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Abstract
We consider a Lazer-Mckenna-type problem involving the fractional Laplacian and singular
nonlinearity. We investigate existence, regularity and uniqueness of solutions in light of the
interplay between the nonlinearities and the summability of the datum.
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1 Introduction

In this paper, we are interested in the existence, regularity and uniqueness of solutions for
the following nonlocal problem

⎧
⎨

⎩

(−�)su = f (x)
uγ in �,

u > 0 in �,

u = 0 on R
N\�,

(1.1)

where � is a bounded domain in RN , N > 2s, of class C1,1, s ∈ (0, 1), γ > 0, f ∈ Lm(�),
m ≥ 1, is a non-negative function and (−�)s is the fractional Laplacian operator defined by

(−�)su = a(N , s)P.V .

∫

RN

u(x) − u(y)

|x − y|N+2s dy,
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where "P.V ." stands for the principal value and a(N , s) is a positive renormalizing constant,
depending only on N and s, given by

a(N , s) = 4s�( N2 + s)

π
N
2

s

�(1 − s)

to ensure that

(−�)su = F−1(|ξ |2sFu), ξ ∈ R
N , s ∈ (0, 1) and u ∈ S(RN ),

whereFu stands for the Fourier transform of u belonging to the Schwartz class S(RN ). More
details on the operator (−�)s and the asymptotic behaviour of a(N , s) can be found in [26].

In the case of semilinear local problem corresponding to s = 1, the study of singular
elliptic equations was initiated in the pioneering work [22] which constitutes the starting
point of a wide literature about singular semilinear elliptic equations. Let us start recalling
the important result of Lazer-McKenna [36]. Under regularity assumptions on � and if
0 < f ∈ Cα(�), the authors obtained an optimal power related to the existence of finite
energy solutions. In fact, a solution lying in H1

0 (�) should exists if and only if γ < 3
while it is not in C1(�) if γ > 1. The threshold 3 is analysed in [51] when the datum f
is a positive L1 function defined on �. In that paper [51], the authors provide an extension
of the classical Lazer-McKenna obstruction. Existence and uniqueness results for (1.1) are
obtained in [19] while in [16,24] the authors showed that (1.1) has a solution u for every
f in L1(�) and for every γ > 0 and how the regularity of this solution u depends on the
summability of f and on γ . In the case where the function f belongs to Lm(�) with m ≥ 1,
Boccardo and Orsina [15] proved the existence and regularity of a distributional solution

u ∈ W 1,q
0 (�) where q = Nm(γ+1)

N−m(1−γ )
if 0 < γ < 1 and f ∈ Lm(�), 1 ≤ m <

(
2∗
1−γ

)′
,

while u ∈ H1
0 (�) if f ∈ Lm(�) with m =

(
2∗
1−γ

)′
. In the case where f ∈ L1(�), if γ = 1

then u ∈ H1
0 (�), while if γ > 1 then u ∈ H1

loc(�) and u
γ+1
2 ∈ H1

0 (�). In connection
with the problem studied in [15], uniqueness of finite energy solutions was established in
[14] where the main ingredient is the extension of the set of admissible test functions. We
will use the same idea in this case of fractional Laplacian. In [9] the authors proved that if
the non-negative function f ∈ Lm(�), m > 1, is strictly far away from zero on � (that is
there exists a positive constant f0 such that f ≥ f0 > 0 a.e. x ∈ �) then uα ∈ H1

0 (�)

for every α ∈
(

(m+1)(γ+1)
4m ,

γ+1
2

]

if 1 < γ < 3m−1
m+1 . Some related existence and regularity

results for local problems with singular nonlinearity involving reaction or absorption terms
are proved in [21,40,41]. Let us also mention the contributions in [2,17,32,35,42,43,50]
where related problems involving singular nonlinearities are considered. It is worth recalling
here that singular local semilinear elliptic problems such as (1.1) arise in various contexts of
chemical heterogeneous catalysts [10], non-Newtonian fluids [28] as well as heat conduction
in electrically conducting materials (the term uγ describes the resistivity of the material), see
for instance [30,39].

Let us now discuss the nonlocal problem (1.1). Recall first that a rich amount of research
work has been done on nonlocal problems of either elliptic or parabolic types, we refer for
instance to [3–5,7,37,52]. Starting with the case γ = 0, the problem (1.1) with L1-data
was studied in [1,18,38] where a general fractional Laplacian operator including (−�)s is
involved, while for bounded Radon measure data it was investigated in [33,44]. In the case
where γ > 0, existence and regularity results of solutions to (1.1) were established in [7]
when the datum f is a Hölder continuous function and behaviours basically as 1

distβ (x,∂�)
for

123



Nonlocal semilinear elliptic problems with singular nonlinearity Page 3 of 34 153

some β such that 0 ≤ β < 2s. Existence and uniqueness results for positive solutions of the
problem (1.1) have been also obtained in [11,18]. It has been shown in [18] that (1.1) has a
weak solution u ∈ Xs

0(�)when 0 < γ ≤ 1 and f ∈ Lm(�)withm := 2N
N+2s+γ (N−2s) , while

if γ > 1 and f ∈ L1(�) then (1.1) has a weak solution u ∈ Hs
loc(�) with u

γ+1
2 ∈ Xs

0(�). In
the same spirit, the existence of positive solutions have been also established in [11] according
to the range of γ > 0 and to the summability of f . Precisely, in that paper [11] it has been
proven that if γ ≤ 1 and f ∈ L(2∗

s )
′
(�), 2∗

s := 2N
N−2s and (2∗

s )
′ := 2N

N+2s , then (1.1) has a

solution u ∈ Xs
0(�) ∩ L(γ+1)2∗

s (�), while if γ > 1 and f ∈ L1(�) then (1.1) has a solution

u such that u
γ+1
2 ∈ Xs

0(�).
It is worth pointing out that the interest brought to the fractional Laplacian operator is due

to the wide range of its applications, for instance in thin obstacle problems [23], in crystal
dislocation [27] and in phase transition [49].

In the present paper, our aim is to lead investigations about the existence and regularity
of positive solutions to (1.1) establishing some missing results in [11,18]. The case where
γ = 1 is treated in [11,18]. We study the case where 0 < γ < 1 and f ∈ Lm(�) with
1 ≤ m < m which provides infinite energy solutions (see Theorem 3.1 bellow) and we prove
the existence of finite energy solutions to problem (1.1) in the case γ > 1 under some suitable
assumptions on the datum f . Further, to show the accuracy of our results we highlight the
relationship with the Lazer-Mckenna condition. We also provide some regularity results for
solutions as well as the uniqueness of finite energy solutions.

The plan of the paper is organized as follows : in Sect. 2 we give some basic notations and
tools that we will need in this paper, as well as the meaning of solution for the problem (1.1)
and some useful algebraic inequalities. In Sect. 3 we present the main results of the paper i.e.
Theorems 3.1, 3.2, 3.3 and 3.4. Comments and comparisons with previous results known in
the topic are also provided. In Sect. 4 we prove some a priori estimates for the approximate
solutions which we use to prove the main results. In Sect. 5 we prove some regularity results.
At the end, we give an appendix.

2 Basic notations and useful tools

In this section we give some basic facts about fractional Sobolev spaces. For a detailed
expository, we refer to [13,25,26]. Let� be an open subset inRN . For any 0 < s < 1 and for
any 1 ≤ q < +∞, the fractional Sobolev spaceWs,q(�) is defined as the set of all functions
(equivalence classes) u in Lq(�) such that

∫

�

∫

�

|u(x) − u(y)|q
|x − y|N+qs

dydx < ∞.

Ws,q(�), also known asAronszajn,Gagliardo or Slobodeckij spaces, is a Banach space when
equipped with the natural norm

‖u‖Ws,q (�) = ‖u‖Lq (�) +
( ∫

�

∫

�

|u(x) − u(y)|q
|x − y|N+qs

dydx

) 1
q

. (2.1)

It can be regarded as an intermediate space between Lq(�) and W 1,q(�). Recall that the
space Ws,q(�) is reflexive for all q > 1 (see [34, Theorem 6.8.4]). We point out that if
0 < s ≤ s′ < 1 then Ws′,q(�) is continuously embedded in Ws,q(�) (see [26, Proposition
2.1]).
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Throughout the paper, we will make use of the notations supp( f ) to designate the support
of the function f and ω ⊂⊂ � that means ω is a compact subset of �.

Let us define Ws,q
0 (�) as the closure of the set C∞

0 (�) in Ws,q(RN ) with respect to the
norm ‖ · ‖Ws,q (RN ) defined in (2.1) where

C∞
0 (�) :=

{

f : RN → R/ f ∈ C∞(RN ), supp( f ) ⊂⊂ �

}

.

Ws,q
0 (�) is a Banach space under the norm ‖ ·‖Ws,q (�). Let us recall the following Fractional

Poincaré-type inequality.

Lemma 2.1 ([6]) Let � be a bounded open subset of RN of class C0,1, q ≥ 1 and let
0 < s < 1. Then there exists a constant C(N , s,�) such that for any f ∈ Ws,q

0 (�) one has

‖ f ‖qLq (�) ≤ C(N , s,�)

∫

�

∫

�

| f (x) − f (y)|q
|x − y|N+qs

dydx .

Under the same assumptions of Lemma 2.1, the Banach spaceWs,q
0 (�) can be also endowed

with the norm

‖u‖Ws,q
0 (�) =

( ∫

�

∫

�

|u(x) − u(y)|q
|x − y|N+qs

dydx

) 1
q

which is equivalent to ‖u‖Ws,q (�). In the case where q = 2, we note Ws,2(�) = Hs(�) and
Ws,2

0 (�) = Hs
0 (�). Endowed with the inner product

〈u, v〉Hs
0 (�) =

∫

�

∫

�

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s dydx .

(Hs
0 (�), ‖ · ‖Hs

0 (�)) is a Hilbert space. Now, we define the following spaces

Hs
loc(�) =

{

u : � → R : u ∈ L2(K ),
∫

K

∫

K
|u(x)−u(y)|2
|x−y|N+2s dydx < ∞,

for every K ⊂⊂ �

}

and

Xs
0(�) =

{

f ∈ Hs(RN )/ f = 0 a.e. in C�

}

,

where from now on C� := R
N \ � stands for the complementary of � in RN . Observe that

if � has a continuous boundary, by [29, Theorem 6] (see also [31, Theorem 1.4.2.2]) we can
infer that Xs

0(�) ⊂ Hs
0 (�). Indeed, if f ∈ Xs

0(�) then, by [29, Theorem 6] there exists a
sequence {ρn}n that belongs to C∞

0 (�) satisfying

‖ρn − f ‖Hs (RN ) → 0 as n → +∞
and in particular we obtain

‖ρn − f ‖Hs (�) → 0 as n → +∞,

which yields f ∈ Hs
0 (�). Under the same assumptions of Lemma 2.1, the following quantity

‖u‖Xs
0(�) =

( ∫

Q

|u(x) − u(y)|2
|x − y|N+2s dydx

) 1
2

,
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where Q = R
2N\(C�× C�), is a norm on Xs

0(�). It is well known that the pair (Xs
0(�), ‖ ·

‖Xs
0(�)) is a Hilbert space (see [47, Lemma 7]). It is worth recalling that for any u and ϕ

belonging to Hs(RN ), we have the following duality product
∫

RN
(−�)suϕdx = a(N , s)

2

∫

R2N

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

Thus, it can be seen that

(−�)s : Hs(RN ) → H−s(RN )

is a continuous and symmetric operator defined on Hs(RN ). In the particular case, if u and
ϕ belong to Xs

0(�), we have
∫

RN
(−�)suϕdx = a(N , s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

For N > 2s we define the fractional Sobolev critical exponent 2∗
s = 2N

N−2s . The following
result is a fractional version of the Sobolev inequalitywhich provides a continuous embedding
of Hs

0 (�) in the critical Lebesgue space L2∗
s (�). The proof can be found, for example, in

[26,45].

Theorem 2.1 (Fractional Sobolev embedding) Let 0 < s < 1 be such that N > 2s. Then,
there exists a constant S(N , s) depending only on N and s, such that for all f ∈ C∞

0 (RN )

‖ f ‖2
L2∗s (RN )

≤ S(N , s)
∫∫

R2N

| f (x) − f (y)|2
|x − y|N+2s dydx . (2.2)

We now define the meaning we will give to the solution of the problem(1.1).

Definition 2.1 Let f ∈ L1(�) be a non-negative function. By a weak solution of the problem
(1.1), we mean a measurable function u satisfying

∀ω ⊂⊂ �, ∃cω > 0 : u(x) ≥ cω > 0, in ω (2.3)

and
a(N , s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx =
∫

�

f ϕ

uγ
dx, (2.4)

for any ϕ ∈ C∞
0 (�).

Definition 2.2 We say that u ∈ Xs
0(�) is a finite energy solution of (1.1) if it is a weak

solution u of problem (1.1) which further satisfies (2.4) for every ϕ ∈ Xs
0(�).

Remark 2.1 By Lemma 5.4, if u ∈ Xs
0(�) is a weak solution of problem (1.1) (in the sense

Definition 2.1), then u is a finite energy solution. In other words if u ∈ Xs
0(�) the two

definitions 2.1 and 2.2 are equivalent.

We will also need the following technical algebraic inequalities (See [5, Lemma 2.22]).

Lemma 2.2 i)- Let α > 0. For every x, y ≥ 0 one has

(x − y)(xα − yα) ≥ 4α

(α + 1)2
(x

α+1
2 − y

α+1
2 )2.
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ii)- Let 0 < α < 1. For every x, y ≥ 0 with x �= y one has

x − y

xα − yα
≤ 1

α
(x1−α + y1−α).

iii)- Let 0 < α ≤ 1, then for every x, y ≥ 0 one has

|xα − yα| ≤ |x − y|α.

iv)- Let α ≥ 1, then for every x, y ≥ 0 one has

|xα − yα| ≤ α(xα−1 + yα−1)|x − y|.
v)- Let α ≥ 1, then for every x, y ≥ 0 one has

|x + y|α−1|x − y| ≤ Cα|xα − yα|,
where Cα is a constant depending only on α.

3 Main results

3.1 The case 0 < � < 1 : Infinite energy solutions

We consider the problem (1.1) under the assumption 0 < γ < 1. We recall that in this case
it is proved in [18] that (1.1) has energy solutions when f ∈ Lm(�), where m stands for

the Hölder conjugate exponent of 2∗
s

1−γ
, that is m :=

(
2∗
s

1−γ

)′ = 2N
N+2s+γ (N−2s) . It is in our

purpose here to investigate the remaining range of summability of source terms corresponding
to the data f ∈ Lm(�) with 1 ≤ m < m. We show that the problem (1.1) has solutions lying
in a fractional Sobolev space larger than Hs

0 (�).

Theorem 3.1 Let 0 < γ < 1 and let f ∈ Lm(�), with 1 ≤ m < m. Then the problem (1.1)
admits a weak solution u ∈ Ws1,q

0 (�) f or all s1 < s with q = Nm(1+γ )
N−sm(1−γ )

. Furthermore,

u ∈ Lσ (�) where σ = Nm(1+γ )
N−2sm .

Remark 3.1 Note that q < 2 sincem < m. Moreover, the exponent σ is well defined. Indeed,
since N > 2s we have

4ms < m(N + 2s) < m
(
N + 2s + γ (N − 2s)

)
.

As m < m := 2N
N+2s+γ (N−2s) , we get 4ms < 2N .

Remark 3.2 Observe that the inclusion Ws1,q
0 (�) ⊂ Ws2,q

0 (�) holds for any s2 < s1 (see
[26]). So we infer that it is sufficient to choose s1 very close to s that is s

2−s ≤ s1 < s
which implies that the results in Theorem 3.1 covers that obtained in [15, Theorem 5.6] when
s → 1.

Remark 3.3 Notice that if γ = 0 the problem (1.1) reduces to
{

(−�)su = f in �,

u = 0 on R
N\�,

(3.1)

In [38] the authors proved the existence of a unique weak solution u of the problem (3.1)
such that

123
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1. If f ∈ L1(�) then u ∈ Lq(�) for every q < N
N−2s .

2. If f ∈ Lm(�), with 1 < m < 2N
N+2s , then u ∈ L

Nm
N−2sm (�).

We point out that when 1 < m < m we have a kind of ’continuity’ of the summability of
the solution with respect to γ . If we let γ → 0, the value of σ = Nm(1+γ )

N−2sm tends to Nm
N−2sm

which is exactly the summability of solutions obtained in [38]. However, this ’continuity’
fails to hold when m = 1 since σ = N (1+γ )

N−2s tends to N
N−2s but the solutions obtained in [38]

belong to Lq(�) for every q < N
N−2s . In fact, the case where γ = 0 can not be considered,

this is mainly due to the inequality (4.13) where we divide by γ .

3.2 The case � > 1 : finite energy solutions

Let us recall that Lazer and McKenna [36] proved that the problem
{−�u = f (x)

uγ in �,

u = 0 on ∂�,
(3.2)

where the datum f is regular enough (say Hölder continuous) and bounded away from zero
on �, admits a unique solution u ∈ H1

0 (�) if and only if γ < 3 . In the case where f is a
non-negative function such that f ∈ Lm(�) with m > 1 and strictly far away from zero on
�, the authors [9] proved that if 1 < γ < 3m−1

m+1 then u ∈ H1
0 (�). As regards the case where

the datum f ∈ L1(�), the problem 3.2 has only a local solution u ∈ H1
loc(�)which does not

belong to H1
0 (�) (see [15, Theorem 4.2]). In the case of the fractional Laplacian operator,

J.Giacomoni et al.[7] studied the following problem
⎧
⎨

⎩

(−�)su = f (x)
uγ in �,

u > 0 in �,

u = 0 in R
N \ �,

(3.3)

where f is a Hölder continuous function such that f � 1
distβ (x,∂�)

, with 0 ≤ β < 2s. They

proved that if β
s + γ > 1 then the problem (3.3) admits a unique solution u ∈ Xs

0(�) if and
only if 2β + γ (2s − 1) < 2s + 1. This last inequality implies γ (2s − 1) < 2s + 1. So that
letting s tends to 1− one can find γ < 3 which is exactly the Lazer-Mckenna condition.

In this section, we investigate the existence of finite energy solutions for (1.1) when
γ > 1 and f ∈ Lm(�), with m ≥ 1. We impose some assumptions on the datum f and γ

that provide solutions for (1.1) in Xs
0(�). The first result deals with data f strictly far away

from zero.

Theorem 3.2 Let γ > 1 and s ∈ (0, 1). Assume that f ∈ Lm(�), m > 1, is such
that there exists a positive constant f0 satisfying f (x) ≥ f0 > 0 a.e. x ∈ �. Then
the problem (1.1) admits a weak solution u ∈ Hs

loc(�) such that uα ∈ Xs
0(�) for every

α ∈
(

max
(
1
2 ,

(γ+1)(2sm−m+1)
4sm

)
,

γ+1
2

]

. In particular if γ satisfies

(m(2s − 1) + 1)γ < m(2s + 1) − 1, (3.4)

then u ∈ Xs
0(�).

Remark 3.4 Observe that from (3.4) we get max
(
1
2 ,

(γ+1)(2sm−m+1)
4sm

)
< 1 <

γ+1
2 , so that

α = 1 can be chosen to obtain u ∈ Xs
0(�). Furthermore, notice that for every m > 1 (3.4)

123



153 Page 8 of 34 A. Youssfi, G. O. M. Mahmoud

reads as

γ (2s − 1) + γ

m
< 2s + 1 − 1

m
,

which implies γ (2s − 1) < 2s + 1 and this is exactly the necessary and sufficient condition
for the existence of the unique solution in Xs

0(�) obtained in [7, Theorem 1.2 ii)] when
β = 0. We also observe that when s tends to 1−, the condition (3.4) yields 1 < γ < 3m−1

m+1
and therefore Theorem 3.2 reduces to the same result stated in [9, Theorem 3]. Furthermore,
letting m tends to +∞ in the last inequality we get 1 < γ < 3, which can be seen as an
extension of the Lazer-Mckenna condition [36] for obtaining finite energy solutions to strictly
positive L∞-data.

Remark 3.5 In the local case corresponding to s = 1, it is known that the threshold 3m−1
m+1

obtained in [9, Theorem 3] is not the optimal one. Using [51, Theorem 1], Oliva and Petitta
[42] proved that the optimal threshold is 3− 2

m . For the nonlocal problem (1.1), the situation
is somehow different. Notice that for m > 1 if m−1

2m < s < 1 then (3.4) reads as

γ < h(s) := m(2s + 1) − 1

m(2s − 1) + 1
.

The optimality is lost since s is varying, however we can obtain more information. Observe
that the function h decreases from infinity to 3m−1

m+1 as m−1
2m < s < 1. Setting s̄ := 1 − 1

2m ,

one has m−1
2m < s̄ < 1 and h(s̄) = 3 − 2

m . Thus, for s < s̄ we have h(s̄) = 3 − 2
m < h(s).

On the other hand, if 0 < s ≤ m−1
2m then (3.4) is satisfied for every γ > 1. We conclude that

the range of γ is wide than the one of the local case.

We point out that we can avoid the hypothesis that the source term f is far from zero and we
continue to obtain energy solutions. This is stated in the following theorem.

Theorem 3.3 Let γ > 1 and s ∈ (0, 1). Suppose that f ∈ Lm(�) with m > 1. Then
the problem (1.1) admits a weak solution u ∈ Hs

loc(�) such that uα ∈ Xs
0(�) for every

α ∈
(

max
(
1
2 ,

sm(γ+1)−m+1
2sm

)
,

γ+1
2

]

. In particular, if 1 < γ < 1 + m−1
sm then u ∈ Xs

0(�).

Here again, letting s tends to 1− and m tends to +∞ we obtain 1 < γ < 2 which is a
restriction of the Lazer-Mckenna condition to positive Lm-data, m > 1. Notice that the case
where m = 1 can not be considered in the two last theorems, since the range of α will be
empty. However, if we consider data f ∈ L1(�) with compact support in � we can also
obtain an energy solution. This is stated in the following theorem.

Theorem 3.4 Let γ > 1 and s ∈ (0, 1). Suppose that f ∈ L1(�) with compact support in
�. Then the problem (1.1) admits a weak solution u ∈ Hs

loc(�) such that uα ∈ Xs
0(�) for

every α ∈
(

1
2 ,

γ+1
2

]

. In particular, u ∈ Xs
0(�).

We point out that the Lazer-Mckenna condition vanishes when we deal with positive L1-data
having compact support.

3.3 Uniqueness of finite energy solutions

As mentioned in the introduction, the existence of weak solutions for the problem (1.1) lying
Xs
0(�) has been proved in [18, Theorem 3.2] when 0 < γ ≤ 1 and f ∈ Lm(�). In the case

123
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where γ > 1, the existence of a weak solution u ∈ Xs
0(�) to the problem (1.1) is obtained

in the previous theorems 3.2, 3.3 and 3.4. In the following theorem we prove the uniqueness
of finite energy solutions to the problem (1.1).

Theorem 3.5 Let γ > 0 and s ∈ (0, 1). Let 0 < f ∈ L1(�) be such that the problem (1.1)
admits a finite energy solution u ∈ Xs

0(�) (in the sense of Definition 2.2). Then u is unique.

4 Proof of main results

4.1 Approximated problems

Consider the sequence of approximate problems
⎧
⎪⎨

⎪⎩

(−�)sun = fn
(un+ 1

n )γ
in �,

un > 0 in �,

un = 0 on R
N\�,

(4.1)

where fn = min( f , n). The following results are proved in [11].

Lemma 4.1 ([11, Lemma 3.1]) For each integer n ∈ N, the problem (4.1) admits a non-
negative solution un ∈ Xs

0(�) ∩ L∞(�) in the sense

a(N , s)

2

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx =
∫

�

fnϕ

(un + 1
n )γ

dx,

for every ϕ ∈ Xs
0(�).

Lemma 4.2 ([11, Lemma 3.2]) The sequence {un}n∈N is an increasing and for every subset
ω ⊂⊂ �, there exists a positive constant cω, not depending on n, such that

un(x) ≥ cω > 0, for every x ∈ ω and for every n ∈ N.

Lemma 4.3 Let γ > 1, f ∈ L1(�) and let un ∈ Xs
0(�) ∩ L∞(�) be a solution of the

problem (4.1). Then the sequence {un} is uniformly bounded in Hs
loc(�).

Proof Taking uγ
n a test function in (4.1), we obtain
∫

Q

(un(x) − un(y))(u
γ
n (x) − uγ

n (y))

|x − y|N+2s dydx ≤ 2‖ f ‖L1(�)

a(N , s)
. (4.2)

An application of the item i) in Lemma 2.2 yields

∫

Q

∣
∣
∣u

γ+1
2

n (x) − u
γ+1
2

n (y)
∣
∣
∣
2

|x − y|N+2s dydx ≤ (γ + 1)2

2γ a(N , s)
‖ f ‖L1(�).

Then by the Sobolev inequality (2.2) we get
∫

�

|un(x)|
(γ+1)

2 2∗
s dx ≤

(
S(N , s)

(γ + 1)2

2γ a(N , s)

) N
N−2s ‖ f ‖

N
N−2s

L1(�)
.

As (γ+1)
2 2∗

s > 2, the sequence {un}n is uniformly bounded in L2(�). On the other hand, let
ω be a compact subset of �. Applying the item v) in Lemma 2.2 (recall that γ > 1) and
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Lemma 4.2 in the left-hand side of the inequality (4.2), we obtain

∫

Q

|un(x) − un(y)||uγ
n (x) − uγ

n (y)|
|x − y|N+2s dydx

≥ 1

Cγ

∫

�

∫

�

|un(x) − un(y)|2|un(x) + un(y)|γ−1

|x − y|N+2s dydx

≥ 1

Cγ

∫

ω

∫

ω

|un(x) − un(y)|2|un(x) + un(y)|γ−1

|x − y|N+2s dydx

≥ 1

Cγ

(2cω)γ−1
∫

ω

∫

ω

|un(x) − un(y)|2
|x − y|N+2s dydx .

This shows that {un}n is uniformly bounded in Hs
loc(�). ��

Now, let φ ∈ Xs
0(�) ∩ L∞(�) be the solution (see [38]) of the following problem

{
(−�)sφ = 1 in �,

φ = 0 on R
N\�.

(4.3)

In order to prove Theorem 3.2, we shall prove the following comparison result for the approx-
imate solutions un . In the proof of this comparison result, we use Lemma 2.7 and Lemma
2.9 of [46], which require that � is a bounded domain which satisfies the condition of the
ball. Such a condition is equivalent (see [8, Lemma 2.2]) to say that � is a bounded domain
of class C1,1.

Lemma 4.4 (Comparison result) Let γ > 1, θ ∈ (1, 2) and let un be a solution of the problem
(4.1). Then there exists a positive constant T not depending on n such that

un ≥ un :=
[

Tφθ + 1

n
1+γ
2

] 2
1+γ − 1

n
. (4.4)

Proof We shall prove that there exists a sub-solution un of the approximate problem (4.1),
that is ⎧

⎪⎨

⎪⎩

(−�)sun ≤ fn
(un+ 1

n )γ
in �,

un > 0 in �,

un = 0 on RN\�,

(4.5)

such that un ≥ un .

Let un := ψ
2

1+γ
n (x)− 1

n , where we have setψn = Tφθ + 1

n
1+γ
2

and T > 0 is a constant not

depending on n and that will be chosen later. We will show that un satisfies (4.5). Applying

the inequality (5.1) with F(t) = t
2

1+γ yields

(−�)sun(x) = (−�)s
(

ψ
2

γ+1
n − 1

n

)

(x) = (−�)s(F ◦ ψn)(x)

≤ F ′(ψn(x))(−�)sψn(x) − a(N ,s)(γ+1)T 2

2 F ′′(ψn(x))
∫

RN
|φθ (x)−φθ (y)|2

|x−y|N+2s dy

= 2T
1+γ

ψ

1−γ
1+γ
n (x)(−�)s(φθ (x)) + (γ−1)T 2

(γ+1)ψ
2γ
1+γ
n (x)

a(N , s)
∫

RN
|φθ (x)−φθ (y)|2

|x−y|N+2s dy.
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Since θ > 1, the function g(t) = tθ , t > 0, is convex so that one has the identity g(t)−g(t ′) ≤
g′(t)(t − t ′) which holds true for every t ′, t . Using the fact that φ solves (4.3), we get

(−�)s(φθ (x)) ≤ θφθ−1(x)(−�)s(φ(x)) = θφθ−1(x), for every x ∈ �.

Then, for every x ∈ � we get

(−�)sun(x)

≤ T

ψ

2γ
1+γ
n (x)

(
2θ
1+γ

ψn(x)φθ−1(x) + (γ−1)T
γ+1 a(N , s)

∫

RN
|φθ (x)−φθ (y)|2

|x−y|N+2s dy

)

. (4.6)

On the other hand, let BR be an open ball with radius R > 0 such that � ⊂ BR and set
d1 := dist(∂�, ∂BR) > 0. For every x ∈ �, we can write

∫

RN
|φθ (x)−φθ (y)|2

|x−y|N+2s dy = ∫

BR\�
|φθ (x)−φθ (y)|2

|x−y|N+2s dy + ∫

RN \BR

|φθ (x)−φθ (y)|2
|x−y|N+2s dy

+ ∫

�
|φθ (x)−φθ (y)|2

|x−y|N+2s dy

= I1(x) + I2(x) + I3(x).

We start by estimating the first integral I1. Since � is a bounded domain of class C1,1, by
[46, Lemma 2.7] there exists a positive constant C1, depending only on � and s, such that
|φ(x)| ≤ C1δ

s(x) for all x ∈ �, where δ(x) := dist(x, ∂�). Whence, we get

I1(x) =
∫

BR\�
|φθ (x)|2

|x − y|N+2s dy ≤ C2θ
1

∫

BR\�
|δsθ (x)|2

|x − y|N+2s dy.

Note that for (x, y) ∈ � × BR\�, we have δ(x) ≤ |x − y|. Thus, we can write passing to
the polar coordinates

I1(x) ≤ C2θ
1

∫

BR\�
dy

|x − y|N−2s(θ−1)
dy

≤ C2θ
1

∫

{0≤|z|≤2R}
dz

|z|N−2s(θ−1)

= C2θ
1 |SN−1|

∫ 2R

0
r2s(θ−1)−1dr = C ′

1,

with C ′
1 = (2R)2s(θ−1)C2θ

1 |SN−1|
2s(θ−1) , where from now on |SN−1| stands for the Lebesgue measure

of the unit sphere in R
N . For the second integral I2(x), noticing that

|x − y| ≥ d1 := dist(∂�, ∂BR) > 0 for every (x, y) ∈ � × (RN\BR),

we can estimate I2 as follows

I2(x) =
∫

RN \BR

|φθ (x)|2
|x − y|N+2s dy

≤ ‖φ‖2θL∞(�)

∫

|z|≥d1

dz

|z|N+2s dy

= ‖φ‖2θL∞(�)|SN−1|
∫ +∞

d1

dr

r2s+1 = C ′
2,
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where C ′
2 = ‖φ‖2θL∞(�)

|SN−1|
2sd2s1

. We now turn to estimate I3(x). Combining i i i) et iv) of

Lemma 2.2, we obtain

|φθ (x) − φθ (y)|2 ≤ 2θ2|φ(x) − φ(y)|2θ + 8θ2φ2(θ−1)(x)|φ(x) − φ(y)|2. (4.7)

By [46, Lemma 2.9] the function φ is Cβ(�) for all β ∈ (0, 2s). In particular and in what
followswemake the choiceβ ∈ (s,min(1, sθ)). Furthermore, there exists a constantC3 > 0,
depending on �, s and β, such that for every x ∈ �

|φ(x) − φ(y)| ≤ C3|x − y|β
(

δ(x)

2

)s−β

, (4.8)

for every y ∈ B δ(x)
2

(x), where B δ(x)
2

(x) stands for the open ball of radius δ(x)
2 centered at x

with δ(x) := dist(x, ∂�). Now, using (4.7) we can write for every x, y ∈ �

I3(x) =
∫

�

|φθ (x) − φθ (y)|2
|x − y|N+2s dy ≤ 2θ2

∫

�

|φ(x) − φ(y)|2θ
|x − y|N+2s dy

+8θ2
∫

�

φ2(θ−1)(x)|φ(x) − φ(y)|2
|x − y|N+2s dy.

Splitting the second integral on the right-hand side, we obtain

I3(x) ≤ 2θ2
∫

�

|φ(x) − φ(y)|2θ
|x − y|N+2s dy

+8θ2
∫

{y∈�:|x−y|≥ δ(x)
2 }

φ2(θ−1)(x)|φ(x) − φ(y)|2
|x − y|N+2s dy

+8θ2
∫

{y∈�:|x−y|< δ(x)
2 }

φ2(θ−1)(x)|φ(x) − φ(y)|2
|x − y|N+2s dy

:= J1(x) + J2(x) + J3(x).

We shall estimate J1(x), J2(x) and J3(x). For J1(x), we note that by [46, Proposition 1.1]
we have φ ∈ Cs(RN ). In addition, there exists a positive constant c3 such that for every x ,
y ∈ R

N , |φ(x) − φ(y)| ≤ c3|x − y|s . Thus,

J1(x) ≤ 2θ2c2θ3

∫

�

dy

|x − y|N−2s(θ−1)
dy.

We calculate the integral using the change of variable z = x − y. We have
∫

�

dy

|x − y|N−2s(θ−1)

=
∫

�∩|x−y|>1

dy

|x − y|N−2s(θ−1)
+

∫

�∩|x−y|≤1

dy

|x − y|N−2s(θ−1)

≤ |�| +
∫

|z|≤1

dz

|z|N−2s(θ−1)
= |�| + |SN−1|

2s(θ − 1)
.

(4.9)

Thus, we obtain

J1(x) ≤ 2θ2c2θ3
(
|�| + |SN−1|

2s(θ − 1)

)
.
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For J2 we use the fact that φ ∈ Cs(RN ) and |φ(x)| ≤ C1δ
s(x) for all x ∈ �. By (4.9) we get

J2(x) ≤ 8θ2c23
(
2sC1

)2(θ−1) ∫

�
dy

|x−y|N−2s(θ−1)

≤ 8θ2c23
(
2sC1

)2(θ−1)
(
|�| + |SN−1|

2s(θ−1)

)
.

While for J3(x) we use (4.8) and |φ(x)| ≤ C1δ
s(x) for all x ∈ �. We arrive at

J3(x) ≤ 8θ2
(
2β−sCθ−1

1 C3
)2

∫

{y∈�:|x−y|< δ(x)
2 }

δ2(sθ−β)(x)

|x − y|N−2(β−s)
dy.

The fact that β ∈ (s,min(1, sθ)) and that � is bounded, enables us to get

J3(x) ≤
8θ2

(
2β−sCθ−1

1 C3
)2(

diam(�)
)2(sθ−β) ∫

{y∈�:|x−y|< δ(x)
2 }

dy
|x−y|N−2(β−s)

≤ 4θ2
(
2β−sCθ−1

1 C3
)2(

diam(�)
)2s(θ−1) |SN−1|

β−s ,

where diam(�) stands for the diameter of�. Finally, there exists a constantC ′
3 > 0 depend-

ing on �, R, N , s, θ and β, such that

I3(x) ≤ C ′
3.

Let T0 = min(1, f0) and let us choose T small enough such that

0 < T

[
2θ
1+γ

(
T ‖φ‖θ

L∞(�) + 1)
)‖φ‖θ−1

L∞(�) + 3(γ−1)T
γ+1 a(N , s)max(C ′

1,C
′
2,C

′
3)

]

≤ T0.

Going back to (4.6), we deduce that for every x ∈ �

(−�)sun(x) ≤ T0

ψ

2γ
1+γ
n (x)

,

which yields

(−�)sun(x) ≤ fn(x)

(un + 1
n )γ

.

Thus, un is a sub-solution of (4.1). Now, we prove that un(x) ≥ un(x) for every x ∈ �.
Assume by contradiction that there exists ξ ∈ � such that

un(ξ) < un(ξ). (4.10)

Then we have

(−�)s(un − un)(ξ) = (−�)sun(ξ) − (−�)sun(ξ)

≥ fn(ξ)

[
1

(un(ξ)+ 1
n )γ

− 1
(un(ξ)+ 1

n )γ

]

> 0.

It follows from the weak maximum principle [48] that (un − un)(ξ) ≥ 0, which contradicts
(4.10). Therefore, we have

un(x) + 1

n
≥ ψ

2
1+γ
n (x) =

[

Tφθ (x) + 1

n
1+γ
2

] 2
1+γ

.

��
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4.2 The case 0 < � < 1 : Proof of Theorem 3.1

In order to prove the existence of solutions for the problem (1.1), we first need to prove some
a priori estimates on un .

4.2.1 A priori estimates

Lemma 4.5 Let f ≥ 0, f ∈ Lm(�), with 1 ≤ m < m := 2N
N+2s+γ (N−2s) , and un be a

solution of the problem (4.1). If 0 < γ < 1, then {un} is uniformly bounded in Ws1,q
0 (�) for

all s1 < s, where q = Nm(1+γ )
N−sm(1−γ )

. Moreover, {un} is uniformly bounded in Lσ (�), where

σ = Nm(1+γ )
N−2sm .

Proof Let n ∈ N, n ≥ 1, and let γ ≤ θ < 1 to be chosen later. Let 0 < ε < 1
n . By [38,

Proposition 3.], the function (un + ε)θ − εθ is an admissible test function in (4.1). Taking it
so, it yields

∫

�

∫

�

(un(x) − un(y))((un(x) + ε)θ − (un(y) + ε)θ )

|x − y|N+2s dydx

≤ 2

a(N , s)

∫

�

fn(un(x) + ε)θ−γ dx .

Passing to the limit as ε tends to 0, we obtain
∫

�

∫

�

(un(x) − un(y))(uθ
n(x) − uθ

n(y))

|x − y|N+2s dydx ≤ 2

a(N , s)

∫

�

fnun(x)
θ−γ dx . (4.11)

By the item i) of Lemma 2.2, we can minimize the term in the left-hand side of (4.11) as
follows

∫

�

∫

�

∣
∣
∣u

θ+1
2

n (x) − u
θ+1
2

n (y)
∣
∣
∣
2

|x − y|N+2s dydx ≤ (θ + 1)2

2a(N , s)θ

∫

�

fnu
θ−γ
n dx .

Applying the fractional Sobolev inequality, we obtain

∫

�

|un(x)|
N (θ+1)
N−2s dx ≤

[
S(N , s)(θ + 1)2

2a(N , s)θ

] N
N−2s

[ ∫

�

fnu
θ−γ
n dx

] N
N−2s

. (4.12)

• If m = 1, then the choice θ = γ gives

∫

�

|un(x)|
N (γ+1)
N−2s dx ≤

[
S(N , s)(γ + 1)2

2a(N , s)γ

] N
N−2s ‖ f ‖

N
N−2s

L1(�)
. (4.13)

•While if 1 < m < m and γ < θ < 1, an application of Hölder’s inequality in the right-hand
side term of (4.12) with the exponents m and m′ := m

m−1 , gives
∫

�

|un(x)|
N (θ+1)
N−2s dx ≤

[
S(N , s)(θ + 1)2

2a(N , s)θ

] N
N−2s ‖ f ‖

N
N−2s
Lm (�)

( ∫

�

|un |(θ−γ )m′
dx

) N
m′(N−2s)

.

(4.14)
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We now choose θ to be such that N (θ+1)
N−2s = (θ − γ )m′, that is

θ = N (m − 1) + γm(N − 2s)

N − 2sm
.

Observe that the assumption m < m implies θ < 1 and since γ > 0 we have γ < θ . This
choice of θ yields

N (θ + 1)

N − 2s
= Nm(1 + γ )

N − 2sm
= σ.

Noticing that N
m′(N−2s) < 1 and using (4.14) we deduce the following inequality

∫

�

|un(x)|
Nm(1+γ )
N−2sm dx ≤

[
S(N , s)(θ + 1)2

2a(N , s)θ

] Nm
N−2sm ‖ f ‖

Nm
N−2sm
Lm (�) . (4.15)

Thus, from (4.13) and (4.15) we conclude that the sequence {un}n is uniformly bounded in
Lσ (�) for σ = Nm(1+γ )

N−2sm and 1 ≤ m < m.
Now, going back to the inequality (4.11) and following exactly the same lines as above,

that is ifm = 1we choose θ = γ while if 1 ≤ m < m we choose θ = N (m−1)+γm(N−2s)
N−2sm < 1.

In both cases, applying the Hölder inequality we obtain

∫

�

∫

�

(un(x) − un(y))(uθ
n(x) − uθ

n(y))

|x − y|N+2s dydx ≤ C, (4.16)

where C is a positive constant not depending on n. Let s1 ∈ (0, s) be fixed and let q =
Nm(1+γ )

N−sm(1−γ )
. We set θ = N (m−1)+γm(N−2s)

N−2sm for 1 ≤ m < m (we note that θ = γ if m = 1).
We note that q ≥ m(1 + γ ) > 1 and the assumption m < m implies q < 2. Thus, observe
that N + qs1 can be splitted as follows

N + qs1 = q

2
N + qs + 2 − q

2
N − q(s − s1).

Hence, setting �̃ := {
y ∈ � : un(y) �= un(x)

}
we can write

∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx =
∫

�

∫

�̃

|un(x) − un(y)|q
|x − y| q2 N+qs

× (uθ
n(x) − uθ

n(y))

(un(x) − un(y))

× (un(x) − un(y))

(uθ
n(x) − uθ

n(y))
× dydx

|x − y| 2−q
2 N−q(s−s1)

.

Observe that the quantity in the middle of the product inside the integral can be written as
follows

(uθ
n(x) − uθ

n(y))

(un(x) − un(y))
=

(
(uθ

n(x) − uθ
n(y))

(un(x) − un(y))

) q
2 ×

(
(uθ

n(x) − uθ
n(y))

(un(x) − un(y))

) 2−q
2

,
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we obtain
∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx

=
∫

�

∫

{y∈�:un(y)�=un(x)}

[ |un(x) − un(y)|q
|x − y| q2 N+qs

×
(

(uθ
n(x) − uθ

n(y))

(un(x) − un(y))

) q
2
]

×
[(

(uθ
n(x) − uθ

n(y))

(un(x) − un(y))

) 2−q
2 × (un(x) − un(y))

(uθ
n(x) − uθ

n(y))
× 1

|x − y| 2−q
2 N−q(s−s1)

]

dydx .

Now using Hölder’s inequality with the exponents 2
q and 2

2−q , we obtain

∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx

≤
[ ∫

�

∫

�̃

|un(x) − un(y)|2
|x − y|N+2s × |uθ

n(x) − uθ
n(y)|

|un(x) − un(y)|dydx
] q

2

×
[ ∫

�

∫

�̃

(uθ
n(x) − uθ

n(y))

(un(x) − un(y))
×

(
(un(x) − un(y))

(uθ
n(x) − uθ

n(y))

) 2
2−q × dydx

|x − y|N−β

] 2−q
2

=
[ ∫

�

∫

�̃

|un(x) − un(y)|2
|x − y|N+2s × |uθ

n(x) − uθ
n(y)|

|un(x) − un(y)|dydx
] q

2

×
[ ∫

�

∫

�̃

(
(un(x) − un(y))

(uθ
n(x) − uθ

n(y))

) 2
2−q × (uθ

n(x) − uθ
n(y))

(un(x) − un(y))
× dydx

|x − y|N−β

] 2−q
2

,

(4.17)

where we have set β = 2q(s−s1)
2−q . Then,

∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx ≤
( ∫

�

∫

�

(un(x) − un(y))(uθ
n(x) − uθ

n(y))

|x − y|N+2s dydx

) q
2

×
( ∫

�

∫

�̃

(
un(x) − un(y)

uθ
n(x) − uθ

n(y)

) q
2−q × dydx

|x − y|N−β

) 2−q
2

.

Using the item i i) of Lemma 2.2 and the inequality (4.16), we obtain

∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx ≤

C1

( ∫

�

∫

�

(

u
q(1−θ)
2−q

n (x) + u
q(1−θ)
2−q

n (y)

)

× dydx

|x − y|N−β

) 2−q
2

,

whereC1 is a positive constant not depending on n. By x/y symmetry, there exists a constant
C2, not depending on n, such that

∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx ≤ C2

( ∫

�

u
q(1−θ)
2−q

n (x)

[ ∫

�

dy

|x − y|N−β

]

dx

) 2−q
2

.
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Observing that q(1−θ)
2−q = σ := Nm(1+γ )

N−2s and having in mind (4.9) we get

∫

�

∫

�

|un(x) − un(y)|q
|x − y|N+qs1

dydx ≤ C3,

where C3 is a positive constant not depending on n. Thus, {un} is uniformly bounded in
Ws1,q

0 (�) for every s1 < s. ��

Remark 4.1 Note that we can repeat the same lines as in the proof of Lemma 4.5 above with
the exponent q instead of q in (4.17), with 1 ≤ q ≤ q . We obtain that {un} is uniformly
bounded in Ws1,q

0 (�) for all 1 ≤ q ≤ q and for every s1 < s and 1 ≤ m < m.

4.2.2 Passage to the limit

Now, under the assumptions of Theorem 3.1, we are going to prove the existence of solution
u to (1.1).

Proof of of Theorem 3.1 From Lemma 4.5 and by the compact embedding of Ws1,q
0 (�) into

L1(�) (see [26, Corollary 7.2] or [25, Theorem 4.54]), there exist a subsequence of {un}n ,
still indexed by n, and a measurable function u ∈ Ws1,q

0 (�) such that

un⇀u weakly in Ws1,q
0 (�),

un → u in norm in L1(�),

un → u a.e. in R
N .

Then

un(x) − un(y)

|x − y|N+2s → u(x) − u(y)

|x − y|N+2s a.e. in Q.

Let ρ > 0 be a small enough real number that we will choose later. For any ϕ ∈ C∞
0 (�) we

have
∫

�

∫

�

[ |(un(x) − un(y))(ϕ(x) − ϕ(y))|
|x − y|N+2s

]1+ρ

dydx

≤
∫

�

∫

�

|un(x) − un(y)|1+ρ(‖∇ϕ‖L∞(�)|x − y|)1+ρ

|x − y|N+(1+ρ)s1

dydx

|x − y|ρN+(1+ρ)(2s−s1)

≤ ‖∇ϕ‖1+ρ

L∞(�)

∫

�

∫

�

|un(x) − un(y)|1+ρ |x − y|(1+ρ)(1+s1−2s)−ρN

|x − y|N+(1+ρ)s1
dydx .

We now choose ρ to be such that (1+ ρ)(1+ s1 − 2s) − ρN ≥ 0. To do so, we consider s1
to be very close of s. Precisely, we impose on s1 the condition

max(0, 1 − 3s) < s − s1 < 1 − s.

We point out that with this range of values of s1 and with the assumption N > 2s, we obtain

1 + s1 − 2s > 0 and N − 1 − s1 + 2s > 0.
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Thus, the fact that (1 + ρ)(1 + s1 − 2s) − ρN ≥ 0 is equivalent to 0 < ρ ≤ 1+s1−2s
N−1−s1+2s .

Therefore, we have

∫

�

∫

�

[ |(un(x) − un(y))(ϕ(x) − ϕ(y))|
|x − y|N+2s

]1+ρ

dydx

≤ ‖∇ϕ‖1+ρ

L∞(�)diam(�)(1+ρ)(1+s1−2s)−ρN
∫

�

∫

�

|un(x) − un(y)|1+ρ

|x − y|N+(1+ρ)s1
dydx .

(4.18)

Now we have to make a choice of ρ to prove that the right-hand integral in (4.18) is
uniformly bounded. By Remark 4.1 we have the uniform boundedness of {un}n inWs1,q

0 (�)

for every 1 ≤ q ≤ q = Nm(1+γ )
N−sm(1−γ )

. So it is sufficient to choose ρ such that 1 + ρ ≤ q =
Nm(1+γ )

N−sm(1−γ )
. Thus, the choice we need for ρ is the following

0 < ρ ≤ min
(N (m − 1) + mγ (N − s) + sm

N − sm(1 − γ )
,

1 + s1 − 2s

N − 1 − s1 + 2s

)
.

Therefore, there is a constant C > 0, not depending on n, such that

sup
n

∫

�

∫

�

[
(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

]1+ρ

dydx ≤ C .

Finally, by De La Vallée Poussin and Dunford-Pettis theorems the sequence

{ (un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

}

is equi-integrable in L1(�×�). Now, inserting ϕ ∈ C∞
0 (�) as a test function in (4.1) yields

a(N , s)

2

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx =
∫

�

fnϕ

(un + 1
n )γ

dx . (4.19)

We split the integral in the left-hand side of (4.19) into three integrals as follows
∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

�

∫

�

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

+
∫

�

∫

C�

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

+
∫

C�

∫

�

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

= I1 + I2 + I3.

(4.20)

By Vitali’s lemma we have

lim
n→∞

∫

�

∫

�

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

�

∫

�

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .
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For the second integral I2 in (4.20), we start noticing that since un(y) = ϕ(y) = 0 for every
y ∈ C� we can write

∣
∣
∣
(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s

∣
∣
∣ = |un(x)ϕ(x)|

|x − y|N+2s for every (x, y) ∈ � × C�.

As a consequence of the convergence in norm of the sequence {un} in L1(�) there exist a
subsequence of {un} still indexed by n and a positive function g in L1(�) such that

|un(x)| ≤ g(x) a.e. in �,

which enables us to get

|(un(x) − un(y))(ϕ(x) − ϕ(y))|
|x − y|N+2s ≤ |g(x)ϕ(x)|

|x − y|N+2s a.e. in (x, y) ∈ � × C�

and so we can write
∫

�

∫

C�

|g(x)ϕ(x)|
|x − y|N+2s dydx =

∫

supp(ϕ)

∫

C�

|g(x)ϕ(x)|
|x − y|N+2s dydx

≤ ‖ϕ‖L∞(�)

∫

supp(ϕ)

|g(x)|
[ ∫

C�

dy

|x − y|N+2s

]

dx .

Since supp(ϕ) is a compact subset in �, we have

|x − y| ≥ d2 := dist(supp(ϕ), ∂�) > 0 for every (x, y) ∈ supp(ϕ) × C�.

Hence passing to the polar coordinates, an easy computation leads to
∫

C�

dy

|x − y|N+2s =
∫

{z∈RN :|z|≥d2}
dz

|z|N+2s =
∫ +∞

d2

∫

v=1

dvdr

r2s+1 = |SN−1|
2sd2s2

.

This shows that the function (x, y) → |g(x)ϕ(x)|
|x−y|N+2s belongs to L1(� × C�). Therefore, by the

Lebesgue dominated convergence theorem we obtain

lim
n→∞

∫

�

∫

C�

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

�

∫

C�

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

By x/y symmetry, the third integral I3 in (4.20) can be treated in the similar way. Finally,
we conclude that

lim
n→∞

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx,

for all ϕ ∈ C∞
0 (�). Now, for what concerns the right-hand side of (4.19), by virtue of Lemma

4.2, for any ϕ ∈ C∞
0 (�) with supp(ϕ) = ω, there exists a constant cω > 0 not depending

on n such that

0 ≤
∣
∣
∣
∣

fnϕ

(un + 1
n )γ

∣
∣
∣
∣ ≤ | f ‖ϕ|

cγ
ω

∈ L1(�).
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So that by the Lebesgue dominated convergence theorem we get

lim
n→∞

∫

�

fnϕ

(un + 1
n )γ

dx =
∫

�

f ϕ

uγ
dx .

Finally, passing to the limit in (4.19) as n → +∞ we obtain

a(N , s)

2

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx =
∫

�

f ϕ

uγ
dx,

for all ϕ ∈ C∞
0 (�). That is u is a weak solution of (1.1). Furthermore, from (4.13) and (4.15)

we conclude by Fatou’s lemma that u ∈ Lσ (�) with σ = Nm(1+γ )
N−2sm and 1 ≤ m < m. ��

4.3 The case � > 1 : Proof of Theorem 3.2

4.3.1 A priori estimates

Lemma 4.6 Let 0 < f0 ≤ f ∈ Lm(�), m > 1, where f0 is a positive constant. Let γ > 1,
s ∈ (0, 1) and let un be a solution of the problem (4.1). Then the sequence {uα

n }n is uniformly
bounded in Xs

0(�) for every α ∈
(

max
(
1
2 ,

(γ+1)(2sm−m+1)
4sm

)
,

γ+1
2

]

. Furthermore, if γ

satisfies (
m(2s − 1) + 1

)
γ < m(2s + 1) − 1, (4.21)

then {un}n is uniformly bounded in Xs
0(�).

Proof We shall prove a priori estimates on uα
n in Xs

0(�) for every α such that

max
(
1
2 ,

(γ+1)(2sm−m+1)
4sm

)
< α ≤ γ+1

2 . Let n ≥ 1 and let 0 < ε < 1
n . For η > 0, tak-

ing (un + ε)η − εη as a test function in (4.1), we obtain

a(N , s)

2

∫

Q

(un(x) − un(y))((un(x) + ε)η − (un(y) + ε)η)

|x − y|N+2s dydx

≤
∫

�

fn
(un(x) + 1

n )γ−η
dx .

The passage to the limit in ε yields

∫

Q

(un(x) − un(y))(u
η
n(x) − uη

n(y))

|x − y|N+2s dydx ≤ 2

a(N , s)

∫

�

fn
(un(x) + 1

n )γ−η
dx .

An application of the item i) in Lemma 2.2 and the Hölder inequality lead to

∫

Q

|u
η+1
2

n (x) − u
η+1
2

n (y)|2
|x − y|N+2s dydx

≤ C(η, N , s)‖ f ‖Lm (�)

( ∫

�

dx
(
un(x) + 1

n

)(γ−η)m′

) 1
m′

.
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Let η be such that 0 < η ≤ γ . We can use (4.4) to get

∫

Q

|u
η+1
2

n (x) − u
η+1
2

n (y)|2
|x − y|N+2s dydx

≤ C(η, N , s)‖ f ‖Lm (�)

( ∫

�

dx
(

Tφθ (x) + 1

n
1+γ
2

) 2(γ−η)m′
1+γ

) 1
m′

.

From [12, Lemma 4.2] we know that there exists a positive constant C > 0, depending only
on � and s, such that for every x ∈ �, φ(x) ≥ Cδs(x), where δ(x) := dist(x, ∂�). Using
this, the above inequality reads as

∫

Q

|u
η+1
2

n (x) − u
η+1
2

n (y)|2
|x − y|N+2s dydx ≤ C‖ f ‖Lm (�)

[ ∫

�

dx

δ
2s(γ−η)m′

γ+1 θ
(x)

] 1
m′

.

Choosing α = η+1
2 > 1

2 , we must seek for the range of α that ensures the convergence of

the integral in the right-hand side in the above inequality. If α = γ+1
2 the integral obviously

converges. If α <
γ+1
2 it is sufficient to have 2s(γ+1−2α)m′

γ+1 θ < 1. If it is so, we get θ <

γ+1
2s(γ+1−2α)m′ . In order that θ ∈ (1, 2) exists, it suffices to have 1 <

γ+1
2s(γ+1−2α)m′ . This yields,

2sm−m+1
4sm (γ + 1) < α. Finally, if max

(
1
2 ,

(γ+1)(2sm−m+1)
4sm

)
< α ≤ γ+1

2 then the sequence

{uα
n }n is uniformly bounded in Xs

0(�).

Furthermore, if the condition (4.21) holds then (γ+1)(2sm−m+1)
4sm < 1 and so we can chose

α = 1 obtaining the uniform boundedness of the sequence {un}n in u ∈ Xs
0(�). ��

4.3.2 Passage to the limit

Proof of Theorem 3.2 By Lemma 4.6 the sequence {uα
n }n is uniformly bounded in Xs

0(�)

and by the compact embedding in [26, Corollary 7.2] (see also [25, Theorem 4.54.]), there
exists a subsequence of {uα

n }n , still indexed by n, and a function vα ∈ Xs
0(�) such that

uα
n → vα in L1(�) and uα

n → vα a.e. in R
N . In particular, the sequence {un} is uniformly

bounded in L
γ+1
2 (�) and as γ+1

2 > 1 it is also uniformly bounded in L1(�). Thanks to
Lemma 4.2, the sequence {un}n is increasing so that by Beppo-Levi’s theorem the function
u(x) := limn→∞ un(x), for a.e. x ∈ �, belongs to L1(�). Since un = 0 on R

N \ � we can
extend u outside of � by setting u = 0 on R

N \ � and then we obtain un → u a.e. in R
N .

By the uniqueness of the limit we get vα = uα a.e. in RN . Therefore, uα ∈ Xs
0(�) for every

max
(
1
2 ,

(γ+1)(2sm−m+1)
4sm

)
< α ≤ γ+1

2 . If the condition (4.21) holds, we can take α = 1

obtaining u ∈ Xs
0(�).

Now, inserting ϕ ∈ C∞
0 (�) as a test function in (4.1) we have

a(N , s)

2

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx =
∫

�

fnϕ

(un + 1
n )γ

dx . (4.22)

The fact that un → u a.e. in R
N implies

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s → (u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s a.e. in R
N × R

N .
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By Lemma 4.3, the sequence {un}n is uniformly bounded in Hs
loc(�) and so we have

un(x) − un(y)

|x − y| N+2s
2

⇀
u(x) − u(y)

|x − y| N+2s
2

weakly in L2(K × K ) (4.23)

for every K ⊂⊂ �. Now we choose the compact K to be such that supp(ϕ) ⊂ K and
set d3 := dist(supp(ϕ), ∂K )) > 0. Using the fact that un(x) = un(y) = 0 for every
(x, y) ∈ C� × C� and ϕ(x) = ϕ(y) = 0 for every (x, y) ∈ CK × CK , we can split the
integral in the left-hand side of (4.22) as follows

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

RN

∫

RN

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

K

∫

K

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

+
∫

K

∫

CK

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

+
∫

CK

∫

K

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

= I 1n + I 2n + I 3n .

In order to pass to the limit as n → +∞ in I 1n , observe that for all ϕ ∈ C∞
0 (�) ⊂ Hs(�),

we have

ϕ(x) − ϕ(y)

|x − y| N+2s
2

∈ L2(� × �).

Then, by (4.23) we get

lim
n→∞ I 1n =

∫

K

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

For the integrals I 2n and I 3n , we follow some ideas as in the the proof of Theorem 3.1 claiming
that

lim
n→∞ I 2n =

∫

K

∫

CK

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

and

lim
n→∞ I 3n =

∫

CK

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

Indeed, let us start with the second integral I 2n . For every (x, y) ∈ K × CK , using the fact
that ϕ(y) = 0 for every y ∈ CK , we have

|(un(x)−un(y))(ϕ(x)−ϕ(y))|
|x−y|N+2s ≤ |un(x)ϕ(x)|

|x−y|N+2s + |un(y)ϕ(x)|
|x−y|N+2s

= |Gn(x, y)| + |Hn(x, y)|.
(4.24)
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We shall prove that the sequence {Hn(x, y)} is uniformly bounded in L1(K × CK ). Since
ϕ(x) = 0 on K\supp(ϕ) and un(y) = 0 on C�, we obtain

∫

K

∫

CK
|Hn(x, y)|dydx =

∫

supp(ϕ)

∫

�\K
|un(y)ϕ(x)|
|x − y|N+2s dydx .

Since for every (x, y) ∈ supp(ϕ) × CK , |x − y| ≥ d3 := dist(supp(ϕ), ∂K ) > 0, we
obtain the following estimation

∫

K

∫

CK
|Hn(x, y)|dydx ≤ ‖ϕ‖L∞(�)|supp(ϕ)|

dN+2s
3

‖un‖L1(�).

As the sequence {un} is increasing, then so is {Hn(x, y)} and by Beppo-Levi’s theorem and
the fact that un → u a.e. in R

N , we obtain

Hn(x, y) → u(y)ϕ(x)

|x − y|N+2s in L1(K × CK ).

We deduce that there exist a subsequence of {un}, still indexed by n, and a positive function
h ∈ L1(K × CK ) such that

|Hn(x, y)| ≤ h(x, y) a.e. in K × CK . (4.25)

As regards the sequence {Gn(x, y)}, we write
∫

K

∫

CK
|Gn(x, y)|dydx =

∫

supp(ϕ)

|un(x)ϕ(x)|
∫

CK

dy

|x − y|N+2s dx

≤ |SN−1|‖ϕ‖L∞(�)‖un‖L1(�)

d2s3 2s
.

As above, the sequence {Gn(x, y)} is increasing and by Beppo-Levi’s theorem and the fact
that un → u a.e. in R

N , we obtain

Gn(x, y) → u(x)ϕ(x)

|x − y|N+2s in L1(K × CK ).

Again we deduce that there exist a subsequence of {un}, still indexed by n, and a positive
function g ∈ L1(K × CK ) such that

|Gn(x, y)| ≤ g(x, y) a.e. in K × CK . (4.26)

Combining (4.24), (4.25) and (4.26), we obtain

|(un(x) − un(y))(ϕ(x) − ϕ(y))|
|x − y|N+2s ≤ g(x, y) + h(x, y) ∈ L1(K × CK ),

for every (x, y) ∈ K × CK . So that by Lebesgue’s dominated convergence theorem, we get

lim
n→∞ I 2n =

∫

K

∫

CK

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .

By x/y symmetry, one has

lim
n→∞ I 3n =

∫

CK

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx .
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Then, we conclude that

lim
n→∞

∫

Q

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx

=
∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s dydx,

for all ϕ ∈ C∞
0 (�). As regards the right-hand side of (4.22), we follow the same arguments

as in Theorem 3.1 to obtain

lim
n→∞

∫

�

fnϕ

(un + 1
n )γ

dx =
∫

�

f ϕ

uγ
dx .

Finally, the passage to the limit in (4.22), as n → +∞, shows that u is a weak solution of
(1.1). ��

4.4 The case � > 1 : Proof of Theorem 3.3

4.4.1 A priori estimates

Lemma 4.7 Assume γ > 1. Let s ∈ (0, 1) and f ∈ Lm(�) with m > 1. Let un be a solution
of the problem (4.1). Then the sequence {uα

n }n is uniformly bounded in Xs
0(�) for every

α ∈
(

max
(
1
2 ,

sm(γ+1)−m+1
2sm

)
,

γ+1
2

]

. Furthermore, if γ satisfies

1 < γ < 1 + m − 1

sm
, (4.27)

then {un}n is uniformly bounded in Xs
0(�).

Proof Before estimating the sequence {uα
n }n in Xs

0(�), we need to prove that

un(x) ≥ C0δ
s(x), a.e. in �, (4.28)

where C0 > 0 is a constant not depending on n and δ(x) := dist(x, ∂�). Observe that
0 ≤ f1

(u1+1)γ ∈ L∞(�). Thus, applying [12, Lemma 4.2] we get

u1(x)
δs (x) ≥ C

∫

�
f1(y)

(u1+1)γ δs(y)dy ≥ C
∫

�
f1(y)

(‖u1‖L∞(�)+1)γ δs(y)dy

≥ C0 := Cδs (∂K ,∂�)
(‖u1‖L∞(�)+1)γ

∫

K f1(y)dy

where K is an arbitrary compact in �. By Lemma 4.2, the sequence {un}n is increasing and
therefore the inequality (4.28) is satisfied.

Now, we shall prove a priori estimates on uα
n in Xs

0(�) for every α such that

max
(1

2
,
sm(γ + 1) − m + 1

2sm

)
< α ≤ γ + 1

2
.

Let n ≥ 1 and let 0 < ε < 1
n . For η > 0, taking (un + ε)η − εη as a test function in (4.1),

we obtain

a(N , s)

2

∫

Q

(un(x) − un(y))((un(x) + ε)η − (un(y) + ε)η)

|x − y|N+2s dydx

≤
∫

�

fn
(un(x) + 1

n )γ−η
dx .
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By Fatou’s lemma we can pass to the limit in ε obtaining

∫

Q

(un(x) − un(y))(u
η
n(x) − uη

n(y))

|x − y|N+2s dydx ≤ 2

a(N , s)

∫

�

fn
(un(x) + 1

n )γ−η
dx .

Then, an application of the item i) in Lemma 2.2 and the Hölder inequality respectively yield

∫

Q

∣
∣
∣u

η+1
2

n (x) − u
η+1
2

n (y)
∣
∣
∣
2

|x − y|N+2s dydx ≤ C(η, N , s)‖ f ‖Lm (�)

( ∫

�

dx

u(γ−η)m′
n (x)

) 1
m′

.

Let us choose 0 < η ≤ γ . The inequality (4.28) implies

∫

Q

∣
∣
∣u

η+1
2

n (x) − u
η+1
2

n (y)
∣
∣
∣
2

|x − y|N+2s dydx ≤

C(η, N , s)C (η−γ )s
0 ‖ f ‖Lm (�)

( ∫

�

dx

δ(γ−η)sm′
(x)

) 1
m′

.

Now, choosing α = η+1
2 one has 1

2 < α ≤ γ+1
2 and then

∫

Q

|uα
n (x) − uα

n (y)|2
|x − y|N+2s dydx ≤

C(η, N , s)C (η−γ )s
0 ‖ f ‖Lm (�)

( ∫

�

dx

δ(γ−2α+1)sm′
(x)

) 1
m′

.

Observe that the integral in the right-hand side of the above inequality converges if and only
if (γ −2α+1)sm′ < 1, that is sm(γ+1)−m+1

2sm < α. Therefore, the sequence {uα
n } is uniformly

bounded in Xs
0(�), for every α ∈

(
max

(
1
2 ,

sm(γ+1)−m+1
2sm

)
,

γ+1
2

)
.

In particular, if (4.27) holds then sm(γ+1)−m+1
2sm < 1 and so {un} is uniformly bounded in

Xs
0(�). ��

4.4.2 Passage to the limit

Proof of Theorem 3.3 We use similar arguments as in the proof of Theorem 3.2 obtain-
ing that u := limn→∞ un is a weak solution to (1.1) and uα ∈ Xs

0(�) for every

max
(
1
2 ,

sm(γ+1)−m+1
2sm

)
< α ≤ γ+1

2 . Furthermore, if (4.27) holds then sm(γ+1)−m+1
2sm < 1

and so u ∈ Xs
0(�). ��

4.5 The case � > 1 : Proof of Theorem 3.4

Proof of Theorem 3.4 Let γ > 1 and let un be a solution of (4.1). Let 0 < ε < 1
n , n ≥ 1. For

η > 0, taking (un + ε)η − εη as a test function in (4.1), we follow the same lines in the proof
of Lemma (4.7). We obtain

∫

Q

∣
∣
∣u

η+1
2

n (x) − u
η+1
2

n (y)
∣
∣
∣
2

|x − y|N+2s dydx ≤ C(η, N , s)
∫

supp( f )

f

uγ−η
n

dx .
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Now, let us choose 0 < η ≤ γ and set α = η+1
2 , we get

∫

Q

∣
∣
∣uα

n (x) − uα
n (y)

∣
∣
∣
2

|x − y|N+2s dydx ≤ C(η, N , s)
∫

supp( f )

f

uγ−(2α−1)
n

dx .

Applying Lemma 4.2, we obtain

∫

Q

∣
∣
∣uα

n (x) − uα
n (y)

∣
∣
∣
2

|x − y|N+2s dydx ≤ C(η, N , s)

cγ−(2α−1)
supp( f )

‖ f ‖L1(�).

It follows that {uα
n } is uniformly bounded in Xs

0(�) for every α ∈
(

1
2 ,

γ+1
2

]

.

Arguing as above, it’s easy to see that u := limn→∞ un is a weak solution of (1.1) and

uα ∈ Xs
0(�) for every α ∈

(
1
2 ,

γ+1
2

]

. ��

4.6 Uniqueness : Proof of Theorem 3.5

Proof In order to prove the uniqueness of finite energy solutions, we assume that there exist
two weak solutions u1 and u2 ∈ Xs

0(�) to (1.1). By Lemma 5.4 the weak solutions u1 and
u2 both satisfy (5.3). By [38, Proposition 3] we have (u1 −u2)+ ∈ Xs

0(�), hence (u1 −u2)+
is an admissible test function in (5.3). Taking it so in the difference of formulations (5.3)
solved by u1 and u2 we arrive at

∫

Q

(
(u1(x) − u2(x)) − (u1(y) − u2(y))

)(
(u1 − u2)+(x) − (u1 − u2)+(y)

)

|x − y|N+2s dydx

= 2

a(N , s)

∫

�

f (x)

(
1

uγ
1

− 1

uγ
2

)

(u1 − u2)
+(x)dx .

Observe that for any function g : RN → R the following inequality

(g(x) − g(y))(g+(x) − g+(y)) ≥ (g+(x) − g+(y))2

holds true for every x , y ∈ R
N . It follows that

‖(u1 − u2)
+‖2Xs

0(�) = 0,

which gives u2 ≥ u1. By the u1/u2 symmetry we obtain u1 = u2. ��

5 Some regularity results

We point out that if f ∈ Lm(�) with m ≥ m := ( 2∗
s

1−γ

)′ = 2N
N+2s+γ (N−2s) , then following

the same lines as in the proof of [11, Lemma 3.4] we can prove that the sequence {un}n of
non-negative solutions of the problem (4.1) is uniformly bounded in Xs

0(�). Furthermore,
testing by a C∞

0 (�)-function in (4.1) one can pass to the limit and obtain that u := limn→∞ un
is a weak solution for the problem (1.1) in the sense of Definition 2.1. In this section we give
some further summability results of this weak solution u.
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Lemma 5.1 Suppose that 0 < γ < 1. Let u be the weak solution of (1.1) corresponding to

f ∈ Lm(�) with m ≥ ( 2∗
s

1−γ

)′ = 2N
N+2s+γ (N−2s) . If

( 2∗
s

1−γ

)′ ≤ m < N
2s , then u ∈ Lσ (�)

where σ = Nm(γ+1)
N−2sm .

Proof Let un ∈ Xs
0(�) ∩ L∞(�) be a solution of the problem (4.1). Inserting uθ

n , θ > 1, as
a test function in (4.1) we get

∫

Q

(un(x) − un(y))(uθ
n(x) − uθ

n(y))

|x − y|N+2s dydx ≤ 2

a(N , s)

∫

�

fnu
θ−γ
n (x)dx .

Applying the item i) in Lemma 2.2 in the right-hand side and Hölder’s inequality in the left
hand-side, we get

∫

Q

|un(x) θ+1
2 − un(y)

θ+1
2 |2

|x − y|N+2s dydx ≤ C1‖ f ‖Lm (�)

( ∫

�

u(θ−γ )m
′

n (x)dx

) 1
m

′
.

where C1 = (θ+1)2

2θa(N ,s) . Applying fractional Sobolev’s inequality, we obtain

∫

�

|un(x)|
N (θ+1)
N−2s dx ≤ C2‖ f ‖

N
N−2s
Lm (�)

( ∫

�

u(θ−γ )m
′

n (x)dx

) N

m
′
(N−2s)

,

with C2 = (S(N , s)C1)
N

N−2s . Now we choose θ > 1 in order to get N (θ+1)
N−2s = (θ − γ )m′,

that is

θ = N (m − 1) + γm(N − 2s)

N − 2sm
.

Observe that θ > 1 and

N (θ + 1)

N − 2s
= Nm(γ + 1)

N − 2sm
.

In addition the assumption m < N
2s implies N

m′(N−2s) < 1. Then it follows

∫

�

|un(x)|
Nm(1+γ )
N−2sm dx ≤ C

m(N−2s)
N−2sm

2 ‖ f ‖
Nm

N−2sm
Lm (�) .

By Fatou’s Lemma, we obtain u ∈ Lσ (�) with σ = Nm(γ+1)
N−2sm . ��

Remark 5.1 In the particular case where m = (
2∗
s

)′, we obtain u ∈ L(1+γ )2∗
s (�) which is

exactly the result stated in [11, Proposition 3.8]. While if s = 1 the exponent of summability
σ = Nm(γ+1)

N−2sm coincides with the one given [15, Lemma 5.5] in the local case.

Lemma 5.2 (Limit case : Exponential summability) Assume that γ > 0. Let f ∈ L
N
2s (�)

and let u be the weak solution of the problem (1.1) given by Theorem 3.3 if γ > 1 or given

by [18, Theorem 3.2.] if 0 < γ ≤ 1. Then there exists λ > 0 such that eλ
N (1+γ )
N−2s u ∈ L1(�).

Proof Let us start with the case γ > 1. For λ > 0, we consider the locally Lipschitz function

t → ψ(t) = (eλt − 1)
γ+1
2 . Let un ∈ Xs

0(�) ∩ L∞(�) be a non-negative solution of the
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problem (4.1). Since ψ(0) = 0 and we can take ψ ′(un)ψ(un) as a test function in (4.1). As
γ > 1, the function ψ is convex so that according with [38, Proposition 4.] we arrive at

a(N , s)

2

∫

Q

|ψ(un)(x) − ψ(un)(y)|2
|x − y|N+2s dydx

≤
∫

�

ψ ′(un)ψ(un)(−�)sun(x)dx

=
∫

�

fn
(un + 1

n )γ
ψ ′(un)ψ(un)dx .

Using the Sobolev inequality, we obtain

‖ψ(un)‖2L2∗s (�)
≤ 2S(N , s)

a(N , s)

∫

�

f

uγ
n

ψ ′(un)ψ(un)dx .

Using the elementary inequality ea−1
a ≤ ea for every a > 0, we get

ψ ′(un)ψ(un)

uγ
n

≤ γ + 1

2
λγ+1eλ(γ+1)un ≤ C(γ )λγ+1ψ2(un) + C(λ, γ ),

where we have setC(γ ) = 2γ γ+1
2 andC(λ, γ ) = λγ+1C(γ ). Then, using Hölder’s inequal-

ity we obtain

‖ψ(un)‖2L2∗s (�)
≤ 2S(N , s)C(γ )λγ+1

a(N , s)

∫

�

f ψ2(un) + C(λ, γ,�)‖ f ‖
L

N
2s (�)

≤ 2S(N , s)C(γ )λγ+1

a(N , s)
‖ f ‖

L
N
2s (�)

‖ψ(un)‖2L2∗s (�)

+C(λ, γ,�)‖ f ‖
L

N
2s (�)

.

Choosing λ > 0 to be such that
2S(N ,s)C(γ )‖ f ‖

L
N
2s (�)

λγ+1

a(N ,s) < 1, we deduce that

∫

�

eλ
N (1+γ )
N−2s un dx ≤ C,

where C is a constant not depending on n. Applying Fatou’s lemma, we conclude the result.
We turn now to the case γ ≤ 1. We consider the convex and locally Lipschitz function

t → ψ(t) = e
γ+1
2 λt − 1 and we insert ψ ′(un)ψ(un) as a test function in (4.1). Again by [38,

Proposition 4.] and the Sobolev inequality we obtain

‖ψ(un)‖2L2∗s (�)
≤ 2S(N , s)

a(N , s)

∫

�

f

uγ
n

ψ ′(un)ψ(un)dx .

Since 0 <
γ+1
2 ≤ 1, we can apply the inequality in the item i i i) in Lemma 2.2 obtaining

ψ ′(un)ψ(un)

uγ
n

≤ γ + 1

2
λ

e
γ+1
2 λun

(

eλun − 1

) γ+1
2

uγ
n

.
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Noticing that u
γ+1
2

n ≤ uγ
n on the subset {un ≤ 1} := {x ∈ � : un(x) ≤ 1}, we can write

∫

�

f

uγ
n

ψ ′(un)ψ(un)dx ≤ γ + 1

2
λ

∫

{un≤1}

f e
γ+1
2 λun

(

eλun − 1

) γ+1
2

u
γ+1
2

n

dx

+γ + 1

2
λ

∫

{un>1}
f e

γ+1
2 λun

(
eλun − 1

) γ+1
2 dx .

Using the elementary inequality ea−1
a ≤ ea , which holds for every a > 0, in the first integral

in the right-hand side of the previous inequality, we obtain
∫

�

f

uγ
n

ψ ′(un)ψ(un)dx ≤ γ + 1

2
λ

γ+3
2

∫

{un≤1}
f e(γ+1)λun

+γ + 1

2
λ

∫

{un>1}
f e(γ+1)λun dx

≤ γ + 1

2
λ

γ+3
2 e(γ+1)λ

∫

�

f dx

+γ + 1

2
λ

∫

�

f (ψ(un) + 1)2dx .

Using the fact that (ψ(un) + 1)2 ≤ 2(ψ(un)2 + 1), we get
∫

�

f

uγ
n

ψ ′(un)ψ(un)dx ≤ γ + 1

2
λ

γ+3
2 e(γ+1)λ

∫

�

f dx

+(γ + 1)λ
∫

�

f (ψ2(un) + 1)dx

≤
(γ + 1

2
λ

γ+3
2 e(γ+1)λ + (γ + 1)λ

) ∫

�

f dx

+(γ + 1)λ
∫

�

f ψ2(un)dx .

An application of Hölder’s inequality with the exponents N
N−2s and

N
2s gives

‖ψ(un)‖2L2∗s (�)
≤ S(N ,s)

a(N ,s) (γ + 1)

(

λ
γ+3
2 e(γ+1)λ + 2λ

)

|�| N−2s
N ‖ f ‖

L
N
2s (�)

+2S(N , s)(γ + 1)

a(N , s)
λ‖ f ‖

L
N
2s (�)

‖ψ(un)‖2L2∗s (�)
.

Therefore, choosing λ > 0 such that λ <
a(N ,s)

2S(N ,s)(γ+1)‖ f ‖
L
N
2s (�)

we obtain

∫

�

eλ
N (1+γ )
N−2s un dx ≤ C,

where C is a constant not depending on n, and by Fatou’s lemma we conclude the result. ��

Remark 5.2 Recall that the inequality ex ≥ xk
k! holds for every x > 0 and k ∈ N. Thus, we

conclude that u ∈ Lr (�) for every r < ∞.
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Appendix

We start by proving the following lemma which we have used in the proof of Lemma 4.4.

Lemma 5.3 Let F(x) = xr , 0 < r < 1, for every x > 0. Then for every function v : RN →
]0,+∞[ that satisfies

∫

RN

∫

RN

|v(x) − v(y)|2
|x − y|N+2s dydx < ∞,

we have
(−�)s(F ◦ v)(x) ≤

F ′(v(x))(−�)sv(x) − F ′′(v(x))

r
a(N , s)

∫

RN

(
v(x) − v(y)

)2

|x − y|N+2s dy.
(5.1)

Proof Following [20, Lemma 2.3.], we can use Taylor’s formula obtaining for every (x, y) ∈
R

N × R
N

F(v(y)) − F(v(x)) = F ′(v(x))(v(y) − v(x)) + R(F), (5.2)

where

R(F) =
∫ v(y)

v(x)
(v(y) − t)F ′′(t)dt

= (v(y) − v(x))2
∫ 1

0
(1 − s)F ′′(v(x) + s(v(y) − v(x)))ds.

On other hand, since the function F ′′ is increasing we have

(1 − s)v(x) ≤ v(x) + s(v(y) − v(x))

⇒ F ′′((1 − s)v(x)) ≤ F ′′(v(x) + s(v(y) − v(x))).

Hence, it follows

−R(F) ≤ −(v(y) − v(x))2
∫ 1
0 (1 − s)F ′′((1 − s)v(x))ds

= −(v(y) − v(x))2F ′′(v(x))
∫ 1
0 (1 − s)r−1ds.

Then, from (5.2) we obtain

F(v(x)) − F(v(y)) ≤ F ′(v(x))(v(x) − v(y)) − F ′′(v(x))

r
(v(y) − v(x))2.

Dividing both sides of this inequality by |x − y|N+2s and then integrating with respect to the
variable y we arrive at

a(N , s)P.V .
∫

RN
F(v(x))−F(v(y))

|x−y|N+2s dy ≤ F ′(v(x))a(N , s)P.V .
∫

RN
(v(x)−v(y))
|x−y|N+2s dy

− F ′′(v(x))
r a(N , s)P.V .

∫

RN
(v(y)−v(x))2

|x−y|N+2s dy,

which proves (5.1). ��
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In the following result we extend the space of admissible test functions in (2.4).

Lemma 5.4 Let u ∈ Xs
0(�) be a solution of the problem (1.1) taken in the sense of Definition

2.1 with f ∈ L1(�). Then for every φ ∈ Xs
0(�) we get f φ

uγ ∈ L1(�) and

a(N , s)

2

∫

Q

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s dydx =
∫

�

f φ

uγ
dx . (5.3)

Proof Take an arbitrary φ ∈ Xs
0(�). By [29, Theorem 6] there exists a sequence {ϕn}n ⊂

C∞
0 (�) such that ϕn → φ in norm in Hs(RN ). Writing (2.4) with ϕn ∈ C∞

0 (�) we obtain

a(N , s)

2

∫

Q

(u(x) − u(y))(ϕn(x) − ϕn(y))

|x − y|N+2s dydx =
∫

�

f ϕn

uγ
dx, (5.4)

in which we shall pass to the limit as n tends to+∞. Starting with the left-hand side of (5.4),
we consider the following two functions

Fn(x, y) = (ϕn(x) − ϕn(y))

|x − y| N+2s
2

and F(x, y) = (φ(x) − φ(y))

|x − y| N+2s
2

.

Notice that the convergence ϕn → φ in norm in Hs(RN ) implies that the sequence
{Fn(x, y)}n converges to F(x, y) in L2(R2N ) and, up to a subsequence if necessary, we
can assume that {Fn(x, y)}n converges almost everywhere in R

2N .
As u ∈ Xs

0(�) we have (u(x)−u(y))

|x−y| N+2s
2

∈ L2(R2N ) implying

lim
n→∞

∫

Q

(u(x) − u(y))(ϕn(x) − ϕn(y))

|x − y|N+2s dydx

=
∫

Q

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s dydx .

For the term in the right-hand side of (5.4), we first note that thanks to [38, Proposition 3.]
the two functions (ϕn − ϕk)

+ and (ϕn − ϕk)
− are both admissible test functions in (2.4).

Taking them so we obtain
∫

�

f

uγ
(ϕn − ϕk)

+(x)dx

= a(N , s)

2

∫

Q

(u(x) − u(y))
(
(ϕn − ϕk)

+(x) − (ϕn − ϕk)
+(y)

)

|x − y|N+2s dydx

and
∫

�

f

uγ
(ϕn − ϕk)

−(x)dx

= a(N , s)

2

∫

Q

(u(x) − u(y))
(
(ϕn − ϕk)

−(x) − (ϕn − ϕk)
−(y)

)

|x − y|N+2s dydx .

Then, summing up both the two equalities we have
∫

�

f

uγ

∣
∣
∣ϕn − ϕk

∣
∣
∣dx

= a(N , s)

2

∫

Q

(u(x) − u(y))
(
|ϕn(x) − ϕk(x)| − |ϕn(y) − ϕk(y)|

)

|x − y|N+2s dydx

≤ a(N , s)

2

∫

Q

|u(x) − u(y)|
∣
∣
∣(ϕn(x) − ϕk(x)) − (ϕn(y) − ϕk(y))

∣
∣
∣

|x − y|N+2s dydx
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and then the Hölder inequality implies
∫

�

∣
∣
∣
f ϕn

uγ
− f ϕk

uγ

∣
∣
∣dx ≤ a(N , s)

2
‖u‖Xs

0(�)‖ϕn − ϕk‖Xs
0(�).

Thus, we deduce that
{

f ϕn
uγ

}

n
is a Cauchy sequence in L1(�). Since ϕn converges to ϕ a.e.

in �, the sequence
{

f ϕn
uγ

}

n
converges to f φ

uγ ∈ L1(�) in norm in L1(�). So that the passage

to the limit as n tends to infinity in (5.4) yields

a(N , s)

2

∫

Q

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s dydx =
∫

�

f φ

uγ
dx,

for every φ ∈ Xs
0(�). ��
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