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Abstract
In the present paper, we develop a direct approach to find nontrivial solutions and ground
state solutions for the following planar Schrodinger equation:

—Au+Vx)u= f(x,u), xE¢€ R?,
ue H'(R?),

where V (x) is an 1-periodic function with respect to x| and x, O lies in a gap of the spectrum
of —A+V ,and f(x, t) behaves like £¢%' : ast — Foouniformlyonx € R2. Our theorems
extend and improve the results of de Figueiredo-Miyagaki-Ruf (Calc Var Partial Differ Equ,
3(2):139-153, 1995), of de Figueiredo-do O-Ruf (Indiana Univ Math J, 53(4):1037-1054,
2004), of Alves-Souto-Montenegro (Calc Var Partial Differ Equ 43: 537-554, 2012), of
Alves-Germano (J Differ Equ 265: 444-477, 2018) and of do O-Ruf (NoDEA 13: 167-192,
2000).

Mathematics Subject Classification 35J20 - 35J62 - 35Q55

1 Introduction

This paper is concerned with the following planar Schrédinger equation:

B _ 2
{ Au+ V= f0u), xR, (1.1

u € HY(R?),
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where V and f satisfy the following basic assumptions:
(V1) Ve C(R2, R), V(x) is 1-periodic in x| and x;, and
suplo(—A + V)N (—00,0)] <0 < infl[e(—A + V) N (0, 00)];

(F1) fe C(R2 x R, R), f(x,t)is 1-periodic in x| and x», and

. |f(x, 1) . 2 .
im ———— =0, uniformly onx € R forall @ > 0; (1.2)
[tl>00 et
or
(Fl') f e C(R? x R, R), f(x,t)is 1-periodic in x] and x7, and there exists «p > 0 such
that
i .
lim M =0, uniformly on x € R? for all & > ag (1.3)
[t]l>o0  eo!
and
, .
lim M = +o00, uniformly onx € R? forall & < oo; (1.4)

ltl>o0  et?
(F2) f(x,t) =o(t) ast — O uniformly on x € R2,

As we all know, under (V1), the energy functional associated with (1.1) on H 1(]Rz) is
in general strongly indefinite near the origin. In this case, the generalized link theorem is
a very effective tool to deal with this strongly indefinite problem, which was introduced
by Kryszewski—Szulkin [21], and was improved by Li—Szulkin [23] and Ding [14,15] later.
The generalized link theorem has been used extensively to study the periodic Schrodinger
equation:

- N
{ Au+Vx)u = f(x,u), xeRY, (1.5)

ue HYRN)

with N > 3 and (V1), we would like to cite Ding—Lee [15], Tang [27], Tang-Lin—Yu [28],
Tang—Chen—Lin—Yu [29], Zhang—Xu—Zhang [32] for the subcritical growth case:

Lf(x, D)l

e =0, uniformly on x € RN; (1.6)

|t]—o00
Chabrowski—Szulkin [9], Schechter—Zou [24], and Zhang—Xu—Zhang [31] for the critical
growth case:

|f(x, D)
m 0

B > 0, foreveryx € RV, (1.7)

t|—>o00 |t
where 2* = 2N /(N — 2) is the critical exponent.

The case N = 2 is very special, as the corresponding Sobolev embedding yields H' (R?) ¢
L5(R?) for all s € [2, +00), but H(R?) ;(_ L% (R?). In dimension N = 2, the Trudinger—
Moser inequality can be seen as a substitute of the Sobolev inequality. The first version of the
Trundiger—Moser inequality in R? was established by Cao in [7], see also [1,8], and reads as
follows.

Lemma1.1l i) Ifa > 0andu € H'(R?), then
/ (e"‘“z — 1>dx < 00;
Rz
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i) ifu € H'(R?), ||Vu||% < Lulla < M < oo, and a < 4m, then there exists a
constant C(M , ), which depends only on M and o, such that

/R2 (eo‘“z - 1) dx < C(M, a).

Based on Lemma 1.1, we say that f (x, ¢) has subcritical growth on R? at t = +00 if (1.2)
holds, and f(x, t) has critical growth on R2 at t = +o0 if (1.3) and (1.4) hold, which is the
maximal growth on 7 that allows to treat the problem variationally in H'(R?). This notion of
criticality was introduced by Adimurthi—Yadava [2], see also de Figueiredo—-Miyagaki—Ruf
[13].

Let us point out that the case when N = 2 and f(x, #) has polynomial growth on ¢ was
in fact considered in the above mentioned papers, since it can be addressed similarly as the
case when N > 3 and f(x,t) is superlinear and subcritical at t = oo. In particular, it is
easy, in this case, to show that the functional W (u) = o F(x, u)dx is weakly sequentially
continuous in H'! (Rz), where and in the sequel F(x, t) := f(; f(x, s)ds, since the sequence
{ f\un|>1 | f(x, u,)|9dx} is still bounded for any constant ¢ > 1 and any bounded sequence

{up,} ¢ H'(R?). And so, the generalized link theorem can be applied to the functional
associated with (1.1) to obtain a (PS) sequence or Cerami sequence. However, when f (x, )
has exponential growth on 7, on one hand, the embedding of the Sobolev space H!(R?)
into the Orlicz space associated with the function ¢(s) = exp(47rs2) — 1 is not compact,
on the other hand, it is not standard to prove that W(u) is weakly sequentially continuous
in H'(R?). But even worse, so far we have not found a method to show this conclusion
when f(x,t) has critical exponential growth on R2 att = 400 (i.e.(1.3) and (1.4) hold).
Therefore, the technical methods in proving the existence, boundedness and the non-vanishing
of (PS) sequence or Cerami sequences for the energy functional associated with (1.5), used
in aforementioned papers, do not work for (1.5) with N = 2. Also because of this, it is more
complicated to deal with the case N = 2 than the case N > 3.

In the case N = 2 and f(x,t) has exponential growth on ¢, when V (x) is a positive
potential bounded away from zero (i.e. the so-called definite case), motivated by the Moser—
Trudinger inequality, the existence of nontrivial solutions to problem (1.1) has been studied
by many authors; see, for example, Alves—Souto [4], Adimurthi—Yadava [2], Alves—Souto—
Montenegro [5], Cao [7], de Figueiredo-do O-Ruf [11,12], de Figueiredo—Miyagaki—Ruf
[13], Lam-Lu [22], Zhang-do O [33]. However, when (V1) holds, the operator —A + V on
L?(R?) has a purely continuous spectrum consisting of closed disjoint intervals (i.e. the so-
called indefinite case), to the best of our knowledge, it seems that there are only two papers
[3,17] concerning the existence of nontrivial solutions for (1.1). To describe the existing
results in [3,17], we first introduce the following conditions:

(F3) there exists it > 2 such that
tf(x.0) = AF(x,1) >0, ¥ (x,1) € R? x (R\ {0});
(F4) there exist My > 0 and 9 > 0 such that for every x € R2,

F(x,t) < Mol f(x,0)|, VIt =10;

(F5) limp— oo [fa(;;zt) = oo uniformly on x € R2;

(F6) there exist constants I', A > 0 and gg > 2 such that

|f G, )] < Te¥ ™ and F(x,1) = Alt|9, V(x,7) € R® x R;

@ Springer



95 Page4of 27 S. Chen, X. Tang

(SQ) limyyj—o0o T2 = 0o forae. x € R%;

(WN) ¢ +— f(‘fl”) is non-decreasing on (—oo, 0) U (0, 0o) for every x € R2.

Under (V1), (F1'), (F2), (F3), (F6) and (WN), Alves—Germano [3] proved that if A is
large enough, (1.1) has a ground state solution by using the method of generalized Nehari
manifold developed by Szulkin—Weth [25,26]. They showed that the minimax-level is less
than the threshold value under which (PS) sequences do not vanish in the same way as the
case N > 3. Let us emphasize that the condition F(x,t) > X|t|9° with sufficiently large
A is very crucial in their arguments. Thanks to this condition, the minimax-level for the
energy functional associated with (1.1) can be chosen to be small, and so ii) of Lemma
1.1 is available, thereby the obstacle arising from the critical growth of Trudinger—-Moser
type is easily overcome, see [3, Propositions 3.15, 3.16]. But this result has no relationship
on the exponential growth velocity «g (see (F1’)), hence it does not reveal the essential
characteristics for (1.1) with the critical growth of Trudinger—Moser type.

When V satisfies (V1), and f(x, ) = f(¢) satisfies (F1’), (F2)—(F4) and (F5'), based on
an approximation technique of periodic function together with the linking theorem due to
Bartolo-Benci-Fortunato [6], do O and Ruf [17] obtained the existence of a nontrivial solution
of (1.1). To overcome the difficulties arising from lack of compactness of the corresponding
energy functional, some of the ideas contained in [13,16] were used. More precisely, they
first introduced a sequence of cubes {Qy} C R? with edge length k € N and the orthogonal
decomposition H[}er(Qk) = Yi @ Zy with dim ¥} < oo for every k € N, where H[}er(Qk)
denotes the space of H'(Qy)-functions which are k-periodic in x| and x,, and then applied
the link theorem to the approximation problem and yielded a (PS) sequence {uy ,} for every
k € N; next proved that {uy ,} is bounded in leer(Qk) and does not vanish; finally got a
sequence of solutions {uy} of the approximation problems and then proved that it tends to
a nontrivial solution of (1.1) as k — oo. In their arguments, they used many embedding
inequalities on Qy and upper or lower estimates for the functionals on H'(Qy). Obviously, it
is very crucial to verify that the embedding constants and the uppers or lowers are independent
of k € N. However, it is quite difficult and complicated to do these works. For example, they
used Schwarz symmetrization method to prove the following two claims:

Claim (i) ([17, Claim 2.5]) There exist constants pg > 0 and C > 0 independent of k such
that

q 2y q
[ ttexpud  1dx < ity

forall u € H'(Qy) with [[ull 1.0, < ro-
Claim (ii) ([17, Claim 3.3]) The following conclusion holds:

lim [lu,]l, =0 = lim / F(up)dx = 0.
n—00 n—oo Qn

In the proof of Claim i), they established many embedding inequalities with embedding con-

stants independent of k, such as L?(R?) LN L*(Bg,) = L*(Qy) — H'(R?), see [17,
Claim 2.5]. Claim ii) implies that the approach does not work any more for non-autonomous
problem (1.1), since the Schwarz symmetrization method is only valid for autonomous func-
tion f.

In the present paper, motivated by [3,9,10,13,17], we will develop a direct approach
which is different from [3,17] to find nontrivial solutions and ground state solutions of
(1.1) in the subcritical and critical exponential growth cases. Particularly, employing some
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new techniques with a deep analysis and using an approaching argument and some detailed
estimates, we succeed in overcoming four main difficulties: (1) looking for a Cerami sequence
for the energy functional associated with (1.1); (2) showing the boundedness of the Cerami
sequences; (3) showing that the minimax-level is less than the threshold value; (4) showing
that the Cerami sequences do not vanish.

In particular, we will weaken (F5') used in [17] to the following condition:

. 2
(F5) liminf};— 0 tfigt’zt) > K > ﬁem”co uniformly on x € R?,
e

where p > 0 satisfies 477 (4 + p),ocg < 1 and Cp > 0 is an embedding constant, see (4.15)
and (4.16).

It deserves to be mentioned that an assumption similar to (F5) was introduced in [13]
when V (x) is positive periodic and R? is replaced by a bounded domain  C R2.

In detail, we have the following four results on the existence of nontrivial solutions.

Theorem 1.2 Assume that V and f satisfy (V1) and (F1)—(F3). Then (1.1) has a nontrivial
solution.

Theorem 1.3 Assume that V and f satisfy (V1), (F1), (F2), (SQ) and (WN). Then (1.1) has
a ground state solution with positive energy.

Theorem 1.4 Assume that V and f satisfy (V1), (F1") and (F2)—~(F5). Then (1.1) has a
nontrivial solution.

Corollary 1.5 Assume that V and f satisfy (V1), (F1), (F2)~(F4) and (F5). Then (1.1) has
a nontrivial solution.

Example 1.6 1t is easy to check, using Taylor series, that the following two functions satisfy
(F1)—(F3), (SQ) and (WN):

(). f(x,t) = a2+ sin2mwx; cos2mxy) (eb"|3/2 — 1) signt witha, b > 0;

(iD). f(x,1) =a(2+ sin27x cos2mxy) (¥ — 1 — bt — $b°1%) witha, b > 0;

and f(x,1) = axt™! (6’2 1 r2) with a > 1 satisfies (F1) and (F2)—~(F5) with ap = 1
and p = 3, but it does not satisfy (F5').

The paper is organized as follows. In Sect. 2, we give the variational setting and prelimi-
naries. We complete the proofs of Theorems 1.2, 1.3 and 1.4 in Sects. 3 and 4 respectively.

Throughout the paper, C1, Ca, ... denote positive constants possibly different in different
places.

2 Variational setting

Let A= —A+V with V e C(R?) N L (R?). Then A is self-adjoint in L% (R?) with domain
D(A) = HX(R?) (see [19, Theorem 4.26]). Let {E(1) : —oo0 < A < +o00} and |.A| be the
spectral family and the absolute value of A, respectively, and |.A|'/? the square root of |.A|.
Set U = id — £(0) — £(0—). Then U commutes with A, |A| and | A|'/?, and A = U|A| is
the polar decomposition of A (see [18, Theorem IV 3.3]). Let

E =A%, E- =&0-)E, ET =[id— E(0)]E. 2.1
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By (V1),onehas E = E~ @ ET.Forany u € E, itis easy to see that u = u~ + u™, where
u =E0-)ueE", ut:=[id-EO0)uecE" (2.2)

and
Au™ = —|Alu~, Aut =|AluT, Yue ENnDA. (2.3)

On E, We can define an inner product

w,v) = (IAI"Y?u, |AY?) 5, wveE (2.4)

and the corresponding norm
lull = ||141"%u|,, ueE, (2.5)
where and in the sequel, (-, -) ;2 denotes the inner product of L2(R?), || - || denotes the norm

of L*(R?).
E = H'(R?) with equivalent norms (see [14,15]). Therefore, E embeds continuously in
LS (Rz) forall 2 < s < 00, i.e. there exists y; > 0 such that

lulls < ysllull, VYuekE. (2.6)
In addition, one has the following orthogonal decomposition £ = E~ @ E™, where orthog-
onality is with respect to both (-, -);2 and (-, -). If 6 (=A 4+ V) C (0, 00), then E~ = {0},
otherwise E~ is infinite-dimensional.

Under assumptions (V1), (F1) (or (F1')) and (F2), the solutions of problem (1.1) are critical
points of the functional

1
D (u) = f/ (IVul* + V (x)u?) dx —/ F(x,u)dx, VYuceE. .7
2 ]R2 Rz
In view of (2.3) and (2.5), we have
1
Q) = 3 (™12 = flu=11%) —/ F(x,u)dx, Yu=u +u” € ET®ET =E. (2.8)
]RZ

By virtue of (F1) (or (F1")) and (F2), we can choose a > 0 such that for any given & > 0,
there exists C, > 0 such that

| f(x, )] <elt] + Cs (e""Q—l), V(x,1) e R? x R. 2.9)
Consequently,
FGe 0l < elt?+ Celr] (47 = 1), V(1) e R2 xR, (2.10)
According to (2.10) and Lemma 1.1, we can demonstrate that ® is of class C 1(E,R), and
(D' (u), v) = ./RZ (VuVv + V(x)uv)dx — ./RZ f(x,u)vdx, VYu,vekE. (2.11)
In particular, it follows from (2.3) and (2.5) that
(@ (), u) = ut 1> = Ju"||> = /Rz f(x,u)udx, VucekE. (2.12)

Define
M={ueE\E™ :(®u),u)=(d'u),v)=0,Vve E}. (2.13)
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Let X be a real Hilbert space with X = X~ @ X' and X~ L X™. For a functional
@ € C'(X,R), ¢ is said to be weakly sequentially lower semi-continuous if for any u, —u
in X one has ¢(u) < liminf,_ o ¢(u,), and ¢’ is said to be weakly sequentially continuous
if for any u,—u in X one has lim,_ oo (¢’ (1), v) = (¢’ (1), v) foreach v € X.

Lemma 2.1 ([14,15]) Let X be a real Hilbert space with X = X~ @ X" and X~ L X, and
let ¢ € CY (X, R) of the form

1
o) =5 (1> =l I1?) =y @), u=u +uteX ®X*.

Suppose that the following assumptions are satisfied:

(BD1) ¢ € CYX,R) is bounded from below and weakly sequentially lower semi-
continuous;

(BD2) v’ is weakly sequentially continuous;

(BD3) there exists { > 0 such that ||\u|| < ¢|lu™| forallu € {v € E : ¢(v) > 0};

(BD4) there existr > p > 0and e € Xt with |e|| = 1 such that

& = 1inf (S1) > supp(30),
where
St={ueXx":jul=p}., O={vt+seiveX ,0<s<r |vl=<r}.
Then there exist a constant ¢ € [k, sup (p(Q)] and a sequence {u,} C X satisfying
@) = ¢, g ) l(1 4 llunll) — 0. (2.14)
We set

W (u) :=/ F(x,u)dx, VucekE. (2.15)
R2

Lemma 2.2 Assume that (V1),(F1) and (F2) hold, and F(x,t) > 0 for all (x,t) € R? x
R. Then V is nonnegative, weakly sequentially lower semi-continuous, and V' is weakly
sequentially continuous in E.

Proof We only prove that W’ is weakly sequentially continuous, the other is standard. Let

up,—u in E and let v € E be an any given function. Then |u,| < C; for some C; > 0.
Since the norms || - || and || - || 51 are equivalent, there exists 9 > 0 such that

IVullz < dollull, YucekE. (2.16)

Leta € (0, l/Clzﬁg). Using (F1) and (F2), there exists C > 0 such that
ar? 2
£ D) < ltl + Ca (e —1), V(x,1) e R x R. 2.17)

For any ¢ > 0, we can choose R > 0 such that

/ v2dx < &2 (2.18)
R2\Bg
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Then it follows from (2.17), (2.18) and Lemma 1.1 that

/ [ f(x, up)v|dx / luyvldx + Cz/ (e‘”‘
R2\ B R2\Bg R2\Bg

2
n

IA

- 1) vldx

: TE ;
< unlla + Ca / (e““” _ 1) dx] (/ vzdx>
L/R? R2\Bp
- s 1/2
< Nlulla + C2 / (e - 1)dx} .
LJ/R2
i 2 2 2 1/2
<\ llunl2 + Co / (ez"“%”“n” (n/Dollunl)? _ 1) dx] €
LJ/R2
< Cse. (2.19)

mce v € Rr), 1t follows that there exists 0 > 0O such that

Si L2(B)'f11 hat th ists 5 > 0 h th
/ lv]?dx < &® if meas(A) <8 (2.20)
A

for all measurable set A C Bpg. Hence it follows from ||u,| < C; that there exists M > 0
such that

meas({x € Bg : |luy,(x)| > M}) <68, meas({x € Bg: |u(x)| > M}) <3. (2.21)

Let A, :={x € Bg : lu,(x)| > M}, Ag :={x € Br : |[u(x)| > M} and Dy := {x € Bg :
|u(x)| = M}. Then it follows from (2.17), (2.20), (2.21) and Lemma 1.1 that

/ |f (x, up)vldx < / lupv|dx + C2/ (eW% _ 1) |v]dx
AnUDg AnUDyg AnUDyg
R ) 2 3
< unls + G [ f (e 1) dx] ( / vzdx>
R2 A,UDg
, 172
< 21 llunll2 + C2 [/ (ez"“" - 1) dx] s
RZ
12
<2 [||un la+Ca [/ (ez‘)‘”g“”n||2(“»:/'90Hunll)2 - 1) dx] ] &
RZ

< Cie. (2.22)
Similarly, we can show that
/ [ f(x, u)vldx < Cse. (2.23)
Ao
Since f(x, up)VXju,<m —> f(X, u)vxju<m a.e. in Bg \ Dy, moreover,

[f e, u)vl X, <m < vl max | f(x,?)], VYxe&Bg.
x€BR,|t|<M

Then Lebesgue dominated convergence theorem leads to

lim f(x, up)vdx = / f(x, u)vdx. (2.24)

=00 JBRr\(AnUDy) Br\Ao
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Let ¢ — 0, it follows from (2.19), (2.22), (2.23) and (2.24) that

lim f(x,un)vdx:/ f(x, u)vdx.
n—0o0 RZ RZ

This shows that W’ is weakly sequentially continuous. O

The following lemma is very important and crucial, which has been proved in [9, Propo-
sition 2.2 and Proposition 2.4]. Here, We give a different proof.

Lemma 2.3 Assume that V € L (R?). Then for any . > 0 there exist two constant Ko > 0
and K, > 0 such that

[Villoo + llulleo = Kollull2, Vue&OE =E" (2.25)

and
lulloo < Kpllullz, Yue&WE. (2.26)

Proof Let b < inf o (A). Then we have
y
(APu,u);> = /b A2AEMWu, u) 2 < (bl + w2 ull3, Y u e EQIHGRY].

Consequently,
Il Aullz < (1] + ) llull2, YV u € EWIHg R)]. (2.27)

By virtue of (2.27) and the Holder inequality, we obtain that

|(—Au, v)Lz| = ‘(Au, V)2 — /2 V(x)uvdx
R

< [Aullz + [ VIlsollull2] V]2
< (bl + 1+ 11V lull2llvll2,
Yue EIHFRY)], ve L*(R?), (2.28)

it leads to the following fact that
IAully < Cillulla, ¥ u € Ew)H; RY)]. (2.29)

Employing the Calderon—Zygmund inequality (see [20, Theorem 9.9]) and Ehrling—
Nirenberg—Gagliardo interpolation inequalities (see [20, Theorem 7.28]), we deduce that

lull 22y < Callullz, Y u € EWIHGRY], (2.30)
which, together with the Sobolev embedding theorem, yields
luloo < Csllell gogzy < Callulla, YV u € EGHIHFR)]. 231)

Since £(w)[Hg (R?)]is dense in £(w) L*(R?) and L (R?) is complete, it follows from (2.31)
that
lulloo < Csllullz,  Yu e E)L*RY). (2.32)

For any u € £(0)[HE (R?)], there exists i € Hg(R?) such that u = £(0)ii, we deduce that
lid — £(0)]Au = Alid — £(0)]u = Alid — £(0)IE(0)ii = 0.

This shows that Au € £(0)L*(R?), Y u € £(0)[HZ (R?)]. Hence, it follows from (2.27) and
(2.32) that

[ Aulloo < CollAulla < |b|Cellulla, ¥ u € EO)HFR)]. (2.33)
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By virtue of (2.32), (2.33) and the Holder inequality, we get

|(—Au, v)L2| = ‘(Au, V)2 — /2 V(x)uvdx
R

< (IMulloo + 1V oo llllo) vl
< (IbICsllull2 + CellV lloollull2) ]I,
= Crllullzllvli, YueEO[HFR)], ve L' (RY). (2.34)

Consequently,

lAullos < Csllullz, Y u e EO)HFR) (2.35)

Again applying the Calderon—Zygmund inequality and interpolation inequalities, one can
get

IVilloo + ltllos < Collulla, Y u € EO)HGRHI.

Now the conclusion follows by above inequality and the fact that £ (O)[Hg (R?)] is dense in
E(O)E. O

Lemma 2.4 Assume that (V1), (F1) (or (F1")), (F2) and (F3) hold. Then there exists p > 0
such that
ko == inf {®u) :u € ET, |lull = p} > 0. (2.36)
Proof By (F1) (or (F1’) and (F2), one has for some constants « > 0 and Cjp > 0
1
|F(x, )| < ﬁzz 1+ Co (e‘“2 - 1) 1P, V(1) eR®xR. (2.37)
6]

In view of Lemma 1.1, (2.6) and (2.16), we have

/ (ezauz B 1) dr — / (ez«wguu||2<u/ﬂouu||>2 _ 1) dx
R? R?

< COn/v0,2m), Vlull < \/7/adg. (2.38)
Then (2.37) and (2.38) give

1
/ Fx,uydx < —5|lull3 + clo/ (e = 1) luPPdx
R2 dy; R2

1 2 20 2 3
< —|ul5+C / (e““ —l)dx] u
a2 llull3 10 |: - lluli

1
< Nl + Cllul’, ¥ flull < /g, (2.39)
Hence, it follows from (2.8) and (2.39) that

1 2
Sw) = ~lul —f Fx, w)dx
RZ

2
1
> Ml = Cullul, YueET, ull < \/x/adf.
Therefore, there exists 0 < p < /7 /az?g such that (2.36) holds. O

As in [27], we can prove the following three lemmas.
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Lemma 2.5 Assume that (V1), (F1) (or (F1")), (F2) and (F3) hold. Let ¢ € E*. Then there
is ro > p such that sup ®(0 Q) < 0, where

O={v+se:veE ,0=<s=<ro vl <ro}. (2.40)
Lemma 2.6 Assume that (V1), (F1), (F2) and (WN) hold. Then

2

t2
) > 5||u||2+f F(x, tuT)dx + (@ (), u™y + 12D (u), u™),
RZ
V>0, uetk. (2.41)

Lemma 2.7 Assume that (V1), (F1), (F2), (SQ) and (WN) hold. Then there exist a constant
c* € [ko, m] and a sequence {u,} C E satisfying

Pup) = c* Q" )1+ llunl) — 0, (2.42)
where K is defined by (2.36) and m = inf, c pq @ (u).
By Lemmas 2.2, 2.4 and 2.5, one can get the following lemma.

Lemma 2.8 Assume that (V1), (F1), (F2) and (F3) hold. Then there exist a constant ¢ €
[k, sup ®(Q)] and a sequence {u,} C E satisfying

D(up) — ¢ [ (un) (14 llunlh) — O, (2.43)
where Q is defined by (2.40).

3 Subcritical case

In this section, we study the subcritical exponential growth case and show Theorems 1.2 and
1.3. The first lemma is crucial when f has an exponential growth.

Lemma 3.1 Assume that (V1), (F1), (F2) and (F3) hold. Then {u,} satisfying (2.43) is
bounded in E.

Proof From (F3), (2.8), (2.12) and (2.43), we have

c+o(l) = ®(u,) — %(q)/(un)a Uy)

= / |:lf(x, uu, — F(x, u,,)] dx
]RZ 2

-2
> — / fx, up)updx. 3.D
sz RZ
It follows from (2.11) and (2.43) that
o(1) = (@ (un), u) = N 1> — lluy II* — /R F O, un)updx 3.2)
and
o(1) = (@ (un), uy,) = —lluy, |* = /R F O, up)uy, dx. (3.3)

Combining (3.1) with (3.2), one obtains

_ 2uc
et 11> = a1 < 73 Tow (34)
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To prove the boundedness of {u,}, arguing by contradiction, suppose that ||u,| — oo as

n — oo. Let v, = u,/||uy||. Then 1 = ||v, ||2. By (F2), we can choose §p > 0 such that
t 1
f&n —, VxeR |1 <. (3.5)
t 4
Then it follows from (2.25) (3.1), (3.3) and (3.5) that
oy 12 = / s und + o(1)
Iunll

/If(x,un)llvn_lderO(l)
lunll Jr2

f(x’un) —
=f SO U)o
[un] <80

Up

Lf e, un)llv, |dx + o(1)

Netn |l Sy >80
v, lloo

Sollunll Jyuy>s0

IA

1 _
—5 lvnll2llv, ll2 + f(x, up)uydx 4+ o(1)
4)/2

| Kol
< L luallalivg 2 + 7f £ o unyindx + o(1)

4y; Sollunll Jyun>s0

1
< +o(). (3.6)

On the other hand, since 1 = |v;F 1% + lv, 12, then from (3.4) we obtain

_ 1
o 17 = 5 +o(D), 3.7)
which contradicts with (3.6). Thus {u,} is bounded in E. ]
Lemma 3.2 Assume that (F1) (or (F1")), (F2) and (F3) hold. Let u,—u in E and

[ fx, upu,dx < Ko (3.8)
R2
for some constant Ko > 0. Then for every ¢ € C§° (R?)
lim f fx,up)pdx = / f(x, u)pdx. 3.9)
n—oo fp2 R2

Lemma 3.2 is a direct consequence of [13, Lemma 2.1].

Proof of Theorem 1.2 Applying Lemmas 2.8 and 3.1, we deduce that there exists a bounded
sequence {u,} C E satisfying (2.43) and ||u,|| < C; for some C; > 0. Thus there exists a
constant Co > 0 such that ||u,|, < Cy. If

8 := lim sup sup / |un|2dx =0,
Bi(y)

n—00 yE]RQ

then by Lions’ concentration compactness principle [30, Lemma 1.21], one has u, — 0 in
L¥(R?) for2 < s < 0o.Leta € (0, 1/C}93), where 0 is defined by (2.16). Using (F1) and
(F2), there exists C3 > 0 such that

1F(x,0)] < 2|t|+C3< 2—1), V(x, 1) e R x R. (3.10)
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Then (3.10) and Lemma 1.1 give

c 2
/2 S G up)updx < E”un I3 + C3 /2 (eo“‘” - 1) |1, |dx
R 2 R

2/3

¢ w32
Z+C Rz(e P ) Tde | s

¢ - ) 2/3
Shay / (e3°‘"n/2—1)dx] litn I3
4 L RZ

IA

IA

_ 2/3
- % +C /Rz (e%w?éuun||2<un/ﬁouu,,||>2 _ 1) dx] it 13
' L
< —+o(l) (3.11)
Now by (2.8), (2.12) and (3.11), we have
B} 1
c+o(l) = ®(u,) — 5@/(14”), Up)
1 _
_ /2 |:§f(x, Uty — F(x, u,,)] dx < % +o(l). (3.12)
R

This contradiction shows that 69 > 0.
Going if necessary to a subsequence, we may assume that there exists {k,} C Z? such
s
that fB1+ﬁ(krl) luy|2dx > 5. Let us define v, (x) = u, (x + k;) so that

8
f lup|?dx > = (3.13)
By 2O 2
Since V(x) and f(x, u) are 1-periodic on x, we have ||v,| = |lu,| and
@) = ¢, D" W)+ [[vall) — 0. (3.14)

Passing to a subsequence, we have v,—vin E, v, — vin L} (Rz), 2<s<ooandv, - v
a.e. on R2. Thus, (3.13) implies that v # 0. Moreover, (2.11), (3.14) and Lemma 3.2 yield
for every ¢ € C°(R?),

(@' (v), ¢) = lim (@' (vy), ¢) = 0.
n—o0
Hence @' (v) = 0. This completes the proof. O

Lemma 3.3 Assume that (V1), (F1), (F2), (SQ) and (WN) hold. Then any sequence {u,}
satisfying (2.42) is bounded in E.

Proof To prove the boundedness of {u, }, arguing by contradiction, suppose that |ju, || — oo.
Let v, = u,/||luyll- Then ||v,|| = 1, and (2.6) gives ||v,|l2 < y». Passing to a subsequence,
we may assume that v,—v in E, v, — vin L (R?),2 < s < 00,v, — vae. on R°.If

8 := lim sup sup / |v2‘|2dx =0,
Bi(y)

n—00 yERZ

then by Lions’ concentration compactness principle [30, Lemma 1.21], vf — 0in L* (R?)
for 2 < s < co. By (WN), we obtain

fo, 0t > 2F(x, 1), ¥ (x,1) e R xR, (3.15)
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Let us fix R > [2(1 4 ¢*)]'/?, where c¢* is given by Lemma 2.7. Set & € (0, 1/(Ry290)?).
By (F1), (F2) and (3.15), there exists C¢ > 0 such that

|F(x, 0] =

1 5 2
2+ Colt| (e* —=1), V(x,1) e R xR. 3.16
W e (¢ 1) Y e B x (3.16)

Then (3.16) and Lemma 1.1-i1) lead to

1
R+ CeR | (2D 1) [utdx
n 2 n

F(x, RuN)dx <
/I;Z (x, Rvy) x_4y22 R2

1 r 32 %3
< 1 + CsR /1;2 (e”‘Rz(v;r)2 — l) dx] o, 113
1 i 3aR2(vH)2/2 23 +
< Gk [ (e 22 _ 1) de| vl
1 [ 3aR202 v 12 (v /9ollvf D2 " +
=7 + CoR - (ez 01w 17V n 7 — 1) dx llv, I3
1 L
< —+o(l) @G.17)

Lett, = R/||uy|. Hence, from (2.42), (3.17) and Lemma 2.6, we derive

¢ +o(l) = P(uy)
ﬁ 2 + L=ty 2 -
> B lunll” — - F(x, thit, )dx + B (D' (up), un) + [ (D" (uy), u, )

R ol /F( o+ (L= Y (@)
= —1lv — X, Rv X - — Up), U
2 R " 2 2fun? me
R? o _
+W( (un), u, )
n

R2
= — —/ F(x, Rul)dx +o(1)
2 RZ
>R2 l—i—(l) *+3+(1)
- - e
= g me Tl
which is a contradiction. This shows that § > 0. The rest of the proof is standard, so we omit
it. O

Proof of Theorem 1.3 Applying Lemmas 2.7 and 3.3, we can deduce that there exists a
bounded sequence {u,} C E satisfying (2.42). Similar to the proof of Theorem 1.2, we
have u,—u € E \ {0} and ®'(i) = 0. This shows that & € M, and so ® (i) > m. On the
other hand, by using (2.42), (3.15) and Fatou’s lemma, we have

. 1
m> ¢, = nhﬁrr;o [d>(un) - E(Cb'(un), Up)

1
lim I:ff(x, Uiy, — F(x,uy) | dx
R2 2

n—oo

A%

1
/ lim I:ff(x,un)un—F(x,un) dx
R2 =00 2
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:/ [lf(x,ﬁ)ﬁ—F(x,ﬁ)]dx
R2 2

1
= ®(i1) — 5(ep’(ﬁ), ii) = (D).

Hence, ® (i) < m and so ®(u) = m = inf oy ® > 0. This completes the proof. O

4 Critical case

In this section, we consider the critical exponential growth case and give the proof of Theorem
1.4.

Let {ex} be a total orthonormal sequence in £~ Define E;” := span{ey, e, ..., ex} and
Ey:=E_ @ EtforkeN.

Lemma 4.1 ([6]) Let X =Y & Z be a Banach space with dimY < oo. Lete € 0B1(0) N Z
be fixed and let 0 < p < R be given positive real numbers. Let

OQ={v+se:veY, 0<s <R, |v| <R}.
Let ¢ € CY (X, R) such that

A, 0 > s
Then there exists a sequence {u,} C X satisfying
@un) = ¢, o )l + llunll) — 0 4.1
with
¢ = inf sup I(y(u)),
el e
where

F={y €C(Q,X): ¥y, =id}.

Lemma 4.2 Assume that (V1), (F1"), (F2) and (F3) hold. Let e € 3B1(0) N ET. Then there
is ro > p such that sup ® (3 Qx) < 0, where p is given by Lemma 2.4 and

Or={v+se:veE ,0<s<ryllvl<ro}, kel 4.2)

Proof By Lemma 2.5, there exists rg > p such that sup ®(3 Q) < 0, where

O={v+se:veE ,0=<s=<ro vl <ro}. 4.3)
Since E;, C E~, then one has dQy C 9Q for all k € N. Thus, sup ®(dQ¢) < 0 for all
k eN. O
For each k € N, let

Iy :={y €C(Q E) : ylag, = id} (4.4)

and
cy = inf sup I(y(u)). 4.5)

yelk ueQx

From Lemmas 2.4, 4.2 and the definition of ¢, one can show easily the following lemma.
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Lemma 4.3 Assume that (V1), (F1'), (F2) and (F3) hold. Then

2
K()fckf%), VkeN. (4.6)

where kg is given by Lemma 2.4.

Applying Lemma4.1 to ® and Ej and using Lemmas 2.4 and 4.2, one can get the following
lemma.

Lemma 4.4 Assume that (V1), (F1), (F2) and (F3) hold. Then for every k € N, there exists
a sequence {u’,‘l} C Ey satisfying

D) = e, 19 wp)llgr(1+ ugl) - 0, n— oo, (4.7)
where cy. is defined by (4.5).
Lemma 4.5 Assume that (V1), (F1")), (F2) and (F3) hold. If{uﬁ} satisfies (4.7), then

4fick (8o + 2Koy2)
(i —=2)8o

where y, and 8y are given by (2.6) and (3.5), respectively.

(] Smax{ ,1}+o,,(1), VkeN, (4.8)

Proof From (F3), (2.8), (2.12) and (4.7), we have
ek +ou(1) = Duk) - %«b/(uﬁ), ul)
/ |:lf(x, uﬁ)uﬁ — F(x, uﬁ)] dx
RZ 2

TR
MZT /]RZ fx, u],‘l)u],;dx. 4.9

It follows from (2.11) and (4.7) that

v

on(1) = (@' (), ) = 1) "I = N1 Ga) 7)1 = [R N CNTATA (4.10)

and

on(1) = ('), wh)") =—||<uﬁ)—||2—f]Rz Fe e dv. @11
Combining (4.9) with (4.10), one obtain
.
Il I = 1)1 < 255 4+ 0, (1), @.12)
n—2

Let v, = uf/|juk||. Then 1 = ||v,[|> and ||v; ||z < y». It follows from (2.25), (3.5), (4.9) and
(4.11) that

1

lufll Jre

1 / ot
= o | Gl |dx 4 0, (1)
lufll Jr2 e !

k
fx,uy) _
=/ T tn) o
luk]<8o

-2
llv,

Fx, ufyvrdx + 0,(1)

k
uy
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1
+— |f (e, ub)| vy dx + 0, (1)
lluk |

[uk|>8o
v, lloe
Sollub | Jyuk 5
Sl + % /MMO £k + 0,(1)
1 2k Koys
4 (1 —2)80lluk]|

On the other hand, since 1 = ||v;" 12 + v, 12, then from (4.12) we obtain

1 _
< Wuvnnznvn ll2 + F O, ubyubdx + 0, (1)
2

IA

+0,(1). (4.13)

ek 2 1
——— + v, I” > = +0,(1), 4.14)
(B =2luf)> = " 2
which, together with (4.13), implies that (4.8) holds. O

Applying Lemma 2.3, we deduce that
[Vulloo + lIvlleo = Collvll, YveE™, (4.15)

Without loss of generality, we may assume that V(0) < 0. By (V1), we can choose a
constant p € (0, 1/2) N (0,4/||V ||s0) such that

471'6%(4—!—,0),0 <1l and V(x) <0, |[x]=<p. (4.16)

As in [13], we define Moser type functions wj, (x) supported in B,, as follows:

Jogn, 0= |x| < p/n;

log(p/Ix]) .
0, x| > p.

wy(x) =

By a computation, one has

w12 = lJw, I* = fRz<|an|2+ V(x)w?)dx 5/ [Vw,|?dx = 1.  (4.18)

By

Lemma 4.6 Assume that (V1), (F1'), (F2), (F3) and (F5) hold. Then there exists n € N such
that

2
max D+ sw;) < —~. (4.19)
s>0,veE~ o0

Proof Assume by contradiction that this is not the case. So one has

2
max D+ sw,) > —~, VneN. (4.20)
0

s>0,veE~

Let v, € E™ and 5, > O such that ®(v, + s,w,;) = max;>o yep- P (v + swy,). Then we
have ® (v, + s, wy) > 27 /ag and (D' (v, + s,wy), vy + spwy) = 0, ie.

1 B 27
3 (sZ w11 = vy + sww, I7) —/ F(x, vy + spwy)dx > ~— 4.21)
R2 ao
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and
201,412 -2 _
spllw, 17 = llve + spw, |I© = /2 fFx, v+ spwy) (Vg + spwy,)dx. (4.22)
R

From (2.2), (2.4), (4.15) and (4.17), we have

/ [Vw, Vv, + V(&x)w,v,]dx
R2

[(w,, vl = [(wy, vy)| =

< ||an||oo/2 [Vwy|dx + ||V||o<>||vn||oo/2 |w |dx
R
V2w Cop
< F
Hence it follows from (2.2), (2.4), (2.5), (4.18) and (4.23) that

lvnll- (4.23)

spllwil 12 = llon + sawy 112 = 57 (lw,F 117 = llwy, 12) = loall* = 280 (Wa w;,)
< 52— ol + 2‘/;1%0‘”" ol (4.24)
Combining (4.21), (4.22) with (4.24), we have
‘:;ss,%—||un||2+2*/j?f?°:”|| wall < ,,<1+ Tocgg,fz> 4.25)
and
5 (1 + 2”63p2> > 62 oy P 4 2G5
logn " Jlogn
> ,/]1; f(x, vy + spwp)(vy + s, wy)dx. (4.26)

Moreover, (4.25) implies

4 27C3p? 2~/ 7C
5 A 0P ’ loa I <1 0/0. 4.27)
o logn Sp Jlogn
Let M, = ﬁ«/log n. By (4.15), (4.17) and (4.27), we have
V() + 5wy (x) = —lvglloo + 52 My
> —Collonll + sn M
> (1 —-2Co/My)spM,, Y xeB,,. (4.28)
By (F5), we can choose ¢ > 0 such that
. 4 l167C}
k=8 X 7 (4.29)
1+¢ agp?
Note that
2F s2 x,s)ds t t
timint L0 S i JOSTSE DS @D € )
[t]—>00  ewo! [t|—o00 ot \t|—>oo 20pe®o! 20{()
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It follows from (F5) and (4.30) that there exists 7, > O such that

— &
1) > (k — )™, 2F(x,1) > "z—e%ﬂ, VrxeR% |1|>1. (431
(o4)]

From now on, in the sequel, all inequalities hold for large n € N. By (4.26), (4.28) and (4.31),
we have

5 271(3(2),02
Sy 1+ > f v+ spwy) (v + spw,)dx
logn R2

(k — &) eao(vn-‘rsnwn)zdx

v

Bp/n

< 7k — &)p* 0053 M3 (1-2Co/ M,)?

n"n
jul nz

7(k — &) p> aos,% logn 4Co
exp 1——
n? 2w M,

2
2 aos;, 4Cy
= — 21 1- -1,
Tk —&)p exp{ ogn[ o ( Mn> ]}

which implies that there exists a constant A > 0 such that

2 4C
21ogn | 28 (12 20) _ql<a
4 M,

4 4Co\ ! A
2<% 1+ . (4.32)
o M, 2logn

Hence, from (2.8), (4.17), (4.24), (4.28) and (4.31), we obtain

That is

®(’U}’l + Sl’lwﬂ)

= ; (salwF 11> = llon + spwy, [I7) — /Rz F(x, up + Spwy)dx
s% Sal? %S” v nn—/Rz F(x, vn + syin)dx
<t Ly g Y2rCes, n||_75/ el

22 ~Vlogn 2a0 Jp,;, (Vn + snwn)?
Ly VG0 (6 ompre A
S22 ~Vlogn 2a0n(—Collva | + 51 M,)?

Both (4.27) and (4.32) show that (1 g) < s < 4" (1 + ¢). There are three cases to
distinguish.

Case i) 2 (1 —¢) < 57 < 2Z. Tt follows from (4.25) that [[v, || < 27Cos, M, /logn. Then
(4.33) leads to

q)(vn + Snwn)
20 /272 Copsn (kc — &) p>e®0(—Collvnll+snMn)?

o II? +
2 vt ~ Jlogn enll = 20012 (=Co | vl + 50 My)?

=
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IA

ﬁ 1+ 27 C5p° = 8)pze‘10(*collvnu+snMn)2
2 logn 8n2(1 +£)M3

- 22\ (ke — £)pPe0siMi(1=2Collvnl/su M)
8n%(1 +&)M?

IA
|

logn

% (o0 n—dnC2
- ﬁ | 27C3p? G — &)mple 2 (ogn—4nCy) 4.34)
2 logn 4n2(1 +¢e)logn
Let us define a function ¢, (s) as follows:
2
2 2 2 2 2% (logn—4mC?)
s 2nC K —g)mpe 0
onls) = & (14 027 _ oo 435)
2 logn 4n<(1+¢)logn
Set §, > 0 such that ¢],(5,) = 0. Then
4 87C3 + log4(l —1 —&)p? 1
@odmy BrGtlogddte) °g§"‘°(" £)0) 0( . ) (4.36)
o) 2(logn — 4nCy) log®n
and
2 2
2730’ 7 (1 + e )
On(sn) < 0u($y) = logn A,% - : . 4.37)
2 ag(logn — 47 C3)
Using (4.36), we have
2 CZ 2
(1 + 0P )5,%
logn
_4m - 21 CEp? - 87C3 + log4(l + &) — log(ao(k — €)p?)
T g logn 2(logn — 47168)
+0 ( : )
log2 n
_4m - 2rC3p?  8mC3 +logd(l + ) — log(ap(k — )p?)
~ logn 2(logn — 47 C3)
1
+0 (T ) 4.38)
log“n

Hence, from (4.16), (4.29), (4.34), (4.37) and (4.38), we derive

D vy + spwp) < @n(sn)

2 C2 2
1 2710(2),02 T (1 + TlGP )
a2

I logn
ogn
Sn 2
2 ag(logn — 4mCy)
_ A [1 1 —47C2p*  87C3 +logd(l + &) — log(ag(k — 8)p2)j|

2 4logn 4(logn — 47C3)

1
+0 | ——
(log2n>

= oo
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4o (11— 47163;02 1
<—|z=-— (0] . 4.39
o |:2 4logn + (10g2n) ( )

This contradicts with (4.20) due to (4. 16)
Case ii) %(1 + 2Collvnll/snMy) < sn < 1” (1 + ). Then (4.25), (4.26), (4.28), (4.29),
(4.31) and (4.32) yield

47 21 Cp?
—(1+e)zsn 14+ =0
logn

> /2 f(x’ Un +Snwn)(vn +Snwn)dx
R

2
(K _ 8) eaO(Un+Snwn) dx

v

By/n

_ 2
T = )P ag(~Collun 40 My)?
n2

A%

_ 2
Tk = £)07 ags2ME(1-2Co lvall/50 M)
2
n

A%

2
Tl = )07 2iogn(1-C3nll2/s2M2)
2
n

A%

26—1671(3(2)”1)" 12/s2

v

(ke —&)p

4i(1 +£)e!57C,
a

which yields a contradiction
Case 111) dr 2 < dm (1 +2Col|lvnll/snMp). Then it follows from (4.25) that

n — o
2 221 Copsy, 8 Collvn | 8w /21 Cy
llvnll loall = = lonll, (4.40)
Jlogn oS, My, apsy+/logn

which, together with (4.27) and (4.32), implies that

loall _ 227 (1 + p)Co

4.41
Sp Jlogn ( )
It follows from (4.33) and (4.41) that
D (vy + spwy)
- ﬁ _ l”v ”2 4 Y27Copsn /2 COPSn ” ” (K — 8)7'[)02 ao(— COHUn”+VnMn)
-2 27" JVlogn o 20012 (—Collvp || + 50 Mp)?
- 52 - 23 p? (kc — &) p2e®0(—Collvnll+sn My)?
-2 logn 8n2(1 + e)M?
B 52 . 22\ (i — £)pPe0siMi(1=2Collvul/su M)
-2 logn 8n2(1 +z-:)M2
2 2.2 1 87 (1+p)C
R 2wCp?\ (ke —e)mple " oS04 (4.42)
2 logn 4n%(1 +¢)logn
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Setting
2
2 2 2 2 %% [logn—8m(14p)C3]
K 27C K —e)mpe 2w 0
() = = (14 FZ0PT) k) - (4.43)
2 logn 4n*(1+¢)logn
Let §, > 0 such that ¥, (5,) = 0. Then
L, 4m - 167 (1 + p)CZ + log4(1 + &) — log(ao(k — £)p?)
S, = —
" g 2[logn — 87 (1 + p)C3]
1
+0 (—2> (4.44)
log”n
and
2.2
war  x(ien)
Yn(sn) < Yu () = logn g2 _ (4.45)

2 " aollogn — 87 (1 + p)C31

Combining (4.44) with (4.45), we have

2 CZ 2
(1+” 02 )5,3
logn

_4r (1 . ch>
oo logn
« 14 167 (1 + ;O)Cg +log4(1 +¢) — logz(ao(/c —8)p?) ‘o ( 1 )
2[logn — 87 (1 + p)Cg]

log2 n

_4r {1 N 27C2p2 PRI + p)C2 + log4(1 + &) — log(arp (i —8),02)}

~ logn 2[logn — 87 (1 + p)C3]
1
+o (7 ) . (4.46)
log”n
Hence, from (4.16), (4.45) and (4.46), we deduce
2.2
|4 2 o (14 5
ogn -~
wn(sn) = Sy — 2
2 ao[logn — 8m (1 + p)Cg]
_ 2 2
- 4l l_ 1 —4rCsp
T o |2 4logn
N 167 (1 + p)C2 + log4(1 + &) — log(ag (k — )p?)
4llogn — 87 (1 + p)C3]
1o ( ! )
log2 n
4 |1 1 —4nC3(4 1
Sl e S 2L ) . (4.47)
o | 2 4logn log2 n
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It follows from (4.42) that

4 |1 1—4mC3(4+ 1
D (v + spwp) < Yplsy) < — | = — O( PP + 0 3 . (4.48)
ag | 2 4logn log“n

This contradicts with (4.20) due to (4.16).
The above three cases show that there exists n € N such that (4.19) holds. O

Lete = w,-J,“/er-Jlr | in Lemma 4.2. Since E; C E~, then it follows from Lemma 4.6 that
the following lemma.

Lemma 4.7 Assume that (V1), (F1"), (F2), (F3) and (F5) hold. Then supy gy ¢k < 27 /.

Proof of Theorem 1.4 By Lemmas 4.3 and 4.7, there exist a subsequence {cg,} of {cx} and
¢ € [ko, 27 /agp) such that
fim ¢, =é. (4.49)

n—oo

By Lemma 4.4, we can choose a subsequence {ulx} with u];: € Ej, such that
kn ~ 1 kn kn
Sy =& 1/ Wlg (1+ W5 ) — 0. (4.50)

For the sake of simplicity, we let ii, = u];: Then it follows from (4.50), Lemmas 4.3 and 4.5
that {i1,} is bounded in E (i.e. ||it,|| < C; for some C; > 0) and

D(itn) — & ' @)l (1 + llin]) — 0. (4.51)

Thus there exists a constant C; > 0 such that ||i,||2 < C». By (4.6) and (4.9), one has
/ f(x, ip)i,dx < Cs. (4.52)
R2
If

8 := lim sup sup / |iin|?dx = 0,
Bi(y)

n—00 yeR2

then by Lions’ concentration compactness principle [30, Lemma 1.21], it, — 0 in L*(R?)
for 2 < s < oo. For any given ¢ > 0, we choose M, > MyC3/e, then it follows from (F4)
and (4.52) that

M,
[ rwaacsm [ g s £, f)indx < e.
lin | Me liin|=Me Me Jyiy =M.
(4.53)
Using (F2) and (F3), we can choose N, € (0, 1) such that
/ F(x,i,)dx < / S, uy)ipdx < i2||L7n II% <eé. (4.54)
liin| <Ns liin| <Ns G
By (F1), we have
f Fx, in)dx < Calliinl} = o(1), / F . i)ndx < Csllinl = o(1).
Ne<litn| <M, Ne<lin|<1
(4.55)
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Due to the arbitrariness of ¢ > 0, from (4.53), (4.54) and (4.55), we obtain
/ F(x,u,)dx = o(1).
R2

Hence, it follows from (2.8), (4.51) and (4.56) that
) 11> = Nl I* = 28 + o(1).
By (Fl'), (F2), (2.11), (4.51), (4.52) and (4.54), we have
il == [ | £ iy ax ot
NgilﬁnliMS

- /| <N 'f(x’ﬁ")”ﬁ;'d”/ £ e, i) iy dx

iy lloo

/ f(x, up)u,dx + o(1)
|ﬁ”|2MS

M,
< Nl 1+ Collanl X1 15 + Sl + o(1)
_— C% n 3 n MO n

< C7e +o(1),

which implies
i, I* = o(1).

Then (4.57) and (4.59) give

- - . - 4 _
il = M@} 1* + i, I* =26 +o(1) == Pt 38) +o(1).

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

Inspired by [9], we choose v > 0 such that ||V |leo/(t — [|V]eo) < €. Let ﬂ;:_ = Uy + 2,
where v, € E(W)E and z, € [id — E(w)]E. Similarly to (4.58), from (F1'), (F2), (2.11),

(4.51) and (4.52), we can obtain
IonlP = (@), v) + [ F G5, yvds = o1,
Hence, it follows from (4.59) and (4.61) that

lin — zall* = 0(1), I Viinl3 = [ Vzall3 + o(1).
Since z,, € [id — £(n)]E, we have
lzal? = /R [IVzal? + V()25 ] dx = (Azn, 20) 12 = ptliza 3.
It follows that
IVZal13 = (1 = 11V lloo) lIzn I3
Combining (4.63) with (4.64), one has

2 2 2
zall” = IVzallz = IV lloollzall2

IV llo ) 5 _ )
> (1= ——2 ) IVzul3 = (1 = &) Vzul3.
( =1Vl " "

From (4.62) and (4.65), we obtain
linl? = llzall® +o(1) = (1 = &)[[Vzall3 + 0(1) = (1 — &) Vi I3 + o(1)
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Let us choose ¢ € (1, 2) such that

1+&)(1-38)¢q -

- 1. 4.67)
1—¢

By (F1'), there exists Cg > 0 such that
£l = Cy [0 1] v = 1. (4.68)

It follows from (4.67), (4.68) and Lemma 1.1-ii) that
/ [f Gy din)|?dx < Cs/ [e"“’(”'?)"ﬁ% - 1] dx
itn[>1 R2
= CS/ [6010(1+??)q|\ﬁnHz(ﬁn/HﬁnII)2 _ 1] dx < Co.  (4.69)
R2

Letq’ = q/(q — 1). Then we have

/lﬁ o S, ip)uydx < [/lu o [f(x, ﬂ,,)wdx}l/q linlly = o(1). (4.70)
Now from (2.8),_(2.12), (4.51), (4.54), (4.5_5) and (4.70), we derive
E+o(1) = @) — 5 (@), i)
= /Rz Bf(x, iy)it, — F(x, ﬁ,,)] dx < e+ o(1). 4.71)
This contradiction shows that § > 0.

Going if necessary to a subsequence, we may assume that there exists {y,} C Z? such
~ 2 8 ~ o~
that fBH_ﬁ(yn) lity|*dx > §. Let us define 0, (x) = it, (x + y,) so that

8
/ |5 2dx > —. 4.72)
Bz 0 2
Since V(x) and f(x, u) are 1-periodic on x, we have ||0,|| = ||, || and
®(vy) — ¢, II¢’(5n)IIE;" (I + [[oall) — 0. (4.73)

Passing to a subsequence, we have 0,—~v in E, v, — vin L} (R?),2 <s <ooand ¥, — ¥
a.e. on R2. Thus, (4.72) implies that v # 0. Now for any ¢ € C§° (R?), we have

p=0¢"+> (@.epej, lpTIP =D 1, epl. (4.74)
j=1 j=1
Let .
&n =¢++Z(¢,€j)€j, bn = Z(¢,€j)€j. (4.75)
Jj=1 kn+1

For any given ¢ > 0, we have

~ 7 8 =~ Sl
/ | f(x, 0p)ppldx < — f(x, vp)0,dx < g. (4.76)
[5nl=C3Kop2llp™lle~! C3 Jip=C3k0pliplle!
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On the other hand, it follows from (F1"), (F2), (F3),(4.74) and (4.75) that

/ﬁn|<C3Kom\\¢’\|€"

| £ (x, Dn)bnldx

IA

%
(/ If(x, ﬁn>|2dx) [
[T |<C3Koy2ll¢p~ [le~!

1
2 .
1o ( f fla, ﬁnwndx) 1l
[T | <C3 K02l [le~!

1

< Cuo ( f fox, ﬁn)ﬁndx>2 1l
RZ
< Ciiligull = o(1). 4.77)

IA

From (4.76) and (4.77), one has

lim Fx, Up)dpdx =0 (4.78)
R2

n—oo

due to the arbitrariness of & > 0. Therefore, (2.11), (4.73), (4.78) and Lemma 3.2 yield

(@(D), §)

/ (VoVe + V(x)vg) dx — f f(x, v)pdx
R2 R2

n—oo

lim |:/ VU,V + V(x)v,¢) dx —/ f(x, ﬁn)¢dx:|
R2 R2

lim [(@/(ﬁnxm - / f(x,ﬁn)éndx]
n—oo Rz

= — lim F(x, Up)dpdx = 0.
n—>o0 2

This shows that ¥ is a nontrivial solution of (1.1). ]
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