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Abstract
We study the Sobolev critical Schrödinger equation with combined power nonlinearities

−�u = λu + |u| 2N
N−2−2u + μ|u|q−2u, x ∈ R

N

having prescribed mass
∫
RN

|u|2dx = a2.

For a L2-critical or L2-supercritical perturbation μ|u|q−2u, we prove existence of normal-
ized ground states, by introducing the Sobolev subcritical approximation method to mass
constrained problem. Our result settles a question raised by N. Soave [22]. Meanwhile, the
Sobolev subcritical problem is treated again by using the Pohožaev constraint, Schwartz
symmetrization rearrangements and various scaling transformations.

Mathematics Subject Classification 35J20 · 35Q55

1 Introduction andmain results

In this paper, we study the existence of ground state standing waves with prescribed mass
for the nonlinear Schrödinger equation with combined power nonlinearities

i∂tψ + �ψ + |ψ |p−2ψ + μ|ψ |q−2ψ = 0, (t, x) ∈ R × R
N , (1.1)

where N ≥ 1, μ > 0 and 2 < q < p

{
< 2∗ := ∞, N = 1, 2,
≤ 2∗ := 2N/(N − 2), N ≥ 3.

Starting from the

fundamental contribution by T. Tao, M. Visan and X. Zhang [23], the NLS equation with
combined nonlinearities attracted much attention, see for example [1,6,7,11,12,15,18,19,26].
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Standing waves to (1.1) are solutions of the form ψ(t, x) = e−iλt u(x), where λ ∈ R and
u : RN → C. Then u satisfies the equation

− �u = λu + |u|p−2u + μ|u|q−2u, x ∈ R
N . (1.2)

A possible choice is to fix λ ∈ R and to search for solutions to (1.2) as critical points of the
action functional

Jp,q(u) :=
∫
RN

(
1

2
|∇u|2 − λ

2
|u|2 − 1

p
|u|p − μ

q
|u|q

)
dx,

see for example [2,17] and the references therein.
Alternatively, one can search for solutions to (1.2) having prescribed mass

∫
RN

|u|2dx = a2. (1.3)

In this direction, define on H := H1(RN ,C) the energy functional

Ep,q(u) = 1

2

∫
RN

|∇u|2dx − 1

p

∫
RN

|u|pdx − μ

q

∫
RN

|u|qdx .

It is standard to check that Ep,q ∈ C1 and a critical point of Ep,q constrained to

Sa = {u ∈ H1(RN ,C) :
∫
RN

|u|2 = a2}

gives rise to a solution to (1.2), satisfying (1.3). Such solution is usually called a normalized
solution of (1.2). In this method, the parameter λ ∈ R arises as a Lagrange multiplier, which
depends on the solution and is not a priori given. In this paper, we will focus on the existence
of normalized ground state of (1.2), defined as follows:

Definition 1.1 We say that u is a normalized ground state to (1.2) on Sa if

Ep,q(u) = z p,q := inf{Ep,q(v) : v ∈ Sa, (Ep,q |Sa )′(v) = 0}.
The set of the normalized ground states will be denoted by Zp,q .

In the study of (1.2-1.3) an important role is played by the so-called L2-critical exponent

p̄ = 2 + 4

N
.

A very complete analysis of the various cases that may happen for (1.2-1.3), depending on
the values of (p, q), has been provided recently in [4,9,10,21,22]. See [21] for the cases
N ≥ 1 and p < 2∗, [9,10,22] for the cases N ≥ 3 and p = 2∗, and [4] for the cases N = 1,
p = +∞ and q ≤ 6. See [20] for the Schrödinger equation with combined nonlinearities
on metric graphs. For a L2-critical or L2-supercritical perturbation q ≥ p̄ and the Sobolev
subcritical case p < 2∗, [21] obtained the following results to (1.2):

Theorem 1.2 Let N ≥ 1, a > 0, μ > 0 and p̄ ≤ q < p < 2∗. If q = p̄, we further assume

that μa
4
N < (āN )

4
N , where āN is defined in (2.1). Then Ep,q |Sa has a critical point u at

positive level Ep,q(u) > 0, with the following properties: u is a real-valued positive function
in RN , is radially symmetric, is radially non-increasing, solves (1.2) for some λ < 0, and is
a normalized ground state of (1.2) on Sa.
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Remark 1.3 In fact, [21] did not consider the case q > p̄ of Theorem 1.2, while it also holds
by repeating the proof for the case q = p̄. In this paper, we will give Theorem 1.2 another
proof, which is useful to the proof of Theorem 1.4, so we write it here in a unified form.

However, for the L2-supercritical and Sobolev critical case p̄ < q < p = 2∗, a condition
μaN+q−Nq/2 < α(N , q) is added to get similar results as to Theorem 1.2, where α(N , q)

is finite for N ≥ 5, see [22] for more details. Inspired by the results of the unconstrained
problem considered in [14] and [17], we guess that the condition maybe can be removed
when q is close to 2∗. Fortunately, we succeed to do it in the full interval p̄ < q < 2∗ and
obtain similar results as Theorem 1.2 for the Sobolev critical problem. Our result settles an
open question raised by N. Soave [22].

Theorem 1.4 Let N ≥ 3, a > 0, μ > 0 and p̄ ≤ q < p = 2∗. If q = p̄, we further assume

that μa
4
N < (āN )

4
N . Then Ep,q |Sa has a critical point u at positive level 0 < Ep,q(u) <

1
N S

N
2 , with the following properties: u is a real-valued positive function in R

N , is radially
symmetric, is radially non-increasing, solves (1.2) for some λ < 0, and is a normalized
ground state of (1.2) on Sa. Here S is defined in (3.2).

Remark 1.5 In Theorem 1.4, we only improve the result of [22] for the case q > p̄, while it
is the same as that of [22] in the case q = p̄. Since the proof will be done in a uniform way,
we write it here.

Remark 1.6 When q > p̄, similarly to [22], to prove Theorem 1.4, a key step is to show

that c2∗,q < 1
N S

N
2 , which will be obtained by choosing appropriate functions. To do this,

in Lemma 6.4 of [22], they first constructed uε and vε := a uε (x)‖uε‖2 , and then estimated the
maximum of �vε (τ ) := E2∗,q((vε)

τ ). In view of the expression of �vε (τ ) and the estimates
of uε , the lower bound of the maximum point τvε of �vε (τ ) was needed and thus a condition
μaN+q−Nq/2 < α(N , q) was added for N ≥ 5. To remove this condition, in this paper,

we will use a different transformation to define vε := (a−1‖uε‖2) N−2
2 uε(a−1‖uε‖2x) and

subsequently obtain a different expression of �vε (τ ) (see (3.3)). In this case, by using the
estimates of uε and the fact that c2∗,q > 0, we can easily show that τvε ∈ [τ0, τ1] with
τ0, τ1 > 0 and then obtain the upper bound of c2∗,q without adding additional conditions,
see Lemma 3.3.

Remark 1.7 Following the proof of Theorem 1.7 in [21] word by word, we can show that
under the assumptions of Theorems 1.2 or 1.4,

Zp,q = {eiθ |u| for some θ ∈ R and |u| > 0 in R
N }

and for any u ∈ Zp,q , the standing wave e−iλt u(x) is strongly unstable.

Remark 1.8 By Lemma 2.6, any normalized ground state u of (1.2) satisfies equation (1.2)
with some λ = λ(u) < 0. For such fixed λ, it is natural to consider the ground state of (1.2),
which is a solution w ∈ H1(RN ,C)\{0} of (1.2) satisfying

Jp,q(w) = inf{Jp,q(v) : v ∈ H1(RN ,C)\{0}, J ′
p,q(v) = 0}.

It is an open question whether a normalized ground state of (1.2) is a ground state of (1.2)
with fixed λ < 0.

In the proofs of Theorems 1.2 and 1.4, the Pohožaev set

Pp,q = {u ∈ Sa : Pp,q(u) = 0},
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plays an important role, where

Pp,q(u) =
∫
RN

|∇u|2dx − γp

∫
RN

|u|pdx − μγq

∫
RN

|u|qdx
and

γp = N (p − 2)

2p
= N

2
− N

p
.

It is well known that any critical point of Ep,q |Sa belongs to Pp,q , as a consequence of the
Pohožaev identity (we refer for instance to Lemma 2.7 in [8]). Moreover, Pp,q is a natural
constraint, see Lemma 2.6. So it is natural to consider the minimizing problem

cp,q = inf
u∈Pp,q

E p,q(u)

and define

Cp,q = {u ∈ Pp,q : Ep,q(u) = cp,q}.
For the Sobolev subcritical problem, we can show that cp,q is attained by using Schwartz
symmetrization rearrangements. For the Sobolev critical problem, we can show that cp,q is
attained, by introducing the Sobolev subcritical approximation method, which has already
been used to deal with problems without mass constraint (see [13,14,17]). To our knowledge,
it is the first time this method is used to discuss mass constrained problems. During the
proofs, the following various expressions of Ep,q(u) constrained on Pp,q

Ep,q(u) =
(
1

2
− 1

pγp

) ∫
RN

|∇u|2dx +
(

γq

pγp
− 1

q

)
μ

∫
RN

|u|qdx

=
(
1

2
− 1

qγq

) ∫
RN

|∇u|2dx +
(

γp

qγq
− 1

p

) ∫
RN

|u|pdx

=
(

γp

2
− 1

p

) ∫
RN

|u|pdx +
(

γq

2
− 1

q

)
μ

∫
RN

|u|qdx
play an important role.

This paper is organized as follows. In Sect. 2, we cite some preliminaries and give the
proof of Theorem 1.2. Section 3 is devoted to the proof of Theorem 1.4.

Notation: For t ≥ 1, the Lt -norm of u ∈ Lt (RN ,C) (or of Lt (RN ,R)) is denoted by
‖u‖t . We simply write H for H1(RN ,C), and H1 for the subspace of real valued functions
H1(RN ,R).

2 Preliminaries and proof of Theorem 1.2

The following Gagliardo-Nirenberg inequality can be found in [24].

Lemma 2.1 Let N ≥ 1 and 2 < p < 2∗, then the following sharp Gagliardo-Nirenberg
inequality

‖u‖p ≤ CN ,p‖u‖1−γp
2 ‖∇u‖γp

2

holds for any u ∈ H, where the sharp constant CN ,p is

C p
N ,p = 2p

2N + (2 − N )p

(
2N + (2 − N )p

N (p − 2)

) N (p−2)
4 1

‖Qp‖p−2
2
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and Qp is the unique positive radial solution of equation

−�Q + Q = |Q|p−2Q.

In the special case p = p̄, C p̄
N , p̄ = p̄

2
1

‖Q p̄‖4/N2

, or equivalently,

‖Q p̄‖2 =
⎛
⎝ p̄

2C p̄
N , p̄

⎞
⎠

N/4

=: āN . (2.1)

The following lemma is useful in concerning the uniform bound of radial non-increasing
functions, see [3] for its proof.

Lemma 2.2 Let N ≥ 3 and 1 ≤ t < +∞. If u ∈ Lt (RN ) is a radial non-increasing function
(i.e. 0 ≤ u(x) ≤ u(y) if |x | ≥ |y|), then one has

|u(x)| ≤ |x |−N/t
(

N

|SN−1|
)1/t

‖u‖t , x �= 0,

where |SN−1| is the area of the unit sphere in RN .

For any u ∈ Sa and τ > 0, we define

uτ (x) = τ N/2u(τ x). (2.2)

Then uτ ∈ Sa and for any τ > 0,

Ep,q(u
τ ) = 1

2
τ 2

∫
RN

|∇u|2dx − 1

p
τ

N
2 p−N

∫
RN

|u|pdx − μ

q
τ

N
2 q−N

∫
RN

|u|qdx (2.3)

and

Pp,q(u
τ ) = τ 2

∫
RN

|∇u|2dx − γpτ
N
2 p−N

∫
RN

|u|pdx − μγqτ
N
2 q−N

∫
RN

|u|qdx .

The following lemma is about the properties of Ep,q(uτ ) and Pp,q(uτ ).

Lemma 2.3 Let N ≥ 1, a > 0, μ > 0 and

p̄ ≤ q < p

{
< ∞, N = 1, 2,
≤ 2∗, N ≥ 3.

If q = p̄, we further assume that μa
4
N < (āN )

4
N . Then for any u ∈ Sa, there exists a unique

τ0 ∈ (0,∞) such that Pp,q(uτ0) = 0. Moreover, τ0 is the unique critical point of Ep,q(uτ )

and Ep,q(uτ0) = maxτ∈(0,∞) Ep,q(uτ ). In particular, if Pp,q(u) ≤ 0, then τ0 ∈ (0, 1].
Proof Set Pp,q(uτ ) = τ 2g(τ ), where

g(τ ) =
∫
RN

|∇u|2dx − γpτ
N
2 p−N−2

∫
RN

|u|pdx − μγqτ
N
2 q−N−2

∫
RN

|u|qdx .

When p̄ < q < p, we have N
2 p − N − 2 > N

2 q − N − 2 > 0. When p̄ = q < p and

μa
4
N < (āN )

4
N , we have N

2 p − N − 2 > N
2 q − N − 2 = 0 and by the Gagliardo-Nirenberg

inequality,

μγq

∫
RN

|u|qdx ≤ μγqC
q
N ,qa

q(1−γq )‖∇u‖22 < ‖∇u‖22.

123
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Hence, in both cases, g(τ ) > 0 for τ > 0 small enough, g(τ ) < 0 for τ large enough, and
g′(τ ) < 0 for τ ∈ (0,∞). So g(τ ) has a unique zero τ0 as well as Pp,q(uτ ).

By direct calculations, we have E ′
p,q(u

τ ) = τ−1Pp,q(uτ ), Ep,q(uτ ) > 0 for τ > 0 small
enough and limτ→∞ Ep,q(uτ ) = −∞. Thus, τ0 is the unique critical point of Ep,q(uτ ) and
Ep,q(uτ0) = maxτ∈(0,∞) Ep,q(uτ ). �


The following lemmas are about the properties of cp,q and Cp,q .

Lemma 2.4 Let N ≥ 1, a > 0, μ > 0 and

p̄ ≤ q < p

{
< ∞, N = 1, 2,
≤ 2∗, N ≥ 3.

If q = p̄, we further assume that μa
4
N < (āN )

4
N . Then cp,q > 0.

Proof By Lemma 2.3, Pp,q �= ∅.
Case 1 (p �= 2∗). For any u ∈ Pp,q , by the Gagliardo-Nirenberg inequality (Lemma 2.1),

we have∫
RN

|∇u|2dx = γp

∫
RN

|u|pdx + μγq

∫
RN

|u|qdx

≤ γpC
p
N ,p‖u‖p(1−γp)

2 ‖∇u‖pγp
2 + μγqC

q
N ,q‖u‖q(1−γq )

2 ‖∇u‖qγq
2

= μγqC
q
N ,qa

q(1−γq )‖∇u‖qγq
2 + γpC

p
N ,pa

p(1−γp)‖∇u‖pγp
2 .

(2.4)

If p̄ < q < p, then pγp > qγq > 2. (2.4) implies that there exists a constant C > 0 such
that ‖∇u‖22 ≥ C . Consequently,

γp

∫
RN

|u|pdx + μγq

∫
RN

|u|qdx ≥ C .

If p̄ = q < p and μa
4
N < (āN )

4
N , then pγp > qγq = 2, μγqC

q
N ,qa

q(1−γq ) < 1. (2.4)

implies that there exists a constant C > 0 such that ‖∇u‖22 ≥ C . Thus, it follows from (2.4)
that

γp

∫
RN

|u|pdx ≥
(
1 − μγqC

q
N ,qa

q(1−γq )
)

‖∇u‖22 ≥ C
(
1 − μγqC

q
N ,qa

q(1−γq )
)

.

Any way, there always exists C1 > 0 such that for any u ∈ Pp,q ,

Ep,q(u) =
(

γp

2
− 1

p

) ∫
RN

|u|pdx +
(

γq

2
− 1

q

)
μ

∫
RN

|u|qdx ≥ C1, (2.5)

which implies cp,q > 0.
Case 2 (p = 2∗). Similarly to Case 1, just in (2.4), we estimate the term

∫
RN |u|2∗

dx by
using

∫
RN

|u|2∗
dx ≤

(∫
RN |∇u|2dx

S

) N
N−2

,

see (3.2). �

Lemma 2.5 Let N ≥ 1, a > 0, μ > 0 and p̄ ≤ q < p < 2∗. If q = p̄, we further assume

that μa
4
N < (āN )

4
N . Then cp,q is attained by a real-valued positive, radially symmetric and

radially non-increasing function.
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Proof Let {un}∞n=1 ⊂ Pp,q be a minimizing sequence of cp,q and |un |∗ be the Schwartz
symmetrization rearrangement of |un |. From Chapter 3 in [16], we have

∫
RN

|∇(|un |∗)|2dx ≤
∫
RN

|∇|un ||2dx ≤
∫
RN

|∇un |2dx

and

∫
RN

||un |∗|t dx =
∫
RN

|un |t dx, t ∈ [1,∞) .

Hence Pp,q(|un |∗) ≤ 0.
Let (|un |∗)τ (x) be defined as (2.2). By Lemma 2.3, there exists a unique τn ∈ (0, 1] such

that Pp,q((|un |∗)τn ) = 0. Hence {(|un |∗)τn }∞n=1 ⊂ Pp,q . By direct calculations, we have

E p,q((|un |∗)τn )
=

(
γp

2
− 1

p

) ∫
RN

|(|un |∗)τn |pdx +
(

γq

2
− 1

q

)
μ

∫
RN

|(|un |∗)τn |qdx

= τ
N
2 p−N
n

(
γp

2
− 1

p

) ∫
RN

||un |∗|pdx + τ
N
2 q−N
n

(
γq

2
− 1

q

)
μ

∫
RN

||un |∗|qdx
≤ Ep,q(un).

(2.6)

That is, {(|un |∗)τn }∞n=1 is a minimizing sequence of cp,q . Reversing the proof of Lemma 2.4,
we can show that {(|un |∗)τn }∞n=1 is bounded in H1(RN ). Hence, there exists u0 ∈ H1(RN )

such that (|un |∗)τn⇀u0 weakly in H1(RN ), (|un |∗)τn → u0 strongly in Lt (RN ) with t ∈
(2, 2∗) and (|un |∗)τn → u0 a.e. in R

N . Consequently,

∫
RN

|u0|2dx ≤ lim inf
n→∞

∫
RN

|(|un |∗)τn |2dx = a2,
∫
RN

|∇u0|2dx ≤ lim inf
n→∞

∫
RN

|∇(|un |∗)τn |2dx,

Ep,q((|un |∗)τn ) →
(

γp

2
− 1

p

) ∫
RN

|u0|pdx +
(

γq

2
− 1

q

)
μ

∫
RN

|u0|qdx = cp,q ,

which imply that u0 �≡ 0 and Pp,q(u0) ≤ 0.

Set
∫
RN |u0|2dx := c20 ≤ a2 and define ũ(x) = (c0a−1)

2
p−2 u0((c0a−1)

2p
N (p−2) x). Then

∫
RN

|ũ|2dx = a2,
∫
RN

|ũ|pdx =
∫
RN

|u0|pdx,
∫
RN

|ũ|qdx = (c0a
−1)

2(q−p)
p−2

∫
RN

|u0|qdx ≥
∫
RN

|u0|qdx,
∫
RN

|∇ũ|2dx = (c0a
−1)

2[2N+p(2−N )]
N (p−2)

∫
RN

|∇u0|2dx ≤
∫
RN

|∇u0|2dx .
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Hence Pp,q(ũ) ≤ 0. So there exists τ0 ∈ (0, 1] such that ũτ0 ∈ Pp,q and

Ep,q(ũ
τ0) =

(
1

2
− 1

qγq

) ∫
RN

|∇(ũτ0)|2dx +
(

γp

qγq
− 1

p

) ∫
RN

|(ũτ0)|pdx

=
(
1

2
− 1

qγq

)
τ 20

∫
RN

|∇ũ|2dx +
(

γp

qγq
− 1

p

)
τ

N
2 p−N
0

∫
RN

|ũ|pdx

=
(
1

2
− 1

qγq

)
τ 20 (c0a

−1)
2[2N+p(2−N )]

N (p−2)

∫
RN

|∇u0|2dx

+
(

γp

qγq
− 1

p

)
τ

N
2 p−N
0

∫
RN

|u0|pdx

≤
(
1

2
− 1

qγq

) ∫
RN

|∇u0|2dx +
(

γp

qγq
− 1

p

) ∫
RN

|u0|pdx

≤ lim inf
n→∞

{(
1

2
− 1

qγq

) ∫
RN

|∇(|un |∗)τn |2dx

+
(

γp

qγq
− 1

p

) ∫
RN

|(|un |∗)τn |pdx
}

= cp,q .

(2.7)

By the definition of cp,q , we obtain that Ep,q(ũτ0) = cp,q , τ0 = 1 and c0 = a. Hence,
u0 ∈ Pp,q is a real-valued nonnegative, radially symmetric and radially non-increasing
minimizer of cp,q . By the strong maximum principle, u0 > 0 in R

N . �

Lemma 2.6 Let N ≥ 1, a > 0, μ > 0 and

p̄ ≤ q < p

{
< ∞, N = 1, 2,
≤ 2∗, N ≥ 3.

If Cp,q is not empty, then for any u ∈ Cp,q , there exists λ < 0 such that u satisfies equation
(1.2). Moreover, Cp,q = Zp,q and |u| ∈ Cp,q .

Proof For any u ∈ Cp,q , there exist λ and η such that

− �u − |u|p−2u − μ|u|q−2u = λu + η[−2�u − pγp|u|p−2u − μqγq |u|q−2u],
(2.8)

or equivalently,

−(1 − 2η)�u = λu + (1 − ηpγp)|u|p−2u + μ(1 − ηqγq)|u|q−2u.

Next we show η = 0. Similarly to the definition of Pp,q(u), we obtain

(1 − 2η)

∫
RN

|∇u|2dx − (1 − ηpγp)γp

∫
RN

|u|pdx − (1 − ηqγq)μγq

∫
RN

|u|qdx = 0,

which combined with Pp,q(u) = 0 gives that

η

(
2

∫
RN

|∇u|2dx − pγ 2
p

∫
RN

|u|pdx − μqγ 2
q

∫
RN

|u|qdx
)

= 0.

If η �= 0, then

2
∫
RN

|∇u|2dx − pγ 2
p

∫
RN

|u|pdx − μqγ 2
q

∫
RN

|u|qdx = 0,

123
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which combined with Pp,q(u) = 0 gives that
∫
RN

|u|pdx = 2 − qγq

γp(pγp − qγq)

∫
RN

|∇u|2dx ≤ 0.

That is a contradiction. So η = 0.
From (2.8), Pp,q(u) = 0, 0 < γq < γp ≤ 1 and μ > 0, we obtain

λa2 =
∫
RN

|∇u|2dx −
∫
RN

|u|pdx − μ

∫
RN

|u|qdx

= (γp − 1)
∫
RN

|u|pdx + μ(γq − 1)
∫
RN

|u|qdx < 0.

Hence λ < 0.
Any normalized solution v of (1.2) satisfies Pp,q(v) = 0. Hence Ep,q(v) ≥ cp,q and then

cp,q = z p,q , Cp,q = Zp,q . Since
∫
RN |∇|u||2dx ≤ ∫

RN |∇u|2dx , we have Pp,q(|u|) ≤ 0. So
there exists τ0 ∈ (0, 1] such that |u|τ0 ∈ Pp,q . Similarly to the proof of (2.6), we can show
that τ0 = 1 and |u| ∈ Cp,q . �


Proof of Theorem 1.2: It follows from Lemmas 2.4–2.6.

3 Proof of Theorem 1.4

In this section, we first study the properties of cp,q and then give the proof of Theorem 1.4.

Lemma 3.1 Let N ≥ 3, a > 0, μ > 0 and p̄ ≤ q < p < 2∗. If q = p̄, we further assume

that μa
4
N < (āN )

4
N . Then lim supp→2∗ cp,q ≤ c2∗,q .

Proof By the definition of c2∗,q , for any fixed ε ∈ (0, 1), there exists u ∈ P2∗,q such that
E2∗,q(u) < c2∗,q + ε. By (2.3), there exists τ0 > 0 large enough such that E2∗,q(uτ0) ≤ −2.
By the Young inequality

|u|p ≤ 2∗ − p

2∗ − q
|u|q + p − q

2∗ − q
|u|2∗

(3.1)

and the Lebesgue dominated convergence theorem, we know

1

p
τ

N
2 p−N

∫
RN

|u|pdx

is continuous on p ∈ [ p̄, 2∗] uniformly with τ ∈ [0, τ0]. Hence, there exists δ > 0 such
that |Ep,q(uτ ) − E2∗,q(uτ )| < ε for 2∗ − δ ≤ p ≤ 2∗ and 0 ≤ τ ≤ τ0, which implies that
Ep,q(uτ0) ≤ −1 for all 2∗ − δ ≤ p ≤ 2∗. In view of Ep,q(uτ ) > 0 for τ small enough
for every p ∈ [q, 2∗], it follows from Lemma 2.3 that the unique critical (maximum) point
τp,q of Ep,q(uτ ) belongs to (0, τ0) and Pp,q(uτp,q ) = 0. Since u ∈ P2∗,q , we deduce that
E2∗,q(u) = maxτ>0 E2∗,q(uτ ). Consequently,

cp,q ≤ Ep,q(u
τp,q ) ≤ E2∗,q(u

τp,q ) + ε ≤ E2∗,q(u) + ε < c2∗,q + 2ε

for any 2∗ − δ ≤ p ≤ 2∗. Thus, lim supp→2∗ cp,q ≤ c2∗,q . �

Lemma 3.2 Let N ≥ 3, a > 0, μ > 0 and p̄ ≤ q < p < 2∗. If q = p̄, we further assume

that μa
4
N < (āN )

4
N . Then lim inf p→2∗ cp,q > 0.
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Proof By Lemma 2.5, there exists a sequence {u p,q}p ⊂ Pp,q such that Ep,q(u p,q) = cp,q .
By the Young inequality (3.1), we have∫

RN
|∇u p,q |2dx = γp

∫
RN

|u p,q |pdx + μγq

∫
RN

|u p,q |qdx

≤
(

γp
2∗ − p

2∗ − q
+ μγq

) ∫
RN

|u p,q |qdx + γp
p − q

2∗ − q

∫
RN

|u p,q |2∗
dx .

Letting p → 2∗, similarly to the proof of Lemma 2.4, we can show that there exists C > 0
independent of p such that ‖∇u p,q‖22 > C , subsequently, lim inf p→2∗ cp,q > 0. �

Lemma 3.3 Let N ≥ 3, a > 0, μ > 0 and p̄ ≤ q < 2∗. If q = p̄, we further assume that

μa
4
N < (āN )

4
N . Then c2∗,q < 1

N S
N
2 , where S is defined by

S := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx

(∫
RN |u|2∗dx

) N−2
N

. (3.2)

Proof For any ε > 0, we define

uε(x) = ϕ(x)Uε(x),

where

Uε(x) =
(
N (N − 2)ε2

) N−2
4

(
ε2 + |x |2) N−2

2

is the ground state of equation

−�u = |u|2∗−2u, x ∈ R
N ,

and ϕ(x) ∈ C∞
c (RN ) is a cut off function satisfying:

(a) 0 ≤ ϕ(x) ≤ 1 for any x ∈ R
N ;

(b) ϕ(x) ≡ 1 in B1, where Bs denotes the ball in RN of center at origin and radius s;
(c) ϕ(x) ≡ 0 in R

N \ B2.

By [5] (see also [25]), we have the following estimates.∫
RN

|∇uε |2dx = S
N
2 + O(εN−2), N ≥ 3,

∫
RN

|uε |2∗
dx = S

N
2 + O(εN ), N ≥ 3,

and

∫
RN

|uε |2dx =
⎧⎨
⎩

K2ε
2 + O(εN−2), N ≥ 5,

K2ε
2| ln ε| + O(ε2), N = 4,

K2ε + O(ε2), N = 3,

where K2 > 0. By direct calculations, for t ∈ (2, 2∗), there exists K1 > 0 such that∫
RN

|uε |t dx ≥ (N (N − 2))
N−2
4 tεN− N−2

2 t
∫
B 1

ε
(0)

1

(1 + |x |2) N−2
2 t

dx

≥

⎧⎪⎨
⎪⎩

K1ε
N− N−2

2 t , (N − 2)t > N ,

K1ε
N− N−2

2 t | ln ε|, (N − 2)t = N ,

K1ε
N−2
2 t , (N − 2)t < N .
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Define vε(x) = (a−1‖uε‖2) N−2
2 uε(a−1‖uε‖2x). Then∫

RN
|vε |2dx = a2,

∫
RN

|∇vε |2dx =
∫
RN

|∇uε |2dx,
∫
RN

|vε |2∗
dx =

∫
RN

|uε |2∗
dx,

and for q ∈ [ p̄, 2∗),∫
RN

|vε |qdx = (a−1‖uε‖2) N−2
2 q−N

∫
RN

|uε |qdx

≥ aN− N−2
2 q‖uε‖

N−2
2 q−N

2 K1ε
N− N−2

2 q

≥ 1

2
aN− N−2

2 q K1K
N−2
4 q− N

2
2 ×

⎧⎪⎨
⎪⎩
1, N ≥ 5,

| ln ε| N−2
4 q− N

2 , N = 4,

ε
N
2 − N−2

4 q , N = 3.

Next we use vε to estimate c2∗,q . By Lemma 2.3, there exists a unique τε such
that P2∗,q((vε)

τε ) = 0 and E2∗,q((vε)
τε ) = supτ≥0 E2∗,q((vε)

τ ). Thus, c2∗,q ≤
supτ≥0 E2∗,q((vε)

τ ). By direct calculations, one has

E2∗,q((vε)
τ )

= 1

2
τ 2

∫
RN

|∇vε |2dx − 1

2∗ τ
N
2 2

∗−N
∫
RN

|vε |2∗
dx − μ

q
τ

N
2 q−N

∫
RN

|vε |qdx

≤ 1

2
τ 2

(
S

N
2 + O(εN−2)

)
− 1

2∗ τ 2
∗ (

S
N
2 + O(εN )

)

− μ

q
τ

N
2 q−N 1

2
aN− N−2

2 q K1K
N−2
4 q− N

2
2 ×

⎧⎪⎨
⎪⎩
1, N ≥ 5,

| ln ε| N−2
4 q− N

2 , N = 4,

ε
N
2 − N−2

4 q , N = 3.

(3.3)

We claim that there exist τ0, τ1 > 0 independent of ε such that τε ∈ [τ0, τ1] for ε > 0
small. Suppose by contradiction that τε → 0 or τε → ∞ as ε → 0. (3.3) implies that
supτ≥0 E2∗,q((vε)

τ ) ≤ 0 as ε → 0 and then c2∗,q ≤ 0, which contradicts c2∗,q > 0. Thus,
the claim holds.

In (3.3), O(εN−2) can be controlled by the last term for ε > 0 small enough. Hence,

sup
τ≥0

E2∗,q((vε)
τ ) < sup

τ≥0

(
1

2
τ 2S

N
2 − 1

2∗ τ 2
∗
S

N
2

)
≤ 1

N
S

N
2 .

The proof is complete. �

Lemma 3.4 Let N ≥ 3, a > 0, μ > 0 and p̄ ≤ q < 2∗. If q = p̄, we further assume

that μa
4
N < (āN )

4
N . Then c2∗,q is attained by a real-valued positive, radially symmetric and

radially non-increasing function.

Proof Let pn → 2∗− as n → ∞, by Lemmas 2.5 and 3.1, there exists a sequence of positive
and radially non-increasing functions {un := u pn ,q} ⊂ Ppn ,q such that Epn ,q(un) = cpn ,q ≤
c2∗,q + 1. If q > p̄, we have

c2∗,q + 1 ≥ Epn ,q(un) =
(
1

2
− 1

qγq

) ∫
RN

|∇un |2dx +
(

γpn

qγq
− 1

pn

) ∫
RN

|un |pn dx .

So {un} is bounded in H1(RN ). If q = p̄, we have

c2∗,q + 1 ≥ Epn ,q(un) =
(

γpn

2
− 1

pn

) ∫
RN

|un |pn dx,
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which implies that {∫
RN |un |pn dx} is bounded. By the Young inequality

|un |q ≤ pn − q

pn − 2
|un |2 + q − 2

pn − 2
|un |pn ,

we know that {∫
RN |un |qdx} is bounded. So it follows from the expression

Epn ,q(un) =
(
1

2
− 1

pnγpn

) ∫
RN

|∇un |2dx +
(

γq

pnγpn
− 1

q

)
μ

∫
RN

|un |qdx

that {un} is bounded in H1(RN ). Thus, there exists a nonnegative and radially non-increasing
function u ∈ H1(RN ) such that up to a subsequence, un⇀u weakly in H1(RN ), un → u
strongly in Lt (RN ) for t ∈ (2, 2∗) and un → u a.e. in R

N .
By Lemma 2.6, there exists λn < 0 such that un satisfies

− �un = λnun + |un |pn−2un + μ|un |q−2un, x ∈ R
N . (3.4)

It follows from the expression

λna
2 = (γpn − 1)

∫
RN

|un |pn dx + μ(γq − 1)
∫
RN

|un |qdx

that {λn} is bounded. So there exists λ ≤ 0 such that up to a subsequence, limn→∞ λn = λ.
It follows from N ≥ 3 that N

N−2
2 (2−1)

and N
N−2
2 (2∗−1)

∈ (1,∞). Since pn → 2∗ and

ψ ∈ Lr (RN ) for r ∈ (1,∞), by the Young inequality, the Hölder inequality and Lemma 2.2
with t = 2∗, there exists a constant C > 0 independent of n such that

∣∣|un |pn−2unψ
∣∣ ≤ C

(
|un |2−1|ψ | + |un |2∗−1|ψ |

)

≤ C
(
|x | 2−N

2 (2−1)|ψ | + |x | 2−N
2 (2∗−1)|ψ |

)
∈ L1(RN ).

(3.5)

Passing to the limit in (3.4) and by using the Lebesgue dominated convergence theorem, we
have for any ψ ∈ C∞

c (RN ),

0 =
∫
RN

(∇un∇ψ − λnunψ)dx −
∫
RN

|un |pn−2unψdx − μ

∫
RN

|un |q−2unψdx

→
∫
RN

(∇u∇ψ − λuψ)dx −
∫
RN

|u|2∗−2uψdx − μ

∫
RN

|u|q−2uψdx

as n → ∞. That is, u is a solution of

−�u = λu + |u|2∗−2u + μ|u|q−2u, x ∈ R
N .

Thus P2∗,q(u) = 0.
We claim that u �≡ 0. Suppose by contradiction that u ≡ 0. By using Ppn ,q(un) = 0,∫

RN |un |q = on(1) and the Young inequality

|un |pn ≤ 2∗ − pn
2∗ − q

|un |q + pn − q

2∗ − q
|un |2∗

,
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we get that

∫
RN

|∇un |2dx = γpn

∫
RN

|un |pn dx + on(1)

≤ γpn
pn − q

2∗ − q

∫
RN

|un |2∗
dx + on(1)

≤ γpn
pn − q

2∗ − q

(∫
RN |∇un |2dx

S

) N
N−2

+ on(1).

Since lim infn→∞
∫
RN |∇un |2 > 0 (see the proof of Lemma 3.2), we obtain

lim sup
n→∞

‖∇un‖22 ≥ S
N
2 .

Consequently,

c2∗,q ≥ lim sup
n→∞

cpn ,q

= lim sup
n→∞

{(
1

2
− 1

pnγpn

) ∫
RN

|∇un |2dx +
(

γq

pnγpn
− 1

q

)
μ

∫
RN

|un |qdx
}

= lim sup
n→∞

{(
1

2
− 1

pnγpn

) ∫
RN

|∇un |2dx
}

≥ 1

N
S

N
2 ,

which contradicts Lemma 3.3. Thus u �≡ 0.
Set

∫
RN |u|2dx = c2 ≤ a2. Similarly to the proof of (2.7), we define ũ ∈ Sa . Then there

exists τ0 ∈ (0, 1] such that P2∗,q(ũτ0) = 0 and by Fatou’s lemma,

c2∗,q ≤ E2∗,q(ũ
τ0)

=
(
1

2
− 1

qγq

) ∫
RN

|∇(ũτ0)|2dx +
(

γ2∗

qγq
− 1

2∗

) ∫
RN

|(ũτ0)|2∗
dx

≤
(
1

2
− 1

qγq

) ∫
RN

|∇u|2dx +
(

γ2∗

qγq
− 1

2∗

) ∫
RN

|u|2∗
dx

≤ lim inf
n→∞

{(
1

2
− 1

qγq

) ∫
RN

|∇un |2dx +
(

γpn

qγq
− 1

pn

) ∫
RN

|un |pn dx
}

= lim inf
n→∞ cpn ,q ≤ lim sup

n→∞
cpn ,q ≤ c2∗,q .

Hence, E2∗,q(ũτ0) = c2∗,q . That is ũτ0 is a real-valued nonnegative, radially symmetric and
radially non-increasing minimizer of c2∗,q . By the strong maximum principle, ũτ0 > 0 in
R

N . �


Proof of Theorem 1.4: It follows from Lemmas 2.4, 2.6, 3.3 and 3.4.
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