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Abstract
We consider a one-dimensional discrete particle system of two species coupled through
nonlocal interactions driven by the Newtonian potential, with repulsive self-interaction and
attractive cross-interaction. After providing a suitable existence theory in a finite-dimensional
framework, we explore the behaviour of the particle system in case of collisions and analyse
the behaviour of the solutions with initial data featuring particle clusters. Subsequently, we
prove that the empirical measure associated to the particle system converges to the unique
2-Wasserstein gradient flow solution of a system of two partial differential equations with
nonlocal interaction terms in a proper measure sense. The latter result uses uniform estimates
of the Lm-norms of a piecewise constant reconstruction of the density using the particle
trajectories.

Mathematics Subject Classification 35A24 · 35F55 · 35Q70 · 35R09 · 82C22 · 35A35

1 Introduction

The general problem of approximating transport PDEs by the empiricalmeasure associated to
moving particles is quite classical in many contexts such as particle physics and gravitation.
We refer to cornerstone papers such as [19,33,35,41] and to the reviewpaper [22]. A prototype
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model and variation of the pure transport PDEwhich gained great attention in the last decades
is the nonlocal transport-diffusion equation

∂tρ = div(∇a(ρ) + ρ∇G ∗ ρ), (1)

where a = a(ρ) is a nonlinear diffusion function andG is a space dependent kernelmodelling
nonlocal interaction. In the aforementioned contexts in particle physics and gravitation, G
is typically a singular kernel, which makes the analysis of (1) quite challenging. A similar
situation occurs in the study of Keller-Segel model for chemotaxis, more precisely in its
parabolic-elliptic version, see e.g. [4–6,27]. A different situation arises e.g. in [3,15,43] in
the analysis of mean-field models for granular media, in which G is typically a power law of
the form G(x) = |x |α with α > 1.

In the context of modern applications and real-world problems, equations of the form
(1) naturally arise in the description of aggregation phenomena in population dynamics,
see [7,24,32,42]. In these works the nonlocal terms are coupled with a linear or nonlinear
diffusion arising from stochastic noise, see [29,34]. Clearly, the classical results in [25,40]
are also relevant in this context although less related from the methodological point of view.

Starting from the early 2000 years, the theory of gradient flows in Wasserstein spaces
developed in [2,28,36] became an important tool to provide well-posedness results for the
class of models (1). Otto [36] first provided the seminal ideas leading to the formulation
of the porous medium equation as a gradient flow in the Wasserstein sense, whereas [28]
adapted the “minimising movement” idea by De Giorgi to the new metric framework. The
case with nonlocal interactions was first studied in [15], which partly anticipated the results
in [2] without providing the full metric framework but adapting the theory to the case of (1),
whereas [2] addresses a more general theory of gradient flows in metric spaces. The result
in [14] is also relevant in this context in that it allowed to extend the theory to kernels G
displaying a discontinuity of the gradient at the origin in the re-solution of the JKO-scheme
[28] and in the proof of λ-convexity [31] of the related functional. Moreover, Carrillo et
al. [14] also provides a finite-time blow-up result for solutions with data in the space of
probability measures.

The role of λ-convexity of the functional F : P2(R) → R defined by

μ �→ F[μ] =
∫
R

G ∗ μ dμ,

(hereP2(R) denotes the space of probabilitymeasureswith finite secondmoment) is essential
in order to prove a stability result for two solution curvesμ(t), ν(t) (leading also to uniqueness
of measure solutions) of the form

W2(μ(t), ν(t)) ≤ e−λt W2(μ(0), ν(0)),

which often implies as a byproduct a many-particle approximation result for the target equa-
tion (1). This is true both in the diffusion-free case and in the case with diffusion, see the
recent [12].

The situation is more complicated in cases in which the functional lacks the λ-convexity,
which is typically the case when G has a singularity at the origin. Attractive singularities
make the study of well-posedness quite challenging in L p spaces. In this context, the result
in [4] allows to prove existence and uniqueness up to the blow-up time or globally when the
singularity is not too strong. The repulsive case is also challenging especially if one wants
to prove a many-particle approximation result, because a strong repulsion at the origin for G
forces point particles to resolve into absolutely continuous measures. A quite thorough study
of the many-particle approximation in the absence of diffusion and with “almost Newtonian”
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singular kernels (both attractive and repulsive) was provided in [10], based on a technique
developed in [26]. In the case of a = 0, the result in [8] provides, so far, the only many-
particle approximation result for (1) with G being the Newtonian potential, albeit in one
space dimension (i.e. G(x) = ±|x |). Such a result also explores the connection of (1) with
a scalar conservation law satisfied by the cumulative distribution variable

∫ x
ρ(y, t)dy.

The diffusion-free case a = 0 often allows for a significant “reduction of complexity” of
the PDE under consideration in that it often permits to approximate it by a set of determin-
istic particles, i.e. not subject to stochastic noise and simply obeying a system of ordinary
differential equations. Obvious advantages of that are the possibility or approximating the
density under consideration by a discrete set of Lagrangian trajectories (a feature of great
impact in some applications such as traffic flow or pedestrian movements) and the availabil-
ity of a new numerical “particle” method for the target PDE. In fact, recent contributions to
the literature try to provide deterministic approximations to transport PDEs in the case with
diffusion as well, see the classical [38] for one dimensional linear diffusion, the result in [23]
for one-dimensional nonlinear diffusion, the results in [11] for multidimensional diffusion.

Recently, the specialised literature displayed an increasing interest of systems of gradient
flows, i.e. systems of more than one transport equations of the form (1), modelling the mutual
interplay of more than one species of individuals. The case with diffusion has a very rich
literature in that it is quite challenging at the level of well-posedness due to the possibility
of cross-diffusion effects. We refer for instance to the recent [17], which provides a general
existence result of two-species gradient flows of functionalswith cross-diffusion and nonlocal
interactions terms.

As in the one-species case, the well-posedness and the stability in a Wasserstein gradient
flow sense are strictly related with the convergence of a deterministic particle approximation
scheme.Wemention in this context the result in [18] which allows to prove singular behavior
such as a total collapse of particles and cluster formations via stability in the Wasserstein
gradient flow sense of [2]. The general (diffusion-free) system considered in [18] reads{

∂tρ = ∂x (ρH ′
1 ∗ ρ) + ∂x (ρK ′

1 ∗ η),

∂tη = ∂x (ηH ′
2 ∗ η) + ∂x (ηK ′

2 ∗ ρ),
(2)

where the given potentials H1, H2, K1, K2 are smooth enough and convex up to a quadratic
perturbation.

The recent result in [13] extended the existence and uniqueness proven in [18] to the
one-dimensional Newtonian case

H1(x) = H2(x) = −|x | , K1(x) = K2(x) = |x |, (3)

corresponding to a set of particles of two species, with mutual repulsion within the same
species (self-repulsion, or intra-specific repulsion) and attraction between particles of oppo-
site species (cross-attraction, or inter-specific attraction), the driving interaction kernels being
multiples of the Newtonian potential. The result of [13] holds in one space dimension. In
particular, in case of absolutely continuous initial data ρ0, η0 [13] proves global-in-time exis-
tence and uniqueness of solutions by posing system (2)–(3) as gradient flow of the interaction
energy functional

F(ρ, η) = −1

2

∫
R

N ∗ ρ dρ − 1

2

∫
R

N ∗ η dη +
∫
R

N ∗ η dρ, (4)

where

N (x) := |x |, x ∈ R.
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When dealing with general measures as initial data, in particular Dirac deltas, the sub-
differential of F may be empty (see [8]). Hence, in [13], global-in-time existence and
uniqueness of solutions to system (2)–(3) is proven by (formally) re-writing the system
in the pseudo-inverse formalism and by using the concept of gradient flows in Hilbert spaces
à la Brézis, cf. [9].With potentials H1 = H2 = −K1 = −K2 featuring a repulsive singularity
of logarithmic type at the origin, system (2) has also been studied in the context of multi-
sign systems (arising e.g. in semiconductor theory) and evolution models for dislocations in
crystals, cf. [1,21,30].

In this paper we prove that the PDE system (2)–(3), namely{
∂tρ = −∂x (ρ∂x | · | ∗ ρ) + ∂x (ρ∂x | · | ∗ η),

∂tη = −∂x (η∂x | · | ∗ η) + ∂x (η∂x | · | ∗ ρ),
(5)

can be obtained as the many-particle limit of the deterministic ODE system
⎧⎪⎪⎨
⎪⎪⎩

ẋi (t) =
∑

xk (t)	=xi (t)

mksign(xi (t) − xk(t)) −
∑

yk (t)	=xi (t)

nksign(xi (t) − yk(t)),

ẏ j (t) =
∑

yk (t)	=y j (t)

nksign(y j (t) − yk(t)) −
∑

xk (t)	=y j (t)

mksign(y j (t) − xk(t)),
(6)

with equal masses, i.e., mi = n j = 1/N , for i = 1, . . . , N , and j = 1, . . . , N . In general,
system (6) models the movement of N particle for each species, with (not necessarily equal)
masses m1, . . . , m N for the x-species and n1, . . . , nN for the y-species, under the effect
of repulsive Newtonian potentials for same-species interactions and attractive Newtonian
potentials for cross-species interactions.

We stress that, unlike the associated scalarmodel studied in [8], particles in theODEsystem
(6) may overlap. When this happens, the right-hand side of (6) features a jump discontinuity,
which brings additional difficulties. To bypass this problem and to better understand the
dynamics of (6), we frame it rigorously as the (finite dimensional) gradient flow of the
(convex, in a suitable metric sense) functional

−1

2

∑
i, j

mi m j |xi − x j | − 1

2

∑
i, j

ni n j |yi − y j | +
∑
i, j

mi n j |xi − y j |,

in the convex cone CN × CN of ordered configurations

x1 ≤ x2 ≤ . . . ≤ xN , y1 ≤ y2 ≤ . . . ≤ yN .

More precisely, among other issues:

– We prove that the sub-differential of this functional is always non-empty for any given
configuration in CN × CN (including overlapping of particles of opposite species).

– We analyse collisions among particles (which are possible because particles do not “slow
down” when they get very close due to the lack of regularity of the interaction potential)
and prove that particles of the same species never collide. Moreover, we provide explicit
necessary and sufficient conditions for particles of opposite species to cross each other.

– We explore the case of initial overlapping of particles and provide the explicit solution
to the corresponding particle system.

These properties are preparatory to prove the main result of this paper, which is the rigorous
derivation of solutions to (5) with L1 initial data as many-particle limits of the empirical
measures of the particle system (6).
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More precisely, we consider a pair of nonnegative initial densities ρ0, η0 ∈ L1, both
with unit mass. We approximate them via atomic measures by considering N particles,
x1, x2, . . . , xN , of the first species and another N particles, y1, . . . , yN , of the second species,
with non-zero and equal masses, m1 = · · · = m N = 1/N and n1 = · · · = nN = 1/N ,
respectively, such that

∑N
i=1 mi = ∑N

k=1 nk = 1. We let those particles evolve according to
the ODE system (6). We then prove that the empirical measures

ρN (t, x) = 1

N

N∑
i=1

δxi (t)(x), and ηN (t, x) = 1

N

N∑
j=1

δy j (t)(x),

converge to the unique gradient flow solution to (5) in a suitable distributional sense as
N → +∞.

Such a result heavily relies on uniform estimates at the discrete level. In particular, we
observe that in the 2-species case weak compactness in the measure sense by itself is insuf-
ficient to obtain consistency in the limit due to the cross-interaction terms. Indeed, since the
cross-interaction terms cannot be symmetrised (unlike, for instance, the Keller-Segel one-
species model), weak L1 compactness is needed in this case. We shall explain this issue in
detail in Sect. 5.

We emphasise that system (5) is not included in the theory of [18] since the interaction
potential in the (repulsive) intraspecific parts ofF is neither convex nor λ-convex, i.e., convex
up to a quadratic perturbation. In one dimension this problem can be overcome as shown in
[13]. Another difference with [18] is that the analysis in [13] implies that particle solutions
are not gradient flow solutions to system (5). Thus, the mean-field limit cannot be treated
via the stability result mentioned previously since the atoms of the empirical measure may
diffuse instantaneously.

Finally, we observe that our result is of interest in the framework posed in [21] for two-
species models for dislocations with logarithmic singular potentials, more precisely (2) with
H1 = H2 = −K1 = −K2 having a singularity at the origin “not stronger” than a logarithmic
one. In [21], the convergence of a discrete particle system to the corresponding PDE system
is proven in arbitrary dimensions on the torus. The approximating particle scheme is based
on a regularisation of the singular kernels. It is important to emphasise that our approach is
fundamentally different in that it does not hinge on a regularisation argument. Instead it relies
on identifying the particle system as a gradient flow and an in-depth treatment of particle-
particle interactions. Not only are we able to circumnavigate the regularisation argument by
taking into account particle collisions, but we also uncover and use the underlying gradient
flow structure of the problem which, ultimately, provides existence and uniqueness. As a
result we obtain a particle approximation of the system that is less restrictive in that it does
not depend on the regularisation strength, albeit in one dimension and for a less singular
interaction kernel. We expand upon this aspect in more detail in Remark 10.

The paper is organised as follows.

– In Sect. 2 we present the right setting for our problem, including our concept of weak
measure solution for (5) in Definition 1, and provide some preliminary concepts related
with one-dimensional optimal transport.

– Section 3 is devoted to proving global-in-time existence and uniqueness of solutions to
system (6), using the theory of gradient flows in Hilbert spaces. The main result of this
section is the one in Lemma 5 proving that the sub-differential of the discrete functional
is always non-empty in CN × CN . The existence and uniqueness result in the discrete
case is provided in Theorem 1.
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– Upon establishing well-posedness for the system of ODEs, we focus on some impor-
tant properties of its solutions in Sect. 4. In Theorem 2 we provide explicit conditions
describing the behavior of particles of opposite species after collision. In Theorem 3 we
prove that particles of the same species can never collide. In Theorem 4 we provide an
explicit solution to (6) in case the initial condition features a “cluster” or overlapping
particles of the two species.

– Finally, in Sect. 5 we prove our many-particle approximation result. We show that the
empirical measure of the particle system (6) converges in a suitable sense to the unique
gradient flow solution to (5). The main result is stated in Theorem 5. The basic estimates
needed for the proof are provided in Propositions 4 and 5.

2 Preliminaries

Throughout the paper we denote by P2(R) the set of probability measures with finite second
moment, i.e.,

P2(R) = {μ ∈ P(R) | m2(μ) < +∞} , where m2(μ) =
∫
R

|x |2 dμ(x).

We use the symbol Pa
2 (R) to denote the set of measures in P2(R) which are absolutely

continuous with respect to the Lebesgue measure, i.e., Pa
2 (R) = P(R) ∩ L1((1+ |x |2) dx).

Next, for any measure μ ∈ P(R) and a Borel map T : R → R, we denote by ν = T#μ the
push-forward of μ through T , defined by

ν(A) = μ(T −1(A)), for any Borel set A ⊂ R,

or
∫
R

f (y) dT#μ(y) =
∫
R

f (T (x)) dμ(x), for any measurable function f .

Here, T is usually referred to as transport map pushing μ to ν. Next, we equip the set P2(R)

with the 2-Wasserstein distance, which is defined for any μ, ν ∈ P2(R) as

W2(μ, ν) =
(

inf
γ∈Γ (μ,ν)

∫
R2

|x − y|2 dγ (x, y)

)1/2

, (7)

where Γ (μ, ν) is the class of transport plans between μ and ν, that is,

Γ (μ, ν) := {γ ∈ P(R2) | π1
# γ = μ, π2

# γ = ν},
where π i : R × R → R, i = 1, 2, denotes the projection operator on the i th component of
the product space R2. Setting Γ0(μ, ν) as the class of optimal plans, i.e., minimisers of (7),
the (squared) Wasserstein distance can be written as

W 2
2 (μ, ν) =

∫
R2

|x − y|2 dγ (x, y),

for any γ ∈ Γ0(μ, ν). The set P2(R) equipped with the 2-Wasserstein metric is a complete
metric space which can be seen as a length space, see for instance [2,39,44,45]. Since we
are dealing with the evolution of two interacting species, we shall work on the product space
P2(R) × P2(R) equipped with the 2-Wasserstein product distance defined via

W2
2 (γ, γ̃ ) = W 2

2 (ρ, ρ̃) + W 2
2 (η, η̃),
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for all γ = (ρ, η), γ̃ = (ρ̃, η̃) in P2(R)×P2(R). Now, let us introduce a crucial tool for the
one-dimensional case. For a given μ ∈ P2(R) its cumulative distribution function is given
by

Fμ(x) = μ((−∞, x]). (8)

Since Fμ is a non-decreasing, right-continuous function such that

lim
x→−∞ Fμ(x) = 0, and lim

x→+∞ Fμ(x) = 1,

we may define the pseudo-inverse function Xμ associated to Fμ, by

Xμ(s) := inf
x∈R{Fμ(x) > s}, (9)

for any s ∈ (0, 1). It is easy to see that Xμ is right-continuous and non-decreasing as well.
Having introduced the pseudo-inverse, let us now recall some of its important properties.
First we notice that it is possible to pass from Xμ to Fμ as follows

Fμ(x) =
∫ 1

0
1(−∞,x](Xμ(s)) ds = |{Xμ(s) ≤ x}|. (10)

For any probability measure μ ∈ P2(R) and the pseudo-inverse, Xμ, associated to it, we
have ∫

R

f (x) dμ(x) =
∫ 1

0
f (Xμ(s)) ds, (11)

for every bounded continuous function f . Moreover, for μ, ν ∈ P2(R), the Hoeffding-
Fréchet theorem [37, Section 3.1] allows us to represent the 2-Wasserstein distance,W2(μ, ν),
in terms of the associated pseudo-inverse functions via

W 2
2 (μ, ν) =

∫ 1

0
|Xμ(s) − Xν(s)|2 ds, (12)

since the optimal plan is given by (Xμ(s) ⊗ Xν(s))#L, where L is the Lebesgue measure on
the interval [0, 1], cf. also [16,44]. We have seen that for every μ ∈ P2(R) we can construct
a non-decreasing Xμ according to (9), and by the change of variables formula (11) we also
know that Xμ is square integrable. Let us recall that this mapping is indeed a distance-
preserving bijection between the space of probability measures with finite second moments
and the convex cone of non-decreasing L2-functions

C := { f ∈ L2(0, 1) | f is non-decreasing} ⊂ L2(0, 1). (13)

For p ≥ 1, let us also introduce the p-Wasserstein distance

Wp(μ, ν) = inf
γ∈Γ (μ,ν)

(∫
R2

|x − y|p dγ (x, y)

)1/p

, (14)

for anyμ, ν ∈ Pp(R) := {μ ∈ P(R) | m p(μ) := ∫
R

|x |p dμ(x) < +∞}. Since our problem
is set in one space dimension, we have

Wp(μ, ν) = ‖Xμ − Xν‖L p([0,1]). (15)

In the case p = 1 we also have

W1(μ, ν) = ‖Fμ − Fν‖L1(R).
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We refer to [2,39,44,45] for further details. The p-Wasserstein product distance is given by

Wp(γ, γ̃ ) = Wp(ρ, ρ̃) + Wp(η, η̃),

for all γ = (ρ, η), γ̃ = (ρ̃, η̃) in Pp(R) × Pp(R).
For all (μ, ν) ∈ P2(R) × P2(R), we define the interaction energy functional

F(μ, ν) = −1

2

∫∫
R×R

|x − y|dμ(y)dμ(x)

−1

2

∫∫
R×R

|x − y|dν(y)dν(x) +
∫∫

R×R

|x − y|dμ(x)dν(y).

The following lemma is proven for absolutely continuousmeasures in [13]. Below, we extend
it to general measures for the sake of self-containedness.

Lemma 1 For all (μ, ν) ∈ P2(R) × P2(R) we have

F(μ, ν) ≥ 0.

Proof Wefirst consider the case in which bothμ and ν are absolutely continuous with respect
to the Lebesgue measure and have continuous densities ρ and η respectively. In this case

F(μ, ν) = −1

2

∫∫
R×R

|x − y| (ρ(x)ρ(y) + η(x)η(y) − ρ(x)η(y) − ρ(y)η(x)) dxdy

= −1

2

∫∫
R×R

|x − y|σ(x)σ (y)dxdy, σ = ρ − η.

Recall that N (x) = |x | satisfies N ′(x) = sign(x) and N ′′ = 2δ0 in D′. Therefore

F(μ, ν) = −1

2

∫
R

N ∗ σ(x)δ0 ∗ σ(x)dx = −1

4

∫
R

N ∗ σ(x)N ′′ ∗ σ(x)dx .

Integration by parts yields

F(μ, ν) = 1

4

∫
R

(
N ′ ∗ σ(x)

)2
dx − 1

4

[
N ∗ σ(x)N ′ ∗ σ(x)

]x=+∞
x=−∞ .

Now, arguing as in the proof of [13, Lemma 3.7], the boundary term at infinity vanishes due to
the fact that ρ and η have finite second moment and σ has zero average. Hence,F(μ, ν) ≥ 0.

Let us now consider the general case (μ, ν) ∈ P2(R)×P2(R). Assume there exists a pair
(μ̄, ν̄) ∈ P2(R) ×P2(R) such that F(μ̄, ν̄) < 0. By density of (C(R) ∩P2(R))2 in P2(R)2

with respect to the 2-Wasserstein distance, there exist sequences ρn, ηn ∈ C(R) such that
W2(μ̄, ρn) → 0 and W2(ν̄, ηn) → 0 as n → +∞. Consequently, ρn ⊗ ρn → μ̄ ⊗ μ̄ as
n → +∞ in the weak measure sense, as well as ηn ⊗ ηn → ν̄ ⊗ ν̄ and ρn ⊗ ηn → μ̄ ⊗ ν̄

as n → +∞. Moreover, since (x, y) �→ |x − y| has a sub-quadratic growth at infinity, by a
standard cut-off argument, we have

∫∫
R×R

|x − y|dρn(x)dρn(y) →
∫∫

R×R

|x − y|dμ̄(x)dμ̄(y),

∫∫
R×R

|x − y|dηn(x)dηn(y) →
∫∫

R×R

|x − y|d ν̄(x)d ν̄(y),

∫∫
R×R

|x − y|dρn(x)dηn(y) →
∫∫

R×R

|x − y|dμ̄(x)d ν̄(y),
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which implies

F(ρn, ηn) → F(μ̄, ν̄).

On the other hand, the previous case implies

F(ρn, ηn) ≥ 0, for all n,

which contradicts the assumption F(μ̄, ν̄) < 0. ��

We conclude this subsection by providing the rigorous concepts of solution to the contin-
uum model (5) to be used in the many-particle limit. Such a concept of solution only refers
to the case of absolutely continuous initial data.

Definition 1 Let (ρ0, η0) ∈ Pa
2 (R)2. We say that the absolutely continuous curve

(ρ(·), η(·)) ∈ C([0,+∞) ; Pa
2 (R)2) is a weakmeasure solution to (5) if, for all test functions

ϕ, φ ∈ C1
c ([0,+∞) × R) we have

−
∫ +∞

0

∫
R

ρ(x, t)ϕt (x, t) dx dt −
∫
R

ρ0(x)ϕ(x, 0)dx

=
∫ +∞

0

∫∫
R×R

ρ(x, t)ρ(y, t)sign(x − y)ϕx (x, t) dy dx dt

−
∫ +∞

0

∫∫
R×R

ρ(x, t)sign(x − y)η(y, t)ϕx (x, t) dy dx dt ,

(16a)

and

−
∫ +∞

0

∫
R

η(x, t)φt (x, t) dx dt −
∫
R

η0(x)φ(x, 0) dx

=
∫ +∞

0

∫∫
R×R

η(x, t)η(y, t)sign(x − y)φx (x, t) dy dx dt

−
∫ +∞

0

∫∫
R×R

η(x, t)sign(x − y)ρ(y, t)φx (x, t) dy dxdt .

(16b)

Remark 1 The existence and uniqueness of solutions according to Definition 1 follows from
the existence and uniqueness result of gradient flow solutions proven in [13] and arguing as
in [2, Theorem 11.2.8].

3 Discrete gradient flow

In this section we pose system (6) as gradient flow of a suitable discrete interaction energy
functional. We shall denote by x = (x1, . . . , xN ) and y = (y1, . . . , yN ) the vectors cor-
responding to the particles of the two different species, where each particle xi has mass
mi ∈ R+ and y j has mass n j ∈ R+, for all i, j ∈ {1, 2, . . . , N }. Throughout, we shall work
in the Hilbert space (RN × R

N , 〈·, ·〉w), with the weighted scalar product defined by

〈Z1, Z2〉w :=
N∑

i=1

mi x1i x2i +
N∑

j=1

n j y1j y2j ,
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where Z1 = (x1, y1), Z2 = (x2, y2) ∈ R
N ×R

N . We drop thew-subscript in the definition
of the weighted norm

‖Z‖2 = 〈Z , Z〉w.

Since the problem is posed in one spatial dimension, we may label the particles such that
they are monotonically ordered. Therefore, up to possibly relabelling, we may restrict the
evolution to the convex cone CN × CN , with

CN :=
{

x ∈ R
N : x1 ≤ x2 ≤ · · · ≤ xN

}
.

Since the analysis below requires a careful treatment of all particles of the two species,
it is useful to introduce the following index notation that provides a precise way to label
particles depending on the particles’ relative location.

Definition 2 (Index Notation) Given Z = (x, y) ∈ CN × CN , for all i ∈ {1, . . . , N } we
define

σ [xi ] = {k ∈ {1, . . . , N } : xk = xi } , γ [xi ] = {
j ∈ {1, . . . , N } : y j = xi

}
,

σ+[xi ] = {k ∈ {1, . . . , N } : xk > xi } , γ +[xi ] = {
j ∈ {1, . . . , N } : y j > xi

}
,

σ−[xi ] = {k ∈ {1, . . . , N } : xk < xi } , γ −[xi ] = {
j ∈ {1, . . . , N } : y j < xi

}
,

and for all j ∈ {1, . . . , N } we define
σ [y j ] = {

h ∈ {1, . . . , N } : yh = y j
}

, γ [y j ] = {
i ∈ {1, . . . , N } : xi = y j

}
,

σ+[y j ] = {
h ∈ {1, . . . , N } : yh > y j

}
, γ +[y j ] = {

i ∈ {1, . . . , N } : xi > y j
}
,

σ−[y j ] = {
h ∈ {1, . . . , N } : yh < y j

}
, γ −[y j ] = {

i ∈ {1, . . . , N } : xi < y j
}
.

Remark 2 (Index Notation) Clearly, some of the sets σ [xi ] and σ [y j ] may be singletons. If a
set σ [xi ] contains more than one index, it means that the particle configuration Z contains an
x-cluster, i.e., a group of colliding particles of the x-species. Similarly, some of the sets γ [xi ]
and γ [y j ] may be empty. A non-empty γ [xi ] implies that there are particles of the y-species
attached to xi in the Z configuration. Moreover, note that the sets σ−[x1], σ+[xN ], σ−[y1],
σ+[yN ] are always empty.

Remark 3 (Discrete Fubini) Throughout the main body we need to rearrange sums over
indices of the particles involved in the dynamics. It is useful to highlight the following
equality of index sets:{

(i, j)
∣∣ i < j ≤ N , i = 1, . . . , N

} = {
(i, j)

∣∣ 1 ≤ i < j, j = 1, . . . , N
}
,

and therefore
N∑

i=1

∑
j>i

Qi, j =
N∑

j=1

∑
i< j

Qi, j =
N∑

i=1

∑
j>i

Q j,i , (17)

for any quantity Q ∈ R
N×N . Note that the first equality holds due to Fubini and the second

one is due to swapping the roles of i and j .

Lemma 2 (Properties of Index Notation-I) For a given distribution of particles, Z ∈ CN

there exists ε0 > 0 such that for all Z ′ ∈ CN with |Z ′ − Z |∞ < ε0/3 there holds

σ [x ′
i ] = σ [x ′

i ] ∩ σ [xi ], (18)

and the statement remains true when replacing xi by yi .

123



Many-particle limit for a system of interaction equations … Page 11 of 44 68

Proof The inclusion “⊃” is trivial and we only show the reverse inclusion “⊂”. To this end,
let j ∈ σ [x ′

i ] and assume that j /∈ σ [xi ]. This implies that either j ∈ σ−[xi ] or j ∈ σ+[xi ].
Assume, for instance, that j ∈ σ−[xi ], and therefore x j < xi due to the fact that Z is ordered.
However, then

ε0 < xi − x j = xi − x ′
i + x ′

i − x j = xi − x ′
i + x ′

j − x j < 2ε0/3, (19)

which is impossible. Similarly, j /∈ σ+[xi ], which completes the proof. ��
Lemma 3 (Properties of Index Notation-II) For a given distribution of particles, Z ∈ CN ,
there exists ε0 > 0 such that for all Z ′ ∈ CN with |Z ′ − Z |∞ < ε0/3 there holds

σ−[x ′
i ] = σ−[xi ]∪̇

(
σ [xi ] ∩ σ−[x ′

i ]
)
,

σ−[y′
i ] = σ−[yi ]∪̇

(
σ [yi ] ∩ σ−[y′

i ]
)
,

(20)

as well as

σ [x ′
i ] = σ [xi ] \ (σ−[x ′

i ]∪̇σ+[x ′
i ]),

σ [y′
i ] = σ [yi ] \ (σ−[y′

i ]∪̇σ+[y′
i ]).

(21)

Concerning the interspecies index sets, there holds

γ ±[x ′
i ] = γ ±[xi ]∪̇(γ [xi ] ∩ γ ±[x ′

i ])
γ ±[y′

j ] = γ ±[y j ]∪̇(γ [y j ] ∩ γ ±[y′
j ]),

(22)

as well as

γ [x ′
i ] = γ [xi ] \ (γ −[x ′

i ]∪̇γ +[x ′
i ])

γ [y′
j ] = γ [y j ] \ (γ −[y′

j ]∪̇γ +[y′
j ]).

(23)

Proof Let Z ∈ CN be given. We set

ε0 := min
{|Zk − Zl |

∣∣ 1 ≤ k, l ≤ 2N , s.t. Zk 	= Zl
}

> 0.

Throughout, we assume that Z ′ ∈ CN , such that |Z ′ − Z |∞ < ε0/3. We begin by proving
statement (20).
“⊂”: Let j ∈ σ−[x ′

i ]. By definition this means that x ′
j < x ′

i . Since Z ′ ∈ CN is ordered, we
infer j < i . Since Z is ordered, too, we have x j ≤ xi , which means that

j ∈ σ−[x ′
i ] ∩ (σ [xi ]∪̇σ−[xi ]

)
= (

σ−[x ′
i ] ∩ σ [xi ]

) ∪̇ (σ−[x ′
i ] ∩ σ−[xi ]

)
⊂ (

σ−[x ′
i ] ∩ σ [xi ]

) ∪̇σ−[xi ],
where the last inclusion is due to fact that, without intersecting with σ−[x ′

i ], the second
set in the union, becomes larger, i.e., σ−[x ′

i ] ∩ σ−[xi ] ⊂ σ−[xi ]. “⊃”: Conversely, let
j ∈ σ−[xi ]∪̇

(
σ [xi ] ∩ σ−[x ′

i ]
)
. Clearly, if j belongs to the second set the statement is

trivially satisfied. If, on the other hand, j ∈ σ−[xi ], we have x j < xi and, due to the
fact that both Z and Z ′ are ordered, we first obtain j < i and therefore x ′

j ≤ x ′
i . We

conclude j ∈ σ−[x ′
i ]∪̇σ [x ′

i ]. We will now show that j ∈ σ [x ′
i ] is impossible which implies

the statement. The argument is by contradiction and we assume j ∈ σ [x ′
i ], i.e., x ′

j = x ′
i .

However, by definition of ε0 > 0, this implies

ε0 < xi − x j = xi − x ′
i + x ′

i − x j = xi − x ′
i + x ′

j − x j < 2ε0/3,
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where the closeness assumption |Z ′ − Z |∞ < ε0/3 entered in the last inequality. Clearly
this statement is absurd and therefore, j ∈ σ−[x ′

i ] which completes the proof of the first
statement. The same statement is true for the y-species using the same line of reasoning.
We continue with statement (21).
“⊂”: If j ∈ σ [x ′

i ], then trivially, j /∈ σ−[x ′
i ]∪̇σ+[x ′

i ] and it remains to show that j ∈ σ [xi ].
As before the argument is by contradiction and we assume, for instance, that j ∈ σ−[xi ]. As
before

ε0 < xi − x j = xi − x ′
i + x ′

j − x j < 2ε0/3,

ruling out the case j ∈ σ−[xi ]. Similarly, j /∈ σ+[xi ] leaving as only possibility j ∈ σ [xi ]
which proves the inclusion.
“⊃”: Conversely, if j ∈ σ [xi ] \ (σ−[x ′

i ]∪̇σ+[x ′
i ]
)
, there holds x j = xi and x ′

i ≤ x ′
j ≤ x ′

i . In
particular, x ′

i = x ′
j , and therefore j ∈ σ [x ′

i ], which concludes the proof of this inclusion.
Next, we prove statement (22). We only focus on the “-” case, as the statement for “+” is
given in a similar manner. Let us begin with “⊂”: Let j ∈ γ −[x ′

i ], i.e., y′
j < x ′

i . Assume,
that j ∈ γ +[xi ], i.e., that y j > xi . Using these two inequalities yields

ε0 < y j − xi = y j − y′
j + y′

j − xi ≤ y j − y′
j + x ′

i − xi < 2ε0/3,

implying that j ∈ γ [xi ]∪̇γ +[xi ], which yields the statement together with the fact that
j ∈ γ −[x ′

i ].
Regarding the opposite inclusion, “⊃”, it suffices to show γ −[xi ] ⊂ γ −[x ′

i ] as the statement
is trivially satisfied if j is in the set (γ [xi ] ∩ γ −[x ′

i ]). Again, arguing by contradiction, let us
assume j /∈ γ −[x ′

i ], i.e., y′
j ≥ x ′

i . In this case, we observe

ε0 < y′
j − x ′

i = y′
j − y j + y j − xi ≤ 2ε0/3,

which yields the statement. Finally, we prove statement (23) beginning with “⊂”.
Let j ∈ γ [x ′

i ], i.e., y′
j = x ′

i , and assume that j /∈ γ [xi ], for instance, y j < xi . In this case

ε0 < xi − y j = xi − x ′
i + y′

j − y j ≤ 2ε0/3,

which is a contradiction. Similarly, we show that y j > xi which shows the assertion. Finally,
we show the reverse inclusion, “⊃”:
In this case x ′

i ≤ y′
j ≤ x ′

i , i.e., y′
j = x ′

i , and therefore j ∈ γ [x ′
i ]. This concludes the proof of

the lemma. ��

Now, we introduce the discrete interaction energy functional acting on a given Z =
(x, y) ∈ R

N × R
N , as follows

F[Z ] = −1

2

∑
i 	= j

mi m j |xi − x j | − 1

2

∑
i 	= j

ni n j |yi − y j |

+
∑
i, j

mi n j |xi − y j | + ICN (x) + ICN (y), (24)

where ICN is the indicator function of the cone CN , i.e.,
{
0 if x ∈ CN ,

+∞ otherwise.
(25)
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We shall often use the notation

S(x) := −1

2

∑
i 	= j

mi m j |xi − x j |, S(y) := −1

2

∑
i 	= j

ni n j |yi − y j |,

and

C(x, y) :=
∑
i, j

mi n j |xi − y j |,

so that

F[Z ] = S(x) + S(y) + C(x, y) + ICN (x) + ICN (y).

S represents the self-interaction part, i.e., interactions within the same species, while C
accounts for cross-interactions.

The functional F is proper, i.e., D(F) = {
Z ∈ R

N × R
N : F[Z ] < +∞} 	= ∅, since we

have

F[Z ] ≤ |xN | + |yN |,
for any Z = (x, y) ∈ CN ×CN . Moreover, note that the self-interaction part of the functional
can also be rewritten as

S(x) + S(y) = −
N∑

i=1

∑
{ j : x j >xi }

mi m j (x j − xi ) −
N∑

i=1

∑
{ j : y j >yi }

ni n j (y j − yi ).

Remark 4 Note that the terms corresponding to the index i = N give null contribution in the
above sum. Nevertheless, we keep them in order to have a further expression for the self-
interaction part of the functional that we will use later on in Eqs. (26) and (27). Moreover,
for the sake of completeness, let us point out the equivalent formulation

S(x) + S(y) = −
N∑

i=1

∑
{ j : x j <xi }

mi m j (xi − x j ) −
N∑

i=1

∑
{ j : y j <yi }

ni n j (yi − y j ),

where the terms corresponding to the index i = 1 give null contribution.

The above observation allows us to prove the next lemma.

Lemma 4 The functional F : RN × R
N → R is convex.

Proof Take Z1 = (x1, y1), Z2 = (x2, y2) ∈ R
N × R

N and a convex combination between
them Zα = αZ1 + (1 − α)Z2 = (αx1 + (1 − α)x2, αy1 + (1 − α)y2) = (xα, yα), with
α ∈ [0, 1]. We need to prove

F[αX1 + (1 − α)X2] ≤ αF[X1] + (1 − α)F[X2].
If either Z1 /∈ CN × CN or Z2 /∈ CN × CN then the above inequality is trivial since the right-
hand side is +∞. When both Z1 and Z2 are in CN × CN , then so is Zα as this set is convex.
Hence, the convexity of F can be checked, as follows, by means of the order-preserving
property in CN × CN ,

F [Zα] = −
N∑

i=1

∑
j∈σ+[xα

i ]
mi m j (xα

j − xα
i ) −

N∑
i=1

∑
j∈σ+[yα

i ]
ni n j (yα

j − yα
i ) +

∑
i, j

mi n j |xα
i − yα

j |
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= −α

N∑
i=1

∑
j∈σ+[x1i ]

mi m j (x1j − x1i ) − (1 − α)

N∑
i=1

∑
j∈σ+[x2i ]

mi m j (x2j − x2i )

− α

N∑
i=1

∑
j∈σ+[y1i ]

ni n j (y1j − y1i ) − (1 − α)

N∑
i=1

∑
j∈σ+[y2i ]

ni n j (y2j − y2i )

+
∑
i, j

mi n j |α(x1i − y1j ) + (1 − α)(x2i − y2j )|,

and the assertion follows by using the triangle inequality in the last term. ��

We shall now investigate in greater detail the functional F . Our next goal is to provide an
expression of F[Z ] for Z ∈ CN × CN accounting for a possible superposition of groups of
particles.

We now rewrite the functional F[Z ] using the above index notation and Remark 4. Let
us start with the self-interaction part:

S(x) = −
N∑

i=1

∑
j :xi >x j

mi m j (xi − x j )

=
N∑

i=1

mi xi

⎡
⎣−

∑
j∈σ−[xi ]

m j +
∑

j∈σ+[xi ]
m j

⎤
⎦ .

(26)

A similar expression may be obtained for the y-part:

S(y) =
N∑

j=1

n j y j

⎡
⎣−

∑
i∈σ−[y j ]

ni +
∑

i∈σ+[y j ]
ni

⎤
⎦ . (27)

We now consider the cross-interaction term

C(x, y) =
∑ ∑

xi >y j

mi n j (xi − y j ) +
∑ ∑

xi <y j

mi n j (y j − xi )

=
N∑

i=1

mi xi

⎡
⎣ ∑

j∈γ −[xi ]
n j −

∑
j∈γ +[xi ]

n j

⎤
⎦+

N∑
j=1

n j y j

⎡
⎣ ∑

i∈γ −[y j ]
mi −

∑
i∈γ +[y j ]

mi

⎤
⎦ .

(28)

In order to deal with gradient flows in Hilbert spaces, we need to introduce the concept of
Fréchet sub-differential. We adapt the definition of this classical concept to our specific case.

Definition 3 (Fréchet sub-differential) For a givenproper, convex, and lower semi-continuous
functional F on R

N × R
N , we say that P ∈ R

N × R
N belongs to the sub-differential of F

at Z ∈ R
N × R

N if and only if

F[Z ′] − F[Z ] ≥ 〈P, Z ′ − Z〉w, (29)

for all Z ′ ∈ R
N ×R

N . The sub-differential ofF at Z is denoted by ∂F(Z), and if ∂F(Z) 	= ∅
then we denote by ∂0F(Z) the element of minimal (weighted) norm of ∂F(Z).
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Remark 5 We recall that, since F is convex, requiring condition (29) to be satisfied for all
Z ′ ∈ R

N × R
N can be relaxed to

F[Z ′] − F[Z ] ≥ 〈P, Z ′ − Z〉w + o(‖Z ′ − Z‖), as Z ′ → Z . (30)

As F[Z ] attains the value +∞ outside the cone CN × CN , it is reasonable to assume
Z ∈ CN × CN as a necessary condition to have ∂F(Z) 	= ∅. In the one species case (see [8,
Proposition 2.10]) one can actually prove that being in the cone is a necessary and sufficient
condition to have a non-empty sub-differential. Such a property is non-trivial in the many
species case. We provide it in the next lemma.

Lemma 5 Let Z = (x, y) ∈ R
N × R

N . Then ∂F(Z) 	= ∅ if and only if Z ∈ CN × CN .

Proof Similarly to [8, Proposition 2.10], let us assume Z = (x, y) /∈ CN × CN . Without
restriction, we assume for instance x /∈ CN , which implies ICN (x) = +∞. Assuming
P ∈ ∂F[Z ], we have

F[Z ′] − S(x) − S(y) − C(x, y) ≥ 〈P, Z ′ − Z〉w + ICN (x),

for all Z ′ = (x ′, y′) ∈ R
2N . In particular, the previous inequality would hold for any

Z ′ ∈ CN ×CN , which is clearly a contradiction since, in this case, the left-hand side is finite,
while the right-hand side is infinite.

Let us now assume that Z ∈ CN × CN . The inequality (29) is trivially satisfied for
an arbitrary P in case Z ′ /∈ CN × CN , therefore we can assume without restriction that
Z ′ = (x ′, y′) ∈ CN × CN . Our goal is to show that there exists a vector P ∈ R

N ×R
N such

that (30) holds as Z ′ → Z . Therefore, without restriction we assume that ‖Z ′ − Z‖ < ε0 for
some ε0 > 0 to be chosen later on.

We now compute

S(x ′) − S(x)

=
N∑

i=1

mi

⎡
⎣x ′

i

⎛
⎝−

∑
j∈σ−[x ′

i ]
m j +

∑
j∈σ+[x ′

i ]
m j

⎞
⎠− xi

⎛
⎝−

∑
j∈σ−[xi ]

m j +
∑

j∈σ+[xi ]
m j

⎞
⎠
⎤
⎦

=
N∑

i=1

mi (x ′
i − xi )

⎛
⎝−

∑
j<i

m j +
∑
j>i

m j

⎞
⎠+ R,

with

R =
N∑

i=1

mi x ′
i

⎛
⎝ ∑

j<i : j∈σ [x ′
i ]

m j −
∑

j>i : j∈σ [x ′
i ]

m j

⎞
⎠ (31)

+
N∑

i=1

mi xi

⎛
⎝−

∑
j<i : j∈σ [xi ]

m j +
∑

j>i : j∈σ [xi ]
m j

⎞
⎠ (32)

=: R1 − R2. (33)

Note that

R1 =
N∑

i=1

∑
j<i

j∈σ [x ′
i ]

m j mi x ′
i −

N∑
i=1

∑
j<i

j∈σ [xi ]

m j mi xi , (34)
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and

R2 =
N∑

i=1

∑
j>i

j∈σ [x ′
i ]

m j mi x ′
i −

N∑
i=1

∑
j>i

j∈σ [xi ]

m j mi xi . (35)

Using the fact that

σ [xi ] = (σ [xi ] ∩ σ [x ′
i ]) ∪̇ (σ [xi ] \ σ [x ′

i ]),
we may split the second sum and simplify the term R1, i.e.,

R1 =
N∑

i=1

∑
j<i

j∈σ [x ′
i ]

m j mi x ′
i −

N∑
i=1

∑
j<i

j∈σ [xi ]∩σ [x ′
i ]

m j mi xi −
N∑

i=1

∑
j<i

j∈σ [xi ]\σ [x ′
i ]

m j mi xi (36)

=
N∑

i=1

mi (x ′
i − xi )

∑
j<i

j∈σ [x ′
i ]

m j −
N∑

i=1

mi xi

∑
j<i

j∈σ [xi ]\σ [x ′
i ]

m j , (37)

having used Eq. (18) of Lemma 2 in the last line. In the same vein, we have

R2 =
N∑

i=1

∑
j>i

j∈σ [x ′
i ]

m j mi x ′
i −

N∑
i=1

∑
j>i

j∈σ [xi ]∩σ [x ′
i ]

m j mi xi −
N∑

i=1

∑
j>i

j∈σ [xi ]\σ [x ′
i ]

m j mi xi (38)

=
N∑

i=1

mi (x ′
i − xi )

∑
j>i

j∈σ [x ′
i ]

m j −
N∑

i=1

mi xi

∑
j>i

j∈σ [xi ]\σ [x ′
i ]

m j . (39)

Upon subtraction, we obtain

R1 − R2 =
N∑

i=1

mi (x ′
i − xi )

⎛
⎜⎜⎜⎝
∑
j<i

j∈σ [x ′
i ]

m j −
∑
j>i

j∈σ [x ′
i ]

m j

⎞
⎟⎟⎟⎠+ R3, (40)

where

R3 =
N∑

i=1

∑
j>i

j∈σ [xi ]\σ [x ′
i ]

m j mi xi −
N∑

i=1

∑
j<i

j∈σ [xi ]\σ [x ′
i ]

m j mi xi . (41)

Rearranging the sum according to Remark 3, the first term can be rewritten,

N∑
i=1

∑
j>i

χσ [xi ]\σ [x ′
i ]( j)m j mi xi =

N∑
j=1

∑
i< j

χσ [xi ]\σ [x ′
i ]( j)m j mi xi . (42)

Since

j ∈ σ [xi ] \ σ [x ′
i ] ⇐⇒ i ∈ σ [x j ] \ σ [x ′

j ],
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we can simplify the expression further by relabelling, i.e., switching the roles of i and j , to
obtain

N∑
i=1

∑
j<i

χσ [xi ]\σ [x ′
i ]( j)m j mi xi =

N∑
i=1

∑
j>i

χσ [xi ]\σ [x ′
i ]( j)mi m j x j (43)

=
N∑

i=1

∑
j<i

j∈σ [xi ]\σ [x ′
i ]

mi m j x j . (44)

Substituting the simplified expression into the first term of R3, i.e., Eq. (41), we obtain

R3 =
N∑

i=1

∑
j<i

j∈σ [xi ]σ [x ′
i ]

mi m j (x j − xi ) = 0. (45)

Thus, revisiting Eq. (40), we get

R1 − R2 =
N∑

i=1

mi (x ′
i − xi )

⎛
⎜⎜⎜⎝
∑
j<i

j∈σ [x ′
i ]

m j −
∑
j>i

j∈σ [x ′
i ]

m j

⎞
⎟⎟⎟⎠ . (46)

The right-hand side is shown to vanish changing the labels i, j and using Remark 3. We have
therefore proven

S(x ′) − S(x) =
N∑

i=1

mi (x ′
i − xi )

⎛
⎝∑

j>i

m j −
∑
j<i

m j

⎞
⎠ , (47a)

as well as

S(y′) − S(y) =
N∑

j=1

n j (y′
j − y j )

⎛
⎝∑

i> j

ni −
∑
i< j

n j

⎞
⎠ . (47b)

Due to (28), we have

C(x ′, y′) − C(x, y)

=
N∑

i=1

mi (x ′
i − xi )

⎛
⎝ ∑

j∈γ −[xi ]
n j −

∑
j∈γ +[xi ]

n j

⎞
⎠

+
N∑

j=1

n j (y′
j − y j )

⎛
⎝ ∑

i∈γ −[y j ]
mi −

∑
i∈γ +[y j ]

mi

⎞
⎠+ R̃,

with

R̃ = R̃1 + R̃2 + R̃3 + R̃4, (48)

where

R̃1 =
N∑

i=1

mi x ′
i

⎛
⎝ ∑

j∈γ −[x ′
i ]

n j −
∑

j∈γ −[xi ]
n j

⎞
⎠ ,

123



68 Page 18 of 44 M. Di Francesco et al.

and R̃2 =
N∑

i=1

mi x ′
i

⎛
⎝ ∑

j∈γ +[xi ]
n j −

∑
j∈γ +[x ′

i ]
n j

⎞
⎠ (49)

as well as

R̃3 =
N∑

j=1

n j y′
j

⎛
⎜⎝ ∑

i∈γ −[y′
j ]

mi −
∑

i∈γ −[y j ]
mi

⎞
⎟⎠ ,

and R̃4 =
N∑

j=1

n j y′
j

⎛
⎜⎝ ∑

i∈γ +[y j ]
mi −

∑
i∈γ +[y′

j ]
mi

⎞
⎟⎠ . (50)

Using Eq. (22) of Lemma 3, we may write

R̃1 =
N∑

i=1

mi x ′
i

∑
j∈γ [xi ]∩γ −[x ′

i ]
n j (51)

≥
N∑

i=1

N∑
j=1

χγ [xi ]∩γ −[x ′
i ]( j)mi n j y′

j (52)

=
N∑

j=1

N∑
i=1

χγ [y j ]∩γ +[y′
j ]( j)mi n j y′

j (53)

=
N∑

j=1

N∑
i∈γ [y j ]∩γ +[y′

j ]
mi n j y′

j , (54)

where the inequality is due to the fact that j ∈ γ −[x ′
i ] and thus x ′

i > y′
j and the penultimate

line is by rearranging terms in the sum since

j ∈ γ [xi ] ∩ γ −[xi ] ⇔
(

xi = y j and x ′
i > y′

j

)
⇔ i ∈ γ [y j ] ∩ γ +[y′

j ]. (55)

Using a similar argument, we see that

R̃3 =
N∑

j=1

∑
i∈γ [y j ]∩γ −[y′

j ]
mi n j y′

j ≥
N∑

i=1

∑
j∈γ [yi ]∩γ +[x ′

i ]
mi n j x ′

i . (56)

Finally, we note that, upon using Eq. (22) of Lemma 3, we may write

R̃2 = −
N∑

i=1

∑
j∈γ [xi ]∩γ +[x ′

i ]
mi n j x ′

i , and R̃4 = −
N∑

j=1

∑
i∈γ [y j ]∩γ +[y j ]

mi n j y′
j . (57)

Combining the terms, we have R̃ ≥ 0. The above estimate, together with (47), implies that
the vector P = (p, q) ∈ R

N × R
N with

p = (pi )
N
i=1 , q = (q j )

N
j=1,

pi = −
∑
j<i

m j +
∑
j>i

m j +
∑

j∈γ −[xi ]
n j −

∑
j∈γ +[xi ]

n j ,
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q j = −
∑
i< j

ni +
∑
i> j

ni +
∑

i∈γ −[y j ]
mi −

∑
i∈γ +[y j ]

mi ,

satisfies (30), i.e., P ∈ ∂F(Z). ��

The functional F defined in (24) is proper, continuous, and convex on the Hilbert space
(RN ×R

N , 〈·, ·〉w), in view of Lemma 4. As a consequence of the previous properties we have
∂F is a maximal monotone operator. Hence, we can use the theory of Brézis [9, Theorem
3.1], e.g. in the form stated in [20, Section 9.6, Theorem 3] in order to pose system (6) as the
gradient flow associated to (24).

Definition 4 Let Z0 = (x0, y0) ∈ CN × CN . An absolutely continuous curve (x(t), y(t)) ∈
R
2N is a gradient flow for the functional F if Z(t) := (x(t), y(t)) is a Lipschitz function on

[0,+∞), i.e., d Z
dt ∈ L∞([0,+∞);RN ×R

N ) (in the sense of distributions) and if it satisfies
the sub-differential inclusion

−
(

ẋ(t)
ẏ(t)

)
∈ ∂F(Z(t)), (58)

for almost every t ∈ [0,+∞) with (x(0), y(0)) = (x0(·), y0(·)).
Resorting to the theory of Brézis, we get the following theorem.

Theorem 1 Let Z0 = (x0, y0) ∈ CN × CN be an initial datum. Then, there exists a unique
solution Z(t) = (x(t), y(t)) in the sense of Definition 4 such that Z(0) = Z0. Moreover,
given Z1

0, Z2
0 ∈ CN × CN and the two corresponding solutions Z1(t), Z2(t) in the sense of

Definition 4 with initial data Z1
0 and Z2

0 respectively, the stability property

‖Z1(t) − Z2(t)‖ ≤ ‖Z1
0 − Z2

0‖,
holds for all t ≥ 0.

Remark 6 Lemma 5 affects the statement of the above Theorem 1 in that the class of initial
conditions forwhich existence and uniqueness of a gradient flow solution holds in the sense of
Definition 4 coincides with the whole convex cone CN ×CN . According to [9, Theorem 3.1],
initial data should belong to the domain of the sub-differential ofF in order to have existence
and uniqueness of solutions. Lemma 5 assures that CN × CN and the domain of ∂F are the
same set. Moreover, the result in Lemma 5 also provides an explicit expression P(p, q) of at
least one element in the sub-differential at any given configuration of particles that includes
possible collisions, both within the same species and among particles of opposite species.
Such expression anticipates what we shall see in the next section regarding the behavior of
particles in presence of superpositions/collisions. For example, the i-th particle of the first
species of a given particle configuration is subject to two self-repulsive drifts, the former due
to the accumulated mass of particles with label < i (pointing to the positive direction), the
latter combining the amount of mass possessed by particles with label > i (pointing to the
negative direction), regardless of possible superpositions. At the same time, the i-th particle
is subject to cross-attractive drifts depending on the particles of the opposite species. Particles
of the y-species located strictly to the left of xi contribute to a cross-attractive drift pointing
to the negative direction, whereas particles of the y species posed strictly to the right of xi

cause xi move in the positive direction. Particles of the y-species whose location coincides
with xi do not contribute to the cross-interaction part of P .
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Remark 7 Note that the minimal selection in the sub-differential in (58) is achieved as con-
sequence of the convexity of F , cf. [13,20], for instance. More precisely, the quoted result
in [9] implies Z admits a right derivative for every t ∈ [0,+∞) and

−d+ Z

dt
(t) = ∂0F(Z(t)),

for every t ∈ [0,+∞). Here,

∂0F(Z) = argmin {‖P‖ : P ∈ ∂F(Z)} .

Moreover the function t �→ ∂0F(X(t)) is right-continuous and the function t �→∥∥∂0F(Z(t))
∥∥ is non-increasing.

4 Qualitative properties of the ODEs system

Having established a well-posedness theory for system (6), let us now focus on some impor-
tant properties of the solutions. In particular we are interested in the dynamic of collisions
and in the support of the solution.

The main results of this section are obtained under the assumption that all particles have
the same mass, i.e., 1/N . Similar results may be obtained for more general masses. We
highlight this in Remark 8. Since the main goal of this work is the convergence of the particle
approximation scheme, we shall henceforth focus on the case of equal masses.

4.1 Collisions between particles of different species

In this subsection we discuss collisions between any two particles xi and y j of opposite
species, for i, j ∈ {1, 2, . . . , N }. Let us denote by

t∗ = inf{t ≥ 0 : xi (t) = y j (t) for some 1 ≤ i, j ≤ N }. (59)

In Sect. 4.5 we shall see that, indeed, t∗ < +∞. Since all trajectories are continuous and the
number of particles is finite, there exists a time t∗ such that the above inf is achieved. Let
i0, j0 ∈ {1, 2, . . . , N } such that xi0(t∗) = y j0(t∗). The following theorem covers all possible
configurations of the colliding particles right after the collision time t∗.

Theorem 2 Let t∗ be a collision time defined in (59) and i0, j0 be such that xi0(t∗) = y j0(t∗).
Assume that all other particles occupy a different position at t = t∗. Then there exists ε > 0
such that θ(t) := xi0(t) − y j0(t) satisfies

1. θ(t) = xi0(t) − y j0(t) > 0, if i0 > j0,
2. θ(t) = xi0(t) − y j0(t) < 0, if i0 < j0,
3. θ(t) = xi0(t) − y j0(t) = 0, if i0 = j0,

for all t ∈ (t∗, t∗ + ε). Moreover, in case i0 = j0,

– the two particles xi0 and yi0 remain attached for all t ≥ t∗,
– the two particles xi0 and yi0 have zero velocity on [t∗, t∗ + ε].

Proof At time t∗ we consider a particle closest to xi0(t∗) = y j0(t∗), denoted by zk , where
zk = xi , for i 	= i0 or zk = y j , for j 	= j0. Let us denote d∗ := |zk(t∗) − xi0(t∗)|. Since
no particle is moving at a speed larger than 2, cf. (6), there exists an 0 < ε < d∗/4, such
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that their distance remains strictly positive, for all t ∈ [t∗, t∗ + ε]. In particular this means
that xi0 , y j0 remain the only particles in the interval [xi0(t∗) − d∗/2, xi0(t∗) + d∗/2] for any
t ∈ [t∗, t∗+ε]. As a consequence, the sign of θ(t) is either strictly positive or strictly negative
on (t∗, t∗ + ε), or it is equal to zero, since the velocities remain constant.

If θ(t) 	= 0, no superpositions occur for the whole time interval (t∗, t∗ + ε). As the
functional F is C1 on a configuration without superpositions, the sub-differential of F is
single-valued and corresponds to the right-hand side of (6). Therefore, for all t+∗ ∈ (t∗, t∗+ε)

we have ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi0(t
+∗ ) =

∑
k∈σ−[xi0 ]

1

N
−

∑
k∈σ+[xi0 ]

1

N
−

∑
k∈γ −[xi0 ]

1

N
+

∑
k∈γ +[xi0 ]

1

N
,

ẏ j0(t
+∗ ) =

∑
k∈σ−[y j0 ]

1

N
−

∑
k∈σ+[y j0 ]

1

N
−

∑
k∈γ −[y j0 ]

1

N
+

∑
k∈γ +[y j0 ]

1

N
.

(60)

We now compare the velocities of the two particles xi0 and y j0 in the two configurations (1)
and (2) with their velocity. In case θ > 0 on (t∗, t∗ + ε) we have, for some t+∗ ∈ (t∗, t∗ + ε),

ẋi0(t
+∗ ) > ẏ j0(t

+∗ ), (61)

which is equivalent to

∑
{k:xk<xi0 }

1

N
−

∑
{k:xk>xi0 }

1

N
−

∑
{k:yk<xi0 }

1

N
+

∑
{k:yk>xi0 }

1

N

>
∑

{k:yk<y j0 }

1

N
−

∑
{k:yk>y j0 }

1

N
−

∑
{k:xk<y j0 }

1

N
+

∑
{k:xk>y j0 }

1

N
.

After multiplying by N , the above condition reads

(i0 − 1)−(N − i0)− j0+(N − j0) > ( j0−1) − (N − j0) − (i0 − 1)+(N − i0+1),

which, upon simplification, is equivalent to

i0 − j0 >
1

2
,

which, in turn, is equivalent to i0 > j0, due to the fact that i0, j0 ∈ {1, . . . , N }. A similar
computation yields that in case θ(t) < 0 on the interval (t∗, t∗ + ε) then ẋi0(t

+∗ ) < ẏ j0(t
+∗ )

on some time t+∗ , and then

i0 − 1 − (N − i0) − ( j0 − 1) + N − j0 + 1

< j0 − 1 − (N − j0) − i0 + (N − i0) ⇐⇒ i0 < j0.

Clearly, in case i0 = j0 none of the two above situations are possible, andwemust necessarily
have that the two particles xi0 and y j0 overlap on the time interval [t∗, t∗ + ε). In order
to determine the speed of the two particles in this case, we observe that, in the particle
configuration in which xi0 = yi0 and all other particles occupy different positions, the i0-th
component of sub-differential P = (p, q) found in Lemma 5 reads

pi0 = qi0 = (i0 − 1) − (N − i0) − (i0 − 1) + (N − i0) = 0,

and by uniqueness of the gradient flow solution according to Definition 4 the two particles
have zero velocity on the time interval [t∗, t∗ + ε] in which they do not collide with other
particles. ��

123



68 Page 22 of 44 M. Di Francesco et al.

Remark 8 In case of different masses, the inequality in (61) reads

Mi0−1 − (1 − Mi0) − N j0 + 1 − N j0 > N j0−1 − (1 − N j0) − Mi0−1 + (1 − Mi0−1),

(62)

which gives the more general condition mi0 > 4N j0−1 + 3n j0 − 4Mi0−1 for xi0(t) > y j0(t).
Here Mi0 = m1 + · · · + mi0 and N j0 = n1 + · · · + n j0 .

4.2 Collisions between particles of the same species

Theorem 2 covers all possible types of collisions between two particles of opposing species.
This subsection is dedicated to investigating whether or not two particles of the same species
can collide.

Theorem 3 Assume the particles x1, . . . , xN do not overlap initially and that m1 = · · · =
m N = n1 = · · · = nN = 1/N. Then, particles of the x-species never overlap for all times
t > 0. The same statement holds for particles of the y-species.

Proof Arguing by contradiction, let us assume there exists a time t∗ such that xi (t∗) =
xi+1(t∗). Without loss of generality we may choose such t∗ as the first collision time for
those two particles. Still without losing generality, we assume there exists an ε > 0 such
that no other collisions involving either xi or xi+1 occur on (t∗ − ε, t∗). Clearly, there exists
t−∗ ∈ (t∗ − ε, t∗) such that

ẋi+1(t
−∗ ) < ẋi (t

−∗ ). (63)

We shall cover all the possible cases.
Case 1 xi and xi+1 collide “without any particles of the opposite species strictly

between them”. This case also covers the situation in which one or more particles of the
y-species collide with xi and xi+1 at t∗ but none of them are set strictly between xi and
xi+1 on the above time interval. Hence, there exists an index j such that both xi and xi+1

have exactly j y-particles on their left and N − j on their right on the same time interval
(t∗ − ε, t∗). Hence, denoting by Mi = m1 + · · · + mi and N j = n1 + · · · + n j for any
i, j ∈ {1, 2, . . . , N }, inequality (63) implies

Mi −(1 − Mi+1) − N j +1 − N j < Mi−1−(1 − Mi ) − N j +1 − N j ⇐⇒ mi + mi+1<0,

which is clearly false.
Case 2 as in Case 1 but with more colliding particles such that none of them “strictly

between xi and xi+1”. This situation can be covered as in Case 1. All particles moving
strictly outside the interval [xi , xi+1] prior to the collision do not affect the computations in
Case 1.

Case 3 one y-particle is set “strictly between xi and xi+1” before collision. Assume
now there is an index j such that xi (t∗) = xi+1(t∗) = y j (t∗) and xi (t) < y j (t) < xi+1(t)
for all t ∈ (t∗ − ε, t∗). In this case, there must be a time t−∗ such that (63) is satisfied since
y j slows down xi+1 and attracts xi . The explicit computation of the velocities yields in this
case

Mi − (1 − Mi+1) − N j + 1 − N j < Mi−1 − (1 − Mi ) − N j−1 + 1 − N j−1

⇐⇒ mi + mi+1 < 2n j .

Since we are assuming that all particles have the samemass 1/N the above is a contradiction.
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Case 4 one y-particle is attached to either xi or xi+1 before the collision time t∗.
Assume now that we are in the same situation as in Case 3 except that the particle y j is
attached to xi+1 on the time interval (t∗ − ε, t∗). From Theorem 2 we know that this is
possible only if j = i + 1 and ẋi+1 = ẏ j = 0 on (t∗ − ε, t∗). On the other hand, with the
notation of Case 1, ẋi is explicitly computed on t ∈ (t∗ − ε, t∗),

ẋi (t) = Mi−1 − (1 − Mi ) − Ni + 1 − Ni ,

and since all particles have mass 1/N we deduce

ẋi (t) = −1/N ,

which clearly shows that xi and xi+1 cannot collide at time t∗ in this case. We remark that
this also covers the situation in which one or more particles of the y species are set strictly
between xi and xi+1 = y j before time t∗.

Case 5 more than one y-particle is set between xi and xi+1. Assume now that xi and
xi+1 collide having two or more particles of the y species, say y j , . . . , y j+k with k ≥ 1,
strictly between them in the time interval (t∗, t∗ + ε). In this case, at least two particles of
the y-species collide without particles of the x-species strictly between them, and this is
impossible due to the first case we considered for the x-species (with reversed roles). ��

We can collect the information in Theorems 3 and 2 as follows.

Corollary 1 Assume the particles x1, . . . , xN do not overlap initially, and assume the same
holds for the particles y1, . . . , yN . Then, particles of the same species never collide for all
times. Particles of opposite species can only meet in a binary collision. When that occurs,
they behave according to the three cases stated in Theorem 2.

Remark 9 The results inTheorem2andCorollary 1 clearly show that there canbenobouncing
in the particle system (6), i.e., a particle cannot reach another particle and then remain strictly
before it after touching it. This is immediate in the case of particles of the same species as
they simply never collide. As for the case of particles of opposite species, assume xi reaches
y j at time t∗. If they touch each other and are then bounced back, this would imply that
their post-collisional velocities are the same as their pre-collisional ones, hence, for instance,
ẋi (t) > ẏ j (t) for t > t∗, but this is in contradiction with xi (t) < y j (t) for t > t∗, recalling
that xi (t∗) = y j (t∗).

4.3 Initial overlapping

The results in the previous two subsections are relevant in case of no initial overlapping of
particles. In this subsection we analyse the situation of an initial “cluster” involving particles
of both species. We prove the following result.

Lemma 6 Assume there exist non-negative integers 0 ≤ h, k, n, m ≤ N with h < k < n < m
and some λ ∈ R such that

xi (0) = λ, for all i = h + 1, . . . , n,

y j (0) = λ, for all j = k + 1, . . . , m,

and assume no other particles of the x or y species occupy the position λ at time t = 0. Assume
further that no particles other than xi with i = h + 1, . . . , n and y j with j = k + 1, . . . , m
overlap at t = 0. Then, for t > 0 and prior to the next collision, the following holds:
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xh+1(t) < . . . < xk(t) < λ,

xk+1(t) ≡ . . . ≡ xn(t) ≡ λ,

yk+1(t) ≡ . . . ≡ yn(t) ≡ λ,

λ < yn+1(t) < . . . < ym(t). (64)

Proof We prove the assertion by providing an explicit particle trajectory

Z(t) = (x(t), y(t)) = (x1(t), . . . , xN (t), y1(t), . . . , yN (t)),

satisfying (64) for all t ∈ [0, ε] for a suitably small ε. To perform this task, we will prove that
our chosen particle trajectory satisfies the sub-differential inclusion (58) for all t ∈ (0, ε) for
a suitably small ε > 0. The result then follows by uniqueness, see Theorem 1. For simplicity
we adopt the notation

xi (0) = x̄i , y j (0) = ȳ j ,

for all i, j = 1, . . . , N . Moreover, we use the notation

I := {1, . . . , N } , J := {k + 1, . . . , n}.
By assumption, particles xi and y j with i = 1, . . . , h, n + 1, . . . , N and j = 1, . . . , k, m +
1, . . . , N occupy distinct positions at t = 0, therefore we verify that they move as follows,
for t ∈ [0, ε) and ε > 0 small enough such that no collisions arise in (0, ε):

xi (t) = x̄i + 1

N
[i − 1 − (N − i) − #{ j ∈ I : ȳ j < x̄i } + #{ j ∈ I : ȳ j > x̄i }]t,

y j (t) = ȳ j + 1

N
[ j − 1 − (N − j) − #{i ∈ I : x̄i < ȳ j } + #{i ∈ I : x̄i > ȳ j }]t .

Moreover, we set

xi (t) = λ − 1

N
(2(k − i) + 1)t , for i = h + 1, . . . , k,

y j (t) = λ + 1

N
(2( j − n) − 1)t , for j = n + 1, . . . , m,

xi (t) ≡ λ , for i = k + 1, . . . , n,

y j (t) ≡ λ , for j = k + 1, . . . , n,

for t ∈ [0, ε) for ε > 0 small enough such that xh+1 does not collide with xh and ym does not
collide with ym+1, which is guaranteed by the fact that |ȳm+1− ȳm | > 0 and |x̄h+1− x̄h | > 0.
For a fixed t ∈ (0, ε) we prove that the vector

− Ż(t) = −(ẋ(t), ẏ(t)) = −(p, q)

p = (pi )
N
i=1 , q = (q j )

N
j=1

pi = ẋi (t) , q j = ẏ j (t).

belongs to ∂F(Z(t)). For simplicity we denote x = x(t) and y = y(t). By means of a direct
computation we obtain

F(x ′, y′) − F(x, y)

= 1

N 2

∑
i∈I\J

(x ′
i − xi )[−(i − 1) + N − i] + 1

N 2

∑
j∈I\J

(y′
j − y j )[−( j − 1) + N − j]
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+ 1

N 2

∑
i∈J

(x ′
i − xi )[−k + (N − n)]

+ 1

N 2

∑
i∈J

x ′
i [−#{h ∈ J : x ′

h < x ′
i } + #{h ∈ J : x ′

h > x ′
i }]

− 1

N 2

∑
i∈J

xi [−#{h ∈ J : xh < xi } + #{h ∈ J : xh > xi }]︸ ︷︷ ︸
=0

+ 1

N 2

∑
j∈J

(y′
j − y j )[−k + (N − n)]

+ 1

N 2

∑
j∈J

y′
j [−#{k ∈ J : y′

k < y′
j } + #{k ∈ J : y′

k > y′
j }]

− 1

N 2

∑
j∈J

y j [−#{k ∈ J : yk < y j } + #{k ∈ J : yk > y j }]︸ ︷︷ ︸
=0

+ 1

N 2

∑
i∈I\J

(x ′
i − xi )[#{k ∈ I : yk < xi } − #{k ∈ I : yk > xi }]

+ 1

N 2

∑
i∈J

(x ′
i − xi )[k − (N − n)]

+ 1

N 2

∑
i∈J

x ′
i [#{k ∈ J : y′

k < x ′
i } − #{k ∈ J : y′

k > x ′
i }]

− 1

N 2

∑
i∈J

xi [#{k ∈ J : yk < xi } − #{k ∈ J : yk > xi }]︸ ︷︷ ︸
=0

+ 1

N 2

∑
j∈I\J

(y′
j − y j )[#{h ∈ I : xh < y j } − #{h ∈ I : xh > y j }]

+ 1

N 2

∑
j∈J

(y′
j − y j )[k − (N − n)]

+ 1

N 2

∑
j∈J

y′
j [#{h ∈ J : x ′

h < y′
j } − #{h ∈ J : x ′

h > y′
j }]

− 1

N 2

∑
j∈J

y j [#{h ∈ J : xh < y j } − #{h ∈ J : xh > y j }]︸ ︷︷ ︸
=0

.

Combining all the terms, and recalling that for small t

#{k ∈ I : yk < xi } − #{k ∈ I : yk > xi } = 2k − N for i ∈ {h + 1, . . . , k}
#{h ∈ I : xh < y j } − #{h ∈ I : xh > y j } = 2n − N for j ∈ {n + 1, . . . , m}

we obtain

F(x ′, y′) − F(x, y)

= − 1

N 2

∑
i∈{1,...,h,n+1,...,N }

(x ′
i − xi )[i − 1 − (N − i) − #{ j ∈ I : yi < xi }
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+ #{ j ∈ I : y j > xi }]
− 1

N 2

∑
j∈{1,...,k,m+1,...,N }

(y′
j − y j )[ j − 1 − (N − j) − #{i ∈ I : xi < y j }

+ #{i ∈ I : xi > y j }]

+ 1

N 2

k∑
i=h+1

(x ′
i − xi )[2(k − i) + 1] + 1

N 2

m∑
j=n+1

(y′
j − y j )[2(n − j) + 1]

− 1

N 2

∑ ∑
i,h∈J : x ′

h<x ′
i

x ′
i + 1

N 2

∑ ∑
i,h∈J : x ′

h>x ′
i

x ′
i − 1

N 2

∑ ∑
j,k∈J : y′

k<y′
j

y′
j

+ 1

N 2

∑ ∑
j,k∈J : y′

k>y′
j

y′
j

+
∑ ∑

i,k∈J : y′
k<x ′

i

x ′
i −

∑ ∑
i,k∈J : y′

k>x ′
i

x ′
i +

∑ ∑
j,h∈J : x ′

h<y′
j

y′
j −

∑ ∑
j,h∈J : x ′

h>y′
j

y′
j .

We now observe that the last eight terms above can be rewritten as

− 1

2N 2

∑
i∈J

∑
h∈J

|x ′
i − x ′

h | − 1

2N 2

∑
j∈J

∑
k∈J

|y′
j − y′

k | + 1

N 2

∑
i∈J

∑
j∈J

|x ′
i − y′

j |,

which equals the functional F computed on the particle configuration (xi )i∈J , (y j ) j∈J . Due
to Lemma 1, these terms amount to a non-negative quantity. This proves the assertion. ��
Theorem 4 Assume there exist non-negative integers i, j, h, k such that

xi (0) = xi+1(0) = . . . = xh−1(0) = xh(0) = y j (0) = y j+1(0) = . . . = yk−1(0) = yk(0),

and no other particles occupy the same position. Then,

– all particles (of both species) having indeces in the set {i, . . . , h} ∩ { j, . . . , k} remain in
the same position for all t ≥ 0.

Moreover, on some time interval [0, ε] for a suitably small ε > 0,

– if i < j , particles xi , . . . , x j−1 detach from x j moving to the left, and are strictly ordered;
– if i > j , particles y j , . . . , yi−1 detach from yi moving to the left, and are strictly ordered;
– if h > k, particles xk+1, . . . , xh detach from xk moving to the right, and are strictly

ordered;
– if k > h, particles yh+1, . . . , yk detach from yh moving to the right, and are strictly

ordered.

Proof Assume first there is only one group of particles occupying the same position initially
as in the hypothesis of the theorem. The case in which k ≥ h and i ≤ j is covered in Lemma
6. The symmetric case k ≤ h and i ≥ j is analogous. The case in which either

– i < j and h > k

or

– i > j and h < k
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can be proven similarly. We omit the details.
The general case in which there is more than one cluster of overlapping particles follows

by similar computations as in Lemma 6 in case there are “excess” particles of one species
on one side and “excess” particles of the opposite species on the other side, and by similar
considerations as the one above in this proof for the general case. The computations are quite
long and tedious but do not include any additional technical difficulty to the one in Lemma 6
and are therefore left to the reader. ��

As a consequence of the result in Theorem 4, we are able to describe in full detail the
short-time solution of the particle system (6) in case of initial overlapping of particles:

(1) If particles of the same species, for instance xi , . . . , xi+h occupy the same position
initially and no particles of the other species are in the same initial position, then the
particles “scatter apart”: they immediately detach and move apart, with xi (t) < . . . <

xi+h(t). The same situation occurs in the one species case, see [8].
(2) If particles of the two species occupy the same position initially, their behaviour depends

on the cumulative mass of each species on that position. More precisely, particles of the
two species featuring the same index are stationary for all times and remain attached to
the initial cluster. The remaining particles move away from the cluster and “disperse”
towards the particles of the opposite species with the same indexes.

(3) As a special case of case (2), let us highlight that, if no particles have the same index, no
stationary cluster is formed and all particles diffuse.

(4) In case (2), the whole particle system is split into two independent particle sub-systems
separated by the initial cluster. Eachof the two sub-system is only subject to the interaction
energy F restricted to it. The two sub-systems are totally decoupled.

4.4 Support of the solution

The solution to system (6) is a pair (x(t), y(t)) ∈ CN ×CN , i.e., 2N particles of two opposing
species distributed on the real line such that

x1(t) ≤ x2(t) ≤ · · · ≤ xN (t), and y1(t) ≤ y2(t) ≤ · · · ≤ yN (t),

for t ≥ 0. Hence, we may consider the support of the solution as the time-dependent interval
[a(t), b(t)], where

a(t) = min{x1(t), y1(t)}, and b(t) = max{xN (t), yN (t)},
for t ≥ 0. An interesting property concerning the support is that it is determined by the initial
datum in the following way.

Proposition 1 Let [a(t), b(t)] be the support of the solution (x(t), y(t)) to system (6) in
the sense of Definition 4 with an initial datum (x0, y0) ∈ CN × CN . Then [a(t), b(t)] ⊆
[a(0), b(0)].
Proof Let us assume without loss of generality a(0) = x1(0) and b(0) = yN (0). Assume
first that x1 is the only particle occupying the position a(0) at t = 0. In this case it is easily
seen that ẋ1(0) = −1 + 1/N + 1 ≥ 0, by Eq. (6), and the particle moves to the right.
Assume now that a cluster of particles x1, . . . , xh and y1, . . . , yk occupy the position a(0)
at time t = 0. The result in Theorem 4 implies that particles of both species with indices
in {1, . . . ,min{h, k}} remain at a(0) for all times, whereas the remaining particles move
towards the positive direction. In particular ẋ1 = 0.
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Hence, in any case, ẋ1(t) ≥ 0 until x1 collides with another particle. Similarly, one can
prove that ẏN ≤ 0 until yN collides with another particle. When the first collision occurs,
we have a cluster of particles and we can re-apply Theorem 4 and conclude that x1 will stop
moving for all times. An analogous statement holds for yN . The assertion is therefore proven.

��
The uniform bound for the support of the particle system proven above has an important

repercussion on the sub-differential of the functional F :

Proposition 2 Let T ≥ 0 be fixed and let Z(·) = (x(·), y(·)) be the unique gradient flow
solution to (6) according to Definition 4. Then, there exists a constant C ≥ 0 independent of
N and only depending on the diameter of the initial support of the particles such that

sup {‖P‖w : P = (p, q) ∈ ∂F(Z(t)) , t ∈ [0, T ]} ≤ C .

Proof From Definition 3 with Z ′ = Z(t) + P we obtain

〈P, P〉w ≤ F(Z(t) + P) − F(Z(t)).

Now, a simple triangle inequality implies

F(Z(t) + P) ≤ 1

N 2

∑
i, j

|xi (t) + pi − y j (t) − q j |

≤ 1

N 2

∑
i, j

|xi (t) − y j (t)| + 1

N 2

∑
i, j

(|pi | + |q j |)

and due to Proposition 1 and Young inequality we get

F(Z(t) + P) ≤ C1 + ‖P‖2w
2

for some C1 ≥ 0 only depending on the diameter of the initial support of the particles. By
a similar estimate we get −F(Z(t)) ≤ C2, where C2 ≥ 0 once again only depends on the
diameter of the initial support of the particles. Therefore, we get

‖P‖2w ≤ C1 + C2 + ‖P‖2w
2

,

and the assertion follows. ��

4.5 Number of collisions and long time behaviour

The results in the previous Theorem 4 emphasise that some initial conditions may imply
the formation of “mixed-clusters”, i.e., groups of particles of both species that are stationary
in time and split the whole set of particles into groups that move independently. As these
groups can be considered as separate gradient flows of the same energy functional (up to
rescaling the mass), in order to understand the long-time behaviour of our system we can
assume without loss of generality that no “mixed-clusters” are formed.

The case in which no such mixed clusters form immediately after time t = 0 occurs in
one of the following three cases:

(1) There is no superposition of particles initially;
(2) The only superposition consists of particles of the same species;
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(3) There is an initial superposition of particles of mixed species but no particles of two
opposite species and same index occupy the same position.

Therefore, without loss of generality we shall assumewe are in one the above three situations.
The first thing we emphasise here is that the velocity of each particle is the same between

two consecutive collisions, and we know that collisions cannot occur among particles of the
same species, see Theorem 3. Hence, only collisions with the opposite species can occur,
according to Theorem 2. Clearly, velocities change after a collision only in case of crossings,
and Remark 9 shows that crossings are only possible after a collision. Now, the result in
Theorem 2 shows that two particles xi and y j collide and cross if and only if i > j . After
the collision, xi slows down by 2/N , as it has one more particle of the y-species attracting it
form the left, and one less particle of the y-species attracting it from the right. Nothing will
change with respect to the interaction with particles of the x-species.

A simple computation allows to compare velocities of two particles xh and yk of opposite
species even when they are far apart, showing that ẋh(t) − ẏk(t) is always positive when
h > k, and of course xh(t) < yk(t). Indeed, we have the following bounds for the respective
velocities:

ẋh(t) ≥ h − 1 − N + h − (k − 1) + N − k + 1 = 2h − 2k + 1,

ẏk(t) ≤ k − 1 − N + k − h + N − h = 2k − 2h − 1.

This easily implies

ẋh(t) − ẏk(t) ≥ 4h − 4k + 2 ≥ 0 ⇐⇒ h ≥ k,

since h, k ∈ N. Hence, xi may continue colliding with the next particle of the y-species,
namely y j+1, having crossed y j , provided i is also larger than j + 1, and so on, for a certain
number of times, n, until i = j + n. Then the two particles will collide and stick together
for all times.

As a consequence of that, we have an explicit control on the total number N of collisions
involving a given particle. More precisely, every particle with index i can collide with at most
Ni = i particles, this number being reached, for example, if xi has y1, . . . , yi on its right.
Hence, the maximum possible number of collisions is

Nmax = 2
N∑

i=1

i = N (N + 1).

Since the minimum relative velocity between two consecutive particles that will collide is
2/N , the largest possible time between two consecutive collisions is of order

Δmax ∼ N

2
.

Hence, one expects that particles will reach the “stationary solution”

xi = yi , for all i = 1, . . . , N ,

by a time of order N 3 at the latest.

5 The “continuum” gradient flow as amany-particle limit

In this section we deal with the rigorous derivation of system (5) as a many-particle limit of
a system of the form (6).
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We will pursue this task for general probability measures as initial conditions. In order
to single out the mathematical difficulties arising from the case of singular measures as
initial conditions, we will start for simplicity with the case of an absolutely continuous initial
condition ρ0, η0 ∈ Pa

2 (R) with compact support. We recall that the support of a measure
μ ∈ P2(R) is the closed set

supp(μ) = {x ∈ R | μ(Br (x)) > 0, ∀r > 0}.
Following a standard atomisation strategy, we discretise the initial datum by splitting the
total mass into equal parts as follows. Let [x̄min, x̄max ] be the convex hull of the support of
ρ0 and let [ȳmin, ȳmax ] be the convex hull of the support of η0. Fixing N ∈ N large enough,
we split the non-negative subgraph of ρ0 in N regions of measure 1

N as follows:

x̄0 = x̄min, (65a)

x̄i := sup

{
x ∈ R :

∫ x

x̄i−1

dρ0(y) <
1

N

}
, i = 1, . . . , N . (65b)

Clearly, we have x̄N = x̄max . Repeating the same procedure for the non-negative sub-
graph of η0 we obtain ȳ0, . . . , ȳN . Then, we solve system (6), for i = 1, . . . , N , with
(x̄1, . . . , x̄N , ȳ1, . . . , ȳN ) as initial condition. The choice of discarding the two particles
labelled by i = 0 is dictated by the need of having exactly N particles each one with mass
1/N .

In view of the results shown in Sect. 3, we know there exists a unique solution Z(t) =
(x(t), y(t)) ∈ CN × CN in the sense of Definition 4 with support contained in the interval
[a(0), b(0)] for all times, with a(0) = min{x̄0, ȳ0} and b(0) = max{x̄N , ȳN }. Now, we
consider the piecewise constant densities

ρ̃N (t, x) :=
N−1∑
i=0

d1
i (t)χ[xi (t),xi+1(t))(x), η̃N (t, x) :=

N−1∑
i=0

d2
i (t)χ[yi (t),yi+1(t))(x), (66)

where

d1
i (t) = 1

N (xi+1(t) − xi (t))
, and d2

i (t) = 1

N (yi+1(t) − yi (t))
(67)

are discrete Lagrangian version of the densities. Note that d1
i and d2

i are well-defined since
particles of the same species cannot collide, as proven in Sect. 4, Theorem 3. Moreover, we
also consider the empirical measures

ρN (t) = 1

N

N∑
i=1

δxi (t), and ηN (t) = 1

N

N∑
j=1

δy j (t). (68)

We notice that ρN , ηN , ρ̃N , η̃N are probability measures with compact support. Moreover,
(ρ̃N (t), η̃N (t)) belong to Pa

2 (R) × Pa
2 (R).

Both (ρN , ηN ) and (ρ̃N , η̃N ) are useful representations of the particle system x1, . . . ,
xN , y1, . . . , yN for large N . In fact, one can prove that these two sequences inP2(R)×P2(R)

converge, up to a subsequence, to same limit in the p-Wasserstein distance for all p ∈
[1,+∞).

Lemma 7 Let p ∈ [1,+∞). There exists a sequence (Nk)k ⊂ N and an absolutely continu-
ous curve

(ρ(·), η(·)) ∈ AC([0, T ] ; Pp(R) × Pp(R))
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such that

(ρNk , ηNk ) → (ρ, η) in C([0, T ] ; Pp(R) × Pp(R))

(ρ̃Nk , η̃Nk ) → (ρ, η) in C([0, T ] ; Pp(R) × Pp(R))

as k → +∞.

Proof Let us fix T ≥ 0. The results in Proposition 1 and Proposition 2 imply that

‖Z(·)‖L∞([0,T ] ;RN ×RN ) + ‖Ż(·)‖L∞([0,T ] ;RN ×RN ) ≤ C,

for some C > 0 only depending on the initial support. The estimate on ‖Z(t)‖∞ implies
that all q-moments of ρN and ηN are uniformly bounded with respect to N , uniformly on
t ∈ [0, T ], for q ∈ [1,∞).

Therefore we may infer that both ρN and ηN are contained in a pre-compact subset of
Pp(R), for all times t ∈ [0, T ], by Prokhorov’s theorem and the uniform bounds on the
q-moments, with q > p. Now, for 0 ≤ s < t ≤ T , we set πs,t ∈ P(R × R) as

π N
s,t (x, y) := 1

N

N∑
i=1

δxi (s)(x) ⊗ δxi (t)(y).

It is easily seen that π N
s,t has marginal measures ρN (s) in the x-variable and ρN (t) in the

y-variable respectively. Hence,

Wp(ρ
N (s), ρN (t))p ≤

∫∫
R×R

|x − y|pdπ N
s,t (x, y)

= 1

N

N∑
i=1

∫∫
R×R

|x − y|pdδxi (s)(x)dδxi (t)(y)

= 1

N

N∑
i=1

|xi (s) − xi (t)|p = 1

N

N∑
i=1

∣∣∣∣
∫ t

s
ẋi (τ )dτ

∣∣∣∣
p

,

and the above estimate on ‖Ż‖ implies

Wp(ρ
N (s), ρN (t))p ≤ C

N

N∑
i=1

|t − s|p = C |t − s|p,

for some constantC > 0 that is independent of N . The latter estimate implies equi-continuity
of the sequence {ρN : N ∈ N} in C([0, T ] ; Pp(R)), and clearly an analogous statement
holds for ηN . Hence, the Arzelà-Ascoli’s Theorem implies the existence of a subsequence
(ρNk , ηNk ), k ∈ N, such that

(ρNk , ηNk ) → (ρ, η) inC([0, T ] ; Pp(R) × Pp(R)),

as k → +∞, for some (ρ, η) ∈ C([0, T ] ; Pp(R) × Pp(R)), see [2, Proposition 3.3.1].
We now prove that the sequence (ρ̃Nk , η̃Nk ) converges to the same limit (ρ, η) in the

same topology C([0, T ] ;Pp(R) × Pp(R)). For a fixed N , let π N ∈ C([0, T ];P(R × R))

be defined by

π N (t; x, y) =
N∑

i=1

δxi (t)(x) ⊗ ρ̃N |[xi−1(t),xi (t))(y).
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A simple computation shows that π N has marginal measures ρN in the x-variable and ρ̃N

in the y-variable, respectively. Hence, for almost every t ∈ [0, T ],

W1(ρ
N (t), ρ̃N (t)) ≤

∫∫
R×R

|x − y|dπ N (x, y)

=
N∑

i=1

1

N (xi (t) − xi−1(t))

∫ xi (t)

xi−1(t)
|xi (t) − y|dy

= 1

2

N∑
i=1

1

N (xi (t) − xi−1(t))
(xi (t) − xi−1(t))

2 = (xN (t) − x0(t))
1

2N

≤ (x̄N − x̄0)
1

2N

and the assertion is proven for p = 1 by taking the supremum on t ∈ [0, T ] and using that
x̄N − x̄0 = x̄max − x̄min. Note that supp ρN , supp ρ̃N ⊆ [a(0), b(0)], hence

Wp(ρ
N (t), ρ̃N (t)) ≤

(∫∫
[a(0),b(0)]2

|x − y|pdπ N (x, y)

) 1
p

≤ (b(0) − a(0))
p−1

p

∫∫
R×R

|x − y|dπ N (x, y)

≤ (b(0) − a(0))
p−1

p (x̄N − x̄0)
1

2N
,

which gives the result for p ∈ [1,+∞) by taking again the supremum on t ∈ [0, T ] and
letting N → ∞. ��

We now establish the basic properties satisfied by the N -particle approximation of the
initial data ρ0, η0. In order to simplify the notation, we denote

(ρ̃N , η̃N )|t=0 = (ρ̃N
0 , η̃N

0 ) , (ρN , ηN )|t=0 = (ρN
0 , ηN

0 ).

Proposition 3 The two sequences {(ρ̃N
0 , η̃N

0 )}n∈N and {(ρN
0 , ηN

0 )}n∈N converge to the initial
datum (ρ0, η0) with respect to W1. Moreover, assume that there exists a convex, non-
decreasing function G : [0,+∞) → [0,+∞) with G(0) = 0 and limr→+∞ G(r)

r = +∞
such that both G(ρ0) and G(η0) belong to L1(R). Then, the quantity∫

R

G(ρ̃N
0 (x))dx +

∫
R

G(η̃N
0 (x))dx

is uniformly bounded with respect to N.

Proof The 1-Wasserstein convergence of the initial data relies on the techniques adopted in
the proof of Lemma 7 and is therefore left to the reader. In order to prove the last property,
we compute

∫
R

G(ρ̃N
0 (x))dx =

N−1∑
i=0

∫ x̄i+1

x̄i

G(d1
i (0))dx =

N−1∑
i=0

∫ x̄i+1

x̄i

G

(
1

N (x̄i+1 − x̄i )

)
dx

=
N−1∑
i=0

∫ x̄i+1

x̄i

G

(
–
∫ x̄i+1

x̄i

ρ0(y)dy

)
dx .
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By Jensen’s inequality, we get

∫
R

G(ρ̃N
0 (x))dx ≤

N−1∑
i=0

∫ x̄i+1

x̄i

1

x̄i+1 − x̄i

∫ x̄i+1

x̄i

G(ρ0(y))dydx ≤
∫
R

G(ρ0(y))dy,

which proves the assertion for ρ̃N
0 . The assertion for η̃N

0 is proven in the same way. ��
The convergence of (ρ̃N , η̃N ) and (ρN , ηN ) to (ρ, η) proven in Lemma 7 alone is too

weak to prove that (ρ, η) is a gradient flow solution of the continuum model (5) in the sense
of [13]. This is due to the discontinuity of the gradient ∇N , which does not allow for the
coupling with a singular measure in the mixed interaction terms of (6). In order to bypass this
problem, we argue as follows. Assuming the initial data ρ0, η0 belong to Lm(R) for m ≥ 1,
we aim at proving that the approximating sequences ρ̃N and η̃N are uniformly bounded in
Lm(R), which implies weak Lm compactness (note that the case m = 1 is shown separately)
and therefore the possibility to pass to the limit under the integral sign using the pairing
between an absolutely continuous measure and a discontinuous test function.

Proposition 4 Let us consider ρ0, η0 ∈ Pa
2 (R) ∩ Lm(R), for some m ∈ (1,+∞]. Then,

the piecewise constant densities ρ̃N and η̃N have a weakly (resp. weakly star) convergent
subsequence in Lm

loc([0,+∞) × R) for finite m (infinite m resp.) to ρ and η respectively.
Moreover, ρ and η belong to C([0,+∞); Lm(R)).

Proof The proof is based on establishing Lm-bounds that are uniform in time and an appli-
cation of Banach-Alaoglu theorem to obtain the weak-star compactness. Let us start by
computing the time-derivative of the Lm norm of the piecewise constant densities. In what
follows, we use that particles of the same species do not cross, as proven in Theorem 3.
Moreover, the computation below is justified at times t at which no particles of opposite
species collide. As proven in Sect. 4.5, this only happens finitely many times on each fixed
time interval [0, T ]. Hence, for every fixed T ≥ 0 and for every but finitely many t ∈ [0, T ],
we have

d

dt

(
‖ρ̃N ‖m

m + ‖η̃N ‖m
m

)
= d

dt

∫
R

|ρ̃N (t, x)|m + |η̃N (t, x)|m dx

= −(m − 1)
N−1∑
i=0

[d1
i (t)]m(ẋi+1(t) − ẋi (t))

− (m − 1)
N−1∑
j=0

[d2
j (t)]m(ẏ j+1(t) − ẏ j (t))

= −2(m − 1)

N

N−1∑
i=0

[d1
i (t)]m(1 − α(i))

− 2(m − 1)

N

N−1∑
j=0

[d2
j (t)]m(1 − β( j))

(69)

where α, β : N → N are defined by

α(i) = #{k : xi < yk < xi+1}, β( j) = #{k : y j < xk < y j+1}
for i, j = {0, . . . , N − 1}. Clearly, the two maps α and β also depend on time, but we will
omit such dependency for simplicity and assume we are considering the above computation
between two consecutive collisions.
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Our goal is to show d
dt

(‖ρ̃N ‖m
m + ‖η̃N ‖m

m

) ≤ 0, which gives the desired Lm-bound
uniform in time. From the last line of (69) this is true if α(i), β( j) ≤ 1 for all i, j =
{0, . . . , N − 1}. Now, let us rewrite (69) as follows

d

dt

(
‖ρ̃N ‖m

m + ‖η̃N ‖m
m

)
= −2(m − 1)

N

∑
i :α(i)=0

[d1
i (t)]m

+ 2(m − 1)

N

∑
i :α(i)>1

[d1
i (t)]m(α(i) − 1)

− 2(m − 1)

N

∑
j :β( j)=0

[d2
j (t)]m

+ 2(m − 1)

N

∑
j :β( j)>1

[d2
j (t)]m(β( j) − 1)

=: A1 + A2 + A3 + A4.

We notice that, in case α(i) > 1, then there exist exactly α(i) particles of the y-species,
say with indices j̄, j̄ + 1, . . . , j̄ + α(i) − 1, which are posed strictly between xi and xi+1.
For each j ∈ { j̄, j̄ + 1, . . . , j̄ + α(i) − 2} we must have β( j) = 0 since there are no
x-particles between y j and y j+1 for all the intermediate particles y j except the last one with
j = α(i) − 1. Hence, the number α(i) − 1 equals exactly the number of y-particles between
xi and xi+1 characterised by β( j) = 0, and A2 can be re-written as

A2 = 2(m − 1)

N

∑
i :α(i)>1

[d1
i (t)]m(α(i) − 1)

= 2(m − 1)

N

∑
i :α(i)>1

∑
j :β( j)=0

xi <y j <xi+1

[d1
i (t)]m

≤ 2(m − 1)

N

∑
i :α(i)>1

∑
j :β( j)=0

xi <y j <xi+1

[d2
j (t)]m,

where the last inequality is motivated by the fact that for any index i in the sum we have
d1

i (t) ≤ d2
j (t) because y j̄+k − y j̄+k−1 ≤ xi+1 − xi for all k ∈ {1, . . . , α(i) − 2}. Now, we

claim that ∑
i :α(i)>1

∑
j :β( j)=0

xi <y j <xi+1

[d2
j (t)]m =

∑
j :β( j)=0

[d2
j (t)]m . (70)

Indeed, the set of indexes { j : β( j) = 0} can be split into a finite number k of sets I1, . . . , Ik ,
with Ii ∩ I j = ∅ if i 	= j , with each I� made up by h� consecutive elements, say of the
form I� = { j̄, . . . , j̄ + h� − 1}. Without restriction, we can assume that the sets I� are
maximal with respect to those properties, i. e. no union of any such Ii ∪ I j with i 	= j is
made up by consecutive indexes. In such configuration, for each � ∈ {1, . . . , k}we can detect
a unique i ∈ {1, . . . , N } such that xi < y j < xi+1 for all j ∈ { j̄, . . . , j̄ + h� − 1}, and
this implies � = α(i), which proves our previous claim (70). As a consequence of (70), we
immediately get A2 + A3 ≤ 0. Arguing in a similar way we also get A1 + A4 ≤ 0, which
gives d

dt

(‖ρ̃N ‖m
m + ‖η̃N ‖m

m

) ≤ 0 on each time interval between two consecutive collisions,
whence
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‖ρ̃N ‖L∞([0,T ];Lm (R)) + ‖η̃N ‖L∞([0,T ];Lm (R)) ≤ ‖ρ̃N (·, 0)‖Lm (R) + ‖η̃N (·, 0)‖Lm (R).

The last estimate can be extended to the case m = +∞ as we observe

‖ρ̃N (·, t)‖L∞(R) + ‖η̃N (·, t)‖L∞(R) ≤ lim sup
m→+∞

[
‖ρ̃N (·, t)‖Lm (R) + ‖η̃N (·, t)‖Lm (R)

]

≤ lim sup
m→+∞

[
‖ρ̃N (·, 0)‖Lm (R) + ‖η̃N (·, 0)‖Lm (R)

]

≤ lim sup
m→+∞

[
‖ρ̃N (·, 0)‖

m−1
m

L∞(R)
‖ρ̃N (·, 0)‖

1
m
L1(R)

+ ‖η̃N (·, 0)‖
m−1

m
L∞(R)

‖η̃N (·, 0)‖
1
m
L1(R)

]

= ‖ρ̃N (·, 0)‖L∞(R) + ‖η̃N (·, 0)‖L∞(R).

Therefore, due to Proposition 3 with G(r) = rm , the sequences {ρ̃N }N∈N and {η̃N }N∈N are
uniformly bounded in L∞

loc([0,+∞); Lm(R)). By weak compactness, if m < +∞ there
exists a subsequence for each of them converging weakly in Lm

loc([0,∞)×R) to some limits
ρ′, η′ ∈ Lm

loc([0,+∞) × R), respectively. In the case of m = +∞ the above subsequence
converges in the weak-� topology of L∞

loc([0,+∞) × R). In view of Lemma 7, the limits
ρ′ and η′ coincide with ρ and η respectively. The last statement follows by weak lower
semi-continuity of the Lm norm. ��

The above weak compactness can be stretched to the m = 1 case.

Proposition 5 Let us consider ρ0, η0 ∈ P2(R) ∩ L1(R). Then ρ̃N and η̃N converge weakly
(up to a subsequence) in L1

loc([0,+∞) ×R) to ρ and η respectively. Consequently, ρ and η

belong to L∞([0,+∞); L1(R)).

Proof By de la Vallée-Poussin’s Theorem, there exists a non-decreasing, convex function G :
[0,+∞) → [0,+∞) with G(0) = 0 and limr→+∞ G(r)

r = +∞ such that G(ρ0), G(η0) ∈
L1(R). Hence, Proposition 3 implies that both G(ρ̃N

0 ) and G(η̃N
0 ) are uniformly bounded in

L1(R). By repeating the proof of Proposition 4 with G(d j
i ) instead of (d j

i )m with j = 1, 2
and i = 0, . . . , N − 1, we easily get a uniform bound for

‖G(ρ̃N )‖L∞(([0,+∞);L1(R)) + ‖G(η̃N )‖L∞(([0,+∞);L1(R)).

In fact, by using the same notation of Proposition 4 we get

d

dt

∫
R

G(ρ̃N (t)) + G(η̃N (t)) dx

= d

dt

N−1∑
i=0

G(d1
i (t))(xi+1(t) − xi (t)) + d

dt

N−1∑
j=0

G(d2
j (t))(y j+1(t) − y j (t))

= − 2

N

N−1∑
i=0

G ′(d1
i (t))d1

i (t)(1 − α(i)) + 2

N

N−1∑
i=0

G(d1
i (t))(1 − α(i))

− 2

N

N−1∑
j=0

G ′(d2
j (t))d

2
j (t)(1 − β( j)) + 2

N

N−1∑
j=0

G(d2
j (t))(1 − β( j))

= − 2

N

N−1∑
i=0

[G ′(d1
i (t))d1

i (t) − G(d1
i (t))](1 − α(i))
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− 2

N

N−1∑
j=0

[G ′(d2
j (t))d

2
j (t) − G(d2

j (t))](1 − β( j)).

As mentioned above we can argue as in the proof of Proposition 4 since G is convex, hence
the function x ∈ (0,+∞) �→ G ′(x)x − G(x) is non-decreasing. Therefore, by the de la
Vallée-Poussin’s theorem, we may infer the equi-integrability of the sequences ρ̃N and η̃N ,
and thus, by an application of the Dunford-Pettis theorem the two sequences are weakly
compact in L1

loc([0,+∞) × R). Hence, Lemma 7 implies that the limits ρ′ and η′ coincide
with ρ and η respectively. The last statement follows by weak lower semi-continuity of the
L1 norm. ��

The following technical lemma will be useful in the proof of our main result.

Lemma 8 For all N ∈ N, let

F̃ N (x, t) =
∫ x

−∞
ρ̃N (y, t)dy , H̃ N (x, t) =

∫ x

−∞
η̃N (y, t)dy.

Then, the two families {F̃ N }N∈N and {H̃ N }N∈N are strongly compact in L1
loc(R×[0,+∞)).

Proof Since both ρ̃N (·, t) and η̃N (·, t) have unit mass for all t ≥ 0, we immediately get

sup
t≥0

[
‖F̃ N (·, t)‖L∞(R) + ‖H̃ N (·, t)‖L∞(R)

]
< +∞. (71)

Moreover, from the proof of Proposition 5 we easily obtain

sup
t≥0

[
‖G(F̃ N

x (t, ·))‖L1(R) + ‖G(H̃ N
x (t, ·))‖L1(R)

]
< +∞, (72)

whereG is a function as in the statement of Proposition 3, the existence ofwhich is guaranteed
by de la Vallée-Poussin’s Theorem. Now, in order to estimate the oscillations in time, we aim
at proving some uniform equi-continuity in time of the curve t �→ (ρ̃N (·, t), η̃N (·, t)) in the
1-Wasserstein distance. To perform this task, for 0 ≤ s < t we recall, from the the content
of Sect. 2, that

W1(ρ̃
N (t), ρ̃N (s)) = ‖X̃ N (·, t) − X̃ N (·, s)‖L1([0,1]),

where X̃ N : [0, 1] × [0,+∞) → R is the pseudo-inverse with respect to the x-variable of
cumulative distribution F̃ N defined above. A simple computation yields

X̃ N (z, t) = X ρ̃N (z, t) =
N−2∑
i=0

[
xi (t) + 1

d1
i (t)

(
z − i

N

)]
χ[ i

N , i+1
N )

(z)

+
[

xN−1(t) + 1

d1
N−1(t)

(
z − N − 1

N

)]
χ[ N−1

N ,1](z).

Hence,

‖X̃ N (·, t) − X̃ N (·, s)‖L1([0,1])

≤
N−1∑
i=0

∫ (i+1)/N

i/N

[
|xi (t) − xi (s)| + N (|xi+1(t) − xi+1(s)| + |xi (t) − xi (s)|)

(
z − i

N

)]
dz.
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Similarly to the proof of Lemma 7, Proposition 2 implies there exists a constant C ≥ 0
independent of N such that

‖X̃ N (·, t) − X̃ N (·, s)‖L1([0,1]) ≤ C

N

N−1∑
i=0

|t − s| = C |t − s|.

Consequently, we obtain

‖F̃ N (·, t) − F̃ N (·, s)‖L1(R) ≤ C |t − s|, (73)

and a similar estimate can be also deduced for H̃ N (·, t). Combining estimates (71), (72),
and (73), for every compact subset K ⊂ R we obtain that F̃ N is an equi-continuous family
of absolutely continuous curves with values on a bounded and compact subset of L1(K ),
where we are also using Dunford-Pettis Theorem. ByArzelà-Ascoli Theorem, ρ̃N is strongly
compact in L1([0, T ] × K ) and the same holds for η̃N , which proves the assertion. ��

We are now ready to prove the main result of this section.

Theorem 5 Let m ∈ [1,+∞] and (ρ0, η0) ∈ (Pa
2 (R)∩Lm(R))2 with compact support. Then,

the piecewise constant particle approximation (ρ̃N , η̃N ) converges, up to a subsequence,
weakly in Lm

loc([0,+∞) × R)2 to the unique weak measure solution (ρ, η) to system (5)
according to Definition 1 with initial datum (ρ0, η0). The empirical measure approximation
(ρN , ηN ) converges, up to a subsequence, towards the same limit in C([0,+∞) ; Pp(R)2).

Proof Our goal is to show that the limit pair (ρ, η) satisfies (16).We shall prove the statement
for the first equation in (16), the second one being done in the same vein. We start by proving
that the approximating measure (ρN , ηN ) almost satisfies the first equation in (16), up to
removing the diagonal x = y to avoid the discontinuity of the sign-function. Let T ≥ 0 be a
fixed time and let ϕ ∈ C1

c ([0, T ) × R). We have:

∫ T

0

∫
R

ϕt (x, t)dρN (t)(x)dt +
∫
R

ϕ(x, 0)dρN
0 (x)

+
∫ T

0

∫∫
R×R\{x=y}

ϕx (x, t)sign(x − y)dρN (t)(y)dρN (t)(x)dt

−
∫ T

0

∫∫
R×R\{x=y}

ϕx (x, t)sign(x − y)dηN (t)(y)dρN (t)(x)dt

= 1

N

N∑
i=1

∫ T

0
ϕt (xi (t), t)dt + 1

N

N∑
i=1

ϕ(x̄i , 0)

+ 1

N 2

∫ T

0

N∑
i=1

N∑
j=1

xi 	=x j

sign(xi (t) − x j (t))ϕx (xi (t), t)dt

− 1

N 2

∫ T

0

N∑
i=1

N∑
j=1

xi 	=y j

sign(xi (t) − y j (t))ϕx (xi (t), t)dt .

(74)

123



68 Page 38 of 44 M. Di Francesco et al.

Applying the chain rule in the first term and the assumption on the support of ϕ imply

1

N

N∑
i=1

∫ T

0
ϕt (xi (t), t)dt + 1

N

N∑
i=1

ϕ(x̄i , 0) = − 1

N

N∑
i=1

∫ T

0
ẋi (t)ϕx (xi (t), t)dt .

We remind the reader that particles of the same species never collide and we observe that, as
a consequence of Sect. 4.5, only a finite number of collisions between particles of the two
species occurs in the time interval [0, T ). Hence, since the particles xi satisfy (6) away from
the collision times, the right hand side of (74) equals zero. In order to conclude the proof,
we need to show that the left-hand side of (74) tends to

∫ T

0

∫
R

ϕt (x, t)ρ(x, t)dxdt +
∫
R

ϕ(x, 0)ρ0(x)dx

+
∫ T

0

∫∫
R×R

ϕx (x, t)sign(x − y)ρ(y, t)ρ(x, t)dydxdt

−
∫ T

0

∫∫
R×R

ϕx (x, t)sign(x − y)η(y, t)ρ(x, t)dydxdt,

as N → +∞. The proof would be completed in this case as ρ(·, t) and η(·, t) being in
L1(R) at each time will make sure the diagonal terms in the above integrals do not bring any
contribution.

First, the weak measure convergence of ρN to ρ and of ρN
0 to ρ0 easily implies

∫ T

0

∫
R

ϕt (x, t)dρN (t)(x)dt +
∫
R

ϕ(x, 0)dρN
0 (x)

→
∫ T

0

∫
R

ϕt (x, t)ρ(x, t)dxdt +
∫
R

ϕ(x, 0)ρ0(x)dx .

Hence, in order to conclude we only need to prove that in the N → +∞ limit we have

1

N 2

N∑
i=1

N∑
j=1

xi 	=x j

∫ T

0
sign(xi (t) − x j (t))ϕx (xi (t), t)dt

− 1

N 2

N∑
i=1

N∑
j=1

xi 	=y j

∫ T

0
sign(xi (t) − y j (t))ϕx (xi (t), t)dt

−→
∫ T

0

∫∫
R×R

ϕx (x, t)ρ(x, t)ρ(y, t)sign(x − y)dxdydt

−
∫ T

0

∫∫
R×R

ϕx (x, t)sign(x − y)η(y, t)ρ(x, t)dydxdt .
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The following holds:

1

N 2

N∑
i=1

N∑
j=1

xi 	=x j

∫ T

0
sign(xi (t) − x j (t))ϕx (xi (t), t)dt

− 1

N 2

N∑
i=1

N∑
j=1

xi 	=y j

∫ T

0
sign(xi (t) − y j (t))ϕx (xi (t), t)dt

= 1

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

⎧⎪⎪⎨
⎪⎪⎩

1

N

N∑
j=1

xi 	=x j

sign(xi (t) − x j (t)) − 1

N

N∑
j=1

xi 	=y j

sign(xi (t) − y j (t))

⎫⎪⎪⎬
⎪⎪⎭

dt .

(75)

Let us focus on the terms in the parentheses. We have

1

N

N∑
j=1

xi 	=x j

sign(xi (t) − x j (t)) − 1

N

N∑
j=1

xi 	=y j

sign(xi (t) − y j (t))

= ρN ((−∞, xi (t))) − ρN ((xi (t),∞)) − ηN ((−∞, xi (t))) + ηN ((xi (t),∞)).

It is now an easy consequence of the definition of the cumulative distribution functions,

F N (x, t) = ρN ((−∞, x]) and H N (x, t) = ηN ((−∞, x]),
that

1

N

N∑
j=1

xi 	=x j

sign(xi (t) − x j (t)) − 1

N

N∑
j=1

xi 	=y j

sign(xi (t) − y j (t))

= ρN ((−∞, xi (t))) − ρN ((xi (t),∞)) − ηN ((−∞, xi (t))) + ηN ((xi (t),∞))

= 2F N (xi (t)) − 1 − ρN ({xi (t)}) − (2H N (xi (t)) − 1 − ηN ({xi (t)}))
= 2(F N (xi (t)) − H N (xi (t))) − ρN ({xi (t)}) + ηN ({xi (t)})
= 2(F N (xi (t)) − H N (xi (t))) − 1/N + ηN ({xi (t)}).

(76)

Substituting Eq. (76) into Eq. (75), we obtain

1

N 2

N∑
i=1

N∑
j=1

xi 	=x j

∫ T

0
sign(xi (t) − x j (t))ϕx (xi (t), t)dt

− 1

N 2

N∑
i=1

N∑
j=1

xi 	=y j

∫ T

0
sign(xi (t) − y j (t))ϕx (xi (t), t)dt

= 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

[
F N (xi (t), t) − H N (xi (t), t)

]
dt
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+ 1

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

(
ηN ({xi (t)}) − 1

N

)
dt

= 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

[
F N (xi (t), t) − H N (xi (t), t)

]
dt + O(1/N ),

since ηN ({xi (t)}) can only be either 0 or 1/N , and in the former case it holds
∣∣∣∣∣−

1

N 2

N∑
i=1

∫ T

0
ϕx (xi (t), t) dt

∣∣∣∣∣ ≤ T

N
‖ϕ‖L∞ .

Now, denoting F̃ N and H̃ N as in Lemma 8, we get

2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)F N (xi (t), t)dt

= 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

(
F N (xi (t), t) − F̃ N (xi (t), t)

)
dt

+ 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)F̃ N (xi (t), t)dt

= 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)F̃ N (xi (t), t)dt,

and

2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)H N (xi (t), t)dt

= 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

(
H N (xi (t), t) − H̃ N (xi (t), t)

)
dt

+ 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)H̃ N (xi (t), t)dt .

Since
∣∣∣∣∣
2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)

(
H N (xi (t), t) − H̃ N (xi (t), t)

)
dt

∣∣∣∣∣

≤ ‖ϕx‖L∞
2

N

N∑
i=1

∫ T

0

∣∣∣(H N (xi (t), t) − H̃ N (xi (t), t)
∣∣∣ dt ≤ C(T )

N
‖ϕx‖L∞ ,

we easily obtain

1

N 2

N∑
i=1

N∑
j=1

∫ T

0
sign(xi (t) − x j (t))ϕx (xi (t), t)dt
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− 1

N 2

N∑
i=1

N∑
j=1

xi 	=y j

∫ T

0
sign(xi (t) − y j (t))ϕx (xi (t), t)dt

= 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)F̃ N (xi (t), t)dt

− 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)H̃ N (xi (t), t)dt + O(1/N ),

as N → +∞. We now compute

2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)F̃ N (xi (t), t)dt − 2

N

N∑
i=1

∫ T

0
ϕx (xi (t), t)H̃ N (xi (t), t)dt

= 2
N∑

i=1

∫ T

0

∫ xi (t)

xi−1(t)

1

N (xi (t) − xi−1(t))
ϕx (xi (t), t)F̃ N (xi (t), t) dx dt

− 2
N∑

i=1

∫ T

0

∫ xi (t)

xi−1(t)

1

N (xi (t) − xi−1(t))
ϕx (xi (t), t)H̃ N (xi (t), t) dx dt

= 2
∫ T

0

∫
R

ρ̃N (x, t)ϕx (x, t)F̃ N (x, t) dx dt

− 2
∫ T

0

∫
R

ρ̃N (x, t)ϕx (x, t)H̃ N (x, t) dx dt + R(N , T ),

with

|R(N , T )| ≤ 2
N∑

i=1

∫ T

0

∫ xi (t)

xi−1(t)

1

N (xi (t) − xi−1(t))
|ϕx (xi (t), t) − ϕx (x, t)| F̃ N (xi (t), t)dxdt

+ 2
N∑

i=1

∫ T

0

∫ xi (t)

xi−1(t)

1

N (xi (t) − xi−1(t))
|ϕx (x, t)|

∣∣∣F̃ N (xi (t), t) − F̃ N (x, t)
∣∣∣ dxdt

+ 2
N∑

i=1

∫ T

0

∫ xi (t)

xi−1(t)

1

N (xi (t) − xi−1(t))
|ϕx (xi (t), t) − ϕx (x, t)| H̃ N (xi (t), t)dxdt

+ 2
N∑

i=1

∫ T

0

∫ xi (t)

xi−1(t)

1

N (xi (t) − xi−1(t))
|ϕx (x, t)|

∣∣∣H̃ N (xi (t), t) − H̃ N (x, t)
∣∣∣ dxdt

≤ 2

N
‖ϕxx‖L∞

N∑
i=1

∫ T

0
(xi (t) − xi−1(t))dt + 4T

N
‖ϕx‖L∞ ≤ C

N
,
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for some constant C ≥ 0 depending on the support of the initial datum ρ0, on T , and on the
test function ϕ. Combining the above estimates we obtain

1

N 2

N∑
i=1

N∑
j=1

∫ T

0
sign(xi (t) − x j (t))ϕx (xi (t), t)dt

− 1

N 2

N∑
i=1

N∑
j=1

xi 	=y j

∫ T

0
sign(xi (t) − y j (t))ϕx (xi (t), t)dt

= 2
∫ T

0

∫
R

ρ̃N (x, t)ϕx (x, t)F̃ N (x, t) dx dt

− 2
∫ T

0

∫
R

ρ̃N (x, t)ϕx (x, t)H̃ N (x, t) dx dt + O(1/N )

=
∫ T

0

∫∫
R×R

sign(x − y)ϕx (x, t)ρ̃N (y, t)ρ̃N (x, t) dy dx dt

−
∫ T

0

∫∫
R×R

sign(x − y)ϕx (x, t)η̃N (y, t)ρ̃N (x, t) dy dx dt + O(1/N )

(77)

as N → +∞. Now, since ρ̃N and η̃N are weakly compact in L1
loc([0, T ] × R) according to

Proposition 5, then so are the product measure ρ̃N (·, t) ⊗ ρ̃N (·, t) and ρ̃N (·, t) ⊗ η̃N (·, t)
on [0, T ] × R × R. Hence, we can pass to the limit in the last term of (77) and obtain the
desired assertion. It is straightforward to extend the result to an Lm

loc-setting since we can
readily apply Proposition 4 to infer weak Lm-compactness. ��

Remark 10 As pointed out in the introduction, our results allows to establish a rigorous link
between a discrete model such as (6) and the continuum system of PDEs (5). A similar
result is proven in [21] for a general interaction kernel, possibly with logarithmic repulsive
singularity, by regularising the interaction potential V in the discrete setting by Vδn having
second derivative bounded in L∞ by λn := ‖D2Vδn ‖L∞ . However, the result requires, see
Theorem 3.3 and Remark 3.4 of [21], for a general initial condition in L1 log L1, that

e3T λδN N−1 → 0

an N → +∞. By smoothing our interaction potential V (x) = −|x | on an interval [−δN , δN ]
we obtain the necessary condition that δN must be tending to zero slower than 3T

log N as
N → +∞. For a simple initial condition ρ0(x) = 1[0,1] this implies that a considerable
portion of interactions are artificially “damped” in the discrete model. Indeed, since any two
consecutive particles have a distance of order 1/N in the case of the above initial condition,
the regularisation by Vδn impacts on the interaction of each particle with a number of particles
of order N

log N . Our approach on the other hand allows, in the one-dimensional case and with
V (x) = −|x |, to avoid any regularisation in the discrete setting.
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