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Abstract

We develop a general method to compute the Morse index of branched Willmore spheres and
show that the Morse index is equal to the index of certain matrix whose dimension is equal
to the number of ends of the dual minimal surface (when the latter exists). As a corollary, we
find that for all immersed Willmore spheres ® : 52 — R3 such that W (®) = 47n, we have
Indy (@) <n — 1.
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1 Introduction

It was proposed by Tristan Riviere in [36] to study the topology of immersions of surfaces into
Euclidean space by means of a quasi-Morse function (say .#). Fix a closed surface M2 and let
Imm(M2, R") be the space of smooth immersions ® : M2 — R”. We look for a Lagrangian
£ : Imm(M?, R") — R satisfying the following properties for all d: M? - R™:

(1) Z(® +¢) = £(®) forall ¢ € R" (translational invariance)
2 ¥ (Rg)) =Y (SD) for all R € O(n) (rotational invariance)
3) Z(AP) =.Z(P) for all L > 0 (scaling invariance).

Indeed, an immersion does not change geometrically when one translates, rotates or dilates
it.

Now, assume that n = 3. To an immersed surface one can attach two natural quantities:
the principal curvatures k1, k2 (introduced by Euler in 1760 [12]) which are the maximum
and the minimum of the curvatures of normal sections of the surface at a given point. Then
we define the mean curvature H and the Gauss curvature K (introduced by Meusnier in 1776
[24]) by

H = KIZKZ, and K = k1k3.

Thanks to the third property, .2 must be a quadratic expression of the principal curvatures
(see also [30] for a more general study of conformal invariants of Euclidean space), which
says that up to scaling

L(P) = / (H? + ). K) dvol,
M2

for some A € R, where g = g5 = P gg3. Thanks to the Gauss—Bonnet theorem,

S

K dvolg = 21 x (M?)
2

is a constant independent of the immersion. Therefore, up to constants, the only non-trivial
such quasi-Morse function is

L(®) = / H?dvoly,
)}

which is generally denoted by . = W and is called the Willmore energy.

This Lagrangian actually first appeared in the work of Poisson in 1814 and Germain’s third
memoir of 1815 respectively in their work about elasticity [15,16,33]. It was considered by
many geometers in the following years, including in important work of Navier [31]. For more
information on the history in which these considerations about elasticity emerged, we refer
to the comprehensive work of Todhunter [46]. Poisson was the first one to obtain the correct
Euler—Lagrange equation, more than 100 years before Blaschke and Thomsen, who attributed
it to Schadow in 1922 [5,45]. He also found in 1814 the first version of the Gauss-Bonnet
theorem, and his student Rodrigues computed the following year the exact constant 47 for
ellipsoids, but unfortunately made a sign mistake and found 8z for tori [37,38]. The famous
memoir of Gauss on the subject of the curvature of surfaces appeared only in 1827 [14], and
Gauss—Bonnet in a published form in 1848 [6].

This Lagrangian only reappeared in 1965 in Willmore’s work who proposed the famous
conjecture about minimisers of the Willmore energy for tori [47], which was finally proved
in 2012 by Marques and Neves [23].
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In higher codimension, we can also define the Willmore energy as
W(d) = f |H *dvoly,
by

where H is the mean curvature vector (the half-trace of the second fundamental form). It has
the fundamental property of being invariant under conformal transformations (of the ambient
space). In particular, since minimal surfaces (FI = 0) are absolute minimisers, inversions
of complete minimal surfaces with finite total curvature are Willmore surfaces (though they
may have branch points in general). Furthermore, Bryant showed that all immersions of the
sphere in R? are inversions of complete minimal surfaces with embedded planar ends [8].

Now, a basic problem that we can address is to try to understand the following quantities:
let y € mp(Imm(M 2 R") bea generator (of regular homotopy of immersions) and let

By = inf sup W(Ci,).
(@)Y resk

Then one would like to understand if we can estimate these numbers and get some information
on the critical immersions realising them (if it is possible to realise the width of these min—max

problems).
The first non-trivial number is given as follows: let M? = $2, n = 3, and y €
71 (Imm(S2, R")) ~ Z x Z, be a non-trivial class (Smale [43]). Then we define
B, = inf sup W(P,). (1.1)
{®r}xy t€[0,1]

By the work of Smale, the space of immersions from the round sphere S in the three-space
R3 is path-connected (mo(Imm(S2, R3)) = {0}), we can define

Bo= inf sup W(®,),
{d,}etel0,1]

where 2 is the set of path {it},gloqu  Imm(S2, R3) such that Cf>o =tand <f>1 = —t, where
t: 82 — R3 is the standard embedding of the round sphere. These two min-max widths
are equal since the Froissart—-Morin eversion generates | (Imm(S2, R%)) (see [36]). We will
now explain what can be said about this problem in general and show a path to determine
(1.1) and find which immersions may realise it. In relationship with these quantities, Kusner
proposed the following conjecture.

Conjecture (Kusner, 1980°s [19]) We have By = 167, and an optimal path is given by
a Willmore gradient flow starting from the inversion of Bryant’s minimal surface with 4
embedded ends.

Thanks to Bryant’s classification [29] and our extension to a large class of branched
Willmore spheres [29], it makes particularly sense to compute the index of inversions of
complete minimal surfaces with finite total curvature in R3. Indeed, we have the following
result.

'I;heorem J A gRiviére L36], M. [25,26]) There exists compact true branched Willmore spheres
Dp, o, Op, Wy, Y $2 — R3 such that

p q
Bo=D W@+ (W) —4r0)) (1.2)

i=1 j=1
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and

)4 q
> Indw (®;) + Y Indw (¥)) < 1,
i=1 j=1

where 0; = 90(\_13-, i) € N is the multiplicity o U at some point p; € \TJ-(SZ).
J j>Pij plicity j p Dj b

Here, recall that a Willmore surface ® : & — R” has no first residue if for all path y
around a branch point p of ® (which does not contain or intersect other branch points)

- 1 L L
Jo(®, p):rlm/(3H+|H|23<1>+2g*1®<H,h0)®ad>):0.
T
14

We refer to [2,29,34] for more information on this quantity.
This theorem shows that the previous conjecture should be interpreted as follows.

Conjecture Let dp,..., CB,,, Uy, ..., \flq be given by (1.2). Then p = 1, ¢ = 0 and d, is
the inversion of Bryant’s minimal surface with 4 embedded planar ends.

2 Main results

If ¥ : ¥ — R3is a branched Willmore sphere, we write for all admissible variation
¥ € Var(W) ¢ W22(2, R3) (see Sect. 3 for more details)

0;@)=D*W(W¥)([©,7)

the quadratic form of the second derivative of the Willmore energy W at 0. Then we define
the Willmore Morse index as the maximum dimension of sub-vector spaces of Var(V) on
which Qy is negative definite.

Theorem A Let X be a closed Riemann surface and let U : ¥ — R3 be a branched Willmore
surface, ﬁ@ : ¥ — 52 be the unit normal of‘il, g= \f/*gRs be the induced metric on ¥ and
assume that U is the inversion of a complete minimal surface P - S\{p1,....pn) = R3
with embedded ends. Assume that 0 < m < n is fixed such that p; ..., p,, are catenoid ends,
while pyy1, ..., py are planar ends, and forall 1 < j < m, let B; = |Flux(<f>, pj)l > 0be
the flux of o ar pj- There exists a symmetric matrix A(\i/) € Sym,, (R) defined by

2;312 M2 coe ooe cee e Aln

)\,]’2 2ﬁ§' }\Z,n

A(Y) = M oo e 282 .- .. Ao
AMondl =vr wer vee 0 Amt1n

)\ln )"2,)1 0

with the following property: for all v € Var(V) such that v = (v, i) € C*(X), there exists
n,

a function vy € Wz*z(E) such that vo(p;) = 0 forall 1 <i < n, and if uy = |&>|2v0, we
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have the identity

m
05@) = %/ (Aguo — 2K guo)” dvolg + 87 > B2 (pi) +4n > i ju(p)v(py).
z i=1 1<i,j<n
i#]

Furthermore, for all a = (ay,...,a,) € R", there exists an admissible variation v €
W22 N Wheo(s, R?) such that (v(p1), ..., v(pn)) = (a1, ...,a,) (where v = (V,7ig,))
and

m

Q3 @) =87 Y BI (p)+4r Y hiju(p)v(p)). .1
i=1 1<i,j<n
i£]

Therefore, we have
Indy (W) = Ind A(W) <n — 1,
where Ind A(\f-’) is the number of negative eigenvalues ofA(\iJ).

The index of a (finite dimensional) matrix is defined as usual by the number of (strictly)
negative eigenvalues.

Remark This theorem was first presented in detail on November 13, 2018 at the Institute for
Advanced Study in the seminar Variational Methods in Geometry Seminar

https://www.math.ias.edu/seminars/abstract?event=138881

The video was uploaded and is freely available on the internet since then at the following
links:

https://video.ias.edu/varimethodsgeo/2018/1113- AlexisMichelat

https://www.youtube.com/watch?v=1AYcy220lec

The interested reader will find at 1:05 the main theorem, at 1:31 and 1:35 the special
negative variations with logarithm behaviour at the ends and at 1:39 the additional term
coming out for variations including a logarithm term.

Remark There are examples of complete minimal surfaces of genus 1 with planar ends
discovered by Costa and Shamaev [10,41]. Kusner and Schmitt also studied the moduli
space of such minimal surfaces in detail (see [20]), and showed in particular that there are no
examples with three planar ends (this is the first non-trivial case thanks to Schoen’s theorem
on the characterisation of the catenoid as the only complete minimal surface with 2 embedded
ends [39]). They all have an even number of ends (at least 4). In fact, all values of ends 2n > 4
are attained.

Corollary B Let ® : 52 — R3 be a Willmore immersion. Then
- 1 -
Indy () < —W (D) — 1.
4

In general, we can obtain a general bound which generalises the main result of [28] to the
case of branched Willmore surfaces.

TheoremC Let U : & — R3 be a branched Willmore surface and assume that U is the
inversion of a complete minimal surface with finite total curvature ® : ¥\ {p1, ..., pn} =
R3. Then there exists a universal symmetric matrix A = A(V) = {k,-,j }1<i j<n such that
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forall ¥ € Var(¥) N C=(T,R3), if v = (3, i), then there exists a function vg € W*2(X)
such that vo(p;) = 0 forall 1 <i < n, and ifug = |®|>vo, we have the identity

1 2
Qg() = 7/ (Agu0—2Kgu0) dvolg + 47 Z Aiju(p)v(p)),
2

2 —
1<i,j<n

Furthermore, there exists an admissible variation v € Var (V) such that

Q@) =47 Y A jv(p)v(p)).

1<i,j<n

In particular, we have
- > 1 - 1
Indy (V) =IndA(¥V) <n=—WW) — —/ Kgdvolg + x (). 2.2)
4 21 Jx

Remark For true branched immersions with ends of multiplicity at most 2, we may get the
bound

1

- - 1
Indw(¥) <n—1=—WW) —
4

27
by showing that &; ; = 0 for ends of multiplicity 2. Since the proof is just a lengthy but
straightforward computation, it is omitted (see [27], pp. 355-367).

/ Kqdvolg + x(X) — 1.
z

Added in proof. Recently Jonas Hirsch and Elena Mader—Baumdicker wrote a paper on
this subject in the special case of minimal surfaces with flat ends [17].

3 The second derivative of the Willmore energy as a renormalised
energy

I:et % be a closed Riemann surface, n € N, py,..., p, € X be fixed distinct points and
@ : S\ {p1,....pu} — R¥bea complete minimal surface with finite total curvature and
assume without loss of generality that 0 ¢ ®(Z\ {p1, ..., pa}) C R3. Then the inversion

O

U= R I &
|2

is a compact branched Willmore surface. Now, recall that we defined in [26] a notion of
admissible variations of the Willmore energy as the maximum set of variations for which the
second derivative of the Willmore energy is well-defined.

Theorem 3.1 [26] Let X be a closﬁed Riemann surface and let U : ¥ — RY be a branched
Willmore immersion and let § = W*gpa be the induced metric. Then the second derivative
D>W (W) is well-defined at some point

b = &5 (, RY) = w22 0 whe®r) 0 {J; Lib(p) € Ty, R forall p e z}
if and only if
dib € L®(2, g0) and Z;w € L* (X, dvoly),
where g is any fixed smooth metric on X, and Egl = Aé + /() is the Jacobi operator

and < is the Simons operator. We denote by Var(‘-fJ) this space of admissible variations.
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Notice that at a branch point of multiplicity m > 1, the condition are equivalent to

(Aw)*

|Z|m—1

V|

|Z|m—1

€ L*(D?), and e LX(D?).
In particular, if w is a smooth variation, the conditions are equivalent to
W = w(0) +Re (32") + 0(jzI™™.

We can now define the Willmore Morse index as follows (see [26]).

Definition 3.2 Let X be a closed Riemann surface and let & : ¥ — R” be a branched Will-
more immersion. Then Willmore index of Ci>, denoted by Indy (5>), is equal to the dimension
of the maximal sub-vector space V C Var(\il) on which the quadratic form second variation
05 (-) = D*W(®)(-, -) is negative definite.

Now, thanks to Proposition 4.5 of [28], assuming that U is smooth, for all ¥ = v ng €
Var(\i'), we have

03 (@) = D*W(W)(¥, v) :f {% (Agu — 2K qu)’ dvol,

P
1 2
—d | (Agu+2Kqu) x du — 3 sdldulg ) t.

where u = |Cf>|2v. However, conformally minimal branched Willmore spheres are generally
not smooth, so this formula needs to be generalised in two directions. First, one needs to

. . - _d - .
consider vectorial variations, and secondly the second variation ﬁfbt [i1=0 will have to be

taken into account. As the derivation is particularly long, we differ it to the appendix (see
Theorem 10.5).

Theorem3.3 Let ¥ : ¥ — R3 be a branched Willmore sphere, and assume that U is
the inversion of a complete minimal surface ® : S\ {p1, ..., pp} — R3 with finite total
curvature, and let v be an admissible variation. Make the decomposition v = —vig +

2Re (oz ® Blfl) Ifu= |&>|2v, we have

- 1
D*W (V) (¥, 7) =/ <§($gu)2dvolg
D)
—dIm((Agu +2Kou +4Re (37 @ ho @ 3ar)) (20u + ho ® @)
—020u+ho®al; +2¢7'®I D ® (287 ®ho®du — K, g @)
AN | a(1d12,,2 1 2
+4<q)anq>>g ®hy®9||P|7v + |&>|2g®|a|
—gg ! ®h0®5(|&>|2<*,7z5>)v2 +2Re (a®alog|&>|) |<f>|2v)
+4K, ((@,ﬁ&))v—i-ZRe (a®810g|<f>|)>g®&)>
1
Z/Z <§(zgu)2dvolg—dw(u,a)>, (3.1)

where g = &)*gR3, and £y = Ay — 2K, is the Jacobi operator of P.
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126 Page 8 0f 97 A. Michelat

Remark3.4 1. We can see directly that the formula reduces to the previous one if U s
smooth and v = —vn g 1s normal. Indeed, by the proof of Theorem 4.1, we have at a

branch point in any complex chart centred at z = 0 hg = O (é) , while up to scaling

- 1

2 _ 20 _
| D] _WW(I—FO(IzI)) and e = W(l—i—O(lzl)).
Furthermore, since W is smooth, we deduce by the regularity criterion of Bernard—Riviere
[1] that Hg, = —Z(ﬁ@, ®) € L*°(X) (by Lemma 10.8 of the appendix) and we directly
get

4(®,iig)e™" ® ho ®5(|&>|2u2) = 0(1) x 0(|z]~@" ) x 0(z| ™)
x 0(|z|7®™tD) = 0(1)

and the other two additional terms are estimated similarly, so that one can apply Stokes
theorem and neglect those components.

2. By [1], the mean curvature Hg, is in particular Lipschitz, which implies in that Hg =
co + O(|z|) fo some ¢o € R. Furthermore, we have by Lemma 10.8

1 _
hl = —la)'zh%) = 0(z/*" .

Therefore, we deduce thathave 9,1 = —H@(’iz\fl—e_z“h%iklf! = —coAoz" '+ 0(|z|™)

for some Ag € C3\ {0}. Integrating this equation and using the fact that ng, is real, we
deduce that

R . 2¢ -
iig =iy (p) =~ Re (Aoz") + 0(zI"*.

Therefore, if U is smooth, for all real-valued function v € W22(X) such that ldv|g €
L*®(X)and Agv € L3(Z, dvolyg), the variation v 71\3 is admissible.

Now, thanks to the Stokes theorem applied to (3.1), we have

- . 1 2 5
Qg ) = lim f/ Agu —2K,u)” dvol, + w(u,a)l, (3.2)
] v\ 2 25( g glt) g IZI: 9B (o)
where
n —
ze =2\ JB:(p).
i=1

In particular, the limit (3.2) exists for all such v € Var(\fl). Here, the balls B, (p;) are fixed

after the following definition for some covering (Uy, ..., U,) of {p1, ..., pn} fixed once and
for all.

Definition 3.5 We say that a family of chart domains (Uy,...,U,) is a covering of
{p1,....;n} C Zif p; e Ujforalll <i <nandU;NU; = gforalll <i < n.

Forall 1 <i <nifg; : Uy = Bc(0,1) C Cis acomplex chart such that ¢; (p;) = 0 and
i (U;) = Bc(0, 1), we define forall0 < ¢ < 1

Be(pi) = ¢; ' (Bc(0, ¢)).
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This definition is independent of the chart ¢; : U; — Bc(0,1) C C such that ¢; (U;) =
Bc(0, 1) and ¢; (p;) = 0.

The independence of the chart ¢; with the above properties is a trivial consequence of
Schwarz lemma (see [28] for more details).

Let us now say a few words concerning the analysis of this article. By a standard method

due to Smale, we construct for all ¢ > 0 small enough n real-valued functions ué, S, uy,

such that for all 1 < i < n, the function ui : 22 = X\B:(p) U {pt,....,pnH) = R
satisfies the system
5 ) .
Lou, =0 in X
u, =u on 9%}
du. =du on dXL.

&

fu=u—7y", ul, this allows us to perform an expansion and an integration by parts

1 1 1 . - :
5[2 (Lpu)*dvol, = 5/2 (Lyue)*dvolg + 5/2 (Lpul)*dvol, +Z/E Lguty Lyul dvolg

+ Z /fu fudvolg_ /(.,i”ua)dvol +Z/ fug,fu dvolg

1<i#j<n
+ / = Lot Lyuldvol, +Z [ ‘)—av(u;)fgu;)dﬁl.
1<i#j<n

Then, we prove in Sect. 6 by an indicial root analysis (Sect. 5) that

—Z/ wu,a)+ 0(1)
i=1 9B (pi)

and the remaining terms are all bounded. Finally, refining this estimate, we show that u, —6

E—>

1

,Z: 2 /aBg<p_,»> (ui o <'$gui) = ) gg“i) ! =

ug and that there exists A; ; € R such that

0y () = / (Lyuo)*dvolg + 4 Z b, jo(pV(p)).
i,j=1
This is done in Theorem 6.6 in the case of embedded ends and in Theorem 8.1. This immedi-
ately implies the upper estimate (already proven in Theorem 5.1). Then, using the functions

vy = |d>| 2y as test functions, we obtain the equality for the Morse index (Theorems 7.1
and 8.3).

4 Explicit description of the admissible variations

Before delving into the proof of the main theorem, we need to describe the set of admissible
variations more precisely. First, let us examine an example.

Let & : \{pt,--., pn} — R3 and assume that pi is an embedded end of catenoid
growth. Up to a rotation, we have fiq, (pi) = (0,0, 1), we will see that we have (see the proof
of Theorem 6.2) for some f; # 0 an expansion of the form

¥(z) = Re (Aoz) + Bilz? log 2183 + O (2 log? |2])
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fig =&+ Re ((=2fizloglz| = fiz)Ao) + O(12 log? [2)),

where A() = (1, —i,0),and e3 = (0,0, 1). In particular, if v € C*®°(X), and v(p;) # 0, the
function V; = W + ¢ vﬁ@ admits the expansion

;= Re (Ao (2 (1 = 1Bv(p) = 2uBiv(p)log [21))) + 10 + O(1z[ log? [z).

Therefore, for all # # 0, we have
2 2 2022 2 1 0
[0, @; X 0y, @y = 417 B v (pi) log” |z] | 1+ O Tzl ¢ L™ (D) 4.1

SO \IJ, is not a weak immersion [35]. . .
If W has a branch point of higher order m > 2, then we will see that ¥, = W + 15y

is not admissible in general. Choosing a conformal parametrisation of U from the unit disk
D — X at a branch point we have for all i = 1, 2 (using Z, indices)

0V = (1 =120 ) 0, W —1e 2 11 5 8y, W
where I is the second fundamental form. Therefore, we have
9 W x 0,0 = (1 —1e 2L (1 —te P hp) — 12 e 17 ,) 0, ¥ x 8, ¥
=(1—teM1 +hy) +2e ™ (I1hs —17,)) 0¥ x 8, ¥
= (1 —2tH +12K) 85, ¥ x 3, W.
where H is the mean curvature and K is the Gauss curvature. Up to scaling, we deduce that
100, W X 9, Wy = |1 = 20H + 22K 27" 72 (1 + O(lz])) .

Now, assume that U is not smooth at pi, then the Bernard-Riviere criterion implies that
H ¢ L°°(D) and that the variation is not admissible since the order of the branch point is
not preserved.

The question is therefore to determine for a branched immersion U : X — R for
which v € W22(X), there exists a (—1, 0)-form « (see [13] for the analogous of Beltrami
coefficients, or (—1, 1) forms) such that v = —v ﬁ;l; + 2Re(x ® B\TJ) is an admissible
variation. The following theorem gives an algorithm to get the Taylor expansion of v and «
up to order m.

Theorem4.1 Let W : ¥ — R3 be a branched Willmore surface which is the inversion
of a complete minimal surface P : S\ {p1. ..., pu} — R3 with finite total curvature. Let
1 <i < n,assumethat p; is of multiplicitym > 1, and fix a complex chart ¢; : Bc(0,1) — X
suchthat ; (0) = p;. Ifm = 1 and ® admits a catenoid end at Di, then there exits B; € R\ {0}

such that
dz? 1
0 _ . _
h&) = —Bi ) +0<Z>

and for all variation v € W>2(2) N WL®(X), the variation v = —v ng +2Re (a ® 8‘11)
is admissible if and only if

a = -=2Bv(p)zlog|z|l + yiz + 27+ B, (4.2)
where B € W22(Z) N WH(Z) and Z1og |z|f € WH2(Z) N Whe (D).
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Ifm > 2, forallv € W>%(X), define the vectorial variation v = —viig+2Re (a ® 8\_13)

for some (—1, 0)-form. Now assume that that Agv = O(|A|*v), and that v admits a Taylor
expansion of the form

v=uv(p;) + Z ZRe (yi’sziij logk |z|> + 0(z" " 10g 12])
ijeZ k=0
1<i+j<m

for some N € N (and yl.]f j € C), then v is admissible if and only if v and a solve for some
c1,¢2,c3 € Cand Ny, Na, N3 € N the system
1 1 = m—1 m N
8v=§ho®a+5Hg®a+clz + O(|z|™ log™ |z])

d(g®a) =—g Hv + ca|z]" 2 + O0(|z]" " log" I2]) (4.3)

o=~ (g7 ' ®ho)v+c3 (j)m_l + 0(|z| 1og™ |z)).
Now, assume that rz(\_I}, pi) =d — 1 > 1, i.e. that there exists co € C\ {0} such that
H =Re (%) + 0(Iz79).
Then there exists al{“j, ﬁi/fj € C(i, j € Z, k € N) almost all zero such that v and o admit the

Sfollowing Taylor expansions

v vip _8<(m+1—d)(m+2—2d) ¢

2m? — (d — 1)* -
m|co|2v(pi)|z|2m+2 2d)

m—1
+ Z ZRe <aﬁjv(pi)z52'j log* |Z|>

i+ j=2m+2-2d+1 k>0

Y SRe (o (o0 logt el

it j=m,ij#0 k>0

(C(%v(pi)zm+2—2dzm)

+Re (y0z") + 0(zI" " log |z)

1 o 1 co z
¥=-3 (mzdjv(l’i) + P U(Pi))

+ Y BRI logt [zl + 01zl Tog" [z)).
3—d<i+j<0,k=0

In particular, if 2m +2 —2d > m+ 1, ie.d < mT'H, there are no conditions to impose.
Finally, ifd = 1 and )70(@, pi) # O, then there are no conditions to impose and we can take
a=0.

Proof At a branch point of multiplicity m > 1 in the smooth case the conditions on v imply
that v admits an expansion of the form

U = (pi) +Re (702") + O0(zI™ .
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126 Page 12 0f 97 A. Michelat

In particular, we have
3 € Spangs (2™ 4+ 0(|z™).

We compute

8.5 = —d.viig +v (Haz\fj e Png %xf;) +o.a0,0
+a (%710 + 2(azmaz\i/> + 8,00=V + %ae“ﬁ
= <—Bzv + %hoa + %eZAH&) iig + (.« +2(9, M) + Hv) 9, ¥
+ (8@ + e P hov) 37V
Since 7 is Lipschitz, we have for some 7i(p;) € S? the expansion 71 = 7(p;) + O(|z]),

while for some Ao € (C3\ {0}, we have Bz\f/ = Aoz'"’l + O(|z|™ log |z]). In particular, we
deduce that v and o must satisfy for some constants cy, ¢2, ¢3, ca € C the system

| 1
dv=-ho®a+ Hg®u+e" ™+ 0(")

(g ®a) = —g Hu+ ool + 0(|z" ) 4.4)

m—1
3a:—(g71 ® ho) v +c3 (E) + O(lz]).

Therefore, thanks to the Taylor expansion of g, H and &g given by [1], we can solve this
system by induction to find the admissible functions v. Indeed, we first make the expansion
v = v(p;) + O(|z]) to solve the last two equations at order 1, which uniquely determines
the first order of the Taylor expansion of «. Then, using the first equation, we obtain the
next order expansion of v that we can plug again in the second and third equation until all
equations are satisfied (then, the higher order terms of v are free). Let us check one explicit
example. At a catenoid end, we have by the forthcoming proof of Theorem 6.2 for some
Bi € R the expansions

> 1
|| = FEh O(log? |z)

1
8= (1+0(z»)

dz? 1
=g oL
o= Pat <|z|)

(g, ®) = —pi (log|z| + 1) + O(lz])
Therefore, by Lemma 10.8, we deduce that

i
g5 = j1>4 =1+ 0(z*log? |z])
||
Hg = —2(iiz, ®) = 2B; (log|z| + 1) + O(|z|)
1 - z
0 _ _ 0 — 2472
hY, = |&>|2h¢ ﬁlzdz + O0(lz]).

Therefore, the last equations becomes

da = —=2B;v(p;) doglz| + 1) +c2 + O(lz])

@ Springer



On the Morse index of branched Willmore spheres in 3-space Page 130f97 126

B = —ﬂm(p»% +e3+ 0(z)

Integrating the second equation, we find by Proposition C.2 of [1] (see also the appendix of
(29D

a = —2Bv(p)zloglzl + e37 + fo(2) + Oz

where f3 is a holomorphic function. Likewise, integrating the first equation, we get

a = =2fv(p)zloglzl + (=Biv(p) + ) 2+ fil) + 01z,
where fi is holomorphic. Comparing the two expansions, we deduce that

a = —2Bv(pi)zloglzl + (—Biv(pi) +2) 2 + 37+ O(lz%)
= —2Bv(p)zloglzl + yiz + vz + O(|z?)

for some y1, y» € C.

Let us also see how to get the first order expansion at a branch point of order m > 2.
We notice that in the case of inversions of minimal surfaces, the second residue can be read
directly on the Weierstrass parametrisation. Indeed, we have h% = —-20gQuwif (g, w)isthe
Weierstrass data, and we deduce that there exists an integerd + 1 < m + 1 and ¢; € C\ {0}
such that

c

1
g = (1 + 02z,

Up to scaling, we also have

P> = e (L 002D)

21 2132 m?

e =0z|P|" = |Z|ZT+2 I+ 0(z)

et — e_,i =m?z*"72(1 + 0(|z]))

| D[4

N 1

0 _ Q - _ m—d—1=m 2
g = |&>|2h¢ c1z (1 + O(lz))dz".

Therefore, the Codazzi identity implies that

1

- — ol @anl = —d—1zm—1 S
IHG = g5 ©@ TG = iy (mer 1) (4 0(elde = e de

For d = 1, since Hy, is real, we get c; € R and

2c
Hy; = ——1log|z| + O(1)
m
andif d # 1
2 c1 3.4 €0 2-d
Hy = d = 1)Re (qu) + O0(|z]”"%) =Re Ty + O(Iz]I7™9).

In particular, the second residue is equal to d — 1. Now, the last equation of the system (4.4)
becomes
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126 Page 14 of 97 A. Michelat

1 —m—d—1 m
W(l +0(2)) (-2 ) (1 + 03D @(p) + 0(|z|)>—

- d(v(p,>+ 0(|z|))—

Assuming that d # 1 (if d = 1, the computations are exactly the same as in the case of
minimal surfaces with embedded planar ends), we deduce that

e 1
- <_C717d ~v(pi) + f1(2) + 0(zP~ f’)) (4.5)

m?(d — 1) dz’
where f] is a meromorphic function. Then, we have
_ _ co dz
3 (121" 2a) = —[z[*"?Re (Fl) @(p) + O(1zh) -
1 m—d-m—1 — _m—1lzm—d dz
= =5 (o2 b @12 i) + 0D
Integrating, we find that there exists a holomorphic function f; such that

1 c co
2" 2o = (ﬁf_dz’"“ gty S d) W(pi) + 0(|z|>) ot fz(z)—

which implies that

1 co 1 lco z Fr(z) 34 1
=(-—-—2 — - 0 —. (4.6
(24 < 2m+1 d d 2 (pl) 2m Z (pl)+ | |2m ) + (lzl ) dZ ( )
Since
2cq
CO = 0,
m(d — 1)

the first expansion (4.5) becomes

c z _ 1
o= <_$Zdﬁ + fi@) + 0(|Z|3 d)) E

which shows by comparing with the second expansion (4.6) that 7|2 2m Jf>(2) is holomorphic
(provided that f; is restricted to its Taylor expansion of order (2m — 2) + (2 — d). Therefore,

we have
J2(2) 1 —— m-=1)
O_&(|Z|2m 2 | |2m72 fZ(Z)_ z
Since m > 2, we deduce that there exists c; € C such that f>(z) = [ Y Finally, we get

Lo 1 -1 )+ o5+ 00 -
a=|—5—————50(pi) — 53— 5V
dm+1—dzd2"P 2mz pi

fz(z)) .

If ¢ # 0, we have
_ c 9 1
o= (F + O(lzl '")) e
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and the first equation is

1 m(d —1) a1 (o)
v = E (—#cozm d lZm> Zm—1

1 c 2
V4

m(d — 1 m? m?
_ (2 )Cozfd m+TC0622m IZI d+ 2 COCQZm d+0(|z|m d+l)‘

This implies since there exists a holomorphic function f3 such that

m 1—d= —d
v=uv(p;) + 7 cocaz "+ ZCOCZZ z!
m? d+1 | T d+1
LT L T+ B+ 0.

Since v is real, we deduce that
2

) + mRe <C06Zmid+l> + O(|Z|mid+2)-

m
v=u(pi) + TRe (cmzl’d?”

In particular, if d = m, then v ¢ W22(X) since Re (cocaz!™"7") ¢ W22(D?), and since
W?2(X) is the minimal regularity we want to impose on v, this implies that c; = 0. Likewise,
if W is smooth, or d = 1, then we just get for some yy € C

m m
v=1v(pi)+ SRe (coc2z™) + 7 Re (coc2z™) = v(pi) + Re (y02™) + O(lzI™™)
so we retrieve the previous condition. Furthermore, recalling that
L0 =—(Agv+|APv) +4Re (0H Q) ,

this is natural to impose that Agv be not more singular than |A|?v. Indeed, all terms of higher
singularity will be compensated by 4 Re (d H ® «), but this will only increase the complexity
without giving us further negative variations. Therefore, we will assume that ¢, = 0 in what
follows, and coming back to the first equation of (4.4), we deduce that

1 &) 1 1% Z — 1
= (_,77,) )= 5 (e + Ol d)) -
<

2m+1—dz4-2 (pi 2m

and we compute

1 1/ md-1) —d—1o 1 o 1
*h e I m 'm I )
Fho®a 2( 5 coz z 2m+1—dzd’2v(pl)

1¢co ()
=3 = —ro(pi) + Oz d)) dz
d—1
_g <,:li - Zic(z)v(pi)zm+l—2dzm

+(d _ 1)|CO|2U(P1') medzm7d+l> dZ + 0(|Z|2m72d+2)

and

1 _ m? —d=m—1 lom—d 0 1
EHg@oz:—? <cozm A Ty A ) m?ljv(m)
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co 2 _
+— ——v(p) + O(lz? ")) dz
m z

2_1 m’ b ) o a7t | 3 =2dm
8 m+1—d

22—
m-co m—1=m+2—2d 2m—2d+2
_ 0] dz.
+m+1_dz Z + O(|z| )) z

Therefore, integrating the first equation
v = 1h Qo+ 1H Qo
v=sh®@at Hg®d

yields for some holomorphic function (it can not be meromorphic since v € L>(Z, go)) f4
the identity

— u(p) — & m(d — 1) 20N mA2-2d=m
v=vip) 8((m+1—d)(m+2—2d)c0”(p’)Z ¢
d—1
+(+71_)|00| v(p,)|z|2'"+2‘2")

] " m 2 2m—2d+2
- g( ((m TToa2 T _d> lcol"v(pi)lz]

m 2. N m+1—2d=m
HEES A e

m -
+ COQZmZm+2 2d +f4(Z) 4 0(|Z|2m—2d+3)
m+1—d

1 2m? _
=v(p;) — = ( Re (C(z)y(pi)zm+2—2dzm)

m+1—-d)y(m+2—2d)

2m? — (d — 1)?
%w v<p1>|z|2’"“*2d)

+ f1(@) + O(jzP" 2453,

where we have used

m(d —1) n m B m?
m+1—dym+2-2d) m+2-2d (m+1—d)(m+2—2d)
m? m @d—-1)  2m?—(d—1)*

(m+l—d)2+m+l—d+m+l—d_ (m+1—d)?

Since v is real, we deduce that f; = O (this implies that f4 is a real constant, but we have
already written in this expansion the constant). This implies that the next order expansion of
« is also a linear function of v(p;), and by an immediate induction, since H and hq (of \TJ)
admit the following expansions thanks to Lemma 10.8

k
H =Re (—) > > Re (e,k i 1)+yo|z|2'" *log|z| + O(lz])

j=1k>0
m+d—3
ho = —ci2" 71T Y a4 032",
i+j=2m—d
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we deduce that the given expansions hold. O

5 Decomposition of the renormalised energy

We fix a Willmore surface ¥ : & — R which is the inversion of a complete minimal
surface ® : S\ {p1, ..., pn} = R3 of finite total curvature. We fix v € W22(Z) (such that
U= vﬁ@ +2Re (¢ ® B\TJ) S Var(\iJ) for some (—1, 0)-form «), and as in the introduction,
for all ¢ > 0 small enough, we consider the following minimisation problem

1
inf ff (Agw — 2K qw)?dvol, (5.1)
weée(pi) 2 JS\Bo(pi)

where the class of admissible functions is

gg(pi)zwz’z(z\wmm:w;{ w=u on aBsm)}'

dyw=2adu on IB.(p;)

Notice that for anend p; (for some 1 < j < n) of multiplicity m > 1 of a complete minimal
surface with finite total curvature ® : ¥ — {py,... ,_}pn} — RR”, in any complex chart
z:B(0,1) c C — X suchthat z(0) = p;, there exists Ag € C"\ {0} (depending on z) such
that

-

(i') _ AO 1-m
(z) =Re py +0(z|'™™)

for m > 2, while for m = 1 there exists ¥y € R” such that

A

d(z) =Re ( - ) + 7o log |z| + O(1).

Therefore, we have up to scaling

e =203.02 = A+ 0(z]) .

220D
In particular, we deduce that
Ky = —Agh = 0(|z""*D),
and
Ly =Dy — 2Ky = e (A +24A%) = 22TV (1 4+ 0(Jz]) (A + O(1)),

so .Z; is not elliptic in a neighbourhood of p ;. Therefore, we will have to consider another
problem than (5.1).

Recall first by definition of B¢ (p;) that Bi(p;) N Bi(p;) = @ foralll <i # j < n.
Therefore, forall 0 < ¢ < 1,and forall0 < § < ¢,and 1 <i < n consider the domain

=iy =3\ Be(pi) U Bs(p)
J#i
We will also write

si= =l =2\ (Be(p) Upi..... pa}).

§>0
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Then %, and fgz are strongly ellipticon & é 5 and have the uniqueness for the Cauchy problem
ie. if Leu = 0 (resp. .,?fu = 0) and ¥ = 0 on some open U C 22,5, then u = O (this
fact was first proved in general by Simons [42]), thanks to a classical theorem of Smale (see
[9,44]) there exists 0 < &g such that for all 0 < & < &g, there exists 0 < §(¢) < ¢ such that
for all 0 < 8 < J(¢), the operators £, and .fgz have no kernel on E; sglorall 1 <i <n.
More precisely, the only solution of each of the two following problems
Lyu=0 in T,

] 5.2)
u=0 on 822’5,

and
2 . j
Leu=0 in X
u=0 on d%,; (5.3)
du=0 on dX,;

is the trivial solution u# = 0. Therefore, thanks to the Fredholm alternative (see [7, IX.23])
forall 1 <i < n and all but finitely many 0 < & < &g there exists a unique minimiser ug 5
of (5.1) such that

fgzué,g =0 on 22’5
uiy=u on dB(pi)
Ay 5 = dyu on dBe(p;) (5.4)
“2,5 =0 on dBs(p;) forall 1 <j#i<n

douls=0 on dBs(p;) forall 1 < j#i=<n

where u = |<T>|2v and .7, = Ag — 2K, is the Jacobi operator of the minimal surface P :
S\ {p1, ..., pu} = R3.Inparticular, we fix 0 < ¢ < g9 and we assume 0 < § < 8p(¢) < €.
Furthermore, notice that u_ , is the unique solution to the variational problem

1 2
inf - A, w—2K,w) dvol 5.5
wedes(pi) 2 Li ( & & ) 8 )

where

w=u on dB.(pi)
dyw = dyu  on IB.(p;)

w=0 on 0B.(p;) forall 1 < j#i=<n
dw =0 on 0B¢(p;) forall 1 < j #i <n.

Ees(pi) = WHA(Elpn{w:

5.1 Estimate of the singular energy of the minimisers

Recall the definition
0y @) = D*W(¥)(3, V),

for some admissible variation v € Var(\if). l?jx some 1 < i < n and assume that p; has
multiplicity m > 1. Up to scaling, we have |2 = |z|~2"(1 + O(|z])). Now assume that
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¥ € Var(¥) N C° (X, R3). By Theorem 4.1, we can make a decomposition
U= |q3|2v = |&>|2U0U(Pi) + Re (;%) + 0(|Z|1—m)7

which implies that

u—2K g = (Ag(1®Pv0) = 2K BP00) v(p) + Oz = fo@v(p) + fi(2),

and we get
1 1
*/ _ (Zuw)dvol, = */ _ (fO(Z)2U2(Pi)+2U(pi)fl (2))
2 JB\B.(pi 2 JB\B.(0)
2
m o
|z|2m+2 I+ Z Re <aisjzlzj)
' i>j>0,i+j>1
8rm? , “ ajk 1Y 2
om v (pi)+4nZZW10g A v (pi)
j=1k=0
2m—1
Bjk() 1
Ty ’2,,” pilog" (=) +0()
Jj=m+1k>0
= 0L(v) + O(1) (5.6)

where the o ; and B x(v) are almost all zero (meaning that they are all zero but finitely
many of them).
In particular, for all smooth admissible variation v = —v ﬁ\f/ + 2Re (oz ® 8\_13) of W as

above, we deduce since the limit

04®) = hm< f (Leu)*dvol, +Z/ w(u,a))
9B (pi)

exists and is finite that

ok 1
s = i —4 E E L. (*> 2 i
/am(p,-)w(u “ ez o — i ! e)

Jj= lk>0

2m—1
—dr Y Zﬂjzf,(,) (pi) logk (1>

j=m+1k>0
+ yo(w)v(p;) + O (e logN £)

for some N > 0. Now, assume that v(p;) = 0. Then we can assume that v admits the
expansion

b= —viig +2Re (¢ ® 9F) = Re (o) + 02"+
which implies that

a = 0(|z]).
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This can also be seen directly thanks to the previous algorithm. Furthermore, we have ho =
O(|z]~™*+D), which implies that

Agu+2Kou+4Re (7' ®@ho ® da) = O(|z"™)
20u+ho @« = O(|z]~™D).
Therefore, we have
(Agu +2Kgu +4Re (g7 @ ho ® ) (20u + ho ® &) = O(1)
Since Ky = O(|z|*"*?), and g = O(|z|~@"+2), we get
g ®@igea =0()

287" ®@ho ® Ju =2m [z x O(Iz|7 ") x 027"y = 0 (1)

K,g®a = 0(z].
Therefore, we deduce that

207'03(ge®) (28 ' ®hy®Iu— Ky g@@) = O(1).

Since (8153, ng) = 0, we deduce by the expansions

-

R Ao .
azq>=—mﬁ+0(| 2™
ng =ng(pi)+ O0(lz]) = no + O(|z)

that (Ao, o) = (ATO, 7ip) = 0. Integrating the previous expansion, we deduce that
2 A
®(2) = Re (,ff) +0(zl'™,
z

which implies that
(®@.7ig) = O(lz)'"™).

Since v = O(|z|™), we deduce that v2 = 0(|Z|2m) and

D70% + 3 |2g ® lal* = 0(1)

so that

>

HD,iig) g~ ®h0®a(|&>|2u2+ ! 012)
|D|?

=0(lzI'"™) ® 0(lzI"™) x 0(1zI™") = 0(lz]),

and likewise,
8¢ ' ®ho ®5(|&>|2<i>, fig)v? +2Re (a ® log |&>|) |5>|2v) = 0(lz).
Finally, we have
4K, ((®.7ig)v+2Re (e @ dlog|Bl)) g @7
= 0(zI”") x (0(zI"™) x 0(IzI™) + O (D)) 2]~ "2 (1 + 0(|z])) x O(lz]) = O(lz])
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and we deduce that

f w(u,a) = 0()
dBe(pi)
and
- 1 = 5 \\2
Q) = 3 (fg (|<I>| v)) dvolg < oo.
b
Therefore, we deduce the first extension of [28] to the case of branched surfaces.

Theorem 5.1 Let X be a closed Riemann surface and U : ¥ — R3 be a branched Willmore
surface. Assume that WV is the inversion of a complete minimal surface with finite total

curvature ® : S\ {p1, ..., pn} = R3. Then we have
- 1 > 1
Indw (V) <n = EW(\D) ~ 5 /2 Ky dvolg, + x (2). (5.7)
Proof Write g = P* 8gr3 be the induced metric on £\ {p1, ..., pn}. The preceding argument

shows that for ¥ € Var(¥) N C*(%), if v = (¥, 71g,), and v(p;) =0 forall 1 <i < n, we
have

05@) = %/Z (zg (|&>|2v))2dvolg > 0.

Now, let v € Var(\_I:’) be an arbitrary variation such that v(p;) = O forall 1 <i < n (where
v = (U, 7). Now, let {U}reny € C®(Z, R¥) such that

U — ¥ in WPA(Z,R).

In particular, we have by the Sobolev embedding W>2(Z, R3) — C%(%, R3), the conver-
gence U = v in C%(X). Furthermore, if
— 00

iy = |20 — 2(®, i) P,

and wp = —(ii.iig) = |®|*vi, we have we have Lyup = — Lty = ~Zti =
—00
ZLeu in leoc(E\ {p1,..., pn})- Then up to a subsequence, we deduce that (up to taking a

subsequence) VZuy k—> V2v almost everywhere on ¥. In U; we have an expansion for
—00
some pf, ]7]k1 h € C3 (as @ is smooth)
Go=tp)+ Y Re (f 4T +ReGEM) + 00D, (58)
J1,j2=0
I<ji+j2<m;
As Uy —> v and since v is admissible, we deduce (as ¥(p;) = 0) that vx(p;) —> 0 and
k— 00 k— 00
?i{(jl,jz —> Oforall 1 < j, + j» < m;. Finally, this implies that if p; is a cutoff function

k—o00

such that p; = 1 on <pi_1(B(0, 1/2)) € U; and supp(p;) C U;, and

n
Uk = B — Zm{ﬁk(m + Y Re (7 0l@R) } € C%(%),
i=1 J1,72=0
1<j1+j2<m;
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also satisfies

gk(p,-) =0 forall 1 <i<n, and 51( k—) v strongly in W2’2(Z).
—00

We deduce that 5k is an admissible variation of W, and by the preceding discussion we have
if U = (Vg ig), and g = | @[,
~ 1 ~\2
Q5 @) = 5 (Lyiix)” dvolg > 0. (5.9
b
Now, by the strong W22 convergence and as 5k is admissible, we have (see for example the
explicit formula for Q, in [28])

040 — 04(@).
Then (5.9) implies that Qg (v) > 0, but notice also that by Fatou lemma
- o = 1 o ~\2 1 2
Q0 (@) =Tliminf 0y (W) = 3 211kn_1)1012)f (i) dvolgy = 2, (Lyu)”dvolg = 0.

This observation concludes the proof of the theorem, as the last equality in (5.7) comes from
the Li—Yau inequality [21] and the Jorge—Meeks formula [18]. O

The following theorem is the analogous of Theorem V.1, 2, 3 [4]. Here, the vortices are
already fixed and correspond to the points py, ..., p, € X where the metric of the corre-
sponding minimal surface degenerates. We first obtain an estimate of the singular energy by
a geometric argument, and show that the Jacobi operator of the minimiser u; s is bounded
in L2 away from p;. This will allow us to pass to the limit to a limit function as § — 0 and
e — 0.

Theorem5.2 Let 0 < & < ggand 0 < § < 8(¢) < € and ”2,5 be the unique solution of
(5.4). Then there exists a non-decreasing function w : Ry — Ry which is continuous at 0
and such that w(0) = 0 (independent of ¢ and §) such that

1 i 2 i
51 (ggug,a) dvoly — 0L ()| < @ (Ivllwea(xy) (5.10)
s
and
l/ (fgui(;)zdvolg <o (Ivlweag) - (5.11)
2 250.6 '

Proof Recalling that =, = X\ |J/_, B¢(p;), we define the continuous bilinear form B, :
W22(Z,) x W22(Z,) — Rby

1
Be(uy, uz) = 5/ fgl,ﬂ fguz dVOlg
e

and let Q, : W22(Z,) — R be the associated quadratic form. Then we have

Q@) = lim (Qg(u) - Qi(v)) (5.12)

i=1
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and the limit is well-defined. Now, fix a cutoff function p; > 0 such that

pi=1 on Bgp(pi), and supp(p;) C Bey(pi).
Notice in particular that forall 1 <i <n,0 <¢e <gpand 0 < § < §(¢), we have

3!
2)s

N2 1
(gg”i;,a) dvol, < 5/; (L (piw))” dvolg

;’5 £,8

1

= */ (=% (piu))deOIg =0 .(v)+0(). (513)
2 J By \Be(pi)

Now, if 0 < e <gpand 0 < § < 8(¢) < ¢ define

n
i
Ugs =U — E Ug 55
i=1

We have
n n
0:(u) = B, (us,a + Y ulsues+ Y u2,5>
i=1 i=1

n n
= Qelttes ues) + Y Qcluls) +2) Belues,uly)+ Y Beul s uly).

i=1 i=1 I<i#j<n

Integrating by parts, we find

) 1 ) .
Belutesiithy) = 5 fa » )(us,a 0, (Lol 5) — dutte,5(Zyul 5) ) d .
e (Di

Since

Ug s = — Zuig’ Opltg s = — Zavué{’g on 9B (p;),
J# J#
we deduce that Bg (ug s, uf;, 5) does not contain a quadratic term of the form C.v3( pi), since
the functions ué s (J # i) areindependentof v(p;). A similar argument applies for B (ui, ué )
(i # j), so we deduce by (3.2) that the only possibility for the limit (5.12) to be finite is that
Q:(uy) = QLv*(pi) + O(1) (5.14)

where O (1) is a quantity bounded independently of 0 < ¢ < ggand0 < § < §(¢). Therefore,
combining (5.14) with (5.13), we deduce that for all0 < é < 8(¢) < ¢
1

) 2 .
5/ (Zeul ) dvoly = QL) + 0D,
Es,a

where O (1) is a quantity bounded independently of 0 < ¢ < ggand0 < § < §(¢). Therefore,
we deduce that

. . 2
Qi) +0(1) = /El_ (Ze(piw))’ dvoly = /E[_ (Ze(oiu = ul ) dvol,

.8 £,8

. . . 2
+2/ Zy (P = ul ) Lyl p)dvol, +/E[ (Zeuls) dvol,
€,

i
Es,ﬂ
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-,

+ 2/ - L (pi = ul5) ik pdvoly + QL) + 0(1).  (5.15)
El

&8

. 2
(Zeloiu —ul ) dvol,

i
e,8

Furthermore, the boundary conditions imply that u’g s = u = pjuondB.(p;)and Buui’ st =
dvi = 9y (pju) = 0, while for all j # i, ul s = d,ul ; = piu = 0,(pju) = 0. Therefore, we
deduce as fgzug s = O that

/i Ly (,o,-u — ”2,5) Zg(ui,s)dvolg = /;i (piu — uiﬁ)fgzué’g dvolg
€8 £,
+/a - (,oiu - ”2,8) dy (iﬂgui’s) — dy (pju — u),i”guis’s d.#"
B (pi
+ Zf (piu — uiﬁ) dy (Egué,a) — 0y (piu —u) ﬁgué’a d#!
i 035(171')
-0 (5.16)

Therefore, (5.15) and (5.16) imply that
[ o=l vl = o
e
and as supp (p;) C Bg,(pi), we deduce that
SN2
/ (Zel ) dvol, = 0(1),
Esoﬁ

or in other words

S \2
lim sup lim sup/ (ofg”la,s) dvol, < oo.
290,5

e—0 §—0

Furthermore, as the error terms are continuous in v € W22(Z) (such that ¥ = vﬁ@), we
deduce that there exists a modulus of continuity @ = wg : Ry — R, independent of
0<e<egand0 < § < §(¢) < ¢ (that we can take non-decreasing and continuous at 0)
such that

l/ <$,ui )zdvol, — 0L(v)
2 Ses g8%e,8 8 &

< o(lvlilw22x))

and
1 i \2
5 (Zeuls) " dvoly = o(lvllweos):
B8
This concludes the proof of the theorem. O

Remark 5.3 Notice that the preceding proof implies that the limits of B, (ug_s, ufs 5) and
Bg(ué,a, “g,a) (i # j)are well-definedase — 0(and 0 < § < 8(¢) < ¢).
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5.2 Local estimates near the ends

As the operators .7, and f; are uniformly elliptic on X, for all & > 0, the only difficult
estimates come from the asymptotic behaviour near the vortices p; (for 1 < i < n). As
the estimates depend on the chart, we fix some covering (U, ..., U,) C X by domains of
charts ¥ such that p; € U; forall 1 <i < n and all estimates will be taken with respect to a
complex chart ¢; : U; — B(0, 1) C C such that ¢; (p;) = 0.

Theorem 5.4 Let 1 < i < n be a fixed integer and “i,a be the solution of (5.4) for some
0<e<egand0 < § < (). Let 1 < j # i < n and assume that the endofcf> has
multiplicity m > 1, and define in the chart U the function Ué,s = e_’\uf?’a. Then there exists
real analytic functions ¢o, ¢ @ B(0,1) — R and Zl, 23 : BO,1) —» R2 and a universal
constant C = C(Uj, \TJ) > 0 depending only on the chosen chart U; around p; and on 7
such that

2

i x i (m+1)? -\
_ Avg s —2(m+1) —2+V;0 'v”88+72(1+x'51)vea dx
B1\B5(0) ' |x] ' x| ;
. 2
= / (fg“fsﬁ) dvoly < Co ([vllw22(x)) (5.17)
Esoﬁ
i 2
. v (S
/ Avp s+ (m+1)(m —1)=5 ) dx
B1\B5(0) ' |x]
X i Ués
+4@m + DH(m — 1) — Vo, s — =5 | dx
B\B5(0) \ x| 2l
. X N . 2
—/ _ (vgz Vs ——> -4 u;,5> dx < Co (Ivllwes)) - (5.18)
B1\B5(0) |x]

Proof As the end has multiplicity m > 1, there exists ¢; > 0 and g € C such that
e = a?|z] 2" (14 2Re (@02) + 0(1z%)
e Ky = 0(1).
Furthermore, let ¢ : B(0, 1) — R be the real analytic function such that
Mz) = —(m + Dloglz| + £ (2).

Notice that ¢ is real-analytic by the Weierstrass parametrisation [11]. Then we have

m + 1)2 X
P = P o4 1) v 4 vi
x| x|
(m—i—l)z( 1 ) 2)
S i XV + ——x?ve?).
e D VT Ve
Therefore, we have if ul, s = e*v! s as Ar = —e** K, forall 0 <« < 1

i i\’ A A (A 21 i\’
/ B (Agu&s —2ng8!8> dvolg :/ B (e Ale*vg 5) — 2e nge.a) dvolg
Bi\B5(0) Bi\B5(0) '

A . S \2
:/ B (Av;,(g—f—Z(V)»,Vv;(g)+(|V)»|2—3€2AKg)Ué,5) dx
Bi\Bs(0)
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. 1 .
= Avl —2(m+1) < VC) .Vl
/BI\BS@ ( &0 X2 (m+1) &d

(m+ 1)? 2 1 2 2 i ?
e <1_(m+1)x'w+(m+1)2|x| (vel +3A§)) U“) -

+

i (m+1)?
> (1 —k) B AvsB—Z(m—i—l) 5 Vs + ——5—u dx
B1\B5(0) x| |x]

1 1 :
+(1- 7) S 2(m + 1)°Ve - V!
< k) (m+1D* J5\B50 ( &

2
( 2m + 1) Ve +(|V§|2+3A{)> vé’s) dx, (5.19)

where we used the inequality foralla, b € Rand0 < x < 1
1
(@a+b)?*>1—K)a*+ (1 — 7> b2
K

In particular, the first estimate follows directly from (5.11) of Theorem 5.2, with

1
;0__(m+l)§a

I X 2
&= (m“)zvé”r (m+1)2(|V§| +3A0).

Now, thanks to the computations of Lemma, we have
. . m+ 1)2
/ B (Avé s — 2(m + H— 5 Vg s+ %u) dx
B1\B;s(0) |x] x|
/BI\ES(O) (

X i ”éa
+4m+Dm—-1) | — Vil — =2 dx
BI\Bs0) \ x| 2 x|

- /1 (vl 80 (Lol 5) — ol 5 Lol ) dr”
S

+/ (v 00 (AL 5) = 0oL ) A0 ;) dt!
N

+4(m+1)(m—1)/ (W} ) = k5000 55) '

2
. v
= / AV S’g dx
B1\B;5(0) ’ | x|

N
. v

L 4m + D(m — 1) S e
Bi\Bs© \ xI ' x|

- /S (L5 0o — A0l ) = Dol (Z = Aol ) dt”!

+4(m + 1)(m — 1)/ Wl g)* — vl 07 ;5) . (5.20)
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Now, if
Ly =" Lyl ),
we have (as AL = —e”‘Kg)
Ly =A+2(Vi, V) + (VA]> +3A%),
SO vé’ s solves
%@Ué,a =0,

where one checks that there exists polynomial functions Py : R2 x R* > Mh(R), Q :
R2 x R* > R? and R : R? x R* — R such that

Ly Lgvl s = A0} 5+ P(VA, V) - V2L 5 + O(VA, V2) - VUl s + R(VA, V20 vl .

Therefore, thanks to elliptic regularity and (5.11), we deduce that
/] (v;_a 0y (L — M)V 5) — D0l 5 (L — ) ugﬁ) d."
N

—4m+ 1)m — 1) /51 (@l = vl s 020l ) dor!

is uniformly bgunded in0 < e <gand 0 < § < 8(¢) < e. Furthermore, there exists
Co = Co(Uj, ¥) > 0 such that

’/I (L5 00 ((Zon = M) 0 ) = Budl 5 (L = A) o) !
S

= CO‘”(”””wZ,Z(g)) . (5.21)

—4(m + D)(m — 1) /1 (L9 = ol 50200 5) dor’
N

Therefore, we have by (5.17), (5.19) and (5.21)

. Ui 2
/ Avl s+ (m+ D(m —1)=25 | dx
B1\B;(0) ’ |x|

X i vé&
+4m+Dm—1) [ — Vol — =22 dx
BI\B50) \ ¥ REEY

1 1
k (m~+D* Jp\B50)

(Z(m +1VE -Vl

X 2 i 2
+ —2(m+1)W~V§+(|V§| +3A7) Jvgs ) dx

1
=< mcl w(||v||w2=2():))-

1
Choose now x = T and define

O =4m+1)¢

-

z3 x (Ve +3A¢),

V¢

Y ve__ %
(m—+1) (m +1)2
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we find

. Ui 2
/ Avl s+ (m+ D(m —1)=25 | dx
B1\B3(0) ‘ x|

: 2
X i vés
+4m+ 1)(m — 1) B Vi, s — — dx
Bi\B5(0) '

2
—/ <V§2~Vvi5—x~g:3vi5)2dx<4C1w(||vllwzz):).
BI\B5(0) R o3 o

This concludes the proof of the theorem. O

5.3 Indicial roots analysis: case of embedded ends

The following theorem is the analogous of Theorem VI.1 of [4] and Theorem 1 of [3] from
Ginzburg-Landau theory.

Proposition 5.5 Assume that the minimal surface ) of Theorem A has embedded ends. Then
there exists v, € C*(X\(Bg(pi) U {p1, ..., pn})) such that for all compact K C X, we
have (up to a subsequence as § — 0)

vis — v in CY(K) forall I € N.

Furthermore, for all j # i, we have an expansion in U; as

v:(2) = Re (02 +112%) + 12lzl® + yslzl log 2] + e (2)
for some real-analytic function @, such that ¢¢(z) = O(|z|?). Therefore, ifuf9 = Iélzvé,
there exists a; j, b; j € Randc; j, d; j € Cand ¥, € C®(B(0, 1)\ {0}) such that

ui(z) = Re (%’ +d1-,,§) +ai jlogle] +bi j + Ve (2).
and for alll € N,

IV!Ye @] = 0(1z'™).

Remark 5.6 Although q; ;, b; j, c; ;j and d; ;j depends on &, we remove this explicit depen-
dence for the sake of simplicity of notation.

Proof Step 1: Indicial roots analysis.

We make computations as previously in the previously fixed chartg; : U; — B(0,1) c C
such that ;(p;) = 0. By [32] (p. 25) the asymptotic expansion of vé’ 5 at 0 depends only on
the linearised operator of e’\fg (e* -), which is as ® has embedded ends

X V4 4
|x|? x|

Therefore, without loss of generality, we can assume that i”*.fvé s = 0. Taking polar
coordinates (r, 6) centred at the origin, recall that

S=Ar—4

1

1
A=a,2+;a,+r—23§.

@ Springer



On the Morse index of branched Willmore spheres in 3-space Page 29 of 97

126

T'herefore, we have
1 1 1 4 3 4 1
_ a2 2 _ a2 2
< ar+;a’+7289_4;3’+72 8,—;8,+r—2+r—289,

and

5 4 1
* _ a2 2
L=+ St 0

Projecting to Vect(e'k) (where k € Z is fixed), the operator .Z (resp. .-Z*) becomes

3 4 — k2 5 4 — k2
Lk = 8r2 - ;ar + r2 <resp_ "?k* = 8r2 + ;3;« + r2 )

and we define for all k € Z the functions véys(k, ): (8, 1) - Cby

vl 5(r.0) = Yl sk, r)e’.

keZ

As .Zk*fkvé,a(k, -) = 0, and the space of solutions to £ %u = 0 is four-dimensional,
we only need to find a basis of solutions to .Z* Zu = 0 to obtain all possible asymptotic

behaviour at the origin.
Let « € C fixed, we have

Ler® = ale — Dr* 2 =3ar® 2+ (4 — k) = (0F —da +4 — ke 2

LELr® = (@ — kD) (@ — da 44— kHreh, (5.22)
so the basis of solutions to .Z*.Zu = 0 is given by
uit:raki, uf:rﬁki,

where
af =2£ k|, BE = LIkl.
In particular, for k = 0, we need to find two other solutions. For k = 0, we have

2 1 1
L5 Ly =0+ ;3,3 - r—zaf + 50

so one easily check that a basis of solutions of .Z*.2u = 0 is given by
1,72, log(r)., r* log(r)
and that furthermore,

L) = % (r*log(r)) = 0.

Finally, for |k| = 1, as {alj,a;} = {1, 3} and {ﬂlj, ,8,:} = {—1, 1}, we only have three
solutions and we need to find an additional one. As Ker(%}") = {r’3, ol }, we need to find
a solution u such that Lu # 0, ZLu € Ker(Z]) and u ¢ SpanR(r’l, r, r3). One checks

directly that this additional solution is given by
u(r) = rlog(r),
which satisfies indeed

1 3 3 2 .
Lu=——=(log(r) + 1) + = (rlog(r)) = —= € Ker(£").
r r r r
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Notice that these computations also show that .£*.¥ = A2, but we did not want to use
this result directly to obtain a formally similar proof in the case of ends of higher multiplicity.

Step 2: Estimate on the biharmonic components.

Now, recall that

. . 12 Sy N\?
/ (Av’sg—Z(m—i-l)(%—i-Vg‘o)-Vvéa+w(l+x-§1)véa) dx
B1\B5(0) ' |x] ' x| ;

< Co(lvlwez)) -
Now, let y, ¥, y2. v, vt € C (for k € Z) be such that
V000 = 3 (4 2 ik i) e (e 47 e ) og(r)
keZ*
+ yol + yoz log(r) + )/03r2 + )/6‘1’2 log(r). (5.23)

As vé s is real, we have for all k € Z
2 1 4 3
vie=v and y =y
Now, we have

Ll =43 (== Dy (e Dy ) ek
keZ*

, E 4y,
-2 (Le’@ + Z<f’9) N —(1 og(r) — ). (5.24)
r r
Therefore, as

Ly =L — 4V -V + (m+1)? n |2 4

for two real-analytic functions ¢p : B(0,1) — R and Zl : B(0,1) — R, we deduce from
(5.24) that

Zevis=4 Y —(k=Dyr* a4+ 06t
keZ\{0,1}

+4 Y kDAt 00
keZ\{—1,0}

-2 (%(1 +0@r)e’ + g(l + O(r))e—"g)

4(7() )
r

4y,
+ 1+0)+— 10g(r)(1 + O(r)).

Notice that the first two sums do not involve powers in 1 / r (this justifies why there are no
cross terms between these two sums and the remaining terms). Now fix some 0 < R < 1
such that the “O(1) functions” be bounded by 1/2 (in absolute value) on Bg \Eg (0). Then
we have by Parseval identity

[ (Fks) dx=2m Z/ (= PR o g 121202
Br\B5(0)

keZ*
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374\ ,.—4 Ryl
£2(k + 1)(k — DRe (ykyk)r )(1+O(r))rdr+16rr/ <r—2(1+0(r))>rdr
§

R 1 .,2y2 1,2
+3271/6 (O/O - o) (yro“) log®(r) +2(v — Yo mfﬁ”) (1+ O(r)rdr

=l16r Y (k- DIy (R2<"—1>(1 + O(R)) —8** D + 0(3)))
keZ\{0,1}

+16m Y —k+ DI (R 4 0(R) - 67251+ 0)))
keZ\{—1,0}

1 1

+ 167 (vy — )’ (57(1 +0@) — (1 + 0<R>>)

1\2 1 2
+87(yy) (57(1 + 0(8)) (21og”(8) + 21og(8) + 1)
1

— 2z (14 O(R) (log*(R) + 2log(R) + 1))
1 1

+ 87yl (vs — v (37 (1+0(5)) (2log(8) + 1) — =7 (1+ O(R)) 2log(R) + 1))

— (1 1
+327 Y Re (y,fy,j) <57 (1+0) = o5 (1+ 0(R))>
keZ*

5\ 20kI=D)
=167 Y (k| = DIy RPN (1+ 0(R) — (E) (1+ 0(8)))

k>2

- 1 S 2(k[+1)
+16m 3 (k1 + DIV Sy ( 1+ 00) = <§> 1+ O(R)))

k<—1

1 2(1k|+1)
+167 3 (k1 + DIV P s3qemm (1 +0@) - (E) (1+ 0(R))>

k>1

2(Jk|—=1)
+16m Y (k| — Dy PR2KIZD (1 + O(R) — (%) (1+ 0(5)))

k>-2

+ 16|y <log (%) (1+ 0(8) +log(R) (1 + 0(R>>)
1 272 1 s
+ 167 (yvy — vy) 7 <1 +0() — <E> 1+ O(R))>
1,2 1 2
+ 87(y)) <37(1 + 0(5)) (21og?(8) + 21og(8) + 1)
1
— =71+ 0(R)) (log”(R) + 2log(R) + 1))

1 1
+ 87y (Vg — ) (57 (14 0() Qlog(®) + 1) = =5 (1 + O(R)) 2log(R) + 1))
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_ 2

+327 Y (k+ D)k — DRe (y,fy;‘) Siz (1 +0@) — (%) 1+ 0(R))> .
keZ*

(5.25)

As the quantity in the left-hand side of (5.25) is bounded independently of 0 < § < R, we
deduce that for all £k > 1, and some uniform constant C > 0

3 k|+1

lvib| = ca¥tt — o, (5.26)

§—0
Notice that the second estimate follows from the first one as y,f =93 «~ Furthermore, as

1
312
Z(Ikl + l)ly—k| 82(‘k|+1) < o0
k>1

and is bounded independently of § > 0, there exists C > 0 such that

c
ly2el < T Lok, (5.27)

Now, we see the next order of singularity is given by log?(8)/82, so we have

lvel < C (5.28)

tog (3) -0

Another singular term is

1 N
= > (k+Dk—DRe (¥
keZ\{—1,0,1}

but (5.26) implies that (as the yj are also uniformly bounded)

1 — C
57| 2 kD= DReGyH] = 5 Y (kI + DK — Dl
keZ\{—1,0,1} k>2

38 652 283
<C Yk + i =c ( )

- + ) <4cs —o0.
= 1—=8 (18  (1-0)

§—0

for 0 < 6 < 1 small enough. The next singular term is

1 )
167 (yg — VOZ)Q(TZ (1 +0() — (E) (1+ 0<R>)) ,

and using (5.28), we deduce that

1 I 2|2 1
1 252 Y0

_ I 0 ,
(VO ]0) 52 52 I:EZ(é)

so we deduce that

V¢l < C8 — 0. (5.29)
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2 1
167 |y |~ log 3

1
<C[|[— —0. 5.30
lyl < log(%) v (5.30)

Finally, the last singular term is

and we deduce that

Step 3: Estimates on the harmonic components. Now, we have the inequality (from The-
orem 5.4)

N2 ) 2
/ - (Avéﬁ) dx—/ B (v;z.vU;S — {3v£5> dx < Co (vllw22(s)) -
Br\B5(0) Bg\B5(0) |x]
(5.31)

Thanks to (5.23)

Avly =4 Y (+Dylrt = = Dydrt) et
keZ*

+2 <Zei9 + Ze_’p) + 4)/03 + 4y(;‘(logr + 1).
r r
Furthermore, we have

Ve Vol s — —— .
;2' v8,5_|x|2.§3v£,5

=> ()’kIO(er) +y2oe" ™M +yiorth + yﬁ@(r—k—1)>eik6
keZ*

1 1
+yo0)+y0 <;> + 2 log(r)O (;) +950(r) + yi logro(r).

Therefore, we have

/ (e, ) dx = 327 Z/ ((k+1) 22 4 (k= 12222
B\Bs(0)

keZ*

) = lyI?
— 2%k + 1)(k — DRe (ykyk) rdr + 167 S+ 00 ) rdr
§

R
+ 327 / (176 + v 1> + Ly 1P log?(r) + 2(v3 + v v log(r)) rdr. (5.32)
)

Notice that the second integral involving the square of the radial component of Avé 5

is bounded, so we can neglect this term. Now, we also have as |a + b + ¢ + d |2 <
4(lal* + |b|*> + |c|* + |d)?) for all a, b, ¢, d € C and by Parseval identity

Ve Vol s — 5 2d
_ & - Ve s — T2 €] Ve s X
Br\Bs(0) | x|

<8m Z/ <|J/ PO ) + 121200 ) + 12 Po ™ ) + 1yt Po 32 )rdr
keZ*
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R 1 log2(r)
+8”/5 (|y(}|20(r—2)+|y02|20( 5 )+|y§|20(r2>

+yg PO log (r)) rdr + |y O(R). (5.33)

Now notice that

R
> [ (mrPoe? ) + i Poe D) rar (5.34
8

k>1

is bounded in 4, and (5.27) imply that

3,2 2k—2 4 2k—2 R 82k+2 2k—1
2 FO(r ) + o =~ rdr| <C / — " dr
;(wu 72 4yl 0 X G
52 S 2k 7.[2
=Ccy —[1-(= <Cc(1-=)82 0, 5.35
;Zk(k—i—l)z( (R) )- ( 12) 50 (5.35)
where we used
i 1 i(l 1 ) i 1
TV PR 2
Zkk+1? =Nk k1 —(k+ 1)
2

—1-C@-D=2-t@=2-".

Finally, by (5.33), (5.34) and (5.35), we deduce that there exists C > 0 (independent of &
and ¢) such that

R
8w ) / (|y£|20<r2+2’<>+|y3|20(r2-2k>+|y£’|20<r2k—2>+|V;‘|20(r-2k-2>)rdr
8
keZ*

R 1,2 1 202 log(r) 32 2 402 27,2
+ 87 ; [vo 17O 72+|J/o| 0 2 +lyg1700") + vy 170G~ log™(r)) ) rdr

R
~87 ) /5 (|y,3|20(r2+2k)+|y,3\20(r2*2k))rdr

keZ*

<C (5.36)

Therefore, by (5.32), (5.33), (5.36), and (5.30) (for the term in |y |2 log(l/(S)‘]) we have

. \2 . X - 2
/ () dx—/ - (v;z-w;ﬁ——z-vg v;_(;) dx
Br\B5(0) Br\B5(0) |x|

R
>32m )] / (K + D2y P+ 00D) + k= DR+ 06
kezr V9
“2(k + 1)(k — DRe (ygff)) rdr
R
+8n/ (Y2 o) + [yE1F o) rar
8

R
+ 327 / (Ivg + vo I* + lvo 1P log? (r) + 2(v5 + vy log(r)) rdr — C. (5.37)
)
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As previously, the terms involving positive powers of k are bounded, and

R
Zf k+ D2y 12+ o ))rdr
1)

k<-2
1 L, 1 5 §\ 2UkI=1) 5
=5 > Uk = DI P sy 1+0(5)‘<E> (1+0(RY) ),
k<=2

soforall k > 2, as(5.31) implies that (5.37) is bounded independently of § (and ¢), we deduce
that for some universal constant C (independent of 0 < ¢ < ggand 0 < § < 6(¢) < ¢€)

Lol < skt 0.
Yol < 8—_)6

Since )/2k = Vkl , WE also have for all k > 2
! k| §—0

Step 4: Conclusion and limit as § — 0.
Finally, we deduce from the two previous steps that

vé’s = (ylz + )/13) re'? + ()/,11 + yfl) re 0 4+ )/03r2 + )/S‘r2 log(r)

+ y]1r363i9 + y31r3ef3i9 + Z ( (yk1r2+k + yk3rk) ko
k>2

+ ()’Ekerrk + )/f,(rk) eiik‘))
+ Y ((ylfrz—\k\ 4y r—\kl) o (Vlkrz_“" n kar_‘k') e—ik@)
k<—2
1 2 i — _ip
+ ¥ + v log(r) + (y e’ +vye )rlog(r)_

Thar&s if the previous estimates, all coefficients are bounded, and for all fixed (r,6) €
Br\B;(0),

> ( (72r2 M ) k9 (227K g3 H) e—ik‘)) (5.38)
k<=2

+ )/01 + )/02 log(r) + (y e+ 76‘”) rlog(r)

0. 53
= 39

Furthermore, as the operator jg*.i’?g is uniformly elliptic on X, for all fixed 0 < ¢ < &g

and thanks to the uniform bound , we deduce that up to a subsequence, there exists vé €
C®(EN(Be(pi)U{p1, ..., pu})) suchthatforall compact K C X\ (B:(p)U{p1, ..., pa})),

v£8—>vé in CI(K) forall [ € N.
7 5—0
Furthermore, as § — 0, (5.38) implies that
vp= (7 +wi)re” + (vl + 2 re T 5?4 g log(r)

+ y11r3e3i6 + y31r3e—3i9 + Z ( (ykl P2k yk3rk> ik 4 (yzerJrk + J/fkrk) e—ik@)
k>2
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= Re (yoz + 112 + »alzl* + yalzl* log |z] + ¢(2),
= Re (o2 + 7125 + »2lz* + p3lzl* log |zl + O(lz ),

where ¢ is real analytic and ¢ (z) = O(|z|?). Finally, by the Weierstrass parametrisation, if P
has embedded ends, we can assume [39] that up to rotation & admits the following expansion
forsome o > 0and B € R

> Olj iOlJ'
®(z) =Re 7+0(IZI),7+0(IZI),ﬁ10gIZI .
Therefore, we have
= 1 aj i(){j ﬂ
0, P(z) = = ——2+0(1),——2+0(1),—+0(1)
2 Z z z
and

o? 1 a?
21 312 J j
=2[0.9°=—34+0(—7)=—3(1+0(z
19 @] |z|* (|z|2> |z|4( (121)

Therefore, we have

ul =Ml = F |2(1+0(IZ| ) (Re (voz + 112%) + y2lzl* + yslz* log |z| + O(zI*))

(o4 —
=Re (JT + aleg) +ajy2 +ajysloglzl + O(lz])
and this concludes the proof of the theorem. O

Remark 5.7 Notice that as |z|?, |z|* log |z|, Re (yoz) € Ker(.¥), we have
: _Z
ZLv, = —4Re <y12) + 0(|z]),

which implies that

Lol = e Zpvl = —4ajRe (n12%) + 0(z1)

&

; 8
i (Zeut) = = Re () +0(1zP),

where we used

av:i_v (Z+Z)(8 +?H+( Z)'(az—az):i(zaz+285)
x| |z] 2i |z
iRe (za; (). (5.40)

5.4 Indicial roots analysis: case of ends of higher multiplicity

Proposition5.8 Let 1 < i < nand 1 < j # i < n, and assume that & has an end
of multiplicity m > 2 at p;, and define vé,s in Uj as ”2,5 = e)‘vé’s. Then there exists
vé € C®(T\(B(pi) U{pt, ..., pa)) such that for all compact K C Eé, we have (up to a
subsequence as § — 0)

in C'(K) forall | € N.

i
Ues v

5—>0 ¢
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Furthermore, for all j # i, we have an expansion in U; as

vi(2) = |z|’"+‘ZR ( )+| | ’"ZRe (y,]kz’”“‘)
k=0

m+l m+1

+ 712" 4 v 1z Tog 2] + 9e (2)

for some real-analytic function ¢, such that ¢.(z) = O(|z|"*2). Furthermore, we have an
expansion

i . ci
ué(z):ekv(’s:Re ( 'vJ>_|_ Z Re(Cz]klZ z)—l—aljloglzl—l—l//g(z)

) mere=0
for some vy, € C°(B(0, 1)\ {0}) such that for alll € N
Ve = 0(z'),
and the c; j 1 are almost all zero, that is all but finitely many as j,k € Z and 1 —m <

j+k<O.

Proof Step 1: Indicial roots analysis.
‘We have the expansion

2

e = ||zT+2(1 +2Re (@2) + O(Iz]%) - (5.41)

Now, let vé such that uf8 =e v’e. Then we have as
e Agul = e Agy (¢M0]) = Ak + 2V Vo + (385 + Vi) of
Now we have
A =—(m+ 1log|z| +log(a;) +log (1 + O(|z])),
so we have A € L°°(D?) and

2
b= =+ )+ OV = %(Houxm

SO we obtain

i (m +1)? 1 i
e)‘AgMSZ(Ag—Z(m+1)<I |2-1—0( )> (W“'O(m)))va

As ez}‘Kg = 0(1), we finally get

i @D (1)) o
efgu£—<A 2(m+1)<| |2+0(1)> ( Ix|2 +0(|x|))>vs.

Now, denote by .7, the elliptic operator with regular singularities (see [32])

(m +1)2

Ln=A=-2(m+1)— e

||2 v

2LV log x| (5.42)
|x|?
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and log is harmonic on D2\ {0}, we have

x (m+ 1)?

LE=A+2 1)— .V
m=AF2mt Dre VAT

3

where £ is the formal adjoint of .%j,,. As the indicial roots of on operator of the form

x + b(x) c(x)

A+ : —
|x|? |x|?

where b and ¢ are C* and b(x) = O(|x|2) only depends on ¢(0) and is independent of b
[32].

Therefore, the indicial roots of ¢*.Z,e* (e*.Z,(e" -)), giving all possible asymptotic
behaviour of a solution of f;ug = 0in DZ\ {0} are the same of the indicial roots of the
operator .Z,.%,. Therefore, consider first a solution v of

L Lo =0. (5.43)

First, recall that

1 Aql
2 S
A=97+0+ 5
2m + 1 Ao + (m + 1)?
=2 Vo, 4 sttt T
r r

Therefore, for all k € N the projection .%,, ; on Span(e’*) of .%,, is given by

2m + 1 m+ 12 —k?
( )3r+( ) .

% k=32—
m, r r r2

We first look for solutions of the form
v(r) =r¢
for some o € C. We have by a direct computation
Lo = (ala — 1) = 2(m + Do + (m + 1)* — k) r*=2
= (¢ = 20m + Do + (m + 1) — k%) r*~2
=(a—(m+1+kD)(@— (m+1—]k))r* >
Therefore, for all k € Z\ {0}, we have two linearly independent solutions

m+1+k| m+1—|k|

veo(r) =r v (r) =r

Now, we compute if &’ = o + 2

L L = L@ — (m A+ 1+ kD@ — (41— [k])r®
= (ala— 1)+ @m+3)a+ m+1)? —k?) (@ — (m+ 1+ |k]))
(@ — (m+1—[k))r*
= (Ol2 +2(m + Do+ (m + 1)? — kz) r¢
=(@—(—m+1D+IkD)(ax—((=m+1)—|k]))
(@ —(m+1+ kD)@ — (m+1—1k])
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and we find two independent solution for k € Z

—m+1+k| —m+1—|k|

vg2(r) =7 vg3(r) =r

Now, for k = 0, we need to find two additional solution and one check immediately that
pmtl log(r), pl=m log(r)
are two additional solutions. Furthermore, notice that when |k| = m,

{,m+1+|k| 2m+1)

=l me k] r17m7|k|} _ {r172m

s, T
so we need to find another solution. As Ker(.Z}} ) = Span(r~ (T D4m p=(mtD—my _
Span(r—!, r ="+ D) we compute that

1 @ 1 12 —m?
Lo r10g) =+~ 5D (tog(r) 1)+ LI (- togry

2m "
= —— € Ker(Z, ).
P .
Therefore, for |k| = m, we have the basis of solutions
r1—2m 2m+1

JF,T , rlog(r).

so we find the additional solution r log(r) when |k| = m. Therefore, we finally get

”é,s(r,H) Z (yl m+1+k+y2 m+1— k+ylgr1—nz+k+y4rl m— k) iko

keZ*
+ ( md 4 5 ve ”"9> rlog(r) + yolrlfm + yozrl*m log(r)
+ y3r™t g™  og(r). (5.44)

Step 2: Estimate coming from ., vé’ s € L2 As

i i, (mt1)? N Y
AVl =20m+ 1) (=5 + Ve ) Vol s+ T (T8 ) ol ) d
B1\B5(0) 8 x| ' | x| o

. 2
5/ (Zuls) dvoly = C o (Ivllywans)
280,5

2
/ Au5+(m+1)(m—1) > ) dx
B1\B5(0) |x |

2
) vl
L 4m + D(m — 1) v - =) ax
Bi\Bs(0) \ 1XI x|

2
. X -
— / - <V§2 . szl;‘,S T3 3 Ué’a) dx <Cow (HUHW”(E)) . (545)
B1\B;(0) |x|

and m > 2, we deduce by the same argument as Proposition 5.5 that the following three
integrals are bounded uniformly in € and &

N2 A 12 2
[ () o= [ (sidy= 200005 vl CEE ) 0
B]\Eg ’ Bl\Es(O) ’ |X| | |
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. 'U[ 2
/ Avis+(m+ D — 122 ) dx
B1\B5(0) ' |x]

l' 2
/ x Vol . — Yes dx
B\Bs©) \ [xI? &0 |x2

Now define

.,izm:A—i— (m+1)(m—1)
|x|?

X v 1
o xP x[?”

Furthermore, notice that for all k € Z*, if Py is the projection on Span(e”‘ -), then

Ker(Pr%,) = Span <rm+1+k, rmH*k) ,
Ker(Py %) NKer (P ?) = Span (1K 1ok (5.46)

Furthermore, for all @ € Z,
1
2(r*log(r)) = =9, (r*log(r)) — r*2log(r) = (& — 1)r* 2 log(r) 4+ r* 2,
r

so we deduce that the coefficients yol and y02 vanish when § — 0, as |x|!7™=2 =
E L2(B(0, 1)). Furthermore, thanks to (5.46) and the proof of Proposition 5.5, we

deduce that whenever a powera =m + 1+ k,m+1—k,1 —m +k, 1 —m + k satisfies
a <0,

then the corresponding coefficient yk] vanishes as § — 0. Notice that all powers r"+1+k,
pmtl=k e l=m+tk and p1=m—k gre a1l distinct, except when |k| = m, where the powers become

either

r2m+1’ T, rl—2m

or

r. r2m+1’ rl—2m’ .

Notice also that the coefficient y in (5.44) also vanishes as yr log(r) et ¢ Ker(%,) (and
using the same argument as in the proof of Theorem 6.6). So we have a remaining coefficient
in Re (ypz) in the expansion of véﬁ as § — 0, as reTm? ¢ Ker(%,) N Ker(%,) NKer(2).

Finally, we deduce that as § — 0, Ué,s 8—6 vé IS CfOC(E,’;) for all / € N such that

Ué — rm+1 Z rk(ykleikG + yzkefiké) + rlfm Z rk(ygeike + )/fkeiikg)

keZ* k=m
k>—m
4 yo3rm+l + yérm-‘rl log(r)
=2/t " Re (yklzk) +2r7" ) "Re (y,fzk) + ™ 4y log(r),
keZ* k>=m
k>—m
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where we used yf L= )7,{1 and yi‘ L= yT? The last expansion of uf9 follows directly from this
estimate using (5.41). O

Finally, we obtain in the following theorem the expansion as ¢ — 0 of the previously
obtained function u}. Notice the shift of notation for v}.

Theorem 5.9 Let u eC OO(E ) be the funcnon constructed in Proposition 5.8, and v €
COO(ZE) be the globalfunctwn such that u;, |CI>|211’ Then there exists vO € Wri(x) such
that up to a subsequence,

Ué s_—>()) Ué in C'(S\{p1..... pa}) forall | € N.

Furthermore, we have vo(pj) =0forj #1, vo(p,) =v(p;), andforalll < j 7é i <n,and
if pj has multiplicitym > 1, v0 admits the following expansion in U j for some yl L Vidjikl €

C(k,l e N)andyw eR
vh@ =Re (v)")+ X Re (iwis'®) vl loglzl + 0( log ).
m+1<k+[<2m
Furthermore, if m = 1, there exists yi(?j, yi{/ € Cand yi%j, yfl. € R such that for all
l<j<n, ' '
(@) = v(p)8ij +Re vz + v ;2 + v 12 + v 1z log lz] + O(IzP).

In particular, for all 1 < i < n, the variation v; = véfi@ is an admissible variation of the
branched Willmore surface W : ¥ — R3.

Proof The first claim on vé follows directly from the uniform bound (5.11) and a standard
diagonal argument. Furthermore, as v, = v = v(p;) + O(¢) on 3B (p;), we deduce that
v6( pi) = v(p;). Finally, the expansion in U; follows from Theorem, as

o
=Re (#) + ) Re(ct iz z)+al,10g|Z|+%(z)
1—-m<k+1<0

and as B> = B3lzI7>"(1 + O(lz])) (for some By > 0), we find that for some
V,jpvyl/klse(candyljp eR

i 0 k=l 1 2
vl =Re (y,-’j’azm) + Z Re (Vi,j,k,l,sz z ) + ¥, .61zl log |z
m+1<j+k<2m

+ 0(1z1*" ™ log |z]),

so as ¢ — 0, by the strong convergence y; j k.1 — Vi, j.k! € C and we get the expected
expansion. Finally, the indicial root analysis shows that

V2o = V2Re (17,2") + 0(1z1" M log lz]) = Oog 2 € () L7()

p<00
and as vf) e C®(Z\{p1,..., pn}), we deduce that
ve [ W (D)
p<00
and this concludes the proof of the theorem. O
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Remark 5.10 We emphasize that the variations vf) € W22(%) are admissible at a branch
point p € X of order 6y > 1 corresponds to an end p; (for some 1 < j < n) of multiplicity
m = 6y > 1, and the previous theorem shows that in U;

vh(2) = v(p)dij + Re (vi,;2%) + 0(1z1™ log |z,

so these variations are indeed admissible by the discussion in Sect. 3. For more details on
this important technical point, we refer to [26]. Notice that in general, at a branch point of
multiplicity m > 2, we have vmtly e L%(B(0, 1)) which implies that v € Cc™1(B(0, 1))
while for m = 1, V2v = O(log|z]) so that v € (,_; C"¥(B(0, 1)), butv ¢ CL1(B(0, 1))
in general.

a<l

Definition 5.11 For all admissible variation v € W22(X) of U we denote by uf) = |&>|2v6,
where v6 € W22(X) is the admissible variation of ¥ constructed in Theorem 5.9.

6 Renormalised energy for minimal surfaces with embedded ends

6.1 Explicit computation of the singular energy
First recall the definition of flux of a complete minimal surface.

Qeﬁnition 6.1 Let ¥ be a closed Riemann surface, pg,..., p, € X be fixed points and
®:Y > Ribea complete minimal surface with finite total curvature. Forall 1 < j < n,
we define the flux of ® at p; by

. 1 .
Flux(®, p;) = —Im / I® e RY
T ¥
where y C X\ {p1, ..., ps}is afixed contour around p; that does not enclosed other points
pi for some k # j.

By the Weierstrass parametrisation, we have at an end of multiplicity m > 1 for some
Ap e CI\{0}and Ay, ..., A, € C? and 7% € R?

d(z) = > Re (
j=0

-

Aj
m—j

- ) + volog |z + O(lz]),

and we compute

Therefore, we have
Flux(®, p;) = 7o € RY
is a well-defined quantity independent of the chart.

Theorem 6.2 Let ¥ a compact Riemann surface, P : S\ {p1s ..., pu} = R a minimal
surface with n embegded ends p1, ..., pn € Land exactlylﬂ catenoidends p1, ..., pm € X
(0 <m < n). Let U : & — R3 be the inversion at 0 of ®. Then the index quadratic form
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0y : W22(2,R3) — Rof ¥ satisfies for all v € Var(V) such that v = (v, ng) € ci(%)
the identity

L1 )
QyW) :gf}){i /Eg(Agu —2Kgu)“dvol,

n 2 m
o 1
—87 ) 5V (pi) —24m ) B} log (g) vi(pj)

i=1 j=1

+ 167 Zﬂzv (rj) } (6.1)

where u = |<I>|2v and ¥, = X\ U B, (pj), where the B, (pi) are chosen as in [28] (with

respect to a fixed covering Uy, .. U,, of p1, ..., pn, see also Proposition ), and
Bj = |Flux(®, p;)|.

Proof Write the decomposition v = —v1rig + 2Re (a ® 8@) Since Qg (V) = Qg (—v),
we will compute Qg (V) in this proof.

Rather than using Theorem 4.1, we will directly get the minimal condition on « so that v
becomes admissible.

Let p; be a catenoid end. Then up to a rotation, we may assume that the stereographic
projection of the Gauss map g : ¥ — $2 = C U {oo} vanishes at p; (g(p;) = 0). Taking a
chart centred at z = 0 € C, this implies that the Weierstrass data can be written as

5 3 1 wl
g() =—Xoz+rz°+ 0(z]°), o= 2 + - +wo ) dz + O(|z]).
Then we have

1 1 2A
(1—gz,i(1+g2),2g)w=(—Z—z+%,i<——2+ﬂ> zo)d +0(). (6.2

Z Z

Since @ is not multi-valued, we deduce that we have

j 2\
ozRef (1—g2,i(1+g2>,2g>=Ref (ﬂ,ﬂ,—(’)dz
s1 s1

Z Z Z
=Re 2mi (w1, iwy, 2A0))
= =27 (Im (wy), Re (w1), 2Im (X))

so that w; = 0, and A9 € R. Since p; is a catenoid end, we furthermore have 19 € R\ {0}.
Then we get

5. 2 1 5 ) 1 2 2X0
(I=g%i(l+¢9), 280 = 2 + A5+ wo, i 2 — Ayt o 7 =211 )+ O0(zD)
(6.3)
Integrating (6.3), we deduce that

d(z) = Re (/Za —g%i(l+g%, 2g)a)>

1 1
=Re (; + (A% +wp) i <E + (—A% + w) z) ,210log|z| — 2A1z) +0(z»
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— /] . _
= Re <A0 (E + woz> + A%Aoz> +e3 (2xplog|z] —2Re (X12)) + 0(|Z|2),

where

Ag=(1,—i,0)
ez =(0,0,1).

This allows us to rewrite
R = /1 R
®(z) = (1 + A3[z]*)Re (Ao <E + woz>) + 23 2rplog|z] —2Re (A12)) + O([z]?).

Notice that the signed flux of d at pi is given for § > 0 small enough by

1 = 1
(0,0, ) = —Im 9% = ——Im (1—g%i(1+¢%),29)w = (0,0, 219),
T B 2 Jrson)
and B; = (Fluxp,,(&),ﬁé(p,-)). In particular, we deduce since (Ao, Ao) = (Ao, e3) =
(go, E3) = 0 that
2

> 2|1
|®)? = (1 +A(2)|z|2) ‘g + woz| +4r310g? 2] + O(lz| log |z])

1
= 7 (1 431e og? el + 233 2P +2Re (w0®) + 012 log zD) . (64)

Therefore, we deduce that

- d(z)
V() = —
YT R0

x ((1 + A31zI*)Re @(z + wozzz)) + &3 (2x0lz[* log 2] — 2Re (112°7)) + 0(|z|3))

= (1 — 4231zl log? |z — 223z — 2Re (woz?) + O(jzI’ log |z]))

= Re <50 (z —wyzS — A%zzf — 4A%zzilog2 |z|)>
+ &3 (202 log 2] — 2Re (1272)) + O(lz[* log? |z).
Now, we compute

, _<2Re(g) 21m (g) 201 )
ig = I+ s

L+1gl2 1+ [g)* 1+ g(2))?
=2Re (/{0 (—=roz + )»1z2)) +&3 (=1 +223121%).

Therefore, we have
L= - 1
(g, @) = (1 +25lz]*) Re <|Ao|2 (E + woz) (—hoz + A1z2)> — 229 log |z +2Re (112)

+ 22|21 log 2] + O(|z*)
= —250 (log |z + 1) + 4 Re (A12) — 2A3|z|* — 210 Re (wpz?)
+ 2231z log 2] + O(lzI). (6.5)

This implies that

2iig, ®)U = (—4ko (log |z] + 1) + 8Re (112) + O([z]%)) (Re (/ioz)
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+¢é3 (220lz)* log |z]) + O(IzI?))
=Re ([fo (—4nrozlog |z| — 4roz + 4r12% + 471|Z|2))
+ &3 (=8231z1* log? Iz — 83 zI* log |z]) + O (IzI%).

Finally, we have by Lemma 10.7 the identity g, = —ng + 2(ng, @)% which implies
that
iig = Re (ZO (—4rozlog |z] — 240z + 2012% + 471|z|2))
+&5 (1 — 2231z — 843|z* log |zl (log |z + D)) + O(lz*).
Since the end p; is embedded, we deduce that given v € W>2(X) the variation v = —v ng +
2Re (cx ® 8‘1’) is admissible at p; if and only if v € w2Zn WI*OO(E, RS). Now, by the

Sobolev embedding W22($) — % (T) forall @ < 1, we deduce that forall 0 < & < 1,
we have an expansion

v=v(p;) + 0(z|' ).

Therefore, we have
v = Re (Ao (4rov(pi)zlog|z| + ZAQU(pi)Z)) +2Re <a (%Ao + 0(|z|))>
+2Re (2h0Zlog |z| & + AoZar) & + O (12> ™)
=Re (Xo drov(pi)zlog|z| + o + Z)LOU(Pi)Z))
+2Re (2h0Zlog |zl @ + AoZa) & + O(1z°).
Therefore, v is admissible if and only if
a = —4xv(pi)zloglz| + B

where 8 € W22(X) and zloglz|B € WZ2($). In particular, this implies that 8(p;) = 0.
However, in the special case of the catenoid ends, we will see that the second variation is
independent of « having this precise form.

We will now compute thanks to Theorem 3.3 0., (i), where § = ~viig +2Re (o @ 9¥),

v € C2(X), and where we assume that for some o € R, we have
1 2
a = yozloglz|— + O(|z|).
dz

We also define 1-forms wq(u, o) and w;(u, &) such that w(u, @) = wo(u, @) + w(u, a),
where

wo(u, a) = (Agu +2Kou +4Re (g_l ® ho ®5ot)) Q20u+ho Q)
—0|20u + ho ® e}
12573002 ' ®h®du— K, ®7) (6.6)

|&)|2g®|a|2)

—8¢'®@h®3 (|&>|2(* Liig)v? +2Re (oe ® log |&>|) |&>|2v)

w1 () =4, iig) g7 ®ho®D <|<T>|2v2 +

@ Springer



126 Page 46 of 97 A. Michelat

+4K, ((&,ﬁa>>v+2Re (a®a1og|&>|))g®a. 6.7)

We have by Lemma 10.6

2% 1 dz? 1
ho :—28g®w———d + 0 —,8,-—2+0 - .
Ml z z
Therefore, we have

o ® hy = —yo,B, |a’z—i—O(logIzl)

We have by (6.4)

. 1 p? 1
2% 2
A= 09 B = — + < >+0< )
lz|* 2]z 7 |zl

1 p?
= ( + —Izl — 2Re (w0z?) + 0(|z|3)) .

Next we compute

— Y0z dz
da=2222140
a PR + O(|z])
_ = 1 0 < 0
g 1®ho®3a=|zl4(—&)%:+0(||)— ”’H +0(zP).

Noticing that for some 1, y» € R and w1, w3y, w3, ws € C, we have

u=|®% = |®2v(p;) +2Re ( — +ous >+yz+0(|z|)

= <| 1|2 + B2 (pi) log? |z|> v(pi) +2Re (wl ) +2Re (%) +71+ 0(z))
—Kg = lholyyp = B1zI* + 0(lz),
we deduce that
Agu = 4v(p;) — 8Re (waz?) + O(Iz)
Agu +2Kou = 4v(pi) — 287 v(pi)lzl* — 8Re (wsz?) + O (),
Agu +2Kqu +4Re (§7' @ ho ® dar) = 4v(py) — 2 (BFv(pi) + wobi) lzI
— 8Re (w4z®) + 0(Iz*)

du = ( v|(1|)£ + Bu(pi) loglz| — — +2i Im <w1 > + 0(z |)) &

v(pi
23u+a®ho=(— |Z|le +(2,3,'2U(Pi)_705i)10g|1|

22 4 it ( ) + 0(|z|)> &
Z Z

(Agu +2Kqu +4Re (g7 ® ho ® dt)) (20u + & ® ho)

0 TP Y (o] B NN
= (== 400 (87 — wobi) v(pi) log 2] + 4870 (i) + 1ofi)v(pi)
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- Szﬂv(p") + 16i v(p;)Im (wl > + 16 v(p;)Re <w4§> )% +0()

41)2 i
20U+ 0 ® hol = ( |Z(|§’ ) 4@B20(p0) — yoBiyv(pi) log I

d 2
+8u(p) Re ( ) + 4w |2) %
z |z]

2
20u+a ® hol2 = (1 - %’mz +2Re (woz”) + 0(|z|3)> 120u + o ® ]

4% (p;
- ”|Z(|§ L 4820(p0) — 0B (p) og l2] — 26267 (py) + 8u(pi) Re (%) + 4lwn

+ 8v2(pi)Re <w0§> + O0(lz])

4% (p;
200+ a @ hol’ = (— D =2 B — ) vl

| 29

d
_4U(Pi)% +8i v*(p;)Im (wo, + O(IZI)) 72

Z

g ®3g®@) =Iz* (1+ 0(2) 3 { Znloglzl + 0 <|z| ))

!\l

Y0
= —ologlzl+ 5+ O0(z)

— Ko(g®@@) = BlzI* (1 + 0(z]) x 1217 (1 4+ 0(1z1H) x (wZloglz| + O(Iz*))
= BZyzlog |zl + O(lz|*)

¢! ® (ho ® Ju) = 121 (1 + 0(Iz) ( fito ( )) (— AL (k’g |Z|>) dz
|z zZlz| |z|

dz
= IBiU(Pi)? +0()

267'®@3(g®@®) (287 ® (ho ® du) — Ky (g @@))
= (~40fin(p) log 2] + 230 (p) = + O(D).
Finally, we deduce by (6.6) that
oo, @) = (— 8”;('5 D+ ao(pr) (2B20(p0) — wofis) v(pi) log |2
+4(B7v(pi) + vB)v(pi)

- Szﬂv(m) + 16i v(p;)Im (wé) + 16 v(p;)Re (w4z>>

dz
Z

402 (p;
+ ( v|z(|f ) +2 (2131‘211(131') - Voﬁi) v(pi) + 4”([’1‘)%

d
—8i v2(pi)Im (ami)) &
Z V4

d
+ (—4yoBiv(pi) log |z] + 200 Biv(pi)) f + o)
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— 4U2(p,') 8 (B2 . . 31 2 (482 . 290 B; .
=\ - HE + (ﬂiU(Pz)—VOﬂz)U(Pz) oglzl + (.B, v(pi) + J/O,Bz)U(Pz)

— ‘tzﬂv(l?i) + 16v(p;)Re <a)4 > + 16i v(p;)Im <w5§> )% +0(1).
6.8)

for some ws. Now, we have

. 2(p; 1
|®|2v? = v (];l) +0 (—)
|z] |z]

|CI>|2g ® la|* = yg log” |z + O(lz| logz])

- 1 2(p<) 1
?*v” + ® ’ +0(7>
|P] |2g | e

| |z]

=~ = 1 V(pi)
19+ —g® |a|2> =— zdz
( |<I>|2g |z|*

— "y g 1 ,8 UZ(p))
1 2.2 2 4 L 1
®h ®8 d|“v + =—gQ|x = |Z X || — X | — ZdZ

dz
= ﬂivz(m)f + o).

And finally, by (6.5)

-

4D, iiz)e ' ®hy®D <|cf>|2u2 + —

d
2) = —4p2v*(pi) (log|z| + 1) f (6.9)

Next, we have

2
- v ; 1
113D, 7ig)v> = —p; (log |z| + 1) |Z(|’§‘) +0 <| |>
and
log |®| = —log |z| + log (1+ B2 log? |z| + 0(|z|2))
= —log|z| + O(lz|* log® |z])

2Re (a ® alog|&>|) = —yologlzl + 0(z])

log |z|

2Re (a® dlog |B]) 1B v = —yov(p) = o

Therefore, we have

1B2(®, 7ig)v? + 2Re (a®alog|cf>|)|cf>|2u

a2 o loglzl  vi(pi) <L)
(ﬁlv (Pz)+)/OU(Pz)) e Bi 22 + 0 o)

Therefore, we have

P . log|z| dz
5 (1B12(®, 7ig)v? +2Re (« @ dlog|Blv)) = (B> (pi) + yov(pi)) |§||2 | =
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1 dz 1 dz
(ﬁlv (Pl)‘l')/ov(lh)) Iz |2 - +/31U (Pz)l 2z 72

o] &

1
e ((ﬁivz(pi) + yov(pi)) loglz| + = (ﬁ, v (pi) — ov(p,)))
and
—-8g7 ' ®ho ®5(|5>|2(<T>, fig)v® +2Re (a ® 9 log |&>|v))
1 1
= —8|z]* x (Ji) B ((ﬂivz(pi) + you(pi)) log 2]

1 d
5 (/31 2(1’1) - VOU(Pz))) ?Z + 0(1)

dz
=8 (B2v*(pi) + Bivov(pi) log |z| + 4 (B0 (pi) — Bivov(pi))) 72 +0(1) (6.10)

Finally, we have

Ky = 0(z|"
(@, 7ig)v = O(log |zl)
®a|cf>|) = O(log|z])

_ log |z| ( 1 )
Ra = +0|—
g SR BE

- - _ lo
K, <<q>,n5)>v +2Re (a ® a|c1>|)) ¢®@ = 0(z*) x O(log |z]) x O ( |§I|3Z|)

(D, ng)v+2Re (a

= 0(lz|log” |z]). 6.11)
Finally, we have by (6.7), (6.9), (6.10) and (6.11)

01, @) = 4(®,7i5) g ® ho ®5(|<T>|2v2 + |£|2 o 2)
—g*1®ho®a<|q>| (®,7ig)v” + 2Re <a®1og|&>|)u)
+4K, ((&>, Ju+2Re ((x ® alog|&>|))g®a
— —4p22(py) loglel + 1) Z +8(/32v (pi) + Bivov(pi) log |z
+4 (B (pi) — ﬂi)/ov(l?i))) d? +0()
= (4 (820 + 200 ) Yog 2] — 4ion(p)) T + 0D, 612)

Gathering (6.8) and (6.12), we deduce that

o, o) =wy(u, o)+ o (u, )

_ 4v2(p,-) 8 (B2 . . 31 2 (482 , 2 . .
=\~ + 8 (B7v(pi) — voBi) v(pi) loglz] + 2 (4B v(pi) + 2v0B:) v(pi)

— ‘tzﬂv(pi) + 16 v(p;)Re <w4 ) + 16i v(p;)Im < :> )@

Z
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dz
+ (4 (B202(p) + 2Bivov(pi)) log 12| — 4Bivov(pi)) 72 + o)
B (_4v2<p,->

4wy
P 12870 (pi) log 2| + 8B7v* (pi) — —v(p)

+ 16 v(pi)Re <w4 ) +16i v(pi)Im ( )+ 0(|z|)>%

Therefore, we obtain the formula
204,
Im / o, o) = —8nv (fl)
0B (pi) €

We finally deduce that

— 24p7v*(pi) log (é) + 1677 v*(pi) + O(e).

_ . 1 n ag
0;@) = 811% (2 /E (ZLeu)?dvol, — 87 Z 8—’2v2(pi)

—247TZ;‘3 log( )+16n2ﬂ2v (pi) )

which is a finite quantity thanks to the previous computations. O

Remark 6.3 To see that the limit is well-defined, if v is a smooth function, we have the
following expansions for some yg € C

> > Yo
u=|®*v = |®*v(p;) +Re (7) + 0(z|log? |zI)

Agtt = 4v(p) + O(z[ log? |z])
—2Kgu = 282 1zPv(pi) + O(z)

1 2
8= <1+’3|z| + 0(z| )) ldz)?.

Therefore, we deduce that

1

- / (Agu — 2K u)?dvol,
2 JBi\Be(p

1 2 d 2
= f/ (@) +220(pnle + 032’ 1+ﬂ—| ? 4
2 JpnBo.e |zl

1

2 2
- */ (1692 (p0) + 168202 (i) + 0(1z)) (1 L dz]
B1\B(0,¢)

i 2
0 -
; il + (|z|>) o

1 |dz|?

=f/ (1603 (py) + 24870 (pi)12I?) 4 + O(D)
2 J\Bo.#) |z

1 2 X 2.2 X
=”f <l6v (1) +24ﬁ,-: (pl)>dr—|—0(1)

r3

= 2+ 242 (py) log (é) +0()

and this proves that (6.1) makes sense.
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Remark 6.4 Now, if we rather choose the variation of Theorem 4.1 given in (4.2), the addi-
tional terms do not change in

/ w(u, @)
9Be (pi)

up to a O (¢) error. Indeed, the additional term in 4Re (g~! ® ho ® dct) is

4Re <|z|4 (—ﬂizizyz)) — 48 Re (752

which will be negligible integrated against 2 du + o ® hgo. Then, we have

212 ; d 1 _
20u+hy®@a = (— U|Z(|§ ) + (2B7v(pi) — Voﬁiv(l?i))> ?Z + (-&;) (viz+nz)dz
20%(p; d
= (- U|Z(|f) + (2B7v(pi) — yoBiv(p) — Bivi — Biva= ) Zz

which shows that the additional non-negligible termin (Agu 4+ 2Kou + 4 Re (g7 ® dar)) (2 9u+
ho ® ) is

dz
—4/3iy1v(pi)7z. (6.13)

We also see easily that there are no additional terms in 9|2 du + hg ®a|§. Then, the additional
termin g~ ® (g @ @) is

1 2 _ _ Z
2|40z (—y + 2 ) = - 27
Z ZZ Z

which implies that the non-negligible additional term in 2 g '®IgR®2e™ @ (ho ®
ou) — Ko(g ®@@)) is

d
—4ﬁim(p,->f. (6.14)

Summing (6.13) and (6.14), we deduce that the additional term in wg(u, @) is

d
—8Re (Vl)ﬂiU(Pi)7Z~ (6.15)

)

8¢~ ' ®@hy ®5(|&>|2<&>, jig)? + 2 Re (a ® log |&>|) |&>|2v)

_ 4 Bi v(pi) %
e — P

=88:7°9 <—Re (1) U(pé) —Re <y2v(2p,') )) dz

|| z dz

As previously the « component in

-

H,iig)g ' ®ho®D (|q>|2v2

is negligible, so the only additional term comes from

and is equal to
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'\ d
= <8Re DBv(pi) + 8m~v<pi>§) f

which shows by (6.15) that the additional non-negligible term in w (u, &) is equal to O.

Remark 6.5 For a Willmore surface having its first residue non-vanishing, the Willmore

equation is not satisfied every where (see [1]). In the case of inversions of minimal surfaces,

for all admissible variation v = vng + 2Re (@ ® W), we compute as in [28]

d

dt

- / dIm (2 (H,00) —2¢g7' ® (ﬁo®5Lﬁ)>
)

- N d - =2 g -
Dy (¥)(v) = EW(%)\mo = — W (P)li=0 = DV (P)(u)

— / dIm (g“ ® ho ®5ﬂ7).
b
where it = |20 — 2(d, 3)® = —(|®|?v) ng +2Re (a ® 8&5) (we used that H = 0 in
the last identity). By Stokes theorem, we deduce that

n
DY (V)[@) = lim Zlm/ 267 @ ho®3 il
e—>0 i=1 dB:(pi)

If (g, ) are the Weierstrass data of o, by the previous computations, foralli =1,...,n,
there exists B; € R such that | ;| = |Flux,, (®)|, and since hp = —2 g ® w by Lemma 10.6,

we find at p; that
dz? 1
h=-p"%+o(L). (6.16)
z |z

Notice that this expansion shows that the quantity —g; is well-defined independently of the
chart as the residue associated to the pole of order 2 of a meromorphic quadratic differential
[22]. Up to scaling, we can assume that

1P = e 0 (log” |2)).
Finally, without loss of generality, we can assume that the variation is normal (since the
non-normal variation is negligible at order 1 by the proof of the previous theorem), and if

U = viig, we have il = —|&>|2vﬁ&> = —ung and we find
g ' ®ho®0i=—g ' ®@ho®du=—|z* (—ﬁi‘f) (T;f;;) dz+ 0(1)
= ﬂiU(Pi)% + O(1).
Therefore, we deduce that
Im 207 @ ho @i = 4 Biv(pi) + O(e)

9Be(pi)

and

DY (W)(@) =4 Y Biv(pi).

i=1
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In other words, using the weak formulation of the Willmore equation after Riviere [34], 7
solves in the weak sense the equation

n
d (*dﬁ — 3% (dH)* + *(H A dﬁ)) — 4 3" Biliig (). 8p,)s
i=1

where —B; = Res,, (ho) is the Residue of the meromorphic quadratic differential & at
pi, while §,, is the Dirac mass and 5 pi = (8p;»8p;,0p,). In particular, we deduce that
Willmore surfaces with embedded minimal surfaces with at least one catenoid end are one-
sided unstable, that is, for all v € W22(Z) such that Zl 1 Bi v(pl) # 0, if v is as previously,
we have either 7/(‘1’,) < 7/(\11) for all # > 0 small enough or 7/(%) < W(\IJ) forallt <0
small enough. Furthermore, since the order of branch point is preserved, the integral of the
Gauss curvature remains constant and \U is also one-sided unstable for W.

In particular, it will be necessary to restrict to variations such that > i, B;v(p;) = 0 in
the following so that the definition of index using the second derivative makes any sense.
Indeed, we will have

W (W) =W (W) +4m 1y Biv(p) + %ﬂ 05 @) +o0(t?),
i=1

so that the second derivative becomes negligible if the first one does not vanish.

6.2 Renormalised energy identity

Theorem 6.6 Under the hypothesis of Theorem A, assume that ® has embedded ends, let
veCHT), andv = —v 71@, +2Re ((x ® 8&1), where « is given by the proof of Theorem 6.2.

There exists a symmetric {A; j}1<i j<n With zero diagonal terms independent of v, and a
function vy € W22(%) vanishing on {p1, ..., pn} such that

.1 -
05 @) = 5/($guo)2dvolg+8n2ﬂ3v2(pi>+4n > hiju(p)v(p)).
z i=1 1<i,j<n

where uy = |&>|2vo. In particular, Indyy (\_13) <n-—1

Proof We fix ¢ > 0 small enough such that the ball {Ezg(pi)}1<i<n
define the following symmetric bilinear form B, : W22(2,) x W2(2,) > R

are disjoint, and we

Ba(ul’u2)=/ i”guliﬂguzdvolg
e

and Q. : W>2(X2) — R the associated quadratic form. We note that

n 2 m 1
Q) = lim Q:(u) — 87 ) | ‘:—;vz(m — 247 )" Bjlog (;) v(p))

i=1 j=1

+ 167 Z,szvz(pj)

Jj=1
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n
if u = |®[?v. We now define u, = u — Y ul
i=1

Q:(u) = Q: (u + Zui> = Qcue) + ) Qc(ul)
i=1

i=1

n
. 1 . .
JrZBS(ug,ug)jLE > Beul.ul). (6.17)

i=1 1<i#j<n

Step 1: Estimation of Q. (u.). We first remark that Q. (u#.) cannot depend on the derivatives
of vat p1, ..., p, by Sobolev embedding theorem. Therefore, each time we differentiate vé,
we know that analogous cancellations as observed by the explicit computations in [28] will
actually make these residues vanish as ¢ — 0. Whenever one of these terms occur, we shall
neglect them.

Forall 1 <i <n,letvi € C®(Ba:\Be(p;)) such that ul = [®[2vi on Bae(pi)\Be(pi).
We fix a chart D?> — B, (pi). We recall that close to p;, we have

2
|®(x))? =

lx |2
Then we deduce by the Dirichlet boundary condition that
vé =v on dB:(p;)
and
ot = 8, P20l + 1D 28,0] = 8, ®%v + |D20,v] on IBs(pi)
and as

dyul = 3,(|®1*)v + [®[*d,v on dB(p;)

we also have
dyv. = d,v on dB:(p;)

SO

. o2
u' (82 + 87 10g2(8)> v+ 0(1)

. (){2 '32 2
duy = —2 +2 loge | v+ + B2 log’e | a,v 4+ O(1)

then on By, (p;)\ B« (pi), we have
Agul = Ag(|1DP0]) = 40l +2(d|D)?, du") + D A0t

e \ BT )

-Vl 4 [x[2Av + O(|x|* log? |x])

2
1
= 4u} —4|x|<1+ﬁ2IXI 10g<| |>>| -Vl + x]2AvE 4+ O(|x|* log? |x])
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and

132
—2Kgul =25 |x[Pvl + O(|x|*)

l

so on d B¢ (p;),
j B, B, 1 2 472
Lul, =2 2—{——’28 v—4de |1+ 810g< ) v+ e”Av, + O(g" log” ¢)
o 0‘,

Therefore

2
X . X B; 1
— .V (Aul)=4—" —4 1+ —%|x| 10g< ) Vv
x| (82) x| ( o? ) ) Ixl
2
: 1 .
45—'2|x|2(1—|—210g( >)i.wg
o 1)) Ix|
ot (i) () 2
—4x| [ 1+ Zx% 1o — | DL —
( R ANFTV S ANFT) AN P

+ 2[x| AV + |x]x - VAV 4+ O (x| log? |x|)
while
B? B}
|x| -V(— 2Ku)_4 2| |€+2 2|x|x Vv
soon dB¢(p;), we have

2 2
0y (Louy, )—48/3—1) ﬂz ( + 3log <1>> dyv
o &

Q; i

—4e (1 + flog (1)) (g)t D! (g) + 26 AVl

+ &9, Avl + 0(e* log? ¢). (6.18)

Since can neglect all terms containing derivatives of v, we can replace v by v(p;) and replace
d,v by 0, which gives

2

UL, (Loul) — (dyul) Loul = <Z‘2 + A logz(s>> v(pi)

:61'2 53 1 X\ i (X
<4sa—i2v(p,-) —4e (1 + ; log (8)) <E> D2v£ (E)
2 2
—+ ZEAUé) +2 ( ﬂ’ log (i)) v(pi) <<4 + 2'8;82) v(pi) + €2Avé> + O(log® ¢)
&

a? 2 1 2 2
= % (p,>+8’3’ log( )v2<p,~)+8%v2<p,->+2°‘?’m;v<p,~>
o B 1 XN 2 (X i 2
+ o) (—45 (1 + —l log( )) (E) D*v, (E) + 28Av6) v(pi) + O(log”¢). (6.19)
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Furthermore, we note that if

DX = <611,1 611,2> +0(e)

a| a2
then
/ x’Dzvéx dA"
0B (pi)
3 o 2 2 aip+azi 4
=¢ / <a1,1 cos“(0) + az 2 sin“(0) + ——— sin(29)) do+ 0(&")
0

=n(ar) +az2)e’ + 0(e?)

while

/ Avé =2m(a1,1 +az2)e + 0(82)
aB:(pi)

so if we write §; = ay,1 + az,2, we have

2 2
4 : 1 t ) )
/ (e (142 10g <7> (2) D2l () +2eal ) dor!
3B (pi) € Q; & & &
_ 2 52100 [ 1 AP P
=4\ +Bilog| - | |7d; +2a; - 276; + O(eloge)
e

1
= —47t,3i2 log (E) 8;i + O(eloge)

we obtain finally
Q:(ul) = %/amm uldy (Leul) — (Bpul) Lould 2!
= &;—ffzv%pi) + 878/ log (é) v2(pi) + 8B (pi)
— 27 log (é) 8iv(pi) + 2mB28iv(pi) + O(eloge). (6.20)

Now thanks to the asymptotic behaviour of {vé}] <i<p» W know that B (u., ui), and

B; (ufo, u;g) are bounded terms, so for the energy to be finite, we must have

i 8”“1'2 2 2 1
Oc(u,) = 7V (pi) + 247 log z +0(1)
which imposes
3 = —8v(pi)
and we get
i 8”0‘1‘2 2 2 1y 5 2.2 2
Qc(u,) = oY (pi) — 8nB; log S v (pi) —8nBiv™(pi) + O(elog”e). (6.21)

Step 2: Estimation of B (ul, u;!) fori # j.
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Forall 1 <i, j <n,and k # i, j we have by Theorem 5.5

; : 1
/ uld, (Lpul)d A :/ 0( >0(|x| yd#" = 0(e? loge)
9B (pk) B¢ (pr) |X|

and likewise

. . 1
/ 3y (ul) Lyuld A :/ 0( 2) O(xP)d#" = 0(e?)
9B (p) aB:(p)  \IX|

therefore

/ (ion(Zeud) — @) Lol ) d " = O(e* oge) (6.22)
k#i,j 9B (pk)

So we need only to consider the boundary integrals for B, (p;) and B.(p;). We have up to
0 (3 log e) error terms by (6.22)

/ zgugxgug:/ (uj;av(,sﬂgug)—(avu;)zgug)d,;fl
e 9B:(pi)
+/ (it (Lpud) = Gy Zoul ) dt!
‘BF(Pj)
and

/ (uiau(fgué') - (3uui)$gu£) dn"
B¢ (pi)

1 1
-/ 0( 2)00 »-o0 ( 3)0(| A = o)
3B: (pi) x| x|

so by symmetry, we have

Lo iy =L Ly (Leul) — Boul) Lyul ) d#' + O
e (g, uy) Uugdy (Lgug) — (Qyup) Lyu +0()
2 2 Bs(Pj

1

_ 7/ (ulou(Lpuird " — (avug) .,s,ﬂgug) +0C).
2 JaBe(pi)

From now on, we find useful to use complex notations. Recall the expansion on d B¢ (p;)
; Ci,j z
u, = Re T‘Fdi,jg +a;, jlog|z| + bij + O(|z)).

Furthermore, as
2
(817 = 5 + B log |z] + Ozl log |z

we have

2
ul = |®2((p;) +Re (y2) + 0(z*) = ﬁ (v(pj) +Re (y2) + O(|z|* log? |z))) -

Furthermore, we have

2
n_ %
|z]*

Q

+0(z]),
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so we deduce that
Agul = 4v(pj) + O(|z)* log? |z)).
Furthermore, as K, = O(|z|*), we have also
Koul = 0(1z%),
so we get
Lyul = 4v(p)) + 0(z|* log |z])
0y (Leul) = O(|z]log? |2,

so we recover a weak form of (6.18) (however sufficient for our purpose here). Now we note
that

/ uld, (Lpul)d A"
0B:(pj)

=f (Re (C )+0(log|z|)) 0(z/og? [2)d A" = O (e log ).
dBe:(pj)

Now, notice that for all smooth ¢ : B(0, 1) — R, we have

X X
3v¢’=71'8x1‘p+72
] x|
1 +
<(Z Do+ a)p+ T2
i 2

<O,

i(d— 3)<p> ﬁ(zago +70¢) = ﬁRe (z0;9) .

Therefore, we have (as z/z has no radial component)

) 2 -
dul = —~Re (c’ ’) + |’|f + o),

while
Loul =4v(p;) + 0(|z* log|z),

therefore

/ avuz‘ggué d%l :/ <_ Ci,j _ Cl',j; _‘r_ l] _|__ 0(10g|2|)>
9B (p)) aB.(pp \ 2lzlz 2z|]z - Iz]
@v(pj) + O(lz|* log |z))d. "
=8ma; jv(p;)+ O(e log2 g).

Therefore by symmetry
1 . .
EBE(uf?, ul) = —4ma; ju(p;) + O(elog? e) = —4ma; ;(p;) + O(elog )
SO
al(pjv(p;) = alv(pi)

therefore there exists A; ; € R such thata; ; = A; jv(pi), aj; = A; jv(p;) and we deduce
that

1
5 Be(pi» pj) = —4mhi jv(pi)v(pj) + Oeloge). (6.23)
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We note that these notations imply that for r >0 small enough, forall 1 < i < n, for all
j # i we have on any conformal chart D> — B, (p i)

. Ci i E
ul(z) = Re <7’ +d,~,,;> + Aijv(pi) loglzl + bi j + O(z)).

Step 3: Estimation of B, (u., ui) forl <i <n.
We note that the boundary conditions imply that for all 1 < i < n, we have on 9B (p;)
(for some y;, ; € C and b; € R)

ug—u—zul— ZuJ—Re (J/Z-I—J/l )—Z)\.i,jv(pj)log|Z|+bi+0(|Z|)
J# R

=Re (Z ) D i jv(pploglzl + O(1)
J#

Oplte = —lR (?) - = Z}” jvpj)+ O),

where we used 9, ()7,5> = 0. As by the Remark 5.7 for all j # i, we have on 9, B¢ (p;)
z
Fpul = 0(£?)
3 (Leul) = 0(e)
we deduce that
/ Uedy (Loul) — dyue Leuid A" = 0(e),
Be(pj)
and as on 0 B.(p;)

Loul = 4v(p;) + O(*log? &)
3y (ZLeul) = O(elog? e)

we have
/ Uedy (Loul)d A = / O(log? &)d#" = O(elog® ¢)
B:(pi) 9B:(pi)
so finally, as ;Zgzulg =0on X,

Bé‘(u87ui‘) =/2 fguafguidvolg
:/ ue L ul, dvoly +Zf Uedy (Loul) — dyue Loul d. A
Ze 9B:(pj)

1 J/i)
_ — | —Re (=) =) A jvp)+0() | @Gv(p)
/a&(p,») & <Z ; Y
+ 0(e)d A" + O(slog’ ¢)
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=87 Y A ju(pi)v(p)) + O(elog®e),
J#

where we used by obvious symmetry

/ Re (1> ' =0.
IB(0.¢) z

Therefore for all 1 <i < n, one has

B (ug, uf?) = 87 Z)»,',jv(p,')v(pj) + O(eloge). (6.24)
J#i
Conclusion: We have finally by (6.17), (6.20), (6.23), (6.24)

Q:(u) = Qg(ug>+8n2—v <pl>+24nZﬂ log( )v (p,)—SJTZﬁzv (p))

n
+2) | 4m D hiupdv(p) | —4m > ki ju(p)v(p)) + O(elog” &)
i=l J#L i#]

—Qg(ug>+8n2—v (p,>+24nZﬂ 1og( )v (p,)—SHZﬁzv ()

j=1 i=1

+47 Y i ju(p)v(p)) + O(elog’ )
i#]
and finally

n 2 m 1
Q) = lim | Qu) — 87 ) Z—;vz(m — 247 )" B7log (5) vi(pj)

i=1 j=1

+167 Zﬂzv (rj)

= Q(uo) + 8 Zﬁ,z-vz(pj) 4y hi ju(p)v(p)),
j=1 i#j

which concludes the proof, as the last claim follows from the fact that

/ Uedy(Lytte) — dotty (Loue) d A"
9B:(pi)

= / 0(loge)0(e?) — O ( ) 0(¥dn#" = 0(3loge).
9Be(pi)
which concludes the proof of the theorem. O

We deduce from the preceding theorem an improvement of Proposition 5.5

Corollary 6.7 For all 1 < i < n, there exists X; ; € R such that for all j # i, for all
0 < & < &g, on every complex chart around p; there exists c; j, d; j € C and b; ; € R such
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that

Ci i Z
’Z” +d,~,jg> + xi ju(pi) log |zl + b j + O(z| log |z]). (6.25)

u'(z) = Re (

7 Equality of the Morse index for inversions of minimal surfaces with
embedded ends

Theorem 7.1 Let ¥ be a closed Riemann surface, P S\ {p1, ..., pu} = R3 beacomplete
minimal surface with finite total curvature and embedded ends , and U3 — R3beits
inversion. Assume that 0 < m < n is fixed such that py, ..., pym are catenoid ends, while
Dm+1s - - - Dn are planar ends, and for all 1 < j < m, let B; = |Flux(5>, pj)l € RY be
the norm of the flux 0f&> at p;. Let A(‘i’) € Sym,, (R) be the symmetric matrix defined (see
Corollary 6.7) by

2,312 A cee coe oo Al
Ao 2ﬁ22... T
AW =] Apm e oo 282 - Amn |
AMomal -o coe oo 0 - Amiln
T S |
Then for all a = (ay,...,a,) € R", there exists v = v, € W22() such that
(p1), ..., v(pp) = (a1, ...,ay) and if Vo = —vony + 2Re ((xo ® 8@), where oy is
given by the proof of Theorem 6.2, we have
m
Q@) =87 Y pR2(pj) +4m Y Aijv(p)v(p)). (7.1)
i=1 1<i,j<n

Therefore, we have
Indy () =Ind A(¥) <n — 1, (7.2)
where the index Ind of a matrix is the number of its negative eigenvalues.

Proof Let v € C2(X) be such that v(p;) # 0 and consider ug = Y, uly = |®> Y7_, v}
obtained in Theorem 5.9. We assume for simplicity that the end is planar, as the computation
for a catenoid end would be identical up (notice that we can also assume the variation to be
normal in the catenoidal case since the tangential part vanishes in the residue). Recall now
that in the chart U; around p;, we have for all j # i

2

- o

D> = P (14 0(z1»)
2 o -

i 9 j Viij |~ %

uhy = — (W(p) +0(lz])) u)=Re + 5 )+ digv(pploglzl + i j + O(lz]).
|z|2 z z

Therefore, we find

vh = v(pi) + 0(z)
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1 1

J Vi, Vij 2\ M, p Hij o 3
vy = Re z+ 7+ z|7log |z] + —5=1z]” + O(|z]”).
Furthermore, as vf) is regular at p;, this implies if ug = Iélzvo that there exists yp € R and
0, ¢1 € C such that
)\'A .
vo = v(pi) +2Re (Coz + 012%) + vl + ) 02’2’ v(pjlzl*loglzl + O(lzP).  (7.3)
j#i i

Therefore, one needs to compute the renormalised energy for variations not only C? but also
of the form given by (7.3).
Let v € W22(Z) be such that

v =1v(p:) +2Re (¢oz + &12%) + polzl* + nilzl* log |z| + O(Iz). (7.4)

We will now compute Qy, (v) for the variation v in (7.4). Now, recall that at a planar end
there exists aiz > 0 and ag € C such that

2
- o
1B = |z12 (1+2Re (@oz%) + 0(z1h).
As @ is minimal, we deduce that
_ . a?
g =edz|? = 93| ®)* = ﬁ (1 —2Re (cpz?) + 0(Iz*)) .

Therefore, we have
2
- o
u=|0 = ﬁ (v(pi) +2Re (So0z + (@ov(pi) + ¢1) 2%)) + a0 + afyi log |z + O(lz))

2
o
= @ (v(pi) +2Re (S0z + 022%)) + o yo + afyi log |z + O(z))

and (as |z]2Re (29z) = Re (Zoz ') is harmonic)

40[,»2 2 3
Au = e (v(pi) = 2Re (£22°) + O(lz]))

4 Aq?
= ';—'2 (1+2Re (x0z®) + O(lz]*)) x ;; (v(pi) —2Re (222%) + O(Iz]))

i

Agu = e Au

= 4v(p;) +2Re ((aov(pi) — &) 2%) + O(lz)

= 4u(p;) +2Re (532%) + 0(Iz) (7.5)
Now, we have

2 2

a; — — aryrdz

du = _Z|Z’|2 (v(pi) + %07 — L% + ©77) dz + - —+oWm

2 2

o . ) oy dz

= —Z|Z’|2 (v(pi) + %oz — 2i Im (£2%)) dz + ’77 +0().

This implies that we have for some 1o, A} € C

o o 402 — _ .
Ag <|d>|2v) 9 (|<1>|2v> = Agu (G0 =~ (02 (pi) + Cov(pi)Z + ho2® + M7 dz
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dz
+2a?yw<pi>7z + o).

This implies that

o - 8o’
Im f Ag |d>|2v) 3 (|d>|2v) — — 02 () + dmadyiv(p) + O(e).  (1.6)
B(0,¢) &

Now, we compute

2 2

2 l)/odz

|du|? = - +00)

(v(pz) +20Z - 2i Im (02%)) dz + ——

oc4 ,VO
_ (W (v(p0) +2Re @ov(p)2) + 160127 + 0(1) = 125 >'d -

4
= E‘? (v2(p) +2Re (Lov(p)2) + (151> — yo)lzI* + 0(1z*))

Therefore, we obtain

4
0ul? = e~ .u? _ b — (1+2Re (a0z?) + 0(I2))
O[4 l

W (v (pi) + 2Re (Lov(pi)z) + (120> — yo)lzl* + O(lz] ))

CYZ 2
= |2 v2(pi) +2Re (¢ov(pi)z + a2 ) )+ (151" = v0) + O(lz)

and notice the constant (|§0|2 — ). Finally, we find for some A, 23 € C

(V2(p1) + Cov(pi)Z + Aaz? + A3Z%) dz + O(1)

o
aloul? = ——

|0ul, P
Finally, we have

- 2
0 (|d>|2v)’g = —0ldul2 = —43|9ul?

402
=Z|Z|’ (V2 (pi) + Cov(pi)Z + 222® + A322) dz + O(1).
and
o 2 8ra?
Im -3 ‘d(|d>|2v)‘ =25 0. 1.7)
dB(0,¢) 8 &

Gathering (7.6) and (7.7) we obtain as K, = O(|z|6) by planarity of the end (notice the
factor 2 in front of the Laplacian)

Im | 2 (Agu + 2K gu) du — d|du|}; = Im / 2 (Agu) du — d|dul} + O(e)
9B(0,¢) B(0,¢)

Snaiz 2 87roti2
=2|- 2 +dmaiyiv(pi) | + 2 + 0(¢)

871

i)+ O0(¢e). (7.8)
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Now, coming back to (7.3), we see that for vy written above we have (with §; replace by «;)
)\. .
yi= Y. —5v(p))
j i
so that

8ralyiv(pi) =81 Y Ai ju(p)v(p)). (7.9)
J#L

Therefore, we get forall 1 <i <n

1
f (Agug +2Kgup) * dug — = * d|du0|§
B:(pi) 2

8ol "
= =5V () + 87 Y di ju(p)u(p)) + Ofeloge), (7.10)
=1
J#L
and

n

1
/ (Aguo + 2K guo) * dug — = * dldug|}
= JoB.on) 2

n a'z n
= =87 ) 50 (p) +87 Y ki ju(pv(p)) + Olelog’e). (1)
i=1 i j=1
i

However, we remark that for this new variation, the proof of Theorem 6.6 does not apply
since we neglected terms involving d,,v, which could not remain in the limit fora C 2 variation
(by Sobolev embedding). In particular, the formulas involving u’5 do not apply in general.
Therefore, we will use another argument, which is shorter. Since u( is a bi-Jacobi field
.,?gzuo = 0, we can simply integrate by parts to find

%/ (ZLup)>dvoly = Z %/ 0y (Lgto) — dyug Leuo d A (7.12)
e = 2 JoBpi)
Recall that
Agu = 4v(p;) +2Re (532°) + 0(z]),
which implies since K, = 0(|z|%) that
Louly = 4v(pi) + 2Re (6327) + O(lz).
Therefore, by the formula (valid for all ¢ € C*°(B(0, 1), R))

d
/ dod A =2Im Re (z - 9,0) =
B.(pi) z

3B(0,e)

we have

/ u6 Bu(iﬂgug) — Buuf),i”guf)djfl
3B(0,e)
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2

=2Im (v(pi) + 2Re (¢oz + £22%)) 2Re (5327 )—

B(0,¢) |Z|2

1 n
—2Im /3@@ (v(p,) Re (602)) + 5 Y v

J=1j#
(4v(pi) +2Re (szz)) + O(eloge)

167'[0[
=— v(p,)—8nzx,,v(p,)v<p,)+0<eloge)

j=1
J#

and finally

1
= f Uody (Lgtto) — dyutg Lyuo d A
2 Ja.p)
2 n
8rar ,
= (pi) =41 > hi jv(p)v(p)) + O(eloge). (7.13)

Jj=1
J#

Therefore, we have by (7.12) and (7.13)

1 n
3 /Eg (fgu0)2dv01 8 Z —Uz(p,) — 47 IX;JX})\I ,jv(piv(pj) + O(eloge)
J#

n ()(2 n
=87y g—lzvz(p,') — 47 Y ki jv(pi)v(p)) + O(eloge) (7.14)
i=1 ij=1
i#j

By [28], we have

1
Qw(vo) = 11m { / (g u()) dVOl + Z/ (Aguo +2Kguo) * dug — E * d|du0|§

9B:(pi)
(7.15)
Finally, combining (7.11), (7.14) and (7.15), we deduce that
Q5wo) =4m Y X ju(p)v(p)). (7.16)

I<i,j=n

and this concludes the proof of the theorem (the proof for catenoid ends is almost identical,
up to the additional coming from the flux which remains unchanged). O

8 Renormalised energy for ends of arbitrary multiplicity

Theorem 8.1 Let & : 2\ {pl, ..., pn} = R3 be a complete minimal surface with finite
total curvature and W = 1o ® : ¥ - R3 be a compact inversion of ®. Then there a
universal symmetric matrix A = A(\IJ) = { ij }1 <ij<n with such that for smooth all
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smooth admissible variation v € Var(‘jl) NC®(Z, R?), we have
R 1 2
Qg() = 5/ (Agug — 2Kgu0) dvolg + 47 Z Aiju(pi)v(p;)),
z I<i,j<n
where ug = |&>|2v0 for some for some vy € wi(z, R) such that vo(p;) = 0 for all
1 <i < n. In particular, we have

- - 1 - 1
Indyw (V) <Ind A(W) < —W () — —/ Kgdvolg + x ().
4 2w Jg2

Proof As previously, fix a some residue charts (Uy, ..., U,) around p1, ..., p,, and assume
that p; has multiplicity m; > 1 forall 1 <i < n, and fix some 1 <i < m. By the discussion
before the proof of Theorem 5.1, we have

Qq,(v)—hm[ /(.fgu) dvol, —ZQ (v)}+2yo,(v)v(p,)
i=1 i=1

where Q! is defined by (5.6), and yo,; (v) only depends on the germ of v at p;. Now, applying
the proof of Theorem 6.6, since the previous limit is finished, we must have

0.uh) = 5 [ (Zudavol, = 0w + 4+ Ologe). (81
e

where y; (v) only depends on the germ of v at p;.
For the sake of simplicity, we will remove the indices i of the multiplicities m; (1 < i < n).
First notice that for all k # i, j, we have if p; has multiplicity my = m > 2 (form =1
this was already treated previously)

ul = Re <J;’ >+0(| )
ul =Re (szk)+0<| .
doul = O(|z|~"*D)

doul = 0|z~

As * = of|z| 72D (1 + O(z])), and Ky = O(|z|*™*D). Therefore, we have by the
harmonicity of Re (c z7"”) forall c € C

Aul = O(|z|~™"*D)
Aul = O(|z|~"+D),
so that (as Ay = e 2*A)
%ui = Agué — ZKgufS = 0(|Z|m+1)
Loul = 0(z|™).
Therefore, we have
uid, (Zul) = 00z x 032" = 0(1)

9
3, (ua) Lol = 0(1z1~ ™) x 02"y = 0(1).
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This implies that
uid, (Zul) =0, (ul) ZLoul = 01,

and

/&)Bg(pk) ué O (.f/@ué) — ( ) ofg”] A" = 0(e).

As the indices i and j do not play any role, we also have

/ ul 0, (k) = 0, (ul) Zouldon" = 0().
0Be(pr)

Now, by (8.1) and (5.6), we deduce that in a neighourhood of p;, we have

Lol = Lyu+ 0(121"™) = fov(p) + 0(IzI"*") = @+ 0(IzD)v(p) + O(lzI"*")
Therefore, we have

dypu] fgui —uld, (fgui)

&

1 Ci : _
— | —mRe (Z’m’> + Z Re (kc,ﬁy,zkzl> +vi.j | fov(pi)

12l 1—m=<k+1<0
+Re (ZL)+ ) Re(czz)+ loglzl | fov(p).  (82)
om k.l Vi, j 10g v JOU(Ppi). .
1—m<k+1<0
Notice that the quantity
Be(ul, ul)

is bounded as ¢ — 0. Therefore, cancellations occurs as we 1ntegrate (8.2). Furthermore,
there is a non-trivial contribution coming from (as K |<I>|2 0(z1%)

Yi.j = ,
/ L) (4 - Kg|c1>|2) v(p)dA" =8my; ju(pi) + O(e?). (8.3)
aB:(p) 12l

As B; (ué, ug) is bounded, we deduce that there exists u; ; € R (a priori different from y; ;
if the multiplicity m satisfies m > 2) such that

/ dou! Loul — uld, (zgug) dA" =8 jv(pi) + O(e). (8.4)
3B (pi)

Finally, recall if u’g = wé thatin our fixed chart near p; (if p; has multiplicitym; = m > 2)

wi () = |Z|mHZRe <y0)+| |- ’"ZRC< j m+k>

+ yz|z|'"+‘ + yalz/™ M log |z] + 0(|z|’"+2>.
Recalling that

(m+1)%

Zn=A=-2m+1)—5 BE

||2 v
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and introducing the notation
fgué =" 2w
Recalling that for all k£ > 1

J
|z Re (Z‘;) 1zl Re (2™, 121 121 log 1z] € Ker (L),

we deduce that
m—1
Lyl = 127D Y T Re (") + O(12I™.
j=1

Now, recall that ® admits an expansion of the following form (up to translation)
m—1 A’ )
®(z) =) Re (zmik> + 0(|z]).
k=0

Therefore, we have (as (Ao, A 1)=0)

. 1 A2 1 (Ar. Ar)
PP =2 —5—r + = Re (———~
2 I; |Z|2(m7k) 2 Z Zm_kZm_[

O<k<l<m—1

1 (Ak, Ap) 1—
+5 X R(zka+0W|m>
0<k<l
(k,D£(0,1)
As e = 92 |®|%, we find
1" =02 A 2 1 (Ar, A1)
20 - _ _ ’
€ =5 Z 2| 20n+1=0) + B Z (m —k)(m —)Re k11
k=0 0<k<l<m—1

+ O(lz|7 D)

2 2
| Aol | Ay |2
2| |2(m+l) I+ Z |A |2 |Z|

LR (- D\ ge (e AD i e
+ > (1 m)(l m)Re<|AO|2zz)+0(|z| )

O0<k<l<m—1

Therefore, we have (up to normalisation m2|1§()|2 =2)forsome o ; € Cand B € R

(m=1)/2
Pt e Y B+ Y Re (wd?)+ 002" |
k=1 O0<k<l<m—1
k+l<m
and
(m=1)/2
b= 1+ 3 AP+ Y Re (0T + 00"
k=1 O<k<l<m—1
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m—1
% (Z Re ()71/(Zm+k) + 0(|Z|2m+1)>

k=1
=Re@ 2™+ Y Re (@) + 00,

O<k<l<m—1
m+2<k+l

Furthermore, we have on 9 B¢ (p;) thanks to Theorem 4.1
wl = fro(pi) + 0(zI™),
where f; = |Cf>|2(1 4+ O(|z])). Therefore, we deduce that
ul 0, (Zouk) = 0, (ul) Lol = (frow (ZLeul) = 0 (1) Ll ) v(pj) + O(D)
As B, (ué, ué ) is bounded, we deduce as previously that there exists v; ; € R such that
/ ul 0, (Zul) = 0, (ul) Lok d™ =870, 50(p)) + O(@).
9B:(p))
Therefore, we deduce that (as we may have also ends of multiplicity 1, there is an additional
error in O (¢ log¢))
Be(ul, ul) = 87 i ju(pi) + 87vi jv(pj) + O(eloge).
Now assume that v(p;) = 0 and v(p;) # 0. Then
B (uy, ul) = 8mpi ju(p;) + O(eloge)
and by symmetry, in i and j, we deduce that
Bg(ui, ug) =8mujv(p;j)+ O(eloge) = 0.
Therefore, v(p;) = 0 implies that u; ; = 0, which shows that there exists kl.ly ;€ R such that
pij=x v(p)).
Furthermore, by symmetry of the argument, we deduce that there exists )L[z’ ; € Rsuch that
vi,j = A,g,jv(l?i)
Therefore, if A?ﬁ = )\il’ it )Liz’ jwe deduce that
Be(ul, ul) =873} v(pi)v(p;) + O(eloge). (8.5)

Likewise, we find by the previous argument and the proof of Theorem 6.6 that there exists
)L?’ ;€ R such that

Be(ue, ul) =47 Y 2l jv(p)v(p;) + O(eloge). (8.6)

J#
Combining (8.5) and (8.6), we deduce if A; ; = A?J. + )\j"j that
" 4 1 o
Do Belws,up)+ 5 3 Bewiul) =4m Y i ju(pv(p)) + Ofelog’e).

i=1 I<i#j<n I<i#j<n
(8.7)
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Therefore, (8.1) and (8.7) show that

Qc(u) = Qeue) +47 Y i jv(pi)v(p)) + O(elog’e)

l<i,j<n
i#]
and finally
0@ / (Lyuo — 2K gup) dvoly +4m Y A ju(pi)v(p;)
1<i,j<n
i#]

+ D i) + Y vi),

i=1 i=1

where yp ; is a linear function of v that only depends on the germ of v at p;, and y;(v) is a
quadratic function of v that only depends on the germ on v at p;. Since the second derivative

Qy is continuous with respect to the admissible variation Ve Var(ql) (see the explicit

expression in [28]), we deduce that
Y0 (V(pi) + 71 (v) = dmi jv* (pi)
for some A; ; € R depending only on ®. This concludes the proof of the theorem. O
We deduce as previously the following corollary.

Corollary 8.2 For all 1 < i < n, there exists 3:,',]' € R such that for all j # i, for all
0 < & < &g, on every complex chart around p; there exists c; j, ¢; j k1 € C

. Ci i ~
ui(2) =Re ( ”f) + Y Re(ayw?) + 5 loglzl + v (2),

" 1—-m<k+I1<0
where ¥, € C*°(B(0, 1)\ {0}) such that for alll € N
Vige = 0(z'™.

For ends of higher multiplicity m > 2, we do not know a priori if ’X,-,j = A;,j, where
Ai,j € Ris given by Theorem. Nevertheless, the proof of Theorem 7.1 implies the following
result.

Theorem 8.3 Let & : ¥\ {pl, ..., P} = R3 be a complete minimal smface with ﬁnzte
total curvature, and U = 1o ® : £ — R3 be a compact inversion 0fd> and let A(\IJ) =
{7} 1<i j<n € SYm,(R) be the matrix given by Theorem 8.1. Then we have

Indy (V) = Ind A (D).

Proof As in the proof of Theorem 7.1, we use the previous formula with vy = |<f>|’2uo
which satisfies vo(p) = v(p;) forall 1 <i < n.1f g = —voiig +2Re (a ® axif), where
« is the same (—1, 0)-form as the one associated to v, we compute

Qq,(vo) = 11m: / (L, uo) dvolg + Z/
b

w(uo,a)}.

Be(pi)
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Since u( is biharmonic, we have

Be(pi)

1 5 "1 .
— (ZLgup)“dvoly = E — ug 0y (Lyuo) — 0y (ug) Lyuod A
2 s, : 12 )

n

= 0L +0).

i=1

Now notice if ug = Y}, uf) admits the expansion that

uhy=1®Po(pi) + -+ Y 7 u(py)loglz] + O(1).
J#

Therefore, we will get an extra term

n
8t Y A jv(pv(p))
1<i,j=<n
i#]

from (8.8) and another one

n
8r Y A v(p)v(p))
1<i,j<n
i#]
from

Zw(uo,a).
i=1

Therefore, we deduce that

n
Q4 (Wo) =47 Y xiv*(p) +4m Y hiju(p)v(p))
i=1 1<i,j<n

i
+87 > A jv(pov(p) 48T Y A7 u(p)v(p))

1<i,j<n 1<i,j<n

i#] i#]

n
=d4m Y ravi(p) +4m Y R ju(pv(p;)
i=1 I=<i,j=<n
i#]
Now, let X(\_I}) € Sym,, (R) the matrix
0 M2 = A2 e A= Mo

7»1,2—)»1,2 0 oA —Aog
AWY) = ) . . .

’Xl,n — A 3:2,n —Aon e 0

(8.8)

(8.9)

(8.10)

(8.11)

By a standard approximation argument (see Theorem 5.1), there exists a sequence of smooth

admissible variations {Ug}eny C Var(W) N C%° (X, R3) such that

U — Yo in W22(Z,RY).

k—00
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In particular, by continuity of the second derivative, we have

0y (V) = 0y (Vo) = 4m 2)»1‘,1‘112(171') + 47 1 Z X ju(p)v(p)). (8.12)
1= =i,j=n

i#]

But since vy is smooth, we have for all k € N by Theorem 8.1

Lo ¢
0y (W) = 5/E(zguk,o)zdvolg +4m Y hiju(p)v(p)). (8.13)
i,j=1

Therefore, by (8.11), (8.12) and (8.13), we deduce that

1 5 "o

3 E(Xguk,o) dvolg —> 4 > Kiju(pov(p)). (8.14)
i, j=1
i#j

If Xflf/) = 0, there is nothing to prove. Otherwise, since Tr(A W) = 0 (the trace of A(¥) is
0), ¥ admits a negative eigenvalue, so there exists v such that by (8.14)

1 "
0< 5/ (Xguk,o)zdvolg —> 4r Z Aiju(piv(pj) <0,
> k—o00 i j=1
i#]
contradicting the non-negativity of the right-hand side for k large enough. Therefore, we
deduce that A(W) = 0, i.e. A;; = A; j forall 1 <1i,j < n, which concludes the proof of
the theorem. O

9 Morse index estimate for Willmore spheres in 5%

Iiecall that we have from [26] we have the formula (valid in 2’ (X)) for all weak immersion
® € £(X, R™) and for all normal variations (see also the proof of Theorem 10.5 for a general
formula valid for all variations)

dZ

o (Kgdvoly ),y =dIm <2<A;ﬁ) +4Re (3720 (3B @I0) @ fio ), 9i)

In particular, as (dff>, dw), = —Z(H, w), for a minimal surface (H = 0), we obtain

dZ
ﬁ (Kg’dvolg’)

=dIm (2<A;J) +4Re (g_2 ® (

=0

—dIm (2(A;J;—2Re (g_2®(171, 0) ®
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—dIm (2(A§ b — o (), W) — 0 (IVLJA;))
—d << L — o (i), *dw)—% * d(|Vl | ))

where 7 (w) is the Simon’s operator. Observe that the sign is different from the Jacobi
operator .Z, of the associated minimal surface, acting on normal sections of the pull-back

bundle ®*TR™ as
Ly = Ay + (W)

Specialising further to the codimension 1 case m = 3, as the minimal immersion that we
consider is orientable, it is also two-sided and the unit normal furnishes a global trivialisation
of the normal bundle so W = wi for some w € W22($?) and we get

d2

pre) (K(g dvolyg, )

o =d1m (2 (Agw+ 2K w) ow = (ldwl?) )

1
=d ((Agw +2Kgw) #dw — - d|dw|§,) :
and we recover the computation of [28]. We have the following generalisation of the afore-

cited result to S*.

Theorem 9.1 Let#\I/ : 82 — $* be a Willmore sphere, and n € N suchﬁthat W(l_I}) =4dnn
and assume that ® is conformally minimal in R*. Then we have Indy () < 2n.

Proof First, use some stereographic projection avoiding \TI(SZ) C S§* to assume that W :
2 — R*is a Willmore sphere. By Montiel’s classification, let o : 52\ {pt,..., pn} — R4
be the complete minimal surface T ;2 — R%is the i inversion, which we assume centred
at 0 € R* up to translation. Thanks to the argument of [28], for all normal variation v €
&5 (82, TR*), we have

D*W(W)(3,7) = /
S2\(p1seees Pa}

1= =12
{ElAgw—i—yf(w)l dvolg
—dIm (2<A;J; — (W), 3 — 9 (|VL@|§))},
where
W= I5@) = |0 —2(D, ).

Then at every end, we have an expansion (up to translation)

] i
() = Re (z) +0(:)

for some Ao € (C4\ {0}. Then (Ao, Ao) = 0 and we find that for some o; > 0
2
a;

1> = —L + 0(lz)).

|I2

Thanks to the Sobolev embedding W22(52) - C9(S?) and as W22(S?%) does not embed in
CL(§%) in general, we deduce that for all smooth ¥ € &y (82, TRY), the residue

/ m (215 — o), 00) — 5 (194 512))
DBe(p))
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only depend on «, & > 0 and ¥(p;), up to a negligible term as ¢ — O (it cannot depend on
higher derivatives of v at p ;j)- Furthermore, as we can assume v to be a normal variation, we
deduce that (A, ¥(p;)) = 0. In particular, we deduce that

/ Im (2(A 50— o/ (@), 0i0) — 0 (194 512))
0B:(pj)

= [5(pj) Im 28 BP0~ 0 (I4IBP2) + 0 (D)

0Be(pj)

=87 [U(p))I* + 0e(1)
by the same computation as in Theorem 6.2. The rest of the proof follows [28]. O

Here, we show as in [28] that there is a well-defined notion of residues at ends of embedded
minimal surfaces in arbitrary codimension.

Proposition 9.2 Let ¥ be a closed Riemann surface and P : \{pt,.-., pn} > R™ be
a complete minimal surface with embedded planar ends. Fix a covering (Uy, ..., Uy) of
{p1,..., pn} C C. Then the limit

&2 = 5 1 - 5
lim <——/ *d <4|<I>| — f|d|®||,)>
e—0 4 9B (pi) 2 8

is a positive real number independent depending only on (Uy, ..., U,) and ® and we denote
it Respj (%, U)).

Firoof As the ends are embedded and planar, there exists Ao e C™"\ {0}, Eo e C", and
Co € R" we can assume that

-

- Ao - 5 s
d(z) =2Re 7—|—Boz + Co + O(|z])

and we obtain

-

- Ao =
0P = -z + Bo + O(lz)),

and as ® is conformal, we have

. - (Ag A Ao, B 1
O=(8Zq>,BZ<I>)=(04O>—2(O 0)+0< )
z

which implies that
(Ao. Ag) = (Ao, Bo) = 0.

In particular, we obtain

- 2| A|? Ay, C . =z
1D () = ||Z|‘;| +4Re <<°Z°>> +2Re ((Ag, Bo>§) +0(z)).

Now, to simplify notations, write

o = Ao, B = (Ao, Bo), v = (Ao, Co), ©.1)
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which implies that

2
1B = % +4Re (g) +2 (ﬁ%) + 002D

‘We obtain

= 202 2
APR)* = (—— S b

7lzI2 z

. ) )
__ X (1—)/2§+/31—ﬂ+0(|2|)

1z 202 202

Therefore, we have

- 40 [ 1 y 1 Bz
3PP = — [ — —2Re (—f)—i-ZRe <77 —2Re
121"l |z]4 <|z|2 a?z a2z

_ 4ot (1 —2Re (%z) + 0(|z|3))

|z|6 o

We also compute

L 2142 Ao, Bo
% )¢ = 2400 _4pe (< = °>>+0

|z|4

2¢x B 5
= F (1—2Re (—2 >+0(|Z| ))

and we obtain finally by

> - > IZI B
|d| @73 = 4e~ (0| D|*|* = " (1+2R( )+O(|z| ))

x t‘lz (1 —2Re (%z) + 0(|z|3)>

8a2 Yy _ B
= <1 —2Re (;z) + 2Re (;f) + 0(|z|3)>

- E;z + 0(1)) dz

Qw‘m‘

ARl

2
_ 812 — 16Re <Z> + 16Re <ﬁ§> +0(z]).
|z] z Z

Therefore, we have

- - 20 z
4|<1>|2—5|d|q>|2|§=4<m+4R (g)—i—Z(ﬂ%)—i—O(lzl))

)

()

o)

(8“2 16Re (1> + 16Re (ﬂi) 10 (Izl))
1z| z z

4012
1212

+24Re (g) T+ 0(lz)).

Therefore, we obtain

- I - 4o dz dz
0 (4|¢|2 - 5|d|<1>|2|§) =-To— — 28y

1z]2 z z
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which implies that
2

- 1 -
Im 9 (4|<1>|2 _ f|d|d>|2|§,) — 87 + 0(e).
51(0.8) 2 &

Therefore, we obtain

2
- 1 -
lim —i/ wd (41312 = Z1d1DP22 ) ) = 40? > 0,
e—0 4 S](O,s) 2 8

and concludes the proof of the Proposition. O

Remark 9.3 Although this quantity is independent on the coordinate, it depends on the cov-
ering {Uy, ..., Uy} of {p1,..., pp} C 2.
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10 Appendix
10.1 Estimates for some weighted elliptic operators

We fix an integer m > 2. Let w : R" — R, a measurable function and for all kK € N and
1 < p < oo define the weighted Sobolev space

WhP(@®M) = LP(®R™) N [u el < oo]

where

k
lygr = [ [ ez + 30 [ wiarorsnagn
@ Rm - Rm
j=0

By the classical Gagliardo-Nirenberg inequality, we have a continuous injection Wf,’ PR™) —
wkr@®m).

Lemma 10.1 Let§ > 0 be a fixed real number. Forallu € W22(R" \Bs(0)) such that either
u=0ord,u=00ndBs(0), forall 1 <a < oo we have

1
Vu 2 2

x|

Au
leotfl

u
|x|o¢+l

|x|°‘+1

<
L2(R™\B5(0)) L2(R™\B;5(0)) L2(R™\ B (0)) L2(R™\B5(0))

(10.1)
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provided that the integrals on the right-hand side of (10.1) are finite. In particular, if  :
R" — R is such that w(x) = |x| ™', we have a continuous injection

Woo (R™\B;(0)) N L2 (R™\B5(0)) < W2*R™\Bs(0)), (10.2)
where Wy g (R"™\B(0,8)) = W>2(R"™\B5(0)) N {u : udyu =0 on 3B(0,5)}.

Proof We first assume that u € W22 N C®(R™\ Bs(0)) is such that either u = 0 or d,u = 0
on d,u = 0 on dBs(0) (so that u d,u = 0 on dBs(0)). Then we have
div(uVulx|72*) = |[Vul?|x| 72 + uAulx| 7 — 2au(Vu - x)|x|2@FD (10.3)

Therefore, fixing 0 < 01,6, < 1,1 < p < oo, we have by the Cauchy-Schwarz inequality
and since u d,u = 0 on 9 Bs(0) the identity

|Vu|2 Vu-x uAu
— 2 dx =2« - MT_mdx_ B ﬁdx
R\B3(0) X R™\By(©0) X R"\B3(0) ¥
3 1
[ ) (o 758
= 2o — _ _dx N A
R\ B (0) |x|2(2a+1)0| R\ By (0) |x|2(2a+1)(1—01)

1 1
(Lo o) (Lo mems)
————dx —————dx
R\E;(0) x40 R\ (0) x| (1=62)

As we want to recover the same exponent for |x| in the denominator of u? (and |Vu|?) on
both sides, we choose 61 such that

Qo+ 1)(1—-060) =«

_ a+1
"= e +1

and 6, such that
206 = Qo + 1)6,

SO

I
0 =21 o1
2o

for all @ > 1. Finally, we get if

1 1
X:(/ |VL;|2dx>2, azZa(/ Zszx)z,
R\ B3 (0) X% Rm\Bj(0) |X|2@+D
1 1
optors) (L)
R\EB;(0) |x[2@+D R\E;(0) 1x|2@D

X2 <aX+b

Therefore,

X < (a+ a2+4b>§a+ﬁ,

| =
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or

1
2

Au |2

|x\"_1

Vu
x|

u
|x|°‘+1

u

=2 |x|”’+1

L2(R™\B;(0))

L2(R™\B;(0)) L2(R™\Bs(0)) L2(R™\Bs(0))

Notice that this inequality cannot be improved by a scaling argument because of the singular
weights. The general inequality for u € W?22(R2\B;(0)) such that either u = 0 or d,u = 0
on d Bs(0) follows by standard regularisation. This concludes the proof of the lemma. O

Lemma 10.2 Let § > 0 be a fixed real number, and define for all for all m > 1 the second
order elliptic differential operator

(m +1)*

Ln=A=2m+1)— BE

|P v

Letu € WQ'Z(RZ\E,;(O)) be such that u = d,u = 0 on dBs(0) and assume that £,,u €
L2(R2). Then we have the identities

2
/ B (Emu)ldx:/ B (Au—2(m+l) Vu+(m+l) 2) dx
R2\Bj5(0) R2\B5(0) |x|? |x]

2
:/ (Au+(m+1)(m—1)iz) dx
R2\B;(0) |x]

2
+4m+ D(m —1) _ #) dx.  (10.4)

R2\B;(0) <|X|2

In particular, we have for m = 1

4 \2
f (.,%u)2 dx = f (Au — 4% -Vu + —zu) dx
R2\B;(0) R2\B;(0) |x] |x]

= / (Au)2 dx.
R2\B;(0)

Furthermore, if m > 1, then

u
< — —— |IA —

%2 L2 @2\B5 0)

1
T Zrleemo -

Ifm >3,

” Vu-x
|x|2

1 1
< —0—— lAulli 250y + 57— ILnttlli 2z
L2@®7B )  2m+1) LERAB; ) T oy 1) "I RAB (0)

while for1 <m <3

Vu - x
|x|?

= AUl 2p2\F 0
L2@®7\By0)  (m+ Dm —1) (R2\B3(0))

T T D=1 Emleson -
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Proof Step 1: Equalities. Observe that for all x € R?\ {0}, we have
1 4o

|x|2"‘ - |x|2a+2

and assuming that u € wIn C“(RZ\ES (0)) without loss of generality, we have since

Au? = 2u Au +2|Vu|?

f u? J / 2 L1 / Au?
———dx = u-—A——dx = —
R2\By(0) |X124+? R2\By0) 4o |x|* R2\Bj(0) 4o?| x|

ulAu + |Vul?
= _ T 49X
R2\Bs(0) 20~ |x]

Furthermore, recall that by (10.3)

uAu + |Vul? u (VYu - x
[ i, [ e,
R2\Bj(0) | |2 R2\Bj(0) |2

Therefore, we find

u? 1 u (Vu - x))
a2 dx =~ ara dx
R2\Bs(0) 1XI @ Jr2\Bs0) x|

1

1 u? 2 Vu - x)?
== (/ _ 2012 dx) (/ _ ( 2a+i dx
a \Jr2\B;0) |x] R2\Bs(0) |XI

which implies that

dx

)g

u - 1| Vu-x
e @B, o) @ T 2@, 0
Now, if @ = 1, we find equivalently
u? u(Vu - x)
R2\Bs(0) 1X] R2\Bs0) x|
Vu -
[ S
R2\B5(0) 1X1* \|x] x|
Now, compute for all u € CZ° (R?%)
Al Loawt2v (L) vidun (-
— | = —Au — |- Vu+u —
|x|? |x|? |x|? |x|?
1 A4 X V4 4
=— —4— - — | u.
|x|? |x|2 |x|2
We also have
X1 1 2x} 1,
8xl Waxlu = W — W 3X1u + Waxlu
52 X1 9 6x1 n 8xf 9 w42 1 2x12 2w+ X1 e
—ogu ) =——F+ —¢ u — = — u+ —0,u
2 e[+ x(® ) e[2 x4 ) 2
X1 2x1X2 X1 .o
oo () =~

(10.5)
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2
2 X1 _ 2x] 8x1x5 B dx1x2 o X1 2
o (o) = <_ FE A PR PR

Therefore, we find

X1 8xi | 8xi (xf +13) X1 2 2 2 »
A(Waxlu> = <_|x|4+ |x|6 8x1u+W8xl (8x|u+8x2u)+W8xlu

2
x X1X7
1 42 2
—4 (|x|48xlu + 7|x|4 8x1,x2”)

2 2
e Aut —d2u—4 (xlaz w2252 u) :

TP w2 o T B

and by symmetry this implies that

X X 2 x% 2 2x1x2 5 x% 2
A(W‘“‘) B w““+w“‘4(|x|4%“+ e et ¥ et

X 2 x \! X
=" .VAu+—Au—4 V- )
2T <|x|2) ! <|x|2>

Therefore, we deduce that

4 1 !
A(,fm):Az—z(erl)%-VAM—LJg)AquS(erl) (%) .Vzu.(iz>
|x| |x] |x| |x|
1)2 4
(m|+|2)< _4|)C|2'V”+W”)
X X X
D2 —4 1
:A2—2(m+1)$.VAu+(m+ )I lz(m“L ) Au
X X
X d X
8 H(—)  Vu (=
e )(|x|2> ! <|x|2>
4 1?2
—4(m+1)2$-w+%
X X
Now, we have
X v 1 2 n X v
— - —u )| =——u+—-Vu,
|x|? |x|? |x |4 |x|4
and
9 X v 1 2x12 3 2x1x28 n X va
X —-Vu|=x — = — U— ——F0p U+ —F- u
BN B AT A e T
2 2 2 2
=x1(—x1+x2) u_2x]x28 +x1 2u+x1x282 ;
R T B
2 2 2 2
X xz(xl—xz) 2x1x5 X{ .2 X1X2 .o
X20x, <|x|2 .Vu) = s Op, Ut — P axlu—l—Waxlu—}— e 9y,

t
X X X X X
V(= Vu)=—"2 vu+ (=) V- ,
|x|? (I)CI2 ) |x |4 (IXIZ) (IX|2>
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which implies that

2V (L) = s VAU -2 +1)( )t R
e |x| Lo w?2) ”'(|x|2>
+{(m+1)2+2(m+1)}W~Vu
_2(m+1)2
x|

Therefore,

y (m+ 1)2
Ly Lmu = (A +2(m + 1)| |2 VvV + W) (ZLnu)

D2 —4 1
:Azu_z(m+1|)f|2_ AM_i_(m—i—)||2(m+)
X X
t
X X
8 =)  Viu- (=
e )<|x|2) ! <|x|2>
4 )2
—4(m + D> * .vu_i_wu
|x|? x4
t
+20m + D5 VAU — 40m + 1) (—) V%(%)
x| x| x|

+{M+M}ﬁ-w

dm+1>  (m+1)? 3 x (m + 1)*
_ o u+ B Au—2(m + 1 NE .Vu+7|x|4 u
—_ t
+MAM—4(W[+1)(M— 1 <L> V2. (i)
x| |x[2 |x[2
(m + 1)2(m — 1)2
|x[*

=A%

+

)

and we indeed recover £*. % = AZ. We deduce that for all u € W22 N C®(R2\B;(0))
such that u = d,u = 0 on 3 Bs5(0),

2
/ (Au —2(m + 1)i2 -Vu + 72u> dx = / (<,§fmu)2 dx
R2\B;(0) x| x| R2\B;(0)

:/ B (uA2u+2(m+l)(m—l) S A
R2\ By (0) x|

X ! X

2
DD N [ i (o~ e Z d
x| 9B5(0)

2
=/ ((Au)2+2(m+1)(m— DAu — + (m + D*(m — 1)? 4>dx
R2\Bj(0) |x | x|

t
—4m+ DH(m — 1) " (%) V2. < 2)dx
R2\B; (0) [x] |x]
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2
:/ B (Au+(m+1)(m—1) 2) dx
R2\ By (0) |x]

X ! 2 X
—dm+ D(m —1) ul—5)  -Vu-(—5)dx (10.6)
R2\B;0)  \[X] |x|

Now, observe that by (5.42)

t
/ u <L2> V2 - ( 2)dx
R2\Bj(0) |x] x|
X1 X1 X
= —u Oy t) + —=0y, (0 u)
ANM®M2<MVM(M) s (Pat)
X2 X1 X2
+ WM (Waxl (BXZM) + WBXZ (8X]M)> dx
X1 X p%) X
= —u——- - V(O u)+ —u—-—= -V (0 u)dx
@W@QW|W “ x> |x]? (81)
- (%(%.v)aw 2(%%,)%“)”
R2\Bs(0) \|x[* \|x] lx]= \ |x]
+/ — -Vudx
R2\B;(0) |x|

- U By (B, 1) + 210 9y (9 u)>d;f1
Am@<uP ! ||3 "

Vu-x\?
= — B — dx + B —7 -Vudx <0 (10.7)
R2\Bs(0) \ |X] R2\Bs(0) le

where we used

o). X _ L (x 29 2\ ox
EE A A el

The last inequality come from the following observations (see the computations before (10.5)
for an alternative derivation)

X u X
/ B uj-Vudx:/ B —2div< U )dx
R2\Bs(0) || R2\Bs(0) x| | x|
/ ((x wu)ut¥ () )
=— — u c—u” | dx
R2\B50) \\ |x[* IxI? /) |x|?
u2
= —/ -Vudx +2f —4dx
R2\B;(0) |X |4 R2\Bs(0) 1XI

so that

M2 X
/ Xdx =/ = Vuds, (10.8)
R2\B5(0) 1X] R2\Bs(0) ||

Therefore, thanks to (10.8), we rewrite (10.7) as

Vi -x\? X
/ ( 5 ) dx —/ U—z - Vudx
R2\Bs0) \ || R2\Bs(0) X
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Vi -x\? Vu-x u u?
= — 2 -2 B 2 + T4 dx
R2\Bj(0) | x| |x| x| x|
2
X u
R2\B;50) \ || |x]

Finally, we deduce by (10.6), (10.7) and (10.9) that

1 2
/ (Lnu)* dx = / <Au —2m+ D) - Vu+ wo dx
R?\B;(0) R?\Bj(0) x| |x]

2
=/ B (Au—i—(m—{—l)(m—l) 2) dx
R2\B;(0) |x]

2
F4(m+ D(m —1) —#) dx. (10.10)

(
RZ\B{;(O) |x|
Slep 2.' blequalilie?. N()W we ]la\/e t]lallkS to (108)

2

1 2
/ ( 2m+ 17— - Vu+ w»& dx
R2\B;(0) |x | |x]

Vu-x\?
:/ 4(m—|—1)2< ”2x> dx
R2\ By (0) x|

Vi -
+ / (m + D* —4dx —4m+ 1) ASLEL P
R2\Bs(0) x| R2\Bs0) x|
. 2 2
— 4(m + 1) %dxﬂ(mjt D% — 4(m + 1)) Zdx
R2\Bs0) x| R2\Bs(0) x|
(10.11)
Ll2

> ((m 4 D* +40m + 1)> — 4(m + 1)3)f R
R2\Bs(0) x|
2
=(m+ 1)*(m— 1)2/ —
R2\B;(0) x|
so form > 1, we find

u

=< [ Aully 2 g2\ 5,
L2R\Bs(0)  (m+Dm—=1) LARAE0)

[x[2
—_—||Z 3 .
T - rheeEo

Therefore, if m > 3, we have (m + 1)* —4(m + 1)3 = (m + 1)>(m — 3) > 0, so (10.11)
implies that

Vi - x)2 1 D2 \?
/ T e < 2/ (2(m+1) . Vu—l—(m;z)u> dx
R2\Bs©)  |X] 4(m + 1)* Jr2\B;(0) x| x|

1
C 4m+1)2 R2\B;(0)

(Lp — N u)dx
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which implies by the triangle inequality that

Vu - x 1 1
== <——|A = — = = o -
H K lie@ag,0) ~ 20m+ D 18uhg,on 56, 11y 1Hmhee g0
If 1 <m <3, then m + 1)* —4@m + 1)3 <0, so we have by (10.5) and (10.5)
2 5 Vu - x)2
(L —MNu)dx =4m+1) ———dx
R2\B5(0) R2\Bs0)  |X]
2
F(m+D—dm+DdH | —
R2\Bs(0) 1XI
Vu - x)?
>(m+ D2+ m+ D —4m+ 1% [ (%dx
R2\Bs0)  |1XI
Vu - x)?
= (m + 1)2(m — 1) %dx,
R2\Bs0)  |1XI
so that
| < I Aul
It < |Au _
K D@z, ~ n+Dim—1) L2 @®2\Bs(0)
+ m+Dm—1 ||fmu||L2(R2\§5(0)) .
This completes the proof of the theorem. O

10.2 Second variation for vectorial variations

First, we prove a lemma giving the expression of the normal Jacobi operator of a smooth
immersion acting on general variations.

Lemma10.3 Let ® : & — R3 be a smooth immersion, and let fgl = Aj; + /() be the
Jacobi operator of &D, where < is the Simons operator. For all v € C*®(Z, R?), making the
decomposition v = v ﬁ&) + 2Re (Ot ® 8@) where o = f(z)diZ is a (—1,0) form, we have

2= (fgv +4Re (@® E)H))ﬁ,

where £y = A + |A|? and A is the second fundamental form.

Proof Taking a complex chart, we recall that

Since 317 = 0, we immediately get

Ay Wity = (Agv)ii  and  /(vii) = (2H® +2|holfyp) vii = |A[*vii.
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Now, we have

- - .1 I
Vo (2 Re (ozazd>>) = aVi0,® + @V 0:0 = Sa e H + Saho

R 1 I .1 = 1.-I=
1wl 2A 21 2hq L — —
vi,zv&z(zRe (ozBZ@))ZE(BZae +ads(e™) H + Ja e ot + Soah + 530 ho
Al(zR (aé —2Re (g1 ®d 7 La
2 e (ao; =2Re (g7 ®I(g®a)H+a®0~H

+e ' @da@ho+g ! ®a®5lﬁo). (10.12)

>

Since @ is conformal, we have (Bz&), Bzd;) = (B?ECD, 3153) = 0 and we deduce that
<ach>, , (2Re (aazé)» — o.@0.d) = %82)‘81&
<25&>, 9. (2Re («0.))
Therefore, we deduce that
o (5 —vit) = —2Re (g*l ®3(g@a)H+g ! ®da ®fz0).
Finally, we get
L@ —vii) = 2Re (a IH+g ' ®a ®5LE0) — 4Re (a ® 0H)

where we have used the Codazzi identity 5LEO =g® 91 H. We deduce that

L0 = (Agv+]APv+4Re (0 ® IH)) 7i = (Zv +4Re (@ ® IH)) 7.
In particular, if ® has constant mean curvature, the tangential part of v belongs to the Kernel

of 2. o

Proposition 10.4 Let U : X — R3 be a smooth immersion. If\flt = U + 1, we have

d2
g2 (th dVOISr)

_ 1= - 1= 1 -2
— —dIm (2(Agw—sz%(w),8 @) — 3|Vl

|t=0
+8572® (acB ®5w) ® (Zo ®5LJ))> .

Proof Firstrecall that by [28], we hgve foz allt € (—e¢, €) (where ¢ > 0Ois a fixed real number

small enough so that the variation ®, = ® + tw + o(¢) is an immersion for ¢ € (—¢, ¢))

% (Kg,dvolg,) =dIm (

¥(4<ﬁ(2 &), Viindz) — 4., 2.) VﬁDdz))).

In codimension 1, computations simplify significantly, and we have

d
(Kg dvolg,) = dIm <

- (4(0% 1. i) (0, vz — 402y, i) (00, vz )

1
det(g)

Recalling that

d >
(*v det(gz)> = (d Dy, dw)g,/det(g),

dt
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we deduce that

d2

773 (Kgdvoly,)

|t=0
—dIm ( — (dD, dib)ge (4<ﬁ(zz, &), Viudz) — 4(1@., &), Vg;ﬁ;dz))

+e*“(4<32 D, i) (9.0, i) — 48240, i) (910, 1) — 4(82 D, vdim(ayaj,ﬁ)
: 1

4

dt

— 4(02D, i) (3D, Vy?))dz)
= dTm <2<di>, din)eg™' ® (710 ®5ﬂz)) + e~ (1) — (1) — (II) — (IV)))
First, we compute
P At =2 (VEVE + VEVE) b =2 (Vi Vab + VEVe ) — 2V Vb - 294V i
= & (Ag)" —2VEVId —2VEVia
Now, we have

T Ay 2 2z 2y = =z
s w =2e (0w, ez)e; +2e (0w, e;)ez

VEV iD= 20,0, 81 8 = ¢ 7' @ (00 & i) @ g
VEVLiD = 2e" (o0, &)1z &) = 7' @ (00 @ i) @ o, (10.13)

Therefore, we have
ALib = (Agib)" — 4Re (g*z ® (5& ®5J)) ® fzo) ,
and

. 1 - _ 2 .= - -
(1) = (2. ) (0.3, 7) = 7e™(AFiD +4Re (g 29 (acp@aw) ®h0),aiw>.

Now, we have by the first line of (10.13)

() = (324, i) (31, 1) = (V3 Vb, Vi) = ( j %ﬁ) V%J» + (V2 V0, VEw)
= (ViViu, Vi) +¢7' @ (
=010t d 2 — (VD ViVEiD) + ¢! @ (5&>® a@) ® (ﬁo®5lﬁj) . (10.15)

Notice now that by (10.13), we have

Vi Vi = V3 Ve — Vi Vit = ViV w — Vi Viw
= ViViw+ ViViw - Vivie
=Vivin gl ® ((a& ® aﬁ;) ® o — (5&: ®5a)) ® fzo) . (10.16)
Therefore, we have

{ ja} vgfvgizﬁ))
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1

_ <1 (vgvfE + Vzi?vi) b+ -g7'® ((3@@3@) ® ho — (Eé ®5@) ® Eo) , V§;®>

2 2
- %eZ)‘(A:,‘J),BJ‘ﬂ))—I—%g (aq>®aw) (®ai )
e (38 670) ® (o oti). (10.17)

Finally, we get by (10.15), (10.16) and (10.17)
Lo Lo i 1 o> (3% & 97 7 ooals
(D) = — e (A, o) + 8]0 b + g ®<8d>®8w)®(h0®8 w)

1 o = > . R 1 _ > . = . R
+ 587" (aq>®aw) ® <h0®8Lw) -5¢7'® (a<b®aw) ® (ho®8Lw).

Since |7;|* = 1, we have (Vdiflz, 7;) = 0, which implies that
(vdiﬁt)‘ | = —2¢7 i, 0zib)E: — 2 i, 0.10)
1 t=
Therefore, we have as (¢,,é.) = 0, |¢,]2 = % , and (8%&))—r =0
(1) = (32, Vg ) (3, ) = (Vz.8;, —2e M (30, ii)e, — 2e~2* (3w, i) ez) (37, )
= —2<a§cf>, a%i»( L, Vi) = —e 20, (e7) 191 W] = €0, (e 7M1t W]
(10.19)

Since
8|8La’)|2 +62)"31(672)‘)|8l17)|2 — 62)»82 (672A|8LJ)|2) zkalal |
we deduce by (10.18), (10.19) and (10.20) that

(I) + (1) + (IV) = i”m L0t B) + Moot

-1 (2 lz)) _ (a&> ®5w)) ® (ho®7 i)
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This implies that
(D — D — ) — (IV)
1 R e Ll - .
= S (A +4Re (g—2 ® aq>®aw) ®ho), o)
—ePolptil+ g7 @ (19 090) - (0 &00)) @ (@7 )
and

4% (1) — (I1) — (1) — (IV))

= 2(ALi +4Re (g*2 ® (a& &3 ) ®Zo) Loty — 49]9 )
+457 @ ((03000) - (30&00)) @ (h@d ).
Since (d®, dib), = 4Re (g—‘ ® (aé ®3ib ) we deduce that
2db, dib)g g7 @ (o @3 b)) +4g7 @ (00 90) ~ (3 & 0i)) @ (h @D i)
=4¢720 (90 &30 + @00 ® (h D)
+4g2 e ((00090) - (30000)) @ (&7 )
=8¢0 (00&00) @ (h&d ).

Finally, we deduce that
2

o (Kydvoly,),_ = d1m ( i+ 4Re (372 @ (30 &) @ho) , 04 iD) — 40]0% b2

+8572 0 (6600) @ (o ®5ﬂz}))

=dIm (2(A§ﬁ; — o/ (W), 0 w) — 9|V [}

+8572 0 (10050 © (lo o7 i) )

where < is the Simons operator. O
We now recall Theorem 3.3. Here % is the conformal Willmore energy, defined by
W (d) = /E (|1?1|2 - Kg) dvol,.

Theorem 10.5 Let ¥ : ¥ — R3 be a branched Willmore sphere, and assume that U is

the inversion of a complete minimal surface ® : S\ {p1, ..., pp} — R3 with finite total
curvature, and let v be an admissible variation. Make the decomposition v = —vig +

2Re (oz ® 8(13) Ifu = |&>|2v, we have

N 1 _
D> (V) (¥, a):/ <E($gu)2dvolg—d1m((Agu+2Kgu+4Re (7! ® ho®da)) (2 0u+ho®a)
X

—020u+ho®al; +2¢ ' @I @D (2 ®ho®du— K, g @)
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Y I2>
= o
N

—8¢ ' @ho ®5(|&>\2<*,ﬁ@)v2 +2Re (a ® Blog@l) |cf>|2u)

+4(D.7ig) g7 ® ho ®3<|5>|2v2 +

+4K, ((ci,ﬁé)u +2Re (cx ® dlog |<i>|)) g ®&)> - /E (%(iﬂgu)zdvolg - dw(u,(x)) ,
(10.21)

where g = @*gRL and £y = Ay — 2K, is the Jacobi operator of ®.

. . .. 2 (= - .
Proof Now, if we consider a variation such that dd? (dD,) = up # 0, we have since
[t=0

H=0 by the previous Proposition 10.4

d? a1 .
o7 (Kgdvolg),_o =dIm (Z(A:;,Qi(u), oty — 3|Vl
484720 (08 001) o (1037 )

+dIm ( (<H<Ez, &), Vibiiy dz) — MI(@., &.), Vitiia) dz))

1
+/det(g)
— dIm (2(A§“ — o (@), 0y — 0|Vl

+8¢7°® (8% ®5ﬁ) ® (iio ®5lﬁ) —2¢7'® (ﬁo ®5l122)) . (10.22)

: ¥ — R3, and we consider a variation ¥ + 7, we have

- 7, U 419 B D +1]9%0
W2 (WP 4200, 0) + 232 1+ 20(D, B) + 12 |B|2[9)?
— b1 (|cf>|25 —2(®,5)®) + 12 (—|&>|2|6|2&>

Therefore, we have
. d - = 5l > L 2
i = (P00 = 1PV - 2(P, 1) P

d2
Uy = —
dr?

Now, if for some function v : ¥ — R, a (—1,0)-forma : ¥ — C, we have

(é,) — 21BP[512® — 4(®, B) (|&>|2* —2(®, 5)&) . (10.23)
=0

b= —viig +2Re («@0¥).
By Lemma 10.7, we deduce that
i = |90 — 2(d, 1) D
= —|®2viig + 2| Re (cxaz\_fl) —2(®, —viig + 2Re (d, V))®

-

= 13 <ﬁ@ — 2D, i) — 2) 1+ 2(3%Re (a&Z\TJ) — 4(®, Re (2d, ¥))d

| @]
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= |®|%viig +2Re ((x ® aé) ,

where we have use

.- .9, (3.0, D) (3., @)
(@,0,9) = (P, =— — 2= — @)= ——=
|| | D] ||
R X 3,®, D) - 3,®, D) - -
[D%0. W — 2(P, 9. ¥)P = |D)? [ = —2<Zq >q> +2<zq ><I>:32d>
| |+ |

Finally, we deduce that
i = (19Pv)iig +2Re (¢ @ 9%) = uiig +2Re (« ®0®),

where u = |<f> |2v. Notice that we have

- 9.® (3,0, P) - 3, D[
00> == 0. D) g _ 10:21
| ol |
Therefore, we deduce that
97 = v + 219,V |a) = 5 ® laf’.
This implies that
121712 & 12,2 & @ 2 2 @
P01 D = [D*v? P + g5 - = (u” + g5 ® la?) B (10.24)
A direct computation shows that
Big) = (Br—iig + 2buig) o) = (3.7
( ) ( , —ng + ( vnq>)|a>)|2>—( 7”@);

- - (9P, D) - (3., D)
(@, v) = —(P,ny)v—2Re [a——=—— | = —(D,ng)v —2Re ([a—=—+—] .
P | D
Therefore, we have

—(®, ) (|&>\26 — 2, T;)i) - (v(&) &) +2Re (a(azi)>>) (uﬁ5> 4 2Re (aSZ&)>).

(10.25)

»ed

Therefore, we have by (10.23), (10.24) and (10.25)

>

iip = —2 (u? +g®|a|) ((@,ﬁa))v
(3. D, D) R -
+2Re a &) 4un5)+8Re (a®8d>))
u -+ g |
2+ g ® |af?) |®|2

@ Springer



On the Morse index of branched Willmore spheres in 3-space Page 910f97 126

+((®.7ig)v+2Re (¢ @ dlog|B])) (4uiig +8Re (¢ @0®)).  (10.26)

: )

+47 (|<1>| (B, 7ig)v? + 2Re (a®alog|&>|) v)r_ii)
_|._

(i@

By (10.12), since H = 0, we get

i, =23 <|d>|2v2

(a ® alog|&>|)) 20 @ hy.

Finally, we have

1. - L —( = 1
u2> =4, 7iz) g ‘®h0®a(|¢|2u2+ P (x2>
g ' ®ho ®5<|&>|2(5>,ﬁ&>)v2 +2Re (a®810g|&>|) v)
+4 (<&>, ig)v+ 2Re (a 3 log |d>|)) lhol% pg ® @
=4, 7ig) g @y ® ( G el |)
8¢ ' @ho®3 (|<1>| (B, 7ig)v? + 2Re (a ®8log|d>|) 1B 20 )
+4K, ((B.7ig)o +2Re (« @dlog|B])) g @@ (10.27)
since |hgl3, p = &2 ® |ho|?. Finally, if
u=ung+2Re (a®&>),
we have by the proof of Lemma 10.3 since H = 0and by the Codazzi identity
Ay (i —uii) =2Re (7' ® ho ® dar) 7i
(i —un)=—2Re (7' ®ho ® dax)
which implies that
L = Agii + o (il) = (Lou) it = (Ag — 2K qu) ii
Agii — o/ (if) = (Agu + 2K gu 4+ 4Re (g7 ® ho ® dar)) 7. (10.28)
By the proof of Lemma 10.3, we get
1= 1 =
0t = (du+ Sho®a ) i (10.29)
Therefore, we have by (10.28) and (10.29)

2Agii — o/ (i), 0 i) = (Agu +2Kgu +4Re (g7 ® ho ® 0er)) (20u + ho @ ) .
(10.30)

Now, we directly have by (10.29)
IV iily =48]0 il; = 912 9u + ho @ af. (10.31)
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Since H = 0, we have
I - - 1 e -
(0:8. 07ii) = (38, 0z (2Re (@d: D) )) = 37 3¢ +@(0., 929)

Now, we get by (10.29)
87 @ (00 &) ® (& D i)
=2¢'®3g®a) ®2du) (28 ®ho® du+ |holjy pg @ @)
=287'®1IERD®(2g ' ®hy®Iu— K, g 7). (10.32)
Finally, we have by (10.22), (10.27), (10.30), (10.31) and (10.32),
d2

e (Kgdvolg,),_, =dIm ( (Agu+2Kqu+4Re (g7 @ ho ® dar)) (20u + ho ® @)

—0120u+hy ®alj
+257'®31@@0)® (2 ' ®hy®du— K, ®7)
.| (12,2 1 2
+4(P,ng)g ®ho®| [PV +@g®lal
~1 S(1H12(& 7102 1) 112
—8g ®ho®8(|d>| (®, 7ig)v* + 2Re (a®310g|q>|)|c1>| v)
+4K, ((C_IS,Fia))v—f-ZRe (cx®810g|<i>|))g®&>

Using Lemma 10.3, we deduce

d- 1, 1/ .. N 1 1
Ty =32 = (agii + o)) = 5 (Beu —2Keu) = 5 Zoa,

and this concludes the proof of the theorem by the pointwise conformal invariance of (H2 —
Kg)dvolg. O

10.3 Formulae for inversions of (minimal) surfaces

Lemma10.6 Let ® : S\ {p1, ..., pu} = R3 be a complete minimal surface, and let (g, »)
be its Weierstrass data. Then the Weingarten holomorphic quadratic differential is given by

hy=—-20g Q@ w.
Proof Write locally w = f(z)dz. Then we have by [11]

"_1 02 2
3z<1>—2(1 g i(l1+g%),28)f(2)

N 1
320 = g'(2)(—28(2), 2 g(2),2) f(2) + S = & (i +8H). 201 (2

. <2Re (e) 2Im(g) —1+ |g<z)|2)
T+ g2 1418?1481
ho = 2(82®, ii)dz? = 2% (—g(z)(g(z) +8@)
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+2()(g(x) — g@) — 1 + |g(z)|2) F(2)d?
2¢'(2) f(2)dz> = —20g ® w,

and this concludes the proof of the lemma.

O
Lemma10.7 Let ® : ¥ — R3 be an immersion, and define U E\Cﬁ_l({O}) - R3 by
SO
“I’ = = _.
|2

Ifﬁ&) . Y — S2 js the normal unit of &D, then the normal unit ﬁ@
is given by

_ i 2 &>5
ng =—|ng—2ng, ®)—=—|.
v ) ) e

Proof Recall the identities valid for all (a, b, ¢) € R3

CE\PL({0)) > S2of U

axa=0
ax (bxc)={a,c)b—{a,b)c.

(10.33)
We also recall the formula

- 8x\fl><8yli/
ng =—=——="

10, W x 9,

To simplify computations, assume that we are given a conformal parametrisation of ®, and
let A be the conformal parameter of ® given by

e =10, x 8,®| = 9, P|

2= 19,02
Then we have

- 9D (3,0, P) -
2.0 = % _2<z_) )q),
|2 |®*
which implies that
> 3. P2 9., @) - - 3. P, )2 - 9.2 1 e
|@wﬁz|i| —4ReA&%—lwﬂx® +4ﬁiﬁ—lL@P:|i| -
|4 |6 |3 D+ 2|4
Therefore, the conformal parameter p of T is given by
2
=
ol
Now, we compute
. D (9:D, D) - 9® (3,0, D) -
ez“n@= f2—2(xa >d> X i2—2<yq4)d>
[P [P [P [P
WD x3,d _(3,0,d) /. - - D, D) /= R
_ %0 x0® 61 )(m®x¢)—ﬁlf—l(¢x%¢)
|+ ||© |6
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R HD, D) /- - 9, D, ) /- :
= Mg — 2% (08 x &) - 2% (3x0,8).

Trivially, we have

D = e (3, D, D)3, D + e (DD, D), D + (B, 7

Since ﬁ@ = e—”axcﬁ X ByCB, we deduce by (10.33) that

S
=
I
S
=
[\
o
)
>

P 2(—2)\**2 209 & BH\2 A RVANE PN
—iiz — = (e72(5,®, ) + e (5, D, D) + (D, 7iz) )n~+2<q>,n~> -
°oier : ) o e

g2 7g) 2

=—ng + ( anq>)|&)|2
since | = e (3, D, B)2 + e 24 (3, ®, D)2 + (D, 7ig)>. O

- 3 . . - o
Lemma 10.8 Let @ : X\ {p1, ..., pu} = R’ be a smooth immersion and V = |&>|2 DI S
R" be its inversion. Then we have
Hy = —|®[*Hg —2(iig, @)
/I — L 0
vojepe
In particular, zf&D is minimal (Hg = 0), we have Hy, = —2(55,, 53).
Proof We have
- %D 2(3:P, D) - - 208,02 P
U = — _ HED. D) g and M =213,V = P08 _ ¢
| |o+ |o* |+
. 920 30, D) -\ 20020, P).  23:3,0.D) - 8/(3,D, D)~
920 = <— —4Re (B2, 9)y 5| 20D Pl g 200:0.8:0) g | Bl(0: 0. D)
- |2 |®4 |+ |o4 |6
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1 et - (0:0, D) _ - ( -
=5 —=—H —4Re | —=—0.® | + (e (Hz, ®) — ¥ + =], 1o |q>||2)
2102 ( N @ 3 | g

H- =

5 =2e 2920 = |®7Hy — 8Re (f”(&zi, &>>azi>)

+( 2= 2(Hg, ®) + 16| =23, 1og|c1>||)
= |9 Hg — (d®, d|®*)g + (—2 —2(Hg. ®) +4|®|*|d log |<i>||§) @

Therefore, we have by Lemma 10.7

— (Hy.iig) = ~|BHg + (2= 161B[0 log | 812 (g, B) + 2(Hg, ®)(iig, B)

- (—|ci>|2 + 205 <Y>>2> Hj + (2 — 163|213 log |<1>||§) (i )

ol

= N WP 3 S 2V B2 3012
2(ng, )<H¢, >_2(n5},<l>) Hg —16(ng, @) [P[7|0 log |P[[,

"o
+2 (—2 — 2 Hgliig, ®) + 16|&>|2|alog|cf>||§) (fig, )

= —2(iig, ®)*Hy + (—4 + 16|73 log Ifillﬁ) (g, ®)

. I .. @ R o
Hj = { @,n@)=<H@,—n@+2(n&>,<D) >=—|¢|2H5>—2(n&>,d>).

. 2D 40,0, ®) . - 20020, d) - 8(5,D, D)2 -
P =< — 0:2. D)y & — 00 g 80:2.9) 5
|®|2 | D] | D[4 |®|6
3.
0
= —— 1% 4 (2(8.1) — 4910 |q>|)
2P VAT
(hY, @) 3. 1log|P|  8(d, log|®N? -
e e ggzl | 800, ggzl D"\ %
| D[+ || o
2(0.10) = 2(8;2) — 49 log |D|
- - - 1 - oo D
0 _ 23 _ 0 _ 0
79 = 2(azxp 2(31,\)31\11) = |&)|2h¢ 2, 1Y) 30
g —2(®, 7 )—&) Ly Lo
=\nz — s = > = — = FUNT
¢ @2 ) @R ¢ PR Y
which implies the second identity [see also (3.66 in [29])]. m]

Remark 10.9 We can easily see that those formulae are consistent with the Codazzi identity.
Indeed, we first have

diiig = —H.® — e *h} 0-®

and the Codazzi identity 5h%> = g3 ® dHg implies that

- -

OHg = —2(3.®, ®)Hzdz — |®|*0Hg — 2(®, —Hyz 8,D — e‘z’\h%%&))dz
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= 1?12z @ 9K° 1o Gd. @ 0
= —|0P%¢;' @Y +2¢5' ® (3P, B) @ h§
—o 200,90 _ , 1 —,

oh: = ——=—— Qh> — =—0dh
Uoger T qep °

1 o -
= 5% ® (—|CI>|2g&>1 ®9h) +2¢3' ® (06, ) ®h%) = g3 ® 0Hj.

Furthermore, the formula in Hg is symmetric. Indeed, if o is minimal, then Hg =
—2(175), &J). Now, if ¥ is minimal, we have |d>|2H5) + 2(nz, ®) = 0, and Lemma 10.7
implies that

. @ _ _ Voo .
Hy = =2 (75, = ) = —2( —iig +20iig, ¥) =, ¥ ) = —2(ii;, ¥).
O] P v v v
1|2 w2
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