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Abstract
We investigate the next Trudinger–Moser critical equations,{

−�u = λueu
2+α|u|β in B,

u = 0 on ∂B,

where α > 0, (λ, β) ∈ (0,∞)× (0, 2) and B ⊂ R
2 is the unit ball centered at the origin. We

classify the asymptotic behavior of energy bounded sequences of radial solutions. Via the
blow–up analysis and a scaling technique, we deduce the limit profile, energy, and several
asymptotic formulas of concentrating solutions together with precise information of the
weak limit. In particular, we obtain a new necessary condition on the amplitude of the
weak limit at the concentration point. This gives a proof of the conjecture by Grossi et
al. (Math Ann, to appear) in 2020 in the radial case. Moreover, in the case of β ≤ 1,
we show that any sequence carries at most one bubble. This allows a new proof of the
nonexistence of low energy nodal radial solutions for (λ, β) in a suitable range. Lastly, we
discuss several counterparts of our classification result. Especially, we prove the existence
of a sequence of solutions which carries multiple bubbles and weakly converges to a sign-
changing solution.
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1 Introduction

We study the following Trudinger–Moser critical equations,{
−�u = λueu

2+α|u|β in B,

u = 0 on ∂B,
(1.1)

where B ⊂ R
2 is the unit ball centered at the origin, α > 0 and (λ, β) ∈ (0,∞) × (0, 2).

Our aim is to investigate the asymptotic behavior of any energy bounded radial solutions.
Especially, we are interested in the concentrating behavior of them.

The study of (1.1) is motivated by the Trudinger–Moser inequality ([33], [36] and [32]).
It gives the critical embedding of the Sobolev space in dimension two. Indeed, Moser [32]
proves that for any bounded domain � ⊂ R

2, it holds that

sup
u∈H1

0 (�),
∫
� |∇u|2dx≤1

∫
�

eau
2
dx

{
< ∞ if a ≤ 4π,

= ∞ otherwise.
(1.2)

A surprising fact is that the maximizer exists even in the critical case α = 4π . This is first
proved by Carleson-Chang when � = B in their celebrated paper [10]. The generalization
of the domain and the dimension are given by [16] and [28] respectively. More recently, the
sharp form of the inequality (1.2) is discussed in [35], [26], and [23].

(1.2) suggests that critical nonlinearities of semilinear elliptic problems in dimension two
have the exponential growth. This leads us to investigate the problem,{

−�u = λh(u)eu
2

in �,

u = 0 on ∂�,
(1.3)

where λ > 0, � ⊂ R
2 is a smooth bounded domain and h : R → R is a continuous function

which has the subcritical growth at infinity, lim|t |→∞ h(t)/eat
2 = 0 for any a > 0, and

satisfies h(0) = 0 and some appropriate conditions. Due to the lack of the compactness of
the critical case of (1.2), solutions to (1.3) can be non-compact. From this point of view,
we can regard (1.3) as the two dimensional counterpart of the Brezis-Nirenberg problem [9]
in higher dimension. Due to the exponential nonlinearity, which is much stronger than the
polynomial one in higher dimension, (1.3) seems to contain new phenomena and difficulties.
For example, as discussed in [5] and [11], Palais-Smale sequences for the energy functional
of (1.3) may admit more complicated bahavior.

Now, we start our discussion with the previous study of positive solutions of (1.3). For
simplicity, we only consider the typical case h(t) = t . Certain generalization is given in
the following results. First, Adimurthi ([1], [2]) proves that (1.1) admits at least one positive
solution for allλ ∈ (0,	1)where	1 > 0 is the first eigenvalue of−� on�with theDirichlet
boundary condition. After that, in [6], [4] and references therein, the authors investigate
the asymptotic behavior of low energy positive solutions. By their results, we see that the
least energy solution, obtained in [2], exhibits the single concentration and its full energy
converges to 2π as λ → 0. Moreover, we also observe in those results that the limit profile of
the concentration is described by the Liouville equation via a suitable scaling. Furthermore,
in [14] and [15], the classification of the asymptotic behavior of energy bounded sequences
of positive solutions is accomplished. Especially, in [14], Druet proves that the limit full
energy of any sequence is given by the sum of the energy of the weak limit and 2πN with a
number N ∈ N ∪ {0}. Additionally, in [15], Druet-Thizy show that the concentration occurs
if and only if λ → 0. This implies that the weak limit of any concentrating solutions must be
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zero under their setting. Furthermore, they also give precise information of the location of
concentration points and prove that theymust be distinct. On the other hand, del Pino-Musso-
Ruf [13] obtain a sufficient condition for the existence of sequences of solutions carrying
multiple bubbles. It gives a counterpart of the classification result by [14] and [15].

More recently, the concentration behavior of sign-changing solutions is investigated. In
this case, in viewof the results in [7] and [8], it is reasonable to consider a stronger perturbation
h(t) = te|t |β with β ∈ (0, 2). (We are still considering only the typical case for simplicity.) In
fact, Adimrthi-Yadava [8] show that (1.3) admits at least one pair of sign-changing solutions
for any λ ∈ (0,	1) and β ∈ (1, 2). They also prove that if � = B, there exist infinitely
many radial sign-changing solutions under the same assumption for λ and β. This stronger
assumption is essential in the sense of the non-existence result by the same authors [8]. In
fact, they prove that if � = B and β ≤ 1, there exists a constant λAY(β) > 0 such that (1.3)
permits no radial nodal solutions for all λ ∈ (0, λAY(β)).

Motivated by this result, in [20], the authors attack the blow–up analysis of low energy
nodal radial solutions. They investigate the behavior by fixing λ ∈ (0, λAY(1)) and taking
the limit β ↓ 1. Interestingly, the solutions sequence exhibits the multiple concentration at
the origin and weakly converges to a nontrivial sign-definite solution of (1.1) with λ 
= 0
and β = 1. This behavior is very different from that in the positive case explained above.
After that Grossi-Mancini-Naimen-Pistoia [19] construct a family of sign-changing solutions
which concentrates at a C1 stable critical point of a nontrivial residual mass. We remark that,
in their construction, they choose the residual mass to be a sign-definite solution and assume
that it is nondegenerate and its amplitude is larger than 1/2 at the concentration point. See (A1)
and (A2) in their paper for more precise statements. Moreover, the authors conjecture that
the largeness condition on the residual mass is essential for the existence of the concentrating
solutions in the limit β ↓ 1. See Remark 1.2 in their paper for the detail.

We lastly refer to some interesting results in the radial case. In [29] and [30], the precise
asymptotic expansion of concentrating positive solutions is obtained. It allows the proof
of the multiplicity and nonexistence of critical points of the Trudinegr-Moser functional in
the super critical case. Under another setting, Manicini-Thizy [31] construct concentrating
radial solutions which weakly converge to a radial eigenfunction. On the other hand, in two
dimensional problemwith the power type nonlinearity, Grossi-Grumiau-Pacella [18] find that
the singular limit profile appears in the asymptotic behavior of the sign-changing solutions.
In higher dimensional problems with nearly Sobolev critical growth, Grossi-Saldaña-Hugo
[21] obtain sharp concentration estimates of nodal radial solutions for both of the Dirichlet
and Neumann boundary value problems.

In this paper, we proceed with our blow–up analysis of (1.3) and answer some questions
raised in the previous works. Moreover, we would like to find new concentration phenomena
on (1.3) in the sign-changing case. To this end, inspired by the previous works [20] and [19],
we focus on the strong perturbation problem (1.1). Motivated also by [29], [30] and [21], we
focus on the radial case and establish explicit and sharp estimates.

More precisely, our first aim is to determine the limit profile and energy of every con-
centrating sequence. Especially, we would like to answer if the singular limit profile (which
was actually observed in the power type problem by [18]) may appear or not in the sign
changing case. We have already asked and negatively answered this question in the previous
work [20]. But, in the crucial step to avoid the singular limit profile, we used the low energy
characterization of the solutions. (See Case 2 in the proof of Lemma 4.3 in [20].) Hence there
remains a question if such characterization is essential for the conclusion. In the present
paper, we will complete the answer for any energy bounded sequence of radial solutions.
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Furthermore, our second goal is to deduce precise information of the weak limit of each
concentrating sequence. The first question in this direction arose in the positive case by
[15]. They asked if concentrating solutions could weakly converge to a nontrivial solution.
Their answer was “no” under their setting as noted above. On the other hand, the result in
[20] implies that we may have a different answer in the sign-changing case. Moreover, a
new question has arisen in Remark 2.1 of [19] about the relation between the concentration
phenomenon and the amplitude of the weak limit at the concentration point. We will give an
answer to this question in the radial case.

As a consequence of our new calculation, we arrive at the next classification result with
precise concentration estimates. It answers all the questions above.

1.1 Main theorems

Let us give our main results. Throughout this paper, we fix α > 0 and regard (λ, β) as a
parameter. Then, for any (λ, β) ∈ (0,∞)×(0, 2), we define the energy functional associated
to (1.1),

Iλ,β(u) = 1

2

∫
B

|∇u|2dx − λ

∫
B
Fβ(u)dx

for all u ∈ H1
0 (B) where Fβ(t) = ∫ t

0 se
s2+α|s|βds. Then Iλ,β is well-defined and C1 func-

tional on H1
0 (B) by (1.2). Furthermore, the standard argument shows that every critical point

of Iλ,β corresponds to each solution of (1.1). Moreover, let Nλ,β be the Nehari manifold
defined by

Nλ,β :=
{
u ∈ H1

0 (B) |u is radially symmetric and 〈I ′
λ,β(u), u〉 = 0

}
.

Using this, we put for any k ∈ {0} ∪ N,

ck,λ,β := inf
{
Iλ,β(u) | u ∈ Nλ,β, ∃r0, · · · , rk+1 ∈ [0, 1] such that
0 = r0 < r1 < · · · < rk+1 = 1, (0 = r0 < r1 = 1 if k = 0, )

u(x) = 0 if |x | = ri , ui := u|{ri−1<|x |<ri }, (−1)i−1ui > 0, and

ui ∈ Nλ,β (by zero extension), for any 1 ≤ i ≤ k + 1
}
.

In addition, we define the set of radial solutions as follows.

Sk,λ,β :=
{
u ∈ C2(B) ∩ C0(B): a radial solution of (1.1)|∃r0, · · · , rk+1 ∈ [0, 1]
such that 0 = r0 < r1 < · · · < rk+1 = 1, (0 = r0 < r1 = 1 if k = 0, )

u(x) = 0 if |x | = ri , ui := u|{ri−1<|x |<ri }, sgn(u(0))(−1)i−1ui > 0,

for all 1 ≤ i ≤ k + 1
}
.

We remark that for any (k, λ, β) ∈ {0} × (0,	1) × (0, 2) ∪ N × (0,	1) × (1, 2), there
exists an element u ∈ Sk,λ,β such that Iλ,β(u) = ck,λ,β by [2] and [7]. We call any element
u ∈ Sk,λ,β a nodal radial solution if k 
= 0 and a positive (negative) solution or a sign-definite
solution if k = 0 and u(0) > 0 (< 0 respectively). Note that the result in [17] shows that any
element u ∈ S0,λ,β satisfies maxx∈B |u(x)| = |u(0)|. Lastly, for any k ∈ N, let 	k be the
eigenvalue of−� on B with the Dirichlet boundary conditionwhich corresponds to the radial
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eigenfunction ϕk which has numbers 0 = τ0 < τ1 < · · · < τk = 1 such that ϕk(x) = 0
if |x | = τi and (−1)i−1ϕk > 0 on (τi−1, τi ) for all i = 1, · · · , k and is normalized by
ϕk(0) = 1. Our main result is the following.

Theorem 1.1 (Classification result)Assume (k, λ∗, β∗) ∈ {0}×[0,∞)×(0, 2)∪N×[0,∞)×
(0, 3/2) and let {(λn, βn)} ⊂ (0,∞) × (0, 2) be a sequence of values such that (λn, βn) →
(λ∗, β∗) as n → ∞. Furthermore, we suppose (un) is a sequence of solutions of (1.1) such
that un ∈ Sk,λn ,βn and un(0) > 0 for all n ∈ N. In addition, if k 
= 0, we assume,∫

B
|∇un |2dx is uniformly bounded for all n ∈ N.

Then, after extracting a suitable subsequence if necessary, we have a function u0 and a
number N ∈ {0, 1, · · · , k + 1} such that un → u0 in C2

loc(B \ {0}),
Iλn ,βn (un) → 2πN + Iλ∗,β∗(u0),

and ∫
B

|∇un |2dx → 4πN +
∫
B

|∇u0|2dx,

as n → ∞. Moreover, ifmaxx∈B |un(x)| → ∞ as n → ∞, then, up to a subsequence, either
one of the next assertions holds,

(i) λ∗ = 0, βn > 1 for all n ∈ N, N = k + 1, and u0 = 0, or
(ii) λ∗ = 0, βn ≤ 1 for all n ∈ N, k = 0, N = 1, and u0 = 0, or
(iii) λ∗ 
= 0, βn ↓ 1, k 
= 0, 0 < N < k + 1, and u0 ∈ Sk−N ,λ∗,1 with (−1)Nu0(0) ≥ α/2,

or
(iv) λ∗ 
= 0, βn = 1 for all n ∈ N, k 
= 0, N = 1, and u0 ∈ Sk−1,λ∗,1 with −u0(0) = α/2 or
(v) λ∗ 
= 0, βn ↑ 1, k 
= 0, N = 1, and u0 ∈ Sk−1,λ∗,1 with 0 < −u0(0) ≤ α/2, or

otherwise
(vi) λ∗ = 	k , βn < 1 for all n ∈ N, k 
= 0, N = 1, and u0 = 0.

On the other hand, if maxx∈B |un(x)| is uniformly bounded for all n ∈ N, then

(vii) λ∗ 
= 0, N = 0, un → u0 in C2(B), u0 ∈ Sk,λ∗,β∗ ∪ {0}, and further, we get u0 = 0 only
if λ∗ = 	k+1.

In particular, (i) ((ii)) happens if and only if λ∗ = 0 (k = 0 and λ∗ = 0 respectively) and
(vii) occurs if k = 0 and λ∗ 
= 0, or k ≥ 1, λ∗ 
= 0, and β∗ > 1, or k ≥ 1, 0 < λ∗ 
= 	k ,
and β∗ < 1.

Theorem 1.1 implies that the full (Dirichlet) energy of the sequence is decomposed by
2πN (4πN respectively) for a number N ∈ {0, 1, · · · , k + 1} and the energy of the weak
limit u0. This is the typical energy quantization phenomenon observed also in the previous
works. In our theorem, (i)-(vi) describe the non-compact behavior and (vii) corresponds to
the compact one. In the former case, there are three situations. The first one is found in (i)
and (ii) which means that the (k + 1)-concentration occurs with the zero weak limit. This
phenomenon happens if and only if λ∗ = 0. The second one is observed in (iii), (iv), (v). It
shows the N (< k+1)-concentration happens with the nontrivial weak limit. (Notice that the
weak limit is possibly sign-changing.) This behavior yields λ∗ 
= 0 and β∗ = 1. Moreover,
the sum of the number N of bubbles, and the number k − N + 1 of nodal domains of the
weak limit is always given by N + (k − N + 1) = k + 1. It comes from the fact that, in this
case, if we focus on the behavior of the solution on each nodal domain, it weakly converges
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to zero if and only if it blows up if and only if it exhibits the single concentration. See the next
theorem for the detail. The third one is observed in (vi). This means that the N (= 1 < k+1)-
concentration occurs with the zero weak limit. This behavior requires λ∗ = 	k and βn < 1
for all n ∈ N. As we will see in the next theorems, in this case, only the local maximum value
un(0) at the origin diverges to infinity and the other ones converge to zero.

Moreover, a remarkable result is found in the final assertions in (iii)-(vi). It gives the
necessary condition on the amplitude |u0(0)| of the weak limit at the origin. Especially, (iii)
gives a proof of the conjecture in Remark 1.2 of [19] in the radial case. It ensures that if the
concentration occurs in the limit λn → λ∗ 
= 0 and βn ↓ 1, then |u0(0)| needs to be greater
than or equal to α/2. Notice that our necessary condition is valid in any case of λ∗ > 0 as
far as the concentration occurs as βn ↓ 1 while the previous results in [20] and [19] focus
on the case of small λ∗ > 0. Moreover, in the cases βn = 1 for all n ∈ N, βn ↑ 1, and
β∗ < 1, we deduce new necessary conditions, |u0(0)| = α/2, 0 ≤ |u0(0)| ≤ α/2, and
u0(0) = 0 respectively. (A related result is observed for a radial positive sequence in another
setting by Theorem 0.3 in [31].) These conditions will be useful to detect new concentrating
sequences of solutions. See Sect. 6 for more discussion. We will discuss several counterparts
of assertions in the previous theorem later.

In addition, we remark that there is a striking difference between the cases (βn) ⊂ (1, 2)
((i) and (iii)) and (βn) ⊂ (0, 1] ((ii), (iv), (v), and (vi)). In the former case, N can be greater
than 1 while in the latter case it has to be equal to one. This is a consequence of our blow-
up analysis in Sects. 2 and 3. See Remark 3.4 for more explanation. Then, we notice that
Theorem 1.1 contains the following nonexistence result.

Corollary 1.2 For any number k ∈ N and sequence {(λn, βn)} ⊂ (0,∞) × (0, 1] such that
(λn, βn) → (λ∗, β∗) ∈ {0} × (0, 1], there exists no sequence of solutions (un) such that
un ∈ Sk,λn ,βn and

∫
B |∇un |2dx is uniformly bounded for all n ∈ N.

This conclusion allows a partial proof of the nonexistence result by [8] via a different
approach.

Corollary 1.3 Choose any β ∈ (0, 1]. Then for each value E > 0, there exists a constant
λ̂ = λ̂(β, E) > 0 such that for all λ ∈ (0, λ̂), (1.1) admits no radial nodal solution u with∫
B |∇u|2dx ≤ E. In particular, for each number k ∈ N, there is a value λ̂0 = λ̂0(β, k) > 0

such that for all λ ∈ (0, λ̂0), there exists no solution u ∈ Sk,λ,β which attains ck,λ,β .

We finally remark on the additional condition on β∗ in the previous theorem.

Remark 1.4 In the case of k ≥ 1, we additionally assumed β∗ < 3/2. This condition will first
appear in (3.4) of Lemma 3.3 below. This does not seem simply a technical assumption. As
discussed in Remark 3.5, in the case k ≥ 1 and β∗ ≥ 3/2, we would have different formulas
of the asymptotic energy expansion in Theorem 1.5 and also the concentration estimates in
Theorem 1.6 below. Since the proof for the former case has already used many pages, we
leave the latter case for our next works. We here restrict ourselves to only conjecture that, in
the sign-changing case, the stronger perturbation (β ≥ 3/2 in (1.1)) would delicately affect
the precise asymptotic formulas of concentrating solutions.

Next, we shall check the detail of the behavior stated above. The previous theorem is a
direct consequence of the next two theorems.

Theorem 1.5 (Limit profile and energy) Let values k, λ∗, β∗ and sequences {(λn, βn)}, (un)
be chosen as in the assumption of Theorem 1.1 and assume u0 ∈ H1

0 (B) is the weak limit
of (un) by extracting a subsequence if necessary. Furthermore, we write un = un(|x |) and
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u0 = u0(|x |) for x ∈ B and then define values 0 = r0,n < r1,n < · · · < rk+1,n = 1
(0 = r0,n < r1,n = 1 if k = 0) so that un(ri,n) = 0 and (−1)i−1un(r) > 0 if ri−1,n <

r < ri,n for all 1 ≤ i ≤ k + 1. In addition, we set ui,n = un |[ri−1,n ,ri,n ] and define numbers
ρi,n ∈ [ri−1,n, ri,n) and μi,n > 0 by μi,n = |ui,n(ρi,n)| = maxr∈[ri−1,n ,ri,n ] |ui,n(r)| for all
1 ≤ i ≤ k + 1. Finally for each number i = 1, · · · , k + 1 such that μi,n → ∞, we set
γi,n > 0 so that

1 = 2λnμi,n fn(μi,n)γ
2
i,n

where fn(t) = tet
2+|t |βn , and define

zi,n(r) := 2μi,n(|ui,n(γi,nr + ρi,n)| − μi,n) for all r ∈
[
ri−1,n − ρi,n

γi,n
,
ri,n − ρi,n

γi,n

]
,

and z(r) := log (64/(8 + r2)2) which is a solution of the Liouville equation

−z′′ − 1

r
z′ = ez in (0,∞), z(0) = 0 = z′(0),

∫ ∞

0
ezrdr < ∞.

Then if maxr∈[0,1] |un(r)| → ∞, either one of the next assertions (i) and (ii) holds up to a
subsequence.

(i) For all i = 1, · · · , k + 1, we have μi,n → ∞, ρk+1,n → 0, γi,n → 0, zi,n →
z in C2

loc((0,∞)) ∩ C1
loc([0,∞)),

∫ ri,n

ri−1,n

u′
i,n(r)

2rdr = 2 − αβ∗
μ
2−βn
i,n

+ o

(
1

μ
2−βn
i,n

)
, (1.4)

μi,n

∫ ri,n

ri−1,n

λn fn(ui,n)rdr = 2 − αβ∗
μ
2−βn
i,n

+ o

(
1

μ
2−βn
i,n

)
, (1.5)

and further, λ∗ = 0 and un → u0 = 0 in C2
loc((0, 1]).

(ii) There exists a number N ∈ {1, · · · , k} such that for all i = 1, · · · , N, we have μi,n →
∞, ri,n → 0, γi,n → 0, zi,n → z in C2

loc((0,∞))∩C1
loc([0,∞)), (1.4), and (1.5), while

for all i = N+1, · · · , k+1, there exist valuesμi ≥ 0, ri ∈ (0, 1]andρi ∈ [0, 1) such that
μi,n → μi , ri,n → ri , ρi,n → ρi , and 0 = ρN+1 < rN+1 < · · · < ρk+1 < rk+1 = 1
if N < k and 0 = ρk+1 < rk+1 = 1 if N = k, and further, it holds that λ∗ 
= 0,
un |[rN ,n ,1] → u0 in C2

loc((0, 1]), limr→0+(−1)Nu0(r) = μN+1, and∫ 1

rN ,n

u′
n(r)

2rdr →
∫ 1

0
u′
0(r)

2rdr .

Moreover, either one of the next assertions holds,

(a) μN+1 > 0, u0(ri ) = 0, and (−1)i−1u0 > 0 on (ri−1, ri ), for all i = N+1, · · · , k+1,
or

(b) μN+1 = 0, u0 = 0, and further, un |[rN ,n ,1]/μN+1 → (−1)Nϕk−N+1 in C2
loc((0, 1])

and λ∗ = 	k−N+1.

On the other hand, if maxr∈[0,1] |un(r)| is uniformly bounded, choosing a subsequence if
necessary, we get that,
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(iii) for any i = 1, · · · , k + 1, there exist values μi ≥ 0, ri ∈ (0, 1] and ρi ∈ [0, 1) such that
μi,n → μi , ri,n → ri , ρi,n → ρi , and 0 = ρ1 < r1 < · · · < ρk+1 < rk+1 = 1 if k ≥ 1,
and further, it holds that λ∗ 
= 0, un → u0 in C2([0, 1]), and∫ 1

0
u′
n(r)

2rdr →
∫ 1

0
u′
0(r)

2rdr .

In addition, either one of the next assertions is true,

(a) u0(0) > 0, u0(ri ) = 0, and (−1)i−1u0 > 0 on (ri−1, ri ), for all i = 1, · · · , k + 1,
or

(b) u0 = 0, un/un(0) → ϕk+1 in C2([0, 1]), and λ∗ = 	k+1.

This theorem shows the behavior on every part ui,n between neighboring two zero points
ri−1,n < ri,n . From the behavior in (i) and (ii), we see that if ui,n blows up, it concentrates
at the origin. Especially, the local maximum point ρi,n converges to the origin. Actually,
this is the reasonable and the only way for any blowing up solution to ensure the uniform
boundedness of the energy. Furthermore, the limit profile is determined uniquely by the
classical solution z of the Liouville equation and the limit energy is just equal to 2. This
implies that neither the singular limit profile, observed in the power type problem in [18],
nor the multiple concentration, occurs on any ui,n .

Notice also that due to our strong perturbation, the second term of the right hand side of
the energy expansion in (i) and (ii) is very different from that in the case of α = 0 in view of
its sign and the exponent on μi,n . (See Theorem 1 in [30].)

Finally, we obtain precise concentration estimates in terms of (λn, βn).

Theorem 1.6 (Concentration estimates) Under the same assumptions as in Theorem 1.5, let
us assume that (i) or (ii) of the same theorem occurs. First suppose (i) happens. Then we
have that (βn) ⊂ (0, 1] yields k = 0. Moreover, if k ∈ {0} ∪ N, we get that

lim
n→∞

log 1
λn

μ
βn
k+1,n

= δ, (1.6)

where we defined the constant δ = δ(α, β∗) by δ = α(1 − β∗/2) and if k ≥ 1, we obtain for
all 1 ≤ i ≤ k that

lim
n→∞

log 1
λn

μ
βn(βn−1)k−i+1

i,n

= δ
2−β∗(β∗−1)k−i+1

2−β∗ , (1.7)

Furthermore, if k ∈ {0} ∪ N, we have that

lim
n→∞

(
log

1

λn

) 1
βn |u′

k+1,n(1)| = 2δ
1

β∗ , (1.8)

and if k ≥ 1, we get for all 1 ≤ i ≤ k that

lim
n→∞

log 1
λn(

log 1
ri,n

)(βn−1)k−i+1 = 2(β∗−1)k−i+1
δ
2−2(β∗−1)k−i+1

2−β∗ , (1.9)

and

lim
n→∞

log 1
λn

(log |u′
i,n(ri,n)|)(βn−1)k−i+1 = 2(β∗−1)k−i+1

δ
2−2(β∗−1)k−i+1

2−β∗ . (1.10)
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In addition, if k ≥ 2, we have for all i = 2, · · · , k, that

lim
n→∞

log 1
λn(

log 1
ρi,n

) βn (βn−1)k−i+1
2

= 2
β∗(β∗−1)k−i+1

2 δ
2−β∗(β∗−1)k−i+1

2−β∗ . (1.11)

Lastly, suppose k ≥ 1. Then we may assume that βn > 1 for all n ∈ N up to a subsequence
(by the first conclusion of this theorem). Moreover, we define a number L ∈ [0,∞] by

L := lim
n→∞

log log 1
λn

(βn − 1)
(
log 1

λn

) 2
βn

. (1.12)

Then if L < ∞, we get

lim
n→∞

log 1
λn(

log 1
ρk+1,n

) βn
2

= 2
β∗
2 δ
[
1 + Lδ

2
β∗
]− β∗

2
, (1.13)

and, on the other hand, if L = ∞, we necessarily have β∗ = 1 and obtain

lim
n→∞

log log 1
λn

(βn − 1) log 1
ρk+1,n

= 2. (1.14)

Next, we suppose (ii) occurs. Then we get β∗ ≤ 1 and that (βn) ⊂ (0, 1] implies N = 1.
Moreover, if 1 ≤ N ≤ k, either one of the next assertions (a) and (b) is true.

(a) μN+1 > 0, β∗ = 1, and for all 1 ≤ i ≤ N, it holds that

lim
n→∞ μ

(βn−1)N−i+1

i,n = 2μN+1

α

(
= μN+1

δ

)
, (1.15)

lim
n→∞

(
log

1

ri,n

)(βn−1)N−i+1

= 2μN+1

α
, (1.16)

lim
n→∞

(
log |u′

i,n(ri,n)|
)(βn−1)N−i+1 = 2μN+1

α
, (1.17)

and

lim
n→∞ u′

N+1,n(rN+1,n) = − 1

rN+1
λ∗
∫ rN+1

0
f∗(u0)rdr , (1.18)

lim
n→∞ ρ

βn−1
N+1,n =

√
α

2μN+1
, (1.19)

where f∗(t) = tet
2+α|t |. Especially, 2μN+1/α > 1 (∈ (0, 1)) implies βn > 1 (< 1

respectively) for all n ∈ N. On the other hand, βn > 1 (= 1, < 1) for all n ∈ N requires
2μN+1/α ≥ 1 (= 1, ≤ 1 respectively). Finally, if 1 < N ≤ k, (which yields k ≥ 2,
βn > 1 for all n ∈ N, and 2μN+1/α ≥ 1), assuming 2μN+1/α > 1, we get for all
2 ≤ i ≤ N,

lim
n→∞

(
log

1

ρi,n

)(βn−1)N−i+1

=
(
2μN+1

α

)2

. (1.20)

(b) μi = 0 for all i = N + 1, · · · , k + 1 and βn < 1 for all n ∈ N.
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Remark 1.7 We assumed 2μN+1/α > 1 for (1.20). This can be verified, for example, when
N = k and λ∗ ∈ (0,	1) is small enough by Lemma 6.8 below.

This theorem describes the speed of the divergence or convergence of μi,n , ri,n , ρi,n and
u′
i,n(ri,n) in terms of the parameter (λn, βn). Especially, in the case of (i), thanks to (1.6) and

(1.7), we get that μk+1,n = (α(1 − β∗/2) + o(1))−1/β∗(log (1/λn))1/βn and, if k ≥ 1, that
μk+1,n/μi,n → 0 as n → ∞ for all i = 1, · · · , k. Then, combining this together with the
asymptotic energy formula in Theorem 1.5, we can also write the energy expansion in terms
of (λn, βn) as follows.

Corollary 1.8 Assume as in Theorem 1.1 and suppose (i) or (ii) of the theorem occurs. Then
we get

∫
B

|∇un |2dx = 4π(k + 1) −
2πα

2
β∗ β∗

(
1 − β∗

2

) 2−β∗
β∗

(
log 1

λn

) 2−βn
βn

+ o

⎛
⎜⎜⎝ 1(

log 1
λn

) 2−βn
βn

⎞
⎟⎟⎠

as n → ∞.

Moreover, in the case of (i), we observe a delicate behavior when (λ∗, β∗) = (0, 1) by
the formulas (1.13) and (1.14). They show that the asymptotic behavior ρk+1,n → 0 of the
local maximum point is described by either one of two different formulas (1.13) and (1.14).
The choice is determined by the balance of the speed of two limits λn → 0 and βn → 1. If
former one is quicker than the latter one in the sense L < ∞ where L is the number defined
by (1.12), we have (1.13) and otherwise we get (1.14). Actually, in the latter formula, the
effect of the limit βn → 1 appears more clearly. This phenomenon comes from the combined
effect of the two different behavior, the (k + 1)-concentration with the zero weak limit in the
case λn → 0, and the k-concentration with the nontrivial weak limit in the case 0 < λ∗ � 1
and β∗ = 1 (which is observed in [20] and (b) of Proposition 6.3 below). Notice also that
for any L ∈ [0,∞], there exist sequences (λn) ⊂ (0,	1) and (βn) ⊂ (1, 2) which satisfy
(1.12). Moreover, there exists a corresponding sequence (un) of solutions by Theorem 1.3 in
[7].

Finally, in the case of (ii), one of the most important results is (1.15). This proves the
necessary condition, explained before, in the final assertions in (iii)-(v) of Theorem 1.1.

In the following sections, we give the proof of our main theorems.

1.2 Outline of the proof

We carry out the blow–up analysis based on a scaling technique. We begin with studying
the limit profile of the concentration part as in [20]. The first difficulty arises here since we
do not have the low energy characterization of solutions (Lemma 2.1 in [20]). In order to
admit our wider setting, we change the proof and argue by induction. Our idea is to use
useful assumptions ((2.4) and (2.5)) which are ensured by the previous step of the induction
argument (Proposition 3.10). Using this idea, we succeed in avoiding the case of the singular
limit profile. See the proof of Proposition 2.4.

Next, we will determine the energy of each concentrating part as in Theorem 1.5. An
important step is to ensure that only the single concentration occurs in each nodal domain.
The pointwise estimate in Lemma 3.7 will work for it. This is an extension of Lemma 5 in
[29] (see also Lemma 13 in [30]) to our setting which allows the strong perturbation and also
the sign-changing case. Using this and arguing as in Proof of Theorem 1 in [30], we obtain
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the energy expansion in Proposition 3.1. To accomplish these proofs, some careful remarks
are needed. In particular, the estimate (3.4) for the error term is a key for the proof in the
sign-changing case.

Finally, we will obtain the precise concentration estimate in Theorem 1.6. The proof is
inspired by the argument in [21] for the power type problem in higher dimension. A new
difficulty comes from the fact that, of course, the form of the nonlinearity is very different. In
particular, the Pohozaev identity does not seem work well for our aim. In our proof, utilizing
the useful identity in Lemma 2.2, instead of the Pohozaev identity, with the energy expansion
in Proposition 3.1, we get the key assertions in Proposition 3.10. This is also crucial to proceed
with our argument by induction.

We lastly remark that our approach mentioned above allows the proof without quoting the
uniqueness of solutions which has not been completed for (1.1) yet except for large positive
solutions ([3]).

1.3 Organization, definitions and notations

This paper consists of 6 sections. We begin with two sections, Sects. 2 and 3, which are
mainly devoted to obtain the limit equation and the limit energy of concentrating solutions
respectively. Next in Sect. 4, we analyze the behavior of non-concentrating parts of solutions.
This is important to deduce the precise information of the weak limit of solutions. Next, in
Sects. 5, we complete the proof of main theorems. Finally, in Sect. 6, we discuss some
counterparts of our classification result. Additionally, the proof of Lemma 2.5 is given in
Appendix 1 for the readers’ convenience.

Throughout these sections, we assume {(λn, βn)} ⊂ (0,∞)× (0, 2), (λ∗, β∗) ∈ [0,∞)×
(0, 2) and (λn, βn) → (λ∗, β∗) as n → ∞.Wewill imposemore conditions on λn, βn, λ∗, β∗
when needed. Moreover, we choose any k ∈ {0} ∪ N and consider a sequence of solutions
(un) such that un ∈ Sk,λn ,βn for all n ∈ N. We set fn(t) = tet

2+α|t |βn and f∗(t) = tet
2+α|t |β∗ .

Furthermore, we define the norm in H1
0 (B) by ‖ · ‖H1

0 (B) := (∫B |∇ · |2dx)1/2. Moreover,
we denote the first kind Bessel function of order zero by J0 which is defined by

J0(r) :=
∞∑
j=0

(−1) j

( j !)2
( r
2

)2 j
(r ∈ R).

For any k ∈ N, let 	k and ϕk be the eigenvalue and radial eigenfunction of −� on B with
the Dirichlet boundary condition defined above. Then letting 0 < t1 < t2 < · · · be all the
zeros of J0 on (0,∞), we have that 	k = t2k and ϕk(x) = J0(tk |x |).

Finally, in the proofs, we often use the same character C to denote several constants when
the explicit value is not very important.

2 Limit profile

Let us start the proof of main theorems. In the following, we refer to Radial Lemma in [34].
In our two dimensional setting, it is reduced to the following.

Lemma 2.1 ([34]) There exists a constant c > 0 such that every radial function u ∈ H1
0 (B)

is almost everywhere equal to a function ũ(x), continuous for x 
= 0, such that

|ũ(x)| ≤ c|x |− 1
2 ‖u‖H1

0 (B) (x ∈ B \ {0}).
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Now, assume k ∈ {0} ∪ N. For any 1 ≤ i ≤ k + 1, we define ui,n , ri−1,n , ri,n , ρi,n , and
μi,n as in Theorem 1.5. Then we have⎧⎪⎨

⎪⎩
−u′′

i,n − 1
r u

′
i,n = λn fn(ui,n), (−1)i−1ui,n > 0 in (ri−1,n, ri,n),

ui,n(ri,n) = 0 = u′
i,n(ρi,n),

ui,n(ri−1,n) = 0 if i ≥ 2,

(2.1)

where fn(t) := tet
2+α|t |βn . We often use the next identity.

Lemma 2.2 For any i = 1, · · · , k + 1, we have

ui,n(ρi,n) =
∫ ri,n

ρi,n

λn fn(ui,n)r log
ri,n
r

dr .

Moreover, if i 
= 1, we get

ui,n(ρi,n) =
∫ ρi,n

ri−1,n

λn fn(ui,n)r log
r

ri−1,n
dr

Proof Let us show the first formula. Fix any i = 1, · · · , k + 1. Multiplying the equation in
(2.1) by r log r , and integrating by parts from ρi,n to ri,n , we get∫ ri,n

ρi,n

λn fn(ui,n)r log rdr =
∫ ri,n

ρi,n

(−ru′
i,n(r))

′ log rdr

=
∫ ri,n

ρi,n

λn fn(ui,n)rdr log ri,n − ui,n(ρi,n),

where we used ri,nu′
i,n(ri,n) = − ∫ ri,n

ρi,n
λn fn(ui,n)rdr for the last equality. This shows the

first formula. Assuming i 
= 1, the second assertion is similarly obtained by integrating by
parts from ri−1,n to ρi,n . ��

We also use the next assertion.

Lemma 2.3 If
∫ ri,n
ri−1,n

u′
i,n(r)

2rdr → 0, then ui,n → 0 in C([0, 1]). In particular, if
lim supn→∞ μi,n > 0, then by taking a subsequence if necessary, we get a constant K0 > 0
such that

∫ ri,n
ri−1,n

u′
i,n(r)

2rdr ≥ K0 for all n ∈ N.

Proof We put A2
n := ∫ ri,n

ri−1,n
u′
i,n(r)

2rdr . Then, from Lemma 2.2 and the Hölder inequality,
we get a constant C > 0 such that

μi,n ≤
∣∣∣∣∣
∫ ri,n

ρi,n

λn f (un)r log
ri,n
r

dr

∣∣∣∣∣
≤ C

(∫ ri,n

ρi,n

u4i,nrdr

) 1
4
(∫ ri,n

ρi,n

e
4(1+α)2π A2

n

( ui,n√
2π An

)2
rdr

) 1
4

×
(∫ ri,n

ρi,n

r log2
1

r
dr

) 1
2

Then noting An → 0, we use the Trudinger–Moser (1.2) and Sobolev inequalities to obtain
that the right hand side converges to zero. This finishes the proof. ��
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Let us begin our main discussion of this section. We study the limit equation of concen-
trating solutions. To this end, we fix a number 1 ≤ i ≤ k + 1 and suppose

μi,n → ∞ as n → ∞. (2.2)

Moreover, if i 
= 1, we also assume that

sup
n∈N

∫ ri,n

ri−1,n

u′
i,n(r)

2rdr < ∞, (2.3)

lim
n→∞

log 1
λnr2i−1,n

μ
βn
i−1,n

= δ, (2.4)

where δ = δ(α, β∗) is a positive number defined after (1.6) of Theorem 1.6 and

lim
n→∞ μi−1,nri−1,n |u′

i−1,n(ri−1,n)| = 2. (2.5)

Our goal is to prove the following.

Proposition 2.4 Assume (2.2)–(2.5), put γi,n > 0 so that

1 = 2λnμi,n fn(μi,n)γ
2
i,n,

and define

zi,n(r) := 2μi,n(|ui,n(γi,nr + ρi,n)| − μi,n)

(
r ∈

[
ri−1,n − ρi,n

γi,n
,
ri,n − ρi,n

γi,n

])
,

for all n ∈ N. Then we have γi,n → 0, (ri−1,n − ρi,n)/γi,n → 0, (ri,n − ρi,n)/γi,n → ∞,
and further, zi,n → z in C2

loc((0,∞)) ∩ C1
loc([0,∞)) where

z(r) = log
64

(8 + r2)2
(2.6)

which satisfies

− z′′ − 1

r
z′ = ez in (0,∞), z(0) = 0 = z′(0) and

∫ ∞

0
ezrdr = 4. (2.7)

Before staring the proof, note that zi,n satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z′′i,n − 1
r+ ρi,n

γi,n

z′i,n =
(

zi,n
2μ2

i,n
+ 1

)

×e
zi,n+

z2i,n
4μ2i,n

+αμ
βn
i,n

⎧⎨
⎩
(

zi,n
2μ2i,n

+1

)βn

−1

⎫⎬
⎭
,

zi,n ≤ 0, in
(
ri−1,n−ρi,n

γi,n
,
ri,n−ρi,n

γi,n

)
,

zi,n(0) = 0 = z′i,n(0), zi,n
(
ri,n−ρi,n

γi,n

)
= −2μ2

i,n,

zi,n
(
ri−1,n−ρi,n

γi,n

)
= −2μ2

i,n (i 
= 1).

(2.8)

Put l := limn→∞(ρi,n − ri−1,n)/γi,n . Then as in the proof of Lemma 4.3 in [20], the crucial
step is to deduce l = 0. Hence the case i = 1 is easier. In the case i > 1, we have to exclude
the cases l = ∞ and l ∈ (0,∞). As a first step, we can prove by (2.3) that the case l = ∞
does not occur.
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Lemma 2.5 Assume (2.2) and (2.3) and define γi,n and zi,n as in the previous proposition.
Moreover, put l,m ∈ [0,∞] so that

l = lim
n→∞

ρi,n − ri−1,n

γi,n
and m = lim

n→∞
ρi,n

γi,n
,

by extracting a subsequence if necessary. Then we get that limn→∞ ρi,n/ri,n = 0,
limn→∞(ri,n − ρi,n)/γi,n = ∞, 0 ≤ l = m < ∞ and further, there exists a function z
such that zi,n → z in C2

loc((−l,∞)) (in C2
loc((0,∞)) ∩ C1

loc([0,∞)) if l = 0).

Proof Using Lemmas 2.1, 2.3 and our assumptions (2.2) and (2.3), the proof is similar to
that of Lemma 4.3 in [20]. (Especially, see the argument in “Case 1” there.) For the readers’
convenience we show the proof in Appendix 1. ��

Now our final aim becomes to prove l = 0. In order to prove this, the variational charac-
terization of solutions by [7] was useful in the previous work [20]. This allowed us to get the
energy estimate in Lemma 2.1 (and also Lemma 2.5) in [20]. Using this, we could prove that
the case l ∈ (0,∞) does not happen. (See the argument for “Case 2” in the proof of Lemma
4.3 in [20].) Since we only assume the boundedness of the energy in this paper, we need a
new argument. We accomplish the proof with the aid of our new assumptions (2.4) and (2.5)
as follows.

Proof of Proposition 2.4 Without losing the generality, we may suppose ui .n ≥ 0. Let l,m
and z as in Lemma 2.5. Then we get l = m < ∞ by the lemma. Let us prove l = 0. If
i = 1, this is trivial. Hence, we suppose i ≥ 2 and l > 0 on the contrary. Then, by (2.8) and
Lemma 2.5, the limit function z satisfies{

−z′′ − 1
l+r z

′ = ez, z ≤ 0 in (−l,+∞)

z(0) = 0 = z′(0).

It follows that

z(r) = log
4A2l A+2(r + l)A−2(

(A + 2)l A + (A − 2)(r + l)A
)2 ,

where A = √
2l2 + 4. (See Proof of Proposition 3.1 in [18] or the proof of Lemma 4.3 in

[20]). Then, we use Lemma 2.2 to get

2μ2
i,n

= 2μi,n

∫ ρi,n

ri−1,n

λn f (ui,n)r log
r

ri−1,n
dr

= log
γi,n

ri−1,n

∫ 0

ri−1,n−ρi,n
γi,n

(
zi,n(r)

2μ2
i,n

+ 1

)

× e
zi,n(r)+

z2i,n (r)

4μ2i,n
+αμ

βn
i,n

⎧⎨
⎩
(

zi,n (r)

2μ2i,n
+1

)βn

−1

⎫⎬
⎭ (

r + ρi,n

γi,n

)
dr

+
∫ 0

ri−1,n−ρi,n
γi,n

(
zi,n(r)

2μ2
i,n

+ 1

)
e
zi,n(r)+

z2i,n (r)

4μ2i,n
+αμ

βn
i,n

⎧⎨
⎩
(

zi,n (r)

2μ2i,n
+1

)βn

−1

⎫⎬
⎭

×
(
r + ρi,n

γi,n

)
log

(
r + ρi,n

γi,n

)
dr .

(2.9)
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Noting that l = m implies ri−1,n/γi,n → 0, we apply the Lebesgue convergence theorem to
obtain

lim
n→∞

2μ2
i,n

log γi,n
ri−1,n

=
∫ 0

−l
ez(r + l)dr =

√
2l2 + 4 − 2. (2.10)

On the other hand, we have by the definition of γi,n ,

2μ2
i,n

log γi,n
ri−1,n

= 4μ2
i,n

2 log 1
ri−1,n

− log 2λn − 2 logμi,n − μ2
i,n − αμ

βn
i,n

= 4
log 1

λnr2i−1,n

μ2
i,n

− 1 + o(1)

.
(2.11)

Combining (2.10) with (2.11), we get

lim
n→∞

log 1
λnr2i−1,n

μ2
i,n

= 2
√
2l2 + 4 + 4 + l2

l2
∈ (0,∞).

Then since

log 1
λr2i−1,n

μ2
i,n

=
log 1

λr2i−1,n

μ
βn
i−1,n

(
μi−1,n

μi,n

)βn 1

μ
2−βn
i,n

,

using our assumptions (2.2) and (2.4), we deduce that

lim
n→∞

μi,n

μi−1,n
= 0. (2.12)

On the other hand, since un = un(r) satisfies −u′′
n − u′

n/r = λn fn(un) on (ρi−1,n, ρi,n),
multiplying this equation by r and integrating over (ρi−1,n, ρi,n), we get∫ ri−1,n

ρi−1,n

λ f (ui−1,n)rdr = −
∫ ρi,n

ri−1,n

λ f (ui,n)rdr .

Then, it follows from (2.5) and the similar scaling argument as in (2.9) that

μi,n

μi−1,n
= −

μi,n
∫ ρi,n
ri−1,n

λ f (ui,n)rdr

μi−1,n
∫ ri−1,n
ρi−1,n

λ f (ui−1,n)rdr
→

√
2l2 + 4 − 2

4
> 0 (2.13)

as n → ∞. This contradicts (2.12). Hence we get l = 0. Then (2.8) and Lemma 2.5 prove
that z satisfies {

−z′′ − 1
r z

′ = ez, z ≤ 0 in (0,+∞)

z(0) = 0 = z′(0).

After integration (see Proof of Proposition 3.1 in [18] or the proof of Lemma 4.3 in [20]),
we conclude that z satisfies (2.6) and (2.7). We complete the proof. ��

In the proof above, we get the following.
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Lemma 2.6 Assume (2.2)–(2.5). Then we have

lim
n→∞

ρi,n

γi,n
= 0, (2.14)

and

lim
n→∞

μi,n

μi−1,n
= 0. (2.15)

Proof In the previous proof, we get l = m = 0. This proves (2.14). Using l = 0 in (2.13),
we obtain (2.15). This completes the proof. ��

3 Limit energy

In this section, we study the limit energy of concentrating solutions. As in the previous
section, we fix i = 1, · · · , k + 1 and suppose (2.2)–(2.5). Without loss of the generality we
assume ui,n ≥ 0. Moreover, we define γi,n and zi,n as in the previous section. Our main goal
is to prove the next asymptotic energy expansion.

Proposition 3.1 Assume (2.2)–(2.5). Moreover, if i 
= 1, we suppose β∗ < 3/2. Then we
have (1.4) and (1.5).

For the proof, we begin with the next lemma.

Lemma 3.2 Let i ≥ 2 and suppose (2.2)–(2.5). Then we get ri−1,n/ρi,n → 0 and

lim
n→∞

λnρ
2
i,n fn(μi,n) log

ρi,n
ri−1,n

μi,n
= 2 = lim

n→∞
λnρ

2
i,n fn(μi,n)

ri−1,nu′
i,n(ri−1,n)

. (3.1)

Proof We put r̃n := ri−1,n/ρi,n . Moreover, we writeμn = μi,n and ρn = ρi,n for simplicity.
We first claim that limn→∞ r̃n = 0. Actually, we get

μn =
∫ ρn

ri−1,n

u′
n(r)dr ≤

(∫ ρn

ri−1,n

|u′
n(r)|2rdr

) 1
2 (

log
1

r̃n

) 1
2

.

Then the claim follows by (2.2) and (2.3). Next we define a scaled function z̃n(r) :=
2μn(un(ρnr) − μn) for r ∈ (r̃n, 1). Then it satisfies⎧⎨

⎩−z̃′′n − 1
r z̃

′
n = 2λnρ2

nμn fn(μn)
fn
(

z̃n
2μn

+μn

)
fn(μn)

in (r̃n, 1),

z̃n(1) = 0 = z̃′n(1).

Thanks to (2.14), we get that

−z̃′′n − 1

r
z̃′n = o(1)
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where o(1) → 0 uniformly in (r̃n, 1). Integrating this formula and using z̃′n(1) = 0 = z̃n(1),
we see z̃n → 0 in C1

loc((0, 1]). Then similarly to (2.9), we use Lemma 2.2 to derive

μn = λnρ
2
n fn(μn)

∫ 1

r̃n

fn
(

z̃n
2μn

+ μn

)
fn(μn)

r log
r

r̃n
dr

= λnρ
2
n fn(μn) log

1

r̃n

∫ 1

r̃n

(
z̃n
2μ2

n
+ 1

)
e
z̃n+ z̃2n

4μ2n
+αμ

βn
n

{(
z̃n
2μ2n

+1

)βn
−1

}
rdr

+ λnρ
2
n fn(μn)

∫ 1

r̃n

(
z̃n
2μ2

n
+ 1

)
e
z̃n+ z̃2n

4μ2n
+αμ

β
n

{(
z̃n
2μ2n

+1

)βn
−1

}
r log rdr .

Therefore, it follows from the Lebesgue convergence theorem and our first claim that

lim
n→∞

μn

λnρ2
n fn(μn) log 1

r̃n

= 1

2
.

This shows the first equality of (3.1). Finally, since

ri−1,nu
′
n(ri−1,n)

=
∫ ρn

ri−1,n

λn fn(un)rdr

= λnρ
2
n fn(μn)

∫ 1

r̃n

(
z̃n
2μ2

n
+ 1

)
e
z̃n+ z̃2n

4μ2n
+αμ

βn
n

{(
z̃n
2μ2n

+1

)βn
−1

}
rdr ,

we similarly get the second one. This completes the proof. ��

By the previous lemma, (2.4) and (2.5), we get the following.

Lemma 3.3 Let i ≥ 2 and assume (2.2)–(2.5). Then we have that

lim sup
n→∞

μ
2−βn
i,n

(
ρi,n

γi,n

)2(βn−1)

= 8β∗−1δ, (3.2)

and

lim
n→∞

μi,n

μ
βn−1
i−1,n

= δ. (3.3)

In particular, if β∗ < 3/2, we get

lim
n→∞ μ

2−βn
i,n

ρi,n

γi,n
= 0. (3.4)

Proof From the first equality in (3.1), we get

λnρ
2
i,n fn(μi,n)

μi,n

(
log (λnρ

2
i,n) + log

1

λnr2i−1,n

)
= 4 + o(1). (3.5)
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On the other hand, using (2.5) and (2.4) for the second equality in (3.1) implies

2 + o(1) = λnρ
2
i,n fn(μi,n)μi−1,n

2 + o(1)

= λnρ
2
i,n fn(μi,n)

2 + o(1)

⎧⎨
⎩
log 1

λnr2i−1,n

δ + o(1)

⎫⎬
⎭

1
βn

.

It follows from the first equality of this formula that

λnρ
2
i,n = 4 + o(1)

fn(μi,n)μi−1,n
, (3.6)

and from the second one that

log
1

λnr2i−1,n

= 4β∗δ + o(1){
λnρ

2
i,n fn(μi,n)

}βn
. (3.7)

We substitute (3.7) into (3.5) and get

4 + o(1) = λnρ
2
i,n f (μi,n)

μi,n

⎡
⎢⎣log (λnρ

2
i,n) + 4β∗δ + o(1){

λnρ
2
i,n fn(μi,n)

}βn

⎤
⎥⎦

= 4 + o(1)

μi,nμi−1,n
log

4 + o(1)

fn(μi,n)μi−1,n
+ 4β∗δ + o(1)

μi,n

{
λnρ

2
i,n fn(μi,n)

}βn−1

where we used (3.6) for the second equality. Notice that (2.15) implies that the first term on
the right hand side converges to zero as n → ∞. Consequently, by the definition of γi,n , we
obtain

μ
2−βn
i,n

(
ρi,n

γi,n

)2(βn−1)

= 8β∗−1δ + o(1).

This proves (3.2). Furthermore, substituting the definition of γi,n and (3.6) into this formula,
we see

μ
2−βn
i,n

(
(8 + o(1))μi,n

μi−1,n

)βn−1

= 8β∗−1δ + o(1).

This ensures (3.3). Finally, if β∗ ∈ (0, 3/2), (3.2) and (2.14) show that

μ
2−βn
i,n

ρi,n

γi,n
= (8β∗−1δ + o(1)

) (ρi,n

γi,n

)3−2βn
→ 0

as n → ∞. We finish the proof. ��
Remark 3.4 By (3.2) and (2.14), we see that if (βn) ⊂ (0, 1], then μi,n is uniformly bounded
for all n ∈ N. This contradicts our basic assumption (2.2). This will prove that, interestingly,
if
∫ 1
0 u′

n(r)
2rdr is uniformly bounded and βn ≤ 1 for all n ∈ N, then ui,n does never blow

up for any i ≥ 2. For the detail, see Proof of Theorem 1.6 in Sect. 5. This remark suggests
that, in the rest of the argument in this section, we may restrict our attention only on the case
i = 1 if (βn) ⊂ (0, 1].
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Remark 3.5 As in the statement, the assumption β∗ < 3/2 ensures (3.4). We will see that the
next lemmas strongly depend on this fact. For example, it allows the assertion εn = o(μ2−βn

i,n )

in Lemma 3.7 below. On the other hand, if i 
= 1 and (βn) ⊂ [3/2, 2), this assertion fails by
(3.2) above. This implies that the effect of the error term ρi,n/γi,n would appear in the strong
pointwise estimate like (3.17). More precisely, the term −αβ∗/(2μ2−β∗

i,n ) in (3.17) would be

modified to the one with μ
−(2−βn)/(2(βn−1))
i,n in view of (3.2). This change would affect all

the results, for example, the energy expansion in Theorem 1.5 and the asymptotic formulas
in Theorem 1.6, based on (3.17).

Notice that in the following lemmas, we additionally assume β∗ < 3/2 if i 
= 1. We next
prove the following.

Lemma 3.6 Assume i ≥ 1 and (2.2)–(2.5). Moreover, we suppose β∗ < 3/2 if i 
= 1. Let
zi,n, z be functions defined in Proposition 2.4 and put φn := μ

2−βn
i,n (zi,n − z). Then we get

φn → φ in C2
loc(0,∞) ∩ C0

loc([0,∞)) where φ satisfies

− φ′′ − 1

r
φ′ = ez

(
φ + αβ∗

2
z

)
in (0,∞), φ(0) = 0. (3.8)

In particular, we obtain

φ(r) = αβ∗
(
log (8 + r2) + 8

8 + r2
− 1 − log 8

)
(r ∈ [0,∞)). (3.9)

Proof We write ρn = ρi,n , μn = μi,n , γn = γi,n and zn = zi,n for simplicity. Then using
the definition of φn and the equations in (2.8) and (2.7), we get

− φ′′
n − 1

r + ρn
γn

φ′
n

= μ2−βn
n

{(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

((
zn
2μ2n

+1

)βn
−1

)

− ez +
(

1

r + ρn
γn

− 1

r

)
z′
}
,

(3.10)

for all r ∈
(
0, ri,n−ρn

γn

)
. Here recalling that zn is locally uniformly bounded in [0,∞), we

use the Taylor theorem to see

(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

}
= ezn + αβn

2μ2−βn
n

zne
zn + o

(
1

μ
2−βn
n

)

where μ
2−βn
n ·o(1/μ2−βn

n ) → 0 locally uniformly in [0,∞). Then after substituting this into

(3.10), for all r ∈
(
0, ri,n−ρn

γn

)
and n ∈ N, we apply the mean value theorem to obtain a

constant θ = θ(n, r) ∈ (0, 1) such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−φ′′
n (r) − 1

r + ρn
γn

φ′
n(r) = ez(r)+θ(zn(r)−z(r))φn(r)

+αβn
2 zn(r)ezn(r)

+μ
2−βn
n

(
1

r+ ρn
γn

− 1
r

)
z′(r) + o(1),

φn(0) = 0 = φ′
n(0),

(3.11)

where o(1) → 0 uniformly locally in [0,∞). Here, notice that third term of the right hand
side of the equation is nontrivial if i ≥ 2. But thanks to (3.4), we have

μ2−βn
n

(
1

r + ρn
γn

− 1

r

)
z′(r) = μ2−βn

n
ρn

γn

4

(8 + r2)
(
r + ρn

γn

) → 0 (3.12)

uniformly locally in (0,∞) as n → ∞. Now we claim that φn is locally uniformly bounded
in [0,∞). If not, there exist a constant R > 0 and a sequence (ξn) ⊂ [0, R] such that
φn(ξn) = maxr∈[0,R] |φn(r)| and limn→∞ |φn(ξn)| = ∞. Then putting φ̃n := φn/φn(ξn)

and multiplying the equation in (3.11) by φ(ξn)
−1, we obtain that for all r ∈ (0, R]⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−φ̃′′
n (r) − 1

r + ρn
γn

φ̃′
n(r) = ez(r)+θ(zn(r)−z(r))φ̃n(r)

+μ
2−βn
n

φ(ξn)

ρn

γn

4

(8 + r2)
(
r + ρn

γn

) + o(1),

φ̃n(0) = 0 = φ̃′
n(0),

(3.13)

where o(1) → 0 uniformly in [0, R]. It follows that

−φ̃′′
n (r) − 1

r + ρn
γn

φ̃′
n(r) = O(1) + μ

2−βn
n

φ(ξn)

ρn

γn

4

(8 + r2)
(
r + ρn

γn

) (r ∈ (0, R]),

where O(1) is uniformly bounded in [0, R]. Then, for any r ∈ (0, R], multiplying this
formula by (r + ρn/γn) and integrating over (0, r) give

− φ̃′
n(r) = O

( 1
2r

2 + ρn
γn
r

r + ρn
γn

)
+ μ

2−βn
n

φn(ξn)

ρn

γn

(
r + ρn

γn

)−1 ∫ r

0

4

(8 + r2)
dr . (3.14)

Consequently, with the aid of (3.4), we have that φ̃n is uniformly bounded in C1([0, R]).
Therefore, it follows from the Ascoli-Arzelà theorem, the equation in (3.13) and (3.12) that
there exists a function φ̃ such that φ̃n → φ̃ in C2

loc((0, R]) ∩ C([0, R]). Then φ̃ satisfies

−φ̃′′ − 1

r
φ̃′ = ez φ̃ in (0, R], φ̃(0) = 0.

This implies

φ̃(r) = c̃1
8 − r2

8 + r2
+ c̃2

(8 − r2) log r + 16

8 + r2
(r ∈ (0, R])

for some constants c̃1, c̃2 ∈ R. Since limr→0+0 φ̃(r) = 0, we get c̃1 = c̃2 = 0 and thus,
obtain φ̃ = 0 in [0, R]. This contradicts the fact that φ̃n(ξn) = 1 for all n ∈ N. This proves
the claim. Then, for any r ∈ (0,∞), multiplying the equation in (3.11) by (r + ρn/γn) and
integrating over (0, r), a similar calculation as above gives that φn is uniformly bounded in
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C1
loc([0,∞)) thanks to (3.4). Then again by the Ascoli–Arzelà theorem, (3.11) and (3.12),

we obtain a function φ such that φn → φ in C2
loc((0,∞)) ∩ C0

loc([0,∞)). It follows from
(3.11) that

− φ′′ − 1

r
φ′ = ezφ + αβ∗

2
zez in (0,∞), φ(0) = 0. (3.15)

Then we compute that for all r > 0,

1

αβ∗
φ(r) = c1

8 − r2

8 + r2
+ c2

(8 − r2) log r + 16

8 + r2

+ log (8 + r2) + 2(8 − r2) log r + 8(3 − 2 log 8)

8 + r2
,

(3.16)

where c1, c2 ∈ R are some constants. By limr→0+0 φ(r) = 0, we get c2 = −2 and then
conclude c1 = 1 + log 8. This completes the proof. ��

The next estimate is important.

Lemma 3.7 Let i ≥ 1 and assume (2.2)–(2.5). In addition, if i 
= 1, we suppose β∗ < 3/2.
Then for any R > 0, there exists a constant C > 0 such that

zi,n(r) ≤
(
1 − αβ∗

2μ2−βn
i,n

)
z(r) + Cεn log r (3.17)

for all r ∈ [R, (ri,n − ρi,n)/γi,n] and all large n ∈ N where we put

εn := max

{
1

μ
4−2βn
i,n

,
1

μ2
n
,

|βn − β∗|
μ
2−βn
n

,
ρi,n

γi,n

}
= o

(
1

μ
2−βn
i,n

)
.

Proof We put ρn = ρi,n , μn = μi,n , γn = γi,n , and zn = zi,n for simplicity. We apply the
contraction mapping argument in the proof of Lemma 5 in [29] (see also [30]). We define a
function ψn on [0, (ri,n − ρn)/γn] by

ψn := zn − z − φ

μ
2−βn
n

,

where φ is taken from the previous lemma. Then from (2.8), (2.7), and (3.8), we get

− ψ ′′
n − 1

r + ρn
γn

ψ ′
n

=
(

zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+μ

βn
n

{(
zn
2μ2n

+1

)βn
−1

}

− ez − 1

μ
2−βn
n

ez
(

φ + αβ∗
2

z

)
+
(

1

r + ρn
γn

− 1

r

)(
z′ + φ′

μ
2−βn
n

)

= �n(ψn)

(3.18)
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where we defined

�n(ψ) :=ez
[{

1 + 1

2μ2
n

(
z + φ

μ
2−βn
n

+ ψ

)}
ehn(ψ)

− 1 − 1

μ
2−βn
n

(
φ + αβ∗

2
z

)]

+ ρn

γn

4

(r + ρn
γn

)(r2 + 8)

(
1 − αβ∗

2μ2−βn
n

r2

r2 + 8

)
(3.19)

with

hn(ψ) := ψ + φ

μ
2−βn
n

+ 1

4μ2
n

(
z + φ

μ
2−βn
n

+ ψ

)2

+ αμβn
n

⎡
⎣{ 1

2μ2
n

(
z + φ

μ
2−βn
n

+ ψ

)
+ 1

}βn

− 1

⎤
⎦ .

(3.20)

We first claim that for any T > 0, there exists a constant C(T ) > 0 such that

|ψn(r)| ≤ C(T )εn and |ψ ′
n(r)| ≤ C(T )εn (r ∈ [0, T ]), (3.21)

for all large n ∈ N where εn is defined as in the statement of this lemma and εn =
o
(
μ

−(2−βn)
n

)
by (3.4). To show the claim, fix any T > 0. Then since ψn → 0 uni-

formly in [0, T ] by Lemma 3.6, we have |hn(ψn)| ≤ 1 for large n ∈ N. It follows that
ehn(ψn) = 1+ hn(ψn) + O(hn(ψn)

2) on [0, T ] by the Taylor theorem. Using this for (3.19)
with ψ = ψn , we compute that

�n(ψn) = ez
[(

1 + O

(
1

μ
2−βn
n

))
ψn + O

(
ψ2
n

)+ O(εn)

]

+ O

⎛
⎝ρn

γn

1(
r + ρn

γn

) (
8 + r2

)
⎞
⎠ on [0, T ].

(3.22)

Then, putting ψn = εnψ̄n in (3.18), we get

−ψ̄ ′′
n − 1

r + ρn
γn

ψ̄ ′
n = ez

(
1 + O

(
1

μ
2−βn
n

))
ψ̄n + O

(
εnψ̄

2
n

)+ O (1)

+ O

⎛
⎝ 1

εn

ρn

γn

1(
r + ρn

γn

) (
8 + r2

)
⎞
⎠ on [0, T ],

and ψ̄n(0) = 0 = ψ̄ ′(0). Using this equation and noting ε−1
n ρn/γn ≤ 1, we get that ψ̄n

is uniformly bounded in C1([0, T ]). (The detail of the proof is similar to the argument in
confirming the locally uniformly boundedness of φn and φ′

n in the proof of Lemma 3.6.) This
ensures the claim.

Next let us extend the estimate (3.21) to a suitable expanding interval. To this end, we
choose a sufficiently large number T > 0 and a sequence (sn) ⊂ (T , (ri,n − ρn)/γn) so that
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sn → ∞. (More precise choice of T and (sn) is given later.) Then we consider an initial
value problem

−ψ ′′ − 1

r + ρn
γn

ψ ′ = �n(ψ) on (T , sn], ψ(T ) = ψn(T ), ψ ′(T ) = ψ ′
n(T ).

Putting ω =
(
r + ρn

γn

)
ψ ′, we get the equivalent system,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ ′ = ω(
r+ ρn

γn

) on (T , sn],

ω′ = −
(
r + ρn

γn

)
�n(ψ) on (T , sn],

ψ(T ) = ψn(T ), ω(T ) =
(
T + ρn

γn

)
ψ ′
n(T ).

(3.23)

Notice that, by the uniqueness, the solution (ψ, ω) satisfies (ψ,w) = (ψn, (r + ρn/γn)ψ
′
n)

on [T , sn]. In order to construct the solution with an appropriate estimate, we reduce (3.23)
into an integral equation on a suitable function space. To do this, we define the norms ‖ · ‖1
and ‖ · ‖2 by

‖ f ‖1 = sup
r∈(T ,sn ]

∣∣∣∣∣∣
f (r)

log
(
r + ρn

γn

)
− log

(
T + ρn

γn

)
∣∣∣∣∣∣ , ‖ f ‖2 = 2 sup

r∈[T ,sn ]
| f (r)|.

We fix a constant C̃ > 0 such that

C̃ ≥ 4(C(T )(T + 2) + 1), (3.24)

where C(T ) > 0 is taken from (3.21). Then we consider a set of functions

BC̃ :=
{
(ψ, ω) ∈ C0([T , sn]) × C0([T , sn])

∣∣ ‖ψ − ψn(T )‖1 ≤ C̃εn,

‖ω‖2 ≤ C̃εn, ψ(T ) = ψn(T ), ω(T ) =
(
T + ρn

γn

)
ψ ′
n(T )

}
.

Moreover, we define a map F : BC̃ → C0([T , sn]) × C0([T , sn]) so that F(ψ, ω) =
(F1(ψ, ω), F2(ψ, ω)) and

F1(ψ, ω)(r) := ψ(T ) +
∫ r

T

ω(
s + ρn

γn

)ds,
F2(ψ, ω)(r) := ω(T ) −

∫ r

T

(
s + ρn

γn

)
�n(ψ)ds,

for r ∈ [T , sn]. We shall find a fixed point of F in BC̃ .
To this end, we fix a small number 0 < d � 1 (independently of T ) and choose the

sequence (sn) so that sn ≤
√
edμ

min{1,2−βn }
n − 8 for all n ∈ N and lim infn→∞ ε

1/2
n sn > 0. It

follows that
1

μ
min{1,2−βn}
n

log (8 + r2) ≤ d (3.25)

for all r ∈ [T , sn] and n ∈ N. Moreover, by (3.21) and (3.25), there exists a number
n0 = n0(T , d) such that if n ≥ n0, it holds that

sup
s∈[T ,sn ]

|ψ(s)| ≤ d (3.26)
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for any ψ ∈ C0([T , S]) with ‖ψ − ψn(T )‖1 ≤ C̃εn . Then similarly to (3.22), we calculate
by (2.6), (3.9), (3.25) and (3.26) that

�n(ψ) = ez
[
(1 + O (δ)) ψ + O

(
εn log

2 (8 + r2)
)]

+ O

(
ρn

γn

1

(r + ρn
γn

)(8 + r2)

)
on [T , sn]

(3.27)

for any ψ ∈ C0([T , S]) such that ‖ψ − ψn(T )‖1 ≤ C̃εn and all n ≥ n0. Analogously, we
compute that

|�n(ψ) − �n(ψ̄)| ≤ (1 + O (δ)) ez |ψ − ψ̄ | on [T , sn], (3.28)

for all ψ, ψ̄ ∈ C0([T , S]) verifying ‖ψ − ψn(T )‖1 ≤ C̃εn and ‖ψ̄ − ψn(T )‖1 ≤ C̃εn and
all n ≥ n0. After this we always assume n ≥ n0.

Now, we first claim that F : BC̃ → BC̃ . In fact, for any (ψ, ω) ∈ BC̃ , we get

|F1(ψ, ω)(r) − ψn(T )| ≤ 1

2
‖ω‖2

∣∣∣∣∣
∫ r

T

1

s + ρn
γn

ds

∣∣∣∣∣ .
It follows that

‖F1(ψ, ω) − ψn(T )‖1 ≤ 1

2
C̃εn .

On the other hand, from our choice of (ψ, ω), (3.21) and (3.27), we have for any r ∈ [T , sn]
that

|F2(ψ, ω)(r)|

≤ εn

[
C(T )

(
T + ρn

γn

)
+ 65

∫ r

T

(
s + ρn

γn

)(
C(T ) + C̃ log

r+ ρn
γn

T+ ρn
γn

)
(8 + s2)2

ds

+ O

⎛
⎝∫ r

T

(
s + ρn

γn

)
log2(8 + s2)

(8 + s2)2
ds

⎞
⎠+ O

(
ε−1
n

ρn

γn

∫ r

T

1

8 + s2
ds

)]

≤ εn

[
C(T )

⎛
⎝T + 1 + 65

∫ r

T

(
s + ρn

γn

)
(8 + s2)2

ds

⎞
⎠+ 65C̃

∫ r

T

(
s + ρn

γn

)
log

r+ ρn
γn

T+ ρn
γn

(8 + s2)2
ds

+ O

⎛
⎝∫ r

T

(
s + ρn

γn

)
log2(8 + s2)

(8 + s2)2
ds

⎞
⎠+ O

(
ε−1
n

ρn

γn

∫ r

T

1

8 + s2
ds

)]
.

Since ε−1
n ρn/γn ≤ 1, taking T > 0 large enough, we get

|F2(ψ, ω)(r)| ≤ εn

[
C(T )(T + 2) + C̃

4
+ 1

]
.

We fix this T . Then it follows from (3.24) that

‖F2(ψ, ω)‖2 ≤ C̃εn .
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This proves the claim. Next we shall show that F is a contraction mapping. Indeed, for any
(ψ, ω), (ψ̄, ω̄) ∈ BC̃ , we obtain

|F1(ψ, ω)(r) − F1(ψ̄, ω̄)(r)| ≤ 1

2
‖ω − ω̄‖2 log

r + ρn
γn

T + ρn
γn

.

This implies that

‖F1(ψ, ω) − F1(ψ̄, ω̄)‖1 ≤ 1

2
‖ω − ω̄‖2.

Moreover, we get by (3.28) that

|F2(ψ, ω)(r)−F2(ψ̄, ω̄)(r)|

≤ 65
∫ r

T

(
s + ρn

γn

) |ψ − ψ̄ |
(8 + s2)2

ds

≤ 65 sup
s∈(T ,sn ]

∣∣∣∣∣∣∣
ψ − ψ̄

log
s+ ρn

γn
T+ ρn

γn

∣∣∣∣∣∣∣
∫ r

T

(
s + ρn

γn

) log
s+ ρn

γn
T+ ρn

γn

(8 + s2)2
ds.

Choosing T > 0 larger if necessary, we see

‖F1(ψ, ω) − F1(ψ̄, ω̄)‖2 ≤ 1

2
‖ψ − ψ̄‖1.

Consequently, F is a contraction mapping from BC̃ to itself. This suggests that there exists a
fixed point (ψ, ω) ∈ BC̃ of F . Then, as noted above, we get (ψ, ω) = (ψn, (r + ρn/γn)ψ

′
n)

on [T , sn]. Since (ψ, ω) ∈ BC̃ , we have by (3.21),

|ψn(r)| ≤ εn

(
C(T ) + C̃ log

r + ρn
γn

T + ρn
γn

)
, (3.29)

and (
r + ρn

γn

)
|ψ ′

n(r)| ≤ C̃

2
εn (3.30)

for all r ∈ [T , sn].
Let us finish the proof. Fix T > 0 as above and choose any R > 0. If R < T , we get by

the definition of ψn , (2.6), (3.9) and (3.21) that

zn(r) ≤
(
1 − αβ∗

2μ2−βn
n

)
z(r) − αβn

μ
2−βn
n

r2

r2 + 8
+ O(εn) <

(
1 − αβ∗

2μ2−βn
n

)
z(r)

for all r ∈ [R, T ] if n is large enough. Hence we may assume T ≤ R. Then, similarly, it
follows from (3.29) that

zn(r)

≤
(
1 − αβ∗

2μ2−βn
n

)
z(r) − αβn

μ
2−βn
n

r2

r2 + 8
+
(
C(T ) + C̃ log

r + ρn
γn

T + ρn
γn

)
εn

≤
(
1 − αβ∗

2μ2−βn
n

)
z(r) + O(εn log r)

(3.31)
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for all r ∈ [R, sn]. Moreover, for any r ∈ [sn, (ri,n − ρn)/γn], we have(
r + ρn

γn

)
z′n(r) ≤

∫ sn

0

{(
r + ρn

γn

)
z′n(r)

}′
dr

=
(
sn + ρn

γn

)(
z′(sn) + φ′(sn)

μ
2−βn
n

+ ψ ′
n(sn)

)
.

(3.32)

Here we use (2.6), (3.9) and (3.30) to see(
sn + ρn

γn

)
z′(sn) = −4 + O

(
1

s2n

)
+ o

(
ρn

γn

)
,(

sn + ρn

γn

)
φ′(sn)
μ
2−βn
n

= 2αβ∗
μ
2−βn
n

+ o

(
1

s2n

)
+ o

(
ρn

γn

)
,

and ∣∣∣∣
(
sn + ρn

γn

)
ψ ′
n(sn)

∣∣∣∣ ≤ C̃

2
εn .

Substituting these formulas into (3.32) and using lim infn→∞ snε
1/2
n > 0, we get(

r + ρn

γn

)
z′n(r) ≤ −4 + 2αβ∗

μ
2−βn
n

+ O(εn)

for all r ∈ [sn, (ri,n−ρn)/γn]. Lastly, for any r ∈ [sn, (ri,n−ρn)/γn], dividing this inequality
by (r + ρn/γn) and integrating over [sn, r ], we compute that

zn(r) ≤ −
(
4 − 2αβ∗

μ
2−βn
n

)
log

(
r + ρn

γn

)
+
(
4 − 2αβ∗

μ
2−βn
n

)
log

(
sn + ρn

γn

)

+ O(εn log r) + O(εn log sn) + zn(sn)

≤
(
1 − αβ∗

2μ2−βn
n

)
z(r) + O(εn log r)

if n ∈ N is large enough. This completes the proof. ��

Using the previous lemma, we deduce the following asymptotic expansion of the energy.

Proposition 3.8 Assume i ≥ 1 and (2.2)–(2.5). Moreover, suppose β∗ < 3/2 if i 
= 1. Then
we get

μi,n

∫ ri,n

ρi,n

λn f (ui,n)rdr = 2 − αβ∗
μ
2−βn
i,n

+ o

(
1

μ
2−βn
i,n

)
, (3.33)

and ∫ ri,n

ρi,n

λnui,n f (ui,n)rdr = 2 − αβ∗
μ
2−βn
i,n

+ o

(
1

μ
2−βn
i,n

)
. (3.34)
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Proof We write μn = μi,n , ρn = ρi,n , rn = ri,n , γn = γi,n , and zn = zi,n . We refer to the
proof of Theorem 1 in [30]. We first note that

μn

∫ rn

ρn

λn f (un)rdr

= 1

2

∫ rn−ρn
γn

0

(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

} (
r + ρn

γn

)
dr

and ∫ rn

ρn

λnun f (un)rdr

= 1

2

∫ rn−ρn
γn

0

(
zn
2μ2

n
+ 1

)2

e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

} (
r + ρn

γn

)
dr .

So it suffices to show that

1

2

∫ rn−ρn
γn

0

(
zn
2μ2

n
+ 1

)m

e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

} (
r + ρn

γn

)
dr

= 2 − αβ∗
μ
2−βn
n

+ o

(
1

μ
2−βn
n

) (3.35)

for m = 1, 2. To prove (3.35), we first claim

In := 1

2

∫ sn

0

(
zn
2μ2

n
+ 1

)m

e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

} (
r + ρn

γn

)
dr

= 2 − αβ∗
μ
2−βn
n

+ o

(
1

μ
2−βn
n

)
(3.36)

form = 1, 2 where sn > 0 is chosen as in the proof of Lemma 3.7. In fact, using the equation
in (2.8) and noting zn = O(log (8 + r2)) on [0, sn] by (2.6), (3.9), (3.21) and (3.29), we get

In = −1

2

∫ sn

0

{
1 + O

(
log (8 + r2)

μ2
n

)}m−1

×
{(

r + ρn

γn

)(
z′ + φ′

μ
2−βn
n

+ ψ ′
n

)}′
dr ,

for m = 1, 2. Here, we estimate by (2.6), our choice of (sn) and (3.4) that

I1,n :=
∫ sn

0

{(
r + ρn

γn

)
z′
}′

dr = −4 + o

(
1

μ
2−βn
n

)
,

and by (3.9) that

I2,n := 1

μ
2−βn
n

∫ sn

0

{(
r + ρn

γn

)
φ′
}′

dr = 2αβ∗
μ
2−βn
n

+ o

(
1

μ
2−βn
n

)
,
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and further, from (3.30), that

I3,n :=
∫ sn

0

{(
ρn

γn
+ r

)
ψ ′
n

}′
dr = o

(
1

μ
2−βn
n

)
.

Moreover we assert

∫ sn

0

log (8 + r2)

μ2
n

{(
r + ρn

γn

)(
z′ + φ′

μ
2−βn
n

+ ψ ′
n

)}′
dr = o

(
1

μ
2−βn
n

)
.

Indeed, if β∗ > 1, we have μ
2−βn
n · μ−2

n log (8 + r2) → 0 uniformly on [0, sn] by (3.25)
and then, using the previous three formulas for I1,n, I2,n and I3,n above we easily get the
assertion. On the other hand, if β∗ ≤ 1, we get by integrating by parts and (2.6), (3.9), (3.21)
and (3.30) that

∫ sn

0

log (8 + r2)

μ2
n

{(
r + ρn

γn

)(
z′ + φ′

μ
2−βn
n

+ ψ ′
n

)}′
dr

= 1

μ2
n

{
log (8 + s2n )

(
I1,n + I2,n + I3,n

)

−
∫ sn

0

2r

8 + r2

(
r + ρn

γn

)( −4r

(8 + r2)2
+ O

(
1

μ
2−βn
n (1 + r)

))
dr

}

= o

(
1

μ
2−βn
n

)

by the three formulas for I1,n, I2,n and I3,n above and a direct calculation. This proves the
assertion. As a consequence, we get

In = −1

2
(I1,n + I2,n + I3,n) + o

(
1

μ
2−βn
n

)
.

This shows the claim. Next we claim that

Jmn :=
∫ rn−ρn

γn

sn

(
zn(r)

2μ2
n

+ 1

)m

e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

}
rdr

= o

(
1

μ
2−βn
n

) (3.37)

for m = 1, 2. For the proof, it suffices to consider the case m = 1 since J 2n ≤ J 1n . Hence
let us show (3.37) for m = 1. To this end, we first set a sequence (cn) ⊂ (0, 1] so that
cn := 1 if n ∈ N satisfies βn ≥ 1 and cn := βn otherwise. Then, we define a value c∗ > 0 by
limn→∞ cn = c∗. Furthermore, we fix a small constant η > 0 so that c∗α−(αβ∗ +η)/2 > 0.
Noting (3.17) we may assume

zn(r) ≤
(
1 − αβ∗ + η

2μ2−βn
n

)
z(r) (3.38)
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for all r ∈ [sn, (rn − ρn)/γn]. After this, we put an := 1− (αβ∗ + η)/(2μ2−βn
n ). In addition,

we have that (
zn(r)

2μ2
n

+ 1

)βn

− 1 ≤ cnzn(r)

2μ2
n

for any r ∈ [sn, (rn − ρn)/γn]. This is clearly obtained by noting zn/(2μ2
n) + 1 ∈ [0, 1] in

the case βn ≥ 1 and by using the mean value theorem if βn ∈ (0, 1). It follows that

J 1n =
∫ rn−ρn

γn

sn

(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

}
rdr

≤
∫ rn−ρn

γn

sn

(
zn
2μ2

n
+ 1

)
e

(
1+ αcn

2μ
2−βn
n

)
zn+ z2n

4μ2n rdr

≤
∫ rn−ρn

γn

sn

(
anz

2μ2
n

+ 1

)
e

(
1+ αcn

2μ
2−βn
n

)
anz+ a2n z

2

4μ2n rdr

(3.39)

by (3.38). Here we note that anz(r)/(2μ2
n) + 1 ≥ 0 if and only if

r ≤
√
8

(
e

μ2n
an − 1

)
=: Rn .

Then it is clear by (3.38) that Rn ≥ (rn−ρn)/γn . On the other hand since lim infn→∞ snε
1
2
n >

0, it follows from (3.4) that there exists a sequence (Mn) ⊂ (0,∞) such that Mn → ∞ and

sn ≥
√
Mnμ

2−βn
n for all n ∈ N. Then from (3.39) we compute with changing the variable by

τ = −anz(r) and putting s̃n := −anz(sn) and R̃n := −anz(Rn) that

J 1n ≤
∫ Rn

sn

(
anz

2μ2
n

+ 1

)
e

(
1+ αcn

2μ
2−βn
n

)
anz+ a2n z

2

4μ2n rdr

= 2

an

∫ R̃n

s̃n

(
1 − τ

2μ2
n

)
e

τ2

4μ2n
+
(

1
2an

−1− αcn

2μ
2−βn
n

)
τ

dτ

Here notice that s̃n = 4 log sn + O(1) by (3.25) and R̃n = 2μ2
n from the definition. Again

changing the variable by

t = τ

2μn
+ μn

(
1

2an
− 1 − αcn

2μ2−βn
n

)

and setting

R̄n = R̃n

2μn
+ μn

(
1

2an
− 1 − αcn

2μ2−βn
n

)

and

s̄n = s̃n
2μn

+ μn

(
1

2an
− 1 − αcn

2μ2−βn
n

)
,
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we get

J 1n ≤ 4μn

an exp

[
μ2
n

(
1

2an
− 1 − αcn

2μ2−βn
n

)2
]

×
∫ R̄n

s̄n

(
− t

μn
+ 1

2an
− αcn

2μ2−βn
n

)
et

2
dt .

(3.40)

Now we calculate by (3.25) and our choices of (Mn) and η that

μ2−βn
n

4μn

an exp

[
μ2
n

(
1

2an
− 1 − αcn

2μ2−βn
n

)2
] ∫ R̄n

s̄n

t

μn
et

2
dt

= O

(
μ2−βn
n exp

{
−
(
c∗α − αβ∗ + η

2
+ o(1)

)
μβn
n

})
+ O

(
1

Mn

)
→ 0,

(3.41)

as n → ∞. Similarly, we get

An : = μ2−βn
n

4μn

an exp

[
μ2
n

(
1

2an
− 1 − αcn

2μ2−βn
n

)2
] ∫ R̄n

s̄n
et

2
dt

→ 0

(3.42)

as n → ∞. In fact, noting s̄n = −(1+o(1))μn/2+O(1) by (3.25) and R̄n = (1+o(1))μn/2
we decompose

An = A1,n + A2,n

where

A1,n := μ2−βn
n

4μn

an exp

[
μ2
n

(
1

2an
− 1 − αcn

2μ2−βn
n

)2
] ∫

{|t |≤μn/4}
et

2
dt .

and

A2,n := μ2−βn
n

4μn

an exp

[
μ2
n

(
1

2an
− 1 − αcn

2μ2−βn
n

)2
] ∫

[s̄n ,R̄n ]∩{|t |≥μn/4}
et

2
dt .

Since

A1,n = O

(
μ
3−βn
n

e(1+o(1))μ2
n/4

· μn

2
eμ2

n/16

)
,

we easily get A1,n → 0. On the other hand, since

A2,n ≤ μ2−βn
n

4μn

an exp

[
μ2
n

(
1

2an
− 1 − αcn

2μ2−βn
n

)2
] · 4

∫
[s̄n ,R̄n ]∩{|t |≥μn/4}

|t |
μn

et
2
dt,
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we get A2,n → 0 similarly to the calculation above. Consequently, using (3.41) and (3.42) for

(3.40), we get J 1n = o(μ−(2−βn)
n ). This proves our claim (3.37). Then by (3.36) and (3.37),

we readily obtain (3.35). This finishes the proof. ��
We also get the following.

Lemma 3.9 Suppose i ≥ 1 and (2.2)–(2.5) and further, if i 
= 1, let β∗ < 3/2. Then we have

μi,n

∫ ρi,n

ri−1,n

λn f (ui,n)rdr = o

(
1

μ
2−βn
i,n

)
, (3.43)

and ∫ ρi,n

ri−1,n

λnui,n f (ui,n)rdr = o

(
1

μ
2−βn
i,n

)
. (3.44)

Proof By the first assertion in Lemma 3.2 and (3.4), we get (ρi,n − ri−1,n)/γi,n =
o(μ−(2−βn)

i,n ). It folows that

1

2

∫ 0

ri−1,n−ρi .n
γi,n

(
zi,n
2μ2

n
+ 1

)m

e
zi,n+

z2i,n
4μ2n

+αμ
βn
n

{(
zi,n
2μ2n

+1

)βn
−1

} (
r + ρn

γn

)
dr

= o

(
1

μ
2−βn
i,n

)
,

for m = 1, 2. This proves (3.43) and (3.44). We finish the proof. ��
We get the proof of Proposition 3.1.

Proof of Proposition 3.1 (1.4) follows from (2.1), (3.34) and (3.44). (1.5) is proved by (3.33)
and (3.43). This finishes the proof. ��

We end this section by proving the next key lemma.

Proposition 3.10 We assume i ≥ 1 and (2.2)–(2.5). Moreover, suppose β∗ < 3/2 if i > 1.
Then we get

lim
n→∞

log 1
λnr2i,n

μ
βn
i,n

= δ, (3.45)

and

lim
n→∞ μi,nri,n |u′

i,n(ri,n)| = 2. (3.46)

Proof We denote μn = μi,n , ρn = ρi,n , rn = ri,n , γn = γi,n , and zn = zi,n as usual. To
deduce (3.45), we first claim that there exists a constant C > 0 such that

λnr
2
nμ2

ne
(δ+o(1))μβn

n ≤ C

for all n ∈ N. In fact, (3.17) implies that for any r ∈ [1, (rn − ρn)/γn],

zn(r) ≤
(
1 − αβ∗ + o(1)

2μ2−βn
n

)
z(r),
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if n ∈ N is large enough. Choosing r = (rn−ρn)/γn , we get by the first and second assertions
in Lemma 2.5 that

0 ≤ μ2
n −

(
1 − αβ∗ + o(1)

2μ2−βn
n

)
log 2λnr

2
nμ2

ne
μ2
n+αμ

βn
n + O(1).

This implies that there exists a constant C̄ > 0 such that

log λnr
2
nμ2

ne
(δ+o(1))μβn

n ≤ C̄

for all large n ∈ N. This proves the claim. It follows that

lim inf
n→∞

log 1
λnr2n

μ
βn
n

≥ δ. (3.47)

Next, we shall show

lim sup
n→∞

log 1
λnr2n

μ
βn
n

≤ δ. (3.48)

To do this, we use the first formula in Lemma 2.2 to obtain

2μ2
n

= log
rn
γn

×
∫ rn−ρn

γn

0

(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

} (
r + ρn

γn

)
dr

+
∫ rn−ρn

γn

0

(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

}

×
(
r + ρn

γn

)
log

1(
r + ρn

γn

)dr .

(3.49)

Here, we observe that for any value R0 > 1,

∫ rn−ρn
γn

0

(
zn
2μ2

n
+ 1

)
e
zn+ z2n

4μ2n
+αμ

βn
n

{(
zn
2μ2n

+1

)βn
−1

}

×
(
r + ρn

γn

)
log

1(
r + ρn

γn

)dr
≤
∫ R0

0
ezr log

1

r
dr + o(1)

where o(1) → 0 as n → ∞. Then, since we can choose R0 > 1 so large that∫ R0
0 ezr log 1

r dr < 0, the second term of the right hand side of (3.49) is negative value
for all large n ∈ N. Hence using this and (3.33) for (3.49), we get

2μ2
n ≤

(
2 − αβ∗

μ
2−βn
n

+ o

(
1

μ
2−βn
n

))
log 2λnr

2
nμn fn(μn).
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It follows that

log 1
λnr2n

μ
βn
n

≤ δ + o(1).

This proves (3.48). Then (3.47) and (3.48) show (3.45). Finally we shall ensure (3.46). For
any r ∈ (ρn, rn), multiplying the equation in (2.1) by r and integrating by parts over (ρn, rn),
we get

−rnu
′
n(rn) = λn

∫ rn

ρn

f (un)rdr .

Hence we obtain from (3.33) that

lim
n→∞ μnrn |u′

n(rn)| = 2.

This gives (3.46). We complete the proof. ��

4 Behavior of non-concentrating parts

In this section we mainly discuss the behavior of a sequence (ui,n) which does not blow up.
This is useful to deduce precise informations on the weak limit. Especially, Lemmas 4.6 and
4.7 will be important for the proof in the case of (ii) of Theorems 1.5 and 1.6. We begin with
the next basic lemma. Let Nλ,β be the Nehari manifold defined in Sect. 1.1.

Lemma 4.1 For any 	0 ∈ (0,	1) and β0 ∈ (0, 2), we have a constant K > 0 such that∫
B

|∇u|2dx ≥ K

for all u ∈ Nλ,β and all (λ, β) ∈ (0,	0] × [β0, 2].
Proof The proof is standard. For the readers’ convenience we show the proof. First fix 	0 ∈
(0,	1) and β0 ∈ (0, 2) and assume λ ∈ (0,	0] and β ∈ [β0, 2]. Next choose ε > 0 so
that (1 + ε)	0 < 	1. Then for any p > 2, we can find a constant C1 > 0 independently
of β ∈ [β0, 2] such that |t2et2+α|t |β | ≤ (1 + ε)t2 + C1t pe(1+α)t2 for all t ∈ R. Then the
Hölder, Poincare, Sobolev, and Trudinger–Moser (1.2) inequalities suggest that there exists
a constant C2 > 0, which is independent of β ∈ [β0, 2], such that∫

B
u2eu

2+α|u|βdx ≤ (1 + ε)

∫
B
u2dx + C1

(∫
B

|u|2pdx
) 1

2
(∫

B
e2(1+α)u2dx

) 1
2

≤ 1 + ε

	1
‖u‖2

H1
0 (B)

+ C2‖u‖p
H1
0 (B)

,

for all u ∈ H1
0 (B) with ‖u‖2

H1
0 (B)

≤ 4π/(2(1 + α)). Hence, it follows that

〈I ′
λ,β(u), u〉 ≥

(
1 − (1 + ε)	0

	1

)
‖u‖2

H1
0 (B)

− 	0C2‖u‖p
H1
0 (B)

for any u ∈ H1
0 (B) satisfying ‖u‖2

H1
0 (B)

≤ 4π/(2(1 + α)). Since 2 < p, we get a constant

C3 > 0, which is independent of λ ∈ (0,	0] and β ∈ [β0, 2], such that 〈Iλ,β(u), u〉 > 0
for all u ∈ H1

0 (B) with ‖u‖H1
0 (B) ≤ C3. Therefore u ∈ Nλ,β implies ‖u‖H1

0 (B) ≥ C3. This
finishes the proof. ��
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Fromnowon, as usual, let k ∈ {0}∪N and {(λn, βn)} ⊂ (0,∞)×(0, 2) be a sequence such
that (λn, βn) → (λ∗, β∗) as n → ∞ for some value (λ∗, β∗) ∈ [0,∞) × (0, 2). Moreover,
assume that (un) is a sequence of solutions satisfying un ∈ Sk,λn ,βn for all n ∈ N. In the
following lemmas, we always suppose∫

B
|∇un |2dx uniformly bounded for all n ∈ N, (4.1)

if k 
= 0. All the other notations below are defined as in the main theorems. We get the
following.

Lemma 4.2 Assume (4.1). If μi,n → ∞ as n → ∞ for some i ∈ {1, · · · , k + 1}, then we
have limn→∞ ρi,n = 0.On the other hand, if limn→∞ ri,n = 0 for some i ∈ {1, · · · , k}, then
we get μ j,n → ∞ for all j = 1, · · · , i . Finally, if λ∗ = 0, then we obtain μk+1,n → ∞.

Proof First assume μi,n → ∞ as n → ∞ for some i ∈ {1, · · · , k + 1}. Then Lemma 2.1
implies that there exists a constant c > 0 such that

ρi,nμ
2
i,n ≤ c2

∫
B

|∇un |2dx,

for all n ∈ N. Hence, by our assumptions, we get ρi,n → 0 as n → ∞. This shows the first
assertion. Next, we suppose ri,n → 0 for some i ∈ {1, · · · , k}. Then, assume there exists
a number j ∈ {1, · · · , i} such that μ j,n is uniformly bounded up to a subsequence on the
contrary. Then for any x ∈ B, we put ũ j,n(x) := un(r j,nx) if r j−1,n/r j,n < |x | < 1 and
ũ j,n(x) := 0 otherwise. It follows that ũ j,n ∈ Nλnr2j,n ,βn

. Then since λnr2i,n → 0, we get by

Lemma 4.1 that there exists a constant K > 0 such that

K ≤
∫
B

λnr
2
i,nũ j,n fn(ũ j,n)dx → 0,

since ũ j,n is uniformly bounded. This is a contradiction.Hencewe prove the second assertion.
Finally, assume λ∗ = 0 andμk+1,n is uniformly bounded up to a subsequence on the contrary.
Then for all x ∈ B, we put ūk+1,n(x) := un(x) if rk,n < |x | < 1 and ūk+1,n(x) := 0
otherwise. Since ūk+1,n ∈ Nλn ,βn and λ∗ = 0, we can apply Lemma 4.1 again and get a
constant K > 0 such that

K ≤ λn

∫
B
ūk+1,n fn(ūk+1,n)dx → 0

since ūk+1,n is uniformly bounded. This is a contradiction. This ensures the last assertion.
We complete the proof. ��

After this,we regardun = un(|x |) and study the behavior of the functionun(r) (r ∈ [0, 1]).
Let us give the next three standard lemmas.

Lemma 4.3 Suppose (4.1). Assume that there exists a number i ∈ {1, · · · , k} such that μi,n

is uniformly bounded for all n ∈ N. Then μi+1,n is also uniformly bounded. Furthermore,
there exist constants ri−1, , ri , ρi , and ρi+1 such that 0 ≤ ri−1 ≤ ρi < ri < ρi+1 < 1,
ri−1,n → ri−1, ri,n → ri , ρi,n → ρi and ρi+1,n → ρi+1 by extracting a subsequence if
necessary. Moreover, ri−1 = ρi if and only if ρi = 0.

Proof First, assume that μi+1,n → ∞ up to a subsequence on the contrary. Then the first
assertion in Lemma 4.2 suggests that ri,n < ρi+1,n → 0. Then the second assertion in the
same lemma implies μi,n → ∞ which is a contradiction. This proves the first assertion
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in the present lemma. Next, we choose constants 0 ≤ ri−1 ≤ ρi ≤ ri ≤ ρi+1 ≤ 1 so
that ri−1,n → ri−1, ri,n → ri , ρi,n → ρi , and ρi+1,n → ρi+1 by taking a subsequence if
necessary. We claim ρi < ri . In fact, if ρi = ri on the contrary, Lemma 2.2 shows that

1 =
∫ ri,n

ρi,n

λn

∣∣∣∣ fn(un)μi,n

∣∣∣∣ r log ri,n
r

dr ≤ λn

∣∣∣∣ fn(μi,n)

μi,n

∣∣∣∣ max
r∈(0,1]

∣∣∣∣r log 1

r

∣∣∣∣ (ri,n − ρi,n)

→ 0.

This is a contradiction. Next we show ri < ρi+1. Otherwise, we get 0 < ri = ρi+1. Then
again Lemma 2.2 implies

1 =
∫ ρi+1,n

ri,n
λn

∣∣∣∣ fn(un)μi+1,n

∣∣∣∣ r log r

ri,n
dr ≤ λn

∣∣∣∣ fn(μi+1,n)

μi+1,n

∣∣∣∣ log ρi+1,n

ri,n

ρ2
i+1,n − r2i,n

2

→ 0,

which is a contradiction. Next we ensure ρi+1 < 1. If not, we have 1 ≥ ri+1,n > ρi+1,n → 1
and then analogously, we get

1 =
∫ ri+1,n

ρi+1,n

λn

∣∣∣∣ fn(un)μi+1,n

∣∣∣∣ r log ri+1,n

r
dr = O

(
log

ri+1,n

ρi+1,n

r2i+1,n − ρ2
i+1,n

2

)
→ 0.

This is a contradiction. Finally, we suppose ri−1 = ρi > 0 on the contrary. Then similarly,
we see that

1 =
∫ ρi,n

ri−1,n

λn

∣∣∣∣ fn(un)μi,n

∣∣∣∣ r log r

ri−1,n
dr = O

(
log

ρi,n

ri−1,n

ρ2
i,n − r2i−1,n

2

)
→ 0.

This is a contradiction. This completes the proof. ��
Lemma 4.4 Assume (4.1). Suppose that for some i ∈ {1, · · · , k + 1}, there exist constants
μi ≥ 0, ri−1 ≤ ρi < ri ≤ 1 such that μi,n → μi , ρi,n → ρi , and r j,n → r j for
j = i − 1, i . Then we have a nontrivial function wi in (ri−1, ri ) such that ui,n/μi,n → wi

in C2
loc((ri−1, ri )). Furthermore, if ri−1 < ρi (which yields i 
= 1), then we get ri−1 > 0.

Finally, ρi = 0 implies limr→0+0 wi (r) = 1.

Proof We may suppose ui,n ≥ 0. Put wi,n := ui,n/μi,n . Then it satisfies⎧⎪⎨
⎪⎩

−w′′
i,n − 1

r w′
i,n = λnwi,n

fn(μi,nwi,n)

μi,nwi,n
, 0 < wi,n ≤ 1 in (ri−1,n, ri,n),

wi,n(ri,n) = 0 = w′
i,n(ρi,n), wi,n(ρi,n) = 1,

wi,n(ri−1,n) = 0 if i 
= 1.

(4.2)

Notice thatλnwi,n fn(μi,nwi,n)/(μi,nwi,n) is uniformly bounded in (ri−1,n, ri,n). Then using
the equation and conditions in (4.2), we clearly get a function wi ≥ 0 such that wi,n → wi

in C2
loc((ri−1, ri )). Now, let us assume ri−1 < ρi . We may suppose i 
= 1. Then we have

ρi ∈ (ri−1, ri ) and thus, we obviously see wi (ρi ) = 1. It follows that ri−1 > 0. Otherwise,
Lemma 2.2 shows that

1 = log
1

ri−1,n

(∫ ρi

0
λ∗wi

f∗(μiwi )

μiwi
rdr + o(1)

)
+
∫ ρi

0
λ∗wi

f∗(μiwi )

μiwi
r log rdr

+ o(1)

where we defined f∗(t)/t = 1 if t = 0. Since λ∗ 
= 0 by Lemma 4.2, f (t)/t ≥ 1 for any
t ≥ 0 and wi (≥ 0) is nontrivial on (0, ρi ), we get that the right hand side of the formula
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above diverges to infinity. This is a contradiction. This proves the second assertion of the
lemma. Finally, let us suppose 0 = ρi = ri−1. Then we claim that there exists a constant
C > 0 such that

|w′
i,n(r)| ≤ C (4.3)

for all r ∈ [ρi,n, ri,n] and all n ∈ N. To see this, for any r ∈ [ρi,n, ri,n], we multiply the
equation in (4.2) by r and integrate over [ρi,n, r ] and get

− rw′
i,n(r) = O

(
r2 − ρ2

i,n

2

)
, (4.4)

for all r ∈ [ρi,n, ri,n]. This readily proves the claim. Then we confirm that limr→0+0 wi (r) =
1. If not, we have a sequence (σn) ⊂ (0, ri ) and a constant ε0 ∈ (0, 1] such that σn → 0
and wi (σn) → 1 − ε0 as n → ∞. Then we can choose a sequence (σ̃n) ⊂ (ρi,n, ri,n) so
that σ̃n → 0 and wi,n(σ̃n) → 1 − ε0 by selecting a suitable subsequence. Consequently, it
follows from the mean value theorem that there exists a sequence (σ̄n) ⊂ (ρi,n, σ̃n) such that
σ̄n → 0 and

w′
i,n(σ̄n) = wi,n(σ̃n) − wi,n(ρi,n)

σ̃n − ρi,n
→ −∞.

This contradicts (4.3). This finishes the proof. ��
Lemma 4.5 We suppose (4.1). Assume that for some i ∈ {1, · · · , k}, there exists a value
μi ≥ 0 such thatμi,n → μi . Then by extracting a subsequence, we have a constantμi+1 ≥ 0
such that μi+1,n → μi+1 and limn→∞(μi+1,n/μi,n) ∈ (0,∞). Especially, μi > 0 (= 0)
yields μi+1 > 0 (= 0 respectively).

Proof We assume ui ≥ 0. Put w j,n := u j,n/μ j,n for j = i, i + 1. Note that, Lemmas 4.2
and 4.3 imply λ∗ 
= 0 and there exist values μi+1 ≥ 0 and ri−1 ≤ ρi < ri < ρi+1 < ri+1

such that μi+1,n → μi+1, r j,n → r j for j = i − 1, i, i + 1 and ρ j,n → ρ j for j = i, i + 1
up to a subsequence. Moreover, by Lemma 4.4, there exist continuous functions wi ≥ 0 in
[ρi , ri ) andwi+1 ≤ 0 in (ri , ri+1) such thatw j,n → w j inC2

loc((r j−1, r j )) and |w j (ρ j )| = 1
for j = i, i + 1. Then as usual, multiplying the equation for un by r and integrating over
(ρi,n, ρi+1,n), we get

μi+1,n

μi,n
= −

∫ ri,n
ρi,n

λn
fn(un)
μi,n

rdr∫ ρi+1,n
ri,n

λn
fn(un)
μi+1,n

rdr
→ −

∫ ri
ρi

λ∗wi
f∗(μiwi )
μiwi

rdr∫ ρi+1
ri

λ∗wi+1
f∗(μi+1wi+1)
μi+1wi+1

rdr
∈ (0,∞),

since f∗(t)/t ≥ 1 for any t ≥ 0 where we again defined f∗(t)/t = 1 for t = 0. This
completes the former assertion. Then the latter one is clearly confirmed. This ends the proof.

��
Finally, we prove the next two important lemmas.

Lemma 4.6 Suppose (4.1). Let k ≥ 1 and choose N ∈ {1, · · · , k}. Assume that μN ,n → ∞
and the formula (3.45) holds for i = N. Moreover, suppose there exists a constantμN+1 ≥ 0
such that limn→∞ μN+1,n = μN+1. Then we get λ∗ 
= 0 and, taking a subsequence if
necessary, we have limn→∞ ρN+1,n = 0, limn→∞(rN ,n/ρN+1,n) = 0, and further,

lim
n→∞ ρ2

N+1,n
fn(μN+1,n)

μN+1,n
log

1

rN ,n
= 2

λ∗
, (4.5)
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and

lim
n→∞

ρ2
N+1,n fn(μN+1,n)

rN ,nu′
N ,n(rN ,n)

= 2

λ∗
. (4.6)

Proof Without losing the generality we may assume uN+1,n ≥ 0. From Lemma 4.2, we get
λ∗ 
= 0. Then (3.45) with i = N and our assumption μN ,n → ∞ imply rN ,n → 0. Then
Lemmas 4.3 and 4.4 yield ρN+1,n → 0. Moreover, we claim rN ,n/ρN+1,n → 0. In fact,
using Lemma 2.2, we get

1 =
∫ ρN+1,n

rN ,n

λn
fn(un)

μN+1,n
r log

r

rN ,n
dr ≤ λn

fn(μN+1,n)

μN+1,n
log

ρN+1,n

rN ,n

ρ2
N+1,n − r2N ,n

2
.

This formula implies log (ρN+1,n/rN ,n) → ∞. This shows the claim.Now, let us deduce (4.5)
and (4.6). To this end, we put r̂n := rN ,n/ρN+1,n and ŵn(r) := uN+1,n(ρN+1,nr)/μN+1,n

for all r ∈ [r̂n, 1]. Then again using the equation in (2.1) with the conditions ŵn(1) = 1,
ŵ′
n(1) = 0 and previous claims, we find a function ŵ0 such that ŵn → ŵ0 in C2

loc((0, 1])
and get {

−ŵ′′
0 (r) − 1

r ŵ
′
0(r) = 0, 0 ≤ ŵ0 ≤ 1, ŵ′

0 ≥ 0 in (0, 1),

ŵ0(1) = 1, ŵ′
0(1) = 0.

(4.7)

We readily compute that ŵ0 = 1. Finally, we use Lemma 2.2 to see

μN+1,n =
∫ ρN+1,n

rN ,n

fn(un)r log
r

rN ,n
dr

= λnρ
2
N+1,n fn(μN+1,n) log

ρN+1,n

rN ,n

∫ 1

r̂n

fn(μN+1,nŵn)

fn(μN+1,n)
rdr

+ λnρ
2
N+1,n fn(μN+1,n)

∫ 1

r̂n

fn(μN+1,nŵn)

fn(μN+1,n)
r log rdr

Since fn(μN+1,nŵn)/ fn(μN+1,n) → 1 on (0, 1), the Lebesque convergence theorem and
previous claims give

μN+1,n

ρ2
N+1,n fn(μN+1,n) log

ρN+1,n
rN ,n

= λ∗
2

+ o(1).

This proves (4.5). On the other hand, multiplying the equation in (2.1) with i = N + 1 by r
and integrating over (rN ,n, ρN+1,n), we see

rN ,nu
′
n(rN ,n) =

∫ ρN+1,n

rN ,n

λn fn(un)rdr

= λnρ
2
N+1,n fn(μN+1,n)

∫ 1

r̂n

fn(μN+1,nŵn)

fn(μN+1,n)
rdr .

Hence similarly we obtain (4.6). This finishes the proof. ��
By the previous lemma, we deduce the following.

Lemma 4.7 Suppose as in the previous lemma. In addition, we assume that (3.46)with i = N
is true. Then we get

lim
n→∞ μN+1,n

(
log

1

rN ,n

) 1−βn
βn = 2

β∗−1
β∗ δ

1
β∗ , (4.8)
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and

lim
n→∞ μN+1,n fn(μN+1,n)

βn−1ρ
2(βn−1)
N+1,n = 4β∗−1δ

λ
β∗−1∗

. (4.9)

Proof Noting λ∗ 
= 0 by the previous lemma, we combine (4.6) together with (3.46) and
(3.45) for i = N and get

2

λ∗
+ o(1) = ρ2

N+1,n fn(μN+1,n)μN ,n

2 + o(1)

= ρ2
N+1,n fn(μN+1,n)

2 + o(1)

(
2 log 1

rN ,n
(1 + o(1))

δ + o(1)

) 1
βn

.

Then it holds that

ρ2
N+1,n fn(μN+1,n)

=
{
22−

1
β∗ δ

1
β∗ λ−1∗ + o(1)

}(
log

1

rN ,n

)− 1
βn

.
(4.10)

Substituting this into (4.5), we obtain

2

λ∗
+ o(1) = 1

μN+1,n

{
22−

1
β∗ δ

1
β∗ λ−1∗ + o(1)

}(
log

1

rN ,n

)1− 1
βn

.

It follows that

μN+1,n

(
log

1

rN ,n

) 1−βn
βn = 2

β∗−1
β∗ δ

1
β∗ + o(1).

This proves (4.8). Using this and (4.10), we get

fn(μN+1,n)
βn−1ρ

2(βn−1)
N+1,n = 1

μN+1,n

(
4β∗−1δ

λ
β∗−1∗

+ o(1)

)
.

This shows (4.9). We finish the proof. ��

5 Proof of main theorems

Let us complete the proof of main theorems. We shall first show Theorems 1.5 and 1.6. Then
Theorem 1.1 will readily follow from them. We begin with the proof of Theorem 1.5.

Proof of Theorem 1.5 We first note that the standard argument shows that the weak limit u0
of (un) is a radially symmetric smooth solution of (1.1) with (λ, β) = (λ∗, β∗). In particular,
writing u0 = u0(|x |), we have that u0(r) (r ∈ [0, 1]) satisfies

− u′′
0 − 1

r
u′
0 = λ∗ f∗(u0) in (0, 1) and u′

0(0) = 0 = u0(1). (5.1)

We begin with the case maxr∈[0,1] |un(r)| → ∞. Set N := max{i = 1, · · · , k +
1 | (μi,n) is unbounded}. Suppose N = k + 1. Then we have μk+1 → ∞ as n → ∞
by extracting a subsequence if necessary. We shall confirm all the assertions in the case of
(i). By Lemma 4.2, we get ρk+1,n → 0 and μi,n → ∞ for all i = 1, · · · , k + 1. Especially,
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the assumption (2.2) is satisfied for i = 1. As a consequence, Propositions 2.4, 3.1 and 3.10
hold true for i = 1. It follows that all of the assumptions (2.2)–(2.5) are verified for i = 2.
Consequently, the assertions in Propositions 2.4, 3.1 and 3.10 are true for i = 2. Repeating
the same argument, we ensure all the assertions in Propositions 2.4, 3.1 and 3.10 for any
i = 1, · · · , k+1. This completes the former assertions in (i). Finally, by (3.45) with i = k+1
and the facts that rk+1,n = 1 and μk+1,n → ∞, we get λ∗ = 0. This yields that u0 = 0
by (5.1). Moreover, Lemma 2.1 implies that un is locally uniformly bounded in (0, 1]. Then
using the equation for un as usual, it is easy to show that un → 0 in C2

loc((0, 1]) up to a
subsequence. This finishes the case of (i).

Nextwe assume N < k+1. Then similarly to the previous argument, we getρN ,n → 0 and
μi,n → ∞ for all i = 1, · · · , N up to a subsequence. Then, analogously, we have that all the
assertions in Propositions 2.4, 3.1 and 3.10 are true for all i = 1, · · · , N . On the other hand,
by the definition of N , for each i = N + 1, · · · , k + 1, there exists a value μi ≥ 0 such that
μi,n → μi up to a subsequence. Then from Lemma 4.3, we get numbers 0 ≤ rN ≤ ρN+1 <

rN+1 < · · · < ρk+1 < rk+1 = 1 if N < k and 0 ≤ rN ≤ ρN+1 < rN+1 = 1 if N = k such
that ri,n → ri for all i = N , · · · , k + 1 and ρi,n → ρi for all i = N + 1, · · · , k + 1 by
taking a subsequence again if necessary. Moreover, from Lemmas 4.6, we get λ∗ 
= 0, and
rN = ρN+1 = 0. Furthermore, a usual argument shows that un |[rN ,n ,1] → u0 in C2

loc((0, 1])
and limr→0+0(−1)Nu0(r) = μN+1 by Lemma 4.4. It follows that∫ 1

rN ,n

u′
n(r)

2rdr =
∫ 1

rN ,n

λn fn(un)unrdr

→
∫ 1

0
λ∗ f∗(u0)u0rdr =

∫ 1

0
u′
0(r)

2rdr

(5.2)

by (5.1). This proves the former part of (ii).
Now, we assume μN+1 > 0. Then noting (5.1) and Lemmas 4.4 and 4.5, we get that

u0(ri ) = 0, (−1)i−1u0 ≥ 0 on [ri−1, ri ], u′
0(ρi ) = 0 and (−1)i−1u0(ρi ) = μi > 0 for

all i = N + 1, · · · , k + 1. Moreover, by (5.1), we readily see (−1)i−1ui > 0 on (ri−1, ri )
for all i = N + 1, · · · , k + 1. This completes the case of (a). Next we suppose μN+1 = 0.
By Lemma 4.5, it is obvious that u0 = 0. Put wn := un |[rN ,n ,1]/μN+1,n on [rN ,n, 1]. By
Lemma 4.5 again, for every i = N + 1, . . . , k + 1, we have a constant μ∗

i > 0 such that
maxr∈[ri−1,n ,ri,n ] wn(r) = μi,n/μN+1,n → μ∗

i up to a subsequence. In particular, wn is
uniformly bounded in [rN ,n, 1]. Then, by the standard argument and Lemma 4.4, we get a
continuous function w0 in [0, 1] such that wn → w0 in C2

loc((0, 1]) and⎧⎪⎨
⎪⎩

−w′′
0 − 1

r w′
0 = λ∗w0 in (0, 1),

(−1)Nw0(0) = 1, w0(ri ) = 0,

(−1)i−1w0 > 0 on (ri−1, ri ) (i = N + 1, · · · , k + 1).

Using the equation and the condition (−1)Nw0(0) = 1, we obtainw0(r) = (−1)N J0(
√

λ∗r)
in [0, 1]where J0 is the first kind Bessel function of order zero defined in Sect. 1.3.Moreover,
since w0 has just (k − N ) interior zero points in (0, 1) and w0(1) = 0, we get that

√
λ∗

coincides with the (k− N +1)–th zero point of J0 on (0,∞), i.e.,
√

λ∗ = tN−k+1. It follows
that w0 = (−1)Nϕk−N+1 and λ∗ = 	k−N+1. This completes the case of (ii).

Finally, if un is uniformly bounded in [0, 1], repeating the similar (and simpler) argument
based on Lemmas 4.2-4.5 as above, we can confirm all the assertions in (iii). This finishes
the proof. ��

Next we prove Theorem 1.6.
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Proof of Theorem 1.6 We first assume that k > 0, (βn) ⊂ (0, 1], and μ1,n → ∞. Then we
claim that for every i = 2, · · · , k + 1, μi,n is bounded uniformly for all n ∈ N. To see
this, we shall show that μ2,n is uniformly bounded. Otherwise, we get μ2,n → ∞ up to
a subsequence. Then arguing as in the previous proof, we ensure that all the assumptions
(2.2)–(2.5) are satisfied for i = 2. Then we get (2.14) and (3.2) for i = 2 by Lemmas 2.6
and 3.3 respectively. But if βn ≤ 1 for all n ∈ N, (2.14) and (3.2) with i = 2 yield that μ2,n

is uniformly bounded. This contradicts (2.2). Consequently, Lemma 4.3 proves the claim.
Now, we assume that (i) of Theorem 1.5 occurs. Then the first conclusion follows by the

previous claim. Moreover, if k ∈ N∪ {0}, arguing as in the previous proof again, we get that
all the assertions in Lemma 3.3 and Proposition 3.10 hold true for any i = 1, · · · , k + 1. It
follows from (3.45) with i = k + 1 that (1.6) holds true. Then if k ≥ 1, it follows from (3.3)
that

(δ + o(1))−
1

βn

(
log 1

λn

) 1
βn

μ
(βn−1)
k,n

= δ + o(1).

This gives (1.7) with i = k after an easy calculation. Then we get (1.7) for all i = 1, · · · , k
by induction. In fact, we assume (1.7) is true for some i = j ∈ {2, · · · , k}. Then using (3.3)
with i = j , we similarly get(

δ
2−β∗(β∗−1)k− j+1

2−β∗ + o(1)

)− 1
βn (βn−1)k− j+1 (

log 1
λn

) 1
βn (βn−1)k− j+1

μ
βn−1
j−1,n

= δ + o(1).

It follows that

lim
n→∞

log 1
λn

μ
βn(βn−1)k− j+2

j−1,n

= δ
2−β∗(β∗−1)k− j+2

2−β∗ .

This is (1.7) with i = j − 1. This shows the desired conclusion. Moreover, since (3.45) and
(3.46) with i = k + 1 imply

μk+1,n =
(

log 1
λn

δ + o(1)

) 1
βn

,

and

μk+1,n |u′
k+1,n(1)| = 2 + o(1)

respectively, combining these two formulas, we get (1.8). Next assume k ≥ 1 and i =
1, · · · , k. Noting the first conclusion, we may assume βn > 1 for all n ∈ N. Then by (1.7),
we have that

log 1
λn

μ
βn
i,n

= log 1
λn

μ
βn(βn−1)k−i+1

i,n

μ
βn{(βn−1)k−i+1−1}
i,n → 0

since 1 ≤ k − i + 1 ≤ k and 1 ≤ β∗ < 2. Using this and (3.45), we obtain

δ

2
+ o(1) =

log 1
ri,n

μ
βn
i,n

.
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Therefore, it follows from (1.7) that

(
δ

2
+ o(1)

)(βn−1)k−i+1

=
(
log 1

ri,n

)(βn−1)k−i+1

log 1
λn

(
δ
2−β∗(β∗−1)k−i+1

2−β∗ + o(1)

)
.

Using this formula, we readily get (1.9). It follows that

log 1
ri,n

log 1
λn

=
(
log 1

ri,n

)(βn−1)k−i+1

log 1
λn

(
log

1

ri,n

)1−(βn−1)k−i+1

→ ∞ (5.3)

as n → ∞. Then we get by (3.46), (3.45) and (5.3) that,

log |u′
i,n(ri,n)| = log

1

ri,n
− logμi,n + O(1)

= log
1

ri,n
− 1

βn
log log

1

ri,n
− 1

βn
log

⎛
⎝1 + log 1

λn

log 1
r2i,n

⎞
⎠+ O(1)

= log
1

ri,n
(1 + o(1))

=
⎛
⎝ log 1

λn

2(β∗−1)k−i+1
δ
2−2(β∗−1)k−i+1

2−β∗ + o(1)

⎞
⎠

1
(βn−1)k−i+1

(1 + o(1))

by (1.9). This proves (1.10). Next, for any i = 2, · · · , k + 1, from (3.2) and the definition of
γi,n , we get

log
(
8β∗−1δ + o(1)

) = (βn − 1)μ2
i,n (1 + o(1)) + βn logμi,n

− 2(βn − 1) log
1

ρi,n

(5.4)

where we noted

log 1
λn

μ2
i,n

≤
log 1

λnr2i,n

μ
βn
i,n

1

μ
2−βn
i,n

→ 0

as n → ∞ by (3.45). Now, we suppose k ≥ 2 and i = 2, · · · , k. Then we have by (1.7) that
,

logμi,n

(βn − 1)μ2
i,n

= (1 + o(1)) log log 1
λn

βn(βn − 1)k−i+2

(
log 1

λn

δ(2−β∗(β∗−1)k−i+1)/(2−β∗)+o(1)

) 2
βn (βn−1)k−i+1

.

Since i < k + 1, we get (logμi,n)/((βn − 1)μ2
i,n) → 0. Therefore, we obtain from (5.4) and

(1.7) that

1

2
+ o(1) =

log 1
ρi,n

μ2
i,n

=
(

δ(2−β∗(β∗−1)k−i+1)/(2−β∗) + o(1)

log 1
λn

) 2
βn (βn−1)k−i+1

log
1

ρi,n
.
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This proves (1.11). On the other hand, if k ≥ 1 and i = k + 1, we use (1.6) and see

logμk+1,n

(βn − 1)μ2
k+1,n

= (δ + o(1))
2

βn log log 1
λn

βn(βn − 1)
(
log 1

λn

) 2
βn

.

Hence if there exists a constant L ≥ 0 such that

log log 1
λn

(βn − 1)
(
log 1

λn

) 2
βn

= L,

we get from (5.4) and (1.6) that

1 + δ
2

β∗ L + o(1) =
2 log 1

ρk+1,n

μ2
k+1,n

= 2

(
δ + o(1)

log 1
λn

) 2
βn

log
1

ρk+1,n
.

This ensures (1.13). On the other hand, if

log log 1
λn

(βn − 1)
(
log 1

λn

) 2
βn

→ ∞,

we necessarily have β∗ = 1 and then, by (5.4) and (1.6), we get

1 + o(1) =
2(βn − 1) log 1

ρk+1,n

βn logμk+1,n
=

2(βn − 1) log 1
ρk+1,n

(1 + o(1)) log log 1
λn

.

This proves (1.14). This completes the case of (i).
Next we assume that (ii) of Theorem 1.5 happens. Then, since μN+1,n is uniformly

bounded and rN ,n → 0, we have β∗ ≤ 1 by (4.8) in Lemma 4.7. Then, the first claim above
completes the first assertion in the case of (ii). Let us suppose μN+1 > 0 and complete the
case of (a). Again by (4.7), we see β∗ = 1. We shall prove (1.15)–(1.20). Multiplying the
equation in (2.1) with i = N + 1 by r and integrating over (ρN+1,n, rN+1,n), we get

rN+1,nu
′
N+1,n(1) = −

∫ rN+1,n

ρN+1,n

λn fn(uN+1,n)rdr .

Then recalling the assertions in (ii) of Theorem 1.5, we ensure (1.18). Moreover, noting
β∗ = 1, we get by (4.9) that

ρ
βn−1
N+1,n =

√
δ

μN+1
+ o(1) =

√
α

2μN+1
+ o(1).

This gives (1.19). Next we see by (4.8) that(
log

1

rN ,n

)βn−1

= 2μN+1

α
+ o(1). (5.5)

Then we use (3.45) with i = N and (5.5) to obtain

μ
βn−1
N ,n = (1 + o(1))

(
log

1

rN ,n

) βn−1
βn = 2μN+1

α
+ o(1).
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This gives (1.15) with i = N . Then if N ≥ 2, (1.15) is true for all i = 1, · · · , N by induction.
Indeed, assuming (1.15) is true for some i = j ∈ {2, · · · , N }, we use (3.3) with i = j to see

μ
βn−1
j−1,n =

(
2

α
+ o(1)

)
μ j,n .

This and the assumption suggest

μ
(βn−1)N− j+2

j−1,n = (1 + o(1))μ(βn−1)N− j+1

j,n = 2μN+1

α
+ o(1).

This shows (1.15) with i = j − 1. This finishes (1.15). This and (3.45) show(
log

1

ri,n

)(βn−1)N−i+1

= (1 + o(1))μβn(βn−1)N−i+1

i,n = 2μN+1

α
+ o(1)

for all i = 1, · · · , N . This proves (1.16). Moreover, for any i = 1, · · · , N , we get by (3.46)
and (3.45) that

log |u′
i,n(ri,n)| = log

1

ri,n

(
1 − logμi,n

log 1
ri,n

+ o(1)

)
= log

1

ri,n
(1 + o(1)) ,

where we noted

logμi,n

log 1
ri,n

= μ
βn
i,n

1
2 (1 + o(1)) log 1

λnr2i,n

logμi,n

μ
βn
i,n

→ 0

by (3.45). Then it follows from (1.16) that

(
log |u′

i,n(ri,n)|
)(βn−1)N−i+1 = 2μN+1

α
(1 + o(1)).

This proves (1.17). In particular, (1.15) clearly shows that 2μN+1/α > 1 (∈ (0, 1)) yields
βn > 1 (< 1 respectively) for all n ∈ N. On the other hand, βn > 1 (= 1, < 1) for all
n ∈ N suggests 2μN+1/α ≥ 1 (= 1, ≤ 1 respectively). Finally, suppose 1 < N ≤ k and
2μN+1/α > 1. Then we have βn > 1 for all n ∈ N by the first claim above. Then, for any
i = 2, . . . , N , we use (3.2) and the definition of γi,n to deduce

μi,n fn(μi,n)
βn−1ρ

2(βn−1)
i,n = α

2
+ o(1).

It follows that

log
1

ρi,n
= μ2

i,n

2

(
1 + logμi,n

μ2
i,n(βn − 1)

(1 + o(1)) + o(1)

)
. (5.6)

Here note that (1.15) implies

logμi,n

μ2
i,n(βn − 1)

= log (2μN+1/α + o(1))

(βn − 1)N−i+2(2μN+1/α + o(1))2/(βn−1)N−i+1 → 0

since 2μN+1/α > 1. Consequently, (5.6) and (1.15) ensure(
log

1

ρi,n

)(βn−1)N−i+1

= μ
2(βn−1)N−i+1

i,n (1 + o(1)) =
(
2μN+1

α

)2

+ o(1).

This gives (1.20). This completes the case of (a).
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Lastly, if μN+1 = 0, Lemma 4.5 shows μi = 0 for all i = N + 1, · · · , k + 1. Moreover,
(4.8) confirms that βn < 1 for all n ∈ N since rN ,n → 0. This completes the case of (b).
This finishes the proof. ��

Let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Assumemaxn→∞ |un(x)| → ∞. Then writing un = un(|x |), the func-
tion un(r) (r ∈ [0, 1]) verifies (i) or (ii) of Theorem 1.5. If (i) occurs and βn > 1 for all n ∈ N,
the assertions in (i) of Theorem 1.5 completes (i) of Theorem 1.1. On the other hand, if (i)
of Theorem 1.5 happens and βn ≤ 1 for all n ∈ N, by the first conclusion in Theorems 1.6,
we get k = 0. This shows (ii) of Theorem 1.1. Next, we suppose (ii) of Theorem 1.5 occurs.
Then if βn > 1 for all n ∈ N, we have that (a) of Theorem 1.6 occurs and thus, β∗ = 1.
Moreover, the second assertion below (1.19) ensures (−1)Nu0(0) ≥ α/2. This implies (iii)
of Theorem 1.1 occurs. If βn = 1 for all n ∈ N, then the first conclusion in the case of (ii) of
Theorem 1.6 implies N = 1. Furthermore, again the second assertion below (1.19) proves
−u0(0) = α/2. This is (iv) of Theorem 1.1. Lastly, if βn < 1 for all n ∈ N, similarly we
get N = 1. Moreover, we have two cases. The first case is u0 
= 0. Since this case corre-
sponds to (a) of Theorems 1.5 and 1.6, we have u0(0) 
= 0 and βn ↑ 1. In addition, we get
−u0(0) ∈ (0, α/2] by the second assertion below (1.19). This confirms (v) of Theorem 1.1.
The second case is u0 = 0. This implies that (b) of Theorems 1.5 and 1.6 occurs. Hence we
have λ∗ = 	k from the final assertion of (b) of Theorem 1.5 since N = 1. This shows that
(vi) occurs. Finally, if un is uniformly bounded, we get (iii) of Theorem 1.5. This completes
(vii) of Theorem 1.1. This finishes the proof. ��

Corollary 1.2 immediately follows from Theorem 1.1.

Proof of Corollary 1.2 We assume that there exist such sequences of values {(λn, βn)} ⊂
(0,∞)× (0, 1] and nodal radial solutions (un) on the contrary. Then, in view of the fact that
λn → 0 and βn ≤ 1 for all n ∈ N, we have that (ii) of Theorem 1.1 occurs. But then we get
k = 0 which is a contradiction. This finishes the proof. ��

Next, we shall proveCorollary 1.3.We recall Lemma 2.1 in [20]with slight generalization.

Lemma 5.1 Assume k ∈ N∪ {0}, {(λn, βn)} ⊂ (0,	1) × (0, 2), and (λn, βn) → (λ∗, β∗) ∈
(0,	1) × (0, 2). Then we have

lim sup
n→∞

ck,λn ,βn ≤ 2πk + c0,λ∗,β∗ ,

where the number ck,λ,β is defined as in Sect. 1.1.

Proof Noting λ∗ 
= 0 and β∗ > 0, we can repeat the completely same argument with the
proof of Lemma 2.1 in [20]. This ensures the proof. ��

Using this, we give the proof.

Proof of Corollary 1.3 We first assume that the first conclusion does not hold. Then we have
sequences of positive values (λn), natural numbers (kn) and nodal radial solutions (un) such
that λn → 0 as n → ∞, un ∈ Skn ,λn ,βn , un(0) > 0, and

∫
B |∇un |2dx is uniformly bounded

for all n ∈ N. Then, we claim that, up to a suitable subsequence, there exists a number
k ∈ N such that un ∈ Sk,λn ,β for all n ∈ N. Otherwise, we get kn → ∞ as n → ∞. Then
choose numbers 0 = r0,n < r1,n < · · · < rk+1,n = 1 so that un(x) = 0 if |x | = ri,n
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and (−1)i−1un(x) > 0 if ri−1,n < |x | < ri,n for all i = 1, · · · , k + 1. Moreover, for all
i = 1, · · · , k + 1, define a function ui,n ∈ Nλn ,β by ui,n := un |{ri−1,n<|x |<ri,n} with zero
extension to whole B. Then since λn → 0, Lemma 4.1 implies that there exists a constant
K > 0 such that ∫

B
|∇un |2dx =

k+1∑
i=1

∫
B

|∇ui,n|2dx ≥ (kn + 1)K

for all n ∈ N. Since the right hand side diverges to infinity, we get a contradiction. This
proves the claim. But, then the existence of such sequence (un) contradicts Corollary 1.2
since β ≤ 1. This proves the first assertion. Next we suppose the latter conclusion fails on
the contrary. Then there exists a number k ∈ N and sequences of positive values (λn) and
solutions (un) such that λn → 0, un ∈ Sk,λn ,β , and Iλn ,β(un) = ck,λn ,β for all n ∈ N. In
addition, for any k ∈ N and λ ∈ (0,	1), it holds that ck,λ,β ≤ 2πk + c0,λ,β < 2π(k + 1).
In fact, the first inequality is obtained by just choosing λn = λ and βn = β for all n ∈ N in
Lemma 5.1 and the second one comes from the fact that c0,λ,β < 2π by [2]. In particular,
we get Iλn ,β(un) < 2π(k + 1) for all n ∈ N. Consequently, the standard argument shows
that (un) is bounded in H1

0 (B). But this is again impossible in view of Corollary 1.2 since
β ≤ 1. This completes the proof. ��

Finally we prove Corollary 1.8.

Proof of Corollary 1.8 Assume as in the corollary. We write un = un(|x |) (x ∈ B) and
consider the function un(r) (r ∈ [0, 1]). Then we get all the assertions in (i) of Theorems 1.5
and 1.6. It follows from (1.6) that

μk+1,n =
⎛
⎝ log 1

λn

α
(
1 − β∗

2

)
+ o(1)

⎞
⎠

1
βn

.

Moreover, if k ≥ 1, we also have by (1.7) (or (2.15)) that μk+1,n/μi,n → 0 as n → ∞ for
all i = 1, · · · , k. Then from Theorem 1.5, we derive

∫ 1

0
u′
n(r)

2rdr =
k+1∑
i=1

∫ ri,n

ri−1,n

u′
i,n(r)

2rdr = 2(k + 1) − αβ∗
μ
2−βn
k+1,n

+ o

(
1

μ
2−βn
k+1,n

)

= 2(k + 1) −
α

2
β∗ β∗

(
1 − β∗

2

) 2−β∗
β∗

(
log 1

λn

) 2−βn
βn

+ o

⎛
⎜⎜⎝ 1(

log 1
λn

) 2−βn
βn

⎞
⎟⎟⎠ .

This finishes the proof.

6 Counterparts

In this final section, we discuss the counterparts of our classification result, Theorem 1.1.
In the following, we suppose k ∈ {0} ∪ N. Then we first remark that for any sequences
(λn) ⊂ (0,	1) and (βn) ⊂ (1, 2) ((0, 2) if k = 0) of values, there exists a sequence (un)
of radial solutions which satisfies the assumptions in the theorem. To see this, for any such
sequences (λn) and (βn), we define the sequence (un) of solutions so that un ∈ Sk,λn ,βn and
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Iλn ,βn (un) = ck,λn ,βn for all n ∈ Nwhere ck,λ,β is the number defined in Sect. 1.1. This choice
is possible by [2] and [7]. Consequently, since Iλn ,βn (un) < 2πk + c0,λn ,βn < 2π(k + 1)
for any n ∈ N, which is proved in the same papers, a standard argument shows that (un) is
bounded in H1

0 (B). Hence (un) satisfies all the assumptions in the theorem.
Then we can immediately show some easy examples with this sequence (un). Indeed, let

us suppose (λn, βn) → (λ∗, β∗) for (λ∗, β∗) ∈ [0,	1) × (0, 2) if k = 0 and (λ∗, β∗) ∈
[0,	1) × [1, 3/2) if k ≥ 1. Then, it follows from Theorem 1.1 that if λ∗ = 0 and βn > 1
(βn ≤ 1) for all n ∈ N, then (un) behaves as in (i) ((ii) respectively) of the theorem. On the
other hand, if k = 0 and λ∗ 
= 0, or k ≥ 1, λ∗ 
= 0, and β∗ > 1, then (un) behaves as in (vii)
with u0 
= 0.

We shall find more examples for (iii) and (vii). To this end, recalling S0,λ,1 
= ∅ if and
only if λ ∈ (0,	1) ([2]), we define

	∗ := inf{	 ∈ (0,	1) | u(0) < α/2 for any u ∈ S0,λ,1 with Iλ,1(u) = c0,λ,1

if λ ∈ (	,	1)}.
It follows that 	∗ ∈ (0,	1). (See Lemma 6.8 below.) On the other hand, noting the nonex-
istence result by [8], we define

	∗ := inf{	 > 0 | S1,	,1 
= ∅}(= sup{	 > 0 | Sk,	,1 = ∅ for any k ∈ N}),
and get 	∗ > 0. Moreover, our necessary condition on the weak limit in (iii) of Theorem 1.1
allows to see 	∗ ≤ 	∗ as follows.

Corollary 6.1 Assume {(λn, βn)} ⊂ (0,	1) × (1, 2) and let (un) be a sequence of solu-
tions such that un ∈ S1,λn ,βn and Iλn ,βn (un) = c1,λn ,βn for all n ∈ N. Moreover, suppose
(λn, βn) → (λ∗, β∗) ∈ (0,	1) × {1} and |u(0)| < α/2 for all u ∈ S0,λ∗,1 with
Iλ∗,1(u) = c0,λ∗,1 (which is verified if λ∗ ∈ (	∗,	1)). Then (un) behaves as in (vii) of
Theorem 1.1 with u0 
= 0. In particular, there exists at least one pair of solutions u± ∈ S1,λ,1

such that u−(0) < 0 < u+(0), u+ = −u−, and Iλ,1(u±) ≤ 2π +c0,λ,β , for all λ ∈ (	∗,	1)

and thus, it holds that 0 < 	∗ ≤ 	∗ < 	1.

Remark 6.2 The latter assertion is not covered by Theorem 1.3 in [7] since the nonlinearity
f (t) = tst

2+α|t | does not satisfy (2) of Theorem 1.2 there.

Then we can give the next result. Notice that by the previous corollary and the argument
in the first paragraph of this section, we ensure the existence of a sequence satisfying each
assumption of (a)-(d) below.

Proposition 6.3 Let k ∈ {0} ∪N and {(λn, βn)} ⊂ (0,	1) × (0, 2) and suppose (λn, βn) →
(λ∗, β∗) ∈ (0,	1] × (0, 2). Moreover, we assume (un) is a sequence of solutions such that
un ∈ Sk,λn ,βn and

∫
B |∇un |2dx is uniformly bounded for all n ∈ N. Then we have the next

assertion.

(a) Let λ∗ = 	1. Then, if k = 0, (vii) of Theorem 1.1 occurs with u0 = 0. Moreover, assume
βn ≥ 1 for all n ∈ N. Then if k ≥ 1 and β∗ ∈ (1, 3/2), or k = 1 and β∗ = 1, we have
that (un) behaves as in (vii) with u0 
= 0.

Moreover, we assume k ≥ 1, βn > 1 for all n ∈ N, β∗ = 1 and λ∗ ∈ (0,	1). Then we get
the following.

(b) If Sκ,λ∗,1 = ∅ for all 1 ≤ κ ≤ k, (which is satisfied if λ∗ ∈ (0,	∗),) then (un) behaves
as in (iii) of Theorem 1.1 with N = k.
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In addition, we suppose Iλn ,βn (un) = ck,λn ,βn for any n ∈ N. Then we obtain the following.

(c) For any λ∗ ∈ [	∗,	1), there exists a natural number kλ∗ such that if k ≥ kλ∗ , (un)
behaves as in (iii) of Theorem 1.1 with some natural number k−kλ∗ < N ≤ k. Moreover,
we have kλ∗ ≥ 2 if λ∗ > 	∗.

(d) Assume that any solution u ∈ S0,λ∗,1 with Iλ∗,1(u) = c0,λ∗,1 satisfies |u(0)| < α/2
(which is verified if λ∗ ∈ (	∗,	1)). Then if k ≥ 2 and (iii) of Theorem 1.1 holds true,
then N 
= k. In particular, for any λ∗ ∈ (	∗,	1), chossing the number kλ∗ ≥ 2 from
(c) above, we get that for all k ≥ kλ∗ , (un) behaves as in (iii) of Theorem 1.1 with some
number k − kλ∗ < N < k.

From the conclusion in (a), we get an additional existence result for λ = 	1 as follows.

Corollary 6.4 Let β ∈ [1, 3/2). Then for any k ∈ N if β > 1 and for k = 1 if β = 1, there
exists at least one pair of solutions u±

k,β ∈ Sk,	1,β such that u−
k,β(0) < 0 < u+

k,β(0), u+
k,β =

−u−
k,β and I	1,β(u±

k,β) ≤ 2πk. Moreover, choosing a suitable sequence (βn) ⊂ (1, 3/2)

such that βn → 1, we have that (u+
1,βn

) behaves as in (vii) of Theorem 1.1 with u0 
= 0 and

there exists a natural number k	1 ≥ 2, such that if k ≥ k	1 , (u+
k,βn

) behaves as in (iii) of
Theorem 1.1 with k − k	1 < N < k.

The behavior in (b) of Proposition 6.3 has already been observed in [20] for low energy
nodal radial solutions. Our present work gives new information by Theorem 1.6 without
imposing the low energy characterization. Moreover, notice that our necessary condition in
(iii) of Theorem 1.1 suggests that such behavior (i.e., (iii) with k = N ) can happen only if
0 < λ∗ < 	1 and λ∗ is not too closed to 	1 (by Lemma 6.8 below). On the other hand, in
view of (v) of Theorem 1.1, a similar phenomenon seems possibly to occur also in the case
of βn ↑ 1. Interestingly, the corresponding necessary condition has the inequality opposite
to that in the case of βn ↓ 1. It leads us to expect the following.

Conjecture 6.5 Let (λ∗, β∗) ∈ (	∗,	1) × {1}. Then there exist sequences of values (λn) ⊂
(0,	1) and (βn) ⊂ (0, 1) and solutions (un) such that (λn, βn) → (λ∗, β∗), un ∈ S1,λn ,βn
for all n ∈ N, and (un) behaves as in (v) of Theorem 1.1.

Remark 6.6 Similar behavior would also occur in the general bounded domain case.

Remark 6.7 Wealso expect that there exist sequences of concentrating solutionswhichbehave
as in (iv) with k = 1 and 0 < λ∗ < 	1 and (vi) with k = 1, λ∗ = 	1, and β∗ ∈ (0, 1]
respectively. The corresponding phenomena on the Brezis-Nirenberg problem are observed
in [24] and [25].

We also remark on the final assertions in (d) of Proposition 6.3 and in Corollary 6.4. Since
0 < N < k, these assertions prove the existence of a concentrating sequence of solutions
which weakly converges to a sign-changing solution of (1.1). We emphasize that this conclu-
sion holds true when λ∗ ≤ 	1 is sufficiently closed to 	1. This phenomenon is new in view
of the previous works, [20] and [19], where the authors observed a concentrating sequence of
solutions which weakly converges to a sign-definite solution of (1.1) with sufficiently small
λ > 0. We naturally expect that we can choose kλ∗ = 2 for any λ∗ ∈ (	∗,	1].

We finally conjecture that more counterparts of (iii)-(vi) would exist in the case λ∗ > 	1

and β∗ ≤ 1. Our necessary condition on theweak limit will be useful to detect such sequences
of solutions.
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6.1 Proofs

Let us prove the results above.We first put a basic lemma. Recall that maxx∈B |u(x)| = |u(0)|
for any u ∈ S0,λ,β and all (λ, β) ∈ (0,	1) × (0, 2) by [17].

Lemma 6.8 Fix any β ∈ (0, 2). Then, for any constants M > ε > 0, there exist values
0 < λ̄ ≤ λ̃ < 	1 such that if λ ∈ (0, λ̄), then |u(0)| ≥ M for any u ∈ S0,λ,β , and if
λ ∈ (λ̃,	1), then |u(0)| < ε for all u ∈ S0,λ,β .

Proof If the former assertion fails, there exists a constant M > 0 and sequences (λn) ⊂
(0,	1) and (un) such that λn → 0, un ∈ S0,λn ,β and 0 < un(0) ≤ M for all n ∈ N. This
is impossible since by Theorem 1.1, we get that λn → 0 yields un(0) → ∞. On the other
hand, if the latter conclusion does not hold, there exists a constant ε0 > 0 and sequences
(λn) ⊂ (0,	1) and (un) such that λn → 	1, un ∈ S0,λn ,β and un(0) ≥ ε0 for any n ∈ N.
This is again impossible since by Theorem 1.1 and the fact that S0,	1,β = ∅, we get that
λn → 	1 implies un → 0 in C2(B). This finishes the proof. ��

We show Corollary 6.1.

Proof of Corollary 6.1 Assume as in the corollary. Then we claim that (un) behaves as in (vii)
of Theorem 1.1. If not, since λ∗ 
= 0, (iii) would happen for N = 1 and then, by Lemma 5.1,
the weak limit u0 of (un) would verify u0 ∈ S0,λ∗,1, Iλ∗,1(u0) = c0,λ∗,1 and |u0(0)| ≥ α/2.
This contradicts our choice of λ∗. This proves the claim. Then, since λ∗ < 	1, the weak
limit u0 of (un) is nontrivial. This ensures the former conclusion. Moreover notice that by
Lemma 5.1, we get Iλ∗,1(u0) ≤ 2π +c0,λ∗,1. Then, since there exists a sequence of solutions
(un) verifying the assumption of this corollary for any λ∗ ∈ (	∗,	1) by the argument in the
first paragraph of this section, the latter conclusion clearly follows. This finishes the proof. ��

In order to prove (d) of Proposition 6.3, we use Lemma 6.11 below which ensures the
nonexistence of low energy solutions with many nods. To show the lemma, we refer to the
argument in [27] and obtain the a priori lower estimate of the energy of elements in Sk,λ,1.
We apply the next lemma. (See Corollary 5.2 on p346 in [23] or Lemma 3 in [27].) In the
following we let a, b ∈ R be constants such that a < b.

Lemma 6.9 Let q(t) be a continuous function on [a, b]. Let v(t) 
= 0 be a solution of the
equation:

v′′ + q(t)v = 0, t ∈ [a, b].
Assume that v(t) has exactly k zeros in (a, b]. Then we have

k <
1

2

(
(b − a)

∫ b

a
q+(t)dt

) 1
2

+ 1

where q+(t) ≡ max{q(t), 0}.
Using this, we prove the next lemma.

Lemma 6.10 Assume k ∈ N, k ≥ 2 and λ ≥ 	∗. Then there exists a number L = L(λ) > 0
which depends on λ and is independent of k such that∫

B
|∇u|2dx ≥ L(k − 2)2 − 1

for any u ∈ Sk,λ,1.
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Proof Fix λ ≥ 	∗ and suppose k ≥ 2. For any u ∈ Sk,λ,1 with u(0) > 0, we write
u = u(|x |) and define a number ru,2 ∈ (0, 1) so that there exists a value ru,1 ∈ (0, ru,2)

such that u(ru,i ) = 0 for i = 1, 2 and u(r) > 0 for all r ∈ [0, ru,1) and u(r) < 0 for all
r ∈ (ru,1, ru,2). Then we claim that

rλ := inf
k≥2

inf
u∈Sk,λ,1,u(0)>0

ru,2 > 0.

Assume that rλ = 0 on the contrary. Then for any ε ∈ (0, 1), we can choose kε ≥ 2 and
a nodal radial solution uε ∈ Skε,λ,1 with uε(0) > 0 such that ruε,2 ∈ (0, ε). Here we fix
ε ∈ (0, 1) so small that ε2λ ∈ (0,	∗) and define vε(x) := uε(ruε,2|x |) (x ∈ B). Then we
get vε ∈ S1,r2uε,2λ,1. This is impossible by the definition of 	∗. Hence we ensure the claim.

Choose any u ∈ Sk,λ,1 with u(0) > 0 and regard u = u(|x |). Then we perform the Liouville
transformation r = 1/(1 − log t), v(r) = ru(t) for t ∈ (ru,2, 1]. It follows that

v′′ + q(r)v = 0, r ∈
[

1

1 − log ru,2
, 1

]

where

q(r) = t2
(
log

e

t

)4 λ f (u(t))

u(t)
(t = e1−1/r ),

and f (u) = ueu
2+α|u|. Notice that v has exactly k − 1 zeros in

(
1/(1 − log ru,2), 1

]
. Then

noting f (t)/t ≤ e1+α + t2et
2+α|t | for any t ∈ R, we apply Lemma 6.9 and get

k − 1

<
1

2

⎛
⎝(1 − 1

1 − log ru,2

)∫ 1

1
1−log ru,2

q(r)dr

⎞
⎠

1
2

+ 1

= 1

2

((
1 − 1

1 − log ru,2

)∫ 1

ru,2

(
log e

t

)4
(1 − log t)2

λ f (u(t))

u(t)
tdt

) 1
2

+ 1

≤ 1

2

(
1 − 1

1 − log rλ

) 1
2
(
log

e

rλ

)2
(∫ 1

ru,2

λ(e1+α + u(t) f (u(t)))tdt

) 1
2

+ 1

≤ 1√
L

(
1 +

∫
B

|∇u|2dx
) 1

2 + 1

for some constant L = L(λ) > 0. This completes the proof. ��
Then we can prove the next key lemma.

Lemma 6.11 For any λ ∈ [	∗,	1], there exists a natural number kλ such that for any
k ≥ kλ, there exists no radial nodal solution u ∈ Sk,λ,1 satisfying Iλ,1(u) ≤ 2πk + c0,λ,1.

Proof Assume λ ∈ [	∗,	1], k ∈ N and u ∈ Sk,λ,1 satisfies Iλ,1(u) ≤ 2πk + c0,λ,1. We
claim that there exists a constant M = M(λ) > 0 which depends only on λ and independent
of k and u such that ∫

B
|∇u|2dx ≤ 4π(k + 1) + M . (6.1)
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To see this, choose u as above and put f (t) = tet
2+|t | and F(t) = ∫ t

0 f (s)ds. Then an
elementary calculation shows that for any ε > 0, there exists a constant tε > 0 such that
ε f (t)t − F(t) ≥ 0 for any |t | ≥ tε . (See formula (2.3) in [12]). We choose ε ∈ (0, 1/2) so
small that (2πk + c0,λ,1)/(1/2− ε) ≤ 4π(k + 1). This choice is possible since c0,λ,1 < 2π
([2]). Then there exists a constant Cε > 0 which is independent of k and u such that

2πk + c0,λ,1 ≥ Iλ,β(u) − ε〈I ′
λ,β(u), u〉

≥
(
1

2
− ε

)∫
B

|∇u|2dx + λ

∫
B∩{u≤tε}

(ε f (u)u − F(u))dx

≥
(
1

2
− ε

)∫
B

|∇u|2dx − λCε.

This proves (6.1) by putting M = λCε/(1/2− ε). Then take a constant L = L(λ) > 0 from
the previous lemma. Choose a natural number k̃λ ≥ 2 so that L(k−2)2−1 > 4π(k+1)+M
for all k ≥ k̃λ. As a consequence, it follows from the previous lemma and (6.1) that k ≥ k̃λ

and u ∈ Sk,λ,1 yield Iλ,1(u) > 2πk + c0,λ,1. This finishes the proof. ��
Let us complete the proof of Proposition 6.3.

Proof of Proposition 6.3 Assume as in the proposition. First suppose λ∗ = 	1. Then if k = 0,
since λ∗ 
= 0 and S0,	1,β∗ = ∅, we clearly have that (vii) of Theorem 1.1 occurs with u0 = 0.
In addition, assume βn ≥ 1 for all n ∈ N and suppose k ≥ 1 and β∗ ∈ (1, 3/2) or k = 1
and β∗ = 1. Then in the former case, noting β∗ > 1 and on the other hand, in the latter
case, using S0,	1,1 = ∅, we see that (un) does not blow up and thus, (un) behaves as in
(vii) with u0 
= 0 since 0 < λ∗ = 	1 < 	k+1 in both cases. This completes (a). Next
suppose k ≥ 1, λ∗ ∈ (0,	1), βn > 1 for all n ∈ N and β∗ = 1. Then, since λ∗ 
= 0, (un)
behaves as in (iii) or (vii) of Theorem 1.1. Hence, if we additionally suppose Sκ,λ∗,1 = ∅
for all 0 < κ ≤ k, the only possibility is (iii) with N = k to happen. This completes (b).
Finally, suppose Iλn ,βn (un) = ck,λn ,βn for all n ∈ N. Set λ∗ ∈ [	∗,	1) and k ≥ kλ∗ where
kλ is chosen from Lemma 6.11. It follows that (un) behaves as in (iii) with a natural number
k − kλ∗ < N ≤ k. Otherwise, there would be integers 0 ≤ N ≤ k − kλ∗ , κ = k − N and an
element u0 ∈ Sκ,λ∗,1 such that

Iλn ,βn (un) → 2πN + Iλ∗,1(u0) ≤ 2πk + c0,λ∗,1

by Lemma 5.1. This implies Iλ∗,1(u0) ≤ 2πκ + c0,λ∗,1. Since κ ≥ kλ∗ , this is impossible
by Lemma 6.11. This proves the former conclusion of (c). Then noting the first conclusion
of Corollary 6.1, we get the latter one. Lastly let us show (d). Set λ∗ as in the assumption.
Suppose k ≥ 2 and (un) behaves as in (iii). If N = k on the contrary, then by Lemma 5.1, the
weak limit u0 of (un) satisfies u0 ∈ S0,λ∗,1, Iλ∗,1(u0) = c0,λ∗,1 and |u0(0)| ≥ α/2. This is
a contradiction. Hence we get N 
= k. This proves the first assertion. Especially, combining
(c) with the previous conclusion, we obviously get the final conclusion. This completes the
proof. ��

Finally, we complete the proof of Corollary 6.4.

Proof of Corollary 6.4 Fix β ∈ [1, 3/2). Note that the first assertion in (a) of the previous
proposition implies c0,λn ,β → 0 if λn ↑ 	1. Then, we set k = 1 if β = 1 and k ≥ 1 if
β > 1 and choose sequences (λn) ⊂ (0,	1) and (un) so that λn ↑ 	1, un ∈ Sk,λn ,β and
Iλn ,β(un) ≤ 2πk + c0,λn ,β for all n ∈ N. This choice is valid by the argument in the first
paragraph of this section andCorollary 6.1. Then from the latter assertion in (a) of the previous
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proposition, we have a solution u0 ∈ Sk,	1,β such that Iλn ,β(un) → I	1,β(u0) ≤ 2πk. This
proves the former conclusion. The latter assertion is clear by noting S0,	1,1 = ∅, choosing
k	1 from Lemma 6.11 and arguing as in the proof of Corollary 6.1 and (d) of Proposition 6.3.
This finishes the proof. ��
Acknowledgements The author sincerely thanks Prof. Massimo Grossi at Sapienza Università di Roma since
some important questions and ideas in the present paper are inspired by the extensive discussion on the previous
works with him. This work is partly supported by Osaka City University Advanced Mathematical Institute
(MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

1 Proof of Lemma 2.5

In this appendix we show the proof of Lemma 2.5.

Proof of Lemma 2.5 Without loss of the generality we may assume ui,n ≥ 0. First we claim
that ri,n/γi,n → ∞. If not, we have a constant C > 0 such that ri,n/γi,n ≤ C for all n ∈ N.
Then putting vn(r) = ui,n(ri,nr) for r ∈ [ri−1,n/ri,n, 1], we get from (2.1) that⎧⎪⎨

⎪⎩
−v′′

n − 1
r v′

n = λnr2i,n fn(vn), (−1)i−1vn > 0 in (ri−1,n, ri,n),

vn(1) = 0 = v′
n(ρi,n/ri,n),

vn(ri−1,n/ri,n) = 0 if i ≥ 2.

Then the above equation implies

−v′′
n − 1

r
v′
n ≤ λnr

2
i,n fn(μi,n) = 1

2μi,n

(
ri,n
γi,n

)2

≤ C2

2μi,n
→ 0,

uniformly on [ri−1,n/ri,n, 1]. It follows that vn → 0 uniformly in [ri−1,n/ri,n, 1]. This
contradicts our assumption (2.2). This proves the claim. In particular, we get γi,n → 0. Next,
we claim ρi,n/ri,n → 0. This is trivial for i = 1. Hence we assume i ≥ 2. Define vn as above.
It follows from our assumption (2.3) and Lemma 2.1 that there exist constants c,C > 0 such
that

C ≥
∫ 1

ri−1,n/ri,n
v′
n(r)

2rdr ≥ μ2
i,n

2πc2

(
ρi,n

ri,n

)
.

Then (2.2) shows the claim. In particular, we get ρi,n → 0 and (ri,n − ρi,n)/γi,n → ∞ by
the first claim. Next, by the definition of zi,n and (2.8), we get that

0 ≤ −z′′i,n − 1

r + ρi,n
γi,n

z′i,n ≤ 1 on

[
ri−1,n − ρi,n

γi,n
,
ri,n − ρi,n

γi,n

]
.

Then, for any r ∈
[
ri−1,n−ρi,n

γi,n
,
ri,n−ρi,n

γi,n

]
, multiplying the equation by r + ρi,n

γi,n
and integrating

over (0, r) if r ≥ 0 and over (r , 0) if r < 0 give⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 ≤ −z′i,n(r) ≤

r2
2 + ρi,n

γi,n
r

r+ ρi,n
γi,n

if r ≥ 0, and

0 ≤ z′i,n(r) ≤ −
r2
2 + ρi,n

γi,n
r

r+ ρi,n
γi,n

if r < 0.

(1.1)
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Integrating this again, we get

0 ≤ −zi,n(r) ≤
∫ r

0

r2
2 + ρi,n

γi,n
r

r + ρi,n
γi,n

dr

=

⎧⎪⎨
⎪⎩

r2
4 if i = 1,

r2
4 +

(
ρi,n
γi,n

)
r
2 − 1

2

(
ρi,n
γi,n

)2
log

ρi,n
γi,n

+r
ρi,n
γi,n

, if i ≥ 2,

(1.2)

for any r ∈
[
ri−1,n−ρi,n

γi,n
,
ri,n−ρi,n

γi,n

]
. Then from (1.1) and (1.2), we get that zi,n is uni-

formly bounded in C1
loc((−l,∞)) (C1

loc([0,∞)) if l = 0). Furthermore, since (1.1) implies
|z′i,n(r)/(r + ρi,n/γi,n)| is locally uniformly bounded in (−l,∞) ([0,∞) if l = 0), using

the equation in (2.8), we get that zi,n is uniformly bounded in C2
loc((−l,∞)) (C2

loc([0,∞))

if l = 0). Then it follows from the Ascoli-Arzelà theorem and the equation in (2.8) that
there exists a function z such that zi,n → z in C2

loc((−l,∞)) (C2
loc((0,∞)) ∩ C1

loc([0,∞))

if l = 0).
Now our final aim is to show l = m < ∞. This is clear if i = 1. Hence after this we

assume i ≥ 2. We first claim l < ∞. We suppose l = ∞ on the contrary. Then m = ∞. It
follows from (2.8) that z satisfies {

−z′′ = ez in R,

z(0) = 0 = z′(0).

This implies z(r) = log 4e
√
2r(

1+e
√
2r
)2 (r ∈ R). Then by (2.3), there exits a constant C > 0 such

that

C ≥ λn

∫ ri,n

ρi,n

un fn(un)rdr

≥ 1

2

∫ ri,n−ρi,n
γi,n

0

(
zi,n
2μ2

i,n

+ 1

)
e
zi,n+

z2i,n
4μ2i,n

+αμ
βn
i,n

⎧⎨
⎩
(

zi,n
2μ2i,n

+1

)β

−1

⎫⎬
⎭ (

r + ρi,n

γi,n

)
dr

≥ 1

2

ρi,n

γi,n

∫ ri,n−ρi,n
γi,n

0

(
zi,n
2μ2

i,n

+ 1

)
e
zi,n+

z2i,n
4μ2i,n

+αμ
βn
i,n

⎧⎨
⎩
(

zi,n
2μ2i,n

+1

)β

−1

⎫⎬
⎭
dr . (1.3)

Here the Fatou lemma implies

lim inf
n→∞

∫ ri,n−ρi,n
γi,n

0

(
zi,n
2μ2

i,n

+ 1

)
e
zi,n+

z2i,n
4μ2i,n

+αμ
βn
i,n

⎧⎨
⎩
(

zi,n
2μ2i,n

+1

)β

−1

⎫⎬
⎭
dr ≥

∫ ∞

0
ezdr .

Since the right hand side of the inequality above is positive value andm = ∞, we get that the
right hand side of (1.3) diverges to infinity which is a contradiction. This proves the claim.
Finally we show l = m. Let us assume l < m on the contrary. Then we claim that there exists
a constant C > 0 such that

|z′i,n(r)| ≤ C for all n ∈ N and r ∈
[
ri−1,n − ρi,n

γi,n
, 0

]
.
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In fact, if m = ∞, the claim follows easily by the latter formula in (1.1). If m < ∞, using
(1.1) again we get a constant C > 0 such that

0 ≤ z′i,n(r) ≤ C

m − l + o(1)

uniformly for all r ∈
[
ri−1,n−ρi,n

γi,n
, 0
]
. This proves the claim. On the other hand, by the mean

value theorem, we have a sequence (ξn) ⊂
(
ri−1,n−ρi,n

γi,n
, 0
)
such that

z′i,n(ξn) =
−zi,n

(
ri−1,n−ρi,n

γi,n

)
ρi,n−ri−1,n

γi,n

= 2μ2
i,n

l + o(1)
→ ∞

since l ∈ [0,∞). This is a contradiction. We finish the proof.
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