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Abstract

We study the nonrelativistic limit of solitary waves from Nonlinear Maxwell-Klein—Gordon
equations (NMKG) to Nonlinear Schrodinger—Poisson equations (NSP). It is known that
the existence or multiplicity of positive solutions depends on the choices of parameters the
equations contain. In this paper, we prove that for a given positive solitary wave of NSP, which
is found in Ruiz’s work (J Funct Anal 237(2):655-674, 2006), there corresponds a family of
positive solitary waves of NMKG under the nonrelativistic limit. Notably, our results contain
a new result of existence of positive solutions to (NMKG) with lower order nonlinearity.

Keywords Maxwell-Klein—Gordon - Schrodinger—Poisson - Nonrelativistic limit - Solitary
wave

1 Introduction

Nonlinear Maxwell-Klein—Gordon equations are written by

Do D¢ = (mc)*¢ — |7 ¢,

5 q in R, (NMKG)
il Fop = ;Im(¢Da¢)»

where Dy:=0, + %iAa,a = 0,1,2,3 and Fyg:=0,Ag — dgAy. Here, m > O repre-
sents the mass of a particle, ¢ > 0 is a unit charge and ¢ > 0 is the speed of light. We
write 9y = %, 0; = 3"7/, j = 1,2,3. Indices are raised under the Minkowski metric
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gup = diag(—1,1,1,1),ie., X*:=gupXp. If we pay attention to the electrostatic situation,
thatis, A} = Ay = A3z = 0, then NMKG is reduced to

at
_q ¢ q\? 2
— AAp = Im<¢at> <Z> Aolel”,
(D

This paper is concerned with the nonrelativistic limit for NMKG in electrostatic case. By

. . 2 .
modulating the solution as ¢ (¢, x) = '™ ' (z, x), the system of equations (1) transforms
into

9? 9 IA
(—Cza,z )¢>—6—on—¢—§ e R R

inR'*3,

R Y v g . 0Aog ) b2
— a5 = 2m 18—+A://+2qu01//——zA e & —1/f+( ) A2y = — |y P2y,
_ 9\ A, = 4 A 2

AA0+(C) w240 = Czlm(w a;) gmly .

(@)
Then, taking so-called nonrelativistic limit ¢ — oo, the relativistic system (2) formally
converges to nonlinear equations of Schrodinger type, called the nonlinear Schrodinger—
Poisson equations
oy
—2mi— + Ay + 2qmAoy = — ||y,
ot AV 2gmAgy = 1Py
— Ao = —gmly P,

(NSP)

When the nonlinear potential term [¥|P~2y is absent, the rigorous justifications of this
limit are carried out by Masmoudi-Nakanishi [17] and Bechouche-Mauser-Selberg [4]. As
for the stuides on the nonlinear Klein-Gordon equations without the Maxwell gauge terms
(A, =0,u=0,1,2,3), we refer to a series for works [15,16,18].

The main interest of this paper lies in investigating the correspondence between solitary
waves of NMKG and NSP under the nonrelativistic limit c — oco. During recent two decades,
existence theories for solitary waves of NMKG and NSP have been well developed. Inserting
the standing wave ansatz ¥ (r, x) = e " u(x), u € R into (2), we get

2

— P

=t (e - (MR IO ey 2,
C C

2 2
mc- —
avs De = (M)
c Cc Cc

in R3. 3)

Lax-Milgram theorem implies that for each u € H'(R?), there exists a unique solution

®, € DV2(R3) of
2

— a0+ Lo = —qom - LyP in®. @)
C c

Then, by [6, Proposition 3.5], (u, ®) € H'(R?) x DL?(R3) is a solution of (3) if and only
ifue HI(RS) is a critical point of /., and & = ®,, where

1 2 1
I(u) = 7/ \Vu|? + <2mu e )u —q( ﬁ)u%pudx— f/ u|Pdx,
2 Jr3 2 p Jr3
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which is a C! functional on H!(R?). We note that the system of equations (3) is equivalent
to the single nonlocal equation

2

mc” — ]

k(e - (M 0%
c

)2>u— u|P~2u = 0 in R3. (5)

Before stating the existence results for (5), we simplify the parameters by denoting m = mc,
e=¢q/candw = (mc? — W) /c to rewrite (5) as

—Au+ (m* — (@ + e@)?) u — ulP2u = 0in R, (©6)

where ¢ > 0,0 < w < m and ¢, is a unique solution of —Ag + e®u’¢ = —ewu?. The
corresponding action functional is given by

1 _ 1
Line.o(u) = 3 /R1 IVul? + (m? — 0*)u? — ewu’p,dx — ; A@ lu|Pdx.

For fixed e > 0, Benci and Fortunato [6] first proved by applying critical point theory to
L e. o that there exist infinitely many solutions of (6) for4 < p < 6 and 0 < w < m. This
result is extended by D’ Aprile and Mugnai [12] to the cases 4 < p < 6and 0 < w < m or
2<p<4and0 < V2w < iy p — 2. They also proved in [13] that there exist no nontrivial
solutions if p <2or p > 6and0 < w < m. In [3], Azzollini, Pisani and Pomponio widened
the existence range of 12, w for the case 2 < p < 4 by showing that (6) admits a nontrivial
solution when 0 < w < mg(p), where

Jp =24 —-p)if2 <p <3,

g(”)::{ 1if3 < p <4

Azzollini and Pomponio also focused on the existence of a ground state solution of (6). A
critical point of Ij5 ., is said to be a ground state solution to (6) if it minimizes the value of
L, e,» among all nontrivial critical points of 13 ¢ ,. In [2], they showed (6) admits a ground
state solutionif 4 < p < 6and0 <w <mor2 < p < 4dandm/p—1 > w/5—p.
Wang [23] established the same result to the range of parameters that 2 < p < 4 and

0 < v/h(p)w < m, where

4 - p)?

h =14+ —
T

We now turn to the standing wave solutions for NSP. We again insert the same ansatz
¥(t,x) =e "Mu(x), u € R into NSP to obtain

— Au+2mpu — 2gmug — |u|P"%u = 0in R?,

(N
— A¢p = —gmu® in R3.
Forany u € H'(R3), there exists a unique ¢, € DL2(RY) satisfying
— A¢y = —gmu® in R, 8)
by Lax-Milgram theorem (note that actually ¢, = — % % u?). We define the corresponding
action integral as
1 2 2 2 1
Ioo(u) = = \Vul|” + 2mpuu” — gmu~¢,dx — — lu|Pdx. 9)
2 Jr3 P Jrs

@ Springer



168 Page 4 of 27 S.Jin, J. Seok

Then, by [12, Lemma 3.2], (1, ¢) € H'(R?) x D“2(R3) is a solution of (7) if and only
if u e H'(R?) is a critical point of I, and ¢ = ¢,. It is also standard to show that
Io € CY(HY(R?), R) and a critical point u of I, satisfies

—Au+2mpu — 2qgmugy, — |ul?"2u = 0in R>. (10)

We summarize some existence results for problem (10). D’ Aprile-Mugnai [12] and Coclite
[7] proved the existence of a radial positive solution of (10) for 4 < p < 6. On the other
hand, using a Pohozaev equality, D’ Aprile-Mugnai [13] showed that there exists no non-
trivial solutions of (10) for p <2 or p > 6. By a new approach, Ruiz [21] fills a gap for the
range 2 < p < 4. More precisely, he proved the following results:

(i) 3 < p < 6.and g > 0) 3 a nontrivial solution, which is a ground state in radial
class;
(i) (2 < p < 3 and small ¢ > 0) 3 a nontrivial solution, which is a minimizer of /;
(iii) (2 < p < 3 and small ¢ > 0) 3 a nontrivial solution emanating from a ground state
solution of
— Au+2mpu — |ul?"2u = 0in R, (11)

(iv) (2 < p < 3 and large ¢ > 0) 7 nontrivial solution of (10).

In [1], Azzollini and Pomponio constructed a ground state solution of (10) for3 < p < 6,
which is possibly non-radial. It was shown by Colin and Watanabe [8] that a ground state is
unique and radial up to a translation for small ¢ > 0. This result implies that the solution
found by Ruiz coincides with the ground state constructed by Azzollini and Pomponio for
small g > 0if 3 < p < 6. As far as we know, it is unknown whether the ground states is
radial when ¢ > 0 is arbitrary.

Concerning the nonrelativistic limit between solitary waves, one can naturally ask is the
following:

Question: For any positive solution u of (10), is there a corresponding family of positive
solutions u. of (5), which converges to u# as ¢ — co?

In this paper, we not only give a complete answer to this question, but also construct
blow up solutions to NMKG for 2 < p < 3. Our first theorem states the convergence of
nonrelativistic limit of ground states between (5) and (10) for 3 < p < 6. The theorem
contains the existence of a ground state to (5) for 3 < p < 4 with arbitrary parameters
m,q,u,c > 0and ¢ > /u/m, which is not covered by the aforementioned results of
Azzollini-Pomponio [2] or Wang [23] (see Proposition 3).

Theorem 1 (Existence and nonrelativistic limit of ground states) Fix arbitrary jt,m,q > 0
and 3 < p < 6. Then there holds the following:

(i) There exists a ground state solution of (5) for any ¢ > /p/m.

(ii) Any ground state solution u. of (5) belongs to H 2(R?), and there exists a sequence
{xc} € R3 such that {u.(- + x.)} converges to a ground state solution of (10) in H?(R3)
as ¢ — 09, dfter choosing a subsequence.

Based on the strategies proposed in [10,11], we shall prove the convergence of nonrela-
tivistic limit in Theorem 1 by establishing the following steps:

1. Uniform upper estimate of ground energy levels for (5) by the ground energy level for
(10), i.e.,
limsup £, < Ex, (12)

c—>00
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where
E.=inf{I.(u) |u #0, I[(u) =0} and Eo = inf{loc(u) | u # 0, I} (u) = 0};

2. Uniform H' bounds for ground states {u.} of (5) and solvability of its weak limit u
to (10);

3. Energy estimates for establishing u, to be a ground state;

4. H' convergence of i to us, and its upgrade to H2.

A new difficulty arises when we prove the step 1 in the case 3 < p < 4. It is worth to
point out that we couldn’t construct a ground state of (5) by using a constrained minimization
method for 3 < p < 4. It seems not possible to find a suitable constraint working for every
admissible parameters w, m, g, c. As a consequence, we couldn’t compare ground states
energy levels between (5) and (10). To bypass the obstacle, we directly construct a ground
state that satisfies the upper estimate (12). That is, we first show the existence of a family
of nontrivial solutions to (5) satisfying the upper estimate (12) by applying a deformation
argument developed in [5]. Then, by the compactness of a sequence of solutions to (5), we
prove that aforementioned nontrivial solutions to (5) is ground state solutions to (5) (see
Proposition 3).

The next theorem covers the case that 2 < p < 3 and g is small. We recall the aforemen-
tioned results by Ruiz [21], which say the existence of at least two positive radial solutions
Uxo and vy of (10); u is a perturbation of the ground state to (11) and v, is a global
minimizer of /. In Theorem 2, we show the existence of two radial positive solutions u
and v to (5) such that u, and v, converges to u~, and v, respectively.

Theorem 2 (Correspondence of two positive solutions for 2 < p < 3) Assume 2 < p < 3.
Fix arbitrary but sufficiently small ¢ > O that guarantees the existence of at least two positive
radial solutions u~ and v to (10) mentioned above. If ¢ > 0 is sufficiently large, then there
exist two distinct radially symmetric positive solutions u. and v of (5) such that

() ‘li)ngo luec — uoo”[-]l(]R3) =0, (ii) cli)nolo lve — veo ||H1(R3) =0.

In [21], Ruiz proved that a global minimizer ve, of I, blows up in H'! as ¢ — 0, which
implies that the solution v, constructed in Theorem 2 blows upin H' asg — 0 and ¢ — 0.
We point out that Theorem 2 not only proves the correspondence between solitary waves but
also establishes a new existence result to (5) for 2 < p < 3. As we have seen above, the
previous approaches [2,3,12,23] doesn’t cover the case that w > 0 is less than but sufficiently
close to m. In this respect, one family of solutions u. is actually not brand new because it
is a simple consequence of implicit function theorem, which relies on nondegeneracy of the
solution u~,. However, the other family of solutions v, is brand new because v, bifurcates
from a global minimizer of /., which blows up in H 1 As for the construction of v, it seems
not easy to show whether the global minimum of /. is finite, unlike /. This prevents us
from simply adopting the minimization argument. To overcome this difficulty, we develop
a new deformation argument, which strongly depends on the fact that the global minimum
level of I, is bounded below. We conjecture that if ¢ is sufficiently large, there exists a global
minimizer of /., which converges to vso.

We organize the paper as follows: In sect. 2, we give variational settings for NSP and
NMKG, and a simple proof for the existence of a ground state to (6) for 3 < p < 6.
Section 3 is devoted to construct nontrivial solutions to (5) with the energy bound E+, when
3 < p < 6. In Sect. 4, we prove Theorem 1 by combining the results in Sect. 3. In Sect. 5,
we deal with the case 2 < p < 3. We construct two radial positive solutions of (5) and prove
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the convergence of their nonrelativistic limit. Finally, in Appendix, we give basic estimates,
which are used in the proofs of main theorems.

2 Preliminaries

This preliminary section introduces basic functional and variational settings for NMKG and

NSP. In addition, we provide a simple proof for the existence of a ground state to (6) for
every 3 < p < 6 and every e, m, @ > 0 such that m > w.

2.1 Function spaces
The space D'2(R?) is defined by the completion of Cy° (R?) with respect to the norm

12
lull prasy = (/;2 |Vu|2dx> .

For an open set Q2 C R3 and r € [1, 00), let us denote the norms

N/ 1/2
@) = (/ jul"dx) " Nl = esssuplu(o)l, Nl g = (/ Vul? + udx )
Q xeQ Q
We also use the following abbreviations,
luller = llullprwsy,  Nullprz = llull prags) and lullgr = lull g1 r3y-
We denote by H,! the Sobolev space of radial functions u such that u, Vu are in L?(R?).
2.2 Variaional settings for NSP
Recall the action functional for (10),
1 1
Ioo(u) = 7/ IVul? + 2mpu® + |V |*dx — ff lu|Pdx
2 Jes P JR3
1 1
== / \Vul> + 2mpu® — gmu’udx — — f lu|Pdx.
2 Jrs p Jr3

Themap A :u € H [N ¢y € D2 g continuously differentiable, where ¢, satisfies (8) (see
[12]). Since A/ (u)[v] satisfies

—AQW)v]) = —2gmuvinR®  forve H!,

we have

/ VO w)[v]) - Voudx = —2qm/ uveg,dx.
R3 R3

Then we see that
Ic’,o(u)v = / Vu - Vv 4+ 2mpuv + VO (w)[v]) - Véudx — / |u|p_2uvdx
R3 R3

= / Vu - Vv + 2mpuuv — 2gmuveg,dx — / |u|p72uvdx,
R3 R3
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which shows that a critical point of I, is a weak solution to (10). We define the Nehari and
Pohozaev functionals for (10) by

Joo(t0) = I wyu = /

|Vul? + 2muu® — 2gmu’¢y, — |u|Pdx,
R3

1 5 3
Pyo(u) = / —\Vul* + 3muu® — Zgmu’¢, — =|u|Pdx.
R3 2 2 P

We note that the values of J, and P, should be zero at every critical point of I, (see [21]).
By defining G (1) = 2J5 (1) — Po (1), we denote

1 3 P > 3 2 2p—3
Mooz{ueH \{0}’Gm(u)z 2\Vul? + mp® = 2 gmul e, — |u|de:0}
R32 2 P

and
Ex = inf Io(u). (13)

UeEM~o

It is proved in [21] that for 3 < p < 6, E equals to the ground energy level for (10), i.e.
Eoo = inf{lso(u) | u # 0, I.,(u) = 0}.

2.3 Variational settings for NMKG

The action functional for (5) is given by

1 2 2 1
e = 5 /R3 \Vul® + <2mu — ‘C‘—z)uz VD + (%) W2 02dx — 5 /R3 u|Pdx

1 2 1
= 7/ |Vul> + <2mu — M—z)uz — q(m — %)uzcbudx — —/ lu|Pdx.
2 Jr3 c c p Jr3

The map A : u € H' — ®, € D"? is continuously differentiable, where ®,, satisfies (4)
(see [12]). For v € H!, since A’(u)[v] satisfies

—aw @ + (1) @ = -2(2) we, 29 (m - L),
we have

/R} V(A W)[v]) - VO, + (q>2u2(A/(u)[v])d>,,dx - A.@ —2(1)2uuq>§ —2q(m - %)uvd)udx.

c c
Then we see that for v € H!,

2

I(u) = / Vu-Vov+ (2m,u — —z)uv + Vo, - V(A w)[v]) + (q
R3 C

c

)zumbi
n (%>2u2®u(A/(u)[v]) — u|P 2uvdx

2 2
= / Vu-Vu+ (Zmu - M—z)uv — (g) quIJﬁ — 2q<m — %)uvtbu — P 2uvdx.
R3 c c c
In particular, we have

1 q\? n
Je(u) = I'(wyu = / \Vul? + (Zm,u — —z)uz - (7) W22 — 2q(m - —2)u2c1>u — |u|Pdx.
R3 c c c
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For any critical point w, of I, it is clear that J.(w.) = 0 and it is shown in [13] that the
Pohozaev’s identity P.(w.) = 0 holds true, where

_ 1 2, 3 w 2 g 292 5 KN 2 3
PC(M)=/1;3§|VM| —I—E(Zmu—c—z)u —c—2d>u —§q<m—c—2)u d>u—;|u|pdx‘

2.4 Existence of a ground statefor3 < p < 6

We recall the equation (6)
—Au + (11_12 — (epy + a))z)u = [u|’%u in R?
where e > 0,0 < w < m and ¢, is a unique solution of
—Ap + ez(pu2 = —ewu’.
Here we point out that by the maximum principle, we have the uniform bound

w
—— <, <0.
e

Proposition 3 Assume that3 < p < 6, ¢ > 0 and 0 < w < m. If there exists a non-trivial
solution of (6), then there exists a non-trivial ground state solution of (6).

Proof Suppose that there exists a non-trivial solution solution of (6). We recall the action
functional of (6)

1 1
I(w) = 7/ \Vul? + (m? — 0*)u? — ewp,u’dx — —/ lulPdx.
2 Jr3 p Jr3

and consider the minimization problem
S =inf{I(u) | u € B},
where
B={ueH ! | u is a non-trivial solution solution of (6)}.

By the definition, a ground state solution u of (6) is a nontrivial critical point of / satisfying
I(u) = S. Let us define

Tw):=I'wu = / |Vu|2 + (11'12 — a)z)u2 — 2ea)<puu2 — ezgaguz — |u|Pdx
R3
1 3 5 3
Q(u)::f —|Vul® + Z(m?* — 0P’ — Zewpuu® — ezgo,%uZ — —|ulPdx.
R3 2 2 2 p

Since T (v) = Q(v) = 0 for any v € B, (see [13]), one has

2P - 5”; 2wy -t + 4_TPQ(v)

12] _
5 (v) =

-2 -2
:/ (p—3)|Vv|2+pT(n'12—a)2)v2+Lezvzwgdx
R3

for v € B. This implies that S > 0.
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Let {u, } be a minimizing sequence of S. From the estimates

5p—12 -2 -2
s+ = /R3(p—3)|wn|2+ P20 = ohl + Fo =il dx (14)

and
0=T(uy) = /M |Vun|? + (1 — 0®)u? — g, Qew + ey, )u> — |uy|Pdx
_ 2
> /R IViunl? + (72 = 0?2 — un|Pdx > Cllunl|? = lunll?

we deduce that (u,,) is bounded in H! and ||u,||» > C; for some positive constant C|. Then
we see from Lemma 1.1 in [14],

sup / un|dx :/ lup)?dx > Cy > 0,
xeR3 /By (x) By (xn)

where x, € R3and Cy isa positive constant. Then we may assume that u,, (- 4+ x,) converges
to u # 0 weakly in H!. It is standard to show that u is a non-trivial critical point of I.
Moreover, by (14) and the fact that u is a non-trivial critical point of I, we see that

5p—12 - -2 _ -2
pTS = liminf /R3(P = 3)|Vu, |* + pT(mz — P)u;, + r—= 3 Cunpy dx
-2 -2 5p—12
2/ (p = HVulP + L Z? — oM + L2222 = 222w,
R3 2 2 2
which implies that u is a non-trivial ground state solution of (6). O

Observe that Proposition 3 implies the existence of a ground state to (6) for any e, m, @ > 0
such that 0 < w < m since there exists a nontrivial solution at those ranges of parameters by

[3].

3 Construction of nontrivial solutions to NKGM with the energy bound
Eco

In this section, based on the idea of [5], we shall construct a family of nontrivial solutions
w, to (5) satisfying

limsup I.(w;) < Exo.
c—>0Q

Before proceeding further, we first introduce a modified functional .. as

. 1 2 1
I.(u) = 3 /]1&3 |Vu|2 + (Zmu — %)uz — q(m — f—z)u2®udx — ; /R3 uidx,

where ¢ > 0 and u4 = max{u, 0}. A critical point of I corresponds to a solution of

2 2
— Au+ <2mu— (ﬁ) )u — (g) ud>2—2q(m — %)ucb—ui_l =0inR3,
c c c
2 (15)
a2 KN 2 o3
— AP+ —u d>:—q(m——2)u in R”.
c c
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It is possible to show from the maximum principle that a critical point u of I, is positive
2m

everywhere in R3 for ¢ > 0 Indeed, since —% (m — C%) < ¢, <0, multiplying u_ to

the equation
2
—Au + (Zm,u, - (ﬁ)z)u - <g> uCDﬁ - Zq(m — %)utbu - uf__l =0inR>
c c c

and then integrating over R?, we have
2
/ |Vu_|2 + (Zmu — —2>u2_dx
R3 C
2
< / |Vu_|2 + <2mu - —z)u% - u%fbu[( ) D, +2q<m - —2)]dx =0,
R3 C C

where u_ = min{u, 0}. Therefore a nontrivial critical point of I, gives a positive solution to
(5). We also define

7 1 2 2 2 1 P
Too(U):== |Vul” + 2mpu” — gmu~¢,dx — — ulydx,
2 Jr3 p Jr3
foo(u):zléo(u)u = /R? |Vu|2 + Zmp,u2 — 2qmu2¢u - uidx,
- 1 5 3
Poo(u):zf 7|Vu|2 + 3mpLu2 - fqmuquu — —u+dx
R3 2 2 )4

Let A= {u € H' | I},(u) = 0, Ioo(u) = Eoo, and maxgs u = u(0)}. We note that
A 7{@. Indeed, if u € M satisfies I (1) = Eo, we see that |u| satisfies Ioo(|tt]) = Eoo
and 1/ (|ul) = 0.

Proposition4 For 3 < p < 6, there exist positive constants C1 and Cy independent of
U € A such that for U € A,

U(x) + VU (x)| < Crexp(—Calx]).
Moreover, infyc 4 ||U|| L > 0.

Proof Let U € A. It follows from

~ ~ —4
Eoo=loo(U)=Ioo(U)_ P—12 oo( )_ 12P00(U) (16)
[ 2p-— ) 2(p -2 2
_/R3 5y |VU| +75 12m,ude

where U € A, that A is bounded in H! if 3 < p < 6. Then, since

-2 2=
lou +1U1P~~| . < ||¢>U||Lpg +||U||L6(Q) <19 5 6||¢U||L6(Q)+”U”L6(Q)

(€2)
p=2_1 -2
=c(IQls 6||U||H1 +||U||1;11 ),
where 3 < p < 6, U € A, Q is a bounded domain in R3 and C is a positive constant
independent of U € A, we see that A is bounded in L™ (see [22, Theorem 4.1]).

We claim that lim|y| o U (x) = O uniformly for U € .A. Indeed, contrary to our claim,
suppose that there exist {U;}72, C A and {x;}72, C R¥ satisfying lim;_ o |x;| = co and

@ Springer



Nonrelativistic limit of solitary waves for nonlinear Maxwell Page 110f27 168

liminf; - 0o Uj (x;) > 0. Denote V; = U; (- + x;). We note that if u;—u in H!, Qu; =Py in
D'2. Then if u;—u in H', for ¢ € C°(R?),

/ (wiu; — ugy)Ydx = / (i —w)¢u; ¥ + u(pu; — du)¥Ydx = o(1) a7
R3 R3

as i — oo. By (17) and the fact that {U;, V;}72, is bounded in H', we see that U; and V;
converge to U and V weakly in H' as i — oo, up to a subsequence, respectively, where U

and V are non-trivial solutions of (10). It follows from (16) that for 2R < |x;],

~ 2(p—3 2(p—2
Eqo = liminf Ioo(U;) = liminf/ MIVUAZ + L)muUizdx
R3

i—00 i—00 5p —12 5p —12
2(p—3 2(p—2
> liminf/ 2p =3 gy MmuUizdx
i—00 B(0,R) 5]7 —12 5]) —12
o 2(p—3) 2 2p—2) 2
| f ——|VU; ———mpU7d
Timy /B(x,.,R) sp_ 12 VUl S, Tt (18)
2(p—3 2(p—2
> / 2P =3 gyp 2P =D 2y
B(0,R) 5p—12 5p—12
2(p—3 2(p—2
+/ 2P =3 Gyp 202D vy
B(0,R) 5[7—12 5p—12

Since
Ino(U), Ino(V) = Io(W) forany W € A,

if we take large R > 01in (18), we deduce a contradiction. This implies that lim || 00 U (x) =
0 uniformly for U € A.
We note that for large |x]|,

o) = — 2™ Uy, gm U o gm o)

y=—-"-= y—- -
4 Jr3 |x — y 47 Jpe,r) 1X — ¥l 4 Jr3\B(x,R) 1X — Y

=o()R* + 0(1)% =o(1)

uniformly in U € A. Then, by the comparison principle and the elliptic estimates, we see
that for U € A,

Ux) + VU )| = Crexp(=Calx]),

where C and C, are positive constants independent of U € A.
To show infyeca [[Ullp > 0, we assume that there exists {U;}72, C .A such that
lUill= — 0asi — oo. Then, since U; satisfies

—AU; +2mpU; — U™ < —AU; + 2mpU; = 2qmUi¢y, — UP™' = 0in R?,
we see that |U; |1 — 0 asi — oo, which is a contradiction to (16). O

For a fixed Uy € A, we define y(¢)(x) = 2Uy(tx). It follows from

7 _ 1 3 2 2 32 _ 1?3 P
Io(y (1)) = ?|IVU|” + 2mputUy — gmt” Uy py,dx Uydx
2 Jr3 P Jr3
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that for 3 < p < 6, there exists o > 1 such that ioo(y (1)) < Ofort > t9. Moreover, by [21,
Lemma 3.3] and the fact that Uy is a critical point of foo, we see that for3 < p < 6,r =1
is a unique critical point of foo(y (1)), corresponding to its maximum.

We define

eoi= max Ic(y(t)) and e.:= 1nf max I.(T'(s)),
t€[0, rewsel0,1]

where W = {T" e C([0, 1], H") | T(0) = 0, T'(1) = y(to)}.
Proposition 5 Let 3 < p < 6. Then we have

limsupé, < Exo.
Cc—> 00

Proof We see from Lemma 21 and the scaling Peruyey = t2¢U0 (t-), that for ¢ € [0, 9],
3 1 u? 0
ley) =5 /Rz 113 (VUQ) (tx) % + <2m,u - C—2>t4U§(zx) - q(m - C—z)r“ug(tx)@,zuo(,_)dx
12p
- 7/ WUo(tx))Pdx
p JR3

1
=5 / 13 (VUQ) (1)1 + 2mput* UG (1x) — qmi* UG (1) 25, . dx

t2p
f (Uo(t))Pdx + o(1)

12p—3

1
=3 / s IBIVU()I2 + 2m,utU& - qmt3Ug¢Ude -
R‘

= Ia(y (1) + 0(1),

/ (Ug)Pdx + o(1)

(19)
whgre o(1) isuniformin¢ € [0, fp] as ¢ — o0o. Thus, since ¢ = 1 is a unique maximum point
of Io(y (1)) for 3 < p < 6, we deduce that

¢ = max Ie(y (105)) = Iso(Uo) + o(1) = Eoo + o(1)
as ¢ — OQ. O

Proposition 6 Let3 < p < 6. Then we have

liminfe, > E.
cC—> 00

Proof We note that for I" € W,

1.(T(1)

! / VEOP + 2muT2(@) — gm0 grdx — ~ / (Tt dx
2 Jr3 p Jr3

1 1
- f W T2 () — qul* (1) ®rdx — gm / P2(t)(Prq) — ¢ra))dx
c” Jr3 2 R3

Io(T(1) + G (1),

where Go(1) = — % [os 1?T2(1) — qul* (1) Pr(ydx — 5gm [ps T2(O)(Pray — pro)dx.
By Lemma 21, we have

|G.(t)| = o(1) uniformly in ¢ € [0, 1] as ¢ — oo.
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Then, since

max Ioo(I'(1)) > Eoo,
t€(0,1]

where I' € W (see [1, Lemma 2.4]), we have

e. > Ex + mf max G.(t) > Exc — inf max |Ge(t)] = Exo +0(1)
tel0, rewt€[0,1

as ¢ — 00. O
We define
={U(-y)|UeAyeR
and
Nag(X) ={u e H'| inf |u—v]m <d),
vex
where d > 0is a constant and A = {u € H! | iéo(u) =0, ioo(u) = E~, and maxps u =

u(0)}.

Proposition7 Ler3 < p < 6. For large ¢ > 0, for small d > 0, and for any d' € (0, d),
there exists v = v(d, d") > 0 independent of ¢ > 0 such that

inf{I 7.l g1 | I() < éc,u € Ng(X) \ Ngr(X)} = v > 0.
Proof Let {cl} | be such that lim; , o ¢; = oo. It suffices to show that for small d > 0, if
e, € Na(X), e (ug) < ée;y and |1/ (ue)| g1 — 0
as i — 00, then

inf |lue, —v|ly1 — O0asi — oo.
veX

For the sake of simplicity of notation, we write ¢ for ¢;. Since u. € N4(X), we have
luc(x) — Uc(x — yo)ll g1 < d, (20)

where U, € A and y. € R3. We define n e CSO(RS) such that 0 < n < 1, n(x) = 1 for

[x] <1, n(x) = 0for |x| > 2, and |Vn| < 2. Also, we set 7j.(x) = n(%). We divide the

proof into three steps.

Step 1. I.(ue) > Ino(ve)+ Ioo(we)+0(1) as ¢ — oo, where ve = feue and we = (1—7j¢)ue.
We claim first that for o € (2, 6),

lim lute|%dx = 0. 1)
€= JB(ye,20\B(ye.c)

Suppose that there exist z. € B(y¢, 2¢) \ B(y¢, ¢) and R > 0 such that

c—> 00

lim inf / luel>dx > 0. (22)
B(z¢,R)
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Denote it = u.(- + z.). We note that, by Lemma 21 and the fact that |u.|| ;1 is bounded,
for ¥ € C°(R?),

IHGAYY
- /RS Viie - Vi + <2m,u - lj—j)ﬁclﬂ - (%)zﬁcwcbi . Zq(m - %)acw%c — (i) Y

= [ Vit v+ ey~ 2qmiicps, ~ G0l v
R;

J’_

2 2
[ ~Siew = (£) 5w @? + 20 Biewes, — 2qmiict @, - g3)as
R C c ¢ c
= I/ (fic) ¥ + o(1)
) (23)
as ¢ — oo. By (17) and the assumption that ||I/(uc)||y-1 — 0 as ¢ — oo, we have
ue(-+z0)—U £ 0in H', where U satisfies I’ (U) = 0. By (16), we have

2(p—3) 2(p—2)m ])*1
sp—12 5p—12"H"1)

/ VO + Udx > Eoo(maxl (24)
R3

Then, by Proposition 4 and the fact that |z, — y.| > ¢, we see that for R > 0,
d* > lue(x) — Ue(x = yo) 131 = lliie(x) — Ue(x + ze — y) 131
> Jlie() = Uex + ze = Y 31 g0.ry) = 1@ 31508y + 0D = 10131 50,

as ¢ — oo. If we take small d > 0, by (24), we deduce a contradiction. Since there does not
exists such a sequence {z.} satisfying (22), by [14, Lemma 1.1], we deduce (21). Then, by
(21), we have

/M W) = o)l — (we)dx = o(1) (25)

as ¢ — 0o, where v, and w, are given in (21) above. By (21) and Lemma 17,
/ UG NDucdx < 1Pl L6(B (e 200\ Bse.en 1821658y 200\ By,
B(ye,20)\B(ye,c)

2 2
= Cl ”uC”Hl ”uC”LIZ/S(B()'C,ZC)\B(VC,C)) -0

as ¢ — 00, where C is a positive constant. From this and the fact that |[Vn.| < 2/c, we see
that

2 2 2
/.3 vcd’vc + wc¢w( - ”c¢ul.dx
R‘

-/ V20, + i, — uldy.dx + o(1)
B(ye,c)UR3\B(ye,2¢))

_qm / uZ(ul(y) — v2x)vZ(y) — w2(x)wi(y) dydx + (1)
47T J By, ) URINB (3, 20)) JR3 Ix — yl
qm uZ()W(y) —v2(y)
= dydx
47 JB(ye,c) JR3 lx — yl
2 2008 2
qm / ug (x) (s (y) wc(y))dydx+0(l) = o(l)
47 JR3\B(y..20) JR? lx — ¥l
(26)
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as ¢ — oo. Thus, by (25), (26), Lemma 21 and the fact that |Vn.| < 2/c, we have

- 1 1
I.(u.) = 5 / [Vuel> + 2muu3 — qmu%d)ucdx — —f (uc)idx
R3 p Jr3
1 1
32 - ,uzuz — quuffbucdx — Eqm /R3 uf(CD,,L, — @y, )dx
> ~oo(vc) + ioo(wc) + /2 Ve - Vwe + 2mpv.wedx + o(1)
R.
= Ioo(ve) + Too(we) + / (= i)e | Vel +2mp(1 = fie)feudx +o(1)
R
> Ino () + Too(we) + 0(1)
as ¢ — 0o.

Step 2. Iso(we) > 0 for large ¢, where we = (1 — 7¢)uc.
We note that, by Lemma 17,

2 2 4
| f w2udx| < 16wl elwdl s < Callwely,
R

where C; is a positive constant independent of c. Moreover, by (20) and Proposition 4,
lwell g1 < 2d for large ¢ > 0. Then we have

7 _ 1 2 2 2 _ l p
Ino(we) = 3 Jos [Vwe|” + 2mpw; — gmw; ¢y, dx » Rz(wc)+dx

27

A%

1 -2
el (min {3 i} = gmCatluwe s + wellf®)-

Taking d > 0 small, we deduce that ioo(wc) > ( for large c.
Step 3. v, — V(i — z) in H!, where VeAdzeR andv, = Nele-

Let W, = v.(- + y.). We can assume that W,.—W = 0 in H!, up to a subsequence,
as ¢ — oo. Since W, — uc(- + yo)—0in H', ¢w, — du,(4y)—0 in D'2. Then for any
¥ € CPR?),

./]1.§3(WC¢WC - uc(' + yc)d)uc(<+yc))1//dx = /];(Wc - W)(¢W( - ¢uc(<+yc))1// + W(¢W( - ¢Ltc(<+yc))1//
+ We —uc(-+ yzr))(ﬁu(-(-%—y(-)wdx -0
as ¢ — oo. From this, (17), (23) and the assumption that IIfo(uc)llel — 0 asc — oo, we

can see that W satisfies iéo(W) = 0. By the maximum principle, W is positive. Suppose that
there exist R > 0 and a sequence Z. € B(y., 2¢) satisfying

liminf |Z, — y.] = 0o and lim inf/ |vC|2dx > 0.
c—> 0 c—> 00 B(%c,R)

Then v, (- + z.) converges weakly to W in H!, where Il ( W) = 0. By the same arguments
in Step 1, we deduce a contradiction. By [14, Lemma 1.1], we have

lim / (W)l dx = / WPdx. (28)
c—>00 R3 R3
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‘We note that
W2(x)W?
liminf(— / W2gw,dx) = liminf f WeOWe ™)
c—00 R? c—>o0o g3 JR3 [x — vyl
/ W2(x)W2(y)
r3JR3 X — Yl

(29)
>

dydx = —f W2¢de.
R3

Then, by (28), (29) and Lemma 21, we have
- 1 1
lim inf oo (W,) = lim inf f/ IVWe|? + 2muW? — gmW2¢y, dx — f/ (W)l dx
c—00 c—>oo 2 R3 p Jr3

> Ioo(W).
(30)
By (30), the results of Stepl and Step 2, and the assumption that ic(uc.) < é., we see that
Io(W) = Es. By (28), (29) and (30), we have

lim sup/ VW I? 4 2mpuW? — gmW2pw.dx = / VW 4+ 2muW? — gmW?¢pwdx
R3 R3

c—> 00

5/ |VW|2+2mMW2+limsup(—/ quCZq{)Wvdx),
R3 R3

c—> 00
which implies that W, — W in H 1 By (27), the result of Step 1 and the fact that &, — Eo,
we have for small d > 0,
. . ~ 1 . (1
éc = I(ue) = Too(vo) + 3 min {3 muflwell} + (D)

1 . 1
> Eoo+ 5 min { = mpulwel) +o()

asc — 0o, which implies that [|w.|| g1 — 0 as ¢ — oo. Thus, letting W = \7(~ — z), where
V € Aand z € R3, we have

lue = V= vye =Dl < el +ye) = V= Dllgt + lwellgr — 0

as ¢ — oQ. ]

L 00), suppose that for some b € R, there

m’

Proposition8 Ler3 < p < 6. Fora fixed c € (
exists a sequence {u;j} C H U satisfying
uj € Ng(X),
G -1 = 0,
fc(uj) — bas j — 00,

where d > 0 is a constant. Then for small d > 0, b is a critical value of 1., and the sequence
{uj(-+ xj)}?oz1 C H' has a strongly convergent subsequence in H', where Xj € R3.

Proof Since u; € Ny(X), {u j}j?‘):1 is bounded in H'. Then we can extract a subsequence
such that i j, = uj, (- + xj,) converges to ug # 0 weakly in H' as k — oo, where Xj € R3.
It is standard to show that u is a critical point of /.

Next, we show it j — ug in H' as k — oo. By Proposition 4, there exists Ry > 0 such
that

2 ji | 1 (®3\ B (0, Ro)) = 24 €29)
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We choose a function ¢ € C*®(IR?) such that

1 for |x| > 2Ry,
¢x) =
0 for |x| < Rp.

Since /(i j, ) (¢ (it j, — uo)) — I/ (u0)(¢ (it j, — up)) — 0 as k — oo, we deduce that

2
W
A;}\ o )|V(ulk —uo)l + (Zmu )(u]k uo)zdx
B(0,2R

1 - 2 AN — u i b —
= /]Rg\B(0 2R)( ) (i j, “0)(“Jk¢’-. M0¢u0)+2q<m Cz)(ulk “0)(“Jk‘1>u_/-k uo®yy)
+ (g, — uo) (@) — o) Hdx + o(1)

(32)
as k — oo. We note that, by Lemma 18,

/l.@\B(O 2R)(v — w)(vcbﬁ — wcbzw)dx

< (1o 1761011 23 @3\ B0.28)) + 1PwllF 61wl 3@\ 8020 ) 1V — W L3N B0.2R))

4 4
< Ci(lvlg vl g @svso.28) + 1wl 1wl @ po.28)) 1V = Wil @3\ BO.28))
(33)

/ w—w)(vdy, — wdy)dx
R3\B(0,2R)

< (I®ullz6llvll L3 @3\ B0.2R)) + 1 Pwll L6 1wl 23 @3 B0.2R)) 1V — Wl 2283 BO.2RY)

2 2
< Gl vl g g3y B0.2k)) F 1wl 5 1wl 1 @3\ Bo.28)) 1V — WIH1 R BO.2R)):

(34)
and
- - -2
/ (@7 = P Hw —wydx = (p - 1)/ v+ (1 — w0 — w)?dx
R3\B(0,2R) R3\B(0,2R)
< (P_ Dlltv+ (1 — t)w”Ll’(R‘\B(O 2R))” w”il’(R3\B(0‘2R))
2
= G310 o 0.2y + 1901 o 0,201 = W11 3\ 310,20
(35)
where ¢ € [0, 1]. Then, by (31)—(35), we see that for small d > 0,
i, — uoll g1 w3\ B0,28) = 0 (36)

as k — oo. Thus, by (36) and the Rellich-Kondrachov compactness theorem, we see that
iij, — ugin H' ask — oo. o

Proposition9 For 3 < p < 6, there exist co > 0 and dy > 0 such that for ¢ > &y and for
0 < d < dy, I. has a critical point u in Ng(X) with I.(u) < é..

Proof Arguing indirectly, suppose ic/ (u) # Oforu € Ng(X) with I.(v) < é.. By Proposition
7 and Prol_)osition 8, we can take positive constants ¢o and dp such that for ¢ > ¢p and for
0<d < d,

I @)l -1 > v
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for u € Ng(X) \ Ngpo(X) with I.(u) < é, and

1)l g1 > oc

for u € Ny(X) with I.(u) < é., where v > 0 is a constant independent of ¢, and o, > 0
is a constant depending on c¢. Then, by a deformation argument using Proposition 5 and
Proposition 6 (see Proposition 7 in [5] for a detailed argument), we get a contradiction. 0O

4 Nonrelativistic limit of ground statesfor3 < p < 6

In this section, we complete the proof of Theorem 1. By Proposition 3, Proposition 5 and
Proposition 9, we see that for every 3 < p < 6, there exists a ground state solutions u. to
(5) such that

limsup I (4.) < Exo. 37

c—>00

Proposition 10 Let 3 < p < 6 and u. be a ground state solution of (5). Then we have

1
su U <Cand inf |u > —
PM lucllgr < c>ﬁ|| cllee ok

c> m m

where C > 0 is a constant independent of c.
Proof We note by (37) that

5p—12 4 —
C > ”Tuua — Je(ue) + T”Pc(ua

/ (p—3)VuP+ 2= : (ZmM—M—Z)u +pTz<%>2u§d>5de,

where C; > 0 is a constant independent of c¢. This implies ||u.|| 1 is bounded uniformly in
c > /%. Moreover, since J.(u.) = 0 and —é(czm —n) < ®,, <0, wehave forc > /%,

/RS Jue|? = /R3 Vul? + (2mp - ’(f—j)u% - (g) 12 (@W + ( ) 2 (m - —))dx
z/ |Vucl +muu2dx—|—( ) | Dy, Ju; (dDMC +25(02m—u))dx

2/
z/ |Vuc|2+muu3dxzcz(/ uelPdx) "
R R3 39)

where C» is a positive constant indendent of c. Then we have fR3 luc|Pdx > % where C is
a positive constant indendent of c. O

(39%)

Proposition 11 For3 < p < 6, let {”C}c>ﬁ C H' be a ground state solution of (5). Then

there exists a sequence {x.} € R3 such that uc(-) = uce(- + xc) converges to U in HI(JR3)
as ¢ — 00, up to a subsequence, where u, is a ground state solution of (10).

Proof By Proposition 10 and [14, Lemma 1.1], we have

sup / |uC|2dx =/ |uc|2dx >C >0,
xeR3 J Bi(x) B (xc)
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where C is a constant indepnedent of c.

It follows from Proposition 10 that {u.}, ~JE is bounded in H' uniformly in c. Then we
may assume it = uc(- + X.) converges to us, % 0 weakly in H! and strongly in LY (R3),
where 0 < g < 6. Let ®;_ be the solution of

loc

qz 2 Mo 3
AP+ —u-d® =—g(m— —)u-inR’.
7l q( c2)c

Since || @, || p12 < C1q(m— %)”"-‘C”%ﬂ < C,, where C1, Co > 0 are constants independent
of ¢, we may assume that

D, —pu,, weakly in D"? and @z, — ¢y, in L9 (R3),

loc

as ¢ — oo, where 0 < ¢ < 6 and ¢, is a weak solution of —A¢ 4 gmuZ, = 0. Then it is
standard to show that u, is a non-trivial weak solution of (10).

Next, we claim that u, is a ground state solution of (10). We note that, since u, is a
non-trivial weak solution of (10), we have

Joo(Ueo) = Poo (o) =0
and

5p—12
2

Then, by (37), (38) and (40), we have

4_
Too(Uoo) = Joo (Uoo) +—5— ) Poo(“oo) /(P 3)|Vuoo| +(p— Z)mlu/t . (40)

5p—12 5p—12
P 0o > 2P 2 fiminf 1o (ue)
2 2 c—00
2
i _ 2 P—2( _/L) P—Z(g)zz 2
_1gggéf(/Rz(p Ve + F2= (2mp = 55 Jud + 25 (2 uCCDMCdx)
5p— 12
= [0 =31Vl (p = g, = 2P o),

which proves the claim.
Finally, to prove the strong convergence in H 1(R3), we note that, by (37), (38), (40),
Proposition 10 and the fact that ii. converges to us, % 0 weakly in H',

S5p—12 5p—
P2 EooZp

2 . -
lim 7.(u.)
c—> 00

2
_ PN P;2( _w u(,) 22
_CEH@.’O/RJ” 3IVicl + F5=(2mp 62) (D) e dx

/%(P - 3)|V”oo|2 +(p - 2)m;u,tgodx
R;

+ lim f (p — 3| Viic — too)* + (p — 2ymu(iie — uoo)>dx
c—> 00 R3
_S5p—12

Eo + lim / (P = 3NV liie — uso)* + (p — Dmpslite — ttog)*dx.
c—>00 Jp3

From this, we deduce that il — ue in H' as ¢ — 00, up to a subsequence. This completes
the proof. O
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Proof of Theorem 1 1t is sufficient to show H?2 convergence of i, t0 U~,. We may rewrite i,
as u.. We note that, by Lemma 18 and [22, Theorem 4.1], foru € H", 1

sup [, (x)| < Cillull7,, and [[lul”~?|

xeQ

= [lull}6iq < Collull}y

= @ Lﬁ(sz) Hl ’

where Q is bounded domain in R?, and C; and C» are positive constants independent of
u and Q2. Then, since {||uc||y1}c is bounded, we see that {||u.||z=}. is bounded (see [22,
Theorem 4.1]).

Since uso and u, are solutions of (10) and (5) respectively, we have

ny2 AN
—AUe —Uoo) = 2mu(ue — Uso) + (z) Ue + (;) ucdy, 2q uctbu(

+ 2qm(”cq>uc - uoo(puoo) + |uc|p_2uc - |“00|P 2Moo~

(41)

We note that, by Lemma 17, Lemma 19, Lemma 21 and Proposition 11,

||”cq)uc — UooPuy, 2
= ”uc(q)ul- - ¢uL.) + (e — uoo)‘pu(- + (¢u¢ - ¢uoc)uoo||L2

< luellp3 1 Pue — Gullze + llue — ucollzzliduclis + lbu, — Gusllzellttcolizs — 0
(42)

as ¢ — 00, and by the fact that {||u.|| L~}. is bounded,
Huel?"21ue = ool ? oo 12 = (p = D lttoo + 1 (e — o) P (e — o) || ;2 — 0 (43)

as ¢ — oo, where t € [0, 1]. Thus, by (41)-(43) and the Calderén—Zygmund inequality, we
have

lue —ucoll 23y = II = Alue — uco)llp2 + o(1) = o(1)

as ¢ — oQ. ]

5 Nonrelativistic limit of two positive solutionsfor2 < p < 3

In this section, we will construct two radially symmetric positive solutions of NMKG for
2 < p < 3. We prove first the existence of a radially symmetric positive solution v 4 of (5)
satisfying

lim [jve,y — v =0
P I c,q oo”Hl ’

where v is a global minimizer of /..
We assume 2 < p < 3 and denote

oo = inf Ino(u), Xy ={u e H'| Io(u) = exo}
uEH,.l

and

Na(X) = {u € Hy | inf flu— vl < d},

where d > 0 is a constant. We remark that, by [21, Theorem 4.3, Corollary 4.4], X} is
bounded in H', and for small qg > 0, e < 0and X, # (. Moreover, since eo, < 0 for
small g > 0, and for u € X,

= 1 2 2 2 1 p
oo = Ino(tt) = = [Vul* + 2muu” — gmu”p,dx — — (u)y dx
2 Jrs P Jrs
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1 C p/2
> 7/ |Vu|2+2muu2dx——l(/ |Vu|2+u2dx) ,
2 R3 p R3

where C| > 0 is a constant independent of u € X, we see that there exists g > 0 such that
for0 < g < go, X # ¥ and
inf |lullg1 > do >0, (44)
ueX,

where c?g is a positive constant. Taking d € (0, ‘2—0), we deduce that for 0 < ¢ < qo,
0¢ Ny(X,).Ford € (0, d—o) and 0 < g < qo, take Vy € X, and set

ac= inf I.(u) and m. = I.(Vp).
NS (X))

Clearly, we have m. > a,. We try to find a critical point of I~C in Ng(X,).

Proposition 12 For2 < p <3,0 <q < go and d € (0, J—O), we have

liminf o, > ex.
Cc—> 00

Proof 1Tt is standard to show that there exists v. € Ny (X,) such that
Qe = iC(UC)s

because X, is bounded in H!. Since v, is bounded in Hr1 uniformly in ¢, we assume that v,
converges to v in L* and weakly in H' asc¢ — oo, where s € (2, 6) and v € Ny(X,). Then,
by Lemma 21, we have

lim inf @ = liminf 7, (v¢)
c—> 00 c—> 00
ool 2 1A o AW 1 P
= lérglo%f [5 /R3 [Vuel= + <2mu - C—z)vc - q(m - C—z)vccbvcdx - ; A@(vc)_’_dx]
1 2 2 9 I Py _ 7
> |[Vu|© + 2muv” — gmvdydx (W)idx = Io(v) > ecc.
2 Jr3 p JR3

Proposition 13 For2 < p <3 and 0 < q < qo, we have
Me = €oo
uniformly in q as ¢ — oo.

Proof By Lemma 21,

. 1 u? I 1
o) = 3 /Ra IV Vol? + <2mu - C—Z)VOZ —q(m- c—z)VodeVde - /R3(Vo)ﬂdx

2
= Io(Vg) + 0(1) = eoo + 0(1)

1 2 2 2 1 P
= - IVVol +2muVy — gmVydy,dx — — | (Vo)idx + o(1)
R3 p JR3

as ¢ — Q. O

Proposition14 Let2 < p < 3,0 < g < goandd € (0, ”?—0). For large ¢ > 0 and for any
d' € (0, d), there exists vy = vo(d, d") > 0 independent of ¢ > 0 such that

inf {[| 7, @)l -1 | Io(u) < me.u € Na(X:) \ Ngr(X,)} = vo > 0.
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Proof Let {c;}72, be such that lim; . », ¢; = oo. It suffices to show that if
Ue, € Na(X,), Ie,(ue) < me, and || (ue)lly—1 — 0
as i — 00, then
vign{% llug; = vligr — Oasi — oo.
For the sake of simplicity of notation, we write ¢ for c;. Since {u.} C H,] is bounded in H',

we see that u, converges to u in L*® and weakly in H! as ¢ — 00, up to a subsequence, where
s € (2, 6). Then, by Lemma 21 and Proposition 13, we have

€0 = liminf m, > liminf /. (u.)
c—> 00 c—>0Q

. 1 2 w 2 K\ 2 1

= 11611_1)£f [5 /]1%3 [Vuc|” + <2mu — C—z)uc — q(m — C—z)uccbucdx — ; /Rs(uc)ﬁdx]
1 1 -

> 7/ \Vu|?> + 2mpuu® — gmu’¢udx — —/ (u)idx = I (u),
2 Jr3 p Jr3

which implies that e, = ioo(u). }
We claim that u. — u in H'. Indeed, by Lemma 21 and the fact that || I/ (uc)|| z-1 = 0
as ¢ — 00, we see that

o(1) = I'(ue)u
2 2
= / Vu. - Vu + (2mu — %)mu — (g) uL.MCDi - 2q<m — %)ucuéuf - (uc)f:ludx
R3 c c ¢ c

= / |Vu|2 + 2m;u,t2 — 2qmu2¢u — (u)idx +o(1)
R3

45)
as ¢ — 00, and

o(1) = I} (uc)uc
2 2
2 q I
= AS |VuC|2 + (Zmu - C—z)ug - (;) ugcbﬁc - Zq(m - C—Z)MEG%,L, — (uc)ﬁdx

- / |Vitel? + 2mpu? + 2qmu ¢, — w)f dx + o(1)
R3
(46)
as ¢ — oo. Thus, by (45) and (46), we have u, — u in H'. ]
Proposition 15 Ler2 < p < 3,0 < g < go and d € (0, ‘2—0). For a fixed c € ( %, 00),
suppose that for some b € R, there exists a sequence {u;} C H,1 satisfying
uj € Na (),
22 g1 — 0,
fc(uj) — bas j — oo.

Then b is a critical value of 1., and the sequence {u j}j?ozl C H,1 has a strongly convergent

subsequence in H'.
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Proof Since {u;} C Ny(X,) is bounded in H!, we see that u;j converges to u in L* and
weakly in H Pas ¢ — o0, up to a subsequence, where s € (2, 6). It is standard to show that
u is a critical point of L.

We claim that u; — u in H'. Indeed, by Lemma 20 and the fact that || ic’ @jllg-1 — 0
as j — 0o, we have

o(1) = I (uj)u,

2 2
_ 2 K7\ 2 a4\ 242 KN o P
= /R3 [Vu ;| + (2mu — c—2>u, — (;) ujd>uj — Zq(m — ﬁ)u.l’q)”/‘ — |u;|Pdx
2 2
= /3 |Vuj|2 + (Zmu — %)uf — (%) u24>5 — 2q<m — C%)uzd)u — |ulPdx + o(1)
R

as j — oo and
- 1 q\2 0
0=1I.(uu= / |Vu|2 + (2mu - —z)u2 - (7) u2d>§ - Zq(m - —2>u2CI>u — |u|Pdx.
R3 c c c
Thus, we deduce that u; — u in H' as j — oo. o

Proposition 16 Let2 < p < 3,0 < g < go and d € (0, ). Then there exists ¢y > 0 such
that for ¢ > o, ic has a non-trivial critical point u in Nj(X,) with ic(u) < me.

Proof Assume that2 < p < 3,0 < g < gop andd € (0, ”?—0). Suppose I/(u) # 0 for

u € Ng(X,) with fc(u) < m,. By Proposition 12-15, we can take a positive constant ¢y such
that for ¢ > ¢p and for 0 < ¢ < o,

O = €oo — €1, |Mme — exo| < €1, (47)
@)l -1 = v (48)
foru € N3 ,(X,) \ N1,4(;) with I.(u) < me, and
@)l -1 = 6 (49)
foru € N;i(X,) with fc(u) < m., whered € (0, Cz—0), €1 € (0, @), and 6, > 0 is a constant
depending on c. For u € Ny(X}) with I.(«) < m., we consider the following ODE:

()

dn _ (i : AN
e e1cm)p2(distyi(n, X)) Tl

nO,u) =u,
where
distgi(w, X)) = inf{||lw — vy | v € A}
forw e H', and g1, ¢ : R — [0, 1] are Lipschitz continuous functions such that

1 if& < 2d,
0 if >d.

|1 ifEz e —en, 3
ORS PSS wz(s)—{

Let T = 3¢ /6, and Vy € X,. Since fc(n(r, Vo)) > a. > e — € for T € [0, T], we deduce
that there exists 79 € [0, T'] such that

2
distyi(n(to, Vo)) = gd. (50)
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Indeed, if distyi (n(T, Vo)) < %d for 7 € [0, T], by (47) and (49),

T
- ~ d - A
1.(n(T, Vo)) = 1:(Vo) +/ 77 L@ V0)dt < eo + €1 = TG = €0 — 21,
0

which is a contradiction. Assume that 7y is the first time that satisfies (50). Since || jT Ny <1,
we see that 7y > %d and

1
n(r, Vo) € N%d(Xr) \ N%d(Xr) forz € [tp — gd, fo].

Then, by (47) and (48), we have

fo

- - T g . d -
I.(n(T, Vo)) = 1.(Vo) +/ dflc(n(f, Vo))dt < exo + €1 +/ —1I.(n(zr, Vp))dt
o drt 0 dt

3
1
=0 + €1 — gdvo < €00 — €1,
which is a contradiction. O

Proof of Theorem 2 Let2 < p < 3. By Proposition 16 and the proof of Proposition 14, we
prove the existence of a radially symmetric positive solution v, 4, of (5) satisfying
limsup 7o (ve,g) < inf Ioo(u).
c—>00 ueH)
By repeating the same procedure in the proof of Proposition 14, we can prove Theorem 2
(ii).
On the other hand, it is known that the ground state solution wq of the equation
— Au+2mup — |ul??u =0in R? 51

is positive, radially symmetric, up to a translation. It is also non-degenerate in the radial class,
i.e., KerLo = {0}, where L : H,,l — Hfl is the linearized operator of (51) at wg, given by
Lo(w) = —Aw + 2mpw — (p — Dug|?2w.

Exploiting the non-degeneracy of wg, we see from the implicit function theorem that there
exists of a family of radially symmetric solutions w4 of (10) for small ¢ > 0 such that
Woo,g —~ Woasqg — 0in H ! (refer to [20, Proposition 2.1] for detail). As a consequence, one
can easily see that weo 4 is also non-degenerate in the radial class for any small fixed g > 0
(see [9, Proposition 3.2]). Then one can once more invoke the implicit function theorem to
find a family of nontrivial radial solutions w4 of (5) for large value ¢ > 0 and small g > 0,
which converges in H'! to Weo,q as ¢ — 00. This proves Theorem 2 (i). O
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Appendix A Basic estimates
Here, we provide with several basic estimates, which are repeatedly invoked in the proofs of
main theorems.

Lemma 17 Letu € H'. Then we have

2
pullprz = Cqmllully,,

where C is a positive constant.
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Proof Letu € H'. Since ¢, satisfies
—A¢, = —qmu2 in ]R3,
we have
Vu|*dx = — 2¢dx < 2 i< C 2
3| Gul“dx = —qm U Gudx < gmlpullpsllullpes = Camllgulprallullz,
R R
where C is a positive constant. This implies the result.
Lemma 18 Letu € H'. Forc > /%, we have
H 2
1@ullpr = Cg (m = 5 ) lul.
where C is a positive constant.
Proof Letu € H'. Since @, satisfies
2
—Ad, + (€> u2d>u = —q(m — %)uz in RS,
c c
and
2 2 2 2
lu @l < IPullzellullzes = 1Pullzellullyizs < CllPull prelluliz:, (52)

we have forc > /2,

10125 =/ V@, [2dx < —g(m - %)/ ey
R3 c?/ Jr3
= Cq(m = 5 )l 19wl

where C is a positive constant. This implies the result.
Lemma 19 Letv, w € H'. Then we have

¢y — Puwliprz = Cllv + wligillv —wllg,
where C = C(q, m) is a positive constant.
Proof We note that for v, w € H!,

—A(py — $uw) = —gm@v —w)(v + w) in R.

Then we have

¢y — Puwliprz < Cllv+ wligillv —wllg,
where C = C(q, m) is a positive constant.

Lemma20 Let v, w € H'.Then forc > \/%, we have

[Py — Pullpr2 < ClE + Dlv + wllgllv — wllzs,

where C = C(q, m, () is a positive constant.
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Proof Since ®,, satisfies

2
—AD, + q—zudeM = —q(m — %)u2 in R,
c c
we have

q2

2
q n .
~A@, — @) + Lu@, - 00 = -5 07— w)e, - q(m - C—Z)(u2 — w?)inR3.

Multiplying (&, — ®,,) to the above equation and then integrating over R3, we have

fﬂ@ IV(®, — ®,,)2dx
q° 1
= [ —H0? = uheu@, - @) —g(m - 5)0? - w) (@, - Gu)dx
R 2 c?

2
q
= vt wisliiv—wislPulizsl®s = Pullzs

n
+q(m — Cj)llv +wl2llv —wl 3Py — Pullgs
< Ci(I®vlipr2 + D[Py — Pullprallv + wlgillv — wll 3.
where C; = Ci(g, m, i) is a positive constant. Then, by Lemma 18, for ¢ > %,
@y — Pyliprz < C(”U”ill + Dllv+wlgillv—wllgs,
where C = C(q, m, i) is a positive constant.
Lemma 21
1
190 = $ullpr2 < C(UvIZ + DIvIG: + v+ wlg v = wl5),
c
where C = C(q, m, () is a positive constant.

Proof Since ¢, and @, satisfy
q’ 1
—A¢y = —qmw2 inR? and — A®, = ——2v2d>v — q(m — —2)1)2 inR3
c c
respectively, we have
2

—A(Dy — Py) = _%U2q>v + q?—zv2 — qm(v2 — w2) in R3.

We multiply (&, — ¢y) to the above equation and integrate over R to deduce

/M IV(®y — duy)|*dx

1
— f (—q* > ®y + quo?) (®y — dy)dx — gm / (W* = w?)(Dy — py)dx
C R3 R3

IA

1
1P = gu 262 1Dl L6021 32 + qrellv?ll Loss) + gmll@y — w6 llv + w2 llv — wl 3

1
< C11@u = dull pr (5 Pl pr ol + 10150 + I+ il = wils ).
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where C; = Ci(q, m, i) is a positive constant. Then, by Lemma 18, we have

1
190 = @ullprz = (I + DIV + v+ wla v = wls),

where C = C(q, m, ) is a positive constant. O

References

21.

22.

23.

. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrodinger—-Maxwell equations.

J. Math. Anal. Appl. 345(1), 90-108 (2008)
Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein-Gordon—-Maxwell equations.
Topol. Methods Nonlinear Anal. 35(1), 3342 (2010)

. Azzollini, A., Pisani, L., Pomponio, A.: Improved estimates and a limit case for the electrostatic Klein—

Gordon-Maxwell system. Proc. R. Soc. Edinburgh Sect. A 141(3), 449463 (2011)

Bechouche, P., Mauser, N.J., Selberg, S.: Nonrelativistic limit of Klein—-Gordon—-Maxwell to Schrodinger—
Poisson. Am. J. Math. 126(1), 31-64 (2004)

Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrodinger equations with a general nonlinearity.
Arch. Ration. Mech. Anal. 185(2), 185-200 (2007)

Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell
equations. Rev. Math. Phys. 14(4), 409-420 (2002)

Coclite, G.M.: A multiplicity result for the nonlinear Schrodinger—-Maxwell equations. Commun. Appl.
Anal. 7(2-3), 417-423 (2003)

Colin, M., Watanabe, T.: Standing waves for the nonlinear Schrodinger equation coupled with the Maxwell
equation. Nonlinearity 30(5), 1920-1947 (2017)

Choi, W., Hong, Y., Seok, J.: Uniqueness and symmetry of ground states for higher-order equations. Calc.
Var. Partial Diff. Equ. 57(3), 23 (2018)

Choi, W., Hong, Y., Seok, J.: Optimal convergence rate and regularity of nonrelativistic limit for the
nonlinear pseudo-relativistic equations. J. Funct. Anal. 274(3), 695-722 (2018)

. Choi, W., Seok, J.: Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrodinger

equations. J. Math. Phys. 57(2), 021510, 15 pp (2016)

DAprile, T., Mugnai, D.: Solitary waves for nonlinear Klein—-Gordon-Maxwell and Schrodinger—
Maxwell equations. Proc. R. Soc. Edinburgh Sect. A 134(5), 893-906 (2004)

D*Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon—-Maxwell equations. Adv.
Nonlinear Stud. 4(3), 307-322 (2004)

Lions, P..-L..: The concentration-compactness principle in the calculus of variations. The locally compact
case. II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1(4), 223-283 (1984)

Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein—
Gordon equations. Math. Ann. 322(3), 603-621 (2002)

Masmoudi, N., Nakanishi, K.: From nonlinear Klein—-Gordon equation to a system of coupled nonlinear
Schrodinger equations. Math. Ann. 324(2), 359-389 (2002)

Masmoudi, N., Nakanishi, K.: Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to
Poisson-Schrodinger. Int. Math. Res. Not. 13, 697-734 (2003)

Nakanishi, K.: Nonrelativistic limit of scattering theory for nonlinear Klein—-Gordon equations. J. Diff.
Equ. 180(2), 453-470 (2002)

Palais, R.S.: The principle of symmetric criticality. Comm. Math. Phys. 69(1), 19-30 (1979)

Ruiz, D.: Semiclassical states for coupled Schrodinger—Maxwell equations: concentration around a sphere.
Math. Models Methods Appl. Sci. 15(1), 141-164 (2005)

Ruiz, D.: The Schrodinger—Poisson equation under the effect of a nonlinear local term. J. Funct. Anal.
237(2), 655-674 (2006)

Han, Q., Lin, F.: Elliptic Partial Differential Equations, 2nd edn. In: Courant lecture notes in mathematics,
vol. 1. American Mathematical Society, New York, Providence, RI, Courant Institute of Mathematical
Sciences (2011)

Wang, F.: Ground-state solutions for the electrostatic nonlinear Klein—-Gordon—-Maxwell system. Nonlin-
ear Anal. 74, 47964803 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Nonrelativistic limit of solitary waves for nonlinear Maxwell–Klein–Gordon equations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Function spaces
	2.2 Variaional settings for NSP
	2.3 Variational settings for NMKG
	2.4 Existence of a ground state for 3 < p < 6

	3 Construction of nontrivial solutions to NKGM with the energy bound Einfty
	4 Nonrelativistic limit of ground states for 3 < p < 6
	5 Nonrelativistic limit of two positive solutions for 2<p< 3
	Acknowledgements
	Appendix A Basic estimates
	References




