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Abstract
We study harmonicmap heat flow along ancient super Ricci flow, and derive several Liouville
theorems with controlled growth from Perelman’s reduced geometric viewpoint. For non-
positively curved target spaces, our growth condition is sharp. For positively curved target
spaces, our Liouville theorem is new even in the static case (i.e., for harmonic maps); more-
over, we point out that the growth condition can be improved, and almost sharp in the static
case. This fills the gap between the Liouville theorem of Choi and the example constructed
by Schoen–Uhlenbeck.

Mathematics Subject Classification Primary 53C44 · Secondly 53C43

1 Background

This is a continuation of [22] on Liouville theorems for heat equation along ancient super
Ricci flow. The aim of this paper is to generalize the target spaces, and formulate Liouville
theorems for harmonic map heat flow.

1.1 Ancient super Ricci flow

A smooth manifold (M, g(t))t∈I with a time-dependent Riemannian metric is called Ricci
flow when

∂t g = −2Ric,
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which has been introduced by Hamilton [14]. A supersolution to this equation is called super
Ricci flow. Namely, (M, g(t))t∈I is called super Ricci flow if

∂t g ≥ −2Ric,

which has been introduced byMcCann-Topping [33] from the viewpoint of optimal transport
theory. Recently, the super Ricci flow has begun to be investigated from various perspec-
tives, especially metric measure geometry (see e.g., [3,4,16,19–21,25–30,39]). A Ricci flow
(M, g(t))t∈I is said to be ancient when I = (−∞, 0], which is one of the crucial concepts
in singular analysis of Ricci flow. In the present paper, we will focus on ancient super Ricci
flow.

1.2 Liouville theorems for ancient solutions to heat equation

The celebrated Yau’s Liouville theorem states that on a complete manifold of non-negative
Ricci curvature, any positive harmonic functionsmust be constant. One of the natural research
directions is to generalize his Liouville theorem for ancient solutions to heat equation

∂t u = �u.

Souplet–Zhang [38] have proven the following parabolic analogue (see [38, Theorem 1.2]):

Theorem 1.1 ([38]) Let (M, g) be a complete Riemannian manifold of non-negative Ricci
curvature. Then we have the following:

(1) Let u : M × (−∞, 0] → (0,∞) be a positive ancient solution to the heat equation. If

u(x, t) = exp
[
o
(
d(x) +√|t |

)]

near infinity, then u must be constant. Here d(x) denotes the Riemannian distance from
a fixed point;

(2) let u : M × (−∞, 0] → R be an ancient solution to the heat equation. If

u(x, t) = o
(
d(x) +√|t |

)

near infinity, then u is constant.

The growth conditions in Theorem 1.1 are known to be sharp in the spatial direction
(see [38], and cf. [9]). As mentioned in [22, Section 1], one of the next research directions
is the following: For an ancient super Ricci flow (M, g(t))t∈(−∞,0], the problem is to find
suitable growth conditions for a solution u : M × (−∞, 0] → R to heat equation such that
u must become constant. In other words, for the reverse time parameter

τ := −t,

and for a backward super Ricci flow (M, g(τ ))τ∈[0,∞), namely,

Ric ≥ 1

2
∂τ g,

the problem is to find suitable conditions for a solution u : M × [0,∞) → R to backward
heat equation

(� + ∂τ )u = 0
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such that u must become constant. Guo–Philipowski–Thalmaier [13] have provided an
approach to this problem from stochastic analytic viewpoint, and obtained a Liouville the-
orem under a growth condition for entropy (see [13, Theorem 2]). On the other hand, the
authors [22] have approached the problem from Perelman’s reduced geometric viewpoint
(cf. [35]), and established a Liouville theorem under a growth condition concerning reduced
distance.

Now, let us recall the precise statement of the Liouville theorem in [22]. To do so, we
fix some notations on a complete, time-dependent Riemannian manifold (M, g(τ ))τ∈[0,∞),
which is not necessarily backward super Ricci flow. We put

h := 1

2
∂τ g, H := tr h.

We begin with recalling the notion of reduced distance (more precisely, see Sect. 3). For
(x, τ ) ∈ M × (0,∞), let L(x, τ ) be the L-distance from a space-time base point (x0, 0),
which is defined as the infimum of the so-called L-length over all curves γ : [0, τ ] → M
with γ (0) = x0 and γ (τ) = x . Then the reduced distance �(x, τ ) is defined as

�(x, τ ) := 1

2
√

τ
L(x, τ ).

We say that (M, g(τ ))τ∈[0,∞) is admissible if for every τ > 0 there is cτ ≥ 0 depending
only on τ such that h ≥ −cτ g on [0, τ ]. The admissibility guarantees that the L-distance is
achieved by a minimal L-geodesic.

Next, for a (time-dependent) vector field V , we recall the followingMüller quantityD(V )

(see [34, Definition 1.3]), and trace Harnack quantity H(V ) (see [15], [34, Definition 1.5]):

D(V ) := −∂τ H − �H − 2‖h‖2 + 4 div h(V ) − 2g(∇H , V ) + 2Ric(V , V ) − 2h(V , V ),

H(V ) := −∂τ H − H

τ
− 2g(∇H , V ) + 2h(V , V ).

The main result in [22] can be stated as follows (see [22, Theorem 2.2]):

Theorem 1.2 ([22]) Let (M, g(τ ))τ∈[0,∞) be an admissible, complete backward super Ricci
flow. We assume

D(V ) ≥ 0, H(V ) ≥ −H

τ
, H ≥ 0

for all vector fields V . Then we have the following:

(1) Let u : M × [0,∞) → (0,∞) be a positive solution to backward heat equation. If

u(x, τ ) = exp
[
o
(
d(x, τ ) + √

τ
)]

near infinity, then u is constant. Here d(x, τ ) is defined by

d(x, τ ) := √4τ �(x, τ );
(2) let u : M × [0,∞) → R be a solution to backward heat equation. If

u(x, τ ) = o
(
d(x, τ ) + √

τ
)

near infinity, then u is constant.

In the static case of h = 0, Theorem 1.2 is reduced to Theorem 1.1 (see [22, Remark 2.3]).
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2 Main results

2.1 Liouville theorems for ancient solutions to harmonic map heat flow

Onecannowconsider the followingproblem:For a backward superRicci flow (M, g(τ ))τ∈[0,∞),
and amanifold (N , g)with an upper sectional curvature bound, the problem is to find suitable
conditions for a solution u : M × [0,∞) → N to backward harmonic map heat flow

(� + ∂τ )u = 0 (1)

such that u must be constant. Here � is the tension field. Guo–Philipowski–Thalmaier [13]
have approached this problem from stochastic analytic viewpoint, and produced various
Liouville theorems (see [12, Section 4]). We here aim to approach the problem from Perel-
man’s reduced geometric viewpoint. Our first main result is the following Liouville theorem
of Cheng type (cf. [6]):

Theorem 2.1 Let (M, g(τ ))τ∈[0,∞) be an admissible, complete backward super Ricci flow.
We assume

D(V ) ≥ 0, H(V ) ≥ −H

τ
, H ≥ 0 (2)

for all vector fields V . Let (N , g) be a complete, simply connected Riemannian manifold with
sec ≤ 0. Let u : M × [0,∞) → N be a solution to backward harmonic map heat flow. If

ρ(u(x, τ )) = o
(
d(x, τ ) + √

τ
)

near infinity, then u is constant. Here ρ : N → R is the Riemannian distance function from
a fixed point y0 ∈ N.

When N = R, Theorem 2.1 is nothing but Theorem 1.2. In the static case of h = 0,
Theorem 2.1 has been proved byWang [41] (see [41, Theorem 1.3]). Since growth conditions
in these results are sharp in the spatial direction, so is the growth condition in Theorem 2.1.

We also prove the following result for positively curved target spaces:

Theorem 2.2 Let (M, g(τ ))τ∈[0,∞) be an admissible, complete backward super Ricci flow.
We assume

D(V ) ≥ 0, H(V ) ≥ −H

τ
, H ≥ 0 (3)

for all vector fields V . Let (N , g) be a complete Riemannianmanifold with sec ≤ κ for κ > 0.
Assume that an open geodesic ball Bπ/2

√
κ (y0) of radius π/2

√
κ centered at y0 in N does

not meet the cut locus Cut (y0) of y0. Let u : M × [0,∞) → N be a solution to backward
harmonic map heat flow. If the image of u is contained in Bπ/2

√
κ (y0), and if u satisfies

1

cos
√

κρ(u(x, τ ))
= o

(
d(x, τ )1/2 + τ 1/4

)

near infinity, then u is constant.

Theorems 2.1 and 2.2 follow from local gradient estimates (see Theorems 4.1 and 5.1).

2.2 Sharpness

Let us discuss the sharpness concerning Theorem 2.2. To do so, we recall the Liouville
theorem of Choi [7] (see [7, Theorem]):
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Theorem 2.3 ([7]) Let (M, g) be a complete Riemannian manifold of non-negative Ricci
curvature, and let (N , g) be a complete Riemannian manifold with sec ≤ κ for κ > 0. Let
u : M → N be a harmonic map (i.e., �u = 0). We assume that BL(y0) is a regular (i.e.,
L ∈ (0, π/2

√
κ) and BL(y0) ∩ Cut (y0) = ∅), open geodesic ball. If the image of u is

contained in BL(y0), then u is constant.

Theorem 2.2 enables us to improve Theorem 2.3 as follows:

Corollary 2.4 Let (M, g) be a complete Riemannian manifold of non-negative Ricci curva-
ture, and let (N , g) be a complete Riemannian manifold with sec ≤ κ for κ > 0. Assume
that Bπ/2

√
κ (y0) does not meet Cut (y0). Let u : M → N be a harmonic map. If the image

of u is contained in Bπ/2
√

κ (y0), and if u satisfies a growth condition

1

cos
√

κρ(u(x))
= o(d(x)1/2) (4)

near infinity, then u is constant.

The growth condition (4) controls the approach speed of u to the boundary of Bπ/2
√

κ (y0).
Note that if the image of u is contained in a regular ball BL(y0), then the left hand side of
(4) is bounded; in particular, (4) is trivially satisfied.

Remark 2.5 In the literature of Liouville theorems for harmonic maps with positively curved
targets, the results in the form of Theorem 2.3 have been examined (see e.g., [17, Theorem
1], [7, Theorem], [18, Theorem 6.1], [40, Theorem 1.4], [23, Example 3], [31, Theorem
3.2], [5, Theorem 2], [36, Theorem 2], [45, Corollary 1.8]). We emphasize that in Corol-
lary 2.4, such a condition is relaxed to a growth condition (4) beyond the traditional form.

Although our formulation of Theorem 2.2 and Corollary 2.4 is new, the growth condition
(4) is not sharp. Actually, we can further improve it as follows:

Theorem 2.6 Let (M, g) be a complete Riemannian manifold of non-negative Ricci curva-
ture, and let (N , g) be a complete Riemannian manifold with sec ≤ κ for κ > 0. Assume
that Bπ/2

√
κ (y0) does not meet Cut (y0). Let u : M → N be a harmonic map. If the image

of u is contained in Bπ/2
√

κ (y0), and if u satisfies a growth condition

1

cos
√

κρ(u(x))
= o(d(x)) (5)

near infinity, then u is constant.

We can obtain Theorem 2.6 by adopting the technique for minimal hypersurfaces devel-
oped by Ecker-Huisken [10].

Remark 2.7 According to Schoen–Uhlenbeck [37] (see also [11]), a harmonicmap u : Rm →
S
n+ is necessarily constant for m ≤ 6, and for m ≥ 7 such a map exists as a radial solution,

where S
n+ is the open hemisphere. In Sect. 6.2, we observe that the growth of the radial

solution is greater than the linear order. Moreover, it approaches the linear order asm → ∞.
In this sense, our growth condition (5) is almost sharp.

3 Preliminaries

We review some facts on Perelman’s reduced geometry. The references are [8,22,34,35,42–
44]. We mainly refer to [22, Section 3]. Throughout this subsection, let (M, g(τ ))τ∈[0,∞) be
an m-dimensional, complete time-dependent Riemannian manifold.
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For a curve γ : [τ1, τ2] → M , its L-length is defined as

L(γ ) :=
∫ τ2

τ1

√
τ

(
H +

∥∥∥∥
dγ

dτ

∥∥∥∥
2
)

dτ.

It is well-known that its critical point over all curves with fixed endpoints is characterized by
the following L-geodesic equation:

X := dγ

dτ
, ∇X X − 1

2
∇H + 1

2τ
X + 2h(X) = 0.

For (x, τ ) ∈ M × (0,∞), the L-distance L(x, τ ) and reduced distance �(x, τ ) from a
space-time base point (x0, 0) are defined by

L(x, τ ) := inf
γ

L(γ ), �(x, τ ) := 1

2
√

τ
L(x, τ ), (6)

where the infimum is taken over all curves γ : [0, τ ] → M with γ (0) = x0 and γ (τ) = x .
A curve is called minimal L-geodesic from (x0, 0) to (x, τ ) if it attains the infimum of (6).
We also set

L(x, τ ) := 4τ �(x, τ ).

We now assume that (M, g(τ ))τ∈[0,∞) is admissible (see Sect. 1.2). In this case, for every
(x, τ ) ∈ M×(0,∞), there exists at least oneminimalL-geodesic. Also, the functions L(·, τ )

and L(x, ·) are locally Lipschitz in (M, g(τ )) and (0,∞), respectively; in particular, they
are differentiable almost everywhere.

Assume that � is smooth at (x, τ ) ∈ M × (0,∞). We have (see [22, Lemmas 3.5 and
3.6]):

Lemma 3.1 ( [22]) Let K ≥ 0. We assume

D(V ) ≥ −2K
(
H + ‖V ‖2) , H ≥ 0

for all vector fields V . Then at (x, τ ) we have

(� + ∂τ )L ≤ 2m + 2K L.

Lemma 3.2 ( [22]) We assume

H(V ) ≥ −H

τ
, H ≥ 0

for all vector fields V . Then at (x, τ ) we have

‖∇d‖2 ≤ 3.

4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. For K ∈ R, a time-dependent Riemannian manifold
(M, g(t))t∈I is called K -super Ricci flow if

1

2
∂t g + Ric ≥ Kg.

The key ingredient is the following local gradient estimate (cf. [22, Theorem 2.8]):
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Theorem 4.1 For K ≥ 0, let (M, g(τ ))τ∈[0,∞) be an m-dimensional, admissible, complete
backward (−K )-super Ricci flow, namely,

Ric ≥ h − Kg.

We assume

D(V ) ≥ −2K
(
H + ‖V ‖2) , H(V ) ≥ −H

τ
, H ≥ 0 (7)

for all vector fields V . Let (N , g) stand for a complete, simply connectedRiemannianmanifold
with sec ≤ 0. For a fixed y0 ∈ N, let ρ : N → R be the Riemannian distance function from
y0. Let u : M × [0,∞) → N be a solution to backward harmonic map heat flow. For
R, T > 0 and A > 0, we suppose 2ρ ◦ u ≤ A on

QR,T := { (x, τ ) ∈ M × (0, T ] | d(x, τ ) ≤ R } .

Then there exists a positive constant Cm > 0 depending only on m such that on QR/2,T /4,

‖du‖
A2 − ρ2 ◦ u

≤ Cm

A

(
1

R
+ 1√

T
+ √

K

)
.

In the static case of h = 0, Wang [41] has obtained Theorem 4.1 (see [41, Theorem 1.2]).
We will prove Theorem 4.1 along the line of the proof of [41, Theorem 1.2].

4.1 Backward harmonic map heat flows

In this and next section, let (M, g(τ ))τ∈[0,∞) denote anm-dimensional, admissible, complete
time-dependent Riemannian manifold, and let (N , g) be a complete Riemannian manifold.
Moreover, for a fixed y0 ∈ N , let ρ : N → R stand for the Riemannian distance function
from y0. We study properties of a solution u : M ×[0,∞) → N to backward harmonic map
heat flow. We start with the following:

Lemma 4.2

(� + ∂τ )‖du‖2 = 2‖∇du‖2 + 2
m∑
i=1

g(du(R(ei )), du(ei ))

− 2
m∑

i, j=1

g(R(du(ei ), du(e j ))du(e j ), du(ei )),

where R := Ric−h, and {ei }mi=1 is an orthonormal frame on M at some fixed time.

Proof By direct computations and backward harmonic map heat flow Eq. (1), we have the
following (cf. [2, Lemma 4.5]):

∂τ‖du‖2 = −
m∑
i=1

g(du((∂τ g)(ei )), du(ei )) + 2
m∑
i=1

g(∇u−1T N
ei (∂τu), du(ei ))

= −2
m∑
i=1

g(du(h(ei )), du(ei )) − 2
m∑
i=1

g(∇u−1T N
ei �u, du(ei ))

= −2
m∑
i=1

g(du(Ric(ei )), du(ei )) − 2
m∑
i=1

g(∇u−1T N
ei �u, du(ei ))
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+ 2
m∑
i=1

g(du(R(ei )), du(ei )),

here u−1T N denotes the induced vector bundle from T N by u, and ∇u−1T N is the canonical
connection over u−1T N . Combining the above equation and the Bochner formula of Eells-
Sampson type tells us the following (see e.g., [1, Remark 1.15]):

1

2
�‖du‖2 = ‖∇du‖2 +

m∑
i=1

g(∇u−1T N
ei �u, du(ei )) +

m∑
i=1

g(du(Ric(ei )), du(ei ))

−
m∑

i, j=1

g(R(du(ei ), du(e j ))du(e j ), du(ei ))

= ‖∇du‖2 +
m∑
i=1

g(du(R(ei )), du(ei )) − 1

2
∂τ‖du‖2

−
m∑

i, j=1

g(R(du(ei ), du(e j ))du(e j ), du(ei )).

This completes the proof. �
We next show the following:

Lemma 4.3 Let (N , g) be simply connected, and sec ≤ 0. For A > 0, we assume 2ρ ◦u ≤ A.
Set

w := ‖du‖2
(A2 − ρ2 ◦ u)2

. (8)

Then we have

(� + ∂τ )w − 2
g(∇w,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
≥ 4(A2 − ρ2 ◦ u)w2

+ 2

(A2 − ρ2 ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )).

Proof By straightforward computations,

∇w = ∇‖du‖2
(A2 − ρ2 ◦ u)2

+ 2
‖du‖2 ∇(ρ2 ◦ u)

(A2 − ρ2 ◦ u)3
,

�w = �‖du‖2
(A2 − ρ2 ◦ u)2

+ 4g(∇‖du‖2,∇(ρ2 ◦ u))

(A2 − ρ2 ◦ u)3
+ 2‖du‖2 �(ρ2 ◦ u)

(A2 − ρ2 ◦ u)3

+ 6‖∇(ρ2 ◦ u)‖2 ‖du‖2
(A2 − ρ2 ◦ u)4

= 2g(∇w,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
+ 2‖du‖2 �(ρ2 ◦ u)

(A2 − ρ2 ◦ u)3
+ �‖du‖2

(A2 − ρ2 ◦ u)2

+ 2g(∇‖du‖2,∇(ρ2 ◦ u))

(A2 − ρ2 ◦ u)3
+ 2‖∇(ρ2 ◦ u)‖2 ‖du‖2

(A2 − ρ2 ◦ u)4
,

∂τw = ∂τ‖du‖2
(A2 − ρ2 ◦ u)2

+ 2‖du‖2 ∂τ (ρ
2 ◦ u)

(A2 − ρ2 ◦ u)3
.
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It follows that

(� + ∂τ )w − 2g(∇w,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
= 2‖du‖2 (� + ∂τ )(ρ

2 ◦ u)

(A2 − ρ2 ◦ u)3
+ (� + ∂τ )‖du‖2

(A2 − ρ2 ◦ u)2

+ 2g(∇‖du‖2,∇(ρ2 ◦ u))

(A2 − ρ2 ◦ u)3
+ 2‖∇(ρ2 ◦ u)‖2 ‖du‖2

(A2 − ρ2 ◦ u)4
.

Since (N , g) is simply connected and sec ≤ 0, the Greene-Wu Hessian comparison yields
the following (see e.g., [1, (1.263)], and also [1, (1.181)]):

(� + ∂τ )(ρ
2 ◦ u) =

m∑
i=1

∇2ρ2(du(ei ), du(ei )) ≥ 2‖du‖2,

where we also used the backward harmonic map heat flow equation (1). Furthermore, in view
of Lemma 4.2 and sec ≤ 0,

(� + ∂τ )‖du‖2 ≥ 2‖∇du‖2 + 2
m∑
i=1

g(du(R(ei )), du(ei )).

Combining the above estimates, we see

(� + ∂τ )w − 2g(∇w,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
≥ 4(A2 − ρ2 ◦ u)w2

+ 2

(A2 − ρ2 ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )) + 2F,

where

F := ‖∇du‖2
(A2 − ρ2 ◦ u)2

+ ‖∇(ρ2 ◦ u)‖2 ‖du‖2
(A2 − ρ2 ◦ u)4

+ g(∇‖du‖2,∇(ρ2 ◦ u))

(A2 − ρ2 ◦ u)3
.

Now, it suffices to check that F is non-negative. For the first two terms, the inequality of
arithmetic-geometric means, and the Kato inequality imply

‖∇du‖2
(A2 − ρ2 ◦ u)2

+ ‖∇(ρ2 ◦ u)‖2 ‖du‖2
(A2 − ρ2 ◦ u)4

≥ 2‖∇du‖‖∇(ρ2 ◦ u)‖‖du‖
(A2 − ρ2 ◦ u)3

≥ ‖∇‖du‖2‖ ‖∇(ρ2 ◦ u)‖
(A2 − ρ2 ◦ u)3

.

The Cauchy–Schwarz inequality tells us the desired conclusion. �

4.2 Cut-off arguments

Let us recall the following elementary fact:

Lemma 4.4 Let R, T > 0, α ∈ (0, 1). Then there is a smooth function ψ : [0,∞) ×
[0,∞) → [0, 1] which is supported on [0, R] × [0, T ], and a constant Cα > 0 depending
only on α such that the following hold:

(1) ψ ≡ 1 on [0, R/2] × [0, T /4];
(2) ∂rψ ≤ 0 on [0,∞) × [0,∞), and ∂rψ ≡ 0 on [0, R/2] × [0,∞);
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(3) we have
|∂rψ |
ψα

≤ Cα

R
,

|∂2r ψ |
ψα

≤ Cα

R2 ,
|∂τψ |
ψ1/2 ≤ C

T
,

where C > 0 is a universal constant.

We deduce the following:

Proposition 4.5 Let K ≥ 0. We assume

R(V ) ≥ −K‖V ‖2, D(V ) ≥ −2K
(
H + ‖V ‖2) , H(V ) ≥ −H

τ
, H ≥ 0

for all vector fields V . Let (N , g) be simply connected, and sec ≤ 0. Let u : M×[0,∞) → N
be a solution to backward harmonic map heat flow. For R, T > 0 and A > 0, we suppose
2ρ ◦ u ≤ A on QR,T . We define w as (8) on QR,T . We also take a function ψ : [0,∞) ×
[0,∞) → [0, 1] in Lemma 4.4 with α = 3/4, and set

ψ(x, τ ) := ψ(d(x, τ ), τ ). (9)

Then we have

(ψw)2 ≤ 1

A4

(
Cm

R4 + C̃1

T 2 + C̃2K
2

)
+ 1

A2 �.

at every point in QR,T such that the reduced distance is smooth, where for the universal
constants C3/4,C > 0 given in Lemma 4.4, we put

Cm := 6C2
3/4

(
m2 + 9

4
+ 369

32
C2
3/4

)
, C̃1 := 3

2
C2, C̃2 := 6

(
1 + C2

3/4

4

)
, (10)

� := (� + ∂τ )(ψw) − 2g (∇ψ,∇(ψw))

ψ
− 2g(∇(ψw),∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
. (11)

Proof In virtue of Lemma 4.3,

� = ψ (� + ∂τ )w − 2ψg(∇w,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
+ w (� + ∂τ ) ψ − 2w‖∇ψ‖2

ψ

− 2wg(∇ψ,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u

≥ 4(A2 − ρ2 ◦ u)ψw2 + 2ψ

(A2 − ρ2 ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei ))

+ w (� + ∂τ ) ψ − 2w‖∇ψ‖2
ψ

− 2
wg(∇ψ,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
.

It follows that
4(A2 − ρ2 ◦ u)ψw2 ≤ 1 + 2 + 3 + 4 + � (12)

for

1 := − 2ψ

(A2 − ρ2 ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )), 2 := −w (� + ∂τ ) ψ,
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3 := 2w‖∇ψ‖2
ψ

, 4 := 2wg(∇ψ,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
.

We provide upper bounds of 1, 2, 3, 4. The following Young inequality plays a
crucial role: For all p, q ∈ (1,∞) with p−1 + q−1 = 1, a, b ≥ 0, and ε > 0,

ab ≤ εa p

p
+ bq

εq/pq
. (13)

The inequality
‖∇ψ‖2
ψ3/2 ≤ 3C2

3/4

R2 (14)

is also useful, which follows from Lemmas 3.2 and 4.4. We first study an upper bound of1.
By the assumption for R(V ), the Young inequality (13) with p, q = 2, and ψ ≤ 1,

1 = − 2ψ

(A2 − ρ2 ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )) ≤ 2Kψw ≤ εψ2w2+K 2

ε
≤ εψw2+K 2

ε
.

(15)
We next produce an upper bound of 2. We see

2 = −w (� + ∂τ ) ψ = −w
(
∂rψ(� + ∂τ )d + ∂2r ψ‖∇d‖2 + ∂τψ

)

= −w

[
∂rψ

(
1

2d
(� + ∂τ )L − ‖∇L‖2

4d3

)
+ ∂2r ψ‖∇d‖2 + ∂τψ

]

= w|∂rψ |
2d

(� + ∂τ )L − w|∂rψ | ‖∇L‖2
4d3

− w ∂2r ψ‖∇d‖2 − w ∂τψ

≤ w|∂rψ |
2d

(� + ∂τ )L + w|∂2r ψ |‖∇d‖2 + w |∂τψ |.

Lemmas 3.1, 3.2 and L = d2 yield

2 ≤ m
w|∂rψ |

d
+ Kw|∂rψ |d + 3w|∂2r ψ | + w |∂τψ |

≤ 2m

R
w|∂rψ | + K Rw|∂rψ | + 3w|∂2r ψ | + w |∂τψ |,

where in the second inequality, we used the fact that ∂rψ vanishes on [0, R/2] × [0,∞).
From the Young inequality (13) with p, q = 2, Lemma 4.4, and ψ ≤ 1, we derive

2 ≤
(

εψw2 + m2

R2

|∂rψ |2
εψ

)
+
(

εψw2 + K 2R2

4

|∂rψ |2
εψ

)

+
(

εψw2 + 9

4

|∂2r ψ |2
εψ

)
+
(

εψw2 + 1

4

|∂τψ |2
εψ

)

≤ 4εψw2 + C2
3/4

ε

(
m2 + 9

4

)
ψ1/2

R4 + C2

4ε

1

T 2 + C2
3/4

4ε
K 2ψ1/2

≤ 4εψw2 + C2
3/4

ε

(
m2 + 9

4

)
1

R4 + C2

4ε

1

T 2 + C2
3/4

4ε
K 2. (16)

We give an upper bound of 3. By the Young inequality (13) with p, q = 2, and (14),

3 = 2w‖∇ψ‖2
ψ

≤ εψw2 + ‖∇ψ‖4
εψ3 ≤ εψw2 + 9C4

3/4

ε

1

R4 . (17)
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We finally examine 4. The Cauchy–Schwarz inequality, the Young inequality (13) with
p = 4/3, q = 4, ε = 4/3, and (14) lead us to

4 = 2
wg(∇ψ,∇(ρ2 ◦ u))

A2 − ρ2 ◦ u
≤ 2w‖∇ψ‖‖∇(ρ2 ◦ u)‖

A2 − ρ2 ◦ u
≤ 2Aw3/2‖∇ψ‖

≤ A2ψw2 + 27

16

1

A2

‖∇ψ‖4
ψ3 ≤ A2ψw2 + 243C4

3/4

16

1

A2

1

R4 . (18)

By summarizing (12), (15), (16), (17), (18),

3A2ψw2 ≤ 4(A2 − ρ2 ◦ u)ψw2

≤ (6ε + A2)ψw2 + C2
3/4

ε

(
m2 + 9

4
+ 9C2

3/4 + 243εC2
3/4

16

1

A2

)
1

R4

+ C2

4ε

1

T 2 + 1

ε

(
1 + C2

3/4

4

)
K 2 + �.

Letting ε → A2/6, we have

ψw2 ≤ 1

A4

(
Cm

R4 + C̃1

T 2 + C̃2K
2

)
+ 1

A2 �.

Since (ψw)2 ≤ ψw2, we arrive at the desired inequality. �

4.3 Proof of Theorems 2.1 and 4.1

Let us conclude Theorem 4.1.

Proof of Theorem 4.1 For K ≥ 0, let (M, g(τ ))τ∈[0,∞) be backward (−K )-super Ricci flow
satisfying (7) for all vector fields V . Let (N , g) be simply connected, and sec ≤ 0. Let
u : M × [0,∞) → N be a solution to backward harmonic map heat flow. For R, T > 0
and A > 0, we suppose 2ρ ◦ u ≤ A on QR,T . We define functions w and ψ as (8) and (9),
respectively. For θ > 0 we define a compact subset QR,T ,θ of QR,T by

QR,T ,θ := {(x, τ ) ∈ QR,T | τ ∈ [θ, T ]}. (19)

Fix a small θ ∈ (0, T /4), and take a maximum point (x, τ ) of ψw in QR,T ,θ . By virtue of
the Calabi argument, we may assume that the reduced distance is smooth at (x, τ ) (cf. [22,
Remark 3.3]). Using Proposition 4.5, we see

(ψw)2 ≤ cm
A4

(
1

R4 + 1

T 2 + K 2
)

+ 1

A2 �

at (x, τ ) for
cm := max

{
Cm, C̃1, C̃2

}
,

where Cm, C̃1, C̃2 > 0 and � are defined as (10) and (11), respectively. On the other hand,
since (x, τ ) is a maximum point,

�(ψw) ≤ 0, ∂τ (ψw) ≤ 0, ∇(ψw) = 0
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at (x, τ ); in particular, �(x, τ ) ≤ 0. Therefore,

(ψw)(x, τ ) ≤ (ψw)(x, τ ) ≤ c1/2m

A2

(
1

R4 + 1

T 2 + K 2
)1/2

≤ c1/2m

A2

(
1

R2 + 1

T
+ K

)

for all (x, τ ) ∈ QR,T ,θ . By ψ ≡ 1 on QR/2,T /4,θ , and by the definition of w,

‖du‖
A2 − ρ2 ◦ u

≤ c1/4m

A

(
1

R
+ 1√

T
+ √

K

)

on QR/2,T /4,θ . Letting θ → 0, we complete the proof of Theorem 4.1. �
We are now in a position to show Theorem 2.1.

Proof of Theorem 2.1 Let (M, g(τ ))τ∈[0,∞) be backward super Ricci flow satisfying (2) for
all vector fields V . Let (N , g) be simply connected, and sec ≤ 0. Let u : M × [0,∞) → N
be a solution to backward harmonic map heat flow. For R > 0 we put

AR := sup
QR,R2

2ρ ◦ u.

In view of the growth condition, AR = o(R) as R → ∞. For a fixed (x, τ ) ∈ M × (0,∞),
we possess (x, τ ) ∈ QR/2,R2/4 for every sufficiently large R > 0, and fix such one. From
Theorem 4.1 with K = 0, we derive

‖du‖
A2
R

≤ ‖du‖
A2
R − ρ2 ◦ u

≤ 2Cm

ARR

at (x, τ ). Letting R → ∞, we complete the proof of Theorem 2.1. �
One can derive the following result from the Hamilton’s trace Harnack inequality (see [15,

Corollary 1.2], and cf. [22, Corollary 2.5]):

Corollary 4.6 Let (M, g(τ ))τ∈[0,∞) be a complete backward Ricci flow with bounded, non-
negative curvature operator. Let (N , g) be a complete, simply connected Riemannian
manifold with sec ≤ 0. Let u : M × [0,∞) → N be a solution to backward harmonic
map heat flow. If

ρ(u(x, τ )) = o
(
d(x, τ ) + √

τ
)

near infinity, then u is constant.

5 Proof of Theorem 2.2

We next prove Theorem 2.2. The key is the following:

Theorem 5.1 For K ≥ 0, let (M, g(τ ))τ∈[0,∞) be an m-dimensional, admissible, complete
backward (−K )-super Ricci flow. We assume

D(V ) ≥ −2K
(
H + ‖V ‖2) , H(V ) ≥ −H

τ
, H ≥ 0 (20)

for all vector fields V . Let (N , g) denote a complete Riemannian manifold with sec ≤ κ for
κ > 0. Assume that Bπ/2

√
κ (y0) does not meet Cut (y0). Let u : M × [0,∞) → N be a
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solution to backward harmonic map heat flow. Suppose that the image of u is contained in
Bπ/2

√
κ (y0). For R, T > 0, let

ϕ := 1 − cos
√

κρ, A := 1

2

(
1 + sup

QR,T

ϕ ◦ u

)
. (21)

Then there is a positive constant Cm > 0 depending only on m such that on QR/2,T /4,

‖du‖
A − ϕ ◦ u

≤ Cm√
κ

(
1

R
+ 1√

T
+ √

K

)
sup
QR,T

(
1

cos
√

κρ ◦ u

)2

.

Unlike Theorem 4.1, this estimate seems to be new even in the context of Liouville
theorems for harmonic maps (see Remark 2.5).

5.1 Backward harmonic map heat flows

Let us show the following:

Lemma 5.2 Let (N , g) be sec ≤ κ for κ > 0. Assume that Bπ/2
√

κ (y0) does notmeetCut (y0).
Let u : M × [0,∞) → N be a solution to backward harmonic map heat flow. Suppose that
the image of u is contained in Bπ/2

√
κ (y0). For R, T > 0, we define ϕ and A as (21). Set

w := ‖du‖2
(A − ϕ ◦ u)2

. (22)

Then we have

(� + ∂τ )w − 2
g(∇w,∇(ϕ ◦ u))

A − ϕ ◦ u
≥ 2κ(1 − A)(A − ϕ ◦ u)w2

+ 2

(A − ϕ ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )).

Proof By similar computations to the proof of Lemma 4.3, we see

(� + ∂τ )w = 2g(∇w,∇(ϕ ◦ u))

A − ϕ ◦ u
+ 2‖du‖2 (� + ∂τ )(ϕ ◦ u)

(A − ϕ ◦ u)3
+ (� + ∂τ )‖du‖2

(A − ϕ ◦ u)2

+ 2g(∇‖du‖2,∇(ϕ ◦ u))

(A − ϕ ◦ u)3
+ 2‖∇(ϕ ◦ u)‖2 ‖du‖2

(A − ϕ ◦ u)4
.

Due to the Hessian comparison,

(� + ∂τ )(ϕ ◦ u) =
m∑
i=1

∇2ρ2(du(ei ), du(ei )) ≥ κ cos
√

κρ ◦ u‖du‖2.

Furthermore, Lemma 4.2 and sec ≤ κ lead us to

(� + ∂τ )‖du‖2 ≥ 2‖∇du‖2 + 2
m∑
i=1

g(du(R(ei )), du(ei )) − 2κ‖du‖4.

It holds that

(� + ∂τ )w − 2g(∇w,∇(ϕ ◦ u))

A − ϕ ◦ u
≥ 2κ(A − ϕ ◦ u)2

(
cos

√
κρ

A − ϕ ◦ u
− 1

)
w2
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+ 2

(A − ϕ ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )) + 2F

= 2κ(1 − A)(A − ϕ ◦ u)w2

+ 2

(A − ϕ ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )) + 2F,

where

F := ‖∇du‖2
(A − ϕ ◦ u)2

+ ‖∇(ϕ ◦ u)‖2 ‖du‖2
(A − ϕ ◦ u)4

+ g(∇‖du‖2,∇(ϕ ◦ u))

(A − ϕ ◦ u)3
.

By similar computations to the proof of Lemma 4.3, F is non-negative. �

5.2 Cut-off arguments

We have the following:

Proposition 5.3 Let K ≥ 0. We assume

R(V ) ≥ −K‖V ‖2, D(V ) ≥ −2K
(
H + ‖V ‖2) , H(V ) ≥ −H

τ
, H ≥ 0

for all vector fields V . Let (N , g) be sec ≤ κ for κ > 0. Assume that Bπ/2
√

κ (y0) does not
meet Cut (y0). Let u : M ×[0,∞) → N be a solution to backward harmonic map heat flow.
Suppose that the image of u is contained in Bπ/2

√
κ (y0). For R, T > 0, we define ϕ and A as

(21). Furthermore, we definew as (22). We also take a functionψ : [0,∞)×[0,∞) → [0, 1]
in Lemma 4.4 with α = 3/4, and define ψ as (9). Then for any ε > 0, we have

2κ(1 − A)(A − ϕ ◦ u)ψw2 ≤ 27ε

4
ψw2 + C2

3/4

ε

(
m2 + 9

4
+ 9C2

3/4 + 36κ2C2
3/4

ε2

)
1

R4

+ C2

4ε

1

T 2 + 1

ε

(
1 + C2

3/4

4

)
K 2 + �

at every point in QR,T such that the reduced distance is smooth, where the universal constants
C3/4,C > 0 are given in Lemma 4.4, and put

� := (� + ∂τ )(ψw) − 2g (∇ψ,∇(ψw))

ψ
− 2g(∇(ψw),∇(ϕ ◦ u))

A − ϕ ◦ u
. (23)

Proof Using Lemma 5.2, we see

� = ψ (� + ∂τ )w − 2ψg(∇w,∇(ϕ ◦ u))

A − ϕ ◦ u
+ w (� + ∂τ ) ψ

−2w‖∇ψ‖2
ψ

− 2wg(∇ψ,∇(ϕ ◦ u))

A − ϕ ◦ u

≥ 2κ(1 − A)(A − ϕ ◦ u)ψw2 + 2ψ

(A − ϕ ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei ))

+w (� + ∂τ ) ψ

−2w‖∇ψ‖2
ψ

− 2
wg(∇ψ,∇(ϕ ◦ u))

A − ϕ ◦ u
.
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We obtain
2κ(1 − A)(A − ϕ ◦ u)ψw2 ≤ 1 + 2 + 3 + 4 + �

for

1 := − 2ψ

(A − ϕ ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )), 2 := −w (� + ∂τ ) ψ,

3 := 2w‖∇ψ‖2
ψ

, 4 := 2wg(∇ψ,∇(ϕ ◦ u))

A − ϕ ◦ u
.

For 1, the following holds:

1 = − 2ψ

(A − ϕ ◦ u)2

m∑
i=1

g(du(R(ei )), du(ei )) ≤ 2Kψw ≤ εψ2w2+ K 2

ε
≤ εψw2+ K 2

ε

in the samemanner as in the proof of Proposition 4.5. For2, 3, we possess the same upper
estimates as in the proof of Proposition 4.5. For 4, the following holds:

4 = 2wg(∇ψ,∇(ϕ ◦ u))

A − ϕ ◦ u
≤ 2w‖∇ψ‖‖∇(ϕ ◦ u)‖

A − ϕ ◦ u
≤ 2

√
κw3/2‖∇ψ‖

≤ 3ε

4
ψw2 + 4κ2

ε3

‖∇ψ‖4
ψ3 ≤ 3ε

4
ψw2 + 36κ2C4

3/4

ε3

1

R4 .

This proves the desired estimate. �

5.3 Proof of Theorems 2.2 and 5.1

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1 For K ≥ 0, let (M, g(τ ))τ∈[0,∞) be backward (−K )-super Ricci flow
satisfying (20) for all vector fields V . Let (N , g) be sec ≤ κ for κ > 0. Assume that
Bπ/2

√
κ (y0) does not meet Cut (y0). Let u : M × [0,∞) → N be a solution to backward

harmonic map heat flow. Suppose that the image of u is contained in Bπ/2
√

κ (y0). For R, T >

0, we define ϕ and A as (21). Furthermore, we define w as (22). Also, we define ψ as in
Proposition 5.3. For θ > 0 we define QR,T ,θ as (19). For a fixed small θ ∈ (0, T /4), we
take a maximum point (x, τ ) of ψw in QR,T ,θ . We may assume that the reduced distance is
smooth at (x, τ ).

We set
δ := (1 − A)(A − ϕ(u(x, τ ))).

Notice that

1

1 − A
= 2 sup

QR,T

1

cos
√

κρ ◦ u
,

1

A − ϕ(u(x, τ ))
≤ 2

1 − supQR,T
ϕ ◦ u

= 2 sup
QR,T

1

cos
√

κρ ◦ u
;

in particular,
1

δ
≤ 4 sup

QR,T

(
1

cos
√

κρ ◦ u

)2

.
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Letting ε → 4κδ/27 in Proposition 5.3, and �(x, τ ) ≤ 0 tell us that

κδψw2 ≤ 27C2
3/4

4κδ

(
m2 + 9

4
+ 9C2

3/4 + 6561C2
3/4

4δ2

)
1

R4 +27C2

16κδ

1

T 2 + 27

4κδ

(
1 + C2

3/4

4

)
K 2

at (x, τ ), where � is defined as (23). It follows that

(ψw)2(x, τ ) ≤ 27C2
3/4

4κ2δ2

(
m2 + 9

4
+ 9C2

3/4 + 6561C2
3/4

4δ2

)
1

R4

+ 27C2

16κ2δ2

1

T 2 + 27

4κ2δ2

(
1 + C2

3/4

4

)
K 2.

Since δ ∈ (0, 1), there is a positive constant cm > 0 depending only on m such that

(ψw)2(x, τ ) ≤ cm
κ2δ4

(
1

R4 + 1

T 2 + K 2
)

.

Thus,

(ψw)(x, τ ) ≤ (ψw)(x, τ ) ≤ c1/2m

κδ2

(
1

R2 + 1

T
+ K

)

for all (x, τ ) ∈ QR,T ,θ . By ψ ≡ 1 on QR/2,T /4,θ ,

‖du‖
A − ϕ ◦ u

≤ c1/4m√
κδ

(
1

R
+ 1√

T
+ √

K

)
≤ 4c1/4m√

κ

(
1

R
+ 1√

T
+ √

K

)
sup
QR,T

(
1

cos
√

κρ ◦ u

)2

on QR/2,T /4,θ . Letting θ → 0, we complete the proof of Theorem 5.1. �
Let us conclude Theorem 2.2.

Proof of Theorem 2.2 Let (M, g(τ ))τ∈[0,∞) be backward super Ricci flow satisfying (3) for
all vector fields V . Let (N , g) be sec ≤ κ for κ > 0. Assume that Bπ/2

√
κ (y0) does not meet

Cut (y0). Let u : M × [0,∞) → N be a solution to backward harmonic map heat flow.
Suppose that the image of u is contained in Bπ/2

√
κ (y0). For R > 0 we put

AR := sup
QR,R2

(
1

cos
√

κρ ◦ u

)2

.

The growth condition says that AR = o(R) as R → ∞. We fix (x, τ ) ∈ M × (0,∞), and a
sufficiently large R > 0. Thanks to Theorem 5.1 with K = 0,

‖du‖
A

≤ ‖du‖
A − ϕ ◦ u

≤ 2CmAR

R

at (x, τ ), where ϕ and A are defined as (21). Notice that A ≤ 1. Thus, by letting R → ∞,
we complete the proof of Theorem 2.2. �

Similarly to Corollary 4.6, we obtain the following:

Corollary 5.4 Let (M, g(τ ))τ∈[0,∞) be a complete backward Ricci flow with bounded, non-
negative curvature operator. Let (N , g) be a complete Riemannian manifold with sec ≤ κ

for κ > 0. Assume that Bπ/2
√

κ (y0) does not meet Cut (y0). Let u : M × [0,∞) → N be a
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solution to backward harmonic map heat flow. If the image of u is contained in Bπ/2
√

κ (y0),
and if u satisfies a growth condition

1

cos
√

κρ(u(x, τ ))
= o

(
d(x, τ )1/2 + τ 1/4

)

near infinity, then u is constant.

6 Proof of Theorem 2.6 and Schoen–Uhlenbeck’s example

Finally, we prove Theorem 2.6 and compare the result with Schoen–Uhlenbeck’s example.

6.1 Proof of Theorem 2.6

In this subsection, let (M, g) be an m-dimensional complete Riemannian manifold of non-
negative Ricci curvature, and let (N , g) be an n-dimensional complete Riemannian manifold
with sec ≤ κ for κ > 0. For harmonicmaps, we can use the following refinedKato inequality:

Lemma 6.1 For a harmonic map u : M → N, we have

‖∇‖du‖‖2 ≤ m − 1

m
‖∇du‖2. (24)

We can find the proof of this inequality for a harmonic map between spheres in the paper
by Lin-Wang [32]. However, their computation is pointwise and only uses properties of
harmonic maps. Therefore it is also valid for harmonic maps between general Riemannian
manifolds. Here, we give a proof for readers’ convenience.

Proof It is enough to show the inequality at x0 ∈ M such that ‖du‖(x0) �= 0. Let us fix
such a point. We compute in normal coordinates (xi ) = (x1, . . . , xm) around x0 ∈ M and
(yα) = (y1, . . . , yn) around u(x0) ∈ N . Let u(x) = (u1(x1, . . . , xm), . . . , un(x1, . . . , xm))

be the local expression for u : M → N in these coordinates. We use the notations

uα
i = ∂uα

∂xi
, and uα

i j = ∂2uα

∂xi∂x j
.

Now we can write

‖∇du‖2(x0) =
n∑

α=1

m∑
i, j=1

(uα
i j )

2(x0)

at x0 ∈ M . For any 1 ≤ α ≤ n, let λα
1 , . . . , λα

m be real eigenvalues of the symmetric matrix
(uα

i j (x0)) such that |λα
1 | ≤ · · · ≤ |λα

m |. Then we have

‖∇du‖2(x0) =
n∑

α=1

m∑
i=1

(λα
i )2.

On the other hand, since u : M → N is a harmonic map, we have

m∑
i=1

uα
i i (x0) =

m∑
i=1

λα
i = 0 for all 1 ≤ α ≤ n.

123



Liouville theorems for harmonic map heat flow… Page 19 of 24 199

Using this, elementary computation yields

m−1∑
i=1

(λα
i )2 ≥ 1

m − 1

(
m−1∑
i=1

λα
i

)2

= 1

m − 1
(λα

m)2 for all 1 ≤ α ≤ n.

Adding (λα
m)2 to the both sides of this inequality, we have

‖∇2uα‖2(x0) =
m∑
i=1

(λα
i )2 ≥ m

m − 1
(λα

m)2 for all 1 ≤ α ≤ n.

For a generalm×m symmetric matrix A which has real eigenvalues λ1, . . . , λm with |λ1| ≤
· · · ≤ |λm |, and a vector v ∈ R

m , it holds that

‖Av‖2 ≤ |λm |2‖v‖2.
In our case, for each 1 ≤ α ≤ n, put v = ∇uα(x0) and A = (uα

i j (x0)), then we have

‖∇uα‖2(x0)‖∇2uα‖2(x0) = ‖∇uα‖2(x0)
m∑
i=1

(λα
i )2

≥ m

m − 1
‖∇uα‖2(x0)|λα

m |2

≥ m

m − 1

m∑
i=1

⎛
⎝

m∑
j=1

uα
i j (x0)u

α
j (x0)

⎞
⎠

2

.

Therefore, using the Cauchy–Schwarz inequality and the Minkowski inequality, we have

‖du‖2(x0)‖∇du‖2(x0) =
(

n∑
α=1

‖∇uα‖2(x0)
)(

n∑
α=1

‖∇2uα‖2(x0)
)

≥
(

n∑
α=1

‖∇uα‖(x0)‖∇2uα‖(x0)
)2

≥ m

m − 1

⎡
⎢⎢⎣

n∑
α=1

⎧
⎪⎨
⎪⎩

m∑
i=1

⎛
⎝

m∑
j=1

uα
i j (x0)u

α
j (x0)

⎞
⎠

2
⎫
⎪⎬
⎪⎭

1
2
⎤
⎥⎥⎦

2

≥ m

m − 1

m∑
i=1

⎛
⎝

n∑
α=1

m∑
j=1

uα
i j (x0)u

α
j (x0)

⎞
⎠

2

.

Note that

4‖du‖2‖∇‖du‖‖2 = ‖∇‖du‖2‖2 = 4
m∑
i=1

⎛
⎝

n∑
α=1

m∑
j=1

uα
i j u

α
j

⎞
⎠

2

.

Hence we obtain

‖du‖2(x0)‖∇du‖2(x0) ≥ m

m − 1
‖du‖2(x0)‖∇‖du‖‖2(x0).

This completes the proof of Lemma 6.1. �
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Now we are in a position to prove Theorem 2.6. We use the technique for minimal hyper-
surfaces developed by Ecker-Huisken in [10].

Proof of Theorem 2.6 The Bochner formula for a harmonic map u : M → N (i.e., harmonic
map version of Lemma 4.2) combined with the refined Kato inequality (24) and curvature
assumptions on M, N tells us that

�‖du‖2 ≥ −2κ‖du‖4 + 2‖∇du‖2 ≥ −2κ‖du‖4 + 2m

m − 1
‖∇‖du‖‖2. (25)

Let v(x) = 1/ cos
√

κρ(u(x)). Note that this is well-defined when u(M) ⊂ Bπ/2
√

κ (y0).
The Hessian comparison theorem under the curvature assumption on N implies

�v = v2�(ϕ ◦ u) + 2‖∇v‖2
v

≥ κ‖du‖2v + 2‖∇v‖2
v

, (26)

where ϕ = 1 − cos
√

κρ. Using (25) and (26), a direct computation yields

�(‖du‖pvq) ≥ κ(q − p)‖du‖p+2vq

+ p

(
p − 1 + 1

m − 1

)
‖du‖p−2vq‖∇‖du‖‖2 + q(q + 1)‖du‖pvq−2‖∇v‖2

+ 2pq‖du‖p−1vq−1g(∇‖du‖,∇v),

where p, q are determined later. Using the Cauchy–Schwarz inequality and the Young
inequality (with ε > 0) for the last term, we have

�(‖du‖pvq) ≥ κ(q − p)‖du‖p+2vq (27)

+ p

(
p − 1 + 1

m − 1
− εq

)
‖du‖p−2vq‖∇‖du‖‖2

+ q
(
q + 1 − ε−1 p

) ‖du‖pvq−2‖∇v‖2.
For given m ≥ 2, let q = p > 2m − 3 and ε = q/(q + 1). Then we have

�(‖du‖qvq) ≥ 0,

i.e., ‖du‖qvq is a subharmonic function on M . Therefore, we can use Li–Schoen’s mean
value inequality (see e.g., [24, Theorem 7.2]) to conclude

sup
BR/4(x0)

‖du‖2qv2q ≤ Cm

vol(BR(x0))

∫

BR(x0)
‖du‖2qv2q , (28)

where Cm is a positive constant depending only on m.
On the other hand, choosing q = p + 1 > 2m − 3 and ε = (q − 1)/(q + 1) in (27), we

have
�(‖du‖q−1vq) ≥ κ‖du‖q+1vq .

We multiply this by ‖du‖q−1vqη2q , where η is a test function on M with compact support,
and then integrating by parts with the Cauchy–Schwarz inequality and the Young inequality
yields

κ

∫

M
‖du‖2qv2qη2q ≤ 1

2

∫

M
‖du‖2q−2v2qη2q−2‖∇η‖2.
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Recall the generalized Young inequality for a, b ≥ 0 with arbitrary ε > 0:

ab ≤ ε

(
q − 1

q

)
aq/(q−1) + ε−(q−1)

q
bq .

Putting a = ‖du‖2q−2η2q−2 and b = ‖∇η‖2 in this inequality, we have
(

κ − ε(q − 1)

2q

)∫

M
‖du‖2qv2qη2q ≤ ε−(q−1)

2q

∫

M
v2q‖∇η‖2q .

We take ε = κq/(q − 1) to get
∫

M
‖du‖2qv2qη2q ≤ (q − 1)q−1

κqqq

∫

M
v2q‖∇η‖2q .

Choosing η as the standard cut-off function in this inequality, we obtain
∫

BR(x0)
‖du‖2qv2q ≤ (q − 1)q−1

κqqq R2q

∫

B2R(x0)
v2q

≤ (q − 1)q−1

κqqq R2q vol(B2R(x0)) sup
B2R(x0)

v2q . (29)

Combining (28), (29) and the Bishop–Gromov volume comparison, it follows that

sup
BR/4(x0)

‖du‖v ≤
(
Cm(q − 1)q−1

κqqq R2q

)1/2q (
vol(B2R(x0))

vol(BR(x0))

)1/2q

sup
B2R(x0)

v ≤ Cm,κ,q
o(R)

R
,

where Cm,κ,q is a positive constant depending only on m, κ and q . We here notice that q
depends only on m. Letting R → ∞, we complete the proof of Theorem 2.6. �

6.2 Schoen–Uhlenbeck’s radial solution

We examine our growth condition (5) in Theorem 2.6 by comparing with the known example.
In [37, Example 2.2, Corollary 2.6], Schoen–Uhlenbeck showed that a smooth harmonic map
u : Rm → S

n+ is necessarily constant for m ≤ 6, and for m ≥ 7 such a map exists as a radial
solution.

Now we consider a radial solution, that is, a harmonic map u : Rm → S
m ⊂ R

m+1 of the
form u(r , θ) = (ρ(r), θ), where (r , θ) = (d(x), θ) are polar coordinates in R

m and (ρ, θ)

are polar coordinates in Sm centered at the north pole. Then the harmonic map equation can
be reduced to the following second order nonlinear ODE of ρ(r):

d2ρ

dr2
+ m − 1

r

dρ

dr
− m − 1

2r2
sin(2ρ) = 0 (30)

for 0 < r < ∞ with initial conditions

lim
r→0

ρ(r) = 0, lim
r→0

dρ

dr
(r) > 0.

According to Schoen–Uhlenbeck [37], if m ≥ 7, ρ(r) lies below the line ρ = π/2, is
increasing and asymptotic to π/2. As a consequence, we have

1

cos(ρ(r))
→ ∞
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as r → ∞. Now we want to know the precise growth order of this near infinity. Following
Schoen–Uhlenbeck [37], it is convenient to make the change of variables

α = 2ρ, t = log r .

Then ODE (30) becomes

d2α

dt2
+ (m − 2)

dα

dt
− (m − 1) sin α = 0 (31)

for −∞ < t < ∞ with

lim
t→−∞ α(t) = 0, lim

t→−∞
dα

dt
(t) = 0.

This is the nonlinear damped pendulum differential equation. Introducing β = dα/dt we
get the first order autonomous system

dα

dt
= β,

dβ

dt
= (2 − m)β + (m − 1) sin α. (32)

A standard way to analyze the behavior of nonlinear ODE near a critical point is to study the
linearized equation at the point. In our case, we consider the linearization of the system (32)
at the critical point (α, β) = (π, 0):

dα̃

dt
= β̃,

dβ̃

dt
= (2 − m)β̃ + (m − 1)(π − α̃).

or equivalently,
d2α̃

dt2
+ (m − 2)

dα̃

dt
+ (m − 1)α̃ = (m − 1)π. (33)

The characteristic equation is λ2 + (m − 2)λ + (m − 1) = 0 and its roots are

λ1(m) = −(m − 2) + √
m2 − 8m + 8

2
, λ2(m) = −(m − 2) − √

m2 − 8m + 8

2
.

Ifm ≥ 7, λ1(m) and λ2(m) are both negative real. In this case, it is known that the correspond-
ing critical point (π, 0) of the original nonlinear autonomous system (31) is asymptotically
stable node. The general solution of the linearized ODE (33) is given by

α̃(t) = π + C1e
λ1(m)t + C2e

λ2(m)t ,

where C1 and C2 are arbitrary constants. Putting ρ̃ = 2α̃ and t = log r , we have

π

2
− ρ̃(r) = C1r

−N1 + C2r
−N2 = C1r N2−N1 + C2

r N2
,

where 0 < N1 := −λ1(m) < −λ2(m) =: N2. Therefore,

1

cos(ρ̃(r))
= 1

sin
(

π
2 − ρ̃(r)

) ∼ r N1

C1
− C2r N1

C1(C1r N2−N1 + C2)
(34)

as r → ∞. Note that

N1(m) ↘ 1 and N2(m) ↗ ∞ as m → ∞. (35)

Since the solution ρ(r) of the original nonlinear ODE (30) is approximated by the linearized
one ρ̃(r) as r → ∞, ρ(r) does not satisfy the growth condition (5) in our Liouville theorem.
In addition, (34) and (35) tell us that our growth condition (5) is almost sharp.
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