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Abstract
We study the Schrödinger–Poisson system:{−�u + u + λφu = a (x) |u|p−2 u in R

3,

−�φ = u2 in R
3,

where parameter λ > 0, 2 < p < 3 and a (x) is a positive continuous function in R
3.

Assuming that a (x) ≥ lim|x |→∞ a (x) = a∞ > 0 and other suitable conditions, we explore
the energy functional corresponding to the system which is bounded below on H1

(
R
3
)
and

the existence and multiplicity of positive (ground state) solutions for
[
A(p)
p a∞

]2/(p−2)
<

λ ≤
[
A(p)
p a1

]2/(p−2)
, where A (p) := 2(6−p)/2 (3 − p)3−p (p − 2)(p−2) and a∞ < a1 <

amax := supx∈R3 a (x) . More importantly, when a (x) = a (|x |) and a (0) = amax, we
establish the existence of non-radial ground state solutions.

Mathematics Subject Classification 35J20 · 35J61 · 35A01 · 35B40

1 Introduction

Our starting point is the Schrödinger–Poisson systems (SP systems for short):{−�u + u + ρ (x) φu = a (x) |u|p−2 u in R
3,

−�φ = ρ (x) u2 in R
3.

(
SPρ,a

)

Such systems, also called Schrödinger-Maxwell equations, can be used to describe the
interaction of a charged particle with the electrostatic field in quantum mechanics, where the
unknowns u and φ represent the wave functions associated with the particle and the electric
potentials, respectively, and ρ : R3 → R

+ is a measurable function representing a ‘charge’
corrector to the density u2 . The nonlinearity a (x) |u|p−2 u represents the interaction effect

Communicated by Y. Giga.

B Tsung-fang Wu
tfwu@nuk.edu.tw

1 Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-021-01953-3&domain=pdf
http://orcid.org/0000-0003-4945-652X


59 Page 2 of 29 T. Wu

among many particles. For more details on the physical background, we refer the readers to
[5,23].

It is easily seen that system (SPρ,a) can be transformed into a nonlinear Schrödinger
equation with a non-local term, when ρ ∈ L∞ (

R
3
) ∪ L2

(
R
3
)
(see [1,23]). Briefly, the

Poisson equation can be solved by using the Lax–Milgram theorem. For all u ∈ H1(R3), the
unique φu ∈ D1,2(R3) is given by

φu(x) = 1

4π

∫
R3

ρ(x)u2(y)

|x − y| dy, (1.1)

such that −�φ = ρ(x)u2 and substituting it into the first equation of system (SPρ,a), gives

−�u + u + ρ (x) φuu = a (x) |u|p−2 u in R
3.

(
Eρ,a

)
Such equation is variational and its solutions are critical points of the corresponding energy
functional Jρ,a : H1(R3) → R defined as

Jρ,a (u) = 1

2

∫
R3

(|∇u|2 + u2
)
dx + 1

4

∫
R3

ρ (x) φuu
2dx − 1

p

∫
R3

a (x) |u|p dx .

Note that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of system
(
SPρ,a

)
if and only if u is a

critical point of Jρ,a and φ = φu . The pair (u, φ) is called a ground state solution of system
(SPρ,a), provided u is a solution of Equation (Eρ,a) which has the ground state among all
nontrivial solutions of Equation (Eρ,a).

In recent years and in view of this, there has been much attention paid to the SP systems
on the existence of positive solutions, nodal solutions, radial solutions and semiclassical
states under variant assumptions on ρ and a via variational methods. We refer the readers
to [1–3,9,10,12,16,21,23–25,27–30,33,34] and the references therein. More precisely, Ruiz
[23] studied a class of autonomous SP systems, namely, system (SPρ,a) with ρ(x) ≡ λ > 0
and a (x) ≡ 1. With the help of Strauss inequality in the space of radial functions H1

r
[26], the author proved that the functional Jλ,1 is bounded below, infu∈H1

r
Jλ,1 (u) < 0 and

satisfies the (PS) condition on H1
r for 2 < p < 3, when Jλ,1 = Jρ,a . For that reason,

two positive radial solutions are found for λ > 0 sufficiently small using mountain pass
theorem and the global minimizing theory, and u = 0 is the unique solution for λ ≥ 1/4.
Moreover, by introducing Nehari–Pohozaev manifold, for all λ > 0, one positive radial
solution is found when 3 < p < 6. The corresponding results have been further improved
by Azzollini–Pomponio [3] and Zhao–Zhao [34] by proving the existence of ground state
solution (possibly non-radial) when λ = 1 and 3 < p < 6. Their proofs are both based on
Nehari–Pohozaev manifold by Ruiz.

Cerami-Varia [9] dealt with a class of non-autonomous SP systems without any symmetry
assumptions, i.e., system (SPρ,a) with 4 < p < 6. By establishing a compactness lemma
and using the Nehari manifold method, when the functions ρ and a satisfy some proper
assumptions, the existence of ground state and bound state solutions was presented. However,
for the case of 2 < p ≤ 4, we notice that the (PS) condition on H1(R3) is still unsolved
and that the functional Jρ,a is not bounded below on both Nehari manifold (2 < p ≤ 4) and
Nehari–Pohozaev manifold (2 < p < 3) for ‖ρ‖∞ sufficiently small. As a consequence,
the standard analysis in variational methods does not work. In [29], the authors proposed
a novel constraint approach to study the existence of positive solutions (including ground
state solutions) for 2 < p ≤ 4 and ‖ρ‖∞ sufficiently small filling in the gap in [9] while

emphasizing the existence of ground state solutions of system
(
SPρ,a

)
for 3.1813 ≈ 1+√

73
3 <

p ≤ 4. Again, we refer the interested readers to [28,29] for further applications on this
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approach. In an interesting paper recently, Mercuri and Tyler [21], have shown the existence
of ground state solutions of system

(
SPρ,a

)
for 3 < p < 4, assuming a(x) ≡ 1with different

assumptions on ρ at infinity (coercive or non-coercive).
In the present paper, we focus our attention on the symmetry, existence and multiplicity

of positive (ground state) solutions for a class of Schrö dinger–Poisson systems:{−�u + u + λφu = a (x) |u|p−2 u in R
3,

−�φ = u2 in R
3,

(
SPλ,a

)

where parameter λ > 0, 2 < p < 3 and a (x) is a positive continuous function in R
3

satisfying the following assumption:

(D1) a (x) ≥ lim|x |→∞ a (x) = a∞ > 0 uniformly on R
3.

As mentioned introduced earlier, system (SPλ,a) can be transformed into the following
nonlinear Schrödinger equation with a non-local term:

−�u + u + λφuu = a (x) |u|p−2 u in R
3,

(
Eλ,a

)
and the corresponding energy functional Jλ,a : H1(R3) → R is defined as

Jλ,a (u) = 1

2

∫
R3

(|∇u|2 + u2
)
dx + λ

4

∫
R3

φuu
2dx − 1

p

∫
R3

a (x) |u|p dx .

Furthermore, one can see that Jλ,a is a C1 functional with the derivative given by

〈
J ′
λ,a(u), ϕ

〉 =
∫
R3

(∇u∇ϕ + uϕ + λφuuϕ − a (x) |u|p−2uϕ
)
dx

for all ϕ ∈ H1(R3) with J ′
λ,a denoting the Fréchet derivative of Jλ,a .

Then we can deduce the conclusions in [23,24,29] that when 2 < p < 3 and the weight
function a (x) satisfies condition (D1), several results are obtained as follows.

(i) The functional Jλ,a is not bounded below on H1(R3), Nehari manifold and Nehari–
Pohozaev manifold for λ > 0 sufficient small.
(i i) There exists λ0 > 0 such that infu∈H1(R3) Jλ,a (u) > 0 for all λ > λ0.

(i i i)When a (x) ≡ 1, system
(
SPλ,a

)
has at least two positive radial solutions for λ > 0

sufficiently small.

Motivated by the facts mentioned above and the main results in [21], we propose to
study the existence and symmetry of ground state solutions to system

(
SPλ,a

)
in the various

functional settings corresponding to different hypotheses on parameter λ and weight function
a. The following are the two main objectives of this paper.

(I ) When 2 < p < 3 and the weight function a satisfies some suitable assumptions, we
show that there exist two positive numbers λ1 (p, a) and λ2 (p, a) such that for every
λ1 (p, a) < λ < λ2 (p, a) , functional Jλ,a is coercive and bounded below on H1(R3)

and infu∈H1(R3) Jλ,a (u) < 0. It follows that system
(
SPλ,a

)
has at least two positive

solutions including a ground state solution.
(I I ) When 2 < p < 3 and the weight function a (x) = a (|x |), we show that there is a
non-radial ground state solution in system

(
SPλ,a

)
.

To our knowledge, the available literature does not contain any results on the existence
of non-radial ground state solutions to system

(
SPλ,a

)
when 2 < p < 3. Before presenting
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our main results, we first recall a known conclusion (cf. [17]). Let wamax be the unique radial
positive solution of the following nonlinear Schrö dinger equation

−�u + u = amax |u|p−2 u in R
3.

(
E∞
0,amax

)

Clearly,

‖w0‖2H1 =
∫
R3

amax |w0|p dx =
(

S p
p

amax

) 2
p−2

. (1.2)

We now summarize our main results in the theorems below.

Theorem 1.1 Suppose that 2 < p < 3 and condition (D1) holds. In addition, we assume
that
(D2) there exists a∞ < a1 < amax := maxx∈R3 a (x) such that

amax >
2A (p) S p

p

(4 − p)2

⎛
⎝ 4 − p

2 (p − 2) S
2
S412/5

⎞
⎠

(p−2)/2

a1,

where A (p) := 2(6−p)/2 (3 − p)3−p (p − 2)p−2 , and Sr and S are the best constants for
the embeddings of H1(R3) in Lr (R3) and D1,2(R3) in L6(R3), respectively, for 2 ≤ r < 6;
(D3)

∫
R3 a (x)

∣∣wamax

∣∣p dx >
pκ0
2S p

p

∥∥wamax

∥∥p
H1 ,whereκ0 := A(p)S p

p
4−p

(
4−p

2(p−2)S
2
S412/5

)(p−2)/2

a1.

Then for each
[
A (p)

p
a∞
]2/(p−2)

< λ ≤
[
A (p)

p
a1

]2/(p−2)

,

Equation (Eλ,a) has two positive solutions u(1)
λ,a and u(2)

λ,a such that

Jλ,a

(
u(2)

λ,a

)
< 0 < Jλ,a

(
u(1)

λ,a

)
.

Furthermore, u(2)
λ,a is a ground state solution of Equation (Eλ,a).

To study the symmetry breaking of ground state solutions, we consider the following
equation:

−�u + u + λφuu = aε (x) |u|p−2 u in R
3,

(
Eλ,aε

)
where aε (x) = a (εx) and ε > 0. Then we have the following results.

Theorem 1.2 Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. In addition, we
assume that
(D4) a (x) = a (|x |) for all x ∈ R

3 and a (0) = amax.

Then for each
[
A (p)

p
a∞
]2/(p−2)

< λ ≤
[
A (p)

p
a1

]2/(p−2)

,

Equation (Eλ,aε ) has three positive solutions u
(1)
λ,aε

, u(2)
λ,aε

∈ H1
(
R
3
)
and vλ,aε ∈ H1

r such
that

Jλ,aε

(
u(2)

λ,aε

)
< Jλ,aε

(
vλ,aε

)
< 0 < Jλ,aε

(
u(1)

λ,aε

)

123



Existence and symmetry breaking of ground state solutions for... Page 5 of 29 59

for ε sufficiently small. Furthermore, u(2)
λ,aε

is a non-radial ground state solution of Equation
(Eλ,aε ).

Corollary 1.3 Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. In addition, we
assume that(
D4′) a (x) = a (|x |) for all x ∈ R

3 and a (r) is non-increasing for r > 0.
Then for each

[
A (p)

p
a∞
]2/(p−2)

< λ ≤
[
A (p)

p
a1

]2/(p−2)

,

Equation (Eλ,aε ) has a non-radial ground state solution for ε sufficiently small.

Remark 1.4 (i) Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. Let wamax be the
unique radial positive solution of Equation (E∞

0,amax
) and let a (x0) = amax for some x0 ∈ R

3.

Definewε (x) = wamax

(
x − x0

ε

)
.Then it follows from condition (D2) and (1.2) with amax >

2
4−p κ0 >

p
2 κ0 for 2 < p < 3 that for every

[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, we

have∫
R3

aε (x) |wε|p dx =
∫
R3

a (εx + x0) w
p
amax (x) dx

= amax

S p
p

∥∥wamax

∥∥p
H1 + o (ε)

>
pκ0
2S p

p

∥∥wamax

∥∥p
H1 = pκ0

2S p
p

‖wε‖p
H1 for ε sufficiently small. (1.3)

This implies that when a (x) is replaced by a (εx + x0) , the condition (D3) holds for ε

sufficiently small. Therefore, by Theorem 1.1, Equation (Eλ,aε ) has two positive solutions

u(1)
λ,aε

, u(2)
λ,aε

∈ H1
(
R
3
)
such that

Jλ,aε

(
u(2)

λ,aε

)
< 0 < Jλ

(
u(1)

λ,aε

)
for ε sufficiently small.

(i i)Assume that the conditions hold in Theorem 1.2. Since a (x) = a (|x |) and a (0) = amax,

using an argument similar to that in part (i) , we can obtain∫
R3

aε (x)
∣∣wamax

∣∣p dx >
pκ0
2S p

p

∥∥wamax

∥∥p
H1 for ε sufficiently small,

since x0 = 0. This means that the symmetric case still holds in Theorem 1.1 implying that
Equation (Eλ,aε ) has two radial positive solutions vλ,aε , ṽλ,aε ∈ H1

(
R
3
)
such that

Jλ,aε

(
vλ,aε

)
< 0 < Jλ

(̃
vλ,aε

)
for ε sufficiently small.

(i i i)Wemainly use energy comparison and constrained minimization to obtain the asymme-
try of u(2)

λ,aε
in Theorem 1.2, these, however, cannot be applied to u(1)

λ,aε
, so we cannot confirm

the symmetry of the solution u(1)
λ,aε

at present.

Remark 1.5 Under the assumption that λ �= 0, Equation
(
Eλ,aε

)
can be regarded as a pertur-

bation problem of the following nonlinear Schrödinger equation:{−�u + u = a (εx) |u|p−2 u in R
3,

u ∈ H1
(
R
3
)
.

(
E0,aε

)
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When a (x) = a (|x |) and a (r) is non-increasing for r > 0, by [14,15,18], it is known that
every positive solution of Equation

(
E0,aε

)
is radially symmetric for all ε > 0. Therefore,

by Corollary 1.3, we conclude that under the appropriate effect of non-local term, non-radial
positive (ground state) solution can be obtained.

The paper is organized as follows. In Sect. 2, we provide some preliminaries and prove
that the energy functional Jλ,a is coercive and bounded below in H1(R3).Moreover, by using
the filtration of the Nehari manifold:

Mλ,a(c) = {u ∈ Mλ,a : Jλ,a(u) < c},
whereMλ,a is the Nehari manifold and c is the energy level of the functional Jλ,a , we show
that there is an appropriate energy level c0 > 0 such that Mλ,a(c0) can be divided into two
submanifolds M(1)

λ,a and M(2)
λ,a , in which each local minimizer of the functional Jλ restricted

on M(i)
λ,a (i = 1, 2) is a critical point of Jλ,a in H1(R3). In Sect. 3, we prove that these

submanifolds M(i)
λ,a are non-empty and inf

u∈M(2)
λ,a

Jλ,a (u) < 0. In Sect. 4, we show that the

Palais-Smale condition of Jλ,a on submanifolds M(i)
λ,a holds and subsequently, we provide

the proof for Theorem 1.1. Finally, Sect. 5 is dedicated to the proof of Theorem 1.2.

2 Preliminaries

First, we define the Nehari manifold as follows.

Mλ,a := {u ∈ H1(R3)\{0} : 〈J ′
λ,a (u) , u

〉 = 0}.
Then, u ∈ Mλ,a if and only if ‖u‖2

H1 + λ
∫
R3 φuu2dx − ∫

R3 a (x) |u|pdx = 0. Using the
Sobolev inequality, we have

‖u‖2H1 ≤ ‖u‖2H1 + λ

∫
R3

φuu
2dx =

∫
R3

a (x) |u|p dx
≤ S−p

p amax ‖u‖p
H1

for all u ∈ Mλ,a . Subsequently,

∫
R3

a (x) |u|p dx ≥ ‖u‖2H1 ≥
(

S p
p

amax

)2/(p−2)

for all u ∈ Mλ,a . (2.1)

The Nehari manifold Mλ,a is closely linked to the behavior of the function of the form
hλ,u : t → Jλ,a (tu) for t > 0. Such maps are known as fibering maps and were introduced
by Drábek–Pohozaev [11], and further discussed by Brown–Zhang [8] and Brown–Wu [6,7]
and others. For u ∈ H1(R3), we find

hλ,u (t) = t2

2
‖u‖2H1 + λt4

4

∫
R3

φuu
2dx − t p

p

∫
R3

a (x) |u|p dx,

h′
λ,u (t) = t ‖u‖2H1 + λt3

∫
R3

φuu
2dx − t p−1

∫
R3

a (x) |u|p dx,

h′′
λ,u (t) = ‖u‖2H1 + 3λt2

∫
R3

φuu
2dx − (p − 1) t p−2

∫
R3

a (x) |u|p dx .
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As a direct consequence, we have

th′
λ,u (t) = ‖tu‖2H1 + λ

∫
R3

φtu (tu)2 dx −
∫
R3

a (x) |tu|p dx

and so, u ∈ H1(R3)\ {0} and t > 0, h′
λ,u (t) = 0 holds if and only if tu ∈ Mλ,a . In particular,

h′
λ,u (1) = 0 holds if and only if u ∈ Mλ,a . It becomes natural to split Mλ,a into three parts

corresponding to the local minima, local maxima and points of inflection. Following [31],
we define

M+
λ,a = {u ∈ Mλ,a : h′′

λ,u (1) > 0},
M0

λ,a = {u ∈ Mλ,a : h′′
λ,u (1) = 0},

M−
λ,a = {u ∈ Mλ,a : h′′

λ,u (1) < 0}.

Lemma 2.1 Suppose that u0 is a local minimizer for Jλ,a on Mλ,a and u0 /∈ M0
λ,a . Then

J ′
λ,a (u0) = 0 in H−1(R3).

Proof The proof of Lemma 2.1 is essentially the same as that in Brown–Zhang [8, Theorem
2.3] (or see Binding–Drábek–Huang [4]), so omitted it here. ��

For each u ∈ Mλ,a, we find that

h′′
λ,u (1) = ‖u‖2H1 + 3λ

∫
R3

φuu
2dx − (p − 1)

∫
R3

a (x) |u|p dx

= − (p − 2) ‖u‖2H1 + λ (4 − p)
∫
R3

φuu
2dx (2.2)

= −2 ‖u‖2H1 + (4 − p)
∫
R3

a (x) |u|p dx . (2.3)

For each u ∈ M−
λ,a , using (2.1) and (2.3) gives

Jλ,a(u) = 1

4
‖u‖2H1 − 4 − p

4p

∫
R3

a (x) |u|p dx >
p − 2

4p
‖u‖2H1

≥ p − 2

4p

(
S p
p

amax

)2/(p−2)

.

Hence, we obtain the following result.

Lemma 2.2 The energy functional Jλ,a is coercive and bounded below on M−
λ,a . Further-

more,

Jλ,a(u) >
p − 2

4p

(
S p
p

amax

)2/(p−2)

for all u ∈ M−
λ,a .

The function φu defined in (1.1) for ρ ≡ 1 possesses the following properties (see [3,23]).

Lemma 2.3 For each u ∈ H1(R3), the following two inequalities are true.

(i) φu ≥ 0;
(i i)

∫
R3 φuu2dx ≤ S

−2
S−4
12/5‖u‖4

H1 .
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Lemma 2.4 Suppose that 2 < p < 3 and λ, d > 0. Let fλ,d (s) = 1
4 +

√
λ
8 s − d

p s
p−2 for

s ≥ 0. Then there exist dλ,p := p
A(p) λ

(p−2)/2 and sλ,p (d) :=
[
d(p−2)

p

√
8
λ

]1/(3−p)

satisfying

(i) f ′
λ,d

(
sλ,p (d)

) = 0 and fλ,dλ,p

(
sλ,p

(
dλ,p

)) = 0;
(i i) for each d > dλ,p there exist ηd , ξd > 0 such that ηd < sλ,p (d) < ξd and fλ,d (s) < 0
for all s ∈ (ηd , ξd) ;
(i i i) for each 0 < d < dλ,p, fλ,d (s) > 0 for all s > 0.

Proof By a straightforward calculation, we can show that the results are true. ��
Following the idea of Lions [19] (or see [23]), we have√

λ

8

∫
R3

|u|3 dx =
√

λ

8

∫
R3

(−�φu) |u| dx =
√

λ

8

∫
R3

〈∇φu,∇ |u|〉 dx

≤ 1

4

∫
R3

|∇u|2 dx + λ

8

∫
R3

|∇φu |2 dx

= 1

4

∫
R3

|∇u|2 dx + λ

8

∫
R3

φuu
2dx for all u ∈ H1(R3), (2.4)

this implies that

Jλ,a(u) ≥ 1

4
‖u‖2H1 +

∫
R3

(
1

4
u2 +

√
λ

8
|u|3 − 1

p
a (x) |u|p

)
dx + λ

8

∫
R3

φuu
2dx

= 1

4
‖u‖2H1 +

∫
{
a(x)> pλ(p−2)/2

A(p)

} u2
(
1

4
+
√

λ

8
|u| − 1

p
a (x) |u|p−2

)
dx

+
∫
{
a(x)≤ pλ(p−2)/2

A(p)

} u2
(
1

4
+
√

λ

8
|u| − 1

p
a (x) |u|p−2

)
dx

+λ

8

∫
R3

φuu
2dx . (2.5)

Then by Lemma 2.4 and (2.5), for each
[
A (p)

p
a∞
]2/(p−2)

< λ ≤
[
A (p)

p
a1

]2/(p−2)

,

we have

Jλ,a(u) ≥ 1

4
‖u‖2H1 +

∫
{
a(x)> pλ(p−2)/2

A(p)

} u2
(
1

4
+
√

λ

8
|u| − 1

p
a(x) |u|p−2

)
dx

≥ 1

4
‖u‖2H1 +

∫
{
a(x)> pλ(p−2)/2

A(p)

} mλ (x) dx, (2.6)

where mλ (x) = infs≥0

(
1
4 s

2 +
√

λ
8 s

3 − 1
p a (x) s p

)
< 0 for all x ∈

{
a (x) >

pλ(p−2)/2

A(p)

}
.

Note that

inf
x∈
{
a(x)> pλ(p−2)/2

A(p)

}mλ (x) ≤ 1

4
s2λ,p (amax) +

√
λ

8
s3λ,p (amax) − 1

p
amaxs

p
λ,p (amax) < 0,
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and

0 >

∫
{
a(x)> pλ(p−2)/2

A(p)

} mλ (x) dx ≥
∣∣∣∣
{
a (x) >

pλ(p−2)/2

A (p)

}∣∣∣∣ inf
x∈
{
a(x)> pλ(p−2)/2

A(p)

}mλ (x) ,

(2.7)

where sλ,p (amax) =
[
amax(p−2)

p

√
8
λ

]1/(3−p)

. Furthermore, the following results are true.

Theorem 2.5 Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. Then for each[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, Jλ,a is coercive and bounded below on H1(R3).

Furthermore,

inf
u∈H1(R3)

Jλ,a(u) >

∫
{
a(x)> pλ(p−2)/2

A(p)

} mλ (x) dx > −∞.

Proof Since

0 < a∞ <
p

A (p)
λ(p−2)/2 ≤ a1 < amax for all

[
A (p)

p
a∞
]2/(p−2)

< λ ≤
[
A (p)

p
a1

]2/(p−2)

,

by conditions (D1) and (D2), we conclude that

0 <

∣∣∣∣
{
a (x) >

pλ(p−2)/2

A (p)

}∣∣∣∣ < ∞. (2.8)

Thus, by (2.6)–(2.8),

0 >

∫
{
a(x)> pλ(p−2)/2

A(p)

} mλ (x) dx > −∞

and

Jλ,a(u) ≥ 1

4
‖u‖2H1 +

∫
{
a(x)> pλ(p−2)/2

A(p)

} mλ (x) dx .

This completes the proof. ��

Lemma 2.6 Suppose that 2 < p < 3. Let λ >
[
A(p)
p a∞

]2/(p−2)
and let uλ be a non-trivial

solution of the following equation:

−�u + u + λφuu = a∞ |u|p−2 u in R
3.

(
Eλ,a∞

)
Then Jλ,a∞(uλ) > 0, where Jλ,a∞ = Jλ,a for a ≡ a∞.

Proof By Lemma 2.4 and (2.4)–(2.5) ,

Jλ,a∞(u) ≥ 1

4
‖u‖2H1 +

∫
R3

u2
(
1

4
+
√

λ

8
|u| − 1

p
a∞ |u|p−2

)
dx

> 0 for all u ∈ H1(R3) \ {0} .

This completes the proof. ��

123



59 Page 10 of 29 T. Wu

Let κ0 := A(p)S p
p

4−p

(
4−p

2(p−2)S
2
S412/5

)(p−2)/2

a1.Define the filtration ofNeharimanifoldMλ,a

as follows.

Mλ,a

⎡
⎣ p − 2

2p

(
S p
p

κ0

)2/(p−2)
⎤
⎦ =

⎧⎨
⎩u ∈ Mλ,a : Jλ,a (u) <

p − 2

2p

(
S p
p

κ0

)2/(p−2)
⎫⎬
⎭ .

Then we have the following results.

Lemma 2.7 Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. Then for each[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, there exist two C1 submanifolds M(1)

λ,a ⊂ M−
λ,a

and M(2)
λ,a ⊂ M+

λ,a such that Mλ,a

[
p−2
2p

(
S p
p

κ0

)2/(p−2)
]

= M(1)
λ,a ∪ M(2)

λ,a . Furthermore, each

local minimizer of the functional Jλ in the submanifoldsM(1)
λ,a andM

(2)
λ,a is a critical point of

Jλ,a in H1(R3).

Proof Let u ∈ Mλ,a with Jλ,a (u) <
p−2
2p

(
S p
p

κ0

)2/(p−2)
. Then we have

p − 2

2p

(
S p
p

κ0

)2/(p−2)

> Jλ,a(u) ≥ p − 2

2p
‖u‖2H1 − λ (4 − p)

4pS
2
S412/5

‖u‖4H1 . (2.9)

Now, we consider the quadratic equation as follows

λ (4 − p)

2 (p − 2) S
2
S412/5

x2 − x +
(
S p
p

κ0

)2/(p−2)

= 0.

It is easily seen that one of its solutions is expressed as

x0 =
⎛
⎜⎝1 ±

√√√√√1 − 2λ (4 − p)

(p − 2) S
2
S412/5

(
S p
p

κ0

) 2
p−2

⎞
⎟⎠ (p − 2) S

2
S4

λ (4 − p)
. (2.10)

Since

λ ≤
[
A (p)

p
a1

]2/(p−2)
=

2 (p − 2) S
2
S412/5

4 − p

(
(4 − p) κ0

pS pp

)2/(p−2)

<
(p − 2) S

2
S412/5

2 (4 − p)

(
κ0

S pp

)2/(p−2)

and

4

(
4 − p

p

)2/(p−2)

< 4e−2 ≈ 0.541 34 < 1 for all 2 < p < 3,

it follows from (2.10) and (2.9) that if
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, then there

exist two positive numbers D̂1 and D̂2 satisfying

(
S p
p

amax

)1/(p−2)

< D̂1 ≤ √
2

(
S p
p

κ0

)1/(p−2)

<

√√√√ (p − 2) S
2
S412/5

λ (4 − p)
< D̂2 (2.11)
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such that

‖u‖H1 < D̂1 or ‖u‖H1 > D̂2.

Thus, we have

Mλ,a

⎡
⎣ p − 2

2p

(
S p
p

κ0

)2/(p−2)
⎤
⎦ = M(1)

λ,a ∪ M(2)
λ,a, (2.12)

where

M(1)
λ,a :=

⎧⎨
⎩u ∈ Mλ,a

⎡
⎣ p − 2

2p

(
S p
p

κ0

)2/(p−2)
⎤
⎦ : ‖u‖H1 < D̂1

⎫⎬
⎭

and

M(2)
λ,a :=

⎧⎨
⎩u ∈ Mλ,a

⎡
⎣ p − 2

2p

(
S p
p

κ0

)2/(p−2)
⎤
⎦ : ‖u‖H1 > D̂2

⎫⎬
⎭ .

Moreover, by (2.3) and (2.10) and Lemma 2.3, we have

h′′
λ,u (1) ≤ − (p − 2) ‖u‖2H1 + λ (4 − p)

∫
R3

φuu
2dx

≤ (p − 2) ‖u‖2H1

⎛
⎝ 2λ (4 − p)

S
2
S412/5 (p − 2)

(
S p
p

κ0

)2/(p−2)

− 1

⎞
⎠

< 0 for all u ∈ M(1)
λ,a;

here we have using 1
2(p−2)/2 − 4−p

p > 0 for 2 < p < 3. This implies that M(1)
λ,a ⊂ M−

λ,a .

Using (2.10) we derive that

1

4
‖u‖2H1 − 4 − p

4p

∫
R3

a (x) |u|pdx = Jλ,a (u) <
p − 2

2p

(
S p
p

κ0

)2/(p−2)

<
p − 2

4p
‖u‖2H1 for all u ∈ M(2)

λ,a,

which implies that

h′′
λ,u (1) = −2 ‖u‖2H1 + (4 − p)

∫
R3

a (x) |u|p dx > 0 for all u ∈ M(2)
λ,a,

and soM(2)
λ,a ⊂ M+

λ,a . This completes the proof. ��

3 Non-emptiness of submanifolds M(i)
�,a

For u ∈ H1(R3)\ {0} , we define

Ta (u) =
( ‖u‖2

H1∫
R3 a (x) |u|p dx

) 1
p−2

.
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Then we have the following results.

Lemma 3.1 Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. Then for

each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
and u ∈ H1(R3)\ {0} satisfying

∫
R3 a (x) |u|p dx > κ0S

−p
p ‖u‖p

H1 , there exists a constant t̂ (0)λ >
(

p
4−p

)1/(p−2)
Ta (u) such

that

inf
t≥0

Jλ,a (tu) = inf(
p

4−p

)1/(p−2)
Ta(u)<t<̂t (0)λ

Jλ,a (tu) < 0. (3.1)

Proof For any u ∈ H1(R3)\ {0} and t > 0, it has

Jλ,a (tu) = t2

2
‖u‖2H1 + λt4

4

∫
R3

φuu
2dx − t p

p

∫
R3

a (x) |u|p dx

= t4
[
g (t) + λ

4

∫
R3

φuu
2dx

]

= hλ,u(t),

where

g (t) = t−2

2
‖u‖2H1 − t p−4

p

∫
R3

a (x) |u|p dx .

Clearly, Jλ,a (tu) = 0 if and only if

g (t) + λ

4

∫
R3

φuu
2dx = 0.

It is not difficult to observe that

g
(
t̂a
) = 0, lim

t→0+ g(t) = ∞ and lim
t→∞ g(t) = 0,

where t̂a = ( p
2

)1/(p−2)
Ta(u). Considering the derivative of g(t), we find

g′ (t) = −t−3 ‖u‖2H1 + (4 − p) t p−5

p

∫
R3

a (x) |u|p dx

= t−3
(

(4 − p) t p−2

p

∫
R3

a (x) |u|p dx − ‖u‖2H1

)
,

which implies that g (t) is decreasing when 0 < t <
(

p
4−p

)1/(p−2)
Ta (u) and increasing

when t >
(

p
4−p

)1/(p−2)
Ta (u) , and so

inf
t>0

g (t) = g

[(
p

4 − p

)1/(p−2)

Ta (u)

]

= − p − 2

2 (4 − p)

(
(4 − p)

∫
R3 a (x) |u|p dx
p ‖u‖2

H1

)2/(p−2)

‖u‖2H1 < 0. (3.2)
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It follows fromLemma 2.3 (i i) that for each u ∈ H1
(
R
3
) \ {0} satisfying ∫

R3 a (x) |u|p dx >

κ0S
−p
p ‖u‖p

H1 we have

inf
t>0

g (t) < − p − 2

2 (4 − p)

(
(4 − p) κ0

pS p
p

)2/(p−2)

‖u‖4H1

= − 1

4S
2
S412/5

(
A (p)

p
a1

)2/(p−2)

‖u‖4H1

≤ −λ

4
S

−2
S−4
12/5 ‖u‖4H1 ≤ −λ

4

∫
R3

φuu
2dx . (3.3)

This indicates that there exist t̂ (0)λ and t̂ (1)λ satisfying

0 < t̂ (1)λ <

(
p

4 − p

)1/(p−2)

Ta (u) < t̂ (0)λ (3.4)

such that

g
(̂
t ( j)λ

)
+ λ

4

∫
R3

φuu
2dx = 0 for j = 0, 1.

That is,

Jλ,a

(̂
t ( j)λ u

)
= 0 for j = 0, 1.

Moreover, by (3.2) and (3.3) , for each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
and

u ∈ H1(R3)\ {0} satisfying
∫
R3

a (x) |u|p dx > κ0S
−p
p ‖u‖p

H1 ,

we have

inf
t>0

Jλ,a (tu) ≤ Jλ,a

((
p

4 − p

)1/(p−2)

Ta (u) u

)
< 0.

Note that

h′
λ,u (t) = 4t3

(
g (t) + λ

4

∫
R3

φuu
2dx

)
+ t4g′(t),

which leads to

h′
λ,u (t) < 0 for all t ∈

(
t̂ (1)λ ,

(
p

4 − p

)1/(p−2)

Ta (u)

]

and

h′
λ,u

(̂
t (0)λ

)
> 0.

Consequently, we arrive at inequality (3.1). ��
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Lemma 3.2 Suppose that 2 < p < 3 and conditions (D1) − (D2) hold. Then for

each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
and u ∈ H1(R3)\ {0} satisfying∫

R3 a (x) |u|p dx > κ0S
−p
p ‖u‖p

H1 , there exist two constants t+λ,a and t
−
λ,a which satisfy

Ta (u) < t−λ,a <

(
2

4 − p

) 1
p−2

Ta (u) < t+λ,a

such that

t±λ,au ∈ M±
λ,a, Jλ,a

(
t−λ,au

)
= sup

0≤t≤t+λ,a

Jλ,a (tu)

and

Jλ,a

(
t+λ,au

)
= inf

t≥t−λ,a

Jλ,a (tu) = inf
t≥0

Jλ,a (tu) < 0.

Proof Define

f (t) = t−2 ‖u‖2H1 − t p−4
∫
R3

a (x) |u|p dx for t > 0.

Clearly, tu ∈ Mλ,a if and only if f (t) + λ
∫
R3 φuu2dx = 0. A straightforward evaluation

gives

f (Ta (u)) = 0, lim
t→0+ f (t) = ∞ and lim

t→∞ f (t) = 0.

Since

f ′ (t) = t−3
(

−2 ‖u‖2H1 + (4 − p) t p−2
∫
R3

a (x) |u|p dx
)

,

we find that f (t) is decreasing when 0 < t <
(

2
4−p

)1/(p−2)
Ta (u) and increasing when

t >
(

2
4−p

)1/(p−2)
Ta(u). This gives

inf
t>0

f (t) = f

((
2

4 − p

) 1
p−2

Ta(u)

)
. (3.5)

It follows from Lemma 2.3 (i i) that for each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
and

u ∈ H1(R3)\ {0} satisfying∫
R3

a (x) |u|p dx > κ0S
−p
p ‖u‖p

H1 ,

we have

f

((
2

4 − p

)1/(p−2)

Ta (u)

)
< −1

2

( p
2

)2/(p−2)
S

−2
S−4
12/5

(
A (p)

p
a1

)2/(p−2)

‖u‖4H1

≤ −1

2

( p
2

)2/(p−2)
λS

−2
S−4
12/5 ‖u‖4H1

< −λ

∫
R3

φuu
2dx .
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Thus, there exist two constants t+λ,a and t−λ,a > 0 which satisfy

Ta (u) < t−λ,a <

(
2

4 − p

)1/(p−2)

Ta (u) < t+λ,a (3.6)

such that

f
(
t±λ,a

)
+ λ

∫
R3

φuu
2dx = 0.

That is, t±λ,au ∈ Mλ,a . By a calculation on the second order derivatives, we find

h′′
λ,t−λ,au

(1) = −2
∥∥∥t−λ,au

∥∥∥2
H1

+ (4 − p)
∫
R3

a (x)
∣∣∣t−λ,au

∣∣∣p dx
=
(
t−λ,a

)5
f ′ (t−λ,a

)
< 0

and

h′′
λ,t+λ,au

(1) = −2
∥∥∥t+λ,au

∥∥∥2
H1

+ (4 − p)
∫
R3

a (x)
∣∣∣t+λ,au

∣∣∣p dx
=
(
t+λ,a

)5
f ′ (t+λ,a

)
> 0.

This implies that t±λ,au ∈ M±
λ,a and

h′
λ,u (t) = t3

(
f (t) + λ

∫
R3

φuu
2dx

)
.

One can see that h′
λ,u (t) > 0 holds for all t ∈

(
0, t−λ,a

)
∪
(
t+λ,a,∞

)
and h′

λ,u (t) < 0 holds

for all t ∈
(
t−λ,a, t

+
λ,a

)
. Subsequently,

Jλ,a

(
t−λ,au

)
= sup

0≤t≤t+λ,a

Jλ,a (tu) and Jλ,a

(
t+λ,au

)
= inf

t≥t−λ,a

Jλ,a (tu) ,

and so Jλ,a

(
t+λ,au

)
< Jλ,a(t

−
λ,au). Using Lemma 3.1, we conclude

Jλ,a

(
t+λ,au

)
= inf

t≥0
Jλ,a (tu) < 0.

This completes the proof. ��

For b > 0, we consider the following nonlinear Schrödinger equation.

−�u + u = b |u|p−2 u in R
3.

(
E∞
0,b

)

From [14,17], for every real number b > 0, Equation (E∞
0,b) has a unique radial positive

solution wb with wb (0) = maxx∈R3 wb(x). Moreover,

α∞
0,b := inf

u∈M∞
0,b

I∞
b (u) = I∞

b (wb) = p − 2

2p

(
S p
p

b

) 2
p−2

,
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where I∞
b is the energy functional of Equation (E∞

0,b) in H1(R3) in the form

I∞
b (u) = 1

2

∫
R3

(|∇u|2 + u2)dx − 1

p

∫
R3

b |u|p dx (3.7)

with the Nehari manifold

M∞
0,b = {u ∈ H1(R3)\ {0} :

〈(
I∞
b

)′
(u) , u

〉
= 0}.

Let wamax be a unique radial positive solution of Equation (E∞
0,amax

). Then we have the
following results.

Lemma 3.3 Suppose that 2 < p < 3 and conditions (D1) − (D3) hold. Then for each[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
there exist two constants t̃+λ,a and t̃

−
λ,a satisfying

Ta
(
wamax

)
< t̃−λ,a <

(
2

4 − p

)1/(p−2)

Ta
(
wamax

)
< t̃+λ,a

such that t̃−λ,awamax ∈ M(1)
λ,a, t̃+λ,awamax ∈ M(2)

λ,a with

Jλ,a

(
t̃−λ,awamax

)
= sup

0≤t≤t̃+λ,a

Jλ,a
(
twamax

)
and Jλ,a

(
t̃+λ,awamax

)
= inf

t≥t̃−λ,a

Jλ,a
(
twamax

)
< 0.

Proof Since ∫
R3

a (x)
∣∣wamax

∣∣p dx >
pκ0
2S p

p

∥∥wamax

∥∥p
H1 >

κ0

S p
p

∥∥wamax

∥∥p
H1 ,

by Lemma 3.2, for each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
there exist two constants

t̃+λ,a and t̃
−
λ,a satisfying

Ta
(
wamax

)
< t̃−λ,a <

(
2

4 − p

)1/(p−2)

Ta
(
wamax

)
< t̃+λ,a

such that t̃±λ,awamax ∈ M±
λ,a,

Jλ,a

(
t̃−λ,awamax

)
= sup

0≤t≤t̃+λ,a

Jλ,a(twamax)

and

Jλ,a

(
t̃+λ,awamax

)
= inf

t≥t̃−λ,a

Jλ,a
(
twamax

) = inf
t≥0

Jλ,a
(
twamax

)
< 0.

Using t̃−λ,awamax ∈ M−
λ,a and condition (D3) , we have

Jλ,a

(
t̃−λ,awamax

)
=
(
t̃−λ,a

)2
4

∥∥wamax

∥∥2
H1 − 4 − p

4p

(
t̃−λ,a

)p ∫
R3

a (x) w
p
amaxdx

<

(
t̃−λ,a

)2
4

∥∥wamax

∥∥2
H1 − (4 − p) κ0

8S p
p

(
t̃−λ,a

)p ∥∥wamax

∥∥p
H1
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≤ p − 2

4p

(
4

p (4 − p)

)2/(p−2)
(
S p
p

κ0

)2/(p−2)

<
p − 2

2p

(
S p
p

κ0

)2/(p−2)

.

This implies that t̃−λ,awamax ∈ M(1)
λ,a . Since Jλ,a

(
t̃+λ,awamax

)
< 0, we have t̃+λ,awamax ∈ M(2)

λ,a .

This completes the proof. ��

4 Proof of Theorem 1.1

First, we define the Palais–Smale (simply by (PS)) sequences and (PS)–conditions in H1
(
R
3
)

for Jλ,a as follows.

Definition 4.1 (i) For β ∈ R, a sequence {un} is a (PS)β–sequence in H1(R3) for Jλ,a if
Jλ,a(un) = β + o(1) and J ′

λ,a(un) = o(1) strongly in H−1
(
R
3
)
as n → ∞.

(i i) We say that Jλ,a satisfies the (PS)β–condition in H1(R3) if every (PS)β–sequence in
H1(R3) for Jλ,a contains a convergent subsequence.

Proposition 4.2 Suppose that condition (D1) holds. Let {un} be a bounded (PS)β–sequence
in H1(R3) for Jλ,a . There exist a subsequence {un} , a number m ∈ N, a sequences

{
xin
}∞
n=1

in R
3, a function u0 ∈ H1(R3) and 0 �≡ vi ∈ H1(R3) when 1 ≤ i ≤ m such that

(i) |xin | → ∞ and |xin − x j
n | → ∞ as n → ∞, 1 ≤ i �= j ≤ m;

(i i) −�u0 + u0 + λφu0u0 = a (x) |u0|p−2 u0 in R
3;

(i i i) −�vi + vi + λφvi v
i = a∞

∣∣vi ∣∣p−2
vi in R

3;
(iv) un = u0 +

m∑
i=1

vi
(· − xin

)+ o(1) strongly in H1(R3); and

(v) Jλ,a(un) = Jλ,a(u0) +
m∑
i=1

Jλ,a∞(vi ) + o(1).

The proof is similar to that of [9, Lemma 4.1] or [32, Lemma 5.1], so we omit it here.

Corollary 4.3 Suppose that 2 < p < 3 and condition (D1) − (D2) hold. Then for each[
A (p)

p
a∞
]2/(p−2)

< λ ≤
[
A (p)

p
a1

]2/(p−2)

we have the following results.
(i) If {un} ⊂ M(1)

λ,a is a (PS)β–sequence in H1(R3) for Jλ,a with β > 0, then there exist a

subsequence {un} and a nonzero u0 in H1(R3) such that un → u0 strongly in H1(R3) and
Jλ,a (u0) = β. Furthermore, u0 is a non-trivial solution of Equation (Eλ,a).

(i i) If {un} ⊂ M(2)
λ,a is a (PS)β–sequence in H1(R3) for Jλ,a with β < 0, then there exist a

subsequence {un} and a nonzero u0 in H1(R3) such that un → u0 strongly in H1(R3) and
Jλ,a (u0) = β. Furthermore, u0 is a non-trivial solution of Equation (Eλ,a).

Proof (i) Let {un} ⊂ M(1)
λ,a be a (PS)β–sequence in H1(R3) for Jλ,a with β > 0. Then

Jλ,a (un) = β + o (1) < α∞
0,κ0 = p − 2

2p

(
S p
p

κ0

) 2
p−2

.
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Since ‖un‖H1 < D̂1, there exist a subsequence {un} and u0 ∈ H1(R3) such that un⇀u0
weakly in H1(R3) and ‖u0‖H1 < D̂1. If u0 = 0, then by Lemma 2.6 and Proposition 4.2,
there exist {xn} ⊂ R

3 and v0 ∈ H1(R3)\{0} such that un (· + xn) ⇀v0 in H1(R3) and v0 is a
non-trivial solution of equation:−�u+u+λφuu = a∞ |u|p−2 u inR3 and 0 < J∞

λ,a∞ (v0) ≤
β < α∞

0,κ0
. Moreover, ‖v0‖H1 ≤ lim inf ‖un (· + xn)‖H1 = lim inf ‖un‖H1 < D̂1. Note that

for 2 < p < 3, there holds
(
h∞

λ,v0

)′
(1) = 0 and

(
h∞

λ,v0

)′′
(1) = − (p − 2) ‖v0‖2H1 + λ (4 − p)

∫
R3

φv0v
2
0dx

≤ (p − 2) ‖v0‖2H1

⎛
⎝ λ (4 − p)

S
2
S412/5 (p − 2)

‖v0‖2H1 − 1

⎞
⎠

< (p − 2) ‖v0‖2H1

⎛
⎝ 2λ (4 − p)

S
2
S412/5 (p − 2)

(
S p
p

κ0

) 2
p−2

− 1

⎞
⎠

< 0,

where h∞
λ,v0

= hλ,v0 for a = a∞. This implies that v0 ∈ M(1)
λ,a∞ and h∞

λ,v0
(t) is increasing

on [0, 1] . Since ta∞ (v0) v0 ∈ M∞
0,a∞ , where

0 < ta∞ (v0) :=
( ‖v0‖2H1∫

R3 a∞ |v0|p dx

)1/(p−2)

< 1, (4.1)

and so

(
p − 2

2p

)(
S p
p

a∞

)2/(p−2)

= α∞
0,a∞ ≤ I∞

a∞
(
ta∞ (v0) v0

)
< Jλ,a∞

(
ta∞ (v0) v0

)
< Jλ,a∞ (v0)

≤ β < α∞
0,κ0 =

(
p − 2

2p

)(
S p
p

κ0

)2/(p−2)

,

which implies that a∞ > κ0, a contradiction. Hence u0 is a non-trivial solution of Equation
(Eλ,a). Moreover, by Lemma 2.6 and Proposition 4.2 (iv) − (v) , un → u0 strongly in
H1(R3) and Jλ,a (u0) = β < α∞

0,κ0
which implies that u0 ∈ M(1)

λ,a .

(i i) Let {un} ⊂ M(2)
λ,a be a (PS)β–sequence in H1(R3) for Jλ,a with β < 0.By Theorem 2.5,

there exist a subsequence {un} and u0 ∈ H1(R3) such that un⇀u0 weakly in H1(R3) and
J ′
λ,a (u0) = 0. Moreover, by Lemma 2.6 and Proposition 4.2 (iv) − (v) , un → u0 strongly

in H1(R3) and Jλ,a (u0) = β. Thus, u0 ∈ M(2)
λ,a is a non-trivial solution of Equation (Eλ,a).

This completes the proof. ��

Define

α
(i)
λ,a = inf

u∈M(i)
λ,a

Jλ,a(u) for i = 1, 2.
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Then by Theorem 2.5, Lemmas 2.2 and 3.2 , and the facts that M(1)
λ,a ⊂ M−

λ,a and M(2)
λ,a ⊂

M+
λ,a, we have

− ∞ < α
(2)
λ,a < 0 <

2p

4 − p

(
S p
p

amax

)
≤ α

(1)
λ,a <

(
p − 2

2p

)(
S p
p

κ0

)2/(p−2)

. (4.2)

Remark 4.4 It is not difficult to prove that

α
(1)
λ,a = inf

u∈M(1)
λ,a

Jλ,a(u) = inf
u∈M−

λ,a

Jλ,a(u)

and

α
(2)
λ,a = inf

u∈M(2)
λ,a

Jλ,a(u) = inf
u∈M+

λ,a

Jλ,a(u) = inf
u∈Mλ,a

Jλ,a(u). (4.3)

Indeed, it is clear that α(1)
λ,a ≥ infu∈M−

λ,a
Jλ,a(u), sinceM(1)

λ,a ⊂ M−
λ,a . Moreover, if

inf
u∈M−

λ,a

Jλ,a(u) ≥
(
p − 2

2p

)(
S p
p

κ0

)2/(p−2)

,

then by (4.2), infu∈M−
λ,a

Jλ,a(u) > α
(1)
λ,a, which is a contradiction. Thus, there exists a mini-

mizing sequence {un} ⊂ M−
λ,a such that

Jλ,a(un) → inf
u∈M−

λ,a

Jλ,a(u) <

(
p − 2

2p

)(
S p
p

κ0

)2/(p−2)

,

which implies {un} ⊂ M(1)
λ,a . This indicates that Jλ,a(un) ≥ α

(1)
λ,a . Hence, α

(1)
λ,a =

infu∈M−
λ,a

Jλ,a(u). Repeating the same argument, we obtain α
(2)
λ,a = infu∈M+

λ,a
Jλ,a(u). Fur-

thermore, by (4.2 ), we also have α
(2)
λ,a = infu∈Mλ,a Jλ,a(u).

Following [31], we have the following results.

Lemma 4.5 Suppose that 2 < p < 3 and conditions (D1) − (D3) hold. Then for each
i = 1, 2 and u ∈ M(i)

λ,a, there exist a number σ > 0 and a differentiable function t∗ :
B(0, σ ) ⊂ X → R

+ such that

t∗(0) = 1 and t∗(v)(u − v) ∈ M(i)
λ,a

for all v ∈ B(0, σ ), and

〈(t∗)′(0), ϕ〉 = 2
∫
R3(∇u∇ϕ + uϕ)dx + 4λ

∫
R3 φuuϕdx − p

∫
R3 a (x) |u|p−2uϕdx

‖u‖2
H1 − (p − 1)

∫
R3 a (x) |u|pdx

for all ϕ ∈ H1(R3).

Proof For any u ∈ M(i)
λ,a , we define the function Fu : R × X → R by

Fu(t, v) = 〈J ′
λ,a(t(u − v)), t(u − v)〉

= t2
∫
R3

[|∇(u − v)|2 + (u − v)2]dx + λt4
∫
R3

φuu
2dx
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−t p
∫
R3

a (x) |u − v|pdx .

It is not difficult to verify that Fu(1, 0) = 〈J ′
λ,a(u), u〉 = 0 and

∂Fu
∂t

(1, 0) = 2‖u‖2H1 + 4λ
∫
R3

φuu
2dx − p

∫
R3

a (x) |u|pdx

= −2‖u‖2H1 − (p − 4)
∫
R3

a (x) |u|pdx �= 0.

According to the implicit function theorem, there exist a number σ > 0 and a differentiable
function t∗ : B(0, σ ) ⊂ X → R satisfying t∗(0) = 1 and

〈(t∗)′(0), ϕ〉
= 2

∫
R3(∇u∇ϕ + uϕ)dx + 4λ

∫
R3 φuuϕdx − p

∫
R3 a (x) |u|p−2uϕdx

‖u‖2
H1 − (p − 1)

∫
R3 a (x) |u|pdx

for all ϕ ∈ H1(R3) such that

Fu(t
∗(v), v) = 0 for all v ∈ B(0, σ ),

that is,

〈J ′
λ,a(t

∗(v)(u − v)), t∗(v)(u − v)〉 = 0 for all v ∈ B(0, σ ),

and together with the continuity of the map t∗, we deduce that

h′′
λ,t∗(v)(u−v)(1) = −2‖t∗(v)(u − v)‖2H1 − (p − 4)

∫
R3

a (x) |t∗(v)(u − v)|pdx
< 0

and

Jλ,a(t
∗(v)(u − v)) <

(
p − 2

2p

)(
S p
p

κ0

)2/(p−2)

,

if σ is sufficiently small. Hence, t∗(v)(u − v) ∈ M(i)
λ,a for all v ∈ B(0, σ ). Consequently, we

complete the proof. ��
Proposition 4.6 Suppose that 2 < p < 3 and conditions (D1) − (D3) hold. Then for

each i ∈ {1, 2} and
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
there exists a sequence

{un} ⊂ M(i)
λ,a such that

Jλ,a(un) = α
(i)
λ,a + o(1) and J ′

λ,a
(un) = o(1) in H−1 (

R
3) . (4.4)

Proof By Theorem 2.5 and the Ekeland variational principle [13], there exists a minimizing
sequence {un} ⊂ M(i)

λ,a such that

Jλ,a(un) < α
(i)
λ,a + 1

n

and

Jλ,a(un) ≤ Jλ,a(w) + 1

n
‖w − un‖H1 for all w ∈ M(i)

λ,a . (4.5)
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Applying Lemma 4.5 with u = un , there exists a function t∗n : B(0, σn) → R for some

σn > 0 such that t∗n (w)(un − w) ∈ M(i)
λ,a . Let 0 < δ < σn and u ∈ H1

(
R
3
)
with u �≡ 0. We

set

wδ = δu

‖u‖H1
and zδ = t∗n (wδ)(un − wδ).

Clearly, zδ ∈ M(i)
λ,a . It is deduced from (4.5) that

Jλ,a(zδ) − Jλ,a(un) ≥ −1

n
‖zδ − un‖H1 ,

together with the mean value theorem, we have

〈J ′
λ,a(un), zδ − un〉 + o(‖zδ − un‖λ) ≥ −1

n
‖zδ − un‖H1

and

〈J ′
λ,a(un),−wδ〉 + (t∗n (wδ) − 1)〈J ′

λ,a(un), un − wδ〉
≥ −1

n
‖zδ − un‖H1 + o(‖zδ − un‖H1). (4.6)

Observe that t∗n (wδ)(un − wδ) ∈ M(i)
λ,a . From (4.6) it gives

−δ〈J ′
λ,a(un), u/‖u‖H1〉 + (t∗n (wδ) − 1)

t∗n (wδ)
〈J ′

λ,a(zδ), t
∗
n (wδ)(un − wδ)〉

+(t∗n (wδ) − 1)〈J ′
λ,a(un) − J ′

λ,a(zδ), un − wδ〉
≥ −1

n
‖zδ − un‖H1 + o(‖zδ − un‖H1),

which implies that〈
J ′
λ,a(un),

u

‖u‖H1

〉
≤ ‖zδ − un‖H1

δn
+ o(‖zδ − un‖H1)

δ

+ (t∗n (wδ) − 1)

δ
〈J ′

λ,a(un) − J ′
λ,a(zδ), un − wδ〉. (4.7)

We choose a number C > 0 independent of δ such that

‖zδ − un‖H1 ≤ δ + C(|t∗n (wδ) − 1|)
and

lim
δ→0

|t∗n (wδ) − 1|
δ

= lim
δ→0

|t∗n (wδ) − t∗n (0)|
δ

≤ ‖(t∗n )′(0)‖H−1 ≤ C .

Letting δ → 0 in (4.7) and using the fact that limδ→0 ‖zδ − un‖H1 = 0, we have

〈J ′
λ,a(un),

u

‖u‖H1
〉 ≤ C

n
,

which enables us to arrive at (4.4). Consequently, we complete the proof. ��
We are now ready to prove Theorem 1.1 By Proposition 4.6 , there exist two sequences
{u(i)

n } ⊂ M(i)
λ,a such that

Jλ,a(u
(i)
n ) = α

(i)
λ,a + o(1) and J ′

λ,a(u
(i)
n ) = o(1) in H−1 (

R
3) .
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Then by Corollary 4.3, there exist two subsequences {u(i)
n } and u(i)

λ,a ∈ H1
(
R
3
) \ {0} such

that u(i)
n → u(i)

λ,a strongly in H1
(
R
3
)
for i = 1, 2. This indicates that u(i)

λ,a ∈ M(i)
λ,a and

α
(i)
λ,a = Jλ,a(u

(i)
λ,a),

implying u(i)
λ,a ∈ M(i)

λ,a and Jλ,a

(
u(2)

λ,a

)
< 0 < Jλ,a

(
u(1)

λ,a

)
. Since Jλ,a(u

(i)
λ,a) =

Jλ,a(|u(i)
λ,a |) = α

(i)
λ,a, by Lemma 2.1, we may assume that u(i)

λ,a are positive solutions of

Equation (Eλ,a). Moreover, by (4.3), u(2)
λ,a is a ground state solution of Equation (Eλ,a).

5 Proof of Theorem 1.2

By conditions (D1) and (D2) , without loss of generality, we may assume that B3 (0, 1) ⊂
int
{
x ∈ R

3 : a (x) ≥ κ̂0
}
, this implies that B3

(
0, 1

ε

) ⊂ �ε := int
{
x ∈ R

3 : a (εx) ≥ κ̂0
}
,

where κ̂0 := pκ0
2 . Note that

κ0 < κ̂0 <
2

4 − p
κ0 < amax.

As we know, ŵ0 is the unique radial positive solution with ŵ0 (0) = maxx∈R3 ŵ0 (x) for

Equation
(
E∞
0,̂κ0

)
. Thus,

T̂κ0 (ŵ0) =
( ‖ŵ0‖2H1∫

R3 κ̂0 |ŵ0|p dx

)1/(p−2)

= 1,

and ∫
R3

κ̂0 |ŵ0|p dx = κ̂0

S p
p
‖ŵ0‖p

H1 >
κ0

S p
p
‖ŵ0‖p

H1 . (5.1)

Since 2 < p < 3, by Lemmas 3.1 and 3.2 , there exists a constant t+λ,̂κ0
> 0 satisfying

(
p

4 − p

)1/(p−2)

< t+λ,̂κ0
< t̂ (0)λ

such that

J∞
λ,̂κ0

(
t+λ,̂κ0

ŵ0

)
= inf(

p
4−p

)1/(p−2)
<t<̂t (0)λ

J∞
λ,̂κ0

(tŵ0) = inf
t≥0

J∞
λ,̂κ0

(tŵ0) < 0, (5.2)

where t̂ (0)λ is as in Lemma 3.1. For R > 0, we define a cut-off function ψR ∈ C1(R3, [0, 1])
as

ψR (x) =
{
1 |x | < R

2 ,

0 |x | > R,

and |∇ψR | ≤ 1 in R
3. Let uR (x) = ŵ0 (x) ψR(x). Then,∫

R3
|uR |p dx →

∫
R3

|ŵ0|p dx as R → ∞, (5.3)

‖uR‖H1 → ‖ŵ0‖H1 as R → ∞, (5.4)
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and ∫
R3

φuR u
2
Rdx →

∫
R3

φw0ŵ
2
0dx as R → ∞. (5.5)

Since J∞
λ,̂κ0

∈ C1(H1(R3),R), by (5.1)–(5.5) , there exists R0 > 0 such that
∫
R3

κ̂0
∣∣uR0

∣∣p dx >
κ0

S p
p

∥∥uR0

∥∥p
H1 (5.6)

and

J∞
λ,̂κ0

(
t+λ,̂κ0

uR0

)
< 0.

Let

u(i)
R0,N

(x) = ŵ0
(
x + i N 3e

)
ψR0

(
x + i N 3e

)

for e ∈ S
2 and i = 1, 2, . . . , N , where N 3 > 2R0. Let 0 < εN ≤ 1

N4+R0
. Then we have the

following result.

suppu(i)
R0,N

(x) ⊂ B3
(
0,

1

εN

)
for all i = 1, 2, . . . , N .

Clearly, εN → 0+ as N → ∞. Moreover, by condition (D1), we deduce that
∥∥∥u(i)

R0,N

∥∥∥2
H1

= ∥∥uR0

∥∥2
H1 for all N ,∫

R3
aεN (x)

∣∣∣u(i)
R0,N

∣∣∣p dx ≥
∫
R3

κ̂0
∣∣uR0

∣∣p dx for all N ,

and

∫
R3

φ
u(i)
R0,N

[
u(i)
R0,N

]2
dx =

∫
R3

∫
R3

[
u(i)
R0,N

(x)
]2 [

u(i)
R0,N

(y)
]2

4π |x − y| dxdy

=
∫
R3

∫
R3

u2R0
(x) u2R0

(y)

4π |x − y| dxdy.

Since aεN (x) ≥ κ̂0 for all x ∈ B3
(
0, 1

εN

)
, there exists N0 > 0 with N 3

0 > 2R0 such that

for every N ≥ N0, we have∫
R3

aεN (x)
∣∣uR0

∣∣p dx >
κ0

S p
p

∥∥uR0

∥∥p
H1 = κ0

S p
p

∥∥∥u(i)
R0,N

∥∥∥p
H1

and

inf
t≥0

Jλ,aεN

(
tu(i)

R0,N

)
≤ Jλ,aεN

(
t+λ,̂κ0

u(i)
R0,N

)
≤ J∞

λ,̂κ0
(t+λ,̂κ0

uR0),

for all e ∈ S
2 and i = 1, 2, . . . , N . Let

wR0,N (x) =
N∑
i=1

u(i)
R0,N

.
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Observe that wR0,N is a sum of translation of uR0 . When N 3 ≥ N 3
0 > 2R0, the summands

have disjoint support and

suppwR0,N (x) ⊂ B3
(
0,

1

εN

)
.

In such a case we have∥∥wR0,N
∥∥2
H1 = N‖uR0‖2H1 , (5.7)

∫
R3

aεN (x)
∣∣wR0,N

∣∣p dx =
N∑
i=1

∫
R3

aεN (x)
∣∣∣u(i)

R0,N

∣∣∣p dx, (5.8)

and
∫
R3

φwR0,N w2
R0,Ndx =

∫
R3

∫
R3

w2
R0,N

(x)w2
R0,N

(y)

4π |x − y| dxdy

=
N∑
i=1

∫
R3

∫
R3

[
u(i)
R0,N

(x)
]2 [

u(i)
R0,N

(y)
]2

4π |x − y| dxdy

+
N∑

i �= j

∫
R3

∫
R3

[
u(i)
R0,N

(x)
]2 [

u( j)
R0,N

(y)
]2

4π |x − y| dxdy. (5.9)

After a straightforward calculation, we have

N∑
i �= j

∫
R3

∫
R3

[
u(i)
R0,N

(x)
]2 [

u( j)
R0,N

(y)
]2

4π |x − y| dxdy ≤ N 2 − N

N 3 − 2R0

(∫
R3

w2
0 (x) dx

)2

,

which implies that

N∑
i �= j

∫
R3

∫
R3

[
u(i)
R0,N

]2
(x)

[
u( j)
R0,N

]2
(y)

4π |x − y| dxdy → 0 as N → ∞. (5.10)

We can now adopt the idea of multibump technique by Ruiz [23] (also see [20]) and the
following results are obtained.

Lemma 5.1 Suppose that 2 < p < 3 and conditions (D1) − (D2) and (D4) hold. Then for

each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, we have

α
(2)
λ,aε

→ −∞ as ε → 0+. (5.11)

Proof For N ∈ N and let

fN (t) = t−2
∥∥wR0,N

∥∥2
H1 − t p−4

∫
R3

aεN (x)
∣∣wR0,N

∣∣p dx for t > 0

and

f0 (t) = t−2
∥∥wR0

∥∥2
H1 − t p−4

∫
R3

κ̂0
∣∣wR0

∣∣p dx for t > 0.
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By (5.7) and (5.8), we get

fN (t) = t−2N
∥∥uR0

∥∥2
H1 − t p−4

N∑
i=1

∫
R3

aεN (x)
∣∣∣u(i)

R0,N

∣∣∣p dx

≤ t−2N
∥∥uR0

∥∥2
H1 − t p−4N

∫
R3

κ̂0
∣∣uR0

∣∣p dx
= N f0(t). (5.12)

It can be readily seen that twR0,N ∈ Mλ,aεN
if and only if

fN (t) + λ

∫
R3

φwR0,N w2
R0,Ndx = 0.

An evaluation on f0(t) gives

f0
(
T̂κ0

(
uR0

)) = 0, lim
t→0+ f0(t) = ∞ and lim

t→∞ f0(t) = 0,

where

T̂κ0

(
uR0

) =
( ∥∥uR0

∥∥2
H1∫

R3
pκ0
2

∣∣uR0

∣∣p dx
)1/(p−2)

.

Since 2 < p < 3 and

f ′
0 (t) = −2t−3

∥∥uR0

∥∥2
H1 + (4 − p) t p−5

∫
R3

κ̂0
∣∣uR0

∣∣p dx,

thus f is decreasing on 0 < t <

(
2
∥∥uR0

∥∥2
H1

(4−p)
∫
R3 κ̂0

∣∣uR0
∣∣pdx

)1/(p−2)

and increasing on t >

(
2
∥∥uR0

∥∥2
H1

(4−p)
∫
R3 κ̂0

∣∣uR0
∣∣pdx

)1/(p−2)

. By (5.6) we derive that

inf
t>0

f0 (t) = f0

⎛
⎝
(

2
∥∥uR0

∥∥2
H1

(4 − p)
∫
R3 κ̂0

∣∣uR0

∣∣p dx
)1/(p−2)

⎞
⎠

= − p − 2

2 (4 − p)

(
(4 − p)

∫
R3 κ̂0

∣∣uR0

∣∣p dx
2
∥∥uR0

∥∥2
H1

)2/(p−2) ∥∥uR0

∥∥2
H1

< − p − 2

2 (4 − p)

(
(4 − p) κ̂0

pS p
p

)2/(p−2)

‖uR0‖4H1 .

For
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, it follows from Lemma 2.3 and (5.12) that

inf
t>0

fN (t) = fN

⎛
⎝
(

2
∥∥wR0,N

∥∥2
H1

(4 − p)
∫
R3 aεN (x)

∣∣wR0,N
∣∣p dx

)1/(p−2)
⎞
⎠

< − N

S
2
S412/5

1

2

( p
2

)2/(p−2)
(
A (p)

p
a1

)2/(p−2) ∥∥uR0

∥∥4
H1

< −λNS
−2

S−4
12/5

∥∥uR0

∥∥4
H1
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< −λN
∫
R3

∫
R3

u2R0
(x) u2R0

(y)

4π |x − y| dxdy.

Using (5.10), we further obtain

inf
t>0

fN (t) < −λN
∫
R3

∫
R3

u2R0
(x) u2R0

(y)

4π |x − y| dxdy − λ

N∑
i �= j

∫
R3

∫
R3

u(i)
R0,N

(x) u( j)
R0,N

(y)

4π |x − y| dxdy

= −λ

∫
R3

φwR,N w2
R,Ndx for sufficiently large N .

Thus, when
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, there exist two constants t (1)λ,N and

t (2)λ,N satisfying

1 < t (1)λ,N <

(
2
∥∥uR0

∥∥2
H1

(4 − p)
∫
R3 aεN (x)

∣∣uR0

∣∣p dx
)1/(p−2)

< t (2)λ,N

such that

fN
(
t (i)λ,N

)
+ λ

∫
R3

φwR,N w2
R,Ndx = 0

for i = 1, 2 and for all N ∈ N. That is, t (i)λ,NwR,N ∈ Mλ,aεN
for i = 1, 2 and for all N ∈ N.

A direct calculation on the second order derivatives gives

h′′
λ,t (1)λ,NwR,N

(1) = −2
∥∥∥t (1)λ,NwR,N

∥∥∥2
H1

+ (4 − p)
∫
R3

aεN (x)
∣∣∣t (1)λ,NwR,N

∣∣∣p dx
=
(
t (1)λ,N

)5
f ′
N

(
t (1)λ,N

)
< 0,

and

h′′
λ,t (2)λ,NwR,N

(1) = −2
∥∥∥t (2)λ,NwR,N

∥∥∥2
H1

+ (4 − p)
∫
R3

aεN (x)
∣∣∣t (2)λ,NwR,N

∣∣∣p dx
=
(
t (2)λ,N

)5
f ′
N

(
t (2)λ,N

)
> 0.

This enables us to conclude that

t (1)λ,NwR,N ∈ M−
λ,aεN

and t (2)λ,NwR,N ∈ M+
λ,aεN

.

Moreover, by (5.7)–(5.10) we obtain

Jλ,aεN

(
t (2)λ,NwR,N

)
= inf

t>0
Jλ,aεN

(
twR,N

) ≤ Jλ,aεN

(
t+λ,̂κ0

wR,N

)

≤ N J∞
λ,̂κ0

(
t+λ,̂κ0

uR0

)
+ C0 for some C0 > 0

and

Jλ,aεN

(
t (2)λ,NwR,N

)
→ −∞ as N → ∞.

Therefore, we arrive at (5.11). ��
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Lemma 5.2 Suppose that 2 < p < 3 and conditions (D1) − (D2) and (D4) hold. Then for

each
[
A(p)
p a∞

]2/(p−2)
< λ ≤

[
A(p)
p a1

]2/(p−2)
, there exists M0 > 0 independent of ε such

that 0 > infu∈H1
r
Jλ,aε (u) > −M0 for ε sufficiently small.

Proof Since a (x) = a (|x |) and a (0) = amax, by Lemma 3.1 and Remark 1.4,

inf
u∈H1

r

Jλ,aε (u) < 0 for ε sufficiently small.

Moreover,

inf
u∈H1

r

Jλ,aε (u) ≥ inf
u∈H1

r

[
1

2

∫
R3

(|∇u|2 + u2
)
dx + λ

4

∫
R3

φuu
2dx − 1

p

∫
R3

amax |u|p dx
]

and [A (p) a∞]2/(p−2) < λ ≤ [A (p) a1]2/(p−2) , by Lemma 2.4,

inf
u∈H1

r

[
1

2

∫
R3

(|∇u|2 + u2
)
dx + λ

4

∫
R3

φuu
2dx − 1

p

∫
R3

amax |u|p dx
]

< 0.

Thus, applying similar argument to that in Ruiz [23, Theorem 4.3], there exists M0 > 0 such
that

inf
u∈H1

r

[
1

2

∫
R3

(|∇u|2 + u2
)
dx + λ

4

∫
R3

φuu
2dx − 1

p

∫
R3

amax |u|p dx
]

= −M0,

and so infu∈H1
r
Jλ,aε (u) > −M0. This completes the proof. ��

Next, we define the radial symmetry Nehari manifold

Nλ,aε := {u ∈ H1
r \ {0} : 〈J ′

λ,aε
(u) , u

〉 = 0}.
If the weight function a (x) satisfies condition (D4) , then by Remark 1.4 and Lemma 3.3,
we can obtain H1

r ∩ M(2)
λ,aε

�= ∅ and H1
r ∩ M(2)

λ,aε
⊂ Nλ,aε . By an argument similar to

the proof of Lemma 2.7 and Palais criticality principle (cf. [22]), we conclude that the set
N(2)

λ,aε
:= H1

r ∩ M(2)
λ,aε

is a C1 submanifold and each local minimizer of the functional Jλ,aε

in Nλ,aε is a critical point of Jλ,aε in H1(R3).

Define

θλ,aε := inf
u∈N(2)

λ,aε

Jλ,aε (u) .

Repeating the argument in Remark 4.4, we have

θλ,aε := inf
u∈N(2)

λ,aε

Jλ,aε (u) = inf
u∈Nλ,aε

Jλ,aε (u) . (5.13)

Moreover, by Lemmas 5.1 and 5.2 ,

α
(2)
λ,aε

< θλ,aε < 0 for ε > 0 sufficiently small. (5.14)

Then by an argument similar to the proof of Proposition 4.6 and Palais criticality principle
(cf. [22]), for ε small enough, there exists a sequence {un} ⊂ N(2)

λ,aε
such that

Jλ,aε (un) = θλ,aε + o(1) and J ′
λ,aε

(un) = o(1) in H−1 (
R
3) . (5.15)
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We are now ready to prove Theorem 1.2 Given {un} ⊂ N(2)
λ,aε

satisfying

Jλ,aε (un) = θλ,aε + o(1) and J ′
λ,aε

(un) = o(1) in H−1 (
R
3) ,

then by Theorem 2.5, {un} is bounded. Without loss of generality, we can assume that there
exists vλ,aε ∈ H1

r such that un⇀vλ,aε weakly in H1
(
R
3
)
. Moreover, by Ruiz [23, Lemma

2.1], J ′
λ,aε

(vλ,ε) = 0 in H−1
(
R
3
)
and un → vλ,aε strongly in H1

(
R
3
)
, which implies that

Jλ,aε (vλ,aε ) = θλ,aε and vλ,aε ∈ N(2)
λ,aε

. Thus, by (5.13), vλ,ε is a radial ground state solution
of Equation (Eλ,aε ). Since Jλ,aε (vλ,aε ) = Jλ,aε (|vλ,aε |) = θλ,aε , by Lemma 2.1, we may
assume that vλ,aε is a positive solution of Equation (Eλ,aε ). Therefore, by Theorem 1.1 and

(5.14), Equation (Eλ,aε ) has three positive solutions u
(1)
λ,aε

, u(2)
λ,aε

∈ H1
(
R
3
)
and vλ,aε ∈ H1

r
such that

α
(2)
λ,aε

= Jλ,aε

(
u(2)

λ,aε

)
< θλ,aε = Jλ,aε

(
vλ,aε

)
< 0 < α

(1)
λ,aε

= Jλ,aε

(
u(1)

λ,aε

)

for ε sufficiently small. Since

α
(2)
λ,aε

= inf
u∈Mλ,aε

Jλ,aε (u) < θλ,aε = inf
u∈Nλ,aε

Jλ,aε (u) for ε sufficiently small

and vλ,aε is a radial ground state solution of Equation (Eλ,aε ), we can conclude that u
(2)
λ,aε

is
a non-radial ground state solution of Equation (Eλ,aε ).
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