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Abstract
We study the Schrodinger—Poisson system:

—Au+u+rpu=a ) |uP?u inR3,
—A¢p = u? in R3,

where parameter A > 0,2 < p < 3 and a (x) is a positive continuous function in R>.
Assuming that a (x) > lim|y|— 0 @ (X) = @ > 0 and other suitable conditions, we explore
the energy functional corresponding to the system which is bounded below on H' (R3) and

2/(p—2)
Ap) ]

the existence and multiplicity of positive (ground state) solutions for [Taoo

<

2/(p=2)
A< [%m] , where A (p) = 2(6=p)/2 (3 - p)3—p (p— 2)(p—2) and a, < aj <
Omax = SUP,cg3 a (x). More importantly, when a (x) = a (|x|) and a (0) = amax, we
establish the existence of non-radial ground state solutions.

Mathematics Subject Classification 35J20 - 35J61 - 35A01 - 35B40

1 Introduction
Our starting point is the Schrodinger—Poisson systems (SP systems for short):

—Au+u+px)pu=ax) |uP?u inR3,
{ (575.)

—A¢ = p (x) u? in R3.

Such systems, also called Schrodinger-Maxwell equations, can be used to describe the
interaction of a charged particle with the electrostatic field in quantum mechanics, where the
unknowns u and ¢ represent the wave functions associated with the particle and the electric
potentials, respectively, and p : R> — R7 is a measurable function representing a ‘charge’
corrector to the density u? . The nonlinearity a (x) |u|? 2y represents the interaction effect
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among many particles. For more details on the physical background, we refer the readers to
[5,23].

It is easily seen that system (SP, ;) can be transformed into a nonlinear Schrodinger
equation with a non-local term, when p € L (R3) U L* (R?) (see [1,23]). Briefly, the
Poisson equation can be solved by using the Lax—Milgram theorem. For all u € H'(R?), the
unique ¢, € D'2(R?) is given by

2
1 / px)u (y)dy, (.1
R3

¢u(x):E x— |

such that —A¢ = p(x)u? and substituting it into the first equation of system (SPy.q), gives
—Au+4u+p &) pyu=a ) |u?2u inR5. (Ep,a)

Such equation is variational and its solutions are critical points of the corresponding energy
functional J, , : H'(R3) - R defined as

1 1 1
Tpa ) = E/M (IVul* + u?) dx + Z/M,o(;c)<;z>,,btzczgc - ;/Ma(x) lul? dx.

Note that (u, ¢) € H'(R3) x D2(R3) is a solution of system (SPp,a) if and only if u is a
critical point of J, , and ¢ = ¢,,. The pair (u, ¢) is called a ground state solution of system
(SPy.q), provided u is a solution of Equation (E, ;) which has the ground state among all
nontrivial solutions of Equation (E, ;).

In recent years and in view of this, there has been much attention paid to the SP systems
on the existence of positive solutions, nodal solutions, radial solutions and semiclassical
states under variant assumptions on p and a via variational methods. We refer the readers
to [1-3,9,10,12,16,21,23-25,27-30,33,34] and the references therein. More precisely, Ruiz
[23] studied a class of autonomous SP systems, namely, system (SP, ,) with p(x) =1 > 0
and a (x) = 1. With the help of Strauss inequality in the space of radial functions Hr]
[26], the author proved that the functional J; ; is bounded below, inf, H) Ji1 () <0and

satisfies the (PS) condition on Hrl for 2 < p < 3, when J;, 1 = J, 4. For that reason,
two positive radial solutions are found for A > 0 sufficiently small using mountain pass
theorem and the global minimizing theory, and u = 0 is the unique solution for A > 1/4.
Moreover, by introducing Nehari—-Pohozaev manifold, for all A > 0, one positive radial
solution is found when 3 < p < 6. The corresponding results have been further improved
by Azzollini-Pomponio [3] and Zhao—Zhao [34] by proving the existence of ground state
solution (possibly non-radial) when A = 1 and 3 < p < 6. Their proofs are both based on
Nehari—Pohozaev manifold by Ruiz.

Cerami-Varia [9] dealt with a class of non-autonomous SP systems without any symmetry
assumptions, i.e., system (SP, ;) with4 < p < 6. By establishing a compactness lemma
and using the Nehari manifold method, when the functions p and a satisfy some proper
assumptions, the existence of ground state and bound state solutions was presented. However,
for the case of 2 < p < 4, we notice that the (PS) condition on H'(R?) is still unsolved
and that the functional J, , is not bounded below on both Nehari manifold (2 < p < 4) and
Nehari—Pohozaev manifold (2 < p < 3) for | pllo, sufficiently small. As a consequence,
the standard analysis in variational methods does not work. In [29], the authors proposed
a novel constraint approach to study the existence of positive solutions (including ground
state solutions) for 2 < p < 4 and ||p||o, sufficiently small filling in the gap in [9] while

emphasizing the existence of ground state solutions of system (S Pp,a) for3.1813 = % <
p < 4. Again, we refer the interested readers to [28,29] for further applications on this
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approach. In an interesting paper recently, Mercuri and Tyler [21], have shown the existence
of ground state solutions of system (S Pp,a) for3 < p < 4, assuming a(x) = 1 with different
assumptions on p at infinity (coercive or non-coercive).

In the present paper, we focus our attention on the symmetry, existence and multiplicity
of positive (ground state) solutions for a class of Schro dinger—Poisson systems:

= —Au+4u+rpu=ax)|u’?u inR3,

—AG = u? in R3, (SPr.a)

where parameter A > 0,2 < p < 3 and a (x) is a positive continuous function in R3
satisfying the following assumption:

(D1) a (x) = lim|y|» 00 a (X) = aoo > 0 uniformly on R3.

As mentioned introduced earlier, system (S P; ,) can be transformed into the following
nonlinear Schrodinger equation with a non-local term:

—Au4u+rpyu=a ) |ulP?u inR3, (Ex,a)

and the corresponding energy functional J; , : H I(R3) — R is defined as
1 A 1
Jra (u) = 7/‘ (|Vu|2 +u2) dx + f/ buuldx — —/ a(x)|ul? dx.
’ 2 R3 4 R3 P JR3
Furthermore, one can see that J; 4 isa C ! functional with the derivative given by
(I o), @) = f3 (VuVe + up + Apuup — a (x) [ul?ug) dx
R

forallp € H'! (R3) with J}i ., denoting the Fréchet derivative of J;, 4.
Then we can deduce the conclusions in [23,24,29] that when 2 < p < 3 and the weight
function a (x) satisfies condition (D1), several results are obtained as follows.

(i) The functional Jj , is not bounded below on H 1(R3), Nehari manifold and Nehari—
Pohozaev manifold for A > 0 sufficient small.

(i7) There exists Ag > 0 such that inf, ¢ 1 g3y Ji.a (1) > O for all & > 4.

(iii) Whena (x) = 1, system (S Pk,a) has at least two positive radial solutions for A > 0
sufficiently small.

Motivated by the facts mentioned above and the main results in [21], we propose to
study the existence and symmetry of ground state solutions to system (S PA,g) in the various
functional settings corresponding to different hypotheses on parameter A and weight function
a. The following are the two main objectives of this paper.

(I) When 2 < p < 3 and the weight function a satisfies some suitable assumptions, we
show that there exist two positive numbers A; (p, a) and A2 (p, a) such that for every
A1 (p,a) < A < Az (p,a), functional J , is coercive and bounded below on H'(R3)
and inf, ¢ g1 r3) Jr.a () < 0. It follows that system (SPyq) has at least two positive
solutions including a ground state solution.

(I1) When 2 < p < 3 and the weight function a (x) = a (|x|), we show that there is a
non-radial ground state solution in system (SP; 4) -

To our knowledge, the available literature does not contain any results on the existence
of non-radial ground state solutions to system (S P,\,a) when 2 < p < 3. Before presenting
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our main results, we first recall a known conclusion (cf. [17]). Let w,,,,, be the unique radial
positive solution of the following nonlinear Schré dinger equation

—Au+ U = amax |u|P2u in R3. (E(?f’amax)
Clearly,
2
2 S[]; p—2
ol = [ amas uol? dx = () (12)
R3 Amax

‘We now summarize our main results in the theorems below.

Theorem 1.1 Suppose that 2 < p < 3 and condition (D1) holds. In addition, we assume
that
(D2) there exists Ao < a1 < Amax ‘= MaX, g3 a (x) such that

» (r=2)/2
2A(p) S, 4—p

2 <2
@G=p" \2(p-2)58}s

Amax > ai,

where A (p) = 206-p)/2 (3 — p)3_’7 (p— 2)”—2 , and S, and S are the best constants for
the embeddings of H'(R3) in L™ (R?) and D'-2(R3) in LO(R?), respectively, for2 <r < 6;

A)S? a (r-2/2
(D3) [3 @ (X) [Wayy where ko 1= L ( p a.

Py Ko
x > . L
=\ 2p-257st,)

Then for each

P
28}

p
wamax H 1

ai

)

2/(p-2) 2/(p=2)
[A(p)aoo} << [A(p) ]

2)

and uy, such that

Equation (Ey ) has two positive solutions uil)

,a
2 1
W (uf\)a) <0< Jra (uﬁi) .
Furthermore, uf\zl is a ground state solution of Equation (E), ).

To study the symmetry breaking of ground state solutions, we consider the following
equation:

—Au 4 u + Apyu = ag (x) [ulP">u inR3, (E;\,ag)
where a. (x) = a (¢x) and ¢ > 0. Then we have the following results.

Theorem 1.2 Suppose that 2 < p < 3 and conditions (D1) — (D2) hold. In addition, we
assume that

(D4)a (x) =a (|x]) forall x R3 and a (0) = amax.

Then for each

ap

)

2/(p=2) 2/(p=2)
[A(p)aoo] << [A(p) ]

Equation (Ej 4,) has three positive solutions u&llg, uflﬁ e H! (R3) and vy 4, € Hr1 such
that

2 1
J}\,as (”R,Lg) < Jl,ae (U)has) < 0 < J)L-“e (u;,ilg)
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for ¢ sufficiently small. Furthermore, u&zls is a non-radial ground state solution of Equation
(E)n,ag ) .

Corollary 1.3 Suppose that 2 < p < 3 and conditions (D1) — (D2) hold. In addition, we
assume that

(D4/) a (x) = a (|x|) for all x € R? and a (r) is non-increasing for r > 0.

Then for each

00 <A< s

A(p) 2/(p=2)
4

|:A (») ]2/(17—2)
P
p

Equation (Ej 4,) has a non-radial ground state solution for ¢ sufficiently small.

Remark 1.4 (i) Suppose that2 < p < 3 and conditions (D1) — (D2) hold. Let w,,,, be the
unique radial positive solution of Equation (E§°, ) and let a (xg) = amax for some xg € R3.

Define wg (x) = Wy, (x - —) Then it follows from condition (D2) and (1.2) with apax >

2 A(p) 2/(p—2) A(p) 2/(p—2)
k0 > K() for 2 < p < 3 that for every [ oo] <A< [Tal] , We
have

/ ag (x) |lwe|? dx = / a(ex + xo) wh, . (x)dx
R3 R3

a
= B [ +0 @)
P
PKo P .
> — |lw = w , for ¢ sufficiently small. (1.3
2S[1; H amax || g1 ZSP || a—"” y (1.3)

This implies that when a (x) is replaced by a (ex + xo) , the condition (D3) holds for ¢
sufficiently small. Therefore, by Theorem 1.1, Equation (E} ,,) has two positive solutions

uf\]L ,ugzl € H' (R?) such that
Jr.a, (uf\zzlg) <0<y (”;L ) for ¢ sufficiently small.

(ii) Assume that the conditions hold in Theorem 1.2. Since a (x) = a (|x|) and a (0) = amax,
using an argument similar to that in part (i) , we can obtain

/ ae (x) |Wapy |”
R3

since xg = 0. This means that the symmetric case still holds in Theorem 1.1 implying that
Equation (E) 4, ) has two radial positive solutions vy 4., V.4, € H ! (]R3) such that

dx > —; || Wapa Hl for ¢ sufficiently small,
2Sp

Jroar (Via,) <0 < Jy (Vrq,) for e sufficiently small.

(iii) We mainly use energy comparison and constrained minimization to obtain the asymme-

(2) a )

1n Theorem 1.2, these, however, cannot be applied to u;, , , so we cannot confirm

the symmetry of the solution ui 21 at present.

try of u;

Remark 1.5 Under the assumption that A # 0, Equation (E;, 4, ) can be regarded as a pertur-
bation problem of the following nonlinear Schrodinger equation:

—Au+u=a(ex)ulP?u in R3,
(EO,ag)

ueH! (]R3).
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When a (x) = a (|x|) and a (r) is non-increasing for r > 0, by [14,15,18], it is known that
every positive solution of Equation (Eo,ag) is radially symmetric for all & > 0. Therefore,
by Corollary 1.3, we conclude that under the appropriate effect of non-local term, non-radial
positive (ground state) solution can be obtained.

The paper is organized as follows. In Sect. 2, we provide some preliminaries and prove
that the energy functional Jj, , is coercive and bounded below in H 1(R3). Moreover, by using
the filtration of the Nehari manifold:

M, o(c)={ueM,,: )y <c}

where M, , is the Nehari manifold and c is the energy level of the functional Jj ,, we show
that there is an appropriate energy level co > 0 such that M ,(co) can be divided into two

submanifolds Mf\li and Mf\%;, in which each local minimizer of the functional J, restricted
on Mf\i’)a (i = 1,2) is a critical point of J, , in H L(R3). In Sect. 3, we prove that these

submanifolds My)a are non-empty and inf ) Ja,a () < 0. 1In Sect. 4, we show that the

2
“EMAT

Palais-Smale condition of J; , on submanifolds Mi"’)ﬂ holds and subsequently, we provide
the proof for Theorem 1.1. Finally, Sect. 5 is dedicated to the proof of Theorem 1.2.

2 Preliminaries
First, we define the Nehari manifold as follows.
M. o = {u € H'®R)\{0}: (J] , (), u)=0}.

Then, u € M,_, if and only if ||u||%{] + A fps duuldx — Jg3 a (x) [u|Pdx = 0. Using the
Sobolev inequality, we have

2 2 2
hal2,y < lul?, +A/ puudx =f a (o) Jul? dx
R3 R3
=< Sp_pamax ”u”ZI

for allu € M;,_,. Subsequently,

max

P 2/(p=2)
/ a () ul?dx > lul7, = ( L ) forall u € M, 4. .1
R3

The Nehari manifold M, , is closely linked to the behavior of the function of the form
hyu:t — Jyq (tu) for t > 0. Such maps are known as fibering maps and were introduced
by Drabek—Pohozaev [11], and further discussed by Brown—Zhang [8] and Brown—Wu [6,7]
and others. For u € HY(R?), we find

2 4
t At t?
@) = 5t + 2 [ o= [ acoran,
2 4 Jr3 p Jr3
R (1) =13, +M3/ ¢uu2dx—t"*1/ a (x)ul” dx,
R3 R3

o ® = Wl + 332 [ guidx=p =002 [ ahuax.
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As a direct consequence, we have
) (1) = s + fo3 B (11 dx — /R a () lrul? dx

andso,u € H'(R*\{0}and? > 0, 1}, , (t) = Oholdsifand only if ru € M;,_,.In particular,
hj\’u (1) = 0 holds if and only if u € Mx,a. It becomes natural to split M, , into three parts
corresponding to the local minima, local maxima and points of inflection. Following [31],
we define

M, ={ueMy,:h),(1)>0}
M), = {ueMq:h], (1) =0}
M, , ={ueM,: K‘M (1) < 0}.
Lemma 2.1 Suppose that ug is a local minimizer for Jy ., on M, , and uy ¢ nga. Then

T 4 (o) = 0in H-'(RY).

Proof The proof of Lemma 2.1 is essentially the same as that in Brown—Zhang [8, Theorem
2.3] (or see Binding—Drabek—Huang [4]), so omitted it here. O

For each u € M, ,, we find that

7o) = lul, +3x/ pudx — (p — 1)/ a () lul? dx
R3 R3
=~ (=2 Il + A - p) /R pudx 22)
— 2l + G- p) [ alupar. 0.3

Foreachu € M}:a’ using (2.1) and (2.3) gives

p—2

1 4—p
Tra(w) = 7 lulfy = T/Rs“ (x) [u|? dx > [T

2/(p=2)
_ 4
> p=2(Sp )
4p Amax

Hence, we obtain the following result.

Lemma 2.2 The energy functional J, q is coercive and bounded below on M;_,. Further-
more,

2/(p-2)

—2( s?

Ja) > £ forallu e Mj_,.
4p Amax ’

The function ¢, defined in (1.1) for p = 1 possesses the following properties (see [3,23]).
Lemma 2.3 For each u € H'(R?), the following two inequalities are true.
(i) ¢u = 05

.. <2 o—
(i) fps putPdx < S Sp)slull}y-
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Lemma 2.4 Suppose that2 < p <3 and X,d > 0. Let f) 4 (s) = % + \/% — %s”_z for

1/3-p)
s > 0. Then there existd;, , ‘= %p))\(p%)ﬂ and sy p (d) := @\/g]

@) fa ($5.p (@) = 0 and Jod, (51.p (dr.p)) = 0;

(ii) for each d > d,, p there exist ng, &g > 0 such that ng < s;,p (d) < &g and fj.q(s) <0
foralls € (na,§a);

(iii) foreach 0 < d < dy p, fi.,a (s) > 0 foralls > 0.

satisfying

Proof By a straightforward calculation, we can show that the results are true. O

Following the idea of Lions [19] (or see [23]), we have

) 3 ) )
<5 | lulPdx 5 | (=Ag) luldx =/< | (Vu, V|ul)dx
8 R3 8 R3 8 R3

1 2 A 2

- [Vul“dx + = IV, |~ dx

4 R3 8 R3

1 2 A 2 13
- [Vuldx + - ¢yu-dx forallu € H (R”), 2.4)
4 R3 8 R3

this implies that

J, >1 2+ % ‘/A s_1 Pld * 24
a(lt) > leuHH1 - i + §|”| — a(x) |ut] x+§ R}dmu X
—1||M||2 + |M| *a(x)lulp ?) dx
4 H! {a(x) ,,;L(p( 2)/2
+/ ,/ Iul—fa(x)lulp ?)dx
{a(x)< pe I8 2)/2 <

A
f/ buu 2dx. 2.5)
8 R3
Then by Lemma 2.4 and (2.5), for each
A 2/(p=2) A 2/(p=2)
[ (p)aoo] <r< [ (p)al]

)

p p
we have

J > 1 2 p—2

na(t) = 1 el + =22 2)/2 |u| a(x) [ue]
{a(x) A

1 2
= o lul + | M () d, (2.6)

{a(x)> AP }

where m; (x) = inf>¢ (%sz + \/§s3 — %a (x) s1’> < Oforallx € {a (x) > PAX’(;Z;/z } .
Note that

inf 1o A3 _1 P
n o my (x) < Sip (@max) + 8s}"’p (@max) amaxs), p (amax) <0,
XG{U(X)>IJ)V(:(_1)))/ ] P
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and

0> /[a(x)> pP-212 ] m. (x) dx =

Alp)

inf m;, (x),

A(p—2)/2
. 28
zela(x)> A ]

pAP=D/2 }
A(p)

{a (x) >

2.7
) /(3=p)
where s;. p (@max) = [% %] . Furthermore, the following results are true.

Theorem 2.5 Suppose that 2 < p < 3 and conditions (D1) — (D2) hold. Then for each

2/(p=2) 2/(p-2)
[%am] <A< [%al] , J.a 1s coercive and bounded below on HI(R3).

Furthermore,

inf  Jy a(u) > / my, (x)dx > —o0.
weH @) [awﬂ“ﬁ@?ﬂ}

Proof Since

’

A 2/(p—2) A 2/(p-2)
(p)aoo] <k§[ (p)al]

0 <as < P -2 < aj < amay for all |:
A p p

(r)
by conditions (D1) and (D2), we conclude that

pAP=2/2
0<|ja(x) > — | < o0. (2.8)
A(p)
Thus, by (2.6)—(2.8),
0>/ my (x)dx > —o0

{a(X)> p)h(:(_pz))/z }
and

1 2

Jra) = ¢ Il + /{a<x)>m<”)/2 | 4
A(p)

This completes the proof. O

A(p) 2/(p-2) L.
Lemma 2.6 Suppose that2 < p < 3. Let A > [Taoo] and let uy be a non-trivial

solution of the following equation:
—Au A+ U+ Ay = ace P2 u in R3. (Eran)
Then Jy, 4., (uy) > 0, where Jy 4., = Ji,a for a = axo.

Proof By Lemma 2.4 and (2.4)—(2.5),

1
Jx,awm)zzuuni,l ( \f|u| faoo|u|1’ 2)

> Oforallu e H (R3)\{0

This completes the proof. O
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A(p)S? . (p=2)/2
Letkg := P)2p < 4 ) a1 . Define the filtration of Nehari manifold M,

=\ 2p-2)57s1y5
as follows.
2/(p=2) 2/(p-2)
-2 (Ssh -2 (Sh
Mk,a L <p) =quc M)»,a : J)»,a (u) < L (1))
2p Ko 2p Ko

Then we have the following results.

Lemma 2.7 Suppose that 2 < p < 3 and conditions (D1) — (D2) hold. Then for each

2/(p—2) 2/(p=2)
[%aw] <A< [%al] , there exist two C1 submanifolds folzl C M;a

pN2/(p—2)
and M/(XZ) C M;{u such that M, , |:p72 (&) ] = M;lzl U Mf)a Furthermore, each

.a 2p ko
local minimizer of the functional J), in the submanifolds Mglzl and Mf)

4 Is acritical point of
Jy.a in HY(R3).

. [ sP\2/(P2)
Proof Letu € M, , with J; 4 (1) < 1727 (%) . Then we have
2/(p-2)
p=2(S, p—2 A4 —p)
2(; > Jra) = ==l = ———lullp (2.9)
p 0 p 4pS°St, s

Now, we consider the quadratic equation as follows
2/(p=2)
A4 — sh
(—3x2 —x+ (p> =0.
2(p—=2)§ S;*Z/S Ko

It is easily seen that one of its solutions is expressed as

2
214 p) (%)M (p=2)5’s*

X0 = 1+ 1—7724 P )\(4_ )
(r—28 512/5 0 p

(2.10)

Since

r< [A ) }2/(”_2) 2(p—2) §25f2/5 G-pio\"? -2 §2541‘2/5 w7
—a = - e (X0
Lo o rSy 2= \sp

and

4—p 2/(p-2)
4 (7> <d4e 2~ 0.54134 < 1 forall 2 < p <3,
p

. . A(p) 2/(p=2)
it follows from (2.10) and (2.9) that if [Taoo] <

2/(p-2)
A< [%al] , then there

exist two positive numbers D and D, satisfying

1/(p—2) 1/(p—2) <2 b
( ’ ) -5, gﬁ(”) _ | P25 Sy

G < D, (@11

Amax Ko
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such that
lull g1 < Dy or |ullg1 > Ds.

Thus, we have

o\ 2/(p=2)
M, | 22 (5 —M" umM®? 2.12
Aa F E = Ma aar ( 12)
where
2/(p—2)
MO . M| P2 (S e b
ra = u e Aa T 70 . ”u”Hl < 1
and
2/(p—2)
M2 ML | P2 (S A b
Cai= U e Mg | o= (S Null 1 > Da

Moreover, by (2.3) and (2.10) and Lemma 2.3, we have
D) = = (=2l +2 6= p) [ gl

2/(p=2)
21 (4= p) ( s ) .

<=2l |5
S sz/s (p—2) \*0

< Oforallu e Mg{z;

=2 > 0for2 < p < 3. This implies that Milzl M, ,.

here we have using W -

Using (2.10) we derive that

p—2

2/(p=2)
1 4—p s?
2l = T/Rs“(x) ul?dx = Jra ) < == (”)

K0

p—2
<
4p

)3, forall u € My,
which implies that

L (D= =2qul?, + (4—p)/ a(x)ul” dx > 0 forallu e M{),
: - ;

and so M(f) C M; o This completes the proof. O

,a

3 Non-emptiness of submanifolds M,(l")a

For u € H'(R*)\ {0}, we define

T el "
T\ Jpa@ mPdx )

N‘
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Then we have the following results.

Lemma 3.1 Suppose that 2 < p < 3 and conditions (D1) — (D2) hold. Then for
Ap, /072 Ap), /072 (R i
each [Taoo] < A < [Tal] and u € H (R)\{0} satisfying

_ 1/(p=2)
Jrsa () |ul? dx > koS, " ||u||Z, , there exists a Constanz?io) > (ﬁ) T, () such
that
inf Jy 4 (tu) = in Joa (tu) <O. 3.1
>0 p \ /P2 ~0)
(ﬁ) Ty ()<t <!

Proof For any u € H'(R3)\ {0} and ¢ > 0, it has
25t 5 tP »
Sra @u) = —lullypy +— | guudx — — [ a(x)|ul”dx
2 4 Jr3 p Jr3

=1 |:g @) + &/ ¢uu2dxj|
4 R3
= h)\.,u(t),

where

=2 P4 p
)= —|u - — a(x) |ul?f dx.
80 =Sl = —— | a )l

Clearly, Jy 4 (tu) = 0 if and only if
A
g )+ f/ puu’dx = 0.
4 R3
It is not difficult to observe that
g(fa) =0, lim g(r) =00 and lim g(r) =0,
—0t 1—00

where , = (%)1/ =27 (). Considering the derivative of g(), we find

_ (4—[))1‘1’_5
g (1) =17 ul?, +7/ a () ul? dx
P R3

4—p)er?
— 3 <¢/ a (x) |ul? dx — ||u||§,1> .
p R3

P
4-p

1/(p=2) . .
) T, (1) and increasing

which implies that g (¢) is decreasing when 0 < ¢ < (

T, (1), and so

1/(p—2)
14
8 |:<4—p> Ty (M):|

2/(p—=2)

p=2 [(G=p) fpa@ u?de\"" 5

= — 5 ||u||H1 < 0. (3.2)
2(4—p) plul,

1/(p=2)
H)

whent>( P

inf g (¢
,“log()

@ Springer



Existence and symmetry breaking of ground state solutions for... Page 130f29 59

It follows from Lemma 2.3 (i{) that foreachu € H' (R?) \ {0} satisfying [ps a (x) [ul” dx >
K()S;p IIMIIZ, we have

2/(p=2)
. p—2 4 — p)ko 4
inf g (1) < — ,, lull,,
>0 24 —p) pSp
1 A(p) 2/(p—2) .
= <7611> el
48 8155 p
A2 4 4 A 2
= =35 Sajslully = =5 | gutdx. (3.3)
This indicates that there exist ?iO) and ?)(\l) satisfying
1/(p=2)
0<ih < <L> T, (u) < 7 (3.4)
4—p
such that
i A
g (?i‘”) + 7/ ¢uu2dx =0forj=0,1.
4 R3
That is,

Jra () = 0for j =0, 1.

2/(p=2) 2/(p=2)
Moreover, by (3.2) and (3.3) , for each [%am] P < A < [%al] P ond
u € H'(R?)\ {0} satisfying

[ atoul? dx > xos,” il

we have

) 1/(p=2)
inf J; 4 (tu) < Jy 4 <7> T, w)ul] <O.
>0 ' 4—p

Note that
, 3 A 2 4
au (1) =41 (8 @) + Z/ﬂ; duu dx) +17g (1),

which leads to

1/(p—2)
[ L (D) <Oforallt e (?i“, (ﬁ) T, (u):|

and

() -0

Consequently, we arrive at inequality (3.1). O
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Lemma 3.2 Suppose that 2 < p < 3 and conditions (D1) — (D2) hold. Then for
A(p) 2/(p—2) A(p) 2/(p—2) 1 3 . .
each [Taoo] < A < [Tal] and u € H'(R)\{0} satisfying

fR3 a(x) |ul?dx > K()S;p ||Lt||1;11 , there exist two constants t}:"a and t,_, which satisfy

1

_ 2 P2 n
Ty (u) <ty , < m Ty (w) <1,
such that
f;?_iau € M;jia, Jia (l{,au> = sup Jp4(tu)
0=t=tf,
and

D (t;au) = inf Jyq (t0) = inf J, o () < 0.

I‘Zt):a
Proof Define

f@)y=172 ||u||§11 —l”_4/ga(x) lu|P dx fort > 0.
R‘

Clearly, tu € M, , if and only if f () + A fR3 duuldx = 0. A straightforward evaluation
gives

f(T, ) =0, lim f(r)=ocand lim f(r) = 0.
—0t —00

Since

floy=1> (—2 7, + 4= p)yeP=2 /3 a(x) |u|f’dx> :
R

T, (#) and increasing when

2 \ /=2
4—p

we find that f (¢) is decreasing when 0 < ¢ < (—

2 \ /(=2 L
t > ( ) T, (u). This gives

4—p
inf = —_— p12 Ta u 3.5

N A(p) 2/(p—2) A(p) 2/(p=2)
It follows from Lemma 2.3 (ii) that for each [Tpaoo] <A< [Tpal] and
u € H'(R?)\ {0} satisfying

p 4 p
/Rza(X)lul dx > koSp" ully:

we have
2 1/(p=2) 1/ p\Y(P-2 A(p) 2/(p=2)
= T, - <7) Ss (22 4
f<<4_p> a) | < AT 12/5( » al) ”u”Hl
1/ p\20-2 5 _
=5 (5 XSS5 lullgy
< —A q)uuzdx
R3
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Thus, there exist two constants t;f o and ¢, , > 0 which satisfy

1/(p=2)
T, () <t, , < <7> T, () <t (3.6)
5 4 _ p N
such that
f (t;ta) A / duldx = 0.
, s

That is, t;cau € M, _,. By a calculation on the second order derivatives, we find

2 _ P
h;:,t;_au (1) =-=-2 ”tk,au ‘Hl +@—-p /1;3 a(x) ‘tk,au dx
5
= () 7 (5) <0
and
" + 2 + b
W (D=2 Hzmu g T@-p . ) ‘fx,a” dx

- (;;a)s £ () = 0.

This implies that t;tau S M;Jfa and

(= r <f(f) —l—k/ ¢uu2dx) .
: -

One can see that hj\’u (t) > O holds for all t € (0, t):a) U (t)ta, oo) and h;hu (t) < 0 holds

forall t € (t; @ zf, a). Subsequently,

Joa (t;au) = sup Jog(tu) and Jy g (t;fau) — inf Jig (tu),

o<r=t, 126 4

and so J 4 (t;au) < Jl,a(t;au). Using Lemma 3.1, we conclude

+ s
Jr.a (tx,a”) = }rzl(f) Jra (tu) < 0.
This completes the proof. O
For b > 0, we consider the following nonlinear Schrodinger equation.
—Au+u=buPu inR. (£8)

From [14,17], for every real number b > 0, Equation (ngb) has a unique radial positive
solution wy, with wy, (0) = max, cr3 wp(x). Moreover,

2

—2 (Ssh\P2
oS, = inf_ 1,30(14):1;0(%):?(1?) ’

e

ueMg’, 2p b
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where 1° is the energy functional of Equation (EJ%,) in H'(R?) in the form

1 1
I° (u) = 7/ (IVul* + u?)dx — f/ blul? dx 3.7
2 Jgs p JRrs
with the Nehari manifold
MG, = (e H'®\ (0} : (1) @), u) = 0}

Let wq,,, be a unique radial positive solution of Equation (EgS, ). Then we have the
following results.

Lemma 3.3 Suppose that 2 < p < 3 and conditions (D1) — (D3) hold. Then for each

2/(p-2) 2/(p—2) ~ —
[%aw] <A< [%al] there exist two constants t/{"a and t,_, satisfying

) 5y A\ -2 i
T, (wamax) <t ,< <74 - p) 1 (wamax) < t;a
t}t Wamae € Mf\zl with

such that t,,Wa,,, € Mx(\l,zl’

J..a (f):awamax) = sup Jia (1Wapy) and J. (;)-:aw“max> = inf Jp 4 (fWapy) <O.

#+ t>i
0<r<z,', Zha

Proof Since

p p

"~ gi(lp)? ”w“max ;

Hl>

dx > % H Wapax

A,

» there exist two constants

/ a ()C) ’wamax
R3
2/(p=2) [

by Lemma 3.2, for each [%ao@] <A<

~+ ~— . .
fy o and 7, satisfying

]2/(17—2)

_ 1/(p=2) ~
T, (wamax) < t;a < <7> T, (wamax) < t;a

P +
such that #,” wq,,,, € M,

Ji.a ([):awamax) = sup Jra(tway,,)
0=t<if,
and

- . .
Jra (tx,awamax> = inf J5,4 (twamax) =inf Jy 4 (twamax) < 0.
=0 >0

Using f;’ aWamax € M; , and condition (D3), we have

()

- 2 4—p /. \P
J)\,a (t)\,a w(lmax) = 4 || wamax H! F (t)»,a> /[;3 a (X) wgmaxd‘x
- \2
(l*ﬂ) 2 (@G -—pko (- \? »
<D Ll = 52 (7)o
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_ 2/(p=2) [ op\ M P2
< Ga)
4p \p@—-p) Ko

2/(p—2
p— 2 Sp /(p=2)
< — .
2p Ko

This implies that 7;_, we,,, € M{'). Since J;., (zA awam> < 0, we have 7w, € M2,

This completes the proof. O

4 Proof of Theorem 1.1

First, we define the Palais—Smale (simply by (PS)) sequences and (PS)—conditions in H 1 (R3)
for J; 4 as follows.

Definition 4.1 (i) For 8 € R, a sequence {u,} is a (PS)g—sequence in H'(R3) for Jra if
Jralun) = B+o(1) and J] ,(uy) = o(1) strongly in H~' (R%) as n — oo.
(ii) We say that Jj , satisfies the (PS)g—condition in H L(R3) if every (PS)g—sequence in
H'(R?) for J;_, contains a convergent subsequence.
Proposition 4.2 Suppose that condition (D1) holds. Let {u,,} be a bounded (P S)g—sequence
in H (R3)f0r Jy.a- There exist a subsequence {u,}, anumber m € N, a sequences {x }so I
in R3, a functionug € H (R3) and0 #v' € H (]R3) when 1 < i < m such that
(i) |xf,| — ooand|x,’;—x,{| —ooasn — 00,1 <i#j<m
(T1) —Aug + uo + Apyouo = a (x) luol? =2 ug in R3;
(iii) —AV + V' + A v’ = aoo |v"|I772 vl in R3;
(iv) uy = ug + %vi ( — x,’l) + o(1) strongly in H'(R?); and

i=1

W) Jna(un) = T a(uo) + X Jrae (V) 4 0(1).
i=1

The proof is similar to that of [9, Lemma 4.1] or [32, Lemma 5.1], so we omit it here.

Corollary 4.3 Suppose that 2 < p < 3 and condition (D1) — (D2) hold. Then for each
[A (p) i|2/(17—2) [A (p) i|2/(P—2)
oo <A< ai
p p

we have the following results.

@) If {un} C M o 18 a (PS)g—sequence in H L(R3) for Jr.q with B > 0, then there exist a
subsequence {u,,} and a nonzero ug in HY(R3) such that u, — ug strongly in H L(R3) and
Jr.a (wo) = B. Furthermore, ug is a non-trivial solution of Equation (E;_ ).

@) If {u,} C M(z) is a (PS)pg—sequence in H (R3)f0r Jia With B < 0O, then there exist a
subsequence {u,} and a nonzero ug in H L(R3) such that u, — ug strongly in H L(R3) and
Jr.a (o) = B. Furthermore, ug is a non-trivial solution of Equation (E)_,).

Proof (i) Let {u,} C Mill be a (P S)g—sequence in HY(R3) for Jyr.q With B > 0. Then

_2_

p—2(Sh\"?
Jra (Up) =B +o(1) <ags, = =TS (é)
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Since |lupllg1 < 51, there exist a subsequence {u,} and ug € H'(R?) such that u,—ug
weakly in HY(R3) and luoll g1 < 51. If up = 0, then by Lemma 2.6 and Proposition 4.2,
there exist {x,} € R3and vyp € H'(R?)\ {0} such that u,, (- + x,,) —~voin H'(R3) and vg is a
non-trivial solution of equation: —Au+u+Ag,u = ax P2 uinR3and 0 < Jf_‘;oo (vg) <
B < agfko. Moreover, ||vo|l g1 < liminf [lu, (- + x,) | g1 = Uminf [Ju, |l g1 < 51. Note that

I
for2 < p <3, there holds (4%, ) (1) = 0 and

(ﬁ@”a>=—wp—2ﬂwdzl+xm—p{é,mw&u
(4= p)
= (=D Il | Il 1
S12/5 (p—2)

2
21 (4 — p) Ssh\ 2
< (p =2 ol 24P<P -1
S 815 (P =2) Ko

< 0,

where hiovo = hj v, for a = ase. This implies that vy € M&{Lm and hif’vo (1) is increasing

on [0, 1] . Since ta,, (Vo) Vo € Mgf’aw, where

lvol1? =2
0<t = ——H 1, 4.1
< fass (10) (fR3 oo Ivol”dx> = “.1

and so

PN
<T> <p> =0 < 15° (tas (0) ¥0) < T an (fass (V0) 0) < Jr.ane (V0)
)4 oo

o2y [sP\HOD
ﬂ < 0[83(0 = (T) -2 s
p )\ ko

which implies that a», > ko, a contradiction. Hence u is a non-trivial solution of Equation
(Ex,q). Moreover, by Lemma 2.6 and Proposition 4.2 (iv) — (v), u, — up strongly in

H'(R?) and Jy 4 (ug) = B < S, which implies that ug € Mj.),.

(i) Let {u,} C M) be a (PS)—sequence in H' (R?) for J; o with f < 0. By Theorem 2.5,
there exist a subsequence {u,} and ug € H L(R3) such that u,—ug weakly in H L(R3) and
J/{,a (up) = 0. Moreover, by Lemma 2.6 and Proposition 4.2 (iv) — (v), u, — ug strongly

IA

in H'(R3) and J;_, (ug) = B. Thus, ug € Ml(\zzl is a non-trivial solution of Equation (E;_).
This completes the proof. O

Define

o) = inf Jyq(u) fori=12.

u EMSL
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Then by Theorem 2.5, Lemmas 2.2 and 3.2 , and the facts that M,(\IL C M;a and Mf\zz C

M+

*a» W€ have

2/(p=2)
2 sy -2\ (S,
—00 < oz)(?) <0< Bl N < agl) <(2Z=2) (2 . 4.2)
“ 4—p \ amax a 2p Ko

Remark 4.4 1t is not difficult to prove that
1 _

o 4= mf o) = inf J) 4(u)
”Ean ueM;_a
and
o = inf Jy )= inf JM(u) inf  Jq(u). (4.3)
’ eMAl ueM ueM; q

Indeed, it is clear that Ol( )

2/(p=2)
-2\ (s

inf Jx,a(M)Z(L> 2 :
ueM;, 2p Ko

then by (4.2), inf, M Jna(u) > a)(\lzl, which is a contradiction. Thus, there exists a mini-
a ’

> inf, - Joa(u), since M( ) C Mk o Moreover, if

mizing sequence {u,} C M, _, such that

_2 Sp 2/(p=2)
J)L,a(un) — inf_ J)L,a(u) < <L> (P) ,

ueM, , 2p Ko
which implies {u,} C M. This indicates that J; 4(us) > o .. Hence, o ) =

inf ueM; J .a(u). Repeating the same argument, we obtain Ol( )

thermore, by (4.2), we also have aiql = infyem, , Jn.a(u).

= inf, cp+ Jon,q(u). Fur-

Following [31], we have the following results.

Lemma 4.5 Suppose that 2 < p < 3 and conditions (D1) — (D3) hold. Then for each

i =12andu € Mg\)a, there exist a number o > 0 and a differentiable function t* :

B(0,0) C X — RY such that
(0) = 1 and t*(v)(u — v) € My,
forallv € B(0, o), and

2 [p3(VuVe + up)dx + 41 [p3 puupdx — p [ps a (x) lu|P2updx
lullZ, = (p = 1) fps @ (x) |ulPdx

(@)(0), ¢) =

forall p € H'(R?).
Proof For any u € Mf\l)w we define the function F,, : R x X — R by
Fu(t’ v) = (J)/L,a(t(” - U))7 t(u - U))

= t2/ IV —v)* + (u — v)*ldx + xt“/ Guu’dx
R3 R3
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—t”/ a(x)|u—vlPdx.
R3

It is not difficult to verify that F, (1, 0) = (J){,a (u), u) = 0and

JaF,
L0 =2ty + 41 [ guldx—p [ a s
at R3 R3

= 2ul?,) — (p—4) /R a (x) JulPdx # 0.

According to the implicit function theorem, there exist a number ¢ > 0 and a differentiable
function t* : B(0,0) C X — R satisfying t*(0) = 1 and
(") (0), )
_ 2 [g3(VuVe + up)dx + 4x [p3 pyupdx — p [psa (x) |u|P2ugdx
Il = (p = 1) [z a (x) |ulPdx

forall ¢ € H'(R?) such that
F,(t*(v),v) =0forallv € B(0,0),
that is,
(J] o (* () (u = v)), t* (V) (u — v)) = O for all v € B(0,0),

and together with the continuity of the map r*, we deduce that

R e oy (D) = =2[[77 (0) (s — U)Ilfq] —(p—9% A‘@ a (x)|t*(v)(u — v)|Pdx
<0

B o\ 2/(p—2)
Ja(t* (W) (u — v)) < <L2> (Sp) ’
2p Ko

if o is sufficiently small. Hence, *(v) (u — v) € Mi’)a for all v € B(0, o). Consequently, we

complete the proof. O

and

Proposition 4.6 Suppose that 2 < p < 3 and conditions (D1) — (D3) hold. Then for
2/(p=2)
each i € {1,2} and [%am] <

{un} C Mf\l)a such that

2/(p=2)
A< [%al] there exists a sequence

Jealun) = o) +0(1) and J/  (uy) = o(1) in H~" (R?). 4.4)

Proof By Theorem 2.5 and the Ekeland variational principle [13], there exists a minimizing
sequence {u,} C My) such that

,a
@ , 1
Tralin) < o, + ~
and

1 .
Jran) < Jya(w) + ;Ilw — Up|l g forallw e M)(\l)a 4.5)
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Applying Lemma 4.5 with u = u,, there exists a function 7, : B(0,0,) — R for some

o, > O such that £ (w) (u, —w) € Mgl)a Let0 <8 <o, andu € H! (R3) with u # 0. We
set

Su

lleell g1

ws and z5 = 1, (ws) (up — w;).

Clearly, zs € M(Ai’)a. It is deduced from (4.5) that

1
Jx,a(Zs) - J)»,a(un) > _;”ZS - Mn”]-[l,

together with the mean value theorem, we have

1
(Via(un), 25 = un) + 0(llzs = unlla) = =~ llzs = wnl o
and
(r.a(n), —ws) + (1, (ws) — DI}, (), up — ws)

1
> —g”Za — upll gt +o(llzs — unllg1)- (4.6)

Observe that 1, (ws) (i, — ws) € M} From (4.6) it gives
(ty(ws) = 1)
1y (ws)
(1 (ws) — DY) — T} (28), tn — ws)

=8I} o n)s u/lull ) + (5 a(28), 1 (ws) (. — ws))

1
= = llzs = unllgr + olllzs = unll ),

which implies that

w\ lzs—wnl . o(lzs — tnll )
J! , <
<*’“(””) ||u||H1> on 5
@ ws) — 1)
$ 2D ) = o) —w). @)

We choose a number C > 0 independent of § such that
llzs — unllgr < 8+ C(|t; (ws) — 1))

and

lim |t (ws) — 11 _ lim |ty (ws) — 1, (0)]

*\/
lim = lim — <16 Ol = C.

Letting 6 — 01in (4.7) and using the fact that lims—_¢ ||zs — un| g1 = 0, we have
), ——) = <,
’ llaell g1 n
which enables us to arrive at (4.4). Consequently, we complete the proof. O
We are now ready to prove Theorem 1.1 By Proposition 4.6 , there exist two sequences
{ufli)} C Mf\l)a such that

Ja@() = o’ +o0(1) and J] () = o(1) in H~" (R?).

@ Springer



59 Page22o0f29 T.Wu

Then by Corollary 4.3, there exist two subsequences {u,(,i)} and uf\i’)a e H! (R3) \ {0} such
that u) — uf\i,)a strongly in H' (R3) fori = 1, 2. This indicates that ug’)a € Mgf)a and
o) = D)),

implying uf\iy)a € Mg\i,)a and J, 4 (uizzl) < 0 < Jig (uilzl) Since J;L,a(uy,)a) =

J)\,u(lugf)ab = Ol)(\i)a, by Lemma 2.1, we may assume that uy)a are positive solutions of

Equation (E} 4). Moreover, by (4.3), uf\zi is a ground state solution of Equation (E} ).

5 Proof of Theorem 1.2

By conditions (D1) and (D2), without loss of generality, we may assume that B3(0,1) C
int {x eRY:ax) > 7?0} , this implies that B> (0, é) C Q. :=int {x eR3:q(ex) > 7?0} ,
where ko := £52. Note that

ko < 7(\0 < 2 Ko < Amax-

As we know, Wy is the unique radial positive solution with Wp (0) = max, cgs wo (x) for
Equation (Egofo) . Thus,

~ 1/(p—=2)
1@oll3,1 _
Jr3 Ko |Wol? dx -

T?() (@0) = (
and
-~ Ko\ Ko\
Pdx = — P> = woll%,,. 5.1
/R}Kow R 5.1)
Since 2 < p < 3, by Lemmas 3.1 and 3.2 , there exists a constant t: % > 0 satisfying

1/(p=2)

4—p
such that
+ o~ . o~ . o~
I, (tmo wo) = m Ji%, () = inf 7%, (o) <0, (52)
()" <t
where/t;{ho) is as in Lemma 3.1. For R > 0, we define a cut-off function g € C 1 (R3, [0,1])
as
_ sl < £,
YR (x) = {0 x| > R.
and |Vyg| < 1inR3. Let ug (x) = Wo (x) Yr(x). Then,
/ |uR|pdx—>/ |wo|? dx as R — oo, (5.3)
R3 R3
lurll g1 — llWollg1 as R — oo, (5.4)
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and
/ qu,Ru%edx — / qbwol'D(z)dx as R — oo. (5.5)
R3 R3

Since Jf%o e CLHI(R?),R), by (5.1)—(5.5) , there exists Rg > 0 such that

/R3?0 gy |7 dx > g o | (5.6)
and
I5% (5 gm0 < 0.
Let

uly)  (x) = o (x +iN3e) Y, (x +iNe)

foree S?andi = 1,2, ..., N, where N> > 2Rp.Let0 < ey < . Then we have the

following result.

N4+R

1
suppuRON(x)CB3 <0 —) foralli =1,2,...,N.
EN

Clearly, ey — 0% as N — o0o. Moreover, by condition (D1), we deduce that
O > _ 2
URy N = ||uR0||H1 forall N,
/ agy (x) ‘u%) N‘ dx > / X0 |uR0|pdx forall N,
R3 R3

and

< 2
@)

[ @) d _f f R()N(-x) I:MléoN(y):I dxd

by Lkon] x =[], 47 Ix — ] rdy

/ / MRO (x)uRo (y)dxdy
R3JR3 47T |x —yl '

Since ag), (x) > ko forall x € B3 (0, ﬁ) , there exists Ny > 0 with Ng > 2Ry such that
for every N > Ny, we have

R3

p
e €l x> Gyl = G [,

and
: (i) + ) 00
}2{) Jk,aEN <l‘MR0’N) = Jk,aSN <t/\,K0”R0 N) = -I %0 (tA KOMRO)

foralle e S2andi =1,2,..., N. Let
WRy,N (X) = ZM%()) N
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Observe that wg,, x is a sum of translation of ug,. When N 3> Ng > 2Ry, the summands
have disjoint support and

1
SUPPWRy, N (x) C B} <0, —) .
EN

In such a case we have

lwron |31 = Nllugy 1314 (5.7)

/ dey (x) |why, N| dx = Z/ ey (X) ‘”%3 N‘p (5.8)

and

2 2
w ) w »
/ Dug Nw%? ndx :f / Ro.N Ro.N dxdy
R3 0 0 R3 JR3 4 I)C — yl

v u) @] [ul v 0]
= Z[ /3;3 dxdy
i=1

4o |x =yl

N0 () 2
)] |u )
+Z/ /R} CRoN [ foN¥ ] dxdy.  (5.9)

4 —
iz T |x =yl

After a straightforward calculation, we have

. 2
)
R N(x) [“R N(y)] NZ—N 2
Z/ / o o dxdy < —/— / w(z)(x)dx s
Rr3 Jr3 4 |x — y| N3 —2Ry \Jps

i#]

which implies that

2

up ] o [ ] o

Z/ / dxdy - 0as N — oo. (5.10)
R3 JR3 4 [x — yl

We can now adopt the idea of multibump technique by Ruiz [23] (also see [20]) and the
following results are obtained.

Lemma 5.1 Suppose that2 < p < 3 and conditions (D1) — (D2) and (D4) hold. Then for
A(p) 2/(p=2) A(p) 2/(p=2)
each [Taoo] <A< [Ta]] , we have

o) — —ocoase — 0%, (5.11)

Proof For N € N and let
_ 2 _
v @0 =172 fwm i = 177 [ oy @0 Jwn]? dx for > 0
R
and

fo () =172 w3 - tH/ %o |way | dx fort > 0.
R3
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By (5.7) and (5.8), we get

N
v @ = 2N fury [ =043 [ ey 0 ufy [ @
i=1 s
T PG
R3

It can be readily seen that twg, n € M/\,us,\, if and only if
IN@O+ A Gug ywh ydx =0.
R3 0 0

An evaluation on fj(t) gives

fo (T (ury)) = 0. lim fo() = coand lim_fo(t) =0,

”llR ||2 1 1/(p—2)
= (o )

S 55 Juro|” dx

where

Since 2 < p < 3 and
0 = =20 g+ = 90775 [ Rl | a

2
2urg 1

1/(p=2)
— and increasing on ¢t >
(4—p) [g3 %o|ur, Ide> &

thus f is decreasing on 0 < ¢t < (

2ur H21 1/(p=2)
— .By (5. ive th
((47p) T K0|MRO|de) y (5.6) we derive that

2ur
o _ 0l H
}Qofom fo ((4—p)fR3750 }uRo|pdx)
___p—2 (4= p) Jps o |ur,|” dx o g ”2
26— p) 2 ury | e
N\ 2/(p-2)
B (L) I
2@—p \ o8 ol

A(p) 2/(p=2) A(p) 2/(p=2) .
For [Ta"o] <A< [Tal] , it follows from Lemma 2.3 and (5.12) that

1/(p—2)
2 Jwron| ) v

inf _
}I>10 fn@=Jv ((4 - p) f]R3 agy (X) |wRO,N|pdx

N 1 /p\2/p-D) (A(p) 2/(=2) |

< — — | = a u
2 ( ) 1 Ro |l gt
S 512/5 212 P

< —ANS 7 Sp0s [
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uk () uk ()
< AN/ / Ro Ro —0 0 " dxdy.
R3JR3 47 |x —y|

Using (5.10), we further obtain
)
ko (x)u% ® N ) v u) v )
inf fy () < —AN/ / R ddy — 1) :/ / ko 0 g dxdy
>0 RS 4 lx —yl vy R3 4 |x — y|

= —k/ duwp Nw% ydx for sufficiently large N.
R3 ' '

Thus, when [A;p )aoo] p , there exist two constants t( ) and
tx( I)V satisfying

2/(p—2) 2/(p=2)
<A< [Mal]

2 e
1<t < - .
o <(4 —p) Jg3 ey (x) |”R0|pdx) -

such that
s () + AfR} Puy Wy ydx =0

fori = 1,2 and forall N € N. Thatis, ;' ywg v € Myq, fori =12andforall N € N.
A direct calculation on the second order derivatives gives

p
/\ tilfvaN 1) =-2 Ht)‘ NWR, NH + @4 - p)/ agy (x) ’t)\ NWR, N‘ dx
1
= (ti }v) In <tA,N> <0,
and
2 P
By D= =2 12w, NH +4- p)/ ey ) |12\ wr|” dx
_(;®
= (tx N) In (tk,N)
> 0.
This enables us to conclude that
Z)E E\ﬂUR,N € M}:“EN and t)E’ WR,N € MA ey
Moreover, by (5.7)—(5.10) we obtain
Jraey (t;f ngR N) = igf Inaey (twg.n) < Inaey (l;?ﬂ)wR,N)
< NJ%, (t)\ uRO) + Cp forsome Cy > 0
and
Ihazy, (t@va,N) — —ooas N — oo.
Therefore, we arrive at (5.11). O
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Lemma 5.2 Suppose that 2 < p < 3 and conditions (D1) — (D2) and (D4) hold. Then for
A(p) 2/(p=2) A(p) 2/(p=2) . .
each [Taoo <A< = a , there exists My > O independent of € such

that 0 > inf, c 1 Jya, () > —Mo for & sufficiently small.
Proof Since a (x) = a (|x]) and a (0) = amax, by Lemma 3.1 and Remark 1.4,

inf Jy 4, (1) < O for e sufficiently small.
ueH

Moreover,

1 A 1
inf Jy 4 (u) > inf f/ (IVuIz—i—uz) dx—f—f/ d)uuzdx——/ amax |u|? dx
2 Jr3 4 Jr3 p Jr3

ueH ueH

and [A (p) ano P72 < X < [A (p)a11”?™? | by Lemma 2.4,

1 A 1
inf [f/ (|Vu|2+u2)dx+f/ ¢uu2dx——/ Amax |u|de] <0.
ueH) 2 R3 4 R3 P JR3

Thus, applying similar argument to that in Ruiz [23, Theorem 4.3], there exists My > 0 such

that
1 A 1
inf [f/ (|Vu|2 +u2) dx + f/ ¢uu2dx — —/ max Iulpdx] = —M,
ueH! | 2 Jr3 4 Jr3 p Jr3

and so infueHrl Jy..a, () > —My. This completes the proof. m]

Next, we define the radial symmetry Nehari manifold
Nia, = {u € H'\ {0} : (J] , (u),u) =0}

If the weight function a (x) satisfies condition (D4), then by Remark 1.4 and Lemma 3.3,

we can obtain H! N M(Z) # ¢ and H' N M(z) C N 4.- By an argument similar to
the proof of Lemma 2.7 and Palais criticality prlanlple (cf. [22]), we conclude that the set
Nf\%zls =H!'N Mf\%zs is a C! submanifold and each local minimizer of the functional J; g,
in Ny 4, is a critical point of J;, 4, in HI(R3).

Define

On,ap = 1nf Soa, () .
ueN

)Lag

Repeating the argument in Remark 4.4, we have

O = il Jiq ()= inf Jig ). (5.13)

ueN,
ueNA e Aag

Moreover, by Lemmas 5.1 and 5.2,
@) < 0.4, <Ofore > 0 sufficiently small. (5.14)

Then by an argument similar to the proof of Proposition 4.6 and Palais criticality principle
(cf. [22]), for & small enough, there exists a sequence {u,} C Ngf)ag such that

Drae ) = 0 a, + 0(1) and J/  (u) = o(1) in H~" (R?). (5.15)
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We are now ready to prove Theorem 1.2 Given {u,} C N&zzf satisfying

Dy (Un) = 054, +0(1) and J; , (up) = o(1) in H™' (R?),

then by Theorem 2.5, {u,} is bounded. Without loss of generality, we can assume that there
exists vy, 4, € Hr1 such that u, —v; 4, weakly in H 1 (R3) . Moreover, by Ruiz [23, Lemma
2.1], J;as (V3e) =01in H™! (R3) and u, — vy 4, strongly in H! (R3) , which implies that

Jna, Wia.) = 054, and vy 4, € Nf)%. Thus, by (5.13), v,  is a radial ground state solution
of Equation (E) g4,). Since Jy 4, (Vr,0.) = Ji,a.(|Vr,a.]) = 61.,4., by Lemma 2.1, we may

assume that vy _,, is a positive solution of Equation (E;,_g,). Therefore, by Theorem 1.1 and

(5.14), Equation (Ej 4, ) has three positive solutions ufxllg, ufig € H' (R%) and vy 4, € H,

such that
2 2 1 1
a}(\,glg = J)M(ls (ug\.zlg) < e)has = J)\aas (v)‘saa) <0< a)(\.,zlg = J)hae (ug,,zlg)

for ¢ sufficiently small. Since

af) = inf Jig () <04 = inf Jy, (u) for e sufficiently small

,a,
€ ueM, g, UeN; ag

and v;,_,, is a radial ground state solution of Equation (E} ,,), we can conclude that u&z)ag is

a non-radial ground state solution of Equation (Ej 4, ).
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