for some α > 0. Moreover, w satisfies

w(x) =
∫

Rn

Cw p(y)

|x − y|n−2σ dy in R
n (16)

and

|w(0)| p−1
2σ + |∇w(0)| p−1

2σ+p−1 = 1.

Since p < n+2σ
n−2σ , this contradicts the Liouville-type result [16, Theorem 1.4] that the only

nonnegative entire solution of (16) is w = 0. Then we conclude the lemma. �	
We now turn to prove Theorem 2.1.

Proof of Theorem 2.1 For x0 ∈ B1/2\{0}, we denote R := 1
2 |x0|. Then for any y ∈ B1, we

have |x0|
2 < |x0 + Ry| <

3|x0|
2 , and deduce that x0 + Ry ∈ B1\{0}. Define

w(y) := R
2σ+τ
p−1 u(x0 + Ry), v(y) := R

2σ+τ
p−1 h(x0 + Ry).

Therefore, we obtain that

w(x) =
∫

B1

c(y)w p(y)

|x − y|n−2σ dy + v(x) in B1,

where c(y) := |y + x0
R |τ . Notice that

1 <

∣
∣
∣y + x0

R

∣
∣
∣ < 3 in B1.

Moreover,

‖c‖C3(B1)
≤ C, c(y) ≥ 3−2σ in B1.
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Applying Lemma 3.2, we obtain that

|w(0)| p−1
2σ + |∇w(0)| p−1

p+2σ−1 ≤ C .

That is,

(R
2σ+τ
p−1 u(x0))

p−1
2σ + (R

2σ+τ
p−1 +1|∇u(x0)|)

p−1
p+2σ−1 ≤ C .

Hence,

u(x0) ≤ CR− 2σ+τ
p−1 ≤ C |x0|−

2σ+τ
p−1 ,

|∇u(x0)| ≤ CR− 2σ+τ+p−1
p−1 ≤ C |x0|−

2σ+τ+p−1
p−1 .

Then Theorem 2.1 is proved by the fact that x0 ∈ B1/2 \ {0} is arbitrary. �	

3.2 Proof of Corollary 2.2

Using the upper bound, we shall prove the Harnack inequality.

Proof of Corollary 2.2 Let

w(y) := r
2σ+τ
p−1 u(ry), v(y) := r

2σ+τ
p−1 h(ry),

then

w(x) =
∫

B1/r

|y|τw p(y)

|x − y|n−2σ dy + v(x) in B1/r\{0}.

Theorem 2.1 gives that there exists a positive constant C such that

w(x) ≤ C in B2\B1/10.

For z ∈ ∂B1, let

g(x) =
∫

B1/r \B9/10(z)
|y|τw p(y)

|x − y|n−2σ dy.

For x1, x2 ∈ B1/2(z),

g(x1) =
∫

B1/r \B9/10(z)
|y|τw p(y)

|x1 − y|n−2σ dy

=
∫

B1/r \B9/10(z)
|x2 − y|n−2σ

|x1 − y|n−2σ

|y|τw p(y)

|x2 − y|n−2σ dy

≤
(
7

2

)n−2σ ∫

B1/r \B9/10(z)
|y|τw p(y)

|x2 − y|n−2σ dy

≤
(
7

2

)n−2σ

g(x2).

Hence, g satisfies the Harnack inequality in B1/2(z). Since h ∈ C1(B1) is a positive function,
there exist a constant C0 ≥ 1 such that maxB1/2(z) v ≤ C0 minB1/2(z) v. On the other hand,
we can write w as

w(x) =
∫

B9/10(z)

|y|τw p(y)

|x − y|n−2σ dy + g(x) + v(x) in B1/2(z),
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then from Proposition 2.2 in [7] we conclude that

sup
B1/2(z)

w ≤ C inf
B1/2(z)

w.

A covering argument leads to

sup
B3/2\B1/2

w ≤ C inf
B3/2\B1/2

w.

We complete the proof of Harnack inequality by rescaling back to u. �	

4 Asymptotical radial symmetry

Last, we give a proof of the Theorem 2.3 for completely.

4.1 Proof of Theorem 2.3

Proof of Theorem 2.3 Assume that there exists some positive constant ε ∈ (0, 1) such that
for all 0 < λ < |x | ≤ ε, y ∈ B3/2\(Bλ(x) ∪ {0}),

ux,λ(y) ≤ u(y), (17)

where

ux,λ(y) :=
(

λ

|y − x |
)n−2σ

u

(

x + λ2(y − x)

|y − x |2
)

.

Let r > 0 and x1, x2 ∈ ∂Br be such that

u(x1) = max
∂Br

u, u(x2) = min
∂Br

u,

and define

x3 := x1 + ε(x1 − x2)

4|x1 − x2| , λ :=
√

ε

4

(
|x1 − x2| + ε

4

)
.

Then

|x3| =
∣
∣
∣
∣x1 + ε(x1 − x2)

4|x1 − x2|
∣
∣
∣
∣ ≤ r + ε

4
. (18)

Via some direct computations and |x1|2 = |x2|2 = r2, we find that

λ2 − |x3|2 = ε

4

(
|x1 − x2| + ε

4

)
−

∣
∣
∣
∣x1 + ε(x1 − x2)

4|x1 − x2|
∣
∣
∣
∣

2

= ε(|x2|2 − |x1|2)
4|x1 − x2| − x21 = −x21 < 0,

which follows from this and (18) that λ < |x3| < ε by choosing r < 3ε
4 .

It follows from (17) that

ux3,λ(x2) ≤ u(x2).
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Since

x2 − x3 = x2 − x1 + ε(x2 − x1)

4|x1 − x2| = x2 − x1
|x1 − x2|

(
|x1 − x2| + ε

4

)
,

then

|x2 − x3| = |x1 − x2| + ε

4
,

x2 − x3
|x2 − x3|2 = x2 − x1

|x1 − x2|
(|x1 − x2| + ε

4

) ,

and

λ2(x2 − x3)

|x2 − x3|2 = ε(x2 − x1)

4|x1 − x2| .
Hence,

ux3,λ(x2) =
(

λ

|x2 − x3|
)n−2σ

u

(

x3 + λ2(x2 − x3)

|x2 − x3|2
)

=
(

λ

|x1 − x2| + ε
4

)n−2σ

u

(

x3 + ε(x2 − x1)

4|x1 − x2|
)

=
(

λ

|x1 − x2| + ε
4

)n−2σ

u(x1).

On the other hand,

ux3,λ(x2) =
(

λ

|x1 − x2| + ε
4

)n−2σ

u(x1) = u(x1)
(
4|x1−x2|

ε
+ 1

) n−2σ
2

≥ u(x1)
( 8r

ε
+ 1

) n−2σ
2

,

then

u(x1) ≤
(
8r

ε
+ 1

) n−2σ
2

ux3,λ(x2) ≤ (1 + Cr)
n−2σ
2 u(x2),

for some C = C(ε). That is,

max
∂Br

u ≤ (1 + Cr)min
∂Br

u.

Hence for any x ∈ ∂Br ,

u(x)

ū(|x |) − 1 ≤ max∂Br u

min∂Br u
− 1 ≤ Cr ,

u(x)

ū(|x |) − 1 ≥ min∂Br u

max∂Br u
− 1 ≥ 1

1 + Cr
− 1 > −Cr ,

In conclusion, we have
∣
∣
∣
∣
u(x)

ū(|x |) − 1

∣
∣
∣
∣ ≤ Cr .

It follows that

u(x) = ū(|x |)(1 + O(r)) as x → 0.

Therefore, in order to complete the proof of Theorem 2.3, it suffices to prove (17). �	
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4.2 The proof of (17)

Replacing u(x) by r
2σ+τ
p−1 u(r x) and h(x) by r

2σ+τ
p−1 h(r x) for r = 2

3 , we can consider the Eq.
(3) in B3/2 for convenience, namely,

u(y) =
∫

B2/3

|z|τu p(z)

|y − z|n−2σ dz + h(y) in B3/2\{0}, (19)

with h ∈ C1(B3/2) is positive and |∇ ln h| ≤ C in B3/2. Moreover, if we extend u to be
identically 0 outside B3/2, then (19) can be written as

u(y) =
∫

Rn

|z|τu p(z)

|y − z|n−2σ dz + h(y) in B3/2\{0}.

For all 0 < |x | < 1
16 and λ > 0, it is a straightforward computation to show that

ux,λ(y) =
∫

Rn

(
λ

|z − x |
)p∗ ∣

∣zx,λ
∣
∣τ u p

x,λ(z)

|y − z|n−2σ dz + hx,λ(y) in Bx,λ
3/2,

where zx,λ := x + λ2(z−x)
|z−x |2 , p∗ := n+2σ − p(n−2σ), Bx,λ

3/2 := {
yx,λ, y ∈ B3/2

}
. It follows

that

u(y) − ux,λ(y) =
∫

|z−x |≥λ

K (x, λ; y, z)
(

|z|τu p(z) −
(

λ

|z − x |
)p∗

∣
∣zx,λ

∣
∣τ u p

x,λ(z)

)

+ h(y) − hx,λ(y),

where

K (x, λ; y, z) := 1

|y − z|n−2σ −
(

λ

|y − x |
)n−2σ 1

|yx,λ − z|n−2σ .

On the other hand, since h ∈ C1(B3/2) is positive and |∇ ln h| ≤ C in B3/2, then by [8,
Lemma 3.1], there exists r0 ∈ (0, 1/2) depending only on n, σ and C such that for every
x ∈ B1 and 0 < λ ≤ r0 there hold

hx,λ(y) ≤ h(y) in B3/2. (20)

The aim is to show that there exists some positive constant ε ∈ (0, r0) such that for |x | ≤ ε,
λ ∈ (0, |x |),

ux,λ(y) ≤ u(y) in B3/2\(Bλ(x) ∪ {0}), (21)

that is (17).

4.3 The proof of (21)

To prove (21), for fixed x ∈ B1/16\{0}, we first define
λ̄(x) := sup

{
0 < μ ≤ |x | ∣

∣ ux,λ(y) ≤ u(y) in B3/2\(Bλ(x) ∪ {0}), ∀ 0 < λ < μ
}
,

and then show λ̄(x) = |x |.
For sake of clarity, the proof of (21) is divided into three steps. For the first step, we need

the following Claim 1 to make sure that λ̄(x) is well defined.
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Claim 1 There exists λ0(x) < |x | such that for all λ ∈ (0, λ0(x)),

ux,λ(y) ≤ u(y) in B3/2\(Bλ(x) ∪ {0}).
Second, we give that

Claim 2 There exists a positive constant ε ∈ (0, r0) sufficiently small such that for all |x | ≤ ε,
λ ∈ (0, |x |),

ux,λ(y) < u(y) in B3/2\B1/4.

Last, we are going to prove that

Claim 3

λ̄(x) = |x |.
Proof of Claim 1 First of all, we are going to show that there exist μ and λ0(x) satisfying
0 < λ0(x) < μ < |x | such that for all λ ∈ (0, λ0(x)),

ux,λ(y) ≤ u(y) in Bμ(x)\Bλ(x). (22)

Then we will prove that for all λ ∈ (0, λ0(x)),

ux,λ(y) ≤ u(y) in B3/2\
(
Bμ(x) ∪ {0}

)
. (23)

Indeed, for every 0 < λ < μ < 1
2 |x |, we have

|∇ ln u| ≤ C0 in B|x |/2(x).

Then for all 0 < r < μ := min
{ |x |

4 , n−2σ
2C0

}
, θ ∈ Sn−1,

d

dr

(
r

n−2σ
2 u(x + rθ)

)
= r

n−2σ
2 −1u(x + rθ)

(
n − 2σ

2
− r

∇u · θ

u

)

≥ r
n−2σ
2 −1u(x + rθ)

(
n − 2σ

2
− C0r

)

> 0.

For any y ∈ Bμ(x), 0 < λ < |y − x | ≤ μ, let

θ = y − x

|y − x | , r1 = |y − x |, r2 = λ2

|y − x |2 r1.

It follows that

r
n−2σ
2

2 u(x + r2θ) < r
n−2σ
2

1 u(x + r1θ).

That is (22). By Eq. (3), we have

u(x) ≥ 42σ−n
∫

B3/2
|y|τu p(y)dy =: C1 > 0, (24)

and thus we can find 0 < λ0(x) � μ such that, for every λ ∈ (0, λ0(x)),

ux,λ(y) ≤ u(y) in B3/2\
(
Bμ(x) ∪ {0}

)
,

that is (23). �	
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Proof of Claim 2 For 1
4 ≤ |y| ≤ 3

2 and 0 < λ < |x | < 1
8 , we have

|y − x | ≥ |y| − |x | ≥ 1

8
> |x |.

Hence
∣
∣
∣
∣x + λ2(y − x)

|y − x |2
∣
∣
∣
∣ ≤ |x | + |x |2

|y − x | ≤ 2|x |,

and
∣
∣
∣
∣x + λ2(y − x)

|y − x |2
∣
∣
∣
∣ ≥ |x | − |x |2

|y − x | ≥ |x |
2

.

It follows from Theorem 2.1 that

u

(

x + λ2(y − x)

|y − x |2
)

≤ C |x |− 2σ+τ
p−1 ,

Thus, for 0 < λ < |x | < 1
8 ,

1
4 ≤ |y| ≤ 3

2 , we conclude that

ux,λ(y) ≤
(

λ

|y − x |
)n−2σ

C |x |− 2σ+τ
p−1

≤ Cλn−2σ |x |− 2σ+τ
p−1

≤ C |x | p(n−2σ)−n−τ
p−1 ≤ C |ε| p(n−2σ)−n−τ

p−1 .

(25)

Since n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ , we have p(n−2σ)−n−τ
p−1 > 0. Then by (24), ε > 0 can be

chosen sufficiently small to guarantee that for all 0 < λ < |x | ≤ ε < r0 and 1
4 ≤ |y| ≤ 3

2 ,

ux,λ(y) ≤ C |x | p(n−2σ)−n−τ
p−1 < u(y). (26)

�	

Proof of Claim 3 We prove Claim 3 by contradiction. Assume λ̄(x) < |x | ≤ ε < r0 for some

x �= 0. We want to show that there exists a positive constant ε̃ ∈
(
0, |x |−λ̄(x)

2

)
such that for

λ ∈ (λ̄(x), λ̄(x) + ε̃),

ux,λ(y) ≤ u(y) in B3/2\(Bλ(x) ∪ {0}), (27)

which contradicts the definition of λ̄(x), then we obtain λ̄(x) = |x |.
By the Claim 2, it is obviously to obtain that (27) in B3/2\B1/4. Next, we need to consider

the region B1/4\(Bλ(x) ∪ {0}).
It is a straightforward computation to show that for every λ̄(x) ≤ λ < |x | ≤ r0,

u(y) − ux,λ(y) ≥
∫

B1/2\Bλ(x)
K (x, λ; y, z)

(

|z|τu p(z) −
(

λ

|z − x |
)p∗

∣
∣zx,λ

∣
∣τ u p

x,λ(z)

)

+ J (x, λ, u, y),
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where (20) is used in the above inequality and

J (x, λ, u, y) :=
∫

B3/2\B1/2
K (x, λ; y, z)

(

|z|τu p(z) −
(

λ

|z − x |
)p∗

∣
∣zx,λ

∣
∣τ u p

x,λ(z)

)

dz

−
∫

Bc
3/2

K (x, λ; y, z)
(

λ

|z − x |
)p∗

∣
∣zx,λ

∣
∣τ u p

x,λ(z)dz.

It follows that

J (x, λ, u, y) ≥
∫

B3/2\B1/2
K (x, λ; y, z)|z|τ

(
u p(z) − u p

x,λ(z)
)
dz

−
∫

Bc
3/2

K (x, λ; y, z)|z|τu p
x,λ(z)dz.

By (24) and (25), we have

J (x, λ, u, y) ≥
(
3

2

)τ ∫

B3/2\B1/2
K (x, λ; y, z)

(

C p
1 −

(

C |ε| p(n−2σ)−n−τ
p−1

)p)

dz

−
(
3

2

)τ ∫

Bc
3/2

K (x, λ; y, z)
(( |x |

|z − x |
)n−2σ

|x |− 2σ+τ
p−1

)p

dz.

Since n+τ
n−2σ < p ≤ n+2σ+2τ

n−2σ , we have p(n−2σ)−n−τ
p−1 > 0. Then ε > 0 can be chosen

sufficiently small to guarantee that

J (x, λ, u, y) ≥C p
1

2

(
3

2

)τ ∫

B3/2\B1/2
K (x, λ; y, z)dz

−
(
3

2

)τ

|ε| p(n−2σ)−n−τ
p−1

∫

Bc
3/2

K (x, λ; y, z) 1

|z − x |p(n−2σ)
dz

≥C p
1

2

(
3

2

)τ ∫

B23/16\9/16
K (0, λ; y − x, z)dz

−
(
3

2

)τ (
16

7

)p(n−2σ)

|ε| p(n−2σ)−n−τ
p−1

∫

Bc
23/16

K (0, λ; y − x, z)dz,

Indeed, since for |y − x | = λ < 1
16 ,

K (0, λ; y − x, z) = 0,

and for |z| ≥ 3
8 , |y − x | = λ,

(y − x) · ∇y K (0, λ; y − x, z) = (n − 2σ)|y − x |2σ−n−2(|z|2 − |y − x |2) > 0.

Using the positive and smoothness of K , we have

δ1(|y − x | − λ)

|y − x − z|n−2σ ≤ K (0, λ; y − x, z) ≤ δ2(|y − x | − λ)

|y − x − z|n−2σ , (28)

for λ̄(x) ≤ λ ≤ |y − x | ≤ |x |+ 1
4 < 5

16 ,
3
8 ≤ |z| ≤ M < +∞, where M and 0 < δ1 < δ2 <

+∞ are positive constants. If M is large enough, then

0 < c2 ≤ (y − x) · ∇y(|y − x |n−2σ K (0, λ; y − x, z)) ≤ c3 < +∞.
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Thus, (28) holds for |z| ≥ M , λ̄(x) ≤ λ ≤ |y − x | ≤ |x | + 1
4 .

With the help of it, for y ∈ B1/4\(Bλ(x) ∪ {0}), there exists positive constants C2 and C3

such that

J (x, λ, u, y) ≥C1

2

(
3

2

)τ ∫

B23/16\9/16

δ1(|y − x | − λ)

|y − x − z|n−2σ dz

−
(
3

2

)τ (
16

7

)p(n−2σ)

|ε| p(n−2σ)−n−τ
p−1

∫

Bc
23/16

δ2(|y − x | − λ)

|y − x − z|n−2σ dz

≥C2(|y − x | − λ) − C3(|y − x | − λ)|ε| p(n−2σ)−n−τ
p−1 .

For ε sufficiently small, we have

J (x, λ, u, y) ≥ C2

2
(|y − x | − λ).

It follows that we can choose ε̃ ∈
(
0, |x |−λ̄(x)

2

)
such that for every λ̄(x) ≤ λ ≤ λ̄(x) + ε̃,

and y ∈ B1/4\(Bλ(x) ∪ {0}),

u(y) − ux,λ(y) ≥
∫

B1/2\Bλ(x)
K (x, λ; y, z)

(

|z|τu p(z) −
(

λ

|z − x |
)p∗

∣
∣zx,λ

∣
∣τ u p

x,λ(z)

)

dz

≥
∫

B1/2\Bλ(x)
K (x, λ; y, z)|z|τ

(
u p(z) − u p

x,λ(z)
)
dz.

So Claim 2 gives that

u(y) − ux,λ(y) ≥
∫

B1/4\Bλ(x)
K (x, λ; y, z)|z|τ

(
u p(z) − u p

x,λ(z)
)
dz

+
∫

B1/2\B5/16
K (x, λ; y, z)|z|τ

(
u p(z) − u p

x,λ(z)
)
dz

≥
∫

B1/4\Bλ(x)
K (x, λ; y, z)|z|τ

(
u p
x,λ̄(x)

(z) − u p
x,λ(z)

)
dz

+ 2τ

∫

B1/2\B5/16
K (x, λ; y, z)

(
u p(z) − u p

x,λ(z)
)
dz

≥ − 4−τ

∫

B1/4\Bλ(x)
K (x, λ; y, z)

∣
∣
∣u

p
x,λ̄(x)

(z) − u p
x,λ(z)

∣
∣
∣ dz

+ 2τ

∫

B1/2\B5/16
K (x, λ; y, z)

(
u p(z) − u p

x,λ(z)
)
dz.

Since ‖u‖C(Bλ̄(x)+̃ε(x)) ≤ C , it follows that there exists some constant C > 0 such that for

any λ̄(x) ≤ λ ≤ λ̄(x) + ε̃, z ∈ B1/4\Bλ(x),

|u p
x,λ̄

(z) − u p
x,λ(z)| ≤ C(λ − λ̄(x)) ≤ C ε̃.

Moreover, for z ∈ B1/2\B5/16, there exists some constant C1 > 0 such that

u p(z) − u p
x,λ(z) ≥ C1.
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Hence, we have

u(y) − ux,λ(y) ≥ −C ε̃

∫

B1/4\Bλ(x)
K (x, λ; y, z)dz + C1

∫

B1/2\B5/16
K (x, λ; y, z)dz

≥ −C ε̃

∫

B1/4\Bλ(x)
K (x, λ; y, z)dz + C1

∫

B7/16\B3/8
K (0, λ; y − x, z)dz.

On the other hand, since
∫

B1/4\Bλ(x)
K (x, λ; y, z)dz ≤

∫

B5/16\Bλ

K (0, λ; y − x, z)dz

≤ C(|y − x | − λ),

and
∫

B7/16\B3/8
K (0, λ; y − x, z)dz ≥ δ1(|y − x | − λ)

|y − x − z|n−2σ .

Then we can choose ε̃ sufficient small such that for λ̄(x) ≤ λ ≤ λ̄(x) + ε̃,

ux,λ(y) ≤ u(y) in B1/4\(Bλ(x) ∪ {0}).
Combining Claim 2, we get a contradiction and then we finish the proof. �	
Acknowledgements We would like to express our deep thanks to Professor Jiguang Bao and Jingang Xiong
for useful discussions on the subject of this paper.
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