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Abstract
In the present paper, we develop a direct approach to find nontrivial solutions and ground
state solutions for the following planar Schrödinger equation:{

−�u + V (x)u = f (x, u), x ∈ R
2,

u ∈ H1(R2),

where V (x) is an 1-periodic function with respect to x1 and x2, 0 lies in a gap of the spectrum
of−�+V , and f (x, t) behaves like±eαt2 as t → ±∞ uniformly on x ∈ R

2. Our theorems
extend and improve the results of de Figueiredo-Miyagaki-Ruf (Calc Var Partial Differ Equ,
3(2):139–153, 1995), of de Figueiredo-do Ó-Ruf (Indiana Univ Math J, 53(4):1037–1054,
2004), of Alves-Souto-Montenegro (Calc Var Partial Differ Equ 43: 537–554, 2012), of
Alves-Germano (J Differ Equ 265: 444–477, 2018) and of do Ó-Ruf (NoDEA 13: 167–192,
2006).

Mathematics Subject Classification 35J20 · 35J62 · 35Q55

1 Introduction

This paper is concerned with the following planar Schrödinger equation:{
−�u + V (x)u = f (x, u), x ∈ R

2,

u ∈ H1(R2),
(1.1)

Communicated by A. Malchiodi.

This work is partially supported by the National Natural Science Foundation of China (No: 11971485; No:
12001542).

B Xianhua Tang
tangxh@mail.csu.edu.cn

Sitong Chen
mathsitongchen@mail.csu.edu.cn

1 School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, People’s
Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-021-01963-1&domain=pdf


95 Page 2 of 27 S. Chen, X. Tang

where V and f satisfy the following basic assumptions:

(V1) V ∈ C(R2, R), V (x) is 1-periodic in x1 and x2, and

sup[σ(−� + V ) ∩ (−∞, 0)] < 0 < inf[σ(−� + V ) ∩ (0,∞)];
(F1) f ∈ C(R2 × R, R), f (x, t) is 1-periodic in x1 and x2, and

lim|t |→∞
| f (x, t)|
eαt2

= 0, uniformly on x ∈ R
2 for all α > 0; (1.2)

or
(F1′) f ∈ C(R2 × R, R), f (x, t) is 1-periodic in x1 and x2, and there exists α0 > 0 such

that

lim|t |→∞
| f (x, t)|
eαt2

= 0, uniformly on x ∈ R
2 for all α > α0 (1.3)

and

lim|t |→∞
| f (x, t)|
eαt2

= +∞, uniformly on x ∈ R
2 for all α < α0; (1.4)

(F2) f (x, t) = o(t) as t → 0 uniformly on x ∈ R
2.

As we all know, under (V1), the energy functional associated with (1.1) on H1(R2) is
in general strongly indefinite near the origin. In this case, the generalized link theorem is
a very effective tool to deal with this strongly indefinite problem, which was introduced
by Kryszewski–Szulkin [21], and was improved by Li–Szulkin [23] and Ding [14,15] later.
The generalized link theorem has been used extensively to study the periodic Schrödinger
equation: {

−�u + V (x)u = f (x, u), x ∈ R
N ,

u ∈ H1(RN )
(1.5)

with N ≥ 3 and (V1), we would like to cite Ding–Lee [15], Tang [27], Tang–Lin–Yu [28],
Tang–Chen–Lin–Yu [29], Zhang–Xu–Zhang [32] for the subcritical growth case:

lim|t |→∞
| f (x, t)|
|t |2∗−1 = 0, uniformly on x ∈ R

N ; (1.6)

Chabrowski–Szulkin [9], Schechter–Zou [24], and Zhang–Xu–Zhang [31] for the critical
growth case:

lim|t |→∞
| f (x, t)|
|t |2∗−1 > 0, for every x ∈ R

N , (1.7)

where 2∗ = 2N/(N − 2) is the critical exponent.
The case N = 2 is very special, as the correspondingSobolev embedding yields H1(R2) ⊂

Ls(R2) for all s ∈ [2,+∞), but H1(R2) � L∞(R2). In dimension N = 2, the Trudinger–
Moser inequality can be seen as a substitute of the Sobolev inequality. The first version of the
Trundiger–Moser inequality in R

2 was established by Cao in [7], see also [1,8], and reads as
follows.

Lemma 1.1 i) If α > 0 and u ∈ H1(R2), then∫
R2

(
eαu2 − 1

)
dx < ∞;
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ii) if u ∈ H1(R2), ‖∇u‖22 ≤ 1, ‖u‖2 ≤ M < ∞, and α < 4π , then there exists a
constant C(M, α), which depends only on M and α, such that∫

R2

(
eαu2 − 1

)
dx ≤ C(M, α).

Based on Lemma 1.1, we say that f (x, t) has subcritical growth on R
2 at t = ±∞ if (1.2)

holds, and f (x, t) has critical growth on R
2 at t = ±∞ if (1.3) and (1.4) hold, which is the

maximal growth on t that allows to treat the problem variationally in H1(R2). This notion of
criticality was introduced by Adimurthi–Yadava [2], see also de Figueiredo–Miyagaki–Ruf
[13].

Let us point out that the case when N = 2 and f (x, t) has polynomial growth on t was
in fact considered in the above mentioned papers, since it can be addressed similarly as the
case when N ≥ 3 and f (x, t) is superlinear and subcritical at t = ∞. In particular, it is
easy, in this case, to show that the functional �(u) = ∫

R2 F(x, u)dx is weakly sequentially
continuous in H1(R2), where and in the sequel F(x, t) := ∫ t

0 f (x, s)ds, since the sequence
{∫|un |≥1 | f (x, un)|qdx} is still bounded for any constant q > 1 and any bounded sequence

{un} ⊂ H1(R2). And so, the generalized link theorem can be applied to the functional
associated with (1.1) to obtain a (PS) sequence or Cerami sequence. However, when f (x, t)
has exponential growth on t , on one hand, the embedding of the Sobolev space H1(R2)

into the Orlicz space associated with the function ϕ(s) = exp(4πs2) − 1 is not compact,
on the other hand, it is not standard to prove that �(u) is weakly sequentially continuous
in H1(R2). But even worse, so far we have not found a method to show this conclusion
when f (x, t) has critical exponential growth on R

2 at t = ±∞ (i.e.(1.3) and (1.4) hold).
Therefore, the technicalmethods in proving the existence, boundedness and thenon-vanishing
of (PS) sequence or Cerami sequences for the energy functional associated with (1.5), used
in aforementioned papers, do not work for (1.5) with N = 2. Also because of this, it is more
complicated to deal with the case N = 2 than the case N ≥ 3.

In the case N = 2 and f (x, t) has exponential growth on t , when V (x) is a positive
potential bounded away from zero (i.e. the so-called definite case), motivated by the Moser–
Trudinger inequality, the existence of nontrivial solutions to problem (1.1) has been studied
by many authors; see, for example, Alves–Souto [4], Adimurthi–Yadava [2], Alves–Souto–
Montenegro [5], Cao [7], de Figueiredo-do Ó-Ruf [11,12], de Figueiredo–Miyagaki–Ruf
[13], Lam–Lu [22], Zhang-do Ó [33]. However, when (V1) holds, the operator −� + V on
L2(R2) has a purely continuous spectrum consisting of closed disjoint intervals (i.e. the so-
called indefinite case), to the best of our knowledge, it seems that there are only two papers
[3,17] concerning the existence of nontrivial solutions for (1.1). To describe the existing
results in [3,17], we first introduce the following conditions:

(F3) there exists μ̄ > 2 such that

t f (x, t) ≥ μ̄F(x, t) > 0, ∀ (x, t) ∈ R
2 × (R \ {0});

(F4) there exist M0 > 0 and t0 > 0 such that for every x ∈ R
2,

F(x, t) ≤ M0| f (x, t)|, ∀ |t | ≥ t0;
(F5′) lim|t |→∞ t f (x,t)

eα0 t
2 = ∞ uniformly on x ∈ R

2;

(F6) there exist constants �, λ > 0 and q0 > 2 such that

| f (x, t)| ≤ �e4π t
2
and F(x, t) ≥ λ|t |q0 , ∀ (x, t) ∈ R

2 × R;
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(SQ) lim|t |→∞ F(x,t)
|t |2 = ∞ for a.e. x ∈ R

2;

(WN) t �→ f (x,t)
|t | is non-decreasing on (−∞, 0) ∪ (0,∞) for every x ∈ R

2.

Under (V1), (F1′), (F2), (F3), (F6) and (WN), Alves–Germano [3] proved that if λ is
large enough, (1.1) has a ground state solution by using the method of generalized Nehari
manifold developed by Szulkin–Weth [25,26]. They showed that the minimax-level is less
than the threshold value under which (PS) sequences do not vanish in the same way as the
case N ≥ 3. Let us emphasize that the condition F(x, t) ≥ λ|t |q0 with sufficiently large
λ is very crucial in their arguments. Thanks to this condition, the minimax-level for the
energy functional associated with (1.1) can be chosen to be small, and so ii) of Lemma
1.1 is available, thereby the obstacle arising from the critical growth of Trudinger–Moser
type is easily overcome, see [3, Propositions 3.15, 3.16]. But this result has no relationship
on the exponential growth velocity α0 (see (F1′)), hence it does not reveal the essential
characteristics for (1.1) with the critical growth of Trudinger–Moser type.

When V satisfies (V1), and f (x, t) = f (t) satisfies (F1′), (F2)–(F4) and (F5′), based on
an approximation technique of periodic function together with the linking theorem due to
Bartolo-Benci-Fortunato [6], doÓ andRuf [17] obtained the existence of a nontrivial solution
of (1.1). To overcome the difficulties arising from lack of compactness of the corresponding
energy functional, some of the ideas contained in [13,16] were used. More precisely, they
first introduced a sequence of cubes {Qk} ⊂ R

2 with edge length k ∈ N and the orthogonal
decomposition H1

per(Qk) = Yk ⊕ Zk with dim Yk < ∞ for every k ∈ N, where H1
per(Qk)

denotes the space of H1(Qk)-functions which are k-periodic in x1 and x2, and then applied
the link theorem to the approximation problem and yielded a (PS) sequence {uk,n} for every
k ∈ N; next proved that {uk,n} is bounded in H1

per(Qk) and does not vanish; finally got a
sequence of solutions {uk} of the approximation problems and then proved that it tends to
a nontrivial solution of (1.1) as k → ∞. In their arguments, they used many embedding
inequalities on Qk and upper or lower estimates for the functionals on H1(Qk). Obviously, it
is very crucial to verify that the embedding constants and the uppers or lowers are independent
of k ∈ N. However, it is quite difficult and complicated to do these works. For example, they
used Schwarz symmetrization method to prove the following two claims:
Claim (i) ( [17, Claim 2.5]) There exist constants ρ0 > 0 and C > 0 independent of k such
that ∫

Qk

|u|q [exp(u2) − 1]dx ≤ C‖u‖q
H1(Qk )

for all u ∈ H1(Qk) with ‖u‖H1(Qk )
≤ ρ0.

Claim (ii) ( [17, Claim 3.3]) The following conclusion holds:

lim
n→∞ ‖un‖q = 0 ⇒ lim

n→∞

∫
Qn

F(un)dx = 0.

In the proof of Claim i), they established many embedding inequalities with embedding con-

stants independent of k, such as L2(R2)
P−→ L2(BRk ) ↪→ L2(Qk) ↪→ H1(R2), see [17,

Claim 2.5]. Claim ii) implies that the approach does not work any more for non-autonomous
problem (1.1), since the Schwarz symmetrization method is only valid for autonomous func-
tion f .

In the present paper, motivated by [3,9,10,13,17], we will develop a direct approach
which is different from [3,17] to find nontrivial solutions and ground state solutions of
(1.1) in the subcritical and critical exponential growth cases. Particularly, employing some
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new techniques with a deep analysis and using an approaching argument and some detailed
estimates, we succeed in overcoming fourmain difficulties: (1) looking for aCerami sequence
for the energy functional associated with (1.1); (2) showing the boundedness of the Cerami
sequences; (3) showing that the minimax-level is less than the threshold value; (4) showing
that the Cerami sequences do not vanish.

In particular, we will weaken (F5′) used in [17] to the following condition:

(F5) lim inf |t |→∞ t f (x,t)

eα0 t
2 ≥ κ > 4

α0ρ2 e
16πC2

0 uniformly on x ∈ R
2,

where ρ > 0 satisfies 4π(4 + ρ)ρC20 < 1 and C0 > 0 is an embedding constant, see (4.15)
and (4.16).

It deserves to be mentioned that an assumption similar to (F5) was introduced in [13]
when V (x) is positive periodic and R

2 is replaced by a bounded domain 
 ⊂ R
2.

In detail, we have the following four results on the existence of nontrivial solutions.

Theorem 1.2 Assume that V and f satisfy (V1) and (F1)–(F3). Then (1.1) has a nontrivial
solution.

Theorem 1.3 Assume that V and f satisfy (V1), (F1), (F2), (SQ) and (WN). Then (1.1) has
a ground state solution with positive energy.

Theorem 1.4 Assume that V and f satisfy (V1), (F1′) and (F2)–(F5). Then (1.1) has a
nontrivial solution.

Corollary 1.5 Assume that V and f satisfy (V1), (F1′), (F2)–(F4) and (F5′). Then (1.1) has
a nontrivial solution.

Example 1.6 It is easy to check, using Taylor series, that the following two functions satisfy
(F1)–(F3), (SQ) and (WN):

(i). f (x, t) = a(2 + sin 2πx1 cos 2πx2)
(
eb|t |3/2 − 1

)
signt with a, b > 0;

(ii). f (x, t) = a(2 + sin 2πx1 cos 2πx2)
(
ebt − 1 − bt − 1

2b
2t2

)
with a, b > 0;

and f (x, t) = aκt−1
(
et

2 − 1 − t2
)
with a ≥ 1 satisfies (F1′) and (F2)–(F5) with α0 = 1

and μ = 3, but it does not satisfy (F5′).

The paper is organized as follows. In Sect. 2, we give the variational setting and prelimi-
naries. We complete the proofs of Theorems 1.2, 1.3 and 1.4 in Sects. 3 and 4 respectively.

Throughout the paper, C1,C2, . . . denote positive constants possibly different in different
places.

2 Variational setting

LetA = −�+V with V ∈ C(R2)∩ L∞(R2). ThenA is self-adjoint in L2(R2)with domain
D(A) = H2(R2) (see [19, Theorem 4.26]). Let {E(λ) : −∞ < λ < +∞} and |A| be the
spectral family and the absolute value of A, respectively, and |A|1/2 the square root of |A|.
Set U = id − E(0) − E(0−). Then U commutes with A, |A| and |A|1/2, and A = U |A| is
the polar decomposition of A (see [18, Theorem IV 3.3]). Let

E = D(|A|1/2), E− = E(0−)E, E+ = [id − E(0)]E . (2.1)
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By (V1), one has E = E− ⊕ E+. For any u ∈ E , it is easy to see that u = u− + u+, where

u− := E(0−)u ∈ E−, u+ := [id − E(0)]u ∈ E+ (2.2)

and
Au− = −|A|u−, Au+ = |A|u+, ∀ u ∈ E ∩ D(A). (2.3)

On E , We can define an inner product

(u, v) = (|A|1/2u, |A|1/2v)L2 , u, v ∈ E (2.4)

and the corresponding norm

‖u‖ = ∥∥|A|1/2u∥∥2 , u ∈ E, (2.5)

where and in the sequel, (·, ·)L2 denotes the inner product of L2(R2), ‖ · ‖s denotes the norm
of Ls(R2).

E = H1(R2) with equivalent norms (see [14,15]). Therefore, E embeds continuously in
Ls(R2) for all 2 ≤ s < ∞, i.e. there exists γs > 0 such that

‖u‖s ≤ γs‖u‖, ∀ u ∈ E . (2.6)

In addition, one has the following orthogonal decomposition E = E− ⊕ E+, where orthog-
onality is with respect to both (·, ·)L2 and (·, ·). If σ(−� + V ) ⊂ (0,∞), then E− = {0},
otherwise E− is infinite-dimensional.

Under assumptions (V1), (F1) (or (F1′)) and (F2), the solutions of problem (1.1) are critical
points of the functional

�(u) = 1

2

∫
R2

(|∇u|2 + V (x)u2
)
dx −

∫
R2

F(x, u)dx, ∀ u ∈ E . (2.7)

In view of (2.3) and (2.5), we have

�(u) = 1

2

(‖u+‖2 − ‖u−‖2)−
∫
R2

F(x, u)dx, ∀ u = u− + u+ ∈ E− ⊕ E+ = E . (2.8)

By virtue of (F1) (or (F1′)) and (F2), we can choose α > 0 such that for any given ε > 0,
there exists Cε > 0 such that

| f (x, t)| ≤ ε|t | + Cε

(
eαt2 − 1

)
, ∀ (x, t) ∈ R

2 × R. (2.9)

Consequently,

|F(x, t)| ≤ ε|t |2 + Cε|t |
(
eαt2 − 1

)
, ∀ (x, t) ∈ R

2 × R. (2.10)

According to (2.10) and Lemma 1.1, we can demonstrate that � is of class C1(E, R), and

〈�′(u), v〉 =
∫
R2

(∇u∇v + V (x)uv) dx −
∫
R2

f (x, u)vdx, ∀ u, v ∈ E . (2.11)

In particular, it follows from (2.3) and (2.5) that

〈�′(u), u〉 = ‖u+‖2 − ‖u−‖2 −
∫
R2

f (x, u)udx, ∀ u ∈ E . (2.12)

Define
M = {

u ∈ E \ E− : 〈�′(u), u〉 = 〈�′(u), v〉 = 0, ∀ v ∈ E−} . (2.13)
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Let X be a real Hilbert space with X = X− ⊕ X+ and X−⊥ X+. For a functional
ϕ ∈ C1(X , R), ϕ is said to be weakly sequentially lower semi-continuous if for any un⇀u
in X one has ϕ(u) ≤ lim infn→∞ ϕ(un), and ϕ′ is said to be weakly sequentially continuous
if for any un⇀u in X one has limn→∞〈ϕ′(un), v〉 = 〈ϕ′(u), v〉 for each v ∈ X .

Lemma 2.1 ([14,15]) Let X be a real Hilbert space with X = X− ⊕ X+ and X−⊥ X+, and
let ϕ ∈ C1(X , R) of the form

ϕ(u) = 1

2

(‖u+‖2 − ‖u−‖2) − ψ(u), u = u− + u+ ∈ X− ⊕ X+.

Suppose that the following assumptions are satisfied:

(BD1) ψ ∈ C1(X , R) is bounded from below and weakly sequentially lower semi-
continuous;

(BD2) ψ ′ is weakly sequentially continuous;
(BD3) there exists ζ > 0 such that ‖u‖ ≤ ζ‖u+‖ for all u ∈ {v ∈ E : ϕ(v) ≥ 0};
(BD4) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

κ̂ := inf ϕ(S+
ρ ) > supϕ(∂ Q̂),

where

S+
ρ = {

u ∈ X+ : ‖u‖ = ρ
}
, Q̂ = {

v + se : v ∈ X−, 0 ≤ s ≤ r , ‖v‖ ≤ r
}
.

Then there exist a constant c ∈ [κ̂, supϕ(Q̂)] and a sequence {un} ⊂ X satisfying

ϕ(un) → c, ‖ϕ′(un)‖(1 + ‖un‖) → 0. (2.14)

We set

�(u) :=
∫
R2

F(x, u)dx, ∀ u ∈ E . (2.15)

Lemma 2.2 Assume that (V1),(F1) and (F2) hold, and F(x, t) ≥ 0 for all (x, t) ∈ R
2 ×

R. Then � is nonnegative, weakly sequentially lower semi-continuous, and � ′ is weakly
sequentially continuous in E.

Proof We only prove that � ′ is weakly sequentially continuous, the other is standard. Let
un⇀u in E and let v ∈ E be an any given function. Then ‖un‖ ≤ C1 for some C1 > 0.
Since the norms ‖ · ‖ and ‖ · ‖H1 are equivalent, there exists ϑ0 > 0 such that

‖∇u‖2 ≤ ϑ0‖u‖, ∀ u ∈ E . (2.16)

Let α ∈ (0, 1/C2
1ϑ

2
0 ). Using (F1) and (F2), there exists C2 > 0 such that

| f (x, t)| ≤ |t | + C2

(
eαt2 − 1

)
, ∀ (x, t) ∈ R

2 × R. (2.17)

For any ε > 0, we can choose R > 0 such that∫
R2\BR

v2dx < ε2. (2.18)
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Then it follows from (2.17), (2.18) and Lemma 1.1 that∫
R2\BR

| f (x, un)v|dx ≤
∫
R2\BR

|unv|dx + C2

∫
R2\BR

(
eαu2n − 1

)
|v|dx

≤
{

‖un‖2 + C2

[∫
R2

(
eαu2n − 1

)2
dx

]1/2}(∫
R2\BR

v2dx

) 1
2

≤
{

‖un‖2 + C2

[∫
R2

(
e2αu

2
n − 1

)
dx

]1/2}
ε

≤
{

‖un‖2 + C2

[∫
R2

(
e2αϑ2

0 ‖un‖2(un/ϑ0‖un‖)2 − 1
)
dx

]1/2}
ε

≤ C3ε. (2.19)

Since v ∈ L2(BR), it follows that there exists δ > 0 such that∫
A

|v|2dx < ε2 if meas(A) ≤ δ (2.20)

for all measurable set A ⊂ BR . Hence it follows from ‖un‖ ≤ C1 that there exists M > 0
such that

meas({x ∈ BR : |un(x)| ≥ M}) ≤ δ, meas({x ∈ BR : |u(x)| ≥ M}) ≤ δ. (2.21)

Let An := {x ∈ BR : |un(x)| ≥ M}, A0 := {x ∈ BR : |u(x)| ≥ M} and D0 := {x ∈ BR :
|u(x)| = M}. Then it follows from (2.17), (2.20), (2.21) and Lemma 1.1 that∫

An∪D0

| f (x, un)v|dx ≤
∫
An∪D0

|unv|dx + C2

∫
An∪D0

(
eαu2n − 1

)
|v|dx

≤
{

‖un‖2 + C2

[∫
R2

(
eαu2n − 1

)2
dx

]1/2}(∫
An∪D0

v2dx

) 1
2

≤ 2

{
‖un‖2 + C2

[∫
R2

(
e2αu

2
n − 1

)
dx

]1/2}
ε

≤ 2

{
‖un‖2 + C2

[∫
R2

(
e2αϑ2

0 ‖un‖2(un/ϑ0‖un‖)2 − 1
)
dx

]1/2}
ε

≤ C3ε. (2.22)

Similarly, we can show that ∫
A0

| f (x, u)v|dx ≤ C3ε. (2.23)

Since f (x, un)vχ|un |≤M → f (x, u)vχ|u|≤M a.e. in BR \ D0, moreover,

| f (x, un)v|χ|un |≤M ≤ |v| max
x∈BR ,|t |≤M

| f (x, t)|, ∀ x ∈ BR .

Then Lebesgue dominated convergence theorem leads to

lim
n→∞

∫
BR\(An∪D0)

f (x, un)vdx =
∫
BR\A0

f (x, u)vdx . (2.24)
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Let ε → 0, it follows from (2.19), (2.22), (2.23) and (2.24) that

lim
n→∞

∫
R2

f (x, un)vdx =
∫
R2

f (x, u)vdx .

This shows that � ′ is weakly sequentially continuous. ��
The following lemma is very important and crucial, which has been proved in [9, Propo-

sition 2.2 and Proposition 2.4]. Here, We give a different proof.

Lemma 2.3 Assume that V ∈ L∞(R2). Then for any μ > 0 there exist two constant K0 > 0
and Kμ > 0 such that

‖∇u‖∞ + ‖u‖∞ ≤ K0‖u‖2, ∀ u ∈ E(0)E = E− (2.25)

and
‖u‖∞ ≤ Kμ‖u‖2, ∀ u ∈ E(μ)E . (2.26)

Proof Let b < inf σ(A). Then we have

(A2u, u)L2 =
∫ μ

b
λ2d(E(λ)u, u)L2 ≤ (|b| + μ)2‖u‖22, ∀ u ∈ E(μ)[H2

0 (R2)].

Consequently,
‖Au‖2 ≤ (|b| + μ)‖u‖2, ∀ u ∈ E(μ)[H2

0 (R2)]. (2.27)

By virtue of (2.27) and the Hölder inequality, we obtain that

∣∣(−�u, v)L2

∣∣ =
∣∣∣∣(Au, v)L2 −

∫
R2

V (x)uvdx

∣∣∣∣
≤ [‖Au‖2 + ‖V ‖∞‖u‖2] ‖v‖2
≤ (|b| + μ + ‖V ‖∞) ‖u‖2‖v‖2,

∀ u ∈ E(μ)[H2
0 (R2)], v ∈ L2(R2), (2.28)

it leads to the following fact that

‖�u‖2 ≤ C1‖u‖2, ∀ u ∈ E(μ)[H2
0 (R2)]. (2.29)

Employing the Calderon–Zygmund inequality (see [20, Theorem 9.9]) and Ehrling–
Nirenberg–Gagliardo interpolation inequalities (see [20, Theorem 7.28]), we deduce that

‖u‖H2(R2) ≤ C2‖u‖2, ∀ u ∈ E(μ)[H2
0 (R2)], (2.30)

which, together with the Sobolev embedding theorem, yields

‖u‖∞ ≤ C3‖u‖H2(R2) ≤ C4‖u‖2, ∀ u ∈ E(μ)[H2
0 (R2)]. (2.31)

Since E(μ)[H2
0 (R2)] is dense in E(μ)L2(R2) and L∞(R2) is complete, it follows from (2.31)

that
‖u‖∞ ≤ C5‖u‖2, ∀ u ∈ E(μ)L2(R2). (2.32)

For any u ∈ E(0)[H2
0 (R2)], there exists ũ ∈ H2

0 (R2) such that u = E(0)ũ, we deduce that

[id − E(0)]Au = A[id − E(0)]u = A[id − E(0)]E(0)ũ = 0.

This shows thatAu ∈ E(0)L2(R2), ∀ u ∈ E(0)[H2
0 (R2)]. Hence, it follows from (2.27) and

(2.32) that
‖Au‖∞ ≤ C6‖Au‖2 ≤ |b|C6‖u‖2, ∀ u ∈ E(0)[H2

0 (R2)]. (2.33)
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By virtue of (2.32), (2.33) and the Hölder inequality, we get

∣∣(−�u, v)L2

∣∣ =
∣∣∣∣(Au, v)L2 −

∫
R2

V (x)uvdx

∣∣∣∣
≤ (‖Au‖∞ + ‖V ‖∞‖u‖∞) ‖v‖1
≤ (|b|C6‖u‖2 + C6‖V ‖∞‖u‖2) ‖v‖1,
= C7‖u‖2‖v‖1, ∀ u ∈ E(0)[H2

0 (R2)], v ∈ L1(R2). (2.34)

Consequently,
‖�u‖∞ ≤ C8‖u‖2, ∀ u ∈ E(0)[H2

0 (R2)]. (2.35)

Again applying the Calderon–Zygmund inequality and interpolation inequalities, one can
get

‖∇u‖∞ + ‖u‖∞ ≤ C9‖u‖2, ∀ u ∈ E(0)[H2
0 (R2)].

Now the conclusion follows by above inequality and the fact that E(0)[H2
0 (R2)] is dense in

E(0)E . ��
Lemma 2.4 Assume that (V1), (F1) (or (F1′)), (F2) and (F3) hold. Then there exists ρ̄ > 0
such that

κ0 := inf
{
�(u) : u ∈ E+, ‖u‖ = ρ̄

}
> 0. (2.36)

Proof By (F1) (or (F1′) and (F2), one has for some constants α > 0 and C10 > 0

|F(x, t)| ≤ 1

4γ 2
2

t2 + C10

(
eαt2 − 1

)
|t |3, ∀ (x, t) ∈ R

2 × R. (2.37)

In view of Lemma 1.1, (2.6) and (2.16), we have∫
R2

(
e2αu

2 − 1
)
dx =

∫
R2

(
e2αϑ2

0 ‖u‖2(u/ϑ0‖u‖)2 − 1
)
dx

≤ C(γ2/ϑ0, 2π), ∀ ‖u‖ ≤
√

π/αϑ2
0 . (2.38)

Then (2.37) and (2.38) give∫
R2

F(x, u)dx ≤ 1

4γ 2
2

‖u‖22 + C10

∫
R2

(
eαu2 − 1

)
|u|3dx

≤ 1

4γ 2
2

‖u‖22 + C10

[∫
R2

(
e2αu

2 − 1
)
dx

]1/2
‖u‖36

≤ 1

4
‖u‖2 + C11‖u‖3, ∀ ‖u‖ ≤

√
π/αϑ2

0 . (2.39)

Hence, it follows from (2.8) and (2.39) that

�(u) = 1

2
‖u‖2 −

∫
R2

F(x, u)dx

≥ 1

4
‖u‖2 − C11‖u‖3, ∀ u ∈ E+, ‖u‖ ≤

√
π/αϑ2

0 .

Therefore, there exists 0 < ρ̄ <

√
π/αϑ2

0 such that (2.36) holds. ��
As in [27], we can prove the following three lemmas.
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Lemma 2.5 Assume that (V1), (F1) (or (F1′)), (F2) and (F3) hold. Let e ∈ E+. Then there
is r0 > ρ such that sup�(∂Q) ≤ 0, where

Q = {
v + se : v ∈ E−, 0 ≤ s ≤ r0, ‖v‖ ≤ r0

}
. (2.40)

Lemma 2.6 Assume that (V1), (F1), (F2) and (WN) hold. Then

�(u) ≥ t2

2
‖u‖2 +

∫
R2

F(x, tu+)dx + 1 − t2

2
〈�′(u), u+〉 + t2〈�′(u), u−〉,

∀ t ≥ 0, u ∈ E . (2.41)

Lemma 2.7 Assume that (V1), (F1), (F2), (SQ) and (WN) hold. Then there exist a constant
c∗ ∈ [κ0,m] and a sequence {un} ⊂ E satisfying

�(un) → c∗, ‖�′(un)‖(1 + ‖un‖) → 0, (2.42)

where κ0 is defined by (2.36) and m = infu∈M �(u).

By Lemmas 2.2, 2.4 and 2.5, one can get the following lemma.

Lemma 2.8 Assume that (V1), (F1), (F2) and (F3) hold. Then there exist a constant c̄ ∈
[κ, sup�(Q)] and a sequence {un} ⊂ E satisfying

�(un) → c̄, ‖�′(un)‖(1 + ‖un‖) → 0, (2.43)

where Q is defined by (2.40).

3 Subcritical case

In this section, we study the subcritical exponential growth case and show Theorems 1.2 and
1.3. The first lemma is crucial when f has an exponential growth.

Lemma 3.1 Assume that (V1), (F1), (F2) and (F3) hold. Then {un} satisfying (2.43) is
bounded in E.

Proof From (F3), (2.8), (2.12) and (2.43), we have

c̄ + o(1) = �(un) − 1

2
〈�′(un), un〉

=
∫
R2

[
1

2
f (x, un)un − F(x, un)

]
dx

≥ μ̄ − 2

2μ̄

∫
R2

f (x, un)undx . (3.1)

It follows from (2.11) and (2.43) that

o(1) = 〈�′(un), un〉 = ‖u+
n ‖2 − ‖u−

n ‖2 −
∫
R2

f (x, un)undx (3.2)

and
o(1) = 〈�′(un), u−

n 〉 = −‖u−
n ‖2 −

∫
R2

f (x, un)u
−
n dx . (3.3)

Combining (3.1) with (3.2), one obtains

‖u+
n ‖2 − ‖u−

n ‖2 ≤ 2μ̄c̄

μ̄ − 2
+ o(1). (3.4)
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To prove the boundedness of {un}, arguing by contradiction, suppose that ‖un‖ → ∞ as
n → ∞. Let vn = un/‖un‖. Then 1 = ‖vn‖2. By (F2), we can choose δ0 > 0 such that∣∣∣∣ f (x, t)t

∣∣∣∣ ≤ 1

4γ 2
2

, ∀ x ∈ R
2, |t | ≤ δ0. (3.5)

Then it follows from (2.25), (3.1), (3.3) and (3.5) that

‖v−
n ‖2 = − 1

‖un‖
∫
R2

f (x, un)v
−
n dx + o(1)

≤ 1

‖un‖
∫
R2

| f (x, un)||v−
n |dx + o(1)

=
∫

|un |≤δ0

f (x, un)

un
|vn ||v−

n |dx

+ 1

‖un‖
∫

|un |>δ0

| f (x, un)||v−
n |dx + o(1)

≤ 1

4γ 2
2

‖vn‖2‖v−
n ‖2 + ‖v−

n ‖∞
δ0‖un‖

∫
|un |>δ0

f (x, un)undx + o(1)

≤ 1

4γ 2
2

‖vn‖2‖v−
n ‖2 + K0‖v−

n ‖2
δ0‖un‖

∫
|un |>δ0

f (x, un)undx + o(1)

≤ 1

4
+ o(1). (3.6)

On the other hand, since 1 = ‖v+
n ‖2 + ‖v−

n ‖2, then from (3.4) we obtain

‖v−
n ‖2 ≥ 1

2
+ o(1), (3.7)

which contradicts with (3.6). Thus {un} is bounded in E . ��
Lemma 3.2 Assume that (F1) (or (F1′)), (F2) and (F3) hold. Let un⇀ū in E and∫

R2
f (x, un)undx ≤ K0 (3.8)

for some constant K0 > 0. Then for every φ ∈ C∞
0 (R2)

lim
n→∞

∫
R2

f (x, un)φdx =
∫
R2

f (x, ū)φdx . (3.9)

Lemma 3.2 is a direct consequence of [13, Lemma 2.1].

Proof of Theorem 1.2 Applying Lemmas 2.8 and 3.1, we deduce that there exists a bounded
sequence {un} ⊂ E satisfying (2.43) and ‖un‖ ≤ C1 for some C1 > 0. Thus there exists a
constant C2 > 0 such that ‖un‖2 ≤ C2. If

δ := lim sup
n→∞

sup
y∈R2

∫
B1(y)

|un |2dx = 0,

then by Lions’ concentration compactness principle [30, Lemma 1.21], one has un → 0 in
Ls(R2) for 2 < s < ∞. Let α ∈ (0, 1/C2

1ϑ
2
0 ), where ϑ0 is defined by (2.16). Using (F1) and

(F2), there exists C3 > 0 such that

| f (x, t)| ≤ c̄

4C2
2

|t | + C3

(
eαt2 − 1

)
, ∀ (x, t) ∈ R

2 × R. (3.10)
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Then (3.10) and Lemma 1.1 give∫
R2

f (x, un)undx ≤ c̄

4C2
2

‖un‖22 + C3

∫
R2

(
eαu2n − 1

)
|un |dx

≤ c̄

4
+ C4

[∫
R2

(
eαu2n − 1

)3/2
dx

]2/3
‖un‖3

≤ c̄

4
+ C4

[∫
R2

(
e3αu

2
n/2 − 1

)
dx

]2/3
‖un‖3

= c̄

4
+ C4

[∫
R2

(
e
3
2αϑ2

0 ‖un‖2(un/ϑ0‖un‖)2 − 1
)
dx

]2/3
‖un‖3

≤ c̄

4
+ o(1). (3.11)

Now by (2.8), (2.12) and (3.11), we have

c̄ + o(1) = �(un) − 1

2
〈�′(un), un〉

=
∫
R2

[
1

2
f (x, un)un − F(x, un)

]
dx ≤ c̄

8
+ o(1). (3.12)

This contradiction shows that δ0 > 0.
Going if necessary to a subsequence, we may assume that there exists {kn} ⊂ Z

2 such
that

∫
B1+√

2(kn)
|un |2dx > δ

2 . Let us define vn(x) = un(x + kn) so that∫
B1+√

2(0)
|vn |2dx >

δ

2
. (3.13)

Since V (x) and f (x, u) are 1-periodic on x , we have ‖vn‖ = ‖un‖ and

�(vn) → c̄, ‖�′(vn)‖(1 + ‖vn‖) → 0. (3.14)

Passing to a subsequence, we have vn⇀v in E , vn → v in Ls
loc(R

2), 2 ≤ s < ∞ and vn → v

a.e. on R
2. Thus, (3.13) implies that v �= 0. Moreover, (2.11), (3.14) and Lemma 3.2 yield

for every φ ∈ C∞
0 (R2),

〈�′(v), φ〉 = lim
n→∞〈�′(vn), φ〉 = 0.

Hence �′(v) = 0. This completes the proof. ��
Lemma 3.3 Assume that (V1), (F1), (F2), (SQ) and (WN) hold. Then any sequence {un}
satisfying (2.42) is bounded in E.

Proof To prove the boundedness of {un}, arguing by contradiction, suppose that ‖un‖ → ∞.
Let vn = un/‖un‖. Then ‖vn‖ = 1, and (2.6) gives ‖vn‖2 ≤ γ2. Passing to a subsequence,
we may assume that vn⇀v in E , vn → v in Ls

loc(R
2), 2 ≤ s < ∞, vn → v a.e. on R

2. If

δ := lim sup
n→∞

sup
y∈R2

∫
B1(y)

|v+
n |2dx = 0,

then by Lions’ concentration compactness principle [30, Lemma 1.21], v+
n → 0 in Ls(R2)

for 2 < s < ∞. By (WN), we obtain

f (x, t)t ≥ 2F(x, t), ∀ (x, t) ∈ R
2 × R. (3.15)
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Let us fix R > [2(1 + c∗)]1/2, where c∗ is given by Lemma 2.7. Set α ∈ (0, 1/(Rγ2ϑ0)
2).

By (F1), (F2) and (3.15), there exists C6 > 0 such that

|F(x, t)| ≤ 1

4(Rγ2)2
t2 + C6|t |

(
eαt2 − 1

)
, ∀ (x, t) ∈ R

2 × R. (3.16)

Then (3.16) and Lemma 1.1-ii) lead to∫
R2

F(x, Rv+
n )dx ≤ 1

4γ 2
2

‖v+
n ‖22 + C6R

∫
R2

(
eαR2(v+

n )2 − 1
)

|v+
n |dx

≤ 1

4
+ C6R

[∫
R2

(
eαR2(v+

n )2 − 1
)3/2

dx

]2/3
‖v+

n ‖3

≤ 1

4
+ C6R

[∫
R2

(
e3αR

2(v+
n )2/2 − 1

)
dx

]2/3
‖v+

n ‖3

= 1

4
+ C6R

[∫
R2

(
e
3
2αR2ϑ2

0 ‖v+
n ‖2(v+

n /ϑ0‖v+
n ‖)2 − 1

)
dx

]2/3
‖v+

n ‖3

≤ 1

4
+ o(1). (3.17)

Let tn = R/‖un‖. Hence, from (2.42), (3.17) and Lemma 2.6, we derive

c∗ + o(1) = �(un)

≥ t2n
2

‖un‖2 −
∫
R2

F(x, tnu
+
n )dx + 1 − t2n

2
〈�′(un), un〉 + t2n 〈�′(un), u−

n 〉

= R2

2
‖vn‖2 −

∫
R2

F(x, Rv+
n )dx +

(
1

2
− R2

2‖un‖2
)

〈�′(un), un〉

+ R2

‖un‖2 〈�′(un), u−
n 〉

= R2

2
−

∫
R2

F(x, Rv+
n )dx + o(1)

≥ R2

2
− 1

4
+ o(1) > c∗ + 3

4
+ o(1),

which is a contradiction. This shows that δ > 0. The rest of the proof is standard, so we omit
it. ��

Proof of Theorem 1.3 Applying Lemmas 2.7 and 3.3, we can deduce that there exists a
bounded sequence {un} ⊂ E satisfying (2.42). Similar to the proof of Theorem 1.2, we
have un⇀ū ∈ E \ {0} and �′(ū) = 0. This shows that ū ∈ M, and so �(ū) ≥ m. On the
other hand, by using (2.42), (3.15) and Fatou’s lemma, we have

m ≥ c∗ = lim
n→∞

[
�(un) − 1

2
〈�′(un), un〉

]

= lim
n→∞

∫
R2

[
1

2
f (x, un)un − F(x, un)

]
dx

≥
∫
R2

lim
n→∞

[
1

2
f (x, un)un − F(x, un)

]
dx
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=
∫
R2

[
1

2
f (x, ū)ū − F(x, ū)

]
dx

= �(ū) − 1

2
〈�′(ū), ū〉 = �(ū).

Hence, �(ū) ≤ m and so �(ū) = m = infM � > 0. This completes the proof. ��

4 Critical case

In this section, we consider the critical exponential growth case and give the proof of Theorem
1.4.

Let {ek} be a total orthonormal sequence in E−. Define E−
k := span{e1, e2, . . . , ek} and

Ek := E−
k ⊕ E+ for k ∈ N .

Lemma 4.1 ([6]) Let X = Y ⊕ Z be a Banach space with dim Y < ∞. Let e ∈ ∂B1(0) ∩ Z
be fixed and let 0 < ρ < R be given positive real numbers. Let

Q̃ = {v + se : v ∈ Y , 0 ≤ s ≤ R, ‖v‖ ≤ R} .

Let ϕ ∈ C1(X , R) such that

inf
Z∩∂Bρ

ϕ > sup
∂ Q̃

ϕ.

Then there exists a sequence {un} ⊂ X satisfying

ϕ(un) → c, ‖ϕ′(un)‖(1 + ‖un‖) → 0 (4.1)

with

c = inf
γ∈�

sup
u∈Q̃

I (γ (u)),

where

� = {γ ∈ C(Q̃, X) : γ |
∂ Q̃ = id}.

Lemma 4.2 Assume that (V1), (F1′), (F2) and (F3) hold. Let e ∈ ∂B1(0) ∩ E+. Then there
is r0 > ρ̄ such that sup�(∂Qk) ≤ 0, where ρ̄ is given by Lemma 2.4 and

Qk = {
v + se : v ∈ E−

k , 0 ≤ s ≤ r0, ‖v‖ ≤ r0
}
, k ∈ N. (4.2)

Proof By Lemma 2.5, there exists r0 > ρ̄ such that sup�(∂Q) ≤ 0, where

Q = {
v + se : v ∈ E−, 0 ≤ s ≤ r0, ‖v‖ ≤ r0

}
. (4.3)

Since E−
k ⊂ E−, then one has ∂Qk ⊂ ∂Q for all k ∈ N. Thus, sup�(∂Qk) ≤ 0 for all

k ∈ N. ��
For each k ∈ N, let

�k := {γ ∈ C(Qk, E) : γ |∂Qk = id} (4.4)

and
ck := inf

γ∈�k
sup
u∈Qk

I (γ (u)). (4.5)

From Lemmas 2.4, 4.2 and the definition of ck , one can show easily the following lemma.
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Lemma 4.3 Assume that (V1), (F1′), (F2) and (F3) hold. Then

κ0 ≤ ck ≤ r20
2

, ∀ k ∈ N. (4.6)

where κ0 is given by Lemma 2.4.

ApplyingLemma4.1 to� and Ek and usingLemmas 2.4 and 4.2, one can get the following
lemma.

Lemma 4.4 Assume that (V1), (F1′), (F2) and (F3) hold. Then for every k ∈ N, there exists
a sequence {ukn} ⊂ Ek satisfying

�(ukn) → ck, ‖�′(ukn)‖E∗
k
(1 + ‖ukn‖) → 0, n → ∞, (4.7)

where ck is defined by (4.5).

Lemma 4.5 Assume that (V1), (F1′)), (F2) and (F3) hold. If {ukn} satisfies (4.7), then

‖ukn‖ ≤ max

{
4μ̄ck(δ0 + 2K0γ2)

(μ̄ − 2)δ0
, 1

}
+ on(1), ∀ k ∈ N, (4.8)

where γ2 and δ0 are given by (2.6) and (3.5), respectively.

Proof From (F3), (2.8), (2.12) and (4.7), we have

ck + on(1) = �(ukn) − 1

2
〈�′(ukn), ukn〉

=
∫
R2

[
1

2
f (x, ukn)u

k
n − F(x, ukn)

]
dx

≥ μ̄ − 2

2μ̄

∫
R2

f (x, ukn)u
k
ndx . (4.9)

It follows from (2.11) and (4.7) that

on(1) = 〈�′(ukn), ukn〉 = ‖(ukn)+‖2 − ‖(ukn)−‖2 −
∫
R2

f (x, ukn)u
k
ndx (4.10)

and

on(1) = 〈�′(ukn), (ukn)−〉 = −‖(ukn)−‖2 −
∫
R2

f (x, ukn)(u
k
n)

−dx . (4.11)

Combining (4.9) with (4.10), one obtain

‖(ukn)+‖2 − ‖(ukn)−‖2 ≤ 2μ̄ck
μ̄ − 2

+ on(1). (4.12)

Let vn = ukn/‖ukn‖. Then 1 = ‖vn‖2 and ‖v−
n ‖2 ≤ γ2. It follows from (2.25), (3.5), (4.9) and

(4.11) that

‖v−
n ‖2 = − 1

‖ukn‖
∫
R2

f (x, ukn)v
−
n dx + on(1)

≤ 1

‖ukn‖
∫
R2

| f (x, ukn)||v−
n |dx + on(1)

=
∫

|ukn |≤δ0

f (x, ukn)

ukn
|vn ||v−

n |dx
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+ 1

‖ukn‖
∫

|ukn |>δ0

| f (x, ukn)||v−
n |dx + on(1)

≤ 1

4γ 2
2

‖vn‖2‖v−
n ‖2 + ‖v−

n ‖∞
δ0‖ukn‖

∫
|ukn |>δ0

f (x, ukn)u
k
ndx + on(1)

≤ 1

4γ 2
2

‖vn‖2‖v−
n ‖2 + K0‖v−

n ‖2
δ0‖ukn‖

∫
|ukn |>δ0

f (x, ukn)u
k
ndx + on(1)

≤ 1

4
+ 2μ̄ckK0γ2

(μ̄ − 2)δ0‖ukn‖
+ on(1). (4.13)

On the other hand, since 1 = ‖v+
n ‖2 + ‖v−

n ‖2, then from (4.12) we obtain

μ̄ck
(μ̄ − 2)‖ukn‖2

+ ‖v−
n ‖2 ≥ 1

2
+ on(1), (4.14)

which, together with (4.13), implies that (4.8) holds. ��

Applying Lemma 2.3, we deduce that

‖∇v‖∞ + ‖v‖∞ ≤ C0‖v‖, ∀ v ∈ E−, (4.15)

Without loss of generality, we may assume that V (0) < 0. By (V1), we can choose a
constant ρ ∈ (0, 1/2) ∩ (0, 4/‖V ‖∞) such that

4πC20(4 + ρ)ρ < 1 and V (x) ≤ 0, |x | ≤ ρ. (4.16)

As in [13], we define Moser type functions wn(x) supported in Bρ as follows:

wn(x) = 1√
2π

⎧⎪⎨
⎪⎩

√
log n, 0 ≤ |x | ≤ ρ/n;

log(ρ/|x |)√
log n

, ρ/n ≤ |x | ≤ ρ;
0, |x | ≥ ρ.

(4.17)

By a computation, one has

‖w+
n ‖2 − ‖w−

n ‖2 =
∫
R2

(|∇wn |2 + V (x)w2
n)dx ≤

∫
Bρ

|∇wn |2dx = 1. (4.18)

Lemma 4.6 Assume that (V1), (F1′), (F2), (F3) and (F5) hold. Then there exists n̄ ∈ N such
that

max
s≥0,v∈E− �(v + swn̄) <

2π

α0
. (4.19)

Proof Assume by contradiction that this is not the case. So one has

max
s≥0,v∈E− �(v + swn) ≥ 2π

α0
, ∀ n ∈ N. (4.20)

Let vn ∈ E− and sn > 0 such that �(vn + snwn) = maxs≥0,v∈E− �(v + swn). Then we
have �(vn + snwn) ≥ 2π/α0 and 〈�′(vn + snwn), vn + snwn〉 = 0, i.e.

1

2

(
s2n‖w+

n ‖2 − ‖vn + snw
−
n ‖2) −

∫
R2

F(x, vn + snwn)dx ≥ 2π

α0
(4.21)
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and

s2n‖w+
n ‖2 − ‖vn + snw

−
n ‖2 =

∫
R2

f (x, vn + snwn)(vn + snwn)dx . (4.22)

From (2.2), (2.4), (4.15) and (4.17), we have

|(w−
n , vn)| = |(wn, vn)| =

∣∣∣∣
∫
R2

[∇wn∇vn + V (x)wnvn] dx

∣∣∣∣
≤ ‖∇vn‖∞

∫
R2

|∇wn |dx + ‖V ‖∞‖vn‖∞
∫
R2

|wn |dx

≤
√
2πC0ρ√
log n

‖vn‖. (4.23)

Hence it follows from (2.2), (2.4), (2.5), (4.18) and (4.23) that

s2n‖w+
n ‖2 − ‖vn + snw

−
n ‖2 = s2n

(‖w+
n ‖2 − ‖w−

n ‖2) − ‖vn‖2 − 2sn(vn, w
−
n )

≤ s2n − ‖vn‖2 + 2
√
2πC0ρsn√
log n

‖vn‖. (4.24)

Combining (4.21), (4.22) with (4.24), we have

4π

α0
≤ s2n − ‖vn‖2 + 2

√
2πC0ρsn√
log n

‖vn‖ ≤ s2n

(
1 + 2πC20ρ2

log n

)
(4.25)

and

s2n

(
1 + 2πC20ρ2

log n

)
≥ s2n − ‖vn‖2 + 2

√
2πC0ρsn√
log n

‖vn‖

≥
∫
R2

f (x, vn + snwn)(vn + snwn)dx . (4.26)

Moreover, (4.25) implies

s2n ≥ 4π

α0

(
1 − 2πC20ρ2

log n

)
,

‖vn‖
sn

≤ 1 + 2
√
2πC0ρ√
log n

. (4.27)

Let Mn = 1√
2π

√
log n. By (4.15), (4.17) and (4.27), we have

vn(x) + snwn(x) ≥ −‖vn‖∞ + snMn

≥ −C0‖vn‖ + snMn

≥ (1 − 2C0/Mn)snMn, ∀ x ∈ Bρ/n . (4.28)

By (F5), we can choose ε > 0 such that

κ − ε

1 + ε
>>

4e16πC2
0

α0ρ2 . (4.29)

Note that

lim inf|t |→∞
t2F(x, t)

eα0t2
≥ lim inf|t |→∞

∫ t
0 s

2 f (x, s)ds

eα0t2
= lim inf|t |→∞

t f (x, t)

2α0eα0t2
= κ

2α0
. (4.30)
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It follows from (F5) and (4.30) that there exists tε > 0 such that

t f (x, t) ≥ (κ − ε)eα0t2 , t2F(x, t) ≥ κ − ε

2α0
eα0t2 , ∀ x ∈ R

2, |t | ≥ tε. (4.31)

From now on, in the sequel, all inequalities hold for large n ∈ N. By (4.26), (4.28) and (4.31),
we have

s2n

(
1 + 2πC20ρ2

log n

)
≥

∫
R2

f (x, vn + snwn)(vn + snwn)dx

≥ (κ − ε)

∫
Bρ/n

eα0(vn+snwn)
2
dx

≥ π(κ − ε)ρ2

n2
eα0s2n M

2
n (1−2C0/Mn)

2

≥ π(κ − ε)ρ2

n2
exp

[
α0s2n log n

2π

(
1 − 4C0

Mn

)]

= π(κ − ε)ρ2 exp

{
2 log n

[
α0s2n
4π

(
1 − 4C0

Mn

)
− 1

]}
,

which implies that there exists a constant A > 0 such that

2 log n

[
α0s2n
4π

(
1 − 4C0

Mn

)
− 1

]
≤ A.

That is

s2n ≤ 4π

α0

(
1 − 4C0

Mn

)−1 (
1 + A

2 log n

)
. (4.32)

Hence, from (2.8), (4.17), (4.24), (4.28) and (4.31), we obtain

�(vn + snwn)

= 1

2

(
s2n‖w+

n ‖2 − ‖vn + snw
−
n ‖2) −

∫
R2

F(x, vn + snwn)dx

≤ s2n
2

− 1

2
‖vn‖2 +

√
2πC0ρsn√
log n

‖vn‖ −
∫
R2

F(x, vn + snwn)dx

≤ s2n
2

− 1

2
‖vn‖2 +

√
2πC0ρsn√
log n

‖vn‖ − κ − ε

2α0

∫
Bρ/n

eα0(vn+snwn)
2

(vn + snwn)2
dx

≤ s2n
2

− 1

2
‖vn‖2 +

√
2πC0ρsn√
log n

‖vn‖ − (κ − ε)πρ2eα0(−C0‖vn‖+snMn)
2

2α0n2(−C0‖vn‖ + snMn)2
. (4.33)

Both (4.27) and (4.32) show that 4π
α0

(1 − ε) ≤ s2n ≤ 4π
α0

(1 + ε). There are three cases to
distinguish.

Case i) 4π
α0

(1− ε) ≤ s2n ≤ 4π
α0
. It follows from (4.25) that ‖vn‖ ≤ 2πC0snMn/ log n. Then

(4.33) leads to

�(vn + snwn)

≤ s2n
2

− 1

2
‖vn‖2 +

√
2πC0ρsn√
log n

‖vn‖ − (κ − ε)πρ2eα0(−C0‖vn‖+snMn)
2

2α0n2(−C0‖vn‖ + snMn)2
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≤ s2n
2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)ρ2eα0(−C0‖vn‖+snMn)

2

8n2(1 + ε)M2
n

≤ s2n
2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)ρ2eα0s2n M

2
n (1−2C0‖vn‖/snMn)

8n2(1 + ε)M2
n

≤ s2n
2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)πρ2e

α0s
2
n

2π (log n−4πC2
0 )

4n2(1 + ε) log n
. (4.34)

Let us define a function ϕn(s) as follows:

ϕn(s) = s2

2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)πρ2e

α0s
2

2π (log n−4πC2
0 )

4n2(1 + ε) log n
. (4.35)

Set ŝn > 0 such that ϕ′
n(ŝn) = 0. Then

ŝ2n = 4π

α0

[
1 + 8πC20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

2(log n − 4πC20)

]
+ O

(
1

log2 n

)
(4.36)

and

ϕn(sn) ≤ ϕn(ŝn) =
1 + 2πC2

0ρ
2

log n

2
ŝ2n −

π

(
1 + 2πC2

0ρ
2

log n

)
α0(log n − 4πC20)

. (4.37)

Using (4.36), we have(
1 + 2πC20ρ2

log n

)
ŝ2n

= 4π

α0

(
1 + 2πC20ρ2

log n

)[
1 + 8πC20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

2(log n − 4πC20)

]

+O

(
1

log2 n

)

≤ 4π

α0

[
1 + 2πC20ρ2

log n
+ 8πC20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

2(log n − 4πC20)

]

+O

(
1

log2 n

)
. (4.38)

Hence, from (4.16), (4.29), (4.34), (4.37) and (4.38), we derive

�(vn + snwn) ≤ ϕn(sn)

≤
1 + 2πC2

0ρ
2

log n

2
ŝ2n −

π

(
1 + 2πC2

0ρ2

log n

)
α0(log n − 4πC20)

≤ 4π

α0

[
1

2
− 1 − 4πC20ρ2

4 log n
+ 8πC20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

4(log n − 4πC20)

]

+O

(
1

log2 n

)
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≤ 4π

α0

[
1

2
− 1 − 4πC20ρ2

4 log n

]
+ O

(
1

log2 n

)
. (4.39)

This contradicts with (4.20) due to (4.16).
Case ii) 4π

α0
(1 + 2C0‖vn‖/snMn) ≤ s2n ≤ 4π

α0
(1 + ε). Then (4.25), (4.26), (4.28), (4.29),

(4.31) and (4.32) yield

4π

α0
(1 + ε) ≥ s2n

(
1 + 2πC20ρ2

log n

)

≥
∫
R2

f (x, vn + snwn)(vn + snwn)dx

≥ (κ − ε)

∫
Bρ/n

eα0(vn+snwn)
2
dx

≥ π(κ − ε)ρ2

n2
eα0(−C0‖vn‖+snMn)

2

≥ π(κ − ε)ρ2

n2
eα0s2n M

2
n (1−2C0‖vn‖/snMn)

≥ π(κ − ε)ρ2

n2
e2 log n(1−C2

0‖vn‖2/s2n M2
n )

≥ π(κ − ε)ρ2e−16πC2
0‖vn‖2/s2n

≥ 4π

α0
(1 + ε)e15πC2

0 ,

which yields a contradiction.
Case iii) 4π

α0
≤ s2n ≤ 4π

α0
(1 + 2C0‖vn‖/snMn). Then it follows from (4.25) that

‖vn‖2 − 2
√
2πC0ρsn√
log n

‖vn‖ ≤ 8πC0‖vn‖
α0snMn

= 8π
√
2πC0

α0sn
√
log n

‖vn‖, (4.40)

which, together with (4.27) and (4.32), implies that

‖vn‖
sn

≤ 2
√
2π(1 + ρ)C0√

log n
. (4.41)

It follows from (4.33) and (4.41) that

�(vn + snwn)

≤ s2n
2

− 1

2
‖vn‖2 +

√
2πC0ρsn√
log n

‖vn‖ − (κ − ε)πρ2eα0(−C0‖vn‖+snMn)
2

2α0n2(−C0‖vn‖ + snMn)2

≤ s2n
2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)ρ2eα0(−C0‖vn‖+snMn)

2

8n2(1 + ε)M2
n

≤ s2n
2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)ρ2eα0s2n M

2
n (1−2C0‖vn‖/snMn)

8n2(1 + ε)M2
n

≤ s2n
2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)πρ2e

α0s
2
n

2π [log n−8π(1+ρ)C2
0 ]

4n2(1 + ε) log n
. (4.42)
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Setting

ψn(s) = s2

2

(
1 + 2πC20ρ2

log n

)
− (κ − ε)πρ2e

α0s
2

2π [log n−8π(1+ρ)C2
0 ]

4n2(1 + ε) log n
. (4.43)

Let s̃n > 0 such that ψ ′
n(s̃n) = 0. Then

s̃2n = 4π

α0

{
1 + 16π(1 + ρ)C20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

2[log n − 8π(1 + ρ)C20 ]

}

+O

(
1

log2 n

)
(4.44)

and

ψn(sn) ≤ ψn(s̃n) =
1 + 2πC2

0ρ
2

log n

2
s̃2n −

π

(
1 + 2πC2

0ρ
2

log n

)
α0[log n − 8π(1 + ρ)C20 ]

. (4.45)

Combining (4.44) with (4.45), we have(
1 + 2πC20ρ2

log n

)
s̃2n

= 4π

α0

(
1 + 2πC20ρ2

log n

)

×
[
1 + 16π(1 + ρ)C20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

2[log n − 8π(1 + ρ)C20 ]

]
+ O

(
1

log2 n

)

≤ 4π

α0

{
1 + 2πC20ρ2

log n
+ 16π(1 + ρ)C20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

2[log n − 8π(1 + ρ)C20 ]

}

+O

(
1

log2 n

)
. (4.46)

Hence, from (4.16), (4.45) and (4.46), we deduce

ψn(sn) ≤
1 + 2πC2

0ρ
2

log n

2
s̃2n −

π

(
1 + 2πC2

0ρ
2

log n

)
α0[log n − 8π(1 + ρ)C20 ]

≤ 4π

α0

{
1

2
− 1 − 4πC20ρ2

4 log n

+16π(1 + ρ)C20 + log 4(1 + ε) − log(α0(κ − ε)ρ2)

4[log n − 8π(1 + ρ)C20 ]

}

+O

(
1

log2 n

)

≤ 4π

α0

[
1

2
− 1 − 4πC20(4 + ρ)ρ

4 log n

]
+ O

(
1

log2 n

)
. (4.47)
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It follows from (4.42) that

�(vn + snwn) ≤ ψn(sn) ≤ 4π

α0

[
1

2
− 1 − 4πC20(4 + ρ)ρ

4 log n

]
+ O

(
1

log2 n

)
. (4.48)

This contradicts with (4.20) due to (4.16).
The above three cases show that there exists n̄ ∈ N such that (4.19) holds. ��
Let e = w+

n̄ /‖w+
n̄ ‖ in Lemma 4.2. Since E−

k ⊂ E−, then it follows from Lemma 4.6 that
the following lemma.

Lemma 4.7 Assume that (V1), (F1′), (F2), (F3) and (F5) hold. Then supk∈N ck < 2π/α0.

Proof of Theorem 1.4 By Lemmas 4.3 and 4.7, there exist a subsequence {ckn } of {ck} and
c̃ ∈ [κ0, 2π/α0) such that

lim
n→∞ ckn = c̃. (4.49)

By Lemma 4.4, we can choose a subsequence {uknjn } with uknjn ∈ Ekn such that

�(uknjn ) → c̃, ‖�′(uknjn )‖E∗
kn

(1 + ‖uknjn ‖) → 0. (4.50)

For the sake of simplicity, we let ũn = uknjn . Then it follows from (4.50), Lemmas 4.3 and 4.5
that {ũn} is bounded in E (i.e. ‖ũn‖ ≤ C1 for some C1 > 0) and

�(ũn) → c̃, ‖�′(ũn)‖E∗
kn

(1 + ‖ũn‖) → 0. (4.51)

Thus there exists a constant C2 > 0 such that ‖ũn‖2 ≤ C2. By (4.6) and (4.9), one has∫
R2

f (x, ũn)ũndx ≤ C3. (4.52)

If

δ := lim sup
n→∞

sup
y∈R2

∫
B1(y)

|ũn |2dx = 0,

then by Lions’ concentration compactness principle [30, Lemma 1.21], ũn → 0 in Ls(R2)

for 2 < s < ∞. For any given ε > 0, we choose Mε > M0C3/ε, then it follows from (F4)
and (4.52) that∫

|ũn |≥Mε

F(x, ũn)dx ≤ M0

∫
|ũn |≥Mε

| f (x, ũn)|dx ≤ M0

Mε

∫
|ũn |≥Mε

f (x, ũn)ũndx < ε.

(4.53)
Using (F2) and (F3), we can choose Nε ∈ (0, 1) such that∫

|ũn |≤Nε

F(x, ũn)dx ≤
∫

|ũn |≤Nε

f (x, ũn)ũndx ≤ ε

C2
2

‖ũn‖22 < ε. (4.54)

By (F1′), we have∫
Nε≤|ũn |≤Mε

F(x, ũn)dx ≤ C4‖ũn‖33 = o(1),
∫
Nε≤|ũn |≤1

f (x, ũn)ũndx ≤ C5‖ũn‖33 = o(1).

(4.55)
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Due to the arbitrariness of ε > 0, from (4.53), (4.54) and (4.55), we obtain∫
R2

F(x, ũn)dx = o(1). (4.56)

Hence, it follows from (2.8), (4.51) and (4.56) that

‖ũ+
n ‖2 − ‖ũ−

n ‖2 = 2c̃ + o(1). (4.57)

By (F1′), (F2), (2.11), (4.51), (4.52) and (4.54), we have

‖ũ−
n ‖2 = −

∫
R2

f (x, ũn)ũ
−
n dx + o(1)

≤
∫

|ũn |≤Nε

| f (x, ũn)||ũ−
n |dx +

∫
Nε≤|ũn |≤Mε

| f (x, ũn)||ũ−
n |dx

+‖ũ−
n ‖∞
Mε

∫
|ũn |≥Mε

f (x, ũn)ũndx + o(1)

≤ ε

C2
2

‖ũn‖2‖ũ−
n ‖ + C6‖ũn‖2/33 ‖ũ−

n ‖3 + C0
M0

‖ũ−
n ‖ε + o(1)

≤ C7ε + o(1), (4.58)

which implies
‖ũ−

n ‖2 = o(1). (4.59)

Then (4.57) and (4.59) give

‖ũn‖2 = ‖ũ+
n ‖2 + ‖ũ−

n ‖2 = 2c̃ + o(1) := 4π

α0
(1 − 3ε̄) + o(1). (4.60)

Inspired by [9], we choose μ > 0 such that ‖V ‖∞/(μ − ‖V ‖∞) < ε̄. Let ũ+
n = vn + zn ,

where vn ∈ E(μ)E and zn ∈ [id − E(μ)]E . Similarly to (4.58), from (F1′), (F2), (2.11),
(4.51) and (4.52), we can obtain

‖vn‖2 = 〈�′(ũn), vn〉 +
∫
R2

f (x, ũn)vndx = o(1). (4.61)

Hence, it follows from (4.59) and (4.61) that

‖ũn − zn‖2 = o(1), ‖∇ũn‖22 = ‖∇zn‖22 + o(1). (4.62)

Since zn ∈ [id − E(μ)]E , we have
‖zn‖2 =

∫
R2

[|∇zn |2 + V (x)z2n
]
dx = (Azn, zn)L2 ≥ μ‖zn‖22. (4.63)

It follows that

‖∇zn‖22 ≥ (μ − ‖V ‖∞)‖zn‖22. (4.64)

Combining (4.63) with (4.64), one has

‖zn‖2 ≥ ‖∇zn‖22 − ‖V ‖∞‖zn‖22
≥

(
1 − ‖V ‖∞

μ − ‖V ‖∞

)
‖∇zn‖22 ≥ (1 − ε̄)‖∇zn‖22. (4.65)

From (4.62) and (4.65), we obtain

‖ũn‖2 = ‖zn‖2 + o(1) ≥ (1 − ε̄)‖∇zn‖22 + o(1) = (1 − ε̄)‖∇ũn‖22 + o(1) (4.66)
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Let us choose q ∈ (1, 2) such that

(1 + ε̄) (1 − 3ε̄) q

1 − ε̄
< 1. (4.67)

By (F1′), there exists C8 > 0 such that

| f (x, t)|q ≤ C8

[
eα0(1+ε̄)qt2 − 1

]
, ∀ |t | ≥ 1. (4.68)

It follows from (4.67), (4.68) and Lemma 1.1-ii) that∫
|ũn |≥1

| f (x, ũn)|qdx ≤ C8

∫
R2

[
eα0(1+ε̄)qũ2n − 1

]
dx

= C8

∫
R2

[
eα0(1+ε̄)q‖ũn‖2(ũn/‖ũn‖)2 − 1

]
dx ≤ C9. (4.69)

Let q ′ = q/(q − 1). Then we have∫
|ũn |≥1

f (x, ũn)ũndx ≤
[∫

|ũn |≥1
| f (x, ũn)|qdx

]1/q
‖ũn‖q ′ = o(1). (4.70)

Now from (2.8), (2.12), (4.51), (4.54), (4.55) and (4.70), we derive

c̃ + o(1) = �(ũn) − 1

2
〈�′(ũn), ũn〉

=
∫
R2

[
1

2
f (x, ũn)ũn − F(x, ũn)

]
dx < ε + o(1). (4.71)

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume that there exists {yn} ⊂ Z

2 such
that

∫
B1+√

2(yn)
|ũn |2dx > δ

2 . Let us define ṽn(x) = ũn(x + yn) so that

∫
B1+√

2(0)
|ṽn |2dx >

δ

2
. (4.72)

Since V (x) and f (x, u) are 1-periodic on x , we have ‖ṽn‖ = ‖ũn‖ and

�(ṽn) → c̃, ‖�′(ṽn)‖E∗
kn

(1 + ‖ṽn‖) → 0. (4.73)

Passing to a subsequence, we have ṽn⇀ṽ in E , ṽn → ṽ in Ls
loc(R

2), 2 ≤ s < ∞ and ṽn → ṽ

a.e. on R
2. Thus, (4.72) implies that ṽ �= 0. Now for any φ ∈ C∞

0 (R2), we have

φ = φ+ +
∞∑
j=1

(φ, e j )e j , ‖φ−‖2 =
∞∑
j=1

|(φ, e j )|2. (4.74)

Let

φn = φ+ +
kn∑
j=1

(φ, e j )e j , φ̃n =
∞∑

kn+1

(φ, e j )e j . (4.75)

For any given ε > 0, we have∫
|ṽn |≥C3K0γ2‖φ−‖ε−1

| f (x, ṽn)φ̃n |dx ≤ ε

C3

∫
|ṽn |≥C3K0γ2‖φ−‖ε−1

f (x, ṽn)ṽndx < ε. (4.76)
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On the other hand, it follows from (F1′), (F2), (F3),(4.74) and (4.75) that

∫
|ṽn |<C3K0γ2‖φ−‖ε−1

| f (x, ṽn)φ̃n |dx ≤
(∫

|ṽn |<C3K0γ2‖φ−‖ε−1
| f (x, ṽn)|2dx

) 1
2 ‖φ̃n‖2

≤ C10

(∫
|ṽn |<C3K0γ2‖φ−‖ε−1

f (x, ṽn)ṽndx

) 1
2 ‖φ̃n‖

≤ C10

(∫
R2

f (x, ũn)ũndx

) 1
2 ‖φ̃n‖

≤ C11‖φ̃n‖ = o(1). (4.77)

From (4.76) and (4.77), one has

lim
n→∞

∫
R2

f (x, ṽn)φ̃ndx = 0 (4.78)

due to the arbitrariness of ε > 0. Therefore, (2.11), (4.73), (4.78) and Lemma 3.2 yield

〈�′(ṽ), φ〉 =
∫
R2

(∇ṽ∇φ + V (x)ṽφ) dx −
∫
R2

f (x, ṽ)φdx

= lim
n→∞

[∫
R2

(∇ṽn∇φ + V (x)ṽnφ) dx −
∫
R2

f (x, ṽn)φdx

]

= lim
n→∞

[
〈�′(ṽn), φn〉 −

∫
R2

f (x, ṽn)φ̃ndx

]

= − lim
n→∞

∫
R2

f (x, ṽn)φ̃ndx = 0.

This shows that ṽ is a nontrivial solution of (1.1). ��
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