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Abstract
We study the nonrelativistic limit of solitary waves from Nonlinear Maxwell–Klein–Gordon
equations (NMKG) to Nonlinear Schrödinger–Poisson equations (NSP). It is known that
the existence or multiplicity of positive solutions depends on the choices of parameters the
equations contain. In this paper, we prove that for a given positive solitarywave ofNSP,which
is found in Ruiz’s work (J Funct Anal 237(2):655–674, 2006), there corresponds a family of
positive solitary waves of NMKG under the nonrelativistic limit. Notably, our results contain
a new result of existence of positive solutions to (NMKG) with lower order nonlinearity.

Keywords Maxwell–Klein–Gordon · Schrodinger–Poisson · Nonrelativistic limit · Solitary
wave

1 Introduction

Nonlinear Maxwell–Klein–Gordon equations are written by

⎧
⎨

⎩

DαD
αφ = (mc)2φ − |φ|p−2φ,

∂βFαβ = q

c
Im(φDαφ),

in R
1+3. (NMKG)

where Dα :=∂α + q
c i Aα, α = 0, 1, 2, 3 and Fαβ :=∂αAβ − ∂β Aα . Here, m > 0 repre-

sents the mass of a particle, q > 0 is a unit charge and c > 0 is the speed of light. We
write ∂0 = ∂

c∂t , ∂i = ∂
∂x j

, j = 1, 2, 3. Indices are raised under the Minkowski metric
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gαβ = diag(−1, 1, 1, 1), i.e., Xα :=gαβXβ . If we pay attention to the electrostatic situation,
that is, A1 = A2 = A3 = 0, then NMKG is reduced to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

− ∂2

c2∂t2
+ �

)

φ − 2q

c2
i A0

∂φ

∂t
− q

c2
i
∂A0

∂t
φ +

(q

c

)2
A2
0φ = (mc)2φ − |φ|p−2φ,

− �A0 = q

c2
Im

(

φ
∂φ

∂t

)

−
(q

c

)2
A0|φ|2,

in R
1+3.

(1)
This paper is concerned with the nonrelativistic limit for NMKG in electrostatic case. By

modulating the solution as φ(t, x) = eimc2tψ(t, x), the system of equations (1) transforms
into

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∂2ψ

c2∂t2
− 2mi

∂ψ

∂t
+ �ψ + 2qmA0ψ − 2q

c2
i A0

∂ψ

∂t
− q

c2
i
∂A0

∂t
ψ +

(q

c

)2
A2
0ψ = −|ψ |p−2ψ,

− �A0 +
(q

c

)2 |ψ |2A0 = q

c2
Im

(

ψ
∂ψ

∂t

)

− qm|ψ |2.
(2)

Then, taking so-called nonrelativistic limit c → ∞, the relativistic system (2) formally
converges to nonlinear equations of Schrödinger type, called the nonlinear Schrödinger–
Poisson equations

⎧
⎨

⎩

− 2mi
∂ψ

∂t
+ �ψ + 2qmA0ψ = −|ψ |p−2ψ,

− �A0 = −qm|ψ |2,
in R

1+3. (NSP)

When the nonlinear potential term |ψ |p−2ψ is absent, the rigorous justifications of this
limit are carried out by Masmoudi-Nakanishi [17] and Bechouche-Mauser-Selberg [4]. As
for the stuides on the nonlinear Klein-Gordon equations without the Maxwell gauge terms
(Aμ = 0, μ = 0, 1, 2, 3), we refer to a series for works [15,16,18].

The main interest of this paper lies in investigating the correspondence between solitary
waves of NMKGandNSP under the nonrelativistic limit c → ∞. During recent two decades,
existence theories for solitary waves of NMKG and NSP have been well developed. Inserting
the standing wave ansatz ψ(t, x) = e−iμt u(x), u ∈ R into (2), we get

⎧
⎪⎪⎨

⎪⎪⎩

− �u +
(
m2c2 − (mc2 − μ

c
+ q�

c

)2
)
u − |u|p−2u = 0,

− �� + q2

c2
u2� = −q

c

(
mc2 − μ

c

)

u2,

in R
3. (3)

Lax-Milgram theorem implies that for each u ∈ H1(R3), there exists a unique solution
�u ∈ D1,2(R3) of

− �� + q2

c2
u2� = −q(m − μ

c2
)u2 in R

3. (4)

Then, by [6, Proposition 3.5], (u,�) ∈ H1(R3) × D1,2(R3) is a solution of (3) if and only
if u ∈ H1(R3) is a critical point of Ic, and � = �u , where

Ic(u) = 1

2

∫

R3
|∇u|2 +

(
2mμ − μ2

c2

)
u2 − q

(
m − μ

c2

)
u2�udx − 1

p

∫

R3
|u|pdx,
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which is a C1 functional on H1(R3). We note that the system of equations (3) is equivalent
to the single nonlocal equation

− �u +
(
m2c2 − (mc2 − μ

c
+ q�u

c

)2
)
u − |u|p−2u = 0 in R

3. (5)

Before stating the existence results for (5), we simplify the parameters by denoting m̄ = mc,
e = q/c and ω = (mc2 − μ)/c to rewrite (5) as

−�u + (
m̄2 − (ω + eϕu)

2) u − |u|p−2u = 0 in R
3, (6)

where e > 0, 0 < ω < m̄ and ϕu is a unique solution of −�ϕ + e2u2ϕ = −eωu2. The
corresponding action functional is given by

Im̄,e,ω(u) = 1

2

∫

R3
|∇u|2 + (m̄2 − ω2)u2 − eωu2ϕudx − 1

p

∫

R3
|u|pdx .

For fixed e > 0, Benci and Fortunato [6] first proved by applying critical point theory to
Im̄,e,ω that there exist infinitely many solutions of (6) for 4 < p < 6 and 0 < ω < m̄. This
result is extended by D’Aprile and Mugnai [12] to the cases 4 ≤ p < 6 and 0 < ω < m̄ or
2 < p < 4 and 0 <

√
2ω < m̄

√
p − 2. They also proved in [13] that there exist no nontrivial

solutions if p ≤ 2 or p ≥ 6 and 0 < ω ≤ m̄. In [3], Azzollini, Pisani and Pomponio widened
the existence range of m̄, ω for the case 2 < p < 4 by showing that (6) admits a nontrivial
solution when 0 < ω < m̄g(p), where

g(p):=
{√

(p − 2)(4 − p) if 2 < p < 3,
1 if 3 ≤ p < 4.

Azzollini and Pomponio also focused on the existence of a ground state solution of (6). A
critical point of Im̄,e,ω is said to be a ground state solution to (6) if it minimizes the value of
Im̄,e,ω among all nontrivial critical points of Im̄,e,ω. In [2], they showed (6) admits a ground
state solution if 4 ≤ p < 6 and 0 < ω < m̄ or 2 < p < 4 and m̄

√
p − 1 > ω

√
5 − p.

Wang [23] established the same result to the range of parameters that 2 < p < 4 and
0 <

√
h(p)ω < m̄, where

h(p):=1 + (4 − p)2

4(p − 2)
.

We now turn to the standing wave solutions for NSP. We again insert the same ansatz
ψ(t, x) = e−iμt u(x), u ∈ R into NSP to obtain

− �u + 2mμu − 2qmuφ − |u|p−2u = 0 in R
3,

− �φ = −qmu2 in R
3.

(7)

For any u ∈ H1(R3), there exists a unique φu ∈ D1,2(R3) satisfying

− �φu = −qmu2 in R
3, (8)

by Lax-Milgram theorem (note that actually φu = − qm
4π |x | ∗u2). We define the corresponding

action integral as

I∞(u) = 1

2

∫

R3
|∇u|2 + 2mμu2 − qmu2φudx − 1

p

∫

R3
|u|pdx . (9)
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Then, by [12, Lemma 3.2], (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (7) if and only
if u ∈ H1(R3) is a critical point of I∞, and φ = φu . It is also standard to show that
I∞ ∈ C1(H1(R3), R) and a critical point u of I∞ satisfies

−�u+2mμu − 2qmuφu − |u|p−2u = 0 in R
3. (10)

We summarize some existence results for problem (10).D’Aprile-Mugnai [12] andCoclite
[7] proved the existence of a radial positive solution of (10) for 4 ≤ p < 6. On the other
hand, using a Pohozaev equality, D’Aprile-Mugnai [13] showed that there exists no non-
trivial solutions of (10) for p ≤ 2 or p ≥ 6. By a new approach, Ruiz [21] fills a gap for the
range 2 < p < 4. More precisely, he proved the following results:

(i) (3 < p < 6 and q > 0) ∃ a nontrivial solution, which is a ground state in radial
class;

(ii) (2 < p < 3 and small q > 0) ∃ a nontrivial solution, which is a minimizer of I∞;
(iii) (2 < p ≤ 3 and small q > 0) ∃ a nontrivial solution emanating from a ground state

solution of
− �u + 2mμu − |u|p−2u = 0 in R

3; (11)

(iv) (2 < p ≤ 3 and large q > 0) � nontrivial solution of (10).

In [1], Azzollini and Pomponio constructed a ground state solution of (10) for 3 < p < 6,
which is possibly non-radial. It was shown by Colin and Watanabe [8] that a ground state is
unique and radial up to a translation for small q > 0. This result implies that the solution
found by Ruiz coincides with the ground state constructed by Azzollini and Pomponio for
small q > 0 if 3 < p < 6. As far as we know, it is unknown whether the ground states is
radial when q > 0 is arbitrary.

Concerning the nonrelativistic limit between solitary waves, one can naturally ask is the
following:

Question: For any positive solution u of (10), is there a corresponding family of positive
solutions uc of (5), which converges to u as c → ∞?

In this paper, we not only give a complete answer to this question, but also construct
blow up solutions to NMKG for 2 < p < 3. Our first theorem states the convergence of
nonrelativistic limit of ground states between (5) and (10) for 3 < p < 6. The theorem
contains the existence of a ground state to (5) for 3 < p < 4 with arbitrary parameters
m, q, μ, c > 0 and c >

√
μ/m, which is not covered by the aforementioned results of

Azzollini-Pomponio [2] or Wang [23] (see Proposition 3).

Theorem 1 (Existence and nonrelativistic limit of ground states) Fix arbitrary μ,m, q > 0
and 3 < p < 6. Then there holds the following:

(i) There exists a ground state solution of (5) for any c >
√

μ/m.
(ii) Any ground state solution uc of (5) belongs to H2(R3), and there exists a sequence

{xc} ∈ R
3 such that {uc(·+ xc)} converges to a ground state solution of (10) in H2(R3)

as c → ∞, after choosing a subsequence.

Based on the strategies proposed in [10,11], we shall prove the convergence of nonrela-
tivistic limit in Theorem 1 by establishing the following steps:

1. Uniform upper estimate of ground energy levels for (5) by the ground energy level for
(10), i.e.,

lim sup
c→∞

Ec ≤ E∞, (12)
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where

Ec = inf{Ic(u) | u �= 0, I ′
c(u) = 0} and E∞ = inf{I∞(u) | u �= 0, I ′∞(u) = 0};

2. Uniform H1 bounds for ground states {uc} of (5) and solvability of its weak limit u∞
to (10);

3. Energy estimates for establishing u∞ to be a ground state;
4. H1 convergence of uc to u∞ and its upgrade to H2.

A new difficulty arises when we prove the step 1 in the case 3 < p < 4. It is worth to
point out that we couldn’t construct a ground state of (5) by using a constrained minimization
method for 3 < p < 4. It seems not possible to find a suitable constraint working for every
admissible parameters μ,m, q, c. As a consequence, we couldn’t compare ground states
energy levels between (5) and (10). To bypass the obstacle, we directly construct a ground
state that satisfies the upper estimate (12). That is, we first show the existence of a family
of nontrivial solutions to (5) satisfying the upper estimate (12) by applying a deformation
argument developed in [5]. Then, by the compactness of a sequence of solutions to (5), we
prove that aforementioned nontrivial solutions to (5) is ground state solutions to (5) (see
Proposition 3).

The next theorem covers the case that 2 < p < 3 and q is small. We recall the aforemen-
tioned results by Ruiz [21], which say the existence of at least two positive radial solutions
u∞ and v∞ of (10); u∞ is a perturbation of the ground state to (11) and v∞ is a global
minimizer of I∞. In Theorem 2, we show the existence of two radial positive solutions uc
and vc to (5) such that uc and vc converges to u∞ and v∞, respectively.

Theorem 2 (Correspondence of two positive solutions for 2 < p < 3) Assume 2 < p < 3.
Fix arbitrary but sufficiently small q > 0 that guarantees the existence of at least two positive
radial solutions u∞ and v∞ to (10)mentioned above. If c > 0 is sufficiently large, then there
exist two distinct radially symmetric positive solutions uc and vc of (5) such that

(i) lim
c→∞ ‖uc − u∞‖H1(R3) = 0, (ii) lim

c→∞ ‖vc − v∞‖H1(R3) = 0.

In [21], Ruiz proved that a global minimizer v∞ of I∞ blows up in H1 as q → 0, which
implies that the solution vc constructed in Theorem 2 blows up in H1 as q → 0 and c → ∞.
We point out that Theorem 2 not only proves the correspondence between solitary waves but
also establishes a new existence result to (5) for 2 < p < 3. As we have seen above, the
previous approaches [2,3,12,23] doesn’t cover the case thatω > 0 is less than but sufficiently
close to m̄. In this respect, one family of solutions uc is actually not brand new because it
is a simple consequence of implicit function theorem, which relies on nondegeneracy of the
solution u∞. However, the other family of solutions vc is brand new because vc bifurcates
from a global minimizer of I∞, which blows up in H1. As for the construction of vc, it seems
not easy to show whether the global minimum of Ic is finite, unlike I∞. This prevents us
from simply adopting the minimization argument. To overcome this difficulty, we develop
a new deformation argument, which strongly depends on the fact that the global minimum
level of I∞ is bounded below.We conjecture that if c is sufficiently large, there exists a global
minimizer of Ic, which converges to v∞.

We organize the paper as follows: In sect. 2, we give variational settings for NSP and
NMKG, and a simple proof for the existence of a ground state to (6) for 3 < p < 6.
Section 3 is devoted to construct nontrivial solutions to (5) with the energy bound E∞ when
3 < p < 6. In Sect. 4, we prove Theorem 1 by combining the results in Sect. 3. In Sect. 5,
we deal with the case 2 < p < 3. We construct two radial positive solutions of (5) and prove

123



168 Page 6 of 27 S. Jin, J. Seok

the convergence of their nonrelativistic limit. Finally, in Appendix, we give basic estimates,
which are used in the proofs of main theorems.

2 Preliminaries

This preliminary section introduces basic functional and variational settings for NMKG and
NSP. In addition, we provide a simple proof for the existence of a ground state to (6) for
every 3 < p < 6 and every e, m̄, ω > 0 such that m̄ > ω.

2.1 Function spaces

The space D1,2(R3) is defined by the completion of C∞
0 (R3) with respect to the norm

‖u‖D1,2(R3) =
( ∫

�

|∇u|2dx
)1/2

.

For an open set � ⊂ R
3 and r ∈ [1,∞), let us denote the norms

‖u‖Lr (�) =
( ∫

�

|u|r dx
)1/r

, ‖u‖L∞(�) = ess sup
x∈�

|u(x)|, ‖u‖H1(�) =
( ∫

�

|∇u|2 + u2dx
)1/2

.

We also use the following abbreviations,

‖u‖Lr = ‖u‖Lr (R3), ‖u‖D1,2 = ‖u‖D1,2(R3) and ‖u‖H1 = ‖u‖H1(R3).

We denote by H1
r the Sobolev space of radial functions u such that u, ∇u are in L2(R3).

2.2 Variaional settings for NSP

Recall the action functional for (10),

I∞(u) = 1

2

∫

R3
|∇u|2 + 2mμu2 + |∇φu |2dx − 1

p

∫

R3
|u|pdx

= 1

2

∫

R3
|∇u|2 + 2mμu2 − qmu2φudx − 1

p

∫

R3
|u|pdx .

The map λ : u ∈ H1 → φu ∈ D1,2 is continuously differentiable, where φu satisfies (8) (see
[12]). Since λ′(u)[v] satisfies

−�(λ′(u)[v]) = −2qmuv in R
3 for v ∈ H1,

we have
∫

R3
∇(λ′(u)[v]) · ∇φudx = −2qm

∫

R3
uvφudx .

Then we see that

I ′∞(u)v =
∫

R3
∇u · ∇v + 2mμuv + ∇(λ′(u)[v]) · ∇φudx −

∫

R3
|u|p−2uvdx

=
∫

R3
∇u · ∇v + 2mμuv − 2qmuvφudx −

∫

R3
|u|p−2uvdx,

123
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which shows that a critical point of I∞ is a weak solution to (10). We define the Nehari and
Pohozaev functionals for (10) by

J∞(u) ≡ I ′∞(u)u =
∫

R3
|∇u|2 + 2mμu2 − 2qmu2φu − |u|pdx,

P∞(u) ≡
∫

R3

1

2
|∇u|2 + 3mμu2 − 5

2
qmu2φu − 3

p
|u|pdx .

We note that the values of J∞ and P∞ should be zero at every critical point of I∞ (see [21]).
By defining G∞(u) ≡ 2J∞(u) − P∞(u), we denote

M∞ ≡
{
u ∈ H1 \ {0}

∣
∣
∣ G∞(u) ≡

∫

R3

3

2
|∇u|2 + mμu2 − 3

2
qmu2φu − 2p − 3

p
|u|pdx = 0

}

and
E∞ ≡ inf

u∈M∞
I∞(u). (13)

It is proved in [21] that for 3 < p < 6, E∞ equals to the ground energy level for (10), i.e.

E∞ = inf{I∞(u) | u �= 0, I ′∞(u) = 0}.

2.3 Variational settings for NMKG

The action functional for (5) is given by

Ic(u) = 1

2

∫

R3
|∇u|2 +

(
2mμ − μ2

c2

)
u2 + |∇�u |2 +

(q

c

)2
u2�2

udx − 1

p

∫

R3
|u|pdx

= 1

2

∫

R3
|∇u|2 +

(
2mμ − μ2

c2

)
u2 − q

(
m − μ

c2

)
u2�udx − 1

p

∫

R3
|u|pdx .

The map � : u ∈ H1 → �u ∈ D1,2 is continuously differentiable, where �u satisfies (4)
(see [12]). For v ∈ H1, since �′(u)[v] satisfies

−�(�′(u)[v]) +
(q

c

)2
u2(�′(u)[v]) = −2

(q

c

)2
uv�u − 2q

(
m − μ

c2

)
uv,

we have
∫

R3
∇(�′(u)[v]) · ∇�u +

(q

c

)2
u2(�′(u)[v])�udx =

∫

R3
−2

(q

c

)2
uv�2

u − 2q
(
m − μ

c2

)
uv�udx .

Then we see that for v ∈ H1,

I ′
c(u)v =

∫

R3
∇u · ∇v +

(
2mμ − μ2

c2

)
uv + ∇�u · ∇(�′(u)[v]) +

(q

c

)2
uv�2

u

+
(q

c

)2
u2�u(�

′(u)[v]) − |u|p−2uvdx

=
∫

R3
∇u · ∇v +

(
2mμ − μ2

c2

)
uv −

(q

c

)2
uv�2

u − 2q
(
m − μ

c2

)
uv�u − |u|p−2uvdx .

In particular, we have

Jc(u) ≡ I ′
c(u)u =

∫

R3
|∇u|2 +

(
2mμ − μ2

c2

)
u2 −

(q

c

)2
u2�2

u − 2q
(
m − μ

c2

)
u2�u − |u|pdx .

123
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For any critical point wc of Ic, it is clear that Jc(wc) = 0 and it is shown in [13] that the
Pohozaev’s identity Pc(wc) = 0 holds true, where

Pc(u) ≡
∫

R3

1

2
|∇u|2 + 3

2

(
2mμ − μ2

c2

)
u2 − q2

c2
�2

uu
2 − 5

2
q
(
m − μ

c2

)
u2�u − 3

p
|u|pdx .

2.4 Existence of a ground state for 3 < p < 6

We recall the equation (6)

−�u + (
m̄2 − (eϕu + ω)2

)
u = |u|p−2u in R

3

where e > 0, 0 < ω < m̄ and ϕu is a unique solution of

−�ϕ + e2ϕu2 = −eωu2.

Here we point out that by the maximum principle, we have the uniform bound

−ω

e
≤ ϕu ≤ 0.

Proposition 3 Assume that 3 < p < 6, e > 0 and 0 < ω < m̄. If there exists a non-trivial
solution of (6), then there exists a non-trivial ground state solution of (6).

Proof Suppose that there exists a non-trivial solution solution of (6). We recall the action
functional of (6)

I (u) = 1

2

∫

R3
|∇u|2 + (m̄2 − ω2)u2 − eωϕuu

2dx − 1

p

∫

R3
|u|pdx .

and consider the minimization problem

S = inf{I (u) | u ∈ B},
where

B ≡ {u ∈ H1 | u is a non-trivial solution solution of (6)}.
By the definition, a ground state solution u of (6) is a nontrivial critical point of I satisfying
I (u) = S. Let us define

⎧
⎪⎪⎨

⎪⎪⎩

T (u):=I ′(u)u =
∫

R3
|∇u|2 + (m̄2 − ω2)u2 − 2eωϕuu

2 − e2ϕ2
uu

2 − |u|pdx

Q(u):=
∫

R3

1

2
|∇u|2 + 3

2
(m̄2 − ω2)u2 − 5

2
eωϕuu

2 − e2ϕ2
uu

2 − 3

p
|u|pdx .

Since T (v) = Q(v) = 0 for any v ∈ B, (see [13]), one has
5p − 12

2
I (v) = 5p − 12

2
I (v) − T (v) + 4 − p

2
Q(v)

=
∫

R3
(p − 3)|∇v|2 + p − 2

2
(m̄2 − ω2)v2 + p − 2

2
e2v2ϕ2

vdx

for v ∈ B. This implies that S ≥ 0.

123
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Let {un} be a minimizing sequence of S. From the estimates

5p − 12

2
S + o(1) =

∫

R3
(p − 3)|∇un |2 + p − 2

2
(m̄2 − ω2)u2n + p − 2

2
e2u2nϕ

2
un dx (14)

and

0 = T (un) =
∫

R3
|∇un |2 + (m̄2 − ω2)u2n − ϕun (2eω + e2ϕun )u

2
n − |un |pdx

≥
∫

R3
|∇un |2 + (m̄2 − ω2)u2n − |un |pdx ≥ C‖un‖2/pL p − ‖un‖p

L p ,

we deduce that (un) is bounded in H1 and ‖un‖L p ≥ C1 for some positive constantC1. Then
we see from Lemma 1.1 in [14],

sup
x∈R3

∫

B1(x)
|un |2dx =

∫

B1(xn)
|un |2dx ≥ C2 > 0,

where xn ∈ R
3 and C2 is a positive constant. Then we may assume that un(·+ xn) converges

to u �≡ 0 weakly in H1. It is standard to show that u is a non-trivial critical point of I .
Moreover, by (14) and the fact that u is a non-trivial critical point of I , we see that

5p − 12

2
S = lim inf

n→∞

∫

R3
(p − 3)|∇un |2 + p − 2

2
(m̄2 − ω2)u2n + p − 2

2
e2u2nϕ

2
un dx

≥
∫

R3
(p − 3)|∇u|2 + p − 2

2
(m̄2 − ω2)u2 + p − 2

2
e2u2ϕ2

udx = 5p − 12

2
I (u),

which implies that u is a non-trivial ground state solution of (6). ��
Observe that Proposition 3 implies the existence of a ground state to (6) for any e, m̄, ω > 0

such that 0 < ω < m̄ since there exists a nontrivial solution at those ranges of parameters by
[3].

3 Construction of nontrivial solutions to NKGMwith the energy bound
E∞

In this section, based on the idea of [5], we shall construct a family of nontrivial solutions
wc to (5) satisfying

lim sup
c→∞

Ic(wc) ≤ E∞.

Before proceeding further, we first introduce a modified functional Ĩc as

Ĩc(u) = 1

2

∫

R3
|∇u|2 +

(
2mμ − μ2

c2

)
u2 − q

(
m − μ

c2

)
u2�udx − 1

p

∫

R3
u p

+dx,

where c > 0 and u+ = max{u, 0}. A critical point of Ĩc corresponds to a solution of

− �u +
(
2mμ −

(μ

c

)2)
u −

(q

c

)2
u�2 − 2q

(
m − μ

c2

)
u� − u p−1

+ = 0 in R
3,

− �� + q2

c2
u2� = −q

(
m − μ

c2

)
u2 in R

3.

(15)
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It is possible to show from the maximum principle that a critical point u of Ĩc is positive

everywhere in R
3 for c ≥

√
2m
μ
. Indeed, since − c2

q

(
m − μ

c2

)
≤ �u ≤ 0, multiplying u− to

the equation

−�u +
(
2mμ − (μ

c

)2
)
u −

(q

c

)2
u�2

u − 2q
(
m − μ

c2

)
u�u − u p−1

+ = 0 in R
3

and then integrating over R
3, we have

∫

R3
|∇u−|2 +

(
2mμ − μ2

c2

)
u2−dx

≤
∫

R3
|∇u−|2 +

(
2mμ − μ2

c2

)
u2− − u2−�u

[(q

c

)2
�u + 2q

(
m − μ

c2

)]
dx = 0,

where u− = min{u, 0}. Therefore a nontrivial critical point of Ĩc gives a positive solution to
(5). We also define

Ĩ∞(u):=1

2

∫

R3
|∇u|2 + 2mμu2 − qmu2φudx − 1

p

∫

R3
u p

+dx,

J̃∞(u):=I ′∞(u)u =
∫

R3
|∇u|2 + 2mμu2 − 2qmu2φu − u p

+dx,

P̃∞(u):=
∫

R3

1

2
|∇u|2 + 3mμu2 − 5

2
qmu2φu − 3

p
u p

+dx .

Let A ≡ {u ∈ H1 | Ĩ ′∞(u) = 0, Ĩ∞(u) = E∞, and maxR3 u = u(0)}. We note that
A �= ∅. Indeed, if u ∈ M∞ satisfies I∞(u) = E∞, we see that |u| satisfies Ĩ∞(|u|) = E∞
and Ĩ ′∞(|u|) = 0.

Proposition 4 For 3 < p < 6, there exist positive constants C1 and C2 independent of
U ∈ A such that for U ∈ A,

U (x) + |∇U (x)| ≤ C1 exp(−C2|x |).
Moreover, infU∈A ‖U‖L∞ > 0.

Proof Let U ∈ A. It follows from

E∞ = Ĩ∞(U ) = Ĩ∞(U ) − 2

5p − 12
J̃∞(U ) − p − 4

5p − 12
P̃∞(U )

=
∫

R3

2(p − 3)

5p − 12
|∇U |2 + 2(p − 2)

5p − 12
mμU 2dx

(16)

where U ∈ A, that A is bounded in H1 if 3 < p < 6. Then, since

‖φU + |U |p−2‖
L

6
p−2 (�)

≤ ‖φU‖
L

6
p−2 (�)

+ ‖U‖p−2
L6(�)

≤ |�| p−2
6 − 1

6 ‖φU‖L6(�) + ‖U‖p−2
L6(�)

≤ C
(|�| p−2

6 − 1
6 ‖U‖2H1 + ‖U‖p−2

H1

)
,

where 3 < p < 6, U ∈ A, � is a bounded domain in R
3 and C is a positive constant

independent of U ∈ A, we see that A is bounded in L∞ (see [22, Theorem 4.1]).
We claim that lim|x |→∞ U (x) = 0 uniformly for U ∈ A. Indeed, contrary to our claim,

suppose that there exist {Ui }∞i=1 ⊂ A and {xi }∞i=1 ⊂ R
N satisfying limi→∞ |xi | = ∞ and
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lim inf i→∞ Ui (xi ) > 0. Denote Vi ≡ Ui (· + xi ). We note that if ui⇀u in H1, φui ⇀φu in
D1,2. Then if ui⇀u in H1, for ψ ∈ C∞

0 (R3),
∫

R3
(uiφui − uφu)ψdx =

∫

R3
(ui − u)φui ψ + u(φui − φu)ψdx = o(1) (17)

as i → ∞. By (17) and the fact that {Ui , Vi }∞i=1 is bounded in H1, we see that Ui and Vi
converge to U and V weakly in H1 as i → ∞ , up to a subsequence, respectively, where U
and V are non-trivial solutions of (10). It follows from (16) that for 2R ≤ |xi |,

E∞ = lim inf
i→∞ Ĩ∞(Ui ) = lim inf

i→∞

∫

R3

2(p − 3)

5p − 12
|∇Ui |2 + 2(p − 2)

5p − 12
mμU 2

i dx

≥ lim inf
i→∞

∫

B(0,R)

2(p − 3)

5p − 12
|∇Ui |2 + 2(p − 2)

5p − 12
mμU 2

i dx

+ lim inf
i→∞

∫

B(xi ,R)

2(p − 3)

5p − 12
|∇Ui |2 + 2(p − 2)

5p − 12
mμU 2

i dx

≥
∫

B(0,R)

2(p − 3)

5p − 12
|∇U |2 + 2(p − 2)

5p − 12
mμU 2dx

+
∫

B(0,R)

2(p − 3)

5p − 12
|∇V |2 + 2(p − 2)

5p − 12
mμV 2dx .

(18)

Since

Ĩ∞(U ), Ĩ∞(V ) ≥ Ĩ∞(W ) for any W ∈ A,

if we take large R > 0 in (18), we deduce a contradiction. This implies that lim|x |→∞ U (x) =
0 uniformly for U ∈ A.

We note that for large |x |,

φU (x) = −qm

4π

∫

R3

U 2(y)

|x − y|dy = −qm

4π

∫

B(x,R)

U 2(y)

|x − y|dy − qm

4π

∫

R3\B(x,R)

U 2(y)

|x − y|dy

= o(1)R2 + O(1)
1

R
= o(1)

uniformly in U ∈ A. Then, by the comparison principle and the elliptic estimates, we see
that for U ∈ A,

U (x) + |∇U (x)| ≤ C1 exp(−C2|x |),
where C1 and C2 are positive constants independent of U ∈ A.

To show infU∈A ‖U‖L∞ > 0, we assume that there exists {Ui }∞i=1 ⊂ A such that
‖Ui‖L∞ → 0 as i → ∞. Then, since Ui satisfies

−�Ui + 2mμUi −U p−1
i ≤ −�Ui + 2mμUi − 2qmUiφUi −U p−1

i = 0 in R
3,

we see that ‖Ui‖H1 → 0 as i → ∞, which is a contradiction to (16). ��

For a fixed U0 ∈ A, we define γ (t)(x) = t2U0(t x). It follows from

Ĩ∞(γ (t)) = 1

2

∫

R3
t3|∇U0|2 + 2mμtU 2

0 − qmt3U 2
0φU0dx − t2p−3

p

∫

R3
U p
0 dx
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that for 3 < p < 6, there exists t0 > 1 such that Ĩ∞(γ (t)) < 0 for t ≥ t0. Moreover, by [21,
Lemma 3.3] and the fact that U0 is a critical point of Ĩ∞, we see that for 3 < p < 6, t = 1
is a unique critical point of Ĩ∞(γ (t)), corresponding to its maximum.

We define

êc:= max
t∈[0,t0]

Ĩc(γ (t)), and ec:= inf
�∈W max

s∈[0,1] Ĩc(�(s)),

where W ≡ {� ∈ C([0, 1], H1) | �(0) = 0, �(1) = γ (t0)}.
Proposition 5 Let 3 < p < 6. Then we have

lim sup
c→∞

êc ≤ E∞.

Proof We see from Lemma 21 and the scaling φt2U0(t ·) = t2φU0(t ·), that for t ∈ [0, t0],

Ĩc(γ (t)) = 1

2

∫

R3
|t3(∇U0)(t x)|2 +

(
2mμ − μ2

c2

)
t4U2

0 (t x) − q
(
m − μ

c2

)
t4U2

0 (t x)�t2U0(t ·)dx

− t2p

p

∫

R3
(U0(t x))

pdx

= 1

2

∫

R3
|t3(∇U0)(t x)|2 + 2mμt4U2

0 (t x) − qmt4U2
0 (t x)φt2U0(t ·)dx

− t2p

p

∫

R3
(U0(t x))

pdx + o(1)

= 1

2

∫

R3
t3|∇U0|2 + 2mμtU2

0 − qmt3U2
0φU0dx − t2p−3

p

∫

R3
(U0)

pdx + o(1)

= Ĩ∞(γ (t)) + o(1),
(19)

where o(1) is uniform in t ∈ [0, t0] as c → ∞. Thus, since t = 1 is a unique maximum point
of Ĩ∞(γ (t)) for 3 < p < 6, we deduce that

êc = max
s∈[0,1] Ĩc(γ (t0s)) = Ĩ∞(U0) + o(1) = E∞ + o(1)

as c → ∞. ��
Proposition 6 Let 3 < p < 6. Then we have

lim inf
c→∞ ec ≥ E∞.

Proof We note that for � ∈ W ,

Ĩc(�(t)) = 1

2

∫

R3
|∇�(t)|2 + 2mμ�2(t) − qm�2(t)φ�(t)dx − 1

p

∫

R3
(�(t))p+dx

− 1

c2

∫

R3
μ2�2(t) − qμ�2(t)��(t)dx − 1

2
qm

∫

R3
�2(t)(��(t) − φ�(t))dx

= Ĩ∞(�(t)) + Gc(t),

where Gc(t) ≡ − 1
c2

∫

R3 μ2�2(t) − qμ�2(t)��(t)dx − 1
2qm

∫

R3 �2(t)(��(t) − φ�(t))dx .
By Lemma 21, we have

|Gc(t)| = o(1) uniformly in t ∈ [0, 1] as c → ∞.
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Then, since

max
t∈[0,1] Ĩ∞(�(t)) ≥ E∞,

where � ∈ W (see [1, Lemma 2.4]), we have

ec ≥ E∞ + inf
�∈W max

t∈[0,1]Gc(t) ≥ E∞ − inf
�∈W max

t∈[0,1] |Gc(t)| = E∞ + o(1)

as c → ∞. ��

We define

X ≡ {U (· − y) | U ∈ A, y ∈ R
3}

and

Nd(X ) ≡ {u ∈ H1 | inf
v∈X ‖u − v‖H1 ≤ d},

where d > 0 is a constant and A ≡ {u ∈ H1 | Ĩ ′∞(u) = 0, Ĩ∞(u) = E∞, and maxR3 u =
u(0)}.

Proposition 7 Let 3 < p < 6. For large c > 0, for small d > 0, and for any d ′ ∈ (0, d),
there exists ν ≡ ν(d, d ′) > 0 independent of c > 0 such that

inf{‖ Ĩ ′
c(u)‖H−1 | Ĩc(u) ≤ êc, u ∈ Nd(X ) \ Nd ′(X )} ≥ ν > 0.

Proof Let {ci }∞i=1 be such that limi→∞ ci = ∞. It suffices to show that for small d > 0, if

uci ∈ Nd(X ), Ĩci (uci ) ≤ êci , and ‖ Ĩ ′
ci (uci )‖H−1 → 0

as i → ∞, then

inf
v∈X ‖uci − v‖H1 → 0 as i → ∞.

For the sake of simplicity of notation, we write c for ci . Since uc ∈ Nd(X ), we have

‖uc(x) −Uc(x − yc)‖H1 ≤ d, (20)

where Uc ∈ A and yc ∈ R
3. We define η ∈ C∞

0 (R3) such that 0 ≤ η ≤ 1, η(x) = 1 for
|x | ≤ 1, η(x) = 0 for |x | ≥ 2, and |∇η| ≤ 2. Also, we set η̃c(x) = η(

x−yc
c ). We divide the

proof into three steps.
Step 1. Ĩc(uc) ≥ Ĩ∞(vc)+ Ĩ∞(wc)+o(1) as c → ∞, where vc = η̃cuc andwc = (1−η̃c)uc.

We claim first that for α ∈ (2, 6),

lim
c→∞

∫

B(yc,2c)\B(yc,c)
|uc|αdx = 0. (21)

Suppose that there exist zc ∈ B(yc, 2c) \ B(yc, c) and R > 0 such that

lim inf
c→∞

∫

B(zc,R)

|uc|2dx > 0. (22)
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Denote ũc = uc(· + zc). We note that, by Lemma 21 and the fact that ‖uc‖H1 is bounded,
for ψ ∈ C∞

0 (R3),

Ĩ ′
c(ũc)ψ

=
∫

R3
∇ũc · ∇ψ +

(
2mμ − μ2

c2

)
ũcψ −

(q

c

)2
ũcψ�2

ũc
− 2q

(
m − μ

c2

)
ũcψ�ũc − (ũc)

p−1
+ ψdx

=
∫

R3
∇ũc · ∇ψ + 2mμũcψ − 2qmũcψφũc − (ũc)

p−1
+ ψdx

+
∫

R3
−μ2

c2
ũcψ −

(q

c

)2
ũcψ�2

ũc
+ 2q

μ

c2
ũcψ�ũc − 2qmũcψ(�ũc − φũc )dx

= Ĩ ′∞(ũc)ψ + o(1)
(23)

as c → ∞. By (17) and the assumption that ‖ Ĩ ′
c(uc)‖H−1 → 0 as c → ∞ , we have

uc(· + zc)⇀Ũ �≡ 0 in H1, where Ũ satisfies Ĩ ′∞(Ũ ) = 0. By (16), we have
∫

R3
|∇Ũ |2 + Ũdx ≥ E∞

(
max

{2(p − 3)

5p − 12
,
2(p − 2)

5p − 12
mμ

})−1
. (24)

Then, by Proposition 4 and the fact that |zc − yc| ≥ c, we see that for R > 0,

d2 ≥ ‖uc(x) −Uc(x − yc)‖2H1 = ‖ũc(x) −Uc(x + zc − yc)‖2H1

≥ ‖ũc(x) −Uc(x + zc − yc)‖2H1(B(0,R))
= ‖ũc(x)‖2H1(B(0,R))

+ o(1) ≥ ‖Ũ‖2H1(B(0,R))

as c → ∞. If we take small d > 0, by (24), we deduce a contradiction. Since there does not
exists such a sequence {zc} satisfying (22), by [14, Lemma 1.1], we deduce (21). Then, by
(21), we have ∫

R3
(uc)

p
+ − (vc)

p
+ − (wc)

p
+dx = o(1) (25)

as c → ∞, where vc and wc are given in (21) above. By (21) and Lemma 17,
∫

B(yc,2c)\B(yc,c)
u2c |φuc |dx ≤ ‖φuc‖L6(B(yc,2c)\B(yc,c))‖u2c‖L6/5(B(yc,2c)\B(yc,c))

≤ C1‖uc‖2H1‖uc‖2L12/5(B(yc,2c)\B(yc,c))
→ 0

as c → ∞, where C1 is a positive constant. From this and the fact that |∇ηc| ≤ 2/c, we see
that
∫

R3
v2cφvc + w2

cφwc − u2cφucdx

=
∫

B(yc,c)∪(R3\B(yc,2c))
v2cφvc + w2

cφwc − u2cφucdx + o(1)

= qm

4π

∫

B(yc,c)∪(R3\B(yc,2c))

∫

R3

u2c(x)u
2
c(y) − v2c (x)v

2
c (y) − w2

c (x)w
2
c (y)

|x − y| dydx + o(1)

= qm

4π

∫

B(yc,c)

∫

R3

u2c(x)(u
2
c(y) − v2c (y))

|x − y| dydx

+ qm

4π

∫

R3\B(yc,2c)

∫

R3

u2c(x)(u
2
c(y) − w2

c (y))

|x − y| dydx + o(1) ≥ o(1)

(26)
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as c → ∞. Thus, by (25), (26), Lemma 21 and the fact that |∇ηc| ≤ 2/c, we have

Ĩc(uc) = 1

2

∫

R3
|∇uc|2 + 2mμu2c − qmu2cφucdx − 1

p

∫

R3
(uc)

p
+dx

− 1

2c2

∫

R3
μ2u2c − qμu2c�ucdx − 1

2
qm

∫

R3
u2c(�uc − φuc )dx

≥ Ĩ∞(vc) + Ĩ∞(wc) +
∫

R3
∇vc · ∇wc + 2mμvcwcdx + o(1)

= Ĩ∞(vc) + Ĩ∞(wc) +
∫

R3
(1 − η̃c)η̃c|∇uc|2 + 2mμ(1 − η̃c)η̃cu

2
cdx + o(1)

≥ Ĩ∞(vc) + Ĩ∞(wc) + o(1)

as c → ∞.
Step 2. Ĩ∞(wc) ≥ 0 for large c, where wc = (1 − η̃c)uc.

We note that, by Lemma 17,

∣
∣
∣

∫

R3
w2
cφwc dx

∣
∣
∣ ≤ ‖φwc‖L6‖w2

c‖L6/5 ≤ C2‖wc‖4H1 ,

where C2 is a positive constant independent of c. Moreover, by (20) and Proposition 4,
‖wc‖H1 ≤ 2d for large c > 0. Then we have

Ĩ∞(wc) = 1

2

∫

R3
|∇wc|2 + 2mμw2

c − qmw2
cφwc dx − 1

p

∫

R3
(wc)

p
+dx

≥ ‖wc‖2H1

(
min

{1

2
,mμ

}
− qmC2(‖wc‖2H1 + ‖wc‖p−2

H1 )
)
.

(27)

Taking d > 0 small, we deduce that Ĩ∞(wc) ≥ 0 for large c.
Step 3. vc → Ṽ (· − z) in H1, where Ṽ ∈ A, z ∈ R

3 and vc = η̃cuc.
Let Wc ≡ vc(· + yc). We can assume that Wc⇀W �≡ 0 in H1, up to a subsequence,

as c → ∞. Since Wc − uc(· + yc)⇀0 in H1, φWc − φuc(·+yc)⇀0 in D1,2. Then for any
ψ ∈ C∞

0 (R3),

∫

R3
(WcφWc − uc(· + yc)φuc(·+yc))ψdx =

∫

R3
(Wc − W )

(
φWc − φuc(·+yc)

)
ψ + W

(
φWc − φuc(·+yc)

)
ψ

+ (Wc − uc(· + yc))φuc(·+yc)ψdx → 0

as c → ∞. From this, (17), (23) and the assumption that ‖ Ĩ ′
c(uc)‖H−1 → 0 as c → ∞, we

can see thatW satisfies Ĩ ′∞(W ) = 0. By the maximum principle,W is positive. Suppose that
there exist R > 0 and a sequence z̃c ∈ B(yc, 2c) satisfying

lim inf
c→∞ |z̃c − yc| = ∞ and lim inf

c→∞

∫

B(z̃c,R)

|vc|2dx > 0.

Then vc(· + zc) converges weakly to W̃ in H1, where I ′∞(W̃ ) = 0. By the same arguments
in Step 1, we deduce a contradiction. By [14, Lemma 1.1], we have

lim
c→∞

∫

R3
(Wc)

p
+dx =

∫

R3
W pdx . (28)
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We note that

lim inf
c→∞

(
−

∫

R3
W 2

c φWcdx
)

= lim inf
c→∞

∫

R3

∫

R3

W 2
c (x)W 2

c (y)

|x − y| dydx

≥
∫

R3

∫

R3

W 2(x)W 2(y)

|x − y| dydx = −
∫

R3
W 2φWdx .

(29)

Then, by (28), (29) and Lemma 21, we have

lim inf
c→∞ Ĩ∞(Wc) = lim inf

c→∞
1

2

∫

R3
|∇Wc|2 + 2mμW 2

c − qmW 2
c φWcdx − 1

p

∫

R3
(Wc)

p
+dx

≥ Ĩ∞(W ).

(30)
By (30), the results of Step1 and Step 2, and the assumption that Ĩc(uc) ≤ êc, we see that
Ĩ∞(W ) = E∞. By (28), (29) and (30), we have

lim sup
c→∞

∫

R3
|∇Wc|2 + 2mμW 2

c − qmW 2
c φWcdx =

∫

R3
|∇W |2 + 2mμW 2 − qmW 2φWdx

≤
∫

R3
|∇W |2 + 2mμW 2 + lim sup

c→∞

(
−

∫

R3
qmW 2

c φWcdx
)
,

which implies thatWc → W in H1. By (27), the result of Step 1 and the fact that êc → E∞,
we have for small d > 0,

êc ≥ Ĩc(uc) ≥ Ĩ∞(vc) + 1

2
min

{1

2
,mμ

}
‖wc‖2H1 + o(1)

≥ E∞ + 1

2
min

{1

2
,mμ

}
‖wc‖2H1 + o(1)

as c → ∞, which implies that ‖wc‖H1 → 0 as c → ∞. Thus, letting W = Ṽ (· − z), where
Ṽ ∈ A and z ∈ R

3, we have

‖uc − Ṽ (· − yc − z)‖H1 ≤ ‖vc(· + yc) − Ṽ (· − z)‖H1 + ‖wc‖H1 → 0

as c → ∞. ��
Proposition 8 Let 3 < p < 6. For a fixed c ∈ (

√
μ
m ,∞), suppose that for some b ∈ R, there

exists a sequence {u j } ⊂ H1 satisfying

u j ∈ Nd(X ),

‖ Ĩ ′
c(u j )‖H−1 → 0,

Ĩc(u j ) → b as j → ∞,

where d > 0 is a constant. Then for small d > 0, b is a critical value of Ĩc, and the sequence
{u j (· + x j )}∞j=1 ⊂ H1 has a strongly convergent subsequence in H1, where x j ∈ R

3.

Proof Since u j ∈ Nd(X ), {u j }∞j=1 is bounded in H1. Then we can extract a subsequence

such that ũ jk ≡ u jk (· + x jk ) converges to u0 �≡ 0 weakly in H1 as k → ∞, where x jk ∈ R
3.

It is standard to show that u0 is a critical point of Ic.
Next, we show ũ jk → u0 in H1 as k → ∞. By Proposition 4, there exists R0 > 0 such

that
‖ũ jk‖H1(R3\B(0,R0))

≤ 2d. (31)

123



Nonrelativistic limit of solitary waves for nonlinear Maxwell Page 17 of 27 168

We choose a function ζ ∈ C∞(R3) such that

ζ(x) =
{
1 for |x | ≥ 2R0,

0 for |x | ≤ R0.

Since Ĩ ′
c(ũ jk )(ζ(ũ jk − u0)) − Ĩ ′

c(u0)(ζ(ũ jk − u0)) → 0 as k → ∞, we deduce that

∫

R3\B(0,2R)

|∇(ũ jk − u0)|2 +
(
2mμ − μ2

c2

)
(ũ jk − u0)

2dx

≤
∫

R3\B(0,2R)

(q

c

)2
(ũ jk − u0)(ũ jk�

2
ũ jk

− u0�
2
u0 ) + 2q

(
m − μ

c2

)
(ũ jk − u0)(ũ jk�ũ jk

− u0�u0 )

+ (ũ jk − u0)((ũ jk )
p−1
+ − (u0)

p−1
+ )dx + o(1)

(32)
as k → ∞. We note that, by Lemma 18,

∫

R3\B(0,2R)

(v − w)(v�2
v − w�2

w)dx

≤ (‖�v‖2L6‖v‖L3(R3\B(0,2R)) + ‖�w‖2L6‖w‖L3(R3\B(0,2R))

)‖v − w‖L3(R3\B(0,2R))

≤ C1
(‖v‖4H1‖v‖H1(R3\B(0,2R)) + ‖w‖4H1‖w‖H1(R3\B(0,2R))

)‖v − w‖H1(R3\B(0,2R)),

(33)
∫

R3\B(0,2R)

(v − w)(v�v − w�w)dx

≤ (‖�v‖L6‖v‖L3(R3\B(0,2R)) + ‖�w‖L6‖w‖L3(R3\B(0,2R))

)‖v − w‖L2(R3\B(0,2R))

≤ C2
(‖v‖2H1‖v‖H1(R3\B(0,2R)) + ‖w‖2H1‖w‖H1(R3\B(0,2R))

)‖v − w‖H1(R3\B(0,2R)),

(34)

and
∫

R3\B(0,2R)
((v)

p−1
+ − (w)

p−1
+ )(v − w)dx = (p − 1)

∫

R3\B(0,2R)
(tv + (1 − t)w)

p−2
+ (v − w)2dx

≤ (p − 1)‖tv + (1 − t)w‖p−2
L p(R3\B(0,2R))

‖v − w‖2L p(R3\B(0,2R))

≤ C3
(‖v‖p−2

H1(R3\B(0,2R))
+ ‖w‖p−2

H1(R3\B(0,2R))

)‖v − w‖2H1(R3\B(0,2R))
,

(35)
where t ∈ [0, 1]. Then, by (31)–(35), we see that for small d > 0,

‖ũ jk − u0‖H1(R3\B(0,2R)) → 0 (36)

as k → ∞. Thus, by (36) and the Rellich-Kondrachov compactness theorem, we see that
ũ jk → u0 in H1 as k → ∞. ��
Proposition 9 For 3 < p < 6, there exist c̄0 > 0 and d̄0 > 0 such that for c > c̄0 and for
0 < d < d̄0, Ĩc has a critical point u in Nd(X ) with Ĩc(u) ≤ êc.

Proof Arguing indirectly, suppose Ĩ ′
c(u) �= 0 for u ∈ Nd(X )with Ĩc(u) ≤ êc. By Proposition

7 and Proposition 8, we can take positive constants c̄0 and d̄0 such that for c > c̄0 and for
0 < d < d̄0,

‖ Ĩ ′
c(u)‖H−1 ≥ ν
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for u ∈ Nd(X ) \ Nd/2(X ) with Ĩc(u) ≤ êc, and

‖ Ĩ ′
c(u)‖H−1 ≥ σc

for u ∈ Nd(X ) with Ĩc(u) ≤ êc, where ν > 0 is a constant independent of c, and σc > 0
is a constant depending on c. Then, by a deformation argument using Proposition 5 and
Proposition 6 (see Proposition 7 in [5] for a detailed argument), we get a contradiction. ��

4 Nonrelativistic limit of ground states for 3 < p < 6

In this section, we complete the proof of Theorem 1. By Proposition 3, Proposition 5 and
Proposition 9, we see that for every 3 < p < 6, there exists a ground state solutions uc to
(5) such that

lim sup
c→∞

Ic(uc) ≤ E∞. (37)

Proposition 10 Let 3 < p < 6 and uc be a ground state solution of (5). Then we have

sup
c>

√
μ
m

‖uc‖H1 ≤ C and inf
c>

√
μ
m

‖uc‖L p ≥ 1

C
,

where C > 0 is a constant independent of c.

Proof We note by (37) that

C1 ≥ 5p − 12

2
Ic(uc) − Jc(uc) + 4 − p

2
Pc(uc)

=
∫

R3
(p − 3)|∇uc|2 + p − 2

2

(
2mμ − μ2

c2

)
u2c + p − 2

2

(q

c

)2
u2c�

2
ucdx,

(38)

where C1 > 0 is a constant independent of c. This implies ‖uc‖H1 is bounded uniformly in

c >

√
μ
m . Moreover, since Jc(uc) = 0 and − 1

q (c2m − μ) ≤ �uc ≤ 0, we have for c >

√
μ
m ,

∫

R3
|uc|p =

∫

R3
|∇uc|2 +

(
2mμ − μ2

c2

)
u2c −

(q

c

)2
�ucu

2
c

(

�uc +
( c

q

)2
2q

(
m − μ

c2

))

dx

≥
∫

R3
|∇uc|2 + mμu2cdx +

(q

c

)2|�uc |u2c
(
�uc + 2

1

q
(c2m − μ)

)
dx

≥
∫

R3
|∇uc|2 + mμu2cdx ≥ C2

( ∫

R3
|uc|pdx

)2/p
,

(39)
where C2 is a positive constant indendent of c. Then we have

∫

R3 |uc|pdx ≥ 1
C , where C is

a positive constant indendent of c. ��
Proposition 11 For 3 < p < 6, let {uc}c>√

μ
m

⊂ H1 be a ground state solution of (5). Then

there exists a sequence {xc} ∈ R
3 such that ūc(·) ≡ uc(· + xc) converges to u∞ in H1(R3)

as c → ∞, up to a subsequence, where u∞ is a ground state solution of (10).

Proof By Proposition 10 and [14, Lemma 1.1], we have

sup
x∈R3

∫

B1(x)
|uc|2dx =

∫

B1(xc)
|uc|2dx ≥ C̄ > 0,
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where C̄ is a constant indepnedent of c.
It follows from Proposition 10 that {uc}c>√

μ
m
is bounded in H1 uniformly in c. Then we

may assume ūc ≡ uc(· + xc) converges to u∞ �≡ 0 weakly in H1 and strongly in Lq
loc(R

3),
where 0 < q < 6. Let �ūc be the solution of

−�� + q2

c2
ū2c� = −q(m − μ

c2
)ū2c in R

3.

Since ‖�ūc‖D1,2 ≤ C1q(m− μ

c2
)‖ūc‖2H1 ≤ C2,whereC1,C2 > 0 are constants independent

of c, we may assume that

�ūc⇀φu∞ weakly in D1,2 and �ūc → φu∞ in Lq
loc(R

3),

as c → ∞, where 0 < q < 6 and φu∞ is a weak solution of −�φ + qmu2∞ = 0. Then it is
standard to show that u∞ is a non-trivial weak solution of (10).

Next, we claim that u∞ is a ground state solution of (10). We note that, since u∞ is a
non-trivial weak solution of (10), we have

J∞(u∞) = P∞(u∞) = 0

and

5p − 12

2
I∞(u∞)−J∞(u∞)+ 4 − p

2
P∞(u∞) =

∫

R3
(p−3)|∇u∞|2+(p−2)mμu2∞. (40)

Then, by (37), (38) and (40), we have

5p − 12

2
E∞ ≥ 5p − 12

2
lim inf
c→∞ Ic(uc)

= lim inf
c→∞

( ∫

R3
(p − 3)|∇uc|2 + p − 2

2

(
2mμ − μ2

c2

)
u2c + p − 2

2

(q

c

)2
u2c�

2
ucdx

)

≥
∫

R3
(p − 3)|∇u∞|2 + (p − 2)mμu2∞ = 5p − 12

2
I∞(u∞),

which proves the claim.
Finally, to prove the strong convergence in H1(R3), we note that, by (37), (38), (40),

Proposition 10 and the fact that ūc converges to u∞ �≡ 0 weakly in H1,

5p − 12

2
E∞ ≥ 5p − 12

2
lim
c→∞ Ic(ūc)

= lim
c→∞

∫

R3
(p − 3)|∇ūc|2 + p − 2

2

(
2mμ − μ2

c2

)
ū2c + p − 2

2

(q

c

)2
ū2c�

2
ūc dx

=
∫

R3
(p − 3)|∇u∞|2 + (p − 2)mμu2∞dx

+ lim
c→∞

∫

R3
(p − 3)|∇(ūc − u∞)|2 + (p − 2)mμ(ūc − u∞)2dx

= 5p − 12

2
E∞ + lim

c→∞

∫

R3
(p − 3)|∇(ūc − u∞)|2 + (p − 2)mμ(ūc − u∞)2dx .

From this, we deduce that ūc → u∞ in H1 as c → ∞, up to a subsequence. This completes
the proof. ��
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Proof of Theorem 1 It is sufficient to show H2 convergence of ūc to u∞. We may rewrite ūc
as uc. We note that, by Lemma 18 and [22, Theorem 4.1], for u ∈ H1,

sup
x∈�

|�u(x)| ≤ C1‖u‖2H1 and ‖|u|p−2‖
L

6
p−2 (�)

= ‖u‖p−2
L6(�)

≤ C2‖u‖p−2
H1 ,

where � is bounded domain in R
3, and C1 and C2 are positive constants independent of

u and �. Then, since {‖uc‖H1}c is bounded, we see that {‖uc‖L∞}c is bounded (see [22,
Theorem 4.1]).

Since u∞ and uc are solutions of (10) and (5) respectively, we have

−�(uc − u∞) = −2mμ(uc − u∞) +
(μ

c

)2
uc +

(q

c

)2
uc�

2
uc − 2q

μ

c2
uc�uc

+ 2qm(uc�uc − u∞φu∞) + |uc|p−2uc − |u∞|p−2u∞.

(41)

We note that, by Lemma 17, Lemma 19, Lemma 21 and Proposition 11,

‖uc�uc − u∞φu∞‖L2

= ‖uc(�uc − φuc ) + (uc − u∞)φuc + (φuc − φu∞)u∞‖L2

≤ ‖uc‖L3‖�uc − φuc‖L6 + ‖uc − u∞‖L3‖φuc‖L6 + ‖φuc − φu∞‖L6‖u∞‖L3 → 0
(42)

as c → ∞, and by the fact that {‖uc‖L∞}c is bounded,
∥
∥|uc|p−2uc − |u∞|p−2u∞

∥
∥
L2 = (p− 1)

∥
∥|u∞ + t(uc − u∞)|p−2(uc − u∞)

∥
∥
L2 → 0 (43)

as c → ∞, where t ∈ [0, 1]. Thus, by (41)-(43) and the Calderón–Zygmund inequality, we
have

‖uc − u∞‖H2(R3) = ‖ − �(uc − u∞)‖L2 + o(1) = o(1)

as c → ∞. ��

5 Nonrelativistic limit of two positive solutions for 2 < p < 3

In this section, we will construct two radially symmetric positive solutions of NMKG for
2 < p < 3. We prove first the existence of a radially symmetric positive solution vc,q of (5)
satisfying

lim
c→∞ ‖vc,q − v∞‖H1 = 0,

where v∞ is a global minimizer of I∞.
We assume 2 < p < 3 and denote

e∞ ≡ inf
u∈H1

r

Ĩ∞(u), Xr ≡ {u ∈ H1
r | Ĩ∞(u) = e∞}

and

Nd(Xr ) ≡ {u ∈ H1
r | inf

v∈Xr
‖u − v‖H1 ≤ d},

where d > 0 is a constant. We remark that, by [21, Theorem 4.3, Corollary 4.4], Xr is
bounded in H1, and for small q > 0, e∞ < 0 and Xr �= ∅. Moreover, since e∞ < 0 for
small q > 0, and for u ∈ Xr ,

e∞ = Ĩ∞(u) = 1

2

∫

R3
|∇u|2 + 2mμu2 − qmu2φudx − 1

p

∫

R3
(u)

p
+dx
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≥ 1

2

∫

R3
|∇u|2 + 2mμu2dx − C1

p

( ∫

R3
|∇u|2 + u2dx

)p/2
,

where C1 > 0 is a constant independent of u ∈ Xr , we see that there exists q̂0 > 0 such that
for 0 < q < q̂0, Xr �= ∅ and

inf
u∈Xr

‖u‖H1 > d̂0 > 0, (44)

where d̂0 is a positive constant. Taking d ∈ (0, d̂0
2 ), we deduce that for 0 < q < q̂0,

0 /∈ Nd(Xr ). For d ∈ (0, d̂0
2 ) and 0 < q < q̂0, take V0 ∈ Xr and set

αc = inf
u∈Nd (Xr )

Ĩc(u) and mc = Ĩc(V0).

Clearly, we have mc ≥ αc. We try to find a critical point of Ĩc in Nd(Xr ).

Proposition 12 For 2 < p < 3, 0 < q < q̂0 and d ∈ (0, d̂0
2 ), we have

lim inf
c→∞ αc ≥ e∞.

Proof It is standard to show that there exists vc ∈ Nd(Xr ) such that

αc = Ĩc(vc),

because Xr is bounded in H1. Since vc is bounded in H1
r uniformly in c, we assume that vc

converges to v in Ls and weakly in H1 as c → ∞, where s ∈ (2, 6) and v ∈ Nd(Xr ). Then,
by Lemma 21, we have

lim inf
c→∞ αc = lim inf

c→∞ Ĩc(vc)

= lim inf
c→∞

[1

2

∫

R3
|∇vc|2 +

(
2mμ − μ2

c2

)
v2c − q

(
m − μ

c2

)
v2c�vc dx − 1

p

∫

R3
(vc)

p
+dx

]

≥ 1

2

∫

R3
|∇v|2 + 2mμv2 − qmv2φvdx − 1

p

∫

R3
(v)

p
+dx = Ĩ∞(v) ≥ e∞.

Proposition 13 For 2 < p < 3 and 0 < q < q̂0, we have

mc → e∞
uniformly in q as c → ∞.

Proof By Lemma 21,

Ĩc(V0) = 1

2

∫

R3
|∇V0|2 +

(
2mμ − μ2

c2

)
V 2
0 − q

(
m − μ

c2

)
V 2
0 �V0dx − 1

p

∫

R3
(V0)

p
+dx

= 1

2

∫

R3
|∇V0|2 + 2mμV 2

0 − qmV 2
0 φV0dx − 1

p

∫

R3
(V0)

p
+dx + o(1)

= Ĩ∞(V0) + o(1) = e∞ + o(1)

as c → ∞. ��
Proposition 14 Let 2 < p < 3, 0 < q < q̂0 and d ∈ (0, d̂0

2 ). For large c > 0 and for any
d ′ ∈ (0, d), there exists ν0 ≡ ν0(d, d ′) > 0 independent of c > 0 such that

inf{‖ Ĩ ′
c(u)‖H−1 | Ĩc(u) ≤ mc, u ∈ Nd(Xr ) \ Nd ′(Xr )} ≥ ν0 > 0.
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Proof Let {ci }∞i=1 be such that limi→∞ ci = ∞. It suffices to show that if

uci ∈ Nd(Xr ), Ĩci (uci ) ≤ mci , and ‖ Ĩ ′
ci (uci )‖H−1 → 0

as i → ∞, then

inf
v∈Xr

‖uci − v‖H1 → 0 as i → ∞.

For the sake of simplicity of notation, we write c for ci . Since {uc} ⊂ H1
r is bounded in H1,

we see that uc converges to u in Ls and weakly in H1 as c → ∞, up to a subsequence, where
s ∈ (2, 6). Then, by Lemma 21 and Proposition 13, we have

e∞ = lim inf
c→∞ mc ≥ lim inf

c→∞ Ĩc(uc)

= lim inf
c→∞

[1

2

∫

R3
|∇uc|2 +

(
2mμ − μ2

c2

)
u2c − q

(
m − μ

c2

)
u2c�ucdx − 1

p

∫

R3
(uc)

p
+dx

]

≥ 1

2

∫

R3
|∇u|2 + 2mμu2 − qmu2φudx − 1

p

∫

R3
(u)

p
+dx = Ĩ∞(u),

which implies that e∞ = Ĩ∞(u).
We claim that uc → u in H1. Indeed, by Lemma 21 and the fact that ‖ Ĩ ′

c(uc)‖H−1 → 0
as c → ∞, we see that

o(1) = Ĩ ′
c(uc)u

=
∫

R3
∇uc · ∇u +

(
2mμ − μ2

c2

)
ucu −

(q

c

)2
ucu�2

uc − 2q
(
m − μ

c2

)
ucu�uc − (uc)

p−1
+ udx

=
∫

R3
|∇u|2 + 2mμu2 − 2qmu2φu − (u)

p
+dx + o(1)

(45)
as c → ∞, and

o(1) = Ĩ ′
c(uc)uc

=
∫

R3
|∇uc|2 +

(
2mμ − μ2

c2

)
u2c −

(q

c

)2
u2c�

2
uc − 2q

(
m − μ

c2

)
u2c�uc − (uc)

p
+dx

=
∫

R3
|∇uc|2 + 2mμu2c + 2qmu2φu − (u)

p
+dx + o(1)

(46)
as c → ∞. Thus, by (45) and (46), we have uc → u in H1. ��

Proposition 15 Let 2 < p < 3, 0 < q < q̂0 and d ∈ (0, d̂0
2 ). For a fixed c ∈ (

√
μ
m ,∞),

suppose that for some b ∈ R, there exists a sequence {u j } ⊂ H1
r satisfying

u j ∈ Nd(Xr ),

‖ Ĩ ′
c(u j )‖H−1 → 0,

Ĩc(u j ) → b as j → ∞.

Then b is a critical value of Ĩc, and the sequence {u j }∞j=1 ⊂ H1
r has a strongly convergent

subsequence in H1.
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Proof Since {u j } ⊂ Nd(Xr ) is bounded in H1, we see that u j converges to u in Ls and
weakly in H1 as c → ∞, up to a subsequence, where s ∈ (2, 6). It is standard to show that
u is a critical point of Ĩc.

We claim that u j → u in H1. Indeed, by Lemma 20 and the fact that ‖ Ĩ ′
c(u j )‖H−1 → 0

as j → ∞, we have

o(1) = Ĩ ′
c(u j )u j

=
∫

R3
|∇u j |2 +

(
2mμ − μ2

c2

)
u2j −

(q

c

)2
u2j�

2
u j

− 2q
(
m − μ

c2

)
u2j�u j − |u j |pdx

=
∫

R3
|∇u j |2 +

(
2mμ − μ2

c2

)
u2j −

(q

c

)2
u2�2

u − 2q
(
m − μ

c2

)
u2�u − |u|pdx + o(1)

as j → ∞ and

0 = Ĩ ′
c(u)u =

∫

R3
|∇u|2 +

(
2mμ − μ2

c2

)
u2 −

(q

c

)2
u2�2

u − 2q
(
m − μ

c2

)
u2�u − |u|pdx .

Thus, we deduce that u j → u in H1 as j → ∞. ��

Proposition 16 Let 2 < p < 3, 0 < q < q̂0 and d ∈ (0, d̂0
2 ). Then there exists ĉ0 > 0 such

that for c > ĉ0, Ĩc has a non-trivial critical point u in Nd(Xr ) with Ĩc(u) ≤ mc.

Proof Assume that 2 < p < 3, 0 < q < q̂0 and d ∈ (0, d̂0
2 ). Suppose Ĩ ′

c(u) �= 0 for
u ∈ Nd(Xr ) with Ĩc(u) ≤ mc. By Proposition 12–15, we can take a positive constant ĉ0 such
that for c > ĉ0 and for 0 < q < q̂0,

αc ≥ e∞ − ε1, |mc − e∞| ≤ ε1, (47)

‖ Ĩ ′
c(u)‖H−1 ≥ ν0 (48)

for u ∈ N 2
3 d

(Xr ) \ N 1
3 d

(Xr ) with Ĩc(u) ≤ mc, and

‖ Ĩ ′
c(u)‖H−1 ≥ σ̂c (49)

for u ∈ Nd(Xr ) with Ĩc(u) ≤ mc, where d ∈ (0, d̂0
2 ), ε1 ∈ (0, dν0

6 ), and σ̂c > 0 is a constant
depending on c. For u ∈ Nd(Xr ) with Ĩc(u) ≤ mc, we consider the following ODE:

⎧
⎨

⎩

dη
dτ

= −ϕ1( Ĩc(η))ϕ2(distH1(η,Xr ))
Ĩ ′
c(η)

‖ Ĩ ′
c(η)‖H−1

,

η(0, u) = u,

where

distH1(w,Xr ) = inf{‖w − v‖H1 | v ∈ Xr }
for w ∈ H1, and ϕ1, ϕ2 : R → [0, 1] are Lipschitz continuous functions such that

ϕ1(ξ) =
{
1 if ξ ≥ e∞ − ε1,

0 if ξ ≤ e∞ − 2ε1,
ϕ2(ξ) =

{
1 if ξ ≤ 2

3d,

0 if ξ ≥ d.

Let T = 3ε1/σ̂c and V0 ∈ Xr . Since Ĩc(η(τ, V0)) ≥ αc ≥ e∞ − ε1 for τ ∈ [0, T ], we deduce
that there exists t0 ∈ [0, T ] such that

distH1(η(t0, V0)) = 2

3
d. (50)
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Indeed, if distH1(η(τ, V0)) < 2
3d for τ ∈ [0, T ], by (47) and (49),

Ĩc(η(T , V0)) = Ĩc(V0) +
∫ T

0

d

dτ
Ĩc(η(τ, V0))dτ ≤ e∞ + ε1 − T σ̂c = e∞ − 2ε1,

which is a contradiction.Assume that t0 is thefirst time that satisfies (50). Since‖ d
dτ

η‖H1 ≤ 1,
we see that t0 ≥ 2

3d and

η(τ, V0) ∈ N 2
3 d

(Xr ) \ N 1
3 d

(Xr ) for τ ∈ [t0 − 1

3
d, t0].

Then, by (47) and (48), we have

Ĩc(η(T , V0)) = Ĩc(V0) +
∫ T

0

d

dτ
Ĩc(η(τ, V0))dτ ≤ e∞ + ε1 +

∫ t0

t0− 1
3 d

d

dτ
Ĩc(η(τ, V0))dτ

= e∞ + ε1 − 1

3
dν0 < e∞ − ε1,

which is a contradiction. ��
Proof of Theorem 2 Let 2 < p < 3. By Proposition 16 and the proof of Proposition 14, we
prove the existence of a radially symmetric positive solution vc,q of (5) satisfying

lim sup
c→∞

Ĩc(vc,q) ≤ inf
u∈H1

r

Ĩ∞(u).

By repeating the same procedure in the proof of Proposition 14, we can prove Theorem 2
(ii).

On the other hand, it is known that the ground state solution w0 of the equation

− �u + 2mμ − |u|p−2u = 0 in R
3 (51)

is positive, radially symmetric, up to a translation. It is also non-degenerate in the radial class,
i.e., KerL0 = {0}, where L0 : H1

r → H−1
r is the linearized operator of (51) at w0, given by

L0(w) ≡ −�w + 2mμw − (p − 1)|u0|p−2w.

Exploiting the non-degeneracy ofw0, we see from the implicit function theorem that there
exists of a family of radially symmetric solutions w∞,q of (10) for small q > 0 such that
w∞,q → w0 as q → 0 in H1 (refer to [20, Proposition 2.1] for detail). As a consequence, one
can easily see that w∞,q is also non-degenerate in the radial class for any small fixed q > 0
(see [9, Proposition 3.2]). Then one can once more invoke the implicit function theorem to
find a family of nontrivial radial solutions wc,q of (5) for large value c > 0 and small q > 0,
which converges in H1 to w∞,q as c → ∞. This proves Theorem 2 (i). ��
Acknowledgements This work was supported by Kyonggi University Research Grant 2020.

Appendix A Basic estimates

Here, we provide with several basic estimates, which are repeatedly invoked in the proofs of
main theorems.

Lemma 17 Let u ∈ H1. Then we have

‖φu‖D1,2 ≤ Cqm‖u‖2H1 ,

where C is a positive constant.
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Proof Let u ∈ H1. Since φu satisfies

−�φu = −qmu2 in R
3,

we have
∫

R3
|∇φu |2dx = −qm

∫

R3
u2φudx ≤ qm‖φu‖L6‖u2‖L6/5 ≤ Cqm‖φu‖D1,2‖u‖2H1 ,

where C is a positive constant. This implies the result.

Lemma 18 Let u ∈ H1. For c >

√
μ
m , we have

‖�u‖D1,2 ≤ Cq
(
m − μ

c2

)
‖u‖2H1 ,

where C is a positive constant.

Proof Let u ∈ H1. Since �u satisfies

−��u +
(q

c

)2
u2�u = −q

(
m − μ

c2

)
u2 in R

3,

and
‖u2�u‖L1 ≤ ‖�u‖L6‖u2‖L6/5 = ‖�u‖L6‖u‖2L12/5 ≤ C‖�u‖D1,2‖u‖2H1 , (52)

we have for c >

√
μ
m ,

‖�u‖2D1,2 =
∫

R3
|∇�u |2dx ≤ −q

(
m − μ

c2

) ∫

R3
u2�u

≤ Cq
(
m − μ

c2

)
‖u‖2H1‖�u‖D1,2 ,

where C is a positive constant. This implies the result.

Lemma 19 Let v,w ∈ H1. Then we have

‖φv − φw‖D1,2 ≤ C‖v + w‖H1‖v − w‖H1 ,

where C = C(q,m) is a positive constant.

Proof We note that for v,w ∈ H1,

−�(φv − φw) = −qm(v − w)(v + w) in R
3.

Then we have

‖φv − φw‖D1,2 ≤ C‖v + w‖H1‖v − w‖H1 ,

where C = C(q,m) is a positive constant.

Lemma 20 Let v,w ∈ H1.Then for c >

√
μ
m , we have

‖�v − �w‖D1,2 ≤ C(‖v‖2H1 + 1)‖v + w‖H1‖v − w‖L3 ,

where C = C(q,m, μ) is a positive constant.
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Proof Since �u satisfies

−��u + q2

c2
u2�u = −q

(
m − μ

c2

)
u2 in R

3,

we have

−�(�v − �w) + q2

c2
w2(�v − �w) = −q2

c2
(v2 − w2)�v − q

(
m − μ

c2

)
(v2 − w2) in R

3.

Multiplying (�v − �w) to the above equation and then integrating over R
3, we have

∫

R3
|∇(�v − �w)|2dx

≤
∫

R3
−q2

c2
(v2 − w2)�v(�v − �w) − q

(
m − μ

c2

)
(v2 − w2)(�v − �w)dx

≤ q2

c2
‖v + w‖L3‖v − w‖L3‖�v‖L6‖�v − �w‖L6

+ q(m − μ

c2
)‖v + w‖L2‖v − w‖L3‖�v − �w‖L6

≤ C1(‖�v‖D1,2 + 1)‖�v − �w‖D1,2‖v + w‖H1‖v − w‖L3 .

where C1 = C1(q,m, μ) is a positive constant. Then, by Lemma 18, for c >

√
μ
m ,

‖�v − �w‖D1,2 ≤ C(‖v‖2H1 + 1)‖v + w‖H1‖v − w‖L3 ,

where C = C(q,m, μ) is a positive constant.

Lemma 21

‖�v − φw‖D1,2 ≤ C
( 1

c2
(‖v‖2H1 + 1)‖v‖2H1 + ‖v + w‖H1‖v − w‖L3

)
,

where C = C(q,m, μ) is a positive constant.

Proof Since φw and �v satisfy

−�φw = −qmw2 in R
3 and − ��v = −q2

c2
v2�v − q

(
m − μ

c2

)
v2 in R

3

respectively, we have

−�(�v − φw) = −q2

c2
v2�v + q

μ

c2
v2 − qm(v2 − w2) in R

3.

We multiply (�v − φw) to the above equation and integrate over R
3 to deduce

∫

R3
|∇(�v − φw)|2dx

= 1

c2

∫

R3
(−q2v2�v + qμv2)(�v − φw)dx − qm

∫

R3
(v2 − w2)(�v − φw)dx

≤ 1

c2
‖�v − φw‖L6(q2‖�v‖L6‖v2‖L3/2 + qμ‖v2‖L6/5 ) + qm‖�v − φw‖L6‖v + w‖L2‖v − w‖L3

≤ C1‖�v − φw‖D1,2

( 1

c2
(‖�v‖D1,2‖v‖2H1 + ‖v‖2H1) + ‖v + w‖H1‖v − w‖L3

)
,

123



Nonrelativistic limit of solitary waves for nonlinear Maxwell Page 27 of 27 168

where C1 = C1(q,m, μ) is a positive constant. Then, by Lemma 18, we have

‖�v − φw‖D1,2 ≤ C
( 1

c2
(‖v‖2H1 + 1)‖v‖2H1 + ‖v + w‖H1‖v − w‖L3

)
,

where C = C(q,m, μ) is a positive constant. ��
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