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Abstract
Klein et al. (J Fluid Mech 288:201–248, 1995) have formally derived a simplified asymp-
totic motion law for the evolution of nearly parallel vortex filaments in the context of the
three dimensional Euler equation for incompressible fluids. In the present work, we rigor-
ously derive the corresponding asymptotic motion law in the context of the Gross–Pitaevskii
equation.

Mathematics Subject Classification 35Q55 · 35B40 · 35Q35 · 76Y05

1 Introduction

The mathematical analysis of the evolution of vortex filaments within the framework of the
classical equations for fluids is a challenging problem that dates back to the second half of the
nineteenth century with the works of Kelvin and Helmholtz. Some “simplified” flows have
long been considered as potential candidates for the description of the asymptotic regime of
small vortex cores, the most well-known being the binormal curvature flow of Da Rios over
a century ago, but the convergence proofs in all these cases are missing, and the validity of
the convergence is sometimes questioned too in the literature.

Klein et al. [20] have proposed the system

∂t X j = Jα j� j∂zz X j + J
∑

k �= j

2�k
X j − Xk

|X j − Xk |2 , j = 1, . . . , n (1)
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as a simplified candidate model for the evolution of n nearly parallel vortex filaments in
perfect incompressible fluids. This model extends a remark by Zakharov [26] for pairs of
anti-parallel filaments, and is expected to be valid only when

(i) the wavelength of the filaments perturbations are large with respect to the filaments
mutual distances,

(i i) the latter are large with respect to the size of the filaments cores, and
(i i i) the Reynolds number is sufficiently large.

In the above formulation, the filaments are assumed to be nearly parallel to the z-axis, and after
rescaling1 each of them is described by a function z �→ (X j (z, t), z), where X j (·, t) takes
values in R

2, which represents the horizontal displacement of the filament. The canonical
two by two symplectic matrix is denoted by J , the constants � j ∈ R are the circulations
associated to each vortex filament, and the constants α j ∈ R are derived from assumptions
on the vortex core profiles prior to passing in the limit.

From the fluid mechanics point of view, the case n = 1 in (1) is already highly interesting
and corresponds to a single weakly curved vortex filament. In that case, system (1) reduces to
the free Schrödinger equation in one variable, and as a matter of fact this is also the linearized
equation for the binormal curvature flow around a straight filament.

From a mathematical point of view, system (1) has been studied for his own (see e.g.
[1,2,19,21]) when n > 1, in particular its well-posedness and the possibility of colliding
filaments under (1). Nevertheless, as mentioned already, the justification of the model itself
as a limit from a classical fluid mechanics model (such as the Euler equation or the Navier–
Stokes equation in a vanishing viscosity limit) has so far only been obtained formally through
matched asymptotic, even for n = 1.

The goal the present work is to rigorously derive system (1), for arbitrary n ≥ 1, as a
limit from (yet another) PDE model whose relation to fluid mechanics is not new. In that
framework, all the limiting circulations � j will end up being equal. Our object of study in
this paper is indeed the Gross–Pitaevskii equation

i∂t uε − �uε + 1

ε2
(|uε|2 − 1)uε = 0 in (0, T ) × �, (2)

with initial data uε(·, 0) = u0ε(·). Here 0 < ε � 1 is a real parameter, � = ω × TL where
ω ⊂ R

2 is a bounded open set with smooth boundary2 and TL = R/LZ for some L > 0.
Without loss of generality, we shall assume that 0 ∈ ω.We also consider Neumann boundary
conditions on ∂ω × TL :

ν · ∇uε = 0 on ∂ω × TL .

Our main result will describe solutions of (2) associated to initial data u0ε for vanishing
families of ε, and corresponding in a sense to be described in detail below to n nearly parallel
vortex filaments clustered around the vertical axis {0} × (0, L).

1 Described further down, otherwise they wouldn’t be anything close to parallel!
2 Since a rescaling will eventually be made in the description that sends the lateral boundary to infinity, the
exact shape of ω is of limited impact on the analysis, and the limit flow for the filaments does not depend at
all on ω. Still, some of our later assumptions for establishing convergence do depend on ω, see e.g. (9).
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1.1 Statement of main result

We consider the system

i∂t f j − ∂zz f j − 2
∑

k �= j

f j − fk
| f j − fk |2 = 0, j = 1, . . . , n (3)

for f ≡ ( f1, . . . , fn) : TL × R → C
n . This is the Klein Majda and Damodaran system (1)

in the special case where all constants are equal and normalized to unity.
For f ∈ H1(TL ,Cn), we define

G0( f ) := π

∫ L

0

⎛

⎝1

2

n∑

i=1

| f ′
i |2 −

∑

i �= j

log | fi − f j |
⎞

⎠ dz,

it is the Hamiltonian associated to the Eq. (3). We also set

ρ f := inf
z∈(0,L), j �=k

| f j (z) − fk(z)|.

A sufficient condition for the Hamiltonian G0( f ) to be finite is that ρ f > 0. For
f 0 ∈ H1(TL ,Cn) such that ρ f 0 > 0, system (3) possesses a unique solution f ∈
C((−T , T ), H1(TL ,Cn)) for some T > 0, and which satisfies ρ f (·,t) > 0 for all
t ∈ (−T , T ). Moreover, f can be approximated by (arbitrarily) smooth solutions of (3).
If lim inf t→±T ρ f (·,t) = 0, corresponding to a collision between filaments, the possibility to
extend the solution past ±T is a delicate question, a situation which we won’t consider in
this work.

Regarding the Ginzburg–Landau energy, wewrite points in� in the form (x, z) ∈ ω×TL ,
and define

eε(u) := 1

2

(|∇xu|2 + |∂zu|2)+ 1

4ε2
(|u|2 − 1)2 ,

and

Gε(u) :=
∫

�

eε(u) dx dz − Lκ(n, ε, ω) (4)

where κ(n, ε, ω) = nπ |log ε| + n(n − 1)π | log hε| + O(1) is defined more precisely in (9)
below. The Cauchy problem for the Gross–Pitaevskii equation is globally well posed for
initial data with finite Ginzburg–Landau energy (i.e. in H1(�) here), and solutions can be
approximated by smooth ones too.

The quantity which will define and locate the vorticity of a solution uε is the (horizontal3)
Jacobian

Juε := ∇⊥
x · Re(uε∇xuε),

it is therefore a real function of (x, z, t).
In order to measure the discrepancy between vorticity and an indefinitely thin filament,

we will integrate in z some norms on the slices ω × {z}. For μ ∈ W−1,1(ω) we let

‖μ‖W−1,1(ω) := sup

{∫
φ dμ : φ ∈ W 1,∞

0 (ω), max{‖φ‖∞, ‖Dφ‖∞} ≤ 1

}
.

3 The other two components of the 3D Jacobian also have interpretations, see e.g. Proposition 2 below, but
they do not enter in the statement of our main theorem.
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Among the various equivalent norms that induce the W−1,1(ω) topology, this choice has the
property that there exists r(ω) > 0 such that if a1, . . . , an and b1, . . . bn are points in Br ⊂ ω,
then

‖
n∑

i=1

δai −
n∑

i=1

δbi ‖W−1,1(ω) = min
σ∈Sn

n∑

i=1

|ai − bσ(i)| (5)

where Sn denotes the group of permutations on n elements, see [4]. Indeed, this property
holds whenever r(ω) ≤ min{ 12dist(0, ∂ω), 1}, as then any 1-Lipschitz function on Br that
equals zero at the origin can be extended to a function φ such that φ = 0 on ∂ω and
max{‖φ‖∞, ‖Dφ‖∞} ≤ 1.

Finally, we introduce the scale

hε := 1√|log ε| .

It will correspond to the amount of deformation of the filaments with respect to perfectly
straight ones, and is also the typical separation distance between distinct filaments. At the
same time, the scale ε corresponds to the typical core size of the filaments, and therefore
since hε � ε as ε → 0, the displacements and mutual distances of filaments are much larger
in this asymptotic regime than their core size.

Our main result is

Theorem 1 Let f = ( f1, . . . , fn) ∈ C((−T , T ), H1(TL ,Cn)) be solution of the vortex
filament system (3) with initial data f 0 and such that ρ f (t) ≥ ρ0 > 0 for all t ∈ (−T , T ).

For ε ∈ (0, 1], let uε solve the Gross–Pitaevskii equation (2) for initial data such that
∫ L

0

∥∥∥Jxu0ε(·, z) − π

n∑

j=1

δhε f 0j (z)

∥∥∥
W−1,1(ω)

dz = o(hε) (6)

and
Gε(u

0
ε) → G0( f

0) (7)

as ε → 0. Then for every t ∈ (−T , T ),
∫ L

0

∥∥∥Jxuε(·, z, h2ε t) − π

n∑

j=1

δhε f j (z,t)

∥∥∥
W−1,1(ω)

dz = o(hε), (8)

as ε → 0.

Comments.The positivity of ρ0 in Theorem 1 is essential, it implies that no collision between
filaments occured over time, and the corresponding conclusion would very likely be incorrect
without assuming it. Indeed, filaments collisions in superfluids experiments was observed to
lead to highly complex reconnection dynamics, see for example [11], which exit the case of
graph-like filaments considered here. Assumption (6) is responsible for the concentration of
the initial vorticity of uε around the filaments parametrized by (rescalings) of f 0. Assumption
(7) can be understood as requiring that the former concentration holds in the most energy
efficient way (at least asymptotically as ε → 0); this follows from results in [7], building
on earlier work of [10]. Below we will recall these results in detail and refine some of them.
The conclusion (8) implies that the concentration of vorticity is preserved in time, and its
location follows (after appropriate rescalings) the model of Klein Majda and Damodaran.

The periodicity assumption which we make on the vertical variable is probably only
technical, but at the level of the Gross–Pitaevskii equation the framework needed to deal
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with local perturbations of straight filaments would involve some further renormalization
process of the (otherwise infinite) energy. Periodic perturbations of the limit system (1) have
been studied in particular in [8].

In the context of the 3D Gross–Pitaevskii equation, there are very few available mathe-
matical results which rigorously derive a motion law for vortex filaments. Besides Theorem
1, the only one we are aware of which does not require a symmetry assumption reducing the
actual problem to 2D is [15], where the case of a single vortex ring was treated (the limiting
filament is symmetric but the field uε is not assumed to be so). The situation is slightly better
understood in the axisymmetric setting, in particular the case of a finite number of vortex
rings was analized in [16], where the so-called leapfrogging phenomenon was established.
In 2D the situation is of course brighter, and since vortex filaments are for the most part
tensored versions of 2D vortex points, it is not surprising that the analysis of the latter is at
the basis of all the 3D works we were referring to so far.

Vortex points and approximations of in 2D evolve according to the so-called point vortex
system.Thatwas established in [6] in the context of theGross–Pitaevskii equation, but parallel
results were also obtained (and actually earlier) in the framework of the incompressible 2D
Euler equation [22,23].

The analogy between Euler andGross–Pitaevskii equations is expected to be valid not only
in 2D, and as stated at the beginning of this introduction a common open challenge in both
frameworks is to rigorously derive the binormal curvature flow equation for general vortex
filament shapes. In this context, we emphasize the n = 1 case of Theorem 1 establishes a
linearized version of this so-called self-induction approximation for (2); the general case of
the theorem describes evolution governed by a combination of the linearized self-induction
of filaments and interaction with other filaments.

Contrary to the Euler equation, theGross–Pitaevskii equation has a fixed “core length” ε in
its very definition: this simplifies some of the analysis and may explain why in particular the
equivalent of the nonlinear 3D stability for one vortex ring or the leapfrogging phenomenon
have not yet been proved in that context.4 On the other hand, there is no equivalent of the
Biot–Savart law in the context of the Gross–Pitaveskii equation, the field is complex and the
analysis often involves tricky controls of the phases. Partial results in the context of Euler in
3D include [12,13] for the 3D spectral stability of a columnar vortex, [5] for the evolution of
a finite number of axisymmetric vortex rings in a regime where they do not interact, and [9]
for the existence of travelling helices.

Theorem 1 does not cover the case of anti-parallel vortex filaments, a situation which
in (1) would correspond to constants � j ∈ ±1 that do not all share the same sign. This is
something that we wish to consider in the future.

In the remaining subsections of this introduction, after fixing a number of notations which
we use throughout, we describe in details the strategy followed to prove Theorem 1 and we
state the key intermediate lemmas and propositions. The proofs of the latter are presented
latter in Sect. 2, for the key arguments related to the dynamics, in Sect. 3, for the results which
do not depend on a time variable and which are for the most part extensions or variations of
results in [7], and in Sect. 4, for those related to a priori compactness in time.

4 After this work was completed, Dávila, del Pino, Musso and Wei have announced the construction of
solutions to the Euler equation exhibiting the leapfrogging phenomenon.

123



127 Page 6 of 34 R. L. Jerrard, D. Smets

1.2 Further notations

In addition to the scale hε := |log ε|−1/2, we will always write ωε := h−1
ε ω and �ε :=

ωε × TL to denote the rescaled versions of ω and � respectively. Given uε ∈ H1(�,C) we
will always let vε denote the function in H1(�ε,C) defined by

vε(x, z) = uε(hεx, z), (x, z) ∈ �ε.

We will write

jvε := ivε · ∇xvε,

where here and throughout, a dot product of complex numbers denotes the real inner product:

for v,w ∈ C, v · w = Re(vw̄).

Observe once more that jvε contains only the horizontal components of the momentum
vector ivε · Dvε = (ivε · ∇xvε, ivε · ∂zvε).

In many places, we implicitly identify C
n with (R2)n when no complex products are

involded. We fix χ ∈ C∞(R) to be a nonnegative nonincreasing function such that

χ(s) = 1 if s < 1, χ(s) = 0 if s ≥ 2,

and for arbitrary r > 0 we set χr (s) := χ(s/r). For f ∈ H1((0, L), (R2)n) such that
ρ f > 0, and for 0 < r < ρ f /4, we also set

χ
f
r (x, z) :=

n∑

i=1

χr (|x − fi (z)|) |x − fi (z)|2.

χ
f
r ,ε(x, z) := 1

h2ε
χ
hε f
hεr

(x, z) =
n∑

i=1

χr (
|x − hε fi (z)|

hε

)

∣∣∣∣
x − hε fi (z)

hε

∣∣∣∣
2

.

Repeated indices a, b, c, . . . are implicitly summed from 1 to 2; these correspond to the
horizontal x variables. We will also write εab to denote the usual antisymmetric symbol, with
components

ε12 = −ε21 = 1, ε11 = ε22 = 0.

For v = (v1, v2) ∈ R
2, we will write v⊥ := (−v2, v1). Thus (v⊥)b = εabva . We will

similarly write ∇⊥
x := (−∂y, ∂x ). In the same spirit,

v⊥ := (v⊥
1 , . . . , v⊥

n ) for v = (v1, . . . , vn) ∈ (R2)n,

with a similar convention for ∇⊥W , for W : (R2)n → R.
If μz is a family of signed measures on an open set U ⊂ R

2, depending (measurably) on
a parameter z ∈ (0, L), then μz ⊗ dz denotes the measure on U × (0, L) defined by

∫

U×(0,L)

f dμz ⊗ dz =
∫ L

0
(

∫

U
f (x, z)dμz(x))dz.

For a smooth bounded A ⊂ R
2 (typically ω or ωε) and a ∈ An we will write

j∗A(x; a) := −∇⊥
x ψ∗

A,
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where ψ∗
A = ψ∗

A(x; a) solves
{

−�xψA(·; a)∗ = 2π
∑n

i=1 δai in A

ψ∗
A = 0 on ∂A .

Equivalently, j∗A(x; a) : A → R
2 is the unique solution of

∇x · j∗A = 0, ∇⊥
x · j∗A = 2π

n∑

i=1

δai , j∗A(·, a) · ν = 0 on ∂A

where ν denotes the outer unit normal to A. It is straightforward to check that

j∗ωε
(x; a) = hε j

∗
ω(hεx; hεa)

and that

lim
ε→0

j∗ωε
(x; a) =

n∑

i=1

(x − ai )⊥

|x − ai |2 =: j∗
R2(x; a).

Given g : (0, L) → An , we will write j∗A(g) to denote the function A×(0, L) → R
2 defined

by

j∗A(g)(x, z) = j∗A(x; g(z)).
We define a couple of other auxiliary functions related to ψA. First, note that

ψA(x; a) = −
n∑

i=1

(log |x − ai | + HA(x, ai ))

where for ai ∈ �, we define HA(·, ai ) to be the solution of

−�x HA(x, ai ) = 0 for x ∈ A, HA(x, ai ) = − log |x − ai | for x ∈ ∂A.

We define

WA(a) = −π
(∑

i �= j

log |ai − a j | +
∑

i, j

HA(ai , a j )
)
.

The constant κ(n, ε, ω) appearing in (4) is defined by

κ(n, ε, ω) = n(π |log ε| + γ ) + n(n − 1)π | log hε| − πn2Hω(0, 0) (9)

where γ is a universal constant5 introduced in the pioneering work of Béthuel, Brezis and
Hélein [3], see Lemma IX.1.

1.3 Variational aspects of nearly parallel vortex filaments

In this section we first collect some information about the behaviour of nearly parallel vortex
filaments under energy and localisation constraints, but without introducing any time depen-
dence. Most of these results are contained in Contreras and Jerrard [7], or can be obtained
by adapting and combining results in [7]. The necessary details are given in Sect. 3.

Our first result follows directly from arguments in [7], although it does not appear there
in exactly this form.

5 We will not need the exact definition of κ(n, ε, ω) or γ in this paper, but these constants will appear in
various formulas.
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Proposition 1 Assume that (uε) ⊂ H1(�,C) is a sequence satisfying
∫ L

0
‖Jxuε(·, z) − nπδ0‖W−1,1(ω)dz ≤ c1hε, (10)

Gε(uε) ≤ c2. (11)

Then ∫

�

|∂zuε|2dx dz ≤ C(c1, c2) (12)

and there exists some f = ( f1, . . . , fn) ∈ H1(TL ,Cn) such that after passing to a subse-
quence if necessary:

∫ L

0
‖Jxuε(·, z) − π

n∑

j=1

δhε f j (z)‖W−1,1(ω)dz = o(hε) as ε → 0. (13)

Finally, f satisfies

G0( f ) ≤ lim inf
ε→0

Gε(uε), ‖ f ‖H1 ≤ C(c1, c2), (14)

where the lim inf refers to the subsequence for which (13) holds.

The arguments needed to extract Proposition 1 from facts established in [7] are presented
in Sect. 3.2. Next we describe weak limits of products of derivatives of vε .

Proposition 2 Assume that (uε) ⊂ H1(�,C) satisfies (11) and (13) (and hence (10)), and
let vε(x, z) = uε(hεx, z). Then the following hold, in the weak sense of measures on �

1

|log ε|∂xkvε · ∂xl vε⇀πδkl
n∑

i=1

δ fi (z) ⊗ dz, (15)

1

|log ε|∇xvε · ∂zvε⇀ − π

n∑

i=1

∂z fi (z)δ fi (z) ⊗ dz, (16)

for all k, l in {1, 2}. Moreover, for any nonnegative φ ∈ Cc(R
2 × TL),

lim inf
ε→0

∫

�ε

φ
|∂zvε|2
|log ε| dx dz ≥ π

n∑

i=1

∫ L

0
| f ′

i (z)|2φ( fi (z), z) dz. (17)

The proof of Proposition 2 is given in Sect. 3.3. Briefly, (15) and (17) are deduced by
combining results from [7] with facts established in [14,15,24], and (16) is obtained via a
short argument whose starting point is (15) and (17).

Finally we will need a refinement of a �-limit lower bound from [7]. The proof is given
in Sect. 3.4.

Proposition 3 Let r > 0 and f ∈ H1((0, L),Cn) be given such that r < ρ f /4. Then given
δ > 0, there exist c3, ε3 > 0, depending only on ‖ f ‖H1 and r, such that for all � ∈ (0, 1]
and any ε ≤ ε3, if uε ∈ H1(�,C) and

∫ L

0
‖Juε(·, z) − π

n∑

i=1

δhε fi (z)‖W−1,1(ω)dz ≤ c3hε, (18)

Gε(uε) − G0( f ) ≤ �, (19)
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then ∫ L

0

∫

ω\∪n
i=1B(hε fi (x),hεr)

eε(|uε|) + 1

4

∣∣∣∣
juε

|uε| − j∗ω(hε f )

∣∣∣∣
2

≤ K3� + δ, (20)

where K3 depends only on r , n, and ‖ f ‖H1 . Moreover, if

T f
r ,ε(uε) :=

∫

�

Jxuε(x, z)χ
f
r ,ε dx dz ≤ c23

4nπL
(21)

then

1

hε

∫ L

0
‖Jxuε(·, z) − π

n∑

i=1

δhε fi (z)‖W−1,1(ω)dz ≤
(
nπLT f

r ,ε(uε)
) 1

2 + o(1) ≤ 1

2
c3. (22)

1.4 Compactness in time

In this section we now assume that uε is a solution of the Gross–Pitaevskii equation and we
shall obtain sufficient compactness in time to pass to the limit as ε → 0 on intervals of time
of positive length.

Proposition 4 Let r > 0 and g ∈ W 1,∞(TL ,Cn) be given such that r ≤ ρg/4. There exist
ε4, c4 > 0, depending only on ‖g‖H1 and r, and there exist C4, depending only on ‖g‖Lip
and r, with the following properties. If uε solves the Gross–Pitaevskii equation (2) for some
0 < ε ≤ ε4 for initial data u0ε satisfying

Gε(u
0
ε) ≤ G0(g) + 1, (23)

∫ L

0
‖Ju0ε(·, z) − π

n∑

i=1

δhεgi (z)‖W−1,1(ω)dz ≤ c4hε, (24)

and

T g
r ,ε(u

0
ε) ≤ c24

4nπL
, (25)

then for every 0 ≤ t ≤ t4 := 3c24/(4C4nπL),

T g
r ,ε(uε(·, ·, h2ε t)) ≤ T g

r ,ε(u
0
ε) + C4t, (26)

1

hε

∫ L

0
‖Jxuε(·, z, h2ε t) − π

n∑

i=1

δhεgi (z)‖W−1,1(ω)dz ≤ (nπL(T g
r ,ε(u

0
ε) + C4t)

) 1
2 + o(1),

(27)

and in particular
∫ L

0
‖Jxuε(·, z, h2ε t) − π

n∑

i=1

δhεgi (z)‖W−1,1(ω)dz ≤ (c4 + o(1))hε. (28)

The proof is given in Sect. 4, as is the proof of the following.

Corollary 1 Under the assumptions of Theorem 1, there exists t0 > 0, depending only on
ρ f 0 and ‖ f 0‖H1 , f ∗ in C([0, t0], L1(TL ,Cn)) ∩ L∞([0, t0], H1(TL ,Cn)), and a common
sequence ε → 0, such that for every 0 ≤ t ≤ t0

∫ L

0
‖Jxuε(·, z, h2ε t) − π

n∑

j=1

δhε f ∗
j (z,t)‖W−1,1(ω)dz = o(hε) as ε → 0
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and in addition the equivalent of (28) holds for all t ∈ [0, t0], for every ε in the sequence.
Moreover, we have f ∗(0) = f (0) and

sup
s,t∈[0,t0]

max
i,z

| f ∗
i (z, t) − fi (z, s)| ≤ ρ0

8
, and hence inf

t∈[0,t0]
ρ f ∗(t) ≥ 3

4
ρ0. (29)

Our main goal in the sequel is to show that f and f ∗ coincide on [0, t0], from which
Theorem 1 will follow by a straightforward continuation argument.

Proposition 5 In addition to the statements in Corollary 1, we have

j(vε)

|vε| ⇀ j∗
R2( f

∗) weakly in L2(O)

for every open O ⊂⊂ {(t, x, z) ∈ [0, t0] × R
2 × TL : x �= f ∗

k (z, t), k = 1, . . . , n}.

1.5 Proof of themain theorem

For points a = (a1, . . . , an) ∈ (R2)n such that ai �= a j for i �= j , we will write

W(a) = −
∑

i �= j

log |ai − a j |. (30)

With this notation,

G0(g) = π

∫ L

0

1

2
|g′(z)|2 + W(g(z)) dz for g : TL → (R2)n .

For 0 ≤ t ≤ t0 (where t0 appears in Corollary 1), we define

I1(t) := π

∫ L

0
| f (z, t) − f ∗(z, t)|2 dz

I2(t) := π

∫ L

0
(−∂zz f (z, t) + ∇W( f (z, t)) · ( f (z, t) − f ∗(z, t))dz

I3(t) := G0( f (·, t)) − G0( f
∗(·, t)).

Note that, as a consequence of conservation of energy for both (2) and (3),

G0( f (·, t)) = G0( f
0) = lim

ε→0
Gε(u

0
ε) = lim

ε→0
Gε(uε(t)) ≥ G0( f

∗(t)).

The last inequality follows from (14), as discussed following the statement of Proposition 1.
Thus I3(t) ≥ 0 for all t ∈ [0, t0]. In addition, I3(0) = 0, due to Corollary 1.

We aim to apply Proposition 3 to control quantities such as juε

|uε | (t) − j∗ω(hε f ∗(t)) for a
range of t . To this end, we will need

�ε(t) := Gε(uε(t)) − G0( f
∗(t)) ≤ 1. (31)

Arguing as above, we see that limε→0 �ε(t) = I3(t). Thus �ε(t) ≤ 1 if ε is sufficiently
small and I3(t) ≤ 1

2 . We therefore define

t∗ := sup{t ∈ [0, t0] : 0 ≤ I3(s) ≤ 1

2
for all s ∈ [0, t]}.
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The positivity of t∗ is a consequence of theweak H1 lowersemicontinuity of f �→ G0( f ) and
the continuity properties of f ∗ as stated in Corollary 1. (The other hypothesis of Proposition
3 follows directly from Corollary 1.)

Theorem 1 will be an easy consequence of the following three lemmas.

Lemma 1 There exists a constant C2 such that for every t ∈ [0, t∗],
I3(t) ≤ I2(t) + C2 I1(t).

Proof First, it follows from (29) that for every z ∈ [0, L] and t ∈ [0, t∗],
W( f (z, t)) − W( f ∗(z, t)) ≤ ∇W( f (z, t)) · ( f (z, t) − f ∗(z, t)) + C | f (z, t) − f ∗(z, t)|2,
for C depending only on ρ f (0). The conclusion of the lemma follows by integrating this
inequality with respect to z and combining the result with the estimate

π

2

∫ L

0
|∂z f |2 − |∂z f ∗|2 dz = π

2

∫ L

0
2∂z f · ∂z( f − f ∗) − |∂z( f − f ∗)|2 dz

≤ −π

∫ L

0
∂zz f · ( f − f ∗) dz.

��
The proofs of the next two lemmas are presented in Sect. 2 below.

Lemma 2 For every τ ∈ [0, t∗],

I1(τ ) ≤ I1(0) + C
∫ τ

0
(I1(t) + I3(t)) dt .

Lemma 3 For every τ ∈ [0, t∗],

I2(τ ) ≤ I2(0) + C
∫ τ

0
(I1(t) + I3(t)) dt .

With these, we can complete the

Proof of Theorem 1 Let I4(t) = I2(t)+ (1+C2)I1(t). It follows from Lemma 1 that I4(t) ≥
I3(t) + I1(t) ≥ 0 for all t ∈ [0, t∗], moreover I4(0) = 0 by Corollary 1 and Lemmas 1–3
imply that

I4(τ ) ≤ (1 + C + C2)

∫ τ

0
I4(t) dt for all τ ∈ [0, t∗].

It follows by Grönwall’s inequality that I4(τ ) = 0 for all τ ∈ [0, t∗], and therefore also
that I1(τ ) = 0 for all τ ∈ [0, t∗], in other words, that f = f ∗ on [0, t∗]. A straightforward
continuation argument now shows that this equality holds on (0, T ), and then by reversibility
on (−T , T ), thus completing the proof. ��

2 Dynamics

The object of this section is to present the proofs of Lemmas 2 and 3, from which (together
with Lemma 1) our main Theorem was derived in the Introduction. We will find it useful to
rescale the Gross–Pitaevskii equation (2), setting

vε(x, z, t) := uε(hεx, z, h
2
ε t), (32)
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127 Page 12 of 34 R. L. Jerrard, D. Smets

where

hε := |log ε|−1/2.

Thus

i∂tvε − �xvε − ∂zzvε

|log ε| + 1

|log ε|ε2 (|vε|2 − 1)vε = 0. (33)

We will write

jxvε := ivε · ∇xvε,

jzvε := ivε · ∂zvε.

For the rescaled equation (33), the equation for conservation of mass takes the form

1

2
∂t |vε|2 = ∇x · jxvε + h2ε ∂z jzvε. (34)

We will rely mainly on the equation for vorticity, and in fact only for the z component of the
vorticity vector, which is precisely Jxvε . By rescaling standard identities we have

∂t Jxvε = εab∂ac(∂bvε · ∂cvε) + εab∂az(
∂bvε · ∂zvε

|log ε| ).

Thus,

d

dt

∫
ϕ Jxvεdx dz =

∫
∂tϕ Jxvεdx dz +

∫
εab∂acϕ ∂bvε · ∂cvε dx dz

+
∫

εab∂azϕ
∂bvε · ∂zvε

|log ε| dx dz, (35)

for smooth ϕ : �ε × (0, T ) → R for some T > 0, with compact support in �ε = ωε × TL .
(That is, test functions are only required to have compact supportwith respect to the horizontal
x variables, not the periodic z variable.)

Lemma 4 Assume that ϕ ∈ C2
c (�ε ×[0, t∗]) is a function such that for some k ∈ {1, . . . , n},

supp(ϕ) ⊂ {(x, z, t) : |x − fk(z, t)| ≤ ρ0

2
},

and
∂acϕ(x, z, t) = c(z, t)δac in {(z, t) : |x − fk(z, t)| ≤ ρ0

4
} (36)

for some continuous c(z, t). Then for any τ ∈ [0, t∗],
∫ L

0
ϕ( f ∗

k (z, t), z, t) dz
∣∣∣
t=τ

t=0

≤ C
∫ τ

0
I3(t) dt

+
∫ τ

0

∫ L

0
∂tϕ( f ∗

k (z, t), z, t) dz dt

−
∫ τ

0

∫ L

0
∇⊥∂zϕ( f ∗

k (z), z, t) · ∂z f
∗
k (z, t) dz dt

+
∫ τ

0

∫ L

0
∇ϕ( f ∗

k (z, t), z, t) · ∇⊥
k W( f ∗(z, t)) dz dt ,

where C depends only ρ0, ‖ f ‖L∞H1 and ‖∇2
xϕ‖L∞ .
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Proof We apply (35) to ϕ, integrate both sides from 0 to τ , and send ε → 0. We consider
the various terms that arise.

1. Corollary 1 and properties of the support of ϕ imply that

lim
ε→0

∫

�ε

ϕ(x, z, t) Jxvε(x, z, t)dx dz = π

∫ L

0
ϕ( f ∗

k (z, t), z, t) dz (37)

for every t ∈ [0, t∗], and in particular for t = 0, τ .
2. Similarly, (37) holds with ϕ replaced by ∂tϕ. In addition, it follows from (28) that

| ∫
�ε

∂tϕ(x, z, t) Jxvε(x, z, t)dx dz| is bounded uniformly in t . Thus

lim
ε→0

∫ τ

0

∫

�ε

∂tϕ Jxvε dx dz dt = π

∫ τ

0

∫ L

0
∂tϕ( f ∗

k (z, t), z, t) dz dt .

3. The last term on the right-hand side of (35) is similar. First note that there exists some C
such that

∫

�ε

εab∂azϕ
∂bvε · ∂zvε

|log ε| dx dz ≤ C

for every t . This is a consequence of (12) (which is available for all t ∈ [0, t∗] by
Corollary 1) and (7), since

∫

�ε

|∂zvε(y, z, t)|2 dy dz =
∫

�

|∂zuε(x, z, h2ε t)|2
|log ε| dx dz

and
∫
�ε

1
2 |∇xvε(y, z, t)|2 dy ≤ Gε(uε(·, ·, h2ε t)) = Gε(u0ε). Also,

∫

�ε

εab∂azϕ
∂bvε · ∂zvε

|log ε| dx dz → −π

∫ L

0
∇⊥∂zϕ( f ∗

k (z), z, t) · ∂z f
∗
k (z, t) dz

for every t , due to (16). It follows that
∫ τ

0

∫

�ε

εab∂azϕ
∂bvε · ∂zvε

|log ε| dx dz dt → −π

∫ τ

0

∫ L

0
∇⊥∂zϕ( f ∗

k (z), z, t) · ∂z f
∗
k (z, t) dz dt .

4. To describe the limit of the remaining term coming from (35), first note that (36), together
with our assumptions on the support of ϕ, implies that

supp(εab∂acϕ∂bvε · ∂cvε)(·, t) ⊂ �ε,k(t) := {(x, z) ∈ �ε : |x − fk(z, t)| ∈ [ρ0
4

,
ρ0

2
]}.

Next, we follow standard arguments and write

∂bvε · ∂cvε = ∂c|vε| ∂c|vε| + jb(vε) jc(vε)

|vε|2 .

For the rest of this proof we will write j∗ε as an abbreviation for j∗ωε
( f ∗), and j∗ :=

limε→0 j∗ε = j∗
R2( f

∗). With this notation, we further decompose the last term above as

jb(vε) jc(vε)

|vε|2 = j∗ε,b j∗ε,c +
(
j(vε)

|vε| − j∗ε
)

b

(
j(vε)

|vε| − j∗ε
)

c

+ j∗ε,b
(
j(vε)

|vε| − j∗ε
)

c
+ j∗ε,c

(
j(vε)

|vε| − j∗ε
)

b
.
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127 Page 14 of 34 R. L. Jerrard, D. Smets

Thus,
∫ τ

0

∫

�ε

εab∂acϕ ∂bvε · ∂cvε dz dz dt ≤
∫ τ

0

∫

�ε,k (t)
εab∂acϕ j∗ε,b j∗ε,c

+
∫ τ

0

∫

�ε,k (t)
εab∂acϕ

[
j∗ε,b
(
j(vε)

|vε| − j∗ε
)

c
+ j∗ε,c

(
j(vε)

|vε| − j∗ε
)

b

]

+
∫ τ

0

∫

�ε,k (t)
|∇2

xϕ|
(

|∇x |vε||2 +
∣∣∣∣
j(vε)

|vε| − j∗ε
∣∣∣∣
2
)

.

It follows from Proposition 5 that the second term on the right-hand side converges to 0 as
ε → 0.

Using (19) and (20) of Proposition 3 for a sequence δn → 0 and recalling that �ε(t), as
defined in (31), satisfies �ε(t) → I3(t) as ε → 0, we find that

lim sup
ε→0

∫ τ

0

∫

�ε

|∇2
xϕ|
(

|∇x |vε||2 +
∣∣∣∣
j(vε)

|vε| − j∗ε
∣∣∣∣
2
)

≤ C
∫ τ

0
I3(t) dt .

Since j∗ε → j∗ locally uniformly on R
2, it is clear that

∫ τ

0

∫

�ε,k (t)
εab∂acϕ j∗ε,b j∗ε,c →

∫ τ

0

∫

�ε,k (t)
εab∂acϕ j∗b j∗c

as ε → 0. Finally, we claim that
∫ τ

0

∫

�ε,k (t)
εab∂acϕ j∗b j∗c = π

∫ τ

0

∫ L

0
∇ϕ( f ∗

k , z, t)) · ∇⊥
k W( f ∗(z, t)) dz dt .

This is a small variant of a classical fact. We recall the proof for the reader’s convenience.
First note that for every t and every z ∈ (0, L),

∫

{x∈ω:|x− fk (z,t)|∈[ ρ0
4 ,

ρ0
2 ]}

εab∂acϕ j∗b j∗c dx = lim
s→0+

∫

ω\Bs ( fk (z,t))
εab∂acϕ j∗b j∗c dx

(where all integrands are evaluated at the fixed value of t). Indeed, the right-hand side is
independent of s for 0 < s < ρ0/4, since the integrand vanishes identically in Bρ0/4( fk(z, t)).
For every s < ρ0/4,
∫

ω\Bs ( fk (z,t))
εab∂acϕ j∗b j∗c dx =

∫

ω\Bs ( fk (z,t))
εab∂acϕ ( j∗b j∗c − 1

2
δbc| j∗|2) dx

= −
∫

∂Bs ( fk (z,t))
εab∂aϕ ( j∗b j∗c − 1

2
δbc| j∗|2)νc

= −
∫

∂Bs ( fk (z,t))
(∇⊥ϕ · j∗)(ν · j∗) − 1

2
∇⊥ϕ · ν| j∗|2. (38)

Note that

j∗(x, z, t) = (x − fk(z, t))⊥

|x − fk(z, t)|2 + j̃(x; k), where j̃(x; k) =
∑

��=k

(x − f�(z, t))⊥

|x − f�(z, t)|2 .

We decompose j∗ in this way on the right-hand side of (38), then expand and let s tend to
zero. This leads to
∫

{x∈ω:|x− fk (z,t)|∈[ ρ0
4 ,

ρ0
2 ]}

εab∂acϕ j∗b j∗c dx = −2π∇ϕ( f ∗
k (z, t), z, t) · j̃( f ∗

k (z, t); k).
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Since

∇⊥
k W(a) := −2

∑

��=k

(ak − a�)
⊥

|ak − a�|2 = −2 j̃( f ∗
k (z, t); k),

this implies the claim, and the proof of Lemma 4 is completed. ��

Proof of Lemma 2 We first assume that f is of class C2 and we apply Lemma 4 with

ϕ(x, z, t) = χρ0/4(|x − fk(z, t)|) |x − fk(z, t)|2,
and then sum the resulting inequalities over k. This leads to the estimate

I1(τ ) ≤ I1(0) +
∫ τ

0

∫ L

0
( f − f ∗) · ∂t f + ∂z f

⊥ · ∂z f
∗ dz dt

−
∫ τ

0

∫ L

0
( f − f ∗) · ∇⊥W( f ∗) dz dt + C

∫ τ

0
I3(t) dt .

The equation (3) satisfied by f may be written

∂t f
⊥ = ∂zz f − ∇W( f ). (39)

Substituting this into the above inequality and integrating by parts, we obtain

I1(τ ) ≤ I1(0) +
∫ τ

0

∫ L

0
( f − f ∗) · (∇⊥W( f ) − ∇⊥W( f ∗)) dz dt + C

∫ τ

0
I3(t) dt .

It follows from the definition of t0 that

|∇⊥W( f ) − ∇⊥W( f ∗)| ≤ C | f − f ∗|,
and the conclusion follows immediately.
It remains to remove the smoothness assumption on f . For that purpose, it suffices to replace
f , in the definition of ϕ above, by C2 solutions f δ of (1) which converge towards f in L∞H1

as δ → 0 and then to send δ to zero in the resulting inequality. The key point is that in the
statement of Lemma 4, the constant C only depends on ρ0, ‖ f ‖L∞H1 and bounds on the
second derivatives of ϕ with respect to the variable x only. ��

Proof of Lemma 3 As for the proof of Lemma 2 we may assume without loss of generality
that f is regular, the general case can then be obtained by approximation in L∞H1.We apply
Lemma 4 with

ϕ(x, z, t) = χρ0/4(|x − fk(z, t)|) (−∂zz fk(z, t) + ∇kW( f (z, t)) · ( f (z, t) − x)k,

and then (implicitly) sum the resulting inequalities over k. This leads to the estimate

I2(τ ) ≤ I2(0) +
∫ τ

0

∫ L

0
∂t (−∂zz fk + ∇kW( f )) · ( f − f ∗)k dz dt

+
∫ τ

0

∫ L

0
∂z (−∂zz fk + ∇kW( f ))⊥ · ∂z f

∗
k dz dt

+
∫ τ

0

∫ L

0
(∂zz fk − ∇kW( f )) · ∇⊥

k W( f ∗) dz dt + C
∫ τ

0
I3(t) dt .
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The middle integral on the right-hand side can be rewritten

∫ τ

0

∫ L

0
∂z∂t fk · ∂z f

∗
k dz dt = −

∫ τ

0

∫ L

0
∂t zz fk · f ∗

k dz dt,

and hence cancels out part of the first integral. We then integrate by parts and expand
∂t∇kW( f ) to obtain

I2(τ ) ≤ I2(0) −
∫ τ

0

∫ L

0
∂t f j · ∂zz f j dz dt

+
∫ τ

0

∫ L

0
∂t f j · ∇ j∇kW( f ) · ( f − f ∗)k dz dt

+
∫ τ

0

∫ L

0
(∂zz fk − ∇kW( f )) · ∇⊥

k W( f ∗) dz dt + C
∫ τ

0
I3(t) dt .

Using the PDE (39) to eliminate ∂zz f , we rewrite this as

I2(τ ) ≤ I2(0) + C
∫ τ

0
I3(t) dt

+
∫ τ

0

∫ L

0
∂t f j · [∇ jW( f ∗) − ∇ jW( f ) − ∇k∇ jW( f ) · ( f ∗ − f )k

]
dz dt .

Finally, it follows from the definition of t0 that
∣∣∇ jW( f ∗) − ∇ jW( f ) − ∇k∇ jW( f ) · ( f ∗ − f )k

∣∣ ≤ C | f ∗ − f |2.
The conclusion of the lemma follows immediately. ��

3 Proofs of variational results

In this section we present the proofs of Propositions 1, 2, and 3.

3.1 Tools

We start by assembling some tools that give information about the vortex structure of a
function satisfying (10), (11) for small but fixed ε > 0, rather than in the limit ε → 0. All
of these are established in [7], but in some cases our presentation here differs a little. We
therefore give short proofs that sketch the arguments needed to obtain the precise statements
given here from those in [7].

Our first result of this sort states that under assumptions (10), (11), for every z ∈ (0, L),
if ε is small enough then uε(·, z) has either n distinct, well-localized vortices clustered near
the vertical axis, or a certain amount of “extra energy”. We will write

e2dε (u) := 1

2
|∇xuε|2 + 1

4ε2
(|uε|2 − 1)2

the Ginzburg–Landau energy density with respect to horizontal variables.

Lemma 5 Assume that uε ∈ H1(�,C) satisfies (10) and (11).
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There exist positive numbers θ, a, b,C and ε0 depending on n, c1, c2 such that b < a,
and if 0 < ε < ε0, then for every z ∈ (0, L) such that

∫

ω×{z}
e2dε (uε) dx ≤ π(n + θ)|log ε| , (40)

there exist gε
j (z) ∈ R

2 for j = 1, . . . , n such that

‖Jxuε(·, z) − π

n∑

j=1

δgε
j (z)

‖F(ω) ≤ εa , (41)

|gε
j (z) − gε

k (z)| ≥ εb for all j �= k, dist(gε
j (z), ∂ω) ≥ C−1 for all j, (42)

|gε
j (z)| ≤ Chε for all j, (43)

∫

ω×{z}
e2dε (w)dx ≥ n(π | log ε| + γ ) + Wω(gε

1(z), . . . , g
ε
n(z)) − Cε(a−b)/2, (44)

where Wω is the renormalized energy defined in Sect. 1.2.

Proof of Lemma 5, excluding estimate (43) Given a sequence of functions uε ∈ H1(�,C)

satisfying (10) and (11), a set Gε
1 = Gε

1(uε) ⊂ (0, L) is defined in equation (3.11) of [7] with
the following properties. First, if z /∈ Gε

1 then

∫

ω

e2dε (uε)(x, z) dx ≥ ε−1/2,

for all sufficiently small ε (where “sufficiently small” may depend on the given sequence).
And second, if z ∈ Gε

1 and (40) holds, then there exist g
ε
j (z) ∈ ω, for j = 1, . . . , n, satisfying

(41), (44) and (42). These are proved in [7], Proposition 1 and Lemma 3 respectively, which
actually assume a somewhat weaker condition in place of (10).

The conclusions of the lemma, apart from (43) (proved below), follow directly from these
facts. ��

We will henceforth write

G(uε) := {z ∈ (0, L) : (40) holds}, B(uε) := (0, L) \ G(uε) . (45)

Thus, for every z ∈ G(uε), Lemma 5 provides a detailed description of the vorticity of
uε(·, z).

For z ∈ G(uε) we will write
f ε
j (z) := gε

j (z)/hε. (46)

Rescaling (41), we find that ‖Jxvε(·, z) − π
∑n

j=1 δ f ε
j (z)

‖W−1,1(ωε)
≤ εa/hε , where

vε(x, z) = uε(hεx, z) as usual.

Remark 1 It is clear from the proof in [7] that z �→ χG(uε)g
ε
j (z)maybe taken to bemeasurable.

We next collect some conclusions that follow rather easily from Lemma 5.
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Lemma 6 Assume that 0 < ε < 1/2 and that uε ∈ H1(�,C) satisfies (10) and (11). Then
there exists a positive constant C = C(c1, c2, n) such that

∫

�

e2dε (uε) ≥ nπL|log ε| + πn(n − 1)L| log hε| − C, (47)

|B(uε)| ≤ C |log ε|−1, (48)
∫

z∈B(uε)

∫

ω

e2dε (uε) dx dz ≤ C, (49)

∫

�

|∂zuε|2dx dz ≤ C . (50)

We will later improve on some of these estimates under the hypotheses of our main
theorem.

Proof of Lemma 6 Conclusions (47) and (50) are proved in Lemma 9 of [7]. The proof relies
on the parts of Lemma 5 proved above, together with properties of the renormalized energy
Wω (see Lemma 4 of [7]) and a short argument using Jensen’s inequality. The proof also
easily yields the other conclusions (48), (49) stated here. Indeed, the proof of Lemma 9 in
[7] actually shows6 that

∫

z∈G(uε)

∫

ω

e2dε (uε) dx dz ≥
(
nπ |log ε| + n(n − 1)π(| log hε| − C

)
|G(uε)|.

On the other hand it is clear from the definitions that
∫

z∈B(uε)

∫

ω

e2dε (uε) dx dz ≥ (nπ + θ)|log ε| |B(uε)|.

Since eε(uε) = e2dε (uε)+ 1
2 |∂zuε|2 and |G(uε)|+|B(uε)| = L , by comparing these estimates

with the hypothesis (11), we easily obtain (48) and (49). ��
We now state a result that establishes a sort of approximate equicontinuity of the map

z ∈ G(uε) �→ π
∑

δ f ε
j (z)

for finite ε > 0.

Lemma 7 Assume that (10), (11) hold. Then for every δ > 0, there exists positive constants
ε0,C such that if 0 < ε < ε0, then the following holds:

Assume that z1, z2 are points in G(uε) such that |z1 − z2| > δ, and let gε
j (z�) denote the

points provided by Lemma 5 for � = 1, 2. Then for f ε
j (z�) := gε

j (z�)/hε ,

π min
σ∈Sn

n∑

j=1

| f ε
σ ( j)(z2) − f ε

j (z1)|2
|z2 − z1| ≤ C . (51)

Proof of conclusion (43) of Lemma 5 and of Lemma 7 Estimate (43) is shown to hold in Step 3
of the proof of Lemma 12 in [7], via a compactness argument based on Lemma 8, see below.

Lemma 7 then follows from Lemma 8 by almost exactly the same compactness argument.
The constant C appearing in (51) may be chosen to be a multiple of the uniform bound for∫
�

|∂zuε|2, established in Lemma 6 and depending only on c1, c2 from (10), (11). ��

6 Note that the setsGε
2 andBε

2 from [7] coincide exactlywith our setsG(uε) andB(uε); compare our definitions
(45) with [7], equation (3.16).
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The last result in this section is the lemma used in the compactness arguments described
above. It will be used again in the proof of Proposition 3. In [7] it provides the basic estimate
that eventually implies that z �→ f (z) = ( f1(z), . . . , fn(z)) belongs to H1((0, L), (R2)n),
see Proposition 1.

Lemma 8 Assume that (uε) satisfies (10), (11). Let vε(x, z) := uε(hεx, z).
Assume that {zε1} and {zε2} are sequences in [0, L] such that zεj → z j for j = 1, 2, with

0 ≤ z1 < z2 ≤ L, and that the following conditions hold for j = 1, 2 (perhaps after passing
to a subsequence):

Jxvε(·, zεj ) → π

n(z)∑

i=1

δpi (z j ) in W−1,1(B(R)), for all R > 0,

(for certain points {pi (z j )}n(z j )
i=1 , not necessarily distinct) and

lim sup
ε→0

|log ε|−1
∫

ω

e2dε (uε(x, z
ε
j ))dx ≤ Mπ

for some M > 0. Then n(z1) = n(z2) =: m, and

π

2
min
σ∈Sm

m∑

i=1

|pi (z1) − pσ(i)(z2)|2
z2 − z1

≤ lim inf
ε→0

∫ z2

z1

∫

ωε

1

2
|∂zuε|2 dx dz.

Proof This is essentially Lemma 10 of [7]. Apart from some notational changes, the main
difference is that Lemma 10 of [7] is proved under an assumption that is somewhat weaker
than (10). As a result, it is stated there for a rescaling vε(x, z) := uε(�εx, z) using a scaling
factor �ε that is shown only later to equal hε . With the stronger assumption (10), the proof
can be simplified, and one can work directly with the �ε = hε. ��

3.2 Proof of Proposition 1

Proof With a couple of exceptions, everything in Proposition 1 is taken directly from the
statement of Theorem 3 in [7].

The first exception is the compactness assertion (13); in [7], compactness is proved to
hold only with respect to a weaker topology. To prove (13), we argue as follows. First note
that

∫

z∈B(uε)

‖Jxuε(·, z) − π

n∑

j=1

δhε f j (z)‖W−1,1(ω)dz

≤ nπ |B(uε)| +
∫

z∈B(uε)

‖Jxuε(·, z)‖W−1,1(ω)dz

≤ nπ |B(uε)| + C |log ε|−1
∫

z∈B(uε)

e2dε (uε)(x, z)dz

≤ C |log ε|−1 = Ch2ε (52)
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by standard Jacobian estimates (see for example [17] or [25]) and Lemma 6, for C =
C(c1, c2, n). On the other hand, by (41) and (46),

∫

z∈G(uε)

‖Jxuε(·, z) − π

n∑

j=1

δhε f j (z)‖W−1,1(ω)dz

≤
∫

z∈G(uε)

‖π
n∑

j=1

δhε f ε
j (z)

− π

n∑

j=1

δhε f j (z)‖W−1,1(ω)dz + Cεa . (53)

It is also shown in [7], Lemmas 13 and 14 that after passing to a suitable subsequence εk → 0,
there is a set HG ⊂ (0, L) of full measure, such that if z ∈ HG , then there exists � = �(z)
such that z ∈ G(uεk ) for all k ≥ �, and

‖π
n∑

j=1

δ f
εk
j (z) − π

n∑

j=1

δ f j (z)‖W−1,1(B(R)) → 0 for every R > 0

as k → ∞. This implies that

‖π
n∑

j=1

δhεk f
εk
j (z) − π

n∑

j=1

δhεk f j (z)‖W−1,1(ω) = o(hεk ) for every z ∈ HG

as k → ∞. It also follows from (43) that

‖π
n∑

j=1

δhεk f
εk
j (z) − π

n∑

j=1

δhεk f j (z)‖W−1,1(ω) ≤ Chεk for z ∈ G(uεk ) \ HG ,

so the conclusion follows from the dominated convergence theorem, together with (52) and
(53).

The other assertion that is not taken directly from the statement of Theorem 3 in [7] is the
estimate ‖ f ‖H1 ≤ C(c1, c2). To prove this, we use (5) to deduce that for z ∈ HG ,

∑

i

| fi (z)| =
∑

i

| fi (z) − 0| = lim
k→∞

1

hε

‖
∑

i

δhεk fi (z) − nπδ0‖W−1,1(ω)

= lim
k→∞

1

πhε

‖Jxuε(·, z) − nπδ0‖W−1,1(ω).

Thus Fatou’s Lemma and (10) imply that

‖ f ‖L1 ≤ C(c1).

We may then use Jensen’s inequality and the fact from [7] that G0( f ) ≤ c2 to estimate

π

2

∫ L

0

∑

j

| f ′
j |2dz = G0( f ) + π

∑

i �= j

∫ L

0
log | fi − f j |dz

≤ c2 + Lπ
∑

i �= j

log

(
1

L

∫ L

0
| fi − f j |dz

)

≤ C(c1, c2).

Finally, ‖ f ‖L2 is controlled by interpolating between ‖ f ‖L1 and ‖ f ′‖L2 . ��
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3.3 Proof of Proposition 2

Proof of (15) It suffices to show, given any subsequence satisfying (11), (13) for which

|log ε|−1∂avε · ∂bvε⇀ some limit, weakly as measures

that this limit can only equal πδab
∑

i δ fi (z) ⊗ dz. For z ∈ (0, L), let

E2d
ε (z) := 1

|log ε|
∫

ω×{z}
e2dε (uε) dx = 1

|log ε|
∫

ωε×{z}
e2dε′ (vε) dx

where ε′ = ε/hε. It follows from the definition ofB(uε) that E2d
ε (z) ≥ nπ +θ for z ∈ B(uε),

and since (43) implies that Wω(gε
1, . . . , g

ε
n) ≥ nπ | log hε| − C , we deduce from (44) that

E2d
ε (z) ≥ nπ − o(1) uniformly for z ∈ G(uε), as ε → 0. On the other hand, the assumed

energy scaling (11) implies that
∫ L
0 E2d

ε (z) dz → nπL as ε → 0. In view of these facts,
after passing to a further subsequence if necessary, we may assume that

1

|log ε|
∫

ωε×{z}
e2dε′ (vε) dx → nπ for a.e. z ∈ (0, L). (54)

Next, upon rescaling (13) and passing to a further subsequence,

‖Jvε − π

n∑

i=1

δ fi (z)‖W−1,1(ωε)
→ 0 for a.e. z ∈ (0, L). (55)

It follows from Theorem 5 in [15] or Corollary 4 in [24] that whenever the above two
conditions hold (i.e. a.e.),

1

|log ε|∂avε · ∂bvε(·, z)⇀δabπ

n∑

i=1

δ fi (z) weakly as measures.

Now fix any φ ∈ Cc(R
2 × [0, L]), and let

�ε(z) := 1

|log ε|
∫

ωε×{z}
φ(x, z)∂avε · ∂bvε(x, z) dx .

We write �ε = �G,ε + �B,ε, where �G,ε = χz∈G(uε)�ε(z). It follows immediately from
(49) that �B,ε → 0 in L1((0, L)). We may assume after passing to a subsequence that
χB(uε) → 0 a.e.. It then follows that

�G,ε(z) → δabπ

n∑

i=1

φ( fi (z), z) for a.e. z.

The definition of G(uε) implies that supz |�G,ε(z)| ≤ (nπ + θ) sup(x,z) |φ(x, z)| ≤ C . Thus
the dominated convergence theorem implies that

lim
ε→0

∫ L

0
�ε(z)dz = δabπ

n∑

i=1

φ( fi (z), z) dz.

This is (15). ��
Proof of (17) For δ > 0, let

Iδ := {z ∈ (0, L) : min
i �= j

| fi (z) − f j (z)| > δ}.
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We know from (14) that G0( f ) < ∞, which implies that |Iδ| → L as δ → 0. It thus suffices
to prove that for any nonnegative φ ∈ Cc(R

2 × [0, L]) and for every δ > 0,

lim inf
ε→0

∫

ωεIδ

φ
|∂zvε|2
|log ε| dx dz ≥ π

n∑

i=1

∫

Iδ

| f ′
i (z)|2φ( fi (z), z) dz. (56)

We may write Iδ as a disjoint union of open intervals. Let I denote one such interval. In
view of arguments in the proof of (15), it suffices to prove that if f ∈ H1(I , (R2)n) is such
that (54), (55) hold for a.e. z ∈ I and minz∈I mini �=h | fi (z) − f j (z)| ≥ δ > 0, then (56) is
satisfied (with Iδ replaced by I ).

There are a number of proofs of this fact7 when φ ≡ 1; see for example [14] Proposition
3 or [24], Corollary 7. These proofs proceed by considering separately the energetic contri-
butions associated to each trajectory z �→ ( fi (z), z), and they show that for any r > 0, and
every i ∈ {1, . . . , n}, and every interval J ⊂ I

lim inf
ε→0

∫

z∈J

∫

Br ( fi (z))

|∂zvε|2
|log ε| dx dz ≥ π

∫

J
| f ′

i (z)|2 dz.

This easily implies the desired estimate. ��

Proof of (16) First, recalling that vε(x, z) = uε(hεx, z) and using (12),
∫

�

|∂zuε|2 dx dz =
∫

�

|∂zvε|2
|log ε| dx dz ≤ C(c1, c2, n).

We may thus assume that |log ε|−1∂zvε · ∇xvε converges weakly to a limiting R
2-valued

measure, say λ on R2 × [0, L].
Now fix some g ∈ C1((0, L),R2), and let

ũε(x, z) := uε(x − hεg(z), z), ṽε(x, z) := ũε(hεx, z) = vε(x − g(z), z).

If we fix some ω̃ ⊂⊂ ω such that 0 ∈ ω̃, we may then take the domain of ũε to be �̃ :=
ω̃× (0, L), for all sufficiently small ε. (We remark that although we are ultimately interested
in uε that is periodic in the z variable, here we do not assume that g is periodic.)

It is straightforward to check from (13) and the definition of ũε that

∫ L

0
‖Jx ũε(·, z) − π

n∑

j=1

δhε( f j (z)+g(z))‖W−1,1(ω̃)dz = o(hε) as ε → 0.

Also, since hε = |log ε|−1/2 and extending the definition (4) of Gε to include a dependence
in the domain, we have

Gε(ũε; �̃) ≤ Gε(uε;�) +
∫

�

|g′(z) · ∇xuε|√|log ε| |∂zuε| + 1

2

|g′(z) · ∇xuε|2
|log ε| dx dz

≤ c2 + C
∫

�

|∂zuε|2 + |∇xuε|2
|log ε| dx dz

≤ K̃1

7 These results assume that (54), (55) hold for every z ∈ I , but the proofs extend to our situation with
essentially no change.

123



Dynamics of nearly parallel vortex filaments for the Gross... Page 23 of 34 127

for some suitable K̃1, whenever ε is sufficiently small. Thus (17) implies that for any con-
tinuous φ̃ ≥ 0,

lim inf
ε→0

∫
φ̃(x, z)

|∂z ṽε(x, z)|2
|log ε| dx dz ≥

∑

i

π

∫ L

0
|∂z( fi + g)(z)|2φ̃( fi (z) + g(z), z) dz.

Taking φ̃ of the form φ̃(x, z) = φ(x − g(z), z), we get the more convenient expression

lim inf
ε→0

∫
φ(x − g(z), z)

|∂z ṽε(x, z)|2
|log ε| dx dz ≥

∑

i

π

∫ L

0
|∂z( fi + g)(z)|2φ( fi (z), z) dz.

On the other hand, by using the definition of ṽε and making the change of variables (x −
g(x), z) �→ (x, z), we obtain

∫
φ(x − g(z), z)|∂z ṽε(x, z)|2 dx dz =

∫
φ(x, z)|∂zvε(x, z)|2 dx dz

+
∫

φ(x, z)
(−2g′(z) · ∇xvε(x, z) · ∂zvε(x, z) + |g′(z) · ∇xvε(x, z)|2

)
dx dz.

Dividing by |log ε|, letting ε → 0, and invoking (12) and (15), we find that

lim sup
ε→0

∫
φ(x − g(z), z)

|∂z ṽε(x, z)|2
|log ε| dx dz

≤ C − 2
∫

R2×(0,L)

φ(x, z)g′(z) · dλ +
∑

i

π

∫ L

0
|∂zg(z)|2φ( fi , z) dz.

Combining this with the previous inequality and rewriting, we conclude that
∫

R2×(0,L)

φ(x, z)g′(z) · dλ + π

∫ L

0
φ(x, z)g′(z) · d

(
∑

i

f ′
i (z)δ fi (z) ⊗ dz

)
≤ C

for g, φ as above, with C depending on c1, c2, f , n, φ but independent of g . Since we may
multiply a given g by an arbitrary real constant, it follows that in fact

∫
φ(x, z)g′(z) · dλ + π

∫
φ(x, z)g′(z) · d

(
∑

i

f ′
i (z)δ fi (z) ⊗ dz

)
= 0

and hence that

λ = −π
∑

i

f ′
i (z)δ fi (z) ⊗ dz.

This is (16). ��

3.4 Proof of Proposition 3

Define

σ 2d
ε (z) = σ 2d

ε (z; uε, hε f ) =
∫

ω

e2dε (uε(x, z))dx − Wε(hε f (z);ω)

where for a ∈ ωn ,

Wε(a;ω) = n(π |log ε| + γ ) − π
∑

i �= j

log |ai (z) − a j (z)| + π
∑

i, j

Hω(ai , a j ) .
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Recall that Hω is defined in Sect. 1.2. We interpret σ 2d
ε (z) as the surplus 2d (horizontal)

energy of uε at height z, with respect to the vortex positions hε f (z). Further define

�2d
ε = �2d

ε (uε, hε f ) =
∫ L

0
σ 2d

ε (z)dz.

Proof of estimate (20) Assume toward a contradiction that there exists a sequence (uε)ε∈(0,1]
in H1(�,C) such that

∫ L

0
‖Juε(·, z) − π

n∑

i=1

δhε fi (z)‖W−1,1(ω)dz = o(hε)

and Gε(uε) − G0( f ) ≤ �ε ≤ 1, but

lim sup
ε→0

∫ L

0

∫

ω\∪n
i=1B(hε fi (x),hεr)

eε(|uε|) + 1

4

∣∣∣∣
juε

|uε| − j∗hε f

∣∣∣∣
2

− K3�ε > 0 (57)

for K3 to be chosen in a moment, and depending only on ‖ f ‖H1 and r < 1
4ρ f .

This sequence satisfies the hypotheses (10), (11) of Lemma5with and c1 = 1+nπL‖ f ‖∞
and c2 = G0( f ) + 1, which are both controlled by ‖ f ‖H1 and r . Let θ = θ(n, c1, c2) be
the constant found in Lemma 5. We will obtain a contradiction to (57) with K3 = 4

θ
nπ + 4,

thereby proving (20) for that value of K3.
For this choice of θ , we define sets G(uε) and B(uε) as in (45). For z ∈ G(uε), Lemma 5

provides points gε
j (z) satisfying (41), (42) for 0 < ε < ε0(n, ‖ f ‖H1 , ρ f , �), with constants

such as a in (41) depending on the same quantities.
Setting f ε

j (z) = h−1
ε gε

j (z), it follows from (41) that

∫

z∈G(uε)

‖
n∑

i=1

δhε f ε
j (z)

−
n∑

i=1

δhε fi (z)‖W−1,1(ω)dz = o(hε) as ε → 0. (58)

Our first goal is to strengthen this to read

sup
z∈G(uε)

‖
n∑

i=1

δhε f ε
j (z)

−
n∑

i=1

δhε fi (z)‖W−1,1(ω) = o(hε) as ε → 0. (59)

In brief, this follows from a compactness argument based on (58) and Lemma 8. Here are
the details:

Assume toward a contradiction that (59) fails. Then there exists a (sub)sequence ε → 0
and points zε ∈ G(uε) such that

‖
n∑

i=1

δhε f ε
j (zε)

−
n∑

i=1

δhε fi (zε)‖W−1,1(ω) ≥ chε > 0 for all ε. (60)

It follows from (48) and (58) that for all sufficiently small terms in the same subsequence,
we may find points ζε ∈ G(uε) such that

‖
n∑

i=1

δhε f ε
j (ζε) −

n∑

i=1

δhε fi (ζε)‖W−1,1(ω) = o(hε), and α < |zε − ζε| < 2α
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for some α to be fixed below. Extracting a further subsequence we may assume that zε → z
and ζε → ζ , and that there exist m ≤ n and p1, . . . , pm ∈ R

2 such that

n∑

i=1

δ f ε
i (ζε) →

n∑

i=1

δ fi (ζ ), and
n∑

i=1

δ f ε
i (zε) →

m∑

i=1

δpi (z)

in W−1,1(B(R)) for every R > 0. (In fact both limits hold in stronger topologies as well.)
These facts and (41) imply that for vε(x, z) := uε(hεx, z),

Jxv(·, ζε) → π

n∑

i=1

δ fi (ζ ), Jxv(·, zε) → π

m∑

i=1

δpi (z)

in the same topology. Then Lemma 8 and conclusion (12) from Proposition 1 imply that
m = n and that

min
σ∈Sn

n∑

i=1

| fi (ζ ) − pσ(i)(z)|2 ≤ |z − ζ |C ≤ 2αC .

(Here and below, the constant depends on f and �.) On the other hand, since f is Hölder
continuous, it follows from (60) that

min
σ∈Sn

n∑

i=1

| fi (ζ ) − pσ(i)(z))| ≥ min
σ∈Sn

n∑

i=1

| fi (z) − pσ(i)(z))| − nC |z − ζ |1/2 ≥ c − nCα1/2.

A contradiction is reached by choosing α sufficiently small, depending only on f , �, and c.
This completes the proof of (59).

Next, we remark that in view of the fact that ρ f > 0, it follows from (59) and (5) that the
labels on f ε

i may be chosen so that

sup
z∈G(uε)

| f ε
i (z) − fi (z)| → 0 as ε → 0. (61)

We will write

ω(z, ε, f ) := ω \ ∪n
i=1B(hε fi (z), hεr).

For z ∈ G(uε), Theorem 2 of [18], for which the main hypothesis is a consequence of (41),
provides certain integral estimates on ω \∪n

i=1B(hε f ε
i (z),Cεa/2), where a > 0 comes from

(41) and C depends on various ingredients that are fixed. It follows from (59) and (5) that if
ε is sufficiently small, then for every z ∈ G(uε), this set contains ω(z, ε, f ). Theorem 2 of
[18] thus implies that for every z ∈ G(uε),

∫

ω(z,ε, f )×{z}
e2dε (|uε|) + 1

4

∣∣∣∣
juε

|uε| − j∗ω(hε f
ε(z))

∣∣∣∣
2

dx

≤
∫

ω×{z}
e2dε (u) dx − [n(π |log ε| + γ ) + Wω(hε f

ε(z))
]+ Cεa/2.

We recall that Wω is defined in Sect. 1.2. It is easy to check from the definition there that

n(π |log ε| + γ ) + Wω(hε f
ε(z)) = πW( f ε(z)) + κ(n, ε, ω) + O(hε)
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where W is introduced in (30). Thus
∫

z∈G(uε)

∫

ω(z,ε, f )×{z}
e2dε (|uε|) + 1

8

∣∣∣∣
juε

|uε| − j∗ω(hε f (z))

∣∣∣∣
2

dx dz

≤
∫

z∈G(uε)

∫

ω(z,ε, f )×{z}
1

4

∣∣ j∗ω(hε f (z)) − j∗ω(hε f
ε(z))

∣∣2 dx dz

+
∫

z∈G(uε)

(∫

ω×{z}
e2dε (u) dx − κ(n, ε, ω) − πW( f ε(z))

)
dz + O(hε).

It follows from (61) and Lemma 9 below that the first term on the right-hand side vanishes
as ε → 0. Using this, we add and subtract various terms to rewrite the above inequality as

∫

z∈G(uε)

∫

ω(z,ε, f )×{z}
e2dε (|uε|) + 1

8

∣∣∣∣
juε

|uε| − j∗ω(hε f (z))

∣∣∣∣
2

dx dz

≤ Gε(uε) − G0( f ) −
(∫

�

|∂zuε|2
2

dx dz − π

2

∫ L

0
| f ′(z)|2 dz

)

−
∫

z∈B(uε)

(∫

ω×{z}
e2dε (u) dx − κ(n, ε, ω) − πW( f (z))

)
dz + o(1).

(62)

Clearly |W( f )| is bounded by a constant depending on n, ρ0 and ‖ f ‖H1 , and it follows that
κ(n, ε, ω)+πW( f (z)) ≤ (πn + θ

2 )|log ε| for all sufficiently small ε. Then the definition of
B(uε) implies that

∫
ω×{z} e

2d
ε (u) dx − κ(n, ε, ω) − πW( f (z)) ≥ θ

2 |log ε| when z ∈ B(uε).
Taking ε smaller, if necessary, we may assume by (17) that

∫

�

|∂zuε|2
2

dx dz − π

2

∫ L

0
| f ′(z)|2 dz ≥ −�δ

for � > 0 to be chosen. Employing this in (62) and discarding the left-hand side, we deduce
that

|B(uε)| ≤ 4

θ
(�ε + �δ)|log ε|−1

for all sufficiently small ε > 0. Returning to (62) with this new information, we deduce that
∫

z∈B(uε)

∫

ω×{z}
e2dε (u) dx dz ≤ �ε + �δ + 4

θ
(�ε + �δ)(nπ + θ

2
)

≤ (3 + 4nπ

θ
)�ε + δ

4
+ o(1)

provided� ≤ 1
4 is chosen small enough, depending only on n and θ , which itself is universal.

Then, since

e2dε (|uε|) + 1

8

∣∣∣∣
juε

|uε| − j∗ω(hε f (z))

∣∣∣∣
2

≤ e2dε (u) + 1

4
| j∗ω(hε f (z))|2,

we use (62) and the above estimate of |B(uε)| to find that
∫ L

0

∫

ω(z,ε, f )×{z}
e2dε (|uε|) + 1

8

∣∣∣∣
juε

|uε| − j∗ω(hε f (z))

∣∣∣∣
2

dx dz

≤ (4 + 4nπ

θ
)�ε + δ

2
+
∫

z∈B(uε)

∫

ω(z,ε, f )×{z}
1

4
| j∗ω(hε f (z))|2dx dz + o(1).
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Finally,
∫

ω(z,ε, f )×{z}
1

4
| j∗ω(hε f (z))|2dx dz ≤ C | log hε| = o(|log ε|)

for a constant that depends only on n and ‖ f ‖H1 and r ; this can be verified by arguments
similar to those in Lemma 9 below. Using this in the above inequality, we conclude that
∫ L

0

∫

ω(z,ε, f )×{z}
e2dε (|uε|) + 1

8

∣∣∣∣
juε

|uε| − j∗ω(hε f (z))

∣∣∣∣
2

dx dz ≤
(
4

θ
nπ + 4

)
�ε + 3

4
δ

for all sufficiently small ε. This contradicts (57) and completes the proof of (20). ��
Note that one can repeat the above proof with essentially no change, after replacing f in

(57) and the two preceding assumptions by a sequence f̃ ε with a uniform upper bound on
‖ f̃ ε‖H1 and the uniform lower bound on ρ f̃ ε ≥ 4r , for r fixed. Then essentially8 the same
argument as above leads to the same contradiction, establishing (20) with ε3, c3 that depend
only on ‖ f ‖H1 and r .

Next is the lemma that was used above.

Lemma 9 Assume that a, a′ ∈ ωn and that there exist r0 ≥ r1 > 0 such that

dist(ai , ∂ω) > r0 and |ai − ãi | ≤ 1

2
r1 ≤ 1

4
ρa for all i .

Then
∫

ω\∪Br1 (ai )
| j∗ω(a) − j∗ω(a′)|2 dx ≤ C(n, r0, ω)|a − a′|2 + C(n)(

|a − a′|
r1

)2.

In particular, the above constants are independent of r1.

Proof Using notation from Sect. 1.2,

| j∗ω(x; a) − j∗ω(x; a′)|2 ≤ 2n
∑

i

∣∣∣∣
x − ai

|x − ai |2 − x − a′
i

|x − a′
i |2
∣∣∣∣
2

+ 2n
∑

i

|∇Hω(x, ai ) − ∇Hω(x, a′
i )|2.

The definition of Hω and the maximum principle imply that

|∇Hω(x, ai ) − ∇Hω(x, a′
i )| ≤ C(r0)|ai − a′

i |,
and a short computation shows that if |x − a| ≥ 2|a − a′|, then

∣∣∣∣
x − ai

|x − ai |2 − x − a′
i

|x − a′
i |2
∣∣∣∣
2

≤ 4
|ai − a′

i |2
|x − ai |4 .

Thus
∫

ω\∪Br1 (ai )
| j∗ω(x; a) − j∗ω(x; a′)|2

≤ 2n|a − a′|2
∫

R2\Br1 (0)
|x |−4dx + C(n, r0, ω)|a − a′|2

from which the conclusion of the lemma follows.

8 after extracting a uniformly convergent subsequence of { f̃ ε}
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Proof of (22) Assume toward a contradiction that there is a subsequence along which (18),
(19) and (21) hold for every ε, but there exists η1 > 0 such that

lim
ε→0

h−1
ε

∫ L

0
‖Jxuε(·, z) − π

h∑

i=1

δhε fi (z)‖F(ω)dz ≥ lim
ε→0

(
πnL(T f

r ,ε(uε) + η1)
) 1

2

=: (πnL(Tlim + η1))
1/2.

(63)

Clearly (18), (19) imply that the hypotheses of Proposition 1 are satisfied (with a larger
constant in (10) than in (18)), so we may use the proposition to find a subsequence, still
denoted (uε), and a function f 0 ∈ H1((0, L), (R2)n) such that

∫ L

0
‖Jxuε(·, z) − π

n∑

j=1

δhε f 0j (z)
‖W−1,1(ω)dz = o(hε) (64)

as ε → 0.
We will first show that, after choosing c3 suitably small and possibly relabelling,

‖ f j − f 0j ‖L∞((0,L)) ≤ r for j = 1, . . . , n. (65)

We start by noting from (18), (63), and (64) that

(πnL(Tlim + η1))
1
2 ≤ lim

ε→0

1

h ε

∫ L

0
‖π
∑

j

(δhε f j (z) − δhε f 0j (z)
)‖W−1,1(ω) ≤ c3.

It follows from (5) that for all sufficiently small ε and all z,

‖π
∑

j

(δhε f 0j (z)
− δhε f j (z))‖W−1,1(ω) = πhε min

σ∈Sn
∑

j

| f j (z) − f 0σ( j)(z)|.

Thus

(πnLTlim)
1
2 + η1 ≤ π

∫ L

0
min
σ∈Sn

∑

j

| f j (z) − f 0σ( j)(z)| dz ≤ c3. (66)

In particular, this implies that

‖ f ‖L1 ≤ C( f 0, c3).

It follows from a Sobolev embedding and (14) that there exists C = C( f 0, c2, c3) such that

[ f ]C0,1/2 ≤ ‖ f ′‖L2 ≤ C, and thus [ f − f 0]C0,1/2 ≤ C . (67)

Next, we deduce from (66) and Chebyshev’s inequality that
∣∣∣∣∣∣

⎧
⎨

⎩z ∈ (0, L) : min
σ∈Sn

∑

j

| f j (z) − f 0σ( j)(z)| > r/2

⎫
⎬

⎭

∣∣∣∣∣∣
≤ 2c3

r
.

If minσ∈Sn
∑

j | f j (z0) − f 0σ( j)(z0)| > r for any z0 ∈ (0, L), then it follows from (67) that

min
σ∈Sn

∑

j

| f j (z) − f 0σ( j)(z)| > r/2 for all z ∈ (0, L) such that |z − z0| < r2/C .
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Fixing c3 small enough (which only decreases the constant C( f0, c2, c3) in (67)), we can
arrange that the two above estimates are incompatible. (This adjustment to c3 again depends
only on ρ f ≥ 4r and ‖ f ‖H1 .) It follows that for this choice of c3,

min
σ∈Sn

∑

j

| f j (z) − f 0σ( j)(z)| ≤ r for every z ∈ (0, L).

As a result, we can find a single permutation π , independent of z, such that
∑

j | f j (z) −
f 0π( j)(z)| = minσ

∑
j | f j (z) − f 0σ( j)(z)| ≤ r for all z. Using this permutation π to relabel

the indices, we obtain (65).
If we write ϕ(x) := χr (

|x |
hε

)(
|x |
hε

)2, then since ‖∇xϕ‖∞ ≤ C/hε, it follows from (18), (64)
that

Tlim = π
∑

i, j

∫ L

0
χr (| f j (z) − f 0i (z)|)| f j (z) − f 0i (z)|2 dz.

However, since | f 0i − f 0j | ≥ 4r , we see from (65) that

χr (| f j (z) − f 0i (z)|) = δi j for all i, j and all z ∈ (0, L).

So we obtain

π‖ f − f 0‖2L2 = Tlim .

On the other hand, since we have by now arranged that

min
σ

∑

j

| f j (z) − f 0σ( j)(z)| =
∑

j

| f j (z) − f 0j (z)| ≤ √
n| f (z) − f 0(z)| for all z,

we pass to the limit in (63) to find that
√
nπL(

√
π‖ f − f 0‖L2 + η1) ≤ √

nπ‖ f − f 0‖L1 ,

in contradiction to the Cauchy-Schwarz inequality. Thus (22) holds. ��

4 Compactness in time

In this last section we present the proofs of Proposition 4, Corollary 1 and Proposition 5.

4.1 Proof of Proposition 4

Proof Weonly need to prove (26), since all other conclusions follow from that andProposition
3.

To prove (26), we define the stopping time

t∗ := sup{t > 0 : uε(·, ·, h2εs) satisfies (18), (21) for all s ∈ (0, t)}
where f should be replaced by g in (18), (21). By a change of variables,

T g
r ,ε(uε(·, ·, h2ε t)) = T g

r (vε(·, ·, t)),
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where T g
r := T g

r ,1 and uε, vε are related by (32). We use (35) with ϕ(x, z, t) = χ
g
r (x, z) to

find that

d

dt
T g
r (vε(·, ·, t)) ≤

∣∣∣∣
∫

εab∂acχ
g
r ∂bvε · ∂cvε dx dz

∣∣∣∣+
∣∣∣∣
∫

εab∂azχ
g
r

∂bvε · ∂zvε

|log ε| dx dz

∣∣∣∣ .

The definition of χ
g
r and assumption r ≤ ρr/4 implies that ∂acχ

g
r (x, z) = 2δac when

|x − gi (z)| < r for some i , and hence that

εab∂acχ
g
r ∂bvε · ∂cvε = 0 in ∪i B(gi (z), r).

In addition,

|∇xvε|2 ≤ 2eε(|vε|) + | j(vε)|2
|vε|2 ≤ 2eε(|vε|) + 2

∣∣∣∣
juε

|uε| − j∗ω(hεg)

∣∣∣∣
2

+ 2
∣∣ j∗ω(hεg)

∣∣2 .

Thedefinition of t∗ allows us to apply estimates fromProposition 1 (with c1 = c4+nπL‖g‖∞
and c2 = G0(g) + 1) and Proposition 3 (with δ = � = 1 for example) to vε(·, ·, t), for any
t ∈ (0, t∗), as long as c4, ε4 are taken to be small enough, depending only on ‖g‖H1 , n and
r . We may therefore deduce from (20) that

∣∣∣∣
∫

εab∂acχ
g
r ∂bvε · ∂cvε dx dz

∣∣∣∣ ≤ C(K3 + 1)‖∇2
xχ

g
r ‖∞ = C(r , n, g).

The remaining integral on the right-hand side is estimated by using (12) (which after rescaling
to vε acquires a factor of |log ε|−1) to find that

∣∣∣∣
∫

εab∂azχ
g
r

∂bvε · ∂zvε

|log ε| dx dz

∣∣∣∣ ≤
1

|log ε| ‖∇x∂zχ
g
r ‖L∞ ‖∇xvε‖L2‖∇zvε‖L2

≤ ‖g‖LipC(c1, c2, n).

Thus

d

dt
T g
r (vε(·, ·, t)) ≤ C(r , n, ‖g‖H1) + ‖g‖LipC(c1, c2, n) =: C4.

It follows that (26) holds for all t ∈ (0, t∗). Then, thanks to (27) and (28), we conclude that
t∗ ≥ t4, completing the proof of (26). ��

4.2 Proof of Corollary 1

Proof Since f (0) may not be a Lipschitz function, we first mollify it to a function which we
call g and which we require to satisfy supi,z | fi (0, z)− gi (z)| < αρ f (0) for some α < 1/8 to
be chosen, and thus ρg > (1− 2α)ρ f (0). Since f (0) is already in H1, we have that |g|H1 ≤
| f (0)|H1 . Proposition 4, applied to g, r = ρg/4, provides us with constants ε4, t4, c4,C4,
the important point being that ε4 and c4 do not depend on the strength of the mollification.
Without loss of generality, we may also assume that c4 ≤ 1

8ρ f (0). In view of the assumptions
of Theorem 1, we may assume, decreasing the value of ε4 if necessary, that (23) and (24)
hold for every ε ≤ ε4. Finally, it is clear that ||χ g

r ,ε(·, z)‖W 1,∞(ω) ≤ C(r)h−1
ε for every

z ∈ (0, L), so assumption (6) implies that lim supε→0 T
g
r ,ε(u0ε) ≤ π‖ f (0) − g‖2

L2 . We may

therefore assume, decreasing ε4 further if necessary, that T g
r ,ε(u0ε) ≤ 2π‖ f (0) − g‖2

L2 ≤
2nπ2α2Lρ2

f (0) for every ε ≤ ε4, and in particular that (25) holds. In view of (23) and (28),
we may then apply Proposition 1 for each fixed time t ∈ [0, t4] and derive some limiting
f ∗(t) after passing to a possible subsequence.

123



Dynamics of nearly parallel vortex filaments for the Gross... Page 31 of 34 127

The potential difficulty at this level is that the subsequence may depend on the value of
t ; to overcome this we will rely on the form of continuity in time provided by estimate (26).
We first derive some estimates that apply to any limit f ∗(t) produced by the above argument.
Note that (27) and (13) imply that

1

hε

∫ L

0
‖π

n∑

i=1

δhε f ∗
i (z,t) − π

n∑

i=1

δhεgi (z)‖W−1,1(ω)dz ≤ (nπL(T g
r ,ε(u

0
ε) + C4t)

) 1
2 ,

and (14) implies that ‖ f ∗(t)‖H1 ≤ C(G0(g)). Using (5),

∫ L

0
min
σ∈Sn

| f ∗
σ(i)(z, t) − gi (z)|dz ≤ (nπL(T g

r ,ε(u
0
ε) + C4t)

) 1
2 .

Since f ∗(t) − g is uniformly bounded in H1, by choosing t0 ≤ t4 and α sufficiently small,
we conclude that

max
z

min
σ∈Sn

| f ∗
σ(i)(z, t) − f 0i (z)| < max

z
min
σ∈Sn

| f ∗
σ(i)(z, t) − gi (z)| + | f 0i (z) − gi (z)|

≤ 1

16
ρ f (0)

for all t ∈ [0, t0]. It follows that there is a single permutation σ that attains the min for all z.
After relabelling f ∗ if necessary, we deduce that (29) holds when s = 0. Finally, using the
L∞ continuity of s �→ f (·, s) and decreasing t0 as needed, we deduce that (29) holds for all
s, t ∈ [0, t0].

To prove continuity in time, we start by using a Cantor diagonal argument to fix a subse-
quence ε → 0 such that

∫ L

0
‖Jxuε(·, z, h2ε t) − π

n∑

j=1

δhε f ∗
j (z,t)‖W−1,1(ω)dz = o(hε) as ε → 0

for every time t inQ∩[0, t0]. We claim that the mapping t �→ f ∗(t) is uniformly continuous
from Q ∩ [0, t0] into L1([0, L]). Indeed, let η > 0 be given, and let s0, s1 ∈ Q ∩ [0, t0] be
arbitrary. We write

∑

i

‖ f ∗
i (s0) − f ∗

i (s1)‖L1 ≤
∑

i

‖ f ∗
i (s0) − g∗

i (s0)‖L1 +
∑

i

‖g∗
i (s0) − f ∗

i (s1)‖L1 (68)

where g∗(s0) is a mollification of f ∗(s0). It follows from (14) that t �→ f ∗(t) is uniformly
bounded with values into H1 , so we may fix the mollification parameter sufficiently fine,
but independently of s0, such that

∑

i

‖ f ∗
i (s0) − g∗

i (s0)‖L1 ≤ η/2. (69)
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Next, we pass to the limit in the conclusions of Proposition 4 applied this time to g = g∗(s0)
and conclude that

π
∑

i

‖g∗
i (s0) − f ∗

i (s1)‖L1

= lim
ε→0

h−1
ε

∫ L

0
‖Jxuε(·, z, h2εs1) − π

n∑

i=1

δhεg∗
i (z,s0)‖W−1,1(ω)dz

≤ lim
ε→0

(
nπL(T g∗(s0)

r ,ε (u0ε) + C4|s1 − s0|)
) 1

2

≤ (nπL(π‖g∗(s0) − f ∗(s0)‖2L2 + C4|s1 − s0|)
) 1
2 ,

(70)

where C4 depends only on the mollification parameter. (We have implicitly used the fact
that components of f ∗ have been labelled correctly, as reflected in (29).) We therefore
further decrease the mollification parameter if necessary, yet independently of s0, so that
nπ2L‖g∗(s0) − f ∗(s0)‖2L2 ≤ η2/32. Once this, and hence C4 are fixed, we require |s0 − s1|
to be small enough so that nπLC4|s1 − s0| ≤ η2/32. Combining (69) and (70) in (68) yields
the uniform continuity of f ∗. In the sequel we denote still by f ∗ the unique continuous
extension of f ∗ to the whole interval [0, t0]. We claim that the conclusion of Corollary 1
holds for any t ∈ [0, t0], with no need of further subsequences. Indeed, this follows from the
fact that for each fixed t in [0, t0] there exist at least some further subsequence for which the
convergence to some f ∗∗(t) holds (this is by Proposition 1 as we already saw it), and on the
other hand by our previous argument (equally applied to the countable set (Q∩[0, t0])∪{t})
the only possible limit along any such subsequence is necessarily equal to f ∗(t). ��

4.3 Proof of Proposition 5

Proof For r , R > 0, define

Gr ,R := {(t, x, z) ∈ [0, t0] × B(R) × [0, L] : |x − f ∗
k (z, t)| ≥ r , k = 1, . . . , n}.

Given O as in the statement of the Proposition, we may fix r , R > 0 such that O ⊂ Gr ,R .
We will only consider ε small enough that B(R) ⊂ ωε . It is then rather clear that

j∗ωε
( f ∗(t)) → j∗

R2( f
∗(t)) locally uniformly on Gr ,R for every r > 0.

It thus follows from Proposition 3 (with � = δ = 1, rewritten in terms of vε) that
∥∥∥∥
jvε

|vε| − j∗
R2

∥∥∥∥Gr,R

≤ C

for all sufficiently small ε, where C is independent of r and R. By extracting weak limits
and employing a Cantor diagonal argument, we conclude that there exists a vector field
H ∈ L2([0, t0] × R

2 × TL) such that

jvε

|vε| − j∗
R2⇀H weakly in L2(Gr ,R) for every r , R > 0.

Now fix ϕ ∈ D((0, t0) × R
2 × TL) and compute, for ε sufficiently small,

∣∣∣∣
∫

∇⊥
x ϕ · jvε

|vε| −
∫

∇⊥
x ϕ · jvε

∣∣∣∣ ≤
∫

|∇⊥
x ϕ|

∣∣∣∣
jvε

|vε|
∣∣∣∣ |1 − |vε|| = o(1) (71)
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as ε → 0, in view of the pointwise inequality
∣∣∣ jvε

|vε |
∣∣∣ |1 − |vε|| ≤ εeε(vε) and the energy

bound on vε. Next, integrating by parts and using Corollary 1 and the definition of j∗
R2 ,

∫
∇⊥
x ϕ · jvε = 2

∫
ϕ Jvε →

∫ t0

0

∫ L

0

n∑

i=1

ϕ( fi (z), z) dz dt =
∫

∇⊥
x ϕ · j∗

R2( f
∗).

By combining these and using the fact that H ∈ L2, which implies that the singularities along
{(t, fi (z), z) : t ∈ [0, t0], z ∈ [0, L], i = 1, . . . n} are removable, we infer that ∇⊥ · H = 0
on R × R

2 × TL . Similarly, by (34),
∫

∇xϕ · jvε = −
∫

∂tϕ(|vε|2 − 1) + h2ε∂zϕ jzvε → 0,

since (vε|2 − 1)2 ≤ 4ε2eε(vε) and
∣∣h2ε∂zϕ jzvε

∣∣ ≤ hε|∂zϕ|( |∂zvε |2
|log ε| + |vε|2), together with

(12), rescaled to read ‖∇vε(t)‖2L2(dx dz)
≤ C |log ε| for every t ∈ [0, t0]. Arguing as in (71)

to eliminate the factor of |vε| in the denominator and recalling that ∇x · j∗
R2( f

∗) = 0 by
definition, we conclude that

∫
∇x · (

jvε

|vε| − j∗
R2) → 0,

and hence that ∇x · H = 0 in D′. We conclude by applying Lemma 10 below to the vector
field w(t, x, z) = ζ(t)H(t, x, z), where ζ is an arbitrary function with compact support in
[0, t0]. ��

The proof of Proposition 5 used the following

Lemma 10 Assume that w ∈ L2(R × R
2 × TL) satisfies

∇x · w = 0, ∇⊥
x · w = 0 in D′. (72)

Then w = 0.

Proof If w is smooth, then since ∇⊥
x · w = 0, we may write w = ∇x f for some scalar

function f . Then the fact that ∇ · w = 0 implies that f is harmonic, and hence that w is
harmonic. For a.e. t ∈ R and z ∈ TL ,

∫

R2
|w(t, x, z)|2 dx = 0,

so Liouville’s Theorem implies that w(t, ·, z) = 0 for such (t, z),and therefore everywhere
in R × R

2 × TL .
If w is not smooth, then we fix an approximate identity (ηε), and we write wε := ηε ∗ w.

Thenwε satisfies conditions (72), with ‖wε‖L2 ≤ ‖w‖L2 < ∞ for every ε > 0, andwε → w

in L2, so it follows that w = 0 a.e. ��
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