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Abstract
We investigate the next Trudinger—Moser critical equations,

—Au = )\ue"z""o‘l““S in B,
u=20 on 0B,

where a > 0, (&, 8) € (0, 00) x (0,2) and B C R? is the unit ball centered at the origin. We
classify the asymptotic behavior of energy bounded sequences of radial solutions. Via the
blow—up analysis and a scaling technique, we deduce the limit profile, energy, and several
asymptotic formulas of concentrating solutions together with precise information of the
weak limit. In particular, we obtain a new necessary condition on the amplitude of the
weak limit at the concentration point. This gives a proof of the conjecture by Grossi et
al. (Math Ann, to appear) in 2020 in the radial case. Moreover, in the case of § < 1,
we show that any sequence carries at most one bubble. This allows a new proof of the
nonexistence of low energy nodal radial solutions for (A, B) in a suitable range. Lastly, we
discuss several counterparts of our classification result. Especially, we prove the existence
of a sequence of solutions which carries multiple bubbles and weakly converges to a sign-
changing solution.
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1 Introduction

We study the following Trudinger—Moser critical equations,

[—Au = Jue el B, (L

u=20 on 0B,

where B C R? is the unit ball centered at the origin, « > 0 and (X, B) € (0, c0) x (0, 2).
Our aim is to investigate the asymptotic behavior of any energy bounded radial solutions.
Especially, we are interested in the concentrating behavior of them.

The study of (1.1) is motivated by the Trudinger—Moser inequality ([33], [36] and [32]).
It gives the critical embedding of the Sobolev space in dimension two. Indeed, Moser [32]
proves that for any bounded domain € C RR2, it holds that

< ooifa <4m,
sup / e dx - (1.2)
UeHL(Q), [q |Vul?dx<178 = 00 otherwise.

A surprising fact is that the maximizer exists even in the critical case « = 4. This is first
proved by Carleson-Chang when 2 = B in their celebrated paper [10]. The generalization
of the domain and the dimension are given by [16] and [28] respectively. More recently, the
sharp form of the inequality (1.2) is discussed in [35], [26], and [23].

(1.2) suggests that critical nonlinearities of semilinear elliptic problems in dimension two
have the exponential growth. This leads us to investigate the problem,

{_Au = rhwe” inQ, (1.3)

u=20 on 0€2,

where A > 0, Q C R? is a smooth bounded domain and 4 : R — R is a continuous function
which has the subcritical growth at infinity, lim;|— oo h(t)/e’”2 = 0 for any ¢ > 0, and
satisfies #(0) = 0 and some appropriate conditions. Due to the lack of the compactness of
the critical case of (1.2), solutions to (1.3) can be non-compact. From this point of view,
we can regard (1.3) as the two dimensional counterpart of the Brezis-Nirenberg problem [9]
in higher dimension. Due to the exponential nonlinearity, which is much stronger than the
polynomial one in higher dimension, (1.3) seems to contain new phenomena and difficulties.
For example, as discussed in [5] and [11], Palais-Smale sequences for the energy functional
of (1.3) may admit more complicated bahavior.

Now, we start our discussion with the previous study of positive solutions of (1.3). For
simplicity, we only consider the typical case h(t) = t. Certain generalization is given in
the following results. First, Adimurthi ([1], [2]) proves that (1.1) admits at least one positive
solution forall A € (0, Aj) where A| > 0is the firsteigenvalue of — A on 2 with the Dirichlet
boundary condition. After that, in [6], [4] and references therein, the authors investigate
the asymptotic behavior of low energy positive solutions. By their results, we see that the
least energy solution, obtained in [2], exhibits the single concentration and its full energy
converges to 2 as A — 0. Moreover, we also observe in those results that the limit profile of
the concentration is described by the Liouville equation via a suitable scaling. Furthermore,
in [14] and [15], the classification of the asymptotic behavior of energy bounded sequences
of positive solutions is accomplished. Especially, in [14], Druet proves that the limit full
energy of any sequence is given by the sum of the energy of the weak limit and 27 N with a
number N € N U {0}. Additionally, in [15], Druet-Thizy show that the concentration occurs
if and only if A — 0. This implies that the weak limit of any concentrating solutions must be
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zero under their setting. Furthermore, they also give precise information of the location of
concentration points and prove that they must be distinct. On the other hand, del Pino-Musso-
Ruf [13] obtain a sufficient condition for the existence of sequences of solutions carrying
multiple bubbles. It gives a counterpart of the classification result by [14] and [15].

More recently, the concentration behavior of sign-changing solutions is investigated. In
this case, in view of the results in [7] and [8], it is reasonable to consider a stronger perturbation
h(t) = te! " with B € (0, 2). (We are still considering only the typical case for simplicity.) In
fact, Adimrthi-Yadava [8] show that (1.3) admits at least one pair of sign-changing solutions
for any A € (0, A1) and B € (1, 2). They also prove that if 2 = B, there exist infinitely
many radial sign-changing solutions under the same assumption for A and 8. This stronger
assumption is essential in the sense of the non-existence result by the same authors [8]. In
fact, they prove that if 2 = B and 8 < 1, there exists a constant Aoy (8) > 0 such that (1.3)
permits no radial nodal solutions for all A € (0, Aay(B)).

Motivated by this result, in [20], the authors attack the blow—up analysis of low energy
nodal radial solutions. They investigate the behavior by fixing A € (0, Aay(1)) and taking
the limit 8 | 1. Interestingly, the solutions sequence exhibits the multiple concentration at
the origin and weakly converges to a nontrivial sign-definite solution of (1.1) with A # 0
and B = 1. This behavior is very different from that in the positive case explained above.
After that Grossi-Mancini-Naimen-Pistoia [19] construct a family of sign-changing solutions
which concentrates at a C! stable critical point of a nontrivial residual mass. We remark that,
in their construction, they choose the residual mass to be a sign-definite solution and assume
thatitis nondegenerate and its amplitude is larger than 1 /2 at the concentration point. See (A1)
and (A2) in their paper for more precise statements. Moreover, the authors conjecture that
the largeness condition on the residual mass is essential for the existence of the concentrating
solutions in the limit 8 | 1. See Remark 1.2 in their paper for the detail.

We lastly refer to some interesting results in the radial case. In [29] and [30], the precise
asymptotic expansion of concentrating positive solutions is obtained. It allows the proof
of the multiplicity and nonexistence of critical points of the Trudinegr-Moser functional in
the super critical case. Under another setting, Manicini-Thizy [31] construct concentrating
radial solutions which weakly converge to a radial eigenfunction. On the other hand, in two
dimensional problem with the power type nonlinearity, Grossi-Grumiau-Pacella [ 18] find that
the singular limit profile appears in the asymptotic behavior of the sign-changing solutions.
In higher dimensional problems with nearly Sobolev critical growth, Grossi-Saldafia-Hugo
[21] obtain sharp concentration estimates of nodal radial solutions for both of the Dirichlet
and Neumann boundary value problems.

In this paper, we proceed with our blow—up analysis of (1.3) and answer some questions
raised in the previous works. Moreover, we would like to find new concentration phenomena
on (1.3) in the sign-changing case. To this end, inspired by the previous works [20] and [19],
we focus on the strong perturbation problem (1.1). Motivated also by [29], [30] and [21], we
focus on the radial case and establish explicit and sharp estimates.

More precisely, our first aim is to determine the limit profile and energy of every con-
centrating sequence. Especially, we would like to answer if the singular limit profile (which
was actually observed in the power type problem by [18]) may appear or not in the sign
changing case. We have already asked and negatively answered this question in the previous
work [20]. But, in the crucial step to avoid the singular limit profile, we used the low energy
characterization of the solutions. (See Case 2 in the proof of Lemma 4.3 in [20].) Hence there
remains a question if such characterization is essential for the conclusion. In the present
paper, we will complete the answer for any energy bounded sequence of radial solutions.
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Furthermore, our second goal is to deduce precise information of the weak limit of each
concentrating sequence. The first question in this direction arose in the positive case by
[15]. They asked if concentrating solutions could weakly converge to a nontrivial solution.
Their answer was “no” under their setting as noted above. On the other hand, the result in
[20] implies that we may have a different answer in the sign-changing case. Moreover, a
new question has arisen in Remark 2.1 of [19] about the relation between the concentration
phenomenon and the amplitude of the weak limit at the concentration point. We will give an
answer to this question in the radial case.

As a consequence of our new calculation, we arrive at the next classification result with
precise concentration estimates. It answers all the questions above.

1.1 Main theorems

Let us give our main results. Throughout this paper, we fix « > 0 and regard (1, 8) as a
parameter. Then, forany (A, 8) € (0, co) x (0, 2), we define the energy functional associated
to (1.1),

1
Log(u) = 5/ |Vu|2dx—/\/ Fg(u)dx
B B

forall u e HOI(B) where Fg(t) = fot ses’+elsl” g Then I, g is well-defined and C! func-
tional on HOl (B) by (1.2). Furthermore, the standard argument shows that every critical point
of I g corresponds to each solution of (1.1). Moreover, let AV g be the Nehari manifold
defined by

Nop = {u € H{ (B) |u is radially symmetric and (I3 g(u), u) = 0} .
Using this, we put for any k € {0} UN,

Ck.a.p i= inf {IA,ﬂ(M) |u € Ny pg,3ro, -+, ris1 € [0, 1] such that
O=rp<ri<--<rny1=1, O=ro<r=1ifk=0,)
w(x) = 0if |x| = ry, wi :=ul(y;_,<pxj<ri}s (=1 'u; >0, and
u; € Ny g (by zero extension), forany 1 <i <k + 1}.

In addition, we define the set of radial solutions as follows.

Skap = {u e C%(B) N C°(B): a radial solution of (1.1)[3rg, - - - , rrs1 € [0, 1]

suchthat0=rg<ry <---<rp1 =1, O=ro<r=1itfk=0,)
w(x) = 0if x| = ri, w; = ulfy,_ <xj<r)> se@(O)(—1)""u; >0,
forall 1 <i §k+1}.

We remark that for any (k, A, ) € {0} x (0, Ay) x (0,2) UN x (0, A1) x (1, 2), there

exists an element u € S ; g such that I; g(u) = c ;g by [2] and [7]. We call any element

u € S, p anodal radial solution if k # 0 and a positive (negative) solution or a sign-definite

solution if k = 0 and #(0) > 0 (< O respectively). Note that the result in [17] shows that any

element u € So ;. g satisfies max, 5 |u(x)| = |u(0)|. Lastly, for any k € N, let Ay be the
eigenvalue of — A on B with the Dirichlet boundary condition which corresponds to the radial
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eigenfunction ¢y whiqh has numbers 0 = 79 < 71 < --- < 1% = 1 such that g (x) = 0
if [x] = t; and (—1)’_1<pk > 0 on (tj_y, 1) forall i = 1,---,k and is normalized by
¢x(0) = 1. Our main result is the following.

Theorem 1.1 (Classification result) Assume (k, Ay, B+) € {0} x[0, 00) x (0, 2)UNx [0, 00) X
(0, 3/2) and let {(A,, Bn)} C (0, 00) x (0,2) be a sequence of values such that (7,, B,) —
(A4, Bx) as n — oo. Furthermore, we suppose (u,) is a sequence of solutions of (1.1) such
that u, € Sy, and u, (0) > 0 for all n € N. In addition, if k # 0, we assume,

/ |Vun|2dx is uniformly bounded for all n € N.
B

Then, after extracting a suitable subsequence if necessary, we have a function ug and a
number N € {0, 1, - -+ , k + 1} such that u, — ug in C* (B \ {O}),

loc
b, p,(uy) = 2N + I, g, (uo),

and
/ |Vun|2dx — 471N+/ IVuolzdx,
B B

asn — 00. Moreover, if max, g |u,y (x)| — 00 asn — 0o, then, up to a subsequence, either
one of the next assertions holds,

(i) As =0, 8, > 1foralln e N, N =k+ 1, andug =0, or

(ii) A =0, 8, <1foralln e N, k=0,N=1,andug =0, or

(iii) s #0, 8, 4 Lk#0,0 <N <k+1, andug € Sx—n.x,.1 with (=DNup0) = /2,
or

(iv) Ax #0, By =1foralln e N,k #0, N =1, and up € Sg—1,x,.1 with —up(0) = /2 or

(v) Ap #0, 0 Lk #0, N =1, and up € Sg—1.1,,1 with0 < —up(0) < /2, or
otherwise

(Vi) by = Ag, Bn < L foralln e N, k #0, N = 1, and ug = 0.

On the other hand, if max g |u, (x)| is uniformly bounded for all n € N, then

(vii) A #0, N =0, uy, — ug in C%(B), ug € Sk r, B U {0}, and further, we get ug = 0 only
if hs = Ny

In particular, (i) ((ii)) happens if and only if », = 0 (k = 0 and A, = O respectively) and
(vii) occurs if k = 0and hy # 0, 0rk > 1, Ay 0, and B, > 1, 0ork > 1,0 < Ay # Ay,
and By < 1.

Theorem 1.1 implies that the full (Dirichlet) energy of the sequence is decomposed by
2w N (4 N respectively) for a number N € {0, 1, --- , k 4+ 1} and the energy of the weak
limit ug. This is the typical energy quantization phenomenon observed also in the previous
works. In our theorem, (i)-(vi) describe the non-compact behavior and (vii) corresponds to
the compact one. In the former case, there are three situations. The first one is found in (i)
and (ii) which means that the (k + 1)-concentration occurs with the zero weak limit. This
phenomenon happens if and only if A, = 0. The second one is observed in (iii), (iv), (v). It
shows the N (< k + 1)-concentration happens with the nontrivial weak limit. (Notice that the
weak limit is possibly sign-changing.) This behavior yields A, 7# 0 and B, = 1. Moreover,
the sum of the number N of bubbles, and the number k — N + 1 of nodal domains of the
weak limit is always given by N 4 (k — N 4 1) = k 4 1. It comes from the fact that, in this
case, if we focus on the behavior of the solution on each nodal domain, it weakly converges
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to zero if and only if it blows up if and only if it exhibits the single concentration. See the next
theorem for the detail. The third one is observed in (vi). This means that the N(= 1 < k+ 1)-
concentration occurs with the zero weak limit. This behavior requires A, = Ay and 8, < 1
foralln € N. As we will see in the next theorems, in this case, only the local maximum value
u, (0) at the origin diverges to infinity and the other ones converge to zero.

Moreover, a remarkable result is found in the final assertions in (iii)-(vi). It gives the
necessary condition on the amplitude |u(0)| of the weak limit at the origin. Especially, (iii)
gives a proof of the conjecture in Remark 1.2 of [19] in the radial case. It ensures that if the
concentration occurs in the limit A, — A, # 0 and B, | 1, then |u#(0)| needs to be greater
than or equal to «/2. Notice that our necessary condition is valid in any case of A, > 0 as
far as the concentration occurs as 8, | 1 while the previous results in [20] and [19] focus
on the case of small A, > 0. Moreover, in the cases 8, = 1 foralln € N, 8, 1 1, and
B« < 1, we deduce new necessary conditions, |ug(0)] = «/2, 0 < |ug(0)] < «/2, and
uo(0) = O respectively. (A related result is observed for a radial positive sequence in another
setting by Theorem 0.3 in [31].) These conditions will be useful to detect new concentrating
sequences of solutions. See Sect. 6 for more discussion. We will discuss several counterparts
of assertions in the previous theorem later.

In addition, we remark that there is a striking difference between the cases (8,) C (1,2)
((1) and (ii1)) and (B,) C (0, 1] ((ii), (iv), (v), and (vi)). In the former case, N can be greater
than 1 while in the latter case it has to be equal to one. This is a consequence of our blow-
up analysis in Sects. 2 and 3. See Remark 3.4 for more explanation. Then, we notice that
Theorem 1.1 contains the following nonexistence result.

Corollary 1.2 For any number k € N and sequence {(7,, Bn)} C (0, 00) x (0, 1] such that
(A, Bn) = (Ay, Bx) € {0} x (0, 1], there exists no sequence of solutions (u,) such that
up € Sk.a,.p, and fB |Vu,|2dx is uniformly bounded for all n € N.

This conclusion allows a partial proof of the nonexistence result by [8] via a different
approach.

Corollary 1.3 Choose any B € (0, 1]. Then for each value E > 0, there exists a constant
A= ):(,3, E) > 0 such that for all » € (0, ):), (1.1) admits no radial nodal solution u with
fB |Vu|2dx < E. In particular, for each number k € N, there is a value io = 5»0(,3, k) >0
such that for all A € (0, ):0), there exists no solution u € Sy . g which attains cy ;..

We finally remark on the additional condition on B, in the previous theorem.

Remark 1.4 In the case of k > 1, we additionally assumed S, < 3/2. This condition will first
appear in (3.4) of Lemma 3.3 below. This does not seem simply a technical assumption. As
discussed in Remark 3.5, in the case k > 1 and 8, > 3/2, we would have different formulas
of the asymptotic energy expansion in Theorem 1.5 and also the concentration estimates in
Theorem 1.6 below. Since the proof for the former case has already used many pages, we
leave the latter case for our next works. We here restrict ourselves to only conjecture that, in
the sign-changing case, the stronger perturbation (8 > 3/2 in (1.1)) would delicately affect
the precise asymptotic formulas of concentrating solutions.

Next, we shall check the detail of the behavior stated above. The previous theorem is a
direct consequence of the next two theorems.

Theorem 1.5 (Limit profile and energy) Let values k, A, By and sequences {(Ay, By)}, (un)
be chosen as in the assumption of Theorem 1.1 and assume ug € HOI(B) is the weak limit
of (uy) by extracting a subsequence if necessary. Furthermore, we write u, = u,(|x|) and
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ug = uo(|x|) for x € B and then define values 0 = Fon < Mg < -+ < Fkpln = 1
(0 =ron <rin = 1ifk = 0)so that u,(r; ,) = 0 and (=D lu,(r) > 0 ifricin <
r <ripforall <i <k+ 1. Inaddition, we set u; n = unli;_, ,.r;,1 and define numbers
Pin € [ri—l,ns rin) and pin > 0 by i, = |ui,n(,0i,n)| = MaXrelr;_y,,rinl lui n(r)| for all
1 <i < k + 1. Finally for each number i = 1,---  k 4+ 1 such that p; , — 00, we set
¥i.n > 0 so that

1= ZAnﬂi,nfn(Mi,n)y[%n

2
where f,(t) = te' HP and define

Fi—l,n — Pi,n Tin — pi,n:|
s )

Zin(r) =2 n (i 0 (Vinr + pin)| — pin) forallr € |:
Yi.n Yin

and z(r) :=log (64/(8 + r2)2) which is a solution of the Liouville equation
=

1 o0
-7 7 =¢e%in (0, 00), z(0) =0 = Z/(0), / e*rdr < oo.
0

Then if max,¢[o,1] |un(r)| — 00, either one of the next assertions (i) and (ii) holds up to a
subsequence.

(i) Foralli = 1,--- ,k + 1, we have w;, — 00, pkyin — 0, Vin — 0, zin —
zin C2,((0, 00)) N CL (10, 00)),
Tin o 1
/ u,(r)rdr =2 — f’; +o0 ( 2_ﬁn) , (1.4)
Ti—l.n 'ui,n I’Li,n
Yin Olﬂ 1
Min / Do fo i g)rdr =2 — ——- +o< zﬁn> : (1.5)
Ti=Ln Hin Hin
and further, », = 0 and u, — up =0in CZZUL,((O, 1]).

(ii) There exists a number N € {1, - -- , k} such that foralli =1, --- , N, we have u; , —
00, in = 0, ¥in — 0, 2in — zin C3 _((0,00) N C}, ([0, 00)), (1.4), and (1.5), while
foralli = N+1, - -- , k+1, there existvalues u; > 0,r; € (0, 1]and p; € [0, 1) such that
Wi —> Wi, Tin —> Tis Pin —> Pi, and 0 = pyy1 < ryy1 < -0 < Pp1 < Fprp = 1

if N < kand 0 = pgy1 < rre1 = 1V if N = k, and further, it holds that 1. # 0,
Unliry.o.1) = 1o in C2 (0, 11), lim,_ o+ (=D uo(r) = puy+1, and

1 1
/ u;(r)zrdr — / ué)(r)zrdr.
T 0

N.,n
Moreover, either one of the next assertions holds,

(a) un+1 > 0,up(r;) =0, and (=1 uy > 0on (ri_1, ri),foralli = N+1,---  k+1,
or

(b) un+1 =0, ug =0, and further, uy|iry .11/ 1in+1 = (=N gx_n41 in C3,.((0, 1])
and by = Ng_N41-

On the other hand, if max,co,1) |, (r)| is uniformly bounded, choosing a subsequence if
necessary, we get that,
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(iii) foranyi =1,--- ,k+ 1, there exist values u; > 0, r; € (0, 1] and p; € [0, 1) such that
Win —> Wi, Tijp —> Tiy Pin —> pi,and0=py <ry < -+ < ppp1 < rpy1 = 1ifk > 1,
and further, it holds that L. # 0, u, — ug in Cz([O, 11), and

1 1
/ ul, (r)?rdr — / ul(r)?rdr.
0 0
In addition, either one of the next assertions is true,

(a) up(0) > 0, ug(ri) =0, and (—1)"'ug > Oon (ri_1, ), foralli =1, k+1,
or
(b) ug =0, un/un(0) — @rp1 in C*([0, 11), and hy = App1.

This theorem shows the behavior on every part u; , between neighboring two zero points
ri—1.n < i n. From the behavior in (i) and (ii), we see that if u; , blows up, it concentrates
at the origin. Especially, the local maximum point p; , converges to the origin. Actually,
this is the reasonable and the only way for any blowing up solution to ensure the uniform
boundedness of the energy. Furthermore, the limit profile is determined uniquely by the
classical solution z of the Liouville equation and the limit energy is just equal to 2. This
implies that neither the singular limit profile, observed in the power type problem in [18],
nor the multiple concentration, occurs on any u; .

Notice also that due to our strong perturbation, the second term of the right hand side of
the energy expansion in (i) and (ii) is very different from that in the case of « = 0 in view of
its sign and the exponent on u; ,. (See Theorem 1 in [30].)

Finally, we obtain precise concentration estimates in terms of (X,, 8;).

Theorem 1.6 (Concentration estimates) Under the same assumptions as in Theorem 1.5, let
us assume that (i) or (ii) of the same theorem occurs. First suppose (i) happens. Then we
have that (B,) C (0, 1] yields k = 0. Moreover; if k € {0} UN, we get that

log L

An 5, (1.6)
'ukJrl,n
where we defined the constant § = §(a, Bx) by § = a(1 — B«/2) and if k > 1, we obtain for
all 1 <i <k that

lim
n—oo

log )\L 2*3*(/‘3**1)]{7[*»1
: n — T
L ’ 4.7
i,n

Furthermore, if k € {0} UN, we have that

1
LA L
nll)n;o <log An) [y, (D] =285, (1.8)
and ifk > 1, we get for all 1 <i <k that
log% keitl  2=2(Bs— Dk
- " (B B
A B 2 oo (19)
(o2 )
and
1 ) (g k=it
log 1, T (1.10)

lim — =
n=0 (log |u] , (ri n)|)Pn=D" """
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In addition, if k > 2, we have foralli =2, --- , k, that

10gL Br(Bs— DK=L 2By (By—DKTIH]
lim S L S e S
n—00 ﬁn<ﬂn—21)k—'+1 (1.11)

(lOg pil n

Lastly, suppose k > 1. Then we may assume that B, > 1 for all n € N up to a subsequence
(by the first conclusion of this theorem). Moreover, we define a number L € [0, co] by

loglog -
= lim ST (1.12)

T By = 1) (1og AL)'T

Then if L < oo, we get

. log 5~ B 21-%
lim 72223[14-&%] , (L13)

and, on the other hand, if L = oo, we necessarily have B, = 1 and obtain

loglog - b

lim —2. (1.14)
1% (B, — 1) log

Pk+1

Next, we suppose (ii) occurs. Then we get B, < 1 and that (8,) C (0, 1] implies N = 1.
Moreover, if 1 < N < k, either one of the next assertions (a) and (b) is true.

(a) un+1 >0, B =1, andforall 1 <i < N, it holds that

N—i+1 2
Jim i = S (= 55 (1.15)
1 (ﬁn_l)NiiJrl 2
lim <log ) = N+t (1.16)
n—o00 ri,}’l o
. —1)N =it 2UN1
lim (log |u} ,r; )P0 = 22N (1.17)
n—o0 ) o
and
IN+1
o, -
i U1 (V1) = ,NHK*/O feluo)rdr, (1.18)
Bn—1 o
fin = ’ 1.19
Il*)oopNJr] n 2UN11 ( )

where fi(t) = ret’ el Especially, 2un+1/a > 1 (€ (0,1)) implies B, > 1 (< 1
respectively) for alln € N. On the other hand, B, > 1 (=1, < 1) for all n € N requires
2un+t1/a = 1 (=1, < 1 respectively). Finally, if 1 < N < k, (which yields k > 2,
By > 1foralln € N, and 2uy41/ > 1), assuming 2un+1/a > 1, we get for all
2<i<N,

1\ Bn-DN 2 2
lim (log ) - <M> . (1.20)
n>00 \""" pj «

(b) wi =0foralli=N+1,--- ,k+1and B, <1 foralln € N.
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Remark 1.7 We assumed 21/« > 1 for (1.20). This can be verified, for example, when
N =k and A, € (0, A1) is small enough by Lemma 6.8 below.

This theorem describes the speed of the divergence or convergence of i; ., 1 n, Pi.n and
”;,n (ri,n) in terms of the parameter (A, B,). Especially, in the case of (i), thanks to (1.6) and
(1.7), we get that wiy1., = (@(l — Bs/2) + o(1)) " /P(log (1/A,))/Pr and, if k > 1, that
Wk+1.n/Min — Oasn — oo foralli =1, .-, k. Then, combining this together with the
asymptotic energy formula in Theorem 1.5, we can also write the energy expansion in terms
of (A,, Bn) as follows.

Corollary 1.8 Assume as in Theorem 1.1 and suppose (i) or (ii) of the theorem occurs. Then
we get
2 2B«
27 o Pe By (l —%) P 1
2—Bn t+o 2—Pn
<log i) i

(lOg i) Pn

Moreover, in the case of (i), we observe a delicate behavior when (A4, B) = (0, 1) by
the formulas (1.13) and (1.14). They show that the asymptotic behavior px41, — O of the
local maximum point is described by either one of two different formulas (1.13) and (1.14).
The choice is determined by the balance of the speed of two limits A, — 0 and 8, — 1. If
former one is quicker than the latter one in the sense L < oo where L is the number defined
by (1.12), we have (1.13) and otherwise we get (1.14). Actually, in the latter formula, the
effect of the limit 8,, — 1 appears more clearly. This phenomenon comes from the combined
effect of the two different behavior, the (k + 1)-concentration with the zero weak limit in the
case A, — 0, and the k-concentration with the nontrivial weak limit in the case 0 < A, < 1
and B, = 1 (which is observed in [20] and (b) of Proposition 6.3 below). Notice also that
for any L € [0, oo], there exist sequences (A,) C (0, A1) and (B,) C (1,2) which satisfy
(1.12). Moreover, there exists a corresponding sequence (u,,) of solutions by Theorem 1.3 in
[71.

Finally, in the case of (ii), one of the most important results is (1.15). This proves the
necessary condition, explained before, in the final assertions in (iii)-(v) of Theorem 1.1.

In the following sections, we give the proof of our main theorems.

/ [Vu,|*dx = 4m(k + 1) —
B

asn — oQ.

1.2 Outline of the proof

We carry out the blow—up analysis based on a scaling technique. We begin with studying
the limit profile of the concentration part as in [20]. The first difficulty arises here since we
do not have the low energy characterization of solutions (Lemma 2.1 in [20]). In order to
admit our wider setting, we change the proof and argue by induction. Our idea is to use
useful assumptions ((2.4) and (2.5)) which are ensured by the previous step of the induction
argument (Proposition 3.10). Using this idea, we succeed in avoiding the case of the singular
limit profile. See the proof of Proposition 2.4.

Next, we will determine the energy of each concentrating part as in Theorem 1.5. An
important step is to ensure that only the single concentration occurs in each nodal domain.
The pointwise estimate in Lemma 3.7 will work for it. This is an extension of Lemma 5 in
[29] (see also Lemma 13 in [30]) to our setting which allows the strong perturbation and also
the sign-changing case. Using this and arguing as in Proof of Theorem 1 in [30], we obtain
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the energy expansion in Proposition 3.1. To accomplish these proofs, some careful remarks
are needed. In particular, the estimate (3.4) for the error term is a key for the proof in the
sign-changing case.

Finally, we will obtain the precise concentration estimate in Theorem 1.6. The proof is
inspired by the argument in [21] for the power type problem in higher dimension. A new
difficulty comes from the fact that, of course, the form of the nonlinearity is very different. In
particular, the Pohozaev identity does not seem work well for our aim. In our proof, utilizing
the useful identity in Lemma 2.2, instead of the Pohozaev identity, with the energy expansion
in Proposition 3.1, we get the key assertions in Proposition 3.10. This is also crucial to proceed
with our argument by induction.

We lastly remark that our approach mentioned above allows the proof without quoting the
uniqueness of solutions which has not been completed for (1.1) yet except for large positive
solutions ([3]).

1.3 Organization, definitions and notations

This paper consists of 6 sections. We begin with two sections, Sects. 2 and 3, which are
mainly devoted to obtain the limit equation and the limit energy of concentrating solutions
respectively. Next in Sect. 4, we analyze the behavior of non-concentrating parts of solutions.
This is important to deduce the precise information of the weak limit of solutions. Next, in
Sects. 5, we complete the proof of main theorems. Finally, in Sect. 6, we discuss some
counterparts of our classification result. Additionally, the proof of Lemma 2.5 is given in
Appendix 1 for the readers’ convenience.

Throughout these sections, we assume {(A,,, 8,)} C (0, 00) x (0, 2), (As, Bx) € [0, 00) x
(0,2) and (A, Bn) = (Ay, Bx) asn — o0o. We will impose more conditions on A, B, Ax, Bx
when needed. Moreover, we choose any k € {0} U N and consider a sequence of solutions
(un) suchthatu, € Si, g, foralln € N. Weset f, (1) = te’ eIt and fe(t) = ret*+all

Furthermore, we define the norm in Hj (B) by || - Iz sy = (V- |2dx)1/2. Moreover,
we denote the first kind Bessel function of order zero by Jo which is defined by

oo

. (=17 /r\2i
Jo(r) ._JX:(:) i (5) (r € R).

For any k € N, let Ay and ¢ be the eigenvalue and radial eigenfunction of —A on B with
the Dirichlet boundary condition defined above. Then letting 0 < #; < t, < --- be all the
zeros of Jy on (0, 00), we have that Ay = t,? and ¢ (x) = Jo(tx|x]).

Finally, in the proofs, we often use the same character C to denote several constants when
the explicit value is not very important.

2 Limit profile

Let us start the proof of main theorems. In the following, we refer to Radial Lemma in [34].
In our two dimensional setting, it is reduced to the following.

Lemma 2.1 ([34]) There exists a constant ¢ > O such that every radial function u € HOl (B)
is almost everywhere equal to a function ii(x), continuous for x # 0, such that

00| < x| 72 flull 1y (& € B\ {OD.
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66 Page 12 of 54 D. Naimen

Now, assume k € {0} UN. Forany 1 <i <k + 1, we define u; ,,, ¥i—1,n, ¥i n» Pi n, and
Wi n asin Theorem 1.5. Then we have

1 i— .
_M;Cn - ;u; n= = A fu(in), (1) lui,n > 0in (ri—1,n, in)s

Uin(rin) =0=uj, (pin), @0
win(ric1,n) =0ifi > 2,

2 n . .
where f,,(1) 1= te! Tl " We often use the next identity.

Lemma22 Foranyi =1, ---,k+ 1, we have

Yin I
Ui n(pin) = / A fu (i )1 log —’r’"dr.
P,

i.n

Moreover; ifi # 1, we get

Pi.n r
wi n(Pin) :/ )\nfn(ui,n)r log - dr
T,

i—1,n rl*l,n

Proof Let us show the first formula. Fix any i = 1, --- , k + 1. Multiplying the equation in
(2.1) by r logr, and integrating by parts from p; , to r; ,, we get

Tin Tin
/ A fu i )rlogrdr = / (=ru; ,(r)) logrdr

Tin
:/ M fuo(ui p)rdrlogri y — i n(0in),

where we used r; nM, 2rin) = — fr’ " An fo(ui n)rdr for the last equality. This shows the
first formula. Assuming i # 1, the second assertion is similarly obtained by integrating by
parts from r;_1 ,, to p; . O

‘We also use the next assertion.

Lemma 23 If fr”’ u;ﬁ(r)zrdr — 0, then u;, — 0 in C([0,1]). In particular, if
limsup,,_, o, Min > O, then by taking a subsequence if necessary, we get a constant Ko > 0
such that fr’ ” u;’n(r)zrdr > Ko foralln € N.

Proof We put A2 := [’ ul, (r)?rdr. Then, from Lemma 2.2 and the Holder inequality,

Fi—1,n
we get a constant C > 0 such that

Min =

Tin Fin
A f (up)rlog ——dr
) r

1 1
Tin 4 Tin 2( _Hin 2 4
A(l4a)2m A
<C / u?nrdr / e (1) "<v2"An> rdr
Pi,n in

( Tin 1 2
2

X / rlog” —dr

Pi,n r

Then noting A,, — 0, we use the Trudinger—Moser (1.2) and Sobolev inequalities to obtain
that the right hand side converges to zero. This finishes the proof. O
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Let us begin our main discussion of this section. We study the limit equation of concen-
trating solutions. To this end, we fix a number 1 <i < k 4 1 and suppose

Win — 00 asn — 00. 2.2)

Moreover, if i # 1, we also assume that

Tin
sup / ) (r)?rdr < oo, (2.3)
neNJri_, ’
1
. log )‘"riz—l n

lim ———= =5, (2.4)
n—o0 ﬁn

Hi_tn

where § = §(«, By) is a positive number defined after (1.6) of Theorem 1.6 and
Hm g ity , (ric1a)| = 2. (2.5)
n—o0

Our goal is to prove the following.

Proposition 2.4 Assume (2.2)—(2.5), put y; » > 0 so that

L =2Xutin fu (Mi,n)]/iz,m
and define

Ficin = Pin Tin = Pi,
Zi,n(r) = 2/‘vi,n(|ui,n()/i,nr+pi,n)|_N«i,n) <r € |: —= zn! Sl zni|>,
Yin Vin

foralln € N. Then we have Yiin —> 0: (ri—l,n - pi,n)/yi,n — O: (ri,n - :Oi,n)/yi,n — 00,
and further, z; , — z in C3_((0,00)) N C} ([0, 00)) where

loc

“r) =log @6)
(8 +1r2)?
which satisfies
1 o0
—— ;z’ =¢e%in (0, 00), z(0) =0 = 7/(0) and /0 erdr = 4. 2.7
Before staring the proof, note that z; , satisfies
-z, - r+l‘;"—*" L, = (2212”" + 1)
2 - Bn
Z’*”ﬁ”“ﬁyﬁ ’ <22;2nn +1> —1]
xe ’ ’ , (2.8)
Zin <0, in (ri—l;xi;»oi,n’ ri.ny:nﬂi,n) ’
2n(0) = 0= 2],,0), 2 (5720 ) = —2u2,.
ti (PR ) = —2pi2 (A ),

Put ! := lim,— oo (0i,n — 7i—1,2)/¥i,n- Then as in the proof of Lemma 4.3 in [20], the crucial
step is to deduce / = 0. Hence the case i = 1 is easier. In the case i > 1, we have to exclude
the cases / = oo and [ € (0, 00). As a first step, we can prove by (2.3) that the case [ = oo
does not occur.
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66 Page 14 of 54 D. Naimen

Lemma 2.5 Assume (2.2) and (2.3) and define y; , and z; ,, as in the previous proposition.
Moreover, putl, m € [0, oo] so that

. Pin —Fi—1,n . Pi,n
[ = lim —— andm = lim ,
n—0o0 Yin =00 Yin
by extracting a subsequence if necessary. Then we get that lim,_ oo pin/tin = 0,

limy,— o0 (ri.n — pi, ,,)/y, n=00,0<l=m< andfurther, there exists a function z
such that z; , — z in C[oc(( [, 00)) (in CIOC((O 00)) N Cloc ([0, 00)) ifl =0).

Proof Using Lemmas 2.1, 2.3 and our assumptions (2.2) and (2.3), the proof is similar to
that of Lemma 4.3 in [20]. (Especially, see the argument in “Case 1” there.) For the readers’
convenience we show the proof in Appendix 1. O

Now our final aim becomes to prove [ = 0. In order to prove this, the variational charac-
terization of solutions by [7] was useful in the previous work [20]. This allowed us to get the
energy estimate in Lemma 2.1 (and also Lemma 2.5) in [20]. Using this, we could prove that
the case [ € (0, oo) does not happen. (See the argument for “Case 2” in the proof of Lemma
4.3 in [20].) Since we only assume the boundedness of the energy in this paper, we need a
new argument. We accomplish the proof with the aid of our new assumptions (2.4) and (2.5)
as follows.

Proof of Proposition 2.4 Without losing the generality, we may suppose u; , > 0. Let [, m
and z as in Lemma 2.5. Then we get ] = m < oo by the lemma. Let us prove [ = 0. If
i = 1, this is trivial. Hence, we suppose i > 2 and / > 0 on the contrary. Then, by (2.8) and
Lemma 2.5, the limit function z satisfies

— = =%, 220 in (<1, 400)
2(0) = 0 = Z(0).

It follows that
4AUAT2(r 4 A2
(A+2)14 + (A =2)(r +DA)

where A = +/2I2 + 4. (See Proof of Proposition 3.1 in [18] or the proof of Lemma 4.3 in
[20]). Then, we use Lemma 2.2 to get

z(r) = log

2u3
Pin r
=2Uin / An f (Ui p)rlog dr
Ficin Fi—1,n
0
_ Vin Zin(r)
- log ri ﬁ[*l.n’p[.n < 2 2 + l)
i—1l,n o Mi,n
; ()+z%"(r)+ fn f (2 4y ﬂnfl
e i e pin 2.9)
xe r+—|dr
Yi.n
5 { " Bn
0 2in(N+ 55— ’”  va au <”’ 2 +1> 1>
r
+/; » (Zln()+l) u‘ln P’In
171;./;1"1 in 2“’1 n

X (r + Pin ) log (r + pi’")dr.
Yi,n Yi.n
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Noting that | = m implies r,_1.,/yi.» — 0, we apply the Lebesgue convergence theorem to
obtain

2

20 0
lim ——="— = / E(r+hdr=v22+4-2. (2.10)
Vi 4
On the other hand, we have by the definition of y; ,,
wi, 4,

Yin
Ti—1.n

2log r,jﬁ —log2x, —2log i n — ,uiz’” - au?”jl

4 2.11)

log

B log_A 2
— L 4 o(1)

in

Combining (2.10) with (2.11), we get

1
= Wi e
lim — =

€ (0, 00).
2 2 ’
n—oo Mi,n l

Then since

1 1
log )"ri{l,n _ log )Lrizfl,n (Mi—],n)ﬁn ]
2 X ) 2=B,°
Mi’” /’Lf—l,n Hi.n Mi,nﬁ
using our assumptions (2.2) and (2.4), we deduce that

lim

=00 Wj—1,n

=0. (2.12)

On the other hand, since u,, = u,(r) satisfies —u) — u),/r = Ap frn(uy) o0 (Pi—1.1, Pi.n),
multiplying this equation by r and integrating over (0;—1.,, pi.n), W€ get

Ti—1l.n Pi,n
/ )Lf(ui_lyn)rdr = —/ )\.f(ul‘,n)rdr.
0

i—1,n Ti—l,n

Then, it follows from (2.5) and the similar scaling argument as in (2.9) that

i Wi ot WS Win)rdr VarEt+4-2 2.13)
= — — — > .
Hi—1.n Hi—1,n ;,,’:11: Af(ui—yn)rdr 4

as n — oo. This contradicts (2.12). Hence we get [ = 0. Then (2.8) and Lemma 2.5 prove
that z satisfies

r

—7" =L =% 7<0 in (0, 4+00)
2(0) =0 = Z'(0).

After integration (see Proof of Proposition 3.1 in [18] or the proof of Lemma 4.3 in [20]),
we conclude that z satisfies (2.6) and (2.7). We complete the proof. ]

In the proof above, we get the following.
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Lemma 2.6 Assume (2.2)—(2.5). Then we have

lim 22 — o, (2.14)

n—00 Y;

and

lim

=00 i—1,n

=0. (2.15)

Proof In the previous proof, we get I = m = 0. This proves (2.14). Using [ = 0 in (2.13),
we obtain (2.15). This completes the proof. O

3 Limit energy

In this section, we study the limit energy of concentrating solutions. As in the previous
section, we fix i = 1, --- , k + 1 and suppose (2.2)—(2.5). Without loss of the generality we
assume u; , > 0. Moreover, we define y; , and z; ,, as in the previous section. Our main goal
is to prove the next asymptotic energy expansion.

Proposition 3.1 Assume (2.2)—(2.5). Moreover, if i # 1, we suppose B, < 3/2. Then we
have (1.4) and (1.5).

For the proof, we begin with the next lemma.

Lemma3.2 Leti > 2 and suppose (2.2)~(2.5). Then we getri_1 ,/pi.n — 0 and

Pi,n

2
. )‘”'Oi,nf”('uia”)log Tiln . )\npl‘znfn(,ui,n)
lim — =2 = lim :

—_—.
n—0co Hi,n n—>00 ri—],n“,"n(ri—l,n)

3.1
Proof We putry, := ri_1 n/pi n. Moreover, we write i, = ; , and p, = p; , for simplicity.
We first claim that lim,,_, » 7, = 0. Actually, we get

1

Pn Pn 2 1 2
W = / u;(r)dr < / |u;,(r)|2rdr (log 7) .
Yi—1,n Ti—1,n Fn

Then the claim follows by (2.2) and (2.3). Next we define a scaled function Z,(r) :=
2y Uy (opr) — ) for r € (7, 1). Then it satisfies

~ ~ Jn 22"” +in ) . -
~Z =i = Z)LnP;%ﬂn.fn(Nn)% in (7, 1),

Zn(1) =0=2Z,(1).
Thanks to (2.14), we get that

I
~Z - 15 =)
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where 0(1) — 0 uniformly in (7, 1). Integrating this formula and using z/, (1) = 0 = Z,(1),
we see 7, — 0in Clloc((O, 1]). Then similarly to (2.9), we use Lemma 2.2 to derive

1 fu Sn + Wy
Mn = )\np;%fn(.un)f (;MEM ) )

7

’
rlog —dr
n

2 . Bn
It Aapy <—Z"2 +1> 1
4 2
) i i rdr

1 1
= A2 log —
1Py Jn(in) log 7 /;n <2M%

2 8 . Pn
z Ln_ in —
nt+ 4#,21 +apuy (21& +l> 1

1 ~
Z
+)\n:0y%fn(ﬂn) v/r:,, <2':Ll% + 1)6’

Therefore, it follows from the Lebesgue convergence theorem and our first claim that

rlogrdr.

Hn _1

lim T
=00 A P Jn (en) lOgﬁ 2
This shows the first equality of (3.1). Finally, since
Fie1ny (ri—1.n)
Pn
:/ A Ju(un)rdr
Fi—1l.n
32 { = Pn }
1/ 3 Znt+ - tapy” ( = -H) -1
Z ) 2
= )\npy%fn (Mn)/ ( ”2 + 1) e ! i rdr,
;n 2/j“n
]

we similarly get the second one. This completes the proof.
By the previous lemma, (2.4) and (2.5), we get the following.

Lemma3.3 Leti > 2 and assume (2.2)—(2.5). Then we have that

o\ 2B—D)
lim sup 12> 7" <p—> = 8h 15, (3.2)
n—00 ’ Yi.n
and
lim Bbn . (3.3)
n—oo ,,Pn—1
i—1l,n
In particular, if B < 3/2, we get
lim 2P 2 (3.4)
n—oo b Vion
Proof From the first equality in (3.1), we get
hn 7 (Wi n)
ST | tog (hup? ) + log — =4+ o(1). (3.5)
Mi.n )L”rifl,n
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On the other hand, using (2.5) and (2.4) for the second equality in (3.1) implies

)aniz,nfn(ﬂi,n)ﬂzifl,n

2 1) =
o 2+ o)
1
_ 1 3B
o fain) | 085
2+o(1) 3+ o(1)
It follows from the first equality of this formula that
44 o0(1)
Mnply = (3.6)
Sn (i ) i—1,n
and from the second one that
1 48+5 + o(1)
log P = B 3.7
i=ln [)‘-npl‘z,nfn(ﬂi,n)]
We substitute (3.7) into (3.5) and get
Mn0F o f (in) 4P5 + o(1
4+ 0(1) = u log (Anp?,) + @ 7
Hin )\npiz,nfn(lii,n)}
44 o(1) 4+ o(1) 488 + o(1)

T o Y Bn—1
MinMi—1,n S (i ) i—1,n in {knpi%nfn(ﬂi,n)]

where we used (3.6) for the second equality. Notice that (2.15) implies that the first term on
the right hand side converges to zero as n — 0o. Consequently, by the definition of y; ,, we
obtain

. 2(Bn—1)

Hin" (L> = 8515+ o(1).
’ Yi,n

This proves (3.2). Furthermore, substituting the definition of y; , and (3.6) into this formula,

we see

27ﬂr1 <(8 + 0(1))/’Li,n
b Mi—1,n
This ensures (3.3). Finally, if 8. € (0,3/2), (3.2) and (2.14) show that

ﬁ7171
) =8/"1s +o(1).

. . 3-2B,
b = (5 o) (p) ~0

Vin

as n — 00. We finish the proof. O

Remark 3.4 By (3.2) and (2.14), we see that if (8,) C (0, 1], then u; , is uniformly bounded
for all n € N. This contradicts our basic assumption (2.2). This will prove that, interestingly,
if fol ul/l(r)zra'r is uniformly bounded and B, < 1 for all n € N, then u; , does never blow
up for any i > 2. For the detail, see Proof of Theorem 1.6 in Sect. 5. This remark suggests
that, in the rest of the argument in this section, we may restrict our attention only on the case
i =1if (8,) C (0, 1].
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Remark 3.5 As in the statement, the assumption 8, < 3/2 ensures (3.4). We will see that the
next lemmas strongly depend on this fact. For example, it allows the assertion &,, = o(ul.z’;ﬁ ™)
in Lemma 3.7 below. On the other hand, if i # 1 and (8,) C [3/2, 2), this assertion fails by
(3.2) above. This implies that the effect of the error term p; ,, /i, would appear in the strong
pointwise estimate like (3.17). More precisely, the term —a,/ (2pcl.2;ﬁ *) in (3.17) would be

modified to the one with j;_ r(,z_ﬂ /=) iy View of (3.2). This change would affect all

the results, for example, the energy expansion in Theorem 1.5 and the asymptotic formulas
in Theorem 1.6, based on (3.17).

Notice that in the following lemmas, we additionally assume B, < 3/2 if i # 1. We next
prove the following.

Lemma 3.6 Assume i > 1 and (2.2)—(2.5). Moreover, we suppose B, < 3/2 ifi # 1. Let
Zin» 2 be functions defined in Proposition 2.4 and put ¢, := M?;ﬁ” (zi,n — 2). Then we get
Gn — ¢ in C> (0,00) N CY ([0, 00)) where ¢ satisfies

loc loc
g %dﬂ _ ¢ (¢ ¥ “2’3* z) in (0, 00), $(0) = 0. (3.8)
In particular, we obtain
$(r) = ap, <log 8+ + g — 1~ log 8) (r € [0, 00)). (3.9)

Proof We write p, = pin, bn = Min> Yn = Vi and z, = z; , for simplicity. Then using
the definition of ¢, and the equations in (2.8) and (2.7), we get

1

" ’
R

n P ¥n

T+ Vn
2 P Pn
o et (0]

— 2P Zn +1)e 4up < 21 > (3.10)

i { <2M%

forall r € (O, ) Here recalling that z,, is locally uniformly bounded in [0, c0), we

use the Taylor theorem to see

Yi,n—Pn
)/n

L2
n

/3)1
Bn z
Zn+ Ty Aauy {( 2 +l> 71} 1
Z 2 2 B o
( n +1>€ 4up 2un =% 4+ f_”ﬁ Zn€™ + 0 o
2uy Hn "

where ,uf,_ﬁ ".o(l/ Mﬁ_ﬂ ") — 0locally uniformly in [0, co). Then after substituting this into
(3.10), for all r € (O, r’”}%”’) and n € N, we apply the mean value theorem to obtain a
constant 6 = 0(n, r) € (0, 1) such that
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1

Pn
r+ Vn

—¢/'(r) — oL (r) = ez(r)+9(zn(r)—z(r))¢n r)

+agn 2 (r)en ™)

S <,+‘% - ;) () +o(1),
én(0) =0 = ¢;,(0),

where 0(1) — 0 uniformly locally in [0, co). Here, notice that third term of the right hand
side of the equation is nontrivial if i > 2. But thanks to (3.4), we have

- 1 1 _g P 4
T ( o T ) dy = Y (3.12)
r+7n r yn(8+r2)(r+%)

3.11)

uniformly locally in (0, 0o0) as n — oo. Now we claim that ¢, is locally uniformly bounded
in [0, c0). If not, there exist a constant R > 0 and a sequence (£,) C~[0, R] such that

on(€n) = maxye[0,R] |¢n (r)| and lim, ., ¢, (§,)| = oo. Then putting ¢, := ¢, /P, (§r)
and multiplying the equation in (3.11) by ¢(£,) !, we obtain that for all r € (0, R]
- 1 - _ =
_qbr/l/(r) _ pay pl¢;(r) — eZ(V)+9(Zn(r) Z(V))¢n(r)

o), (3.13)

4
o) v 2 Pn
_ _ D) (r+ )
$n(0) = 0 = ¢,,(0),
where o(1) — 0 uniformly in [0, R]. It follows that

1 71 :U«%_ﬁn Pn
¢, (r)=0() +

- (r € (07 R])a
¢(Eﬂ) VYn (8 + r2) (r _|._ %)

Pn
r Pn
+ Yn

where O(1) is uniformly bounded in [0, R]. Then, for any r € (0, R], multiplying this
formula by (r 4+ p,/y,) and integrating over (0, r) give

1.2 4 pu 2—fn -1
- re-+ =r r 4
—dn=0 (T )+ (r+ @> / e G
r+% &n&n) v Vn 0o 8+7r9)
Consequently, with the aid of (3.4), we have that ¢~>n is uniformly bounded in C L([0, R)).

Therefore, it follows frgm the Asco}i-Arzglél theorem, the equation in (3.13) agd (3.12) that
there exists a function ¢ such that ¢,, — ¢ in Clzoc(((), R]) N C([0, R]). Then ¢ satisfies

a1 1 7/ e 7
—¢" ——¢' =¢e“¢pin (0, R], ¢(0) =0.
r
This implies

8§—r2 (8—r2)10gr+16

Gy =gt o

(r € (0, R])

for some constants ¢1, ¢, € R. Since lim,_,o+0 d;(r) = 0, we get ¢; = ¢, = 0 and thus,
obtain ¢~S = 01in [0, R]. This contradicts the fact that q?n (&,) = 1 for all n € N. This proves
the claim. Then, for any r € (0, co), multiplying the equation in (3.11) by (r + p,/y,) and
integrating over (0, ), a similar calculation as above gives that ¢,, is uniformly bounded in
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Clloc([O, 00)) thanks to (3.4). Then again by the Ascoli—Arzela theorem, (3.11) and (3.12),
we obtain a function ¢ such that ¢, — ¢ in Clzoc((O, 00)) N C&C([O, 00)). It follows from

(3.11) that

1
— ¢ — - =+ Lf* z¢% in (0, 00), ¢(0) = 0. (3.15)
r
Then we compute that for all » > 0,
1 8 —r? 8 —r?)logr + 16
¢(r) =c 5+ gz
oy 8+r 8+r (3.16)
2(8 — r2)logr + 8(3 — 2log 8) '
log (8 4 r2 ,
+log(8+r7) + 512
where ¢, co € R are some constants. By lim,_,o40¢(r) = 0, we get ¢c; = —2 and then
conclude c; = 1 4 log 8. This completes the proof. O

The next estimate is important.

Lemma3.7 Leti > 1 and assume (2.2)—(2.5). In addition, if i # 1, we suppose By < 3/2.
Then for any R > 0, there exists a constant C > 0 such that

op
Zin(r) < (l — 2—;9,,) z(r) + Ce, logr (3.17)
in

forallr € [R, (ri.n — pi.n)/Vin] and all large n € N where we put

. ,_max{ 1 1 1By — Bl pi,n}_o( 1 )
n = 36, 20 2 o [T\ = |-
i P Vi i

Proof We put p, = pj n. in = Win> Yo = Vi.n. and z, = z; , for simplicity. We apply the
contraction mapping argument in the proof of Lemma 5 in [29] (see also [30]). We define a
function v, on [0, (i, — pu)/¥n] by

wn =Zn— 27— 2B’

where ¢ is taken from the previous lemma. Then from (2.8), (2.7), and (3.8), we get

1
4 /
-V, = r+ &wn
Vn
2 Bn z, P
B ( o eZ)1+4“%+Mn {(mﬂ) —1}
202 (3.18)
1 o 1 1 !
_eZ_TﬂeZ<¢+ ﬁ*z>+ - Z/+2¢%/3
T 2 rte T "
=&, (¥n)

@ Springer



66 Page 22 of 54 D. Naimen

where we defined

D, (Y) ::ez[{l + ﬁ (Z + %ﬁn + \0) } W)
n Hn

! P 3.19

Pn 4 aps r?
Vo (r + %)(1’2 +8) Zﬂi_ﬂ" r2 48

with

2
¢ 1 ¢
ha() =V + 5+ —5 |24+ 55 +
=¥+ 2 + 1 (z p w)

1 & Bn
+aw,” {M(Z+W+w)+l} —1

We first claim that for any 7 > 0, there exists a constant C(7") > 0 such that

(3.20)

¥ ()| < C(T)ey and |y, (r)| < C(T)ey (r € [0, T1), (3.21)

for all large n € N where ¢, is defined as in the statement of this lemma and ¢, =

1 (/L,:(Q_ﬁ”)> by (3.4). To show the claim, fix any T > 0. Then since ¥, — 0 uni-

formly in [0, T] by Lemma 3.6, we have |h,(¥,)| < 1 for large n € N. It follows that
e Wn) =1+ h,(Yy) + O (h, (¥)?) on [0, T] by the Taylor theorem. Using this for (3.19)
with ¥ = ¥,,, we compute that

z 1 2
Cu(n) = ¢ | [ 1+ 0 | =5 | | ¥u+ O () + OCew)
Mn

(3.22)
1
yolPr — | onjo.7)

Yn (r + %) (8 + rz)

Then, putting ¥, = &, v, in (3.18), we get
T 1 i z 1 N 72
_1//11_ Pnl/fFI:e 1+0 2By Wn+0(£nwn)+0(1)
Tty M
1 1
+o| =" on [0, T,

En Yn (r+ %) (8+r2)

and v/,(0) = 0 = ¢’(0). Using this equation and noting &, Yon/ve < 1, we get that v,
is uniformly bounded in C'([0, T']). (The detail of the proof is similar to the argument in
confirming the locally uniformly boundedness of ¢, and ¢, in the proof of Lemma 3.6.) This
ensures the claim.

Next let us extend the estimate (3.21) to a suitable expanding interval. To this end, we
choose a sufficiently large number 7 > 0 and a sequence (s,) C (T, (ri,, — Pn)/¥n) so that
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sp — 00. (More precise choice of T and (s,) is given later.) Then we consider an initial
value problem

_1//” _

S Y’ =@,(¥) on (T, 5,1, Y(T) = Yu(T), ¥'(T) = 4, (T).
Yn

Putting w = (r + %) Y¥’, we get the equivalent system,

W = = on (T’ Snl,
)
o =— (r + ]‘i—:) ®,(y) on (T, s,], (3.23)

V() = Ya(T), (1) = (T + 2 ) (7).

Notice that, by the uniqueness, the solution (¥, w) satisfies (, w) = (Y, (r + pu/Vu)¥})
on [T, s,]. In order to construct the solution with an appropriate estimate, we reduce (3.23)

into an integral equation on a suitable function space. To do this, we define the norms || - ||
and || - |12 by
f@r)
I flli=sup s Ifll2=2 sup [f(r)l.
re(T.s: | log (r + ]’i—") — log (T + %) relT sl

We fix a constant C > 0 such that
C>4(C(TNT +2)+ D), (3.24)

where C(T) > 0 is taken from (3.21). Then we consider a set of functions

Be :={(w, w) € COUT . sp]) x COUT, sa]) | 1 — ¥u(D)ll1 < Cen,
lwll2 < Cen, Y(T) = Yu(T), o(T) = (T + ‘y’—) w,;(T)}.

Moreover, we define a map F : Bz — COIT, su]) x CO[T, sn]) so that F(yr, w) =
(F1(¢, ®), F2(¥, )) and

r

Fi(¢, 0)(r) == 1//(T)-F/ ds,

w
ro(s+2)

B, 0)(r) == o(T) - /T (S + &> ®, (Y)ds,

n

forr € [T, s,]. We shall find a fixed point of F in B.
To this end, we fix a small number 0 < d < 1 (independently of 7)) and choose the

/ in{1.2—p) ..
sequence (s,) so that s, < el "' _8forall n € N and lim inf,,_, o 8,1,/2s,, > 0.1t

follows that

n

for all r € [T,s,] and n € N. Moreover, by (3.21) and (3.25), there exists a number
no = no(T, d) such that if n > ny, it holds that

sup Y (s)] =d (3.26)

S€[T ,sn]
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for any € cOr, S with [y — (D) |l1 < C‘Sn. Then similarly to (3.22), we calculate
by (2.6), (3.9), (3.25) and (3.26) that

() = [(1+ 0 ) ¥ + O (e log? (8 +1%))]

0 Pn 1 T (3.27)
T rE ey )

forany ¥ € CO([T, S1) such that ||[vv — ¥, (T)]l1 < C‘sn and all n > np. Analogously, we
compute that

|, () = D, (Y] < (1 + 0 (8)) €|y — Yl on [T, 5], (3.28)

forall v, ¥ € CO([T, S]) verifying [l — ¥ (T)[l1 < Cey and [ — ¥ (D)1 < Ce, and
all n > ng. After this we always assume n > no.
Now, we first claim that F : BC — BC' In fact, for any (¢, ) € Bé, we get

=
ds
Pr
T ST,

1~
IE1 (s ) = Y (DIl = 5 Cen.

1
[F1(¥, @)(r) = Y (T)] = Flll2

It follows that

On the other hand, from our choice of (¥, w), (3.21) and (3.27), we have for any r € [T, s,]
that

|2, w) ()|
- P
, ,(s+2) <C(T)+Clog 7T+g)
<e,|C(T T+—">+65/ "7 ds
[ ( )< n T (8 +52)2
(s +2) log? 8 + ) o [T 1
+0 / ds|+o0 8;1—f ———ds
T (8 +52)? Yo Jr 8+52
on Pn r+7n
<, C(T) T+1+65/r<s+”")ds +65@/r (Hy")log”#ds
- r (8+52)?2 T (8 +s2)2
r (s—l—%”) log?(8 + s2) on [T 1
+0 / : ds|+0 s;‘l/ ds | |.
T (8 + 52)? Yo Jr 8+52

Since ;' py/yn < 1, taking T > 0 large enough, we get

|2, 0)(r)] < 5 |:C(T)(T +2)+ % . 1] ,

We fix this T'. Then it follows from (3.24) that

IF2(¥, )2 < Ceép.
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This proves the claim. Next we shall show that 7 is a contraction mapping. Indeed, for any
(¥, w), (¥, &) € Bg, we obtain

pn

|F1 (Y, @)(r) = Fi (Y, @)(r)] < *llw @|l2log - n pn :

This implies that

- 1
I1F1(¥, 0) — Fi(y, o)l < Ellw —oll2.
Moreover, we get by (3.28) that
|F2(¥, 0)(r)—F2 (¥, @) ()|

r on\ 1V =l
f“/T (”;) B2

-y | (" log 7 r
<65 sup Y-y ]i / <s+&> g
seTusul | log o | JT Yn/) (8+4s%)

Yn

Choosing T' > 0 larger if necessary, we see

. 1 .
IR G, @) = Fi (. o)z = 51V =¥l

Consequently, F is a contraction mapping from B to itself. This suggests that there exists a
fixed point (¥, ) € B¢ of F. Then, as noted above, we get (¥, w) = (¥, (r + Pnl YV
on [T, s,]. Since (Y, w) € B, we have by (3.21),

Pn

+
[V ()] < en (C(T) + Clog i TP V) , (3.29)

Vn

and

(r 4 p—") W) < S (330)
Vn 2

forallr € [T, s,].
Let us finish the proof. Fix T > 0 as above and choose any R > 0. If R < T, we get by
the definition of i, (2.6), (3.9) and (3.21) that

2
an(r) < (1 - 2M’3* )z(r) “ﬁ” 2r+8 +0en) << — zﬂﬂ* )z(r)

for all r € [R, T] if n is large enough. Hence we may assume 7 < R. Then, similarly, it
follows from (3.29) that

zn (1)
Pn
aBs apy r? T+
<[|1- 2r) — ——F ——— C(T)+Clog Vo) e
( 2#5_’3”) pn Pt 8 ( T+5)" 63

B
5(1— - )(r>+0<enlogr>
2

n
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forall ¥ € [R, s,,]. Moreover, for any r € [s,, (ri.,n — pn)/Vn], we have

(r+@>z;,(r)s/"{<r+p—”>z;(r)} dr
Vn 0 Vn

= (sn - @) (z’(sn> AL w,;(s,») :
Yn Han "

(3.32)

Here we use (2.6), (3.9) and (3.30) to see

(Sn + &> Z/(Sn) =—-44+0 (
¥n

(s, 2« 1
(s 22) 20 200 o () w0 (22).
Yo/ pup ™" Un " Sp Yn

‘(Sn + &> 1/’7/, (sn)

n

;’N‘ =
N———"
+
)
N
SEES
N———"

and

C
< 58,1.

1/

Substituting these formulas into (3.32) and using lim inf,,_, » $,, &, LS 0, we get

20
<r+@>z;(r)s—4+ 2_@ + O(en)
yn Mn n

forallr € [s,, (ri,n—pn)/vn]. Lastly, forany r € [s,, (r; n — pn)/Vn], dividing this inequality
by (r 4+ pn/yn) and integrating over [s,, r], we compute that

2 2
zn(r)s—(4— fﬂ;)log<r+"")+(4— gﬂ;)log<sn+p”)
M " Vn M " Vn
+ O(enlogr) + O(en logsy) + zu(sn)

< (1 = Oﬁ) 2(r) + O(e, logr)
2, "

if n € N is large enough. This completes the proof. O

Using the previous lemma, we deduce the following asymptotic expansion of the energy.

Proposition 3.8 Assume i > 1 and (2.2)—(2.5). Moreover, suppose B, < 3/2 ifi # 1. Then
we get

Tin afs 1
pin | nfigrdr =2 =2 o —— |, (333)
Pin Hin Hin
and
Tin o 1
/ Mt f Ui )rdr =2 — 2’: +o ( Hﬂ) . (3.34)
Pin 'ui,n i,n
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Proof We write (1, = i n, Pn = Pins 'n = Fins Yo = Vi, and z, = z; ,. We refer to the

proof of Theorem 1 in [30]. We first note that

n
Mn / A [ (up)rdr
0

n
2
n

ﬂ { _ /571
" (‘—"ZH) 71}
" i (r + &> dr

Vn

'n—pn
[ ()
2 Jo 2

'n
/ Moty f(up)rdr
P

and

n

2

So it suffices to show that

L2
in

ﬂ"
1 r”:lp" m z,+ 2+all-nn{(zln2+]) _]}
7/ iz <Zn +1) e 4y 21 <r+’0l)dr
0

2 2 ,u,% Vn

o 1 )
=2— +o| ——%

-8, 2=,

Mn A (Mn A

form =1, 2. To prove (3.35), we first claim

Vn

Lz R {(22 “)ﬁn*l} p
= 7/ < L 1) e i i (r + —") dr.
0

m + 2 + ﬁn{ a4 P 1}

1 5 Zn % oy (”:‘2 ) —

In::7/ (Zn2+1) e Aug 2uy (}’—’—&)d}’
0

(3.35)

(3.36)

form = 1,2 where s, > 0 is chosen as in the proof of Lemma 3.7. In fact, using the equation
in (2.8) and noting z, = O (log (8 + r2)) on [0, s,] by (2.6), (3.9), (3.21) and (3.29), we get

1 Sn 1 3 2 m—1
1,,:—7/ {1+0<L2+r>)}
2 Jo My
i
/
X{(r—i—pn><z/+ di +W,;>]dr,
” 2B,
n M

for m = 1, 2. Here, we estimate by (2.6), our choice of (s,) and (3.4) that

Sn / 1
Il.n5:/ {(r—l-&)z/} dr=—4+o0|——p-|,
0 Vn mn "

and by (3.9) that

1 ' 20 1
Ly = fﬂ/ {(r—}—&)(b/} dr = 2;3,; +0< 2—}3)’
" J0 Yn Mn M "
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and further, from (3.30), that

Sn / 1
I3 p ::/ {(ﬁ—i—r)w,/l} dr=o0 = |-
0 Vn mn "

Moreover we assert

/
snlog (8 + r2 " / 1
/ % <r+&> Z/+ iﬁ +w,/l dr =0 Tﬁ .
0 M Vn tn " tn "

Indeed, if B, > 1, we have 2 " - =21log (8 + %) — 0 uniformly on [0, s,] by (3.25)
and then, using the previous three formulas for I ,, I, and I3, above we easily get the
assertion. On the other hand, if B, < 1, we get by integrating by parts and (2.6), (3.9), (3.21)
and (3.30) that

/
Snlog (8 + r2 n !
f M <r+&) 7+ iﬂ + | ¢ dr
0 na Vn u2hn

1 2
= F 10g (8 + Sn) (Il,n + IZ,n + I3,n)

n

Sno D Pn —4r 1
_/0 m(”ﬁ) ((8+r2)2+0(u,%ﬂ"(l-i—r)))dr}
(%)
0 T

by the three formulas for I; ,, I, and I3, above and a direct calculation. This proves the
assertion. As a consequence, we get

1 1
I, = —E(ll,n +hat+3n)+o (,uz_ﬁ") ’
n

This shows the claim. Next we claim that

i

2 Pn
'n—Pn m oz, 4+ tapu n o4 —1
Yn Z (I") T2 n 2,2
J" :=/ ( —= 1) e H rdr
Sn

( 1 )
=0\ ——5
P

for m = 1, 2. For the proof, it suffices to consider the case m = 1 since an < Jnl. Hence
let us show (3.37) for m = 1. To this end, we first set a sequence (c¢,) C (0, 1] so that
cn = lifn € Nsatisfies 8, > 1 and ¢, := B, otherwise. Then, we define a value ¢, > 0 by
lim,_, 5 ¢, = c4. Furthermore, we fix a small constant n > 0 so that c,oe — (¢4 +1)/2 > 0.
Noting (3.17) we may assume

zn(r) < (1 - Zﬁ*:ﬁj> z(r) (3.38)
Hn

(3.37)
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forall v € [sy,, (rn — pn)/vn]. After this, we puta, := 1 — (¢« + n)/(Z;Ln ﬂ”) In addition,

we have that
ZIG I T ()
ZM% 2,u%

for any r € [s,, (rn — pn)/¥n]- This is clearly obtained by noting z,,/(2/¢,%) +1€[0,1]in
the case B, > 1 and by using the mean value theorem if 8, € (0, 1). It follows that

r o ﬂ { }3”
n—pfn nt +otu (—Z" +l> -1
n z Zn a 2 n 2.2
Jl = / < 4+ 1> e i rdr
Sn

n 2
2u5
— 2
n—pn o Z
1+ —% g, + S
- vn ( an +1 e( 2/&*/%) " a2 rdr (339)
- J 2
Sn n
'n—Pn acy a% Zz
7 a,z <1+ - )a z+
5/ ﬂ (2"2 +1>e AT
Sn 123

by (3.38). Here we note that anz(r)/(Zuﬁ) + 1 > 0 if and only if

ui
r<.8lem —1|)=:R,.
1

Then itis clear by (3.38) that R, > (r, — pn)/Vx. On the other hand since lim inf,,_, o 5,67 >
0, it follows from (3.4) that there exists a sequence (M) C (0, oo) such that M,, — oo and

n >\ M, Mﬁfﬂ " for all n € N. Then from (3.39) we compute with changing the variable by

T = —a,z(r) and putting §,, := —a,z(s,) and R, := —a,z(R,) that
R 1+ le ) An +
J, S/ (anzz + 1) e( )T g
Sn 2”’"

2 .
Ry 17_’_(#_]_ acp )T
/ ( >e4“'21 B 2 ™) e
22

Here notice that 5, = 4logs, + O(1) by (3.25) and R, = 2;/% from the definition. Again
changing the variable by

, T N 1 | acy
= M —_— —_
2pp " 2ay 2#57&

and setting

- R 1 oc
Ry, = - +un | 77— 1 - zjﬂ
2pp 2ay 2 P

and

Sn N 1 1 ac,
Sn = tn | 5= = 1= ;
" 2w, T\ 2a, 2P
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we get

4u
1
J) < u 5
an exp [uz (2# —1- fffﬁn) }
Hon (3.40)
Rl r 1
x/ —f+——a2;f .
Sn MUn 2ay, 2un Pn
Now we calculate by (3.25) and our choices of (M,,) and n that
4 Ru ¢
P il 5 / Lolar
2 1 ey 50 Mn
an ©Xp | My \ 24, — 1— 22
! (3.41)
1
=0 <u;‘;*ﬁ" exp {— (c*a bt +o(1)> uﬁD +0 <—
2 M,
— 0,
as n — oo. Similarly, we get
_ 4u Ry,
An::,uﬁ Bn 1 > /§ e’ dt
dn €Xp |:/“L% (20;1 T zljg—nﬁn> j| (342)

-0

asn — oo. In fact, noting s, = —(1+0(1))u,/2+ O(1) by (3.25) and Ry, = (14+0(1)un/2

we decompose

An = Al,n + A2,n

where

2

_ 4p
Ay = p2 b - 2 / e dr.
{(It1=1n /4}
ap exp [M% <231n - - Z:%C—nﬂn> }
and
4
A2,n = M%iﬂn a 2 / 5 et2dt'
. [5n, R IN{1t1 =20 /4}
1 n
A €Xp |:H% <m —-1- 2:3(*;‘5") :|
Since
/’(’37/3" ,LL 5
- PR Lu/16
Atn =0 <e(1+o(1>)u%/4 2 ¢ ) ’
we easily get A1, — 0. On the other hand, since
4 t
Ay < 2 ol -4 f ) LN
b 1 acy [Sn, RuIN{[t1> 20 /4} Hen
An eXp M}’L E - l - 2#2_5"
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we get A , — 0 similarly to the calculation above. Consequently, using (3.41) and (3.42) for
(3.40), we get J! = o(u, *P). This proves our claim (3.37). Then by (3.36) and (3.37),
we readily obtain (3.35). This finishes the proof. O

We also get the following.
Lemma 3.9 Supposei > 1 and (2.2)—(2.5) and further, ifi # 1, let B« < 3/2. Then we have

Pi,n 1
Kin A f (i p)rdr = o - |- (3.43)
T M ﬁn

i—1,n in
and
Pi,n ]
/ A‘nuj,nf(ui’n)rdr =0 Tﬁn . (344)
Yi—1l,n 'ui,n

Proof By the first assertion in Lemma 3.2 and (3.4), we get (pjn — ri—1.2)/Vin =
o(ui_f_ﬂ”)). It folows that

2 Bn
Zin Pn Zi,n
1 [0 g m Zin+—5+auy {( 5 +l> 71}
*/ 2y +1) e i 2w r+ b dr
2 fifl,yr_ﬁﬂm 2“% Vn
( 1
o\ )
H’i,n
for m =1, 2. This proves (3.43) and (3.44). We finish the proof. ]

We get the proof of Proposition 3.1.

Proof of Proposition 3.1 (1.4) follows from (2.1), (3.34) and (3.44). (1.5) is proved by (3.33)
and (3.43). This finishes the proof. O

We end this section by proving the next key lemma.

Proposition 3.10 We assume i > 1 and (2.2)—(2.5). Moreover, suppose By < 3/2 ifi > 1.
Then we get

1

log

. )\nrizn
lim — =, (3.45)
n—o0o n
H’i,n
and
M i urinluj , (rin)l = 2. (3.46)
n—oo

Proof We denote (, = Wi n, Pn = Pins n = Fins Yn = Vi, and z, = z; , as usual. To
deduce (3.45), we first claim that there exists a constant C > 0 such that

Bn
knrr%ﬂie(5+0(l))un <C

for all n € N. In fact, (3.17) implies that for any r € [1, (r, — pn)/Vul,

o) < (1 - W) ().
Mn
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if n € Nislarge enough. Choosing r = (r, — pn)/vn, we get by the first and second assertions
in Lemma 2.5 that

1 Bn
0<ul— (1 - w> log 22, r2pZe e’ 4 (1),
n

This implies that there exists a constant C > 0 such that

Pn -
log )\nr2ﬂrzle(5+0(1))ﬂn <C

n

for all large n € N. This proves the claim. It follows that

0g Anr2
lim inf —22% > §. (3.47)
n—00 Mgn
Next, we shall show
1
. )L,,r2
lim sup T" <. (3.48)
n— 00 Mnn

To do this, we use the first formula in Lemma 2.2 to obtain

24,
= log n
Yn
2 Bn
fnn Znt By +au5"{( ‘"”2+1> 71}
X/ Vi ( an + 1) e Ay 2uy <r + &) dr
0 24ty Vi (3.49)
'n—Pn 2;21 Bn in 1 b 1
[ (e
0 24y,
1
X (r + &> log dr
2D

Here, we observe that for any value Ry > 1,

m—pPn

2 5n
n n in _
fiyn ( Zn 1) ezn+4M’2, +afdy (T}L% +l> 1
0

1
X (r + &> log ——dr
)

Ry 1
< / e*rlog —dr + o(1)
0 r

where o(1) — 0 as n — oo. Then, since we can choose Ry > 1 so large that

fORO e*rlog %dr < 0, the second term of the right hand side of (3.49) is negative value
for all large n € N. Hence using this and (3.33) for (3.49), we get

o 1
2“5 = (2 - 2%:;” +o ( =B, )) logZ)Lnr,%ann(Mn)'
Mn MUn
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It follows that

log
—2 < 5 1 o(1).
"
This proves (3.48). Then (3.47) and (3.48) show (3.45). Finally we shall ensure (3.46). For
any r € (p,, n), multiplying the equation in (2.1) by r and integrating by parts over (o, ),
we get

_rnu;1(rn) = )Ln/ ' Sfup)rdr.

n

Hence we obtain from (3.33) that
Hm g ul, (ry)| = 2.
n—00

This gives (3.46). We complete the proof. O

4 Behavior of non-concentrating parts

In this section we mainly discuss the behavior of a sequence (u; ,) which does not blow up.
This is useful to deduce precise informations on the weak limit. Especially, Lemmas 4.6 and
4.7 will be important for the proof in the case of (ii) of Theorems 1.5 and 1.6. We begin with
the next basic lemma. Let ;g be the Nehari manifold defined in Sect. 1.1.

Lemma 4.1 Forany Ag € (0, A1) and By € (0, 2), we have a constant K > 0 such that
f |Vul?dx > K
B

forallu € Ny g and all (1, B) € (0, Aol x [Bo, 2.

Proof The proof is standard. For the readers’ convenience we show the proof. First fix Ag €
(0, A1) and By € (0, 2) and assume A € (0, Ag] and B € [Bo, 2]. Next choose ¢ > 0 so
that (1 + e)Ag < Aj. Then for any p > 2, we can find a constant C; > 0 independently
of B € [Bo, 2] such that |12+’ | < (1 + &)r2 + C11Pe1+9” for all + € R. Then the
Holder, Poincare, Sobolev, and Trudinger—Moser (1.2) inequalities suggest that there exists
a constant C» > 0, which is independent of B € [Sy, 2], such that

1 1
2 2
/ uzeu2+a|u\ﬁdx <a +8)f wldx +Cy </ |u|2pdx> (/ 62(1+a)u2dx>
B B B B

1+¢ 2 »
< Wl + Callulfy
forallu € H}(B) with ||u||§11(3) <47 /(2(1 4+ )). Hence, it follows that
0
(1+¢)Ag 2
/ _ v rého _ p
(AMWME<1 ) el = Mool
for any u € H(} (B) satisfying ||u||§11(3) <47/(2(1 + «)). Since 2 < p, we get a constant
0

C3 > 0, which is independent of A € (0, Ag] and B € [Bo, 2], such that (I, g(u), u) > 0
forall u € HOI(B) with ||u||H01(B) < Cs. Therefore u € N, g implies ||u||H01(B) > (3. This
finishes the proof. O
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From now on, as usual, letk € {0}UNand {(A,, 8,)} C (0, 00) x (0, 2) be a sequence such
that (A,, Bn) — (A« Bx) as n — oo for some value (L, B;) € [0, 0c0) x (0, 2). Moreover,
assume that (u,) is a sequence of solutions satisfying u, € S ,., for all n € N. In the
following lemmas, we always suppose

/ [Vu, |2dx uniformly bounded for all n € N, “4.1
B

if k # 0. All the other notations below are defined as in the main theorems. We get the
following.

Lemma 4.2 Assume (4.1). If p; » — 00 asn — oo for somei € {1,--- ,k + 1}, then we
have lim,_, oo pi.n = 0. On the other hand, iflim,_,  r; , = 0 for somei € {1, --- , k}, then
we get (L, — oo forall j =1,---,i. Finally, if A, = 0, then we obtain iy, — 00.

Proof First assume p; , — 0o as n — oo for some i € {1, ---,k + 1}. Then Lemma 2.1
implies that there exists a constant ¢ > 0 such that

2 2 2
Pinli, =€ / [Vun|“dx,
B

for all n € N. Hence, by our assumptions, we get p; , — 0 as n — oo. This shows the first
assertion. Next, we suppose r; , — 0 for some i € {1, -, k}. Then, assume there exists
anumber j € {1,---,i} such that u; , is uniformly bounded up to a subsequence on the
contrary. Then for any x € B, we put it} ,,(x) := u,(rj nx) if rj_1,/rjn < |x| < 1 and
iij n(x) := 0 otherwise. It follows that it ; ,, € N)\n’”%”sﬁn. Then since Aﬂin — 0, we get by
Lemma 4.1 that there exists a constant K > 0 such that

K < / AT E it jon fu (G jn)dx — 0,
B

since it j ,, is uniformly bounded. This is a contradiction. Hence we prove the second assertion.
Finally, assume A, = 0 and ptk+1,, is uniformly bounded up to a subsequence on the contrary.
Then for all x € B, we put Ugy1,,(x) = up(x) if g, < |x| < 1 and stg41,,(x) := 0
otherwise. Since itj+1,, € N, g, and A, = 0, we can apply Lemma 4.1 again and get a
constant K > 0 such that

K =< )\n/ Izk+l,nfn(lzk+l,n)dx -0
B

since Uk41,, 1s uniformly bounded. This is a contradiction. This ensures the last assertion.
We complete the proof. O

After this, weregard u,, = u,(|x|) and study the behavior of the function u,, () (r € [0, 1]).
Let us give the next three standard lemmas.

Lemma4.3 Suppose (4.1). Assume that there exists a numberi € {1, --- , k} such that ; ,
is uniformly bounded for all n € N. Then ;41 is also uniformly bounded. Furthermore,
there exist constants ri_y, , i, pi, and pjy1 such that 0 < ri_1 < p; < ri < pi+1 < 1,
Fi—lin = Vi—1, Fign — Ti, Pin — Pi and piy1., — pi+1 by extracting a subsequence if
necessary. Moreover, ri_1 = p; if and only if p; = Q.

Proof First, assume that ;41 , — 00 up to a subsequence on the contrary. Then the first
assertion in Lemma 4.2 suggests that r; , < p;+1,, — 0. Then the second assertion in the
same lemma implies u; , — oo which is a contradiction. This proves the first assertion
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in the present lemma. Next, we choose constants 0 < ri_1 < p; < ri < pi+1 < 1so0
that rj—1, — ri—1, ¥ijn = Fi, Pi.n — pi> and pjy1., — pi+1 by taking a subsequence if
necessary. We claim p; < r;. In fact, if p; = r; on the contrary, Lemma 2.2 shows that
_ /r,-,,, Jn(up) fn(l/Li,n)
1= An —
Pin Min Hin

max

o — 0
reo] (risn = Pin)

1
rlog —
,

r'
rlog Lar < An
r

— 0.

This is a contradiction. Next we show r; < p;+1. Otherwise, we get 0 < r; = p;+1. Then
again Lemma 2.2 implies

Pi+1,n
1=/ A Sn(un)
Yin

Mi+1,n
— 0,

fn(Mi+l,n)
Mi+1,n

2 2
Pi+1n Pivin —Tin
log
ri,,, 2

r log Ldr < An
Tin

which is a contradiction. Next we ensure p;+1 < 1. If not, wehave 1 > rj41 , > pit1,0 — 1
and then analogously, we get

. 2 2
Titln u ri r: T — p:
1 =/ A fn( n) rlog t+1,ndr -0 (log i+Ln "i+1,n z+1,n) 0.
. r
Pi+1,n

Hi+1.n Pi+1.n 2
This is a contradiction. Finally, we suppose r;—1 = p; > 0 on the contrary. Then similarly,
we see that

. 2 2
Pi,n . p; —r
1 :/ An Jn(up) rlog r dr = 0 (log Pin Fin i—1,n 0.
Ficln Min Ti—1,n Ti—1,n 2
This is a contradiction. This completes the proof. O
Lemma 4.4 Assume (4.1). Suppose that for some i € {1, --- , k + 1}, there exist constants

mi = 0, ric1 < pi < ri < 1suchthat win — Wi, pin — pi, and rj, — r; for
Jj =i —1,i. Then we have a nontrivial function w; in (ri—1, r;) such that u; , /[t n — W;
in Clzoc((ri,l, ri)). Furthermore, if ri_1 < p; (which yields i # 1), then we get ri_1 > O.
Finally, p; = 0 implies lim;_, oo w; (r) = 1.

Proof We may suppose u; , > 0. Put w; , := u; n/pi n. Then it satisfies

MHinWin
Wi (i) = 0= w} , (pin) Win(pin) =1, 4.2)
wip(ri—1p) =0ifi # 1.

/" 1.7
—w wi’n

in ” = }\nwi,n , 0< Win =< lin (rifl,ny ri,n)v

Notice that A, w; , fr (i n Wi n) /(i n Wi p) is uniformly boundedin (r; —1 5, ri ). Then using
the equation and conditions in (4.2), we clearly get a function w; > 0 such that w; , — wj;
in Cfoc((ri_l, ri)). Now, let us assume r;_; < p;. We may suppose i # 1. Then we have
pi € (ri—1, r;) and thus, we obviously see w; (p;) = 1. It follows that r;_; > 0. Otherwise,

Lemma 2.2 shows that

Pi R Pi YR
</ A*wiwrdr + 0(1)) +/ A*wiwrlogrdr
0 0

i Wi Hiwi

1 =1log
Yi—1,n

4+ o(1)

where we defined f,(¢)/t = 1if t = 0. Since A, # 0 by Lemma 4.2, f(¢)/t > 1 for any
t > 0 and w; (> 0) is nontrivial on (0, p;), we get that the right hand side of the formula
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above diverges to infinity. This is a contradiction. This proves the second assertion of the
lemma. Finally, let us suppose 0 = p; = r;—1. Then we claim that there exists a constant
C > 0 such that

lwi , (M| = C (4.3)

forall r € [p;n,1in] and all n € N. To see this, for any r € [p; », i n], we multiply the
equation in (4.2) by r and integrate over [p; ,, r] and get

2 2
re — p;
—rwj ,(r) =0 (2) : (4.4)

forallr € [p; n, ri n]. This readily proves the claim. Then we confirm that lim,_, oo w; (r) =
1. If not, we have a sequence (o,) C (0, r;) and a constant &g € (0, 1] such that o,, — 0
and w;(0,) — 1 — &9 as n — oo. Then we can choose a sequence (6,,) C (0 n, ¥i.n) SO
that 6, — 0 and w; ,(6,) — 1 — g by selecting a suitable subsequence. Consequently, it
follows from the mean value theorem that there exists a sequence (6,) C (p;.n, 6,) such that
0, — 0and

wi,n(&n) - wi,n(pi,n)
—

w/. o0,) =
n n) &n — Pin
This contradicts (4.3). This finishes the proof. ]
Lemma 4.5 We suppose (4.1). Assume that for some i € {1,--- ,k}, there exists a value

wi > Osuchthat w; , — ;. Then by extracting a subsequence, we have a constant ju; 1 > 0
such that i1, —> Wi+1 and im0 (Wit1,n/ i) € (0, 00). Especially, u; > 0 (= 0)
vields pi+1 > 0 (= 0 respectively).

Proof We assume u; > 0. Put w; , :=u;,/mj, for j =i,i + 1. Note that, Lemmas 4.2
and 4.3 imply A, # 0 and there exist values ;11 > Oand ri—1 < p; < ri < pi+1 < Fit+l
such that 41, = miy1,rjn —> rjforj=i—1,i,i+1landp;, — p;forj=ii+1
up to a subsequence. Moreover, by Lemma 4.4, there exist continuous functions w; > 0 in
[oi, i) and w;41 < 0in (r;, ri41) suchthatw; , — w; in C]Z()C((rj_l, rj))and |w;(p;)| =1
for j = i,i + 1. Then as usual, multiplying the equation for u,, by r and integrating over
(0i.ns Pit+1,n), WE get

Tin g Jn(Un) ri Le(piwi)
Mi+1,n fpi,n An Win rdr fpi A Wi i w; rdr
Wi =" Pi+1.n A Jn(un) d - Pi+1 A Se(Wiviwigr) d € (O’ 00)7
b Tin el ffi A Wik 1wy, 74T

since fy(t)/t > 1 for any t > O where we again defined f,(¢)/t = 1 for t = 0. This
completes the former assertion. Then the latter one is clearly confirmed. This ends the proof.
]

Finally, we prove the next two important lemmas.

Lemma4.6 Suppose (4.1). Let k > 1 and choose N € {1, --- , k}. Assume that jun , — 00
and the formula (3.45) holds fori = N. Moreover, suppose there exists a constant Ly 1 > 0
such that im, oo UN+1.n = UN+1. Then we get A, # 0 and, taking a subsequence if
necessary, we have lim, oo pN+1,0 = 0, limy, oo ("N n/PN+1.n) = O, and further,

2 fn(ﬂN-&-l,n) 1 1 2
ST Jog —

. 4.5)
N+1,n I'N.,n A
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and

lim P]z\/+1,nfn(l/~N+l,n) _ 3 4.6)
n—00 rN,nu/N’n(rN,n) )\*. '

Proof Without losing the generality we may assume u 41, > 0. From Lemma 4.2, we get
Asx # 0. Then (3.45) with i = N and our assumption py , — oo imply ry , — 0. Then
Lemmas 4.3 and 4.4 yield py+1,,» — 0. Moreover, we claim ry ,/pn+1,,» — 0. In fact,
using Lemma 2.2, we get

2 2

PN+1,n u r P —r

! =/ . Sn(un) rlog dr <7, Sn(UN+1.0) log PN+1n PN+tn ~ "N
N MN+1,n YN.n MN+1,n YN.n 2

This formulaimplieslog (on+1,./7n,n) — ©0. This shows the claim. Now, let us deduce (4.5)
and (4.6). To this end, we put 7, := ry.n/pN+1.n and Wy () := UN+1.0(ON+1.07)/ UN+1.0
for all r € [r,, 1]. Then again using the equation in (2.1) with the conditions w,(1) = 1,
W, (1) = 0 and previous claims, we find a function wg such that W, — W in Clzoc((O, 1D
and get

~ 1 A ~ N .
{—w({(r) — L) =0, 0 < g < 1, W = 0in (0, 1), @

wo(1) = 1, (1) =0.

We readily compute that o = 1. Finally, we use Lemma 2.2 to see

PN+1.n r
MUN+1,n :/ fn(un)r 10g dr
r

Non FN.n
PN+1,n ! fn(//LN+l,nli)n)
'Non J#, Jn(UN+1.0)

(/’LN+1,nwn)

1
Ju

+ P2y o fuliin 1.)/
nPN+1,nJn +ln 7, W (UN+1.0)

= )\np12v+1,nfn(HN+l,n)]0g rdr

rlogrdr

Since fu(UN+1.0Wn)/ fu(N+1.0) — 1 on (0, 1), the Lebesque convergence theorem and
previous claims give

MN+1,n
PN+1.n

012\;+1,nfn (1N+1,0) log ==

=M 4o
—2 o .

This proves (4.5). On the other hand, multiplying the equation in (2.1) withi = N + 1 by r
and integrating over (ry ,, PN+1,n), WE S€€

, PN+1,n
IN Uy (PN ) = / An fu(up)rdr
FN.n
U fa (w1 )
= hnR e i 10) / Joliniintn) ;.
i n(UN+1,n)
Hence similarly we obtain (4.6). This finishes the proof. O

By the previous lemma, we deduce the following.
Lemma 4.7 Suppose as in the previous lemma. In addition, we assume that (3.46) withi = N
is true. Then we get
1=Fn
Bn Bs—1 1
) =2 B §Px, 4.8)

lim ©Un+1,n <1Og
n—o00 rN,n

@ Springer



66 Page 38 of 54 D. Naimen

and

/3*718
, 1 28— _ 4
nlglgo N1 (UN41.0)P PN+1,n

- . (4.9)
Pl

Proof Noting A, # 0 by the previous lemma, we combine (4.6) together with (3.46) and
(3.45) fori = N and get

2
3 Yo(l) = pN+1’nfn(lLN+l,n)lLN,n
As 2+o(1)
1
P faliangia) (2log (L +o())\ 7
- 2+0(1) 5+ o(1)
Then it holds that
P12v+1,nfn(MN+l,n)
N B (4.10)
- {2 B 6 A2 +o(1)} log .
IN.n
Substituting this into (4.5), we obtain
1—L
2 1 oL Lo 1 Pn
o) = [2 B 875 A +o(1)] log .
Ax KN+1,n T'N.n

It follows that

1—Bn
“Pn Bs=l 1L
UN+1,n <log ) =2 F §B +o(l).
I'N.n

This proves (4.8). Using this and (4.10), we get

Bi—1
1 2(Bu—1) 1 45725
Fa(unsr)Ptp = ———+o(l)].
L NALe ™ v \ a8

This shows (4.9). We finish the proof. m}

5 Proof of main theorems

Let us complete the proof of main theorems. We shall first show Theorems 1.5 and 1.6. Then
Theorem 1.1 will readily follow from them. We begin with the proof of Theorem 1.5.

Proof of Theorem 1.5 We first note that the standard argument shows that the weak limit uq
of (uy) is aradially symmetric smooth solution of (1.1) with (A, 8) = (A, B4). In particular,
writing ug = uo(|x|), we have that uy(r) (r € [0, 1]) satisfies

—uy — %ué) = As fx(u0) in (0, 1) and u(0) = 0 = ug(1). (5.1)

We begin with the case max,¢[o,1] [un(r)] — oo. Set N := max{i = 1,--- ,k +
1 | (#i.n) is unbounded}. Suppose N = k + 1. Then we have puyy; — oo asn — o0
by extracting a subsequence if necessary. We shall confirm all the assertions in the case of
(i). By Lemma 4.2, we get px+1,, — Oand u; , — ooforalli =1, .-, k + 1. Especially,
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the assumption (2.2) is satisfied for i = 1. As a consequence, Propositions 2.4, 3.1 and 3.10
hold true for i = 1. It follows that all of the assumptions (2.2)—(2.5) are verified for i = 2.
Consequently, the assertions in Propositions 2.4, 3.1 and 3.10 are true for i = 2. Repeating
the same argument, we ensure all the assertions in Propositions 2.4, 3.1 and 3.10 for any
i =1,---,k+1.This completes the former assertions in (i). Finally, by (3.45) withi = k+1
and the facts that ry41, = 1 and pg41,, — 00, we get A, = 0. This yields that ugp = 0
by (5.1). Moreover, Lemma 2.1 implies that u, is locally uniformly bounded in (0, 1]. Then
using the equation for u,, as usual, it is easy to show that u#, — 01in Clzoc((O, 1) up to a
subsequence. This finishes the case of (i).

Next we assume N < k1. Then similarly to the previous argument, we get pn , — 0 and
win — ooforalli =1,---, N uptoasubsequence. Then, analogously, we have that all the
assertions in Propositions 2.4, 3.1 and 3.10 are true for alli = 1, - - - , N. On the other hand,
by the definition of N, foreachi = N + 1, --- , k + 1, there exists a value i; > 0 such that
Win — W up to a subsequence. Then from Lemma 4.3, we get numbers 0 <ry < py41 <
INg1 < - < Pp+1 <Tk41 = 11N <kand 0 <ry < py+1 <7ry4+1 = 1 if N =k such
thatr; , — r; foralli = N,--- ,k+1land p;, - p; foralli = N+ 1,--- ,k+ 1by
taking a subsequence again if necessary. Moreover, from Lemmas 4.6, we get A, # 0, and
rn = pN+1 = 0. Furthermore, a usual argument shows that u, |,y , 1] = uo in Clzoc((O, 1]
and lim,-_>0+o(—l)Nuo(r) = un+1 by Lemma 4.4. It follows that

1 1
/ u;l(r)zrdr = / M fn(up)uyrdr
IN.n 'N.n (5.2)

1 1
— / s fo(ug)uordr :/ u6(r)2rdr
0 0

by (5.1). This proves the former part of (ii).

Now, we assume puy+1 > 0. Then noting (5.1) and Lemmas 4.4 and 4.5, we get that
uo(ri) = 0, (=1 "tug > 0 on [r;_1, ri], uf(p;) = 0 and (=)' lug(p;) = p; > 0 for
alli = N+ 1,---,k + 1. Moreover, by (5.1), we readily see (=)~ 'u; > 0o0n (ri_y, ri)
foralli = N + 1, ---, k + 1. This completes the case of (a). Next we suppose un+1 = 0.
By Lemma 4.5, it is obvious that ug = 0. Put w,, = unlry ,,11/UN+1,2 O0 [FN 4. 1]. By
Lemma 4.5 again, foreveryi = N + 1,...,k + 1, we have a constant ,u;‘ > 0 such that
MaXye(r_y prin] Wn(") = Win/MUN+1,n — ;Ll’f up to a subsequence. In particular, w, is
uniformly bounded in [ry ,, 1]. Then, by the standard argument and Lemma 4.4, we get a
continuous function wyq in [0, 1] such that w,, — wy in Clzoc((O, 1]) and

1 .
—wy — ;w’o = Aywp in (0, 1),

(=DNwp(0) = 1, wo(r;) =0,
(=Di7twg > 0on (ri_1, ) (=N +1,---  k+1).

Using the equation and the condition (— DN wg(0) = 1, we obtain wo(r) = (— DN Jo(/AsF)
in [0, 1] where Jj is the first kind Bessel function of order zero defined in Sect. 1.3. Moreover,
since wq has just (k — N) interior zero points in (0, 1) and wo(1) = 0, we get that /A,
coincides with the (k — N + 1)—th zero point of Jy on (0, 00), i.e., v/Ax = ty_+1. It follows
that wg = (—1)N<pk_N+1 and A, = Ag_n+1. This completes the case of (ii).

Finally, if u,, is uniformly bounded in [0, 1], repeating the similar (and simpler) argument
based on Lemmas 4.2-4.5 as above, we can confirm all the assertions in (iii). This finishes
the proof. O

Next we prove Theorem 1.6.
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Proof of Theorem 1.6 We first assume that &k > 0, (8,) C (0, 1], and py, — oo. Then we
claim that for every i = 2,--- ,k + 1, p; , is bounded uniformly for all n € N. To see
this, we shall show that > , is uniformly bounded. Otherwise, we get u2, — 00 up to
a subsequence. Then arguing as in the previous proof, we ensure that all the assumptions
(2.2)—(2.5) are satisfied for i = 2. Then we get (2.14) and (3.2) for i = 2 by Lemmas 2.6
and 3.3 respectively. Butif 8, < 1foralln € N, (2.14) and (3.2) with i = 2 yield that x> ,
is uniformly bounded. This contradicts (2.2). Consequently, Lemma 4.3 proves the claim.

Now, we assume that (i) of Theorem 1.5 occurs. Then the first conclusion follows by the
previous claim. Moreover, if k € N U {0}, arguing as in the previous proof again, we get that
all the assertions in Lemma 3.3 and Proposition 3.10 hold true forany i = 1,--- ,k 4+ 1. It
follows from (3.45) with i = k + 1 that (1.6) holds true. Then if k£ > 1, it follows from (3.3)
that

(6 + o(1)) A (log %) Q

=38+ o(l).
(Ba—1)
“’k,n
This gives (1.7) with i = k after an easy calculation. Then we get (1.7) foralli =1, --- , k
by induction. In fact, we assume (1.7) is true for some i = j € {2, --- , k}. Then using (3.3)

withi = j, we similarly get

1
2B (Br—DF I H! T Bn(Bu—DF—THT T
<8 = +o()) ™M™ (log %) P B~
n

ﬁn_l
Hi_1n

=35+ o(1).
It follows that
log ;- 2 (Bu— KT H2
im —— % — 2P
0 -y = '
j—1n

This is (1.7) with i = j — 1. This shows the desired conclusion. Moreover, since (3.45) and

(3.46) with i = k + 1 imply
1
log ﬁ Bn
Mk+1,n = m s

el g , (D] =2+ o(1)

and

respectively, combining these two formulas, we get (1.8). Next assume £ > 1 and i =
1, .-+, k. Noting the first conclusion, we may assume B, > 1 for all n € N. Then by (1.7),
we have that
log - log ;- it
Mn An ’uﬁn{(ﬁn 9] 1} =0

Bn ﬂn(ﬂn_])k—[Jrl ,n
Hin i

sincel <k—i+1<kand1 < B, < 2. Using this and (3.45), we obtain
log -

Tin

B
'ui,n

1) D=
54‘0()—
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Therefore, it follows from (1.7) that

. (Ba— D!
S (By—1k—it1 (]og ril,n> 2By (Bu— k=i T
5 +o) = 1 s T +o()).
log T
Using this formula, we readily get (1.9). It follows that
(Ba—D}! .
log ri (log r,li,,) 1 1—(By— Dk
rl,n — . ; <log —) — 00 (5.3)
log E log Tn Fin

as n — oo. Then we get by (3.46), (3.45) and (5.3) that,

IOgl'/‘;,n(ri,n” = log —log uin + O(1)

Yin
I 1 log 5
zlog——ﬂ—loglog — —log 1_|_10g | +0()

Tin n Tin Bn

~
9|

1
= log — (1 +o(1))
Tin
o
log /\L (Bn—1F=T1
= X 272(5*,|)k7i+1 (1 + 0(1))
20D ST o)
by (1.9). This proves (1.10). Next, forany i = 2, --- , k + 1, from (3.2) and the definition of
Yin, We get

log (87718 + o(1)) = (By — Du?,, (1 + 0(1)) + By log i

5.4
~2(By — 1) log —
nn
where we noted
1
log s, 877 1
n< - -0

2 ﬂn 2_/3n

I'Liv" 'u’i,n /’Li,n

as n — oo by (3.45). Now, we suppose k > 2 and i = 2, - -- , k. Then we have by (1.7) that

)

log pin (1+ o(1)) loglog -
2 2 :
(Bn — 1)/»0,",, BB — h—it2 IOSﬁ B B —)k—F1
naEn §C—BxBx—DF 1) /2= Br) 1 o(1)

Since i < k+ 1, we get (log i »)/((Bn — 1)'“1'2,n) — 0. Therefore, we obtain from (5.4) and
(1.7) that

1 log

X 2
8(2_/3*(ﬁ*_1)kﬂ+])/(2_.3*) + 0(1) Bn(Bn—DF—T+1 1
= 7 log
log ™ Pi,n
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This proves (1.11). On the other hand, if k > 1 andi = k + 1, we use (1.6) and see
2
log i1, (8+o(1)P loglog =
( _ 1)#«2 - % .
Bn ke B (B, — 1) (lOg i)ﬂ

Hence if there exists a constant L > 0 such that

log log ﬁ
2
(Br =1 (log )"
we get from (5.4) and (1.6) that

:L’

2

a+o(1)>"’"log

log ﬁ

) 2log 1
1+8%L+o(l) = — " =2

/’Lk-‘rl,n Pk+1,n

This ensures (1.13). On the other hand, if

log log i

(8 — 1) (10g L) o

we necessarily have 8, = 1 and then, by (5.4) and (1.6), we get

1 1
1 + 0(1) — 2(ﬁn - 1)10g Pk+1,n — Z(ﬁn B 1)10g Pk+1,n
B 10g pki1.n (1+ o(1)) loglog -

This proves (1.14). This completes the case of (i).

Next we assume that (ii) of Theorem 1.5 happens. Then, since py+1, is uniformly
bounded and ry , — 0, we have B, < 1 by (4.8) in Lemma 4.7. Then, the first claim above
completes the first assertion in the case of (ii). Let us suppose py+1 > 0 and complete the
case of (a). Again by (4.7), we see B, = 1. We shall prove (1.15)—(1.20). Multiplying the

equation in (2.1) with i = N + 1 by r and integrating over (ON+1,n, 'N+1.2), WE get

'N+1,n

PN+1ally g, (1) = —/ An fu(un1,0)rdr.

PN+1,n

Then recalling the assertions in (ii) of Theorem 1.5, we ensure (1.18). Moreover, noting
Bs = 1, we get by (4.9) that

This gives (1.19). Next we see by (4.8) that

1\ 2
(log ) — ZENHL Lo, (5.5)
IN.n o

Then we use (3.45) withi = N and (5.5) to obtain

Bn—1
Bn 2
) = % +o(1).

uh =1+ o(1) (log

I'N.,n
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This gives (1.15) withi = N.Thenif N > 2, (1.15)istrue foralli = 1, --- , N by induction.
Indeed, assuming (1.15) is true for some i = j € {2,---, N}, we use (3.3) withi = j to see

Wl = (2 4o uy
j—Lln o Jon:
This and the assumption suggest

(Ba—1)N It 2#«N+1

11_1
R (R

This shows (1.15) with i = j — 1. This finishes (1.15). This and (3.45) show

1\ B DN Buhu DN+ _ 2N
<10g ) = (L+o(M)u; 5™ +o(1)
Tin ’ o

+o(D).

foralli = 1,---, N. This proves (1.16). Moreover, forany i = 1, --- , N, we get by (3.46)
and (3.45) that

1 lo
log [u]., (i )| = log — (1 — —=EE2 4 (1) log—(1+o(1))
Tin lo o Tin

where we noted

B
log i n i log wi.n
= a0
10g ﬁ /’Li,n
by (3.45). Then it follows from (1.16) that
L, — 1)V —i+] ZMN 1
(log [, (1)) P VL (1 4 0(1)).

This proves (1.17). In particular, (1.15) clearly shows that 2y /o > 1 (€ (0, 1)) yields
By > 1 (< 1 respectively) for all n € N. On the other hand, 8, > 1 (=1, < 1) for all
n € Nsuggests 2uyy1/a > 1 (= 1, < 1 respectively). Finally, suppose 1 < N < k and
2un+1/a > 1. Then we have B, > 1 for all n € N by the first claim above. Then, for any
i=2,...,N,weuse (3.2) and the definition of y; , to deduce

2(8,—1
Wi fa (i )Pt pr oD = +o<1).

It follows that

2
. 1 .
log — = 2o (4 OBH 4oy 41y ) (5.6)
Pi,n 2 /’Li,n(lgn -1
Here note that (1.15) implies
logpin log Cun+1/a + o(1)) o

W2, Bu = 1) (Bu — DNTH2Qpuy 41 for + 0(1))/ Br= DN
since 2un+1/a > 1. Consequently, (5.6) and (1.15) ensure

[\ BV 2f 1)V~ 2t \2
(10g . ) _I’Ltn” (1+0(1)) = <7> +0(1)
Pi,n o

This gives (1.20). This completes the case of (a).
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Lastly, if uy+1 = 0, Lemma 4.5 shows u; =0foralli = N+ 1,---, k 4+ 1. Moreover,
(4.8) confirms that 8, < 1 for all n € N since ry , — 0. This completes the case of (b).
This finishes the proof. O

Let us complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Assume max,_ oo |ty (x)| — 00. Then writing u,, = u,(|x|), the func-
tionu, (r) (r € [0, 1]) verifies (i) or (ii) of Theorem 1.5. If (i) occurs and 8,, > 1 foralln € N,
the assertions in (i) of Theorem 1.5 completes (i) of Theorem 1.1. On the other hand, if (i)
of Theorem 1.5 happens and 8, < 1 for all n € N, by the first conclusion in Theorems 1.6,
we get k = 0. This shows (ii) of Theorem 1.1. Next, we suppose (ii) of Theorem 1.5 occurs.
Then if B, > 1 for all n € N, we have that (a) of Theorem 1.6 occurs and thus, B, = 1.
Moreover, the second assertion below (1.19) ensures (—1)V uy(0) > « /2. This implies (iii)
of Theorem 1.1 occurs. If 8, = 1 for all n € N, then the first conclusion in the case of (ii) of
Theorem 1.6 implies N = 1. Furthermore, again the second assertion below (1.19) proves
—up(0) = /2. This is (iv) of Theorem 1.1. Lastly, if 8, < 1 for all n € N, similarly we
get N = 1. Moreover, we have two cases. The first case is ug 7# 0. Since this case corre-
sponds to (a) of Theorems 1.5 and 1.6, we have uo(0) # 0 and g, 1 1. In addition, we get
—up(0) € (0, «/2] by the second assertion below (1.19). This confirms (v) of Theorem 1.1.
The second case is ug = 0. This implies that (b) of Theorems 1.5 and 1.6 occurs. Hence we
have A, = Ay from the final assertion of (b) of Theorem 1.5 since N = 1. This shows that
(vi) occurs. Finally, if u, is uniformly bounded, we get (iii) of Theorem 1.5. This completes
(vii) of Theorem 1.1. This finishes the proof. ]

Corollary 1.2 immediately follows from Theorem 1.1.

Proof of Corollary 1.2 We assume that there exist such sequences of values {(A,, 8,)} C
(0, 00) x (0, 1] and nodal radial solutions (u,) on the contrary. Then, in view of the fact that
An — 0 and B, < 1forall n € N, we have that (ii) of Theorem 1.1 occurs. But then we get
k = 0 which is a contradiction. This finishes the proof. O

Next, we shall prove Corollary 1.3. We recall Lemma 2.1 in [20] with slight generalization.

Lemma 5.1 Assume k € NU {0}, {(Ay, Bn)} C (0, A1) x (0,2), and (A, Br) — (Mg, Bs) €
(0, Ay) x (0, 2). Then we have

limsup ¢k 5,8, < 2k + co,,, 8. »
n—00

where the number cy ;. g is defined as in Sect. 1.1.

Proof Noting A, # 0 and B, > 0, we can repeat the completely same argument with the
proof of Lemma 2.1 in [20]. This ensures the proof. O

Using this, we give the proof.

Proof of Corollary 1.3 We first assume that the first conclusion does not hold. Then we have
sequences of positive values (A, ), natural numbers (k,) and nodal radial solutions (u,) such
that A, — Oasn — 00, u, € Sk, 1,8, Un(0) > 0, and fB |Vun|2dx is uniformly bounded
for all n € N. Then, we claim that, up to a suitable subsequence, there exists a number
k € N such that u,, € S ;,,p for all n € N. Otherwise, we get k, — 00 as n — o00. Then
choose numbers 0 = rg,, < 11, < -+ < Fgg1,n = L sothat u,(x) = 01if |x| = r;,
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and (=) u, (x) > 0if Fi—in < |x] < riyforali =1,---,k+ 1. Moreover, for all
i =1,---,k+ 1, define a function u; , € Ny, g by u; , = Unl{ri_y u<lx|<ri ) With zero
extension to whole B. Then since A, — 0, Lemma 4.1 implies that there exists a constant
K > 0 such that

k+1

/ |Vu,|*dx = Z/ |Vuinl*dx > (ky + DK
B i1 /B

for all n € N. Since the right hand side diverges to infinity, we get a contradiction. This
proves the claim. But, then the existence of such sequence (u,) contradicts Corollary 1.2
since B < 1. This proves the first assertion. Next we suppose the latter conclusion fails on
the contrary. Then there exists a number £ € N and sequences of positive values (A,) and
solutions (u,) such that A, — 0, u, € Sy, g, and I, g(u,) = cx ,,p foralln € N. In
addition, for any k € N and A € (0, Ay), it holds that ¢k 5 g < 27wk + co., 5 < 27w (k + 1).
In fact, the first inequality is obtained by just choosing A, = A and B, = B foralln € Nin
Lemma 5.1 and the second one comes from the fact that cq; g < 27 by [2]. In particular,
we get Iy, g(u,) < 2m(k + 1) for all n € N. Consequently, the standard argument shows
that (u,) is bounded in H(; (B). But this is again impossible in view of Corollary 1.2 since
B < 1. This completes the proof. O

Finally we prove Corollary 1.8.

Proof of Corollary 1.8 Assume as in the corollary. We write u,, = u,(|x|) (x € B) and
consider the function u, (r) (r € [0, 1]). Then we get all the assertions in (i) of Theorems 1.5
and 1.6. It follows from (1.6) that

log i

o (1= %) +o)

Mk+1,n =

Moreover, if k > 1, we also have by (1.7) (or (2.15)) that ptk+1,/iti.n — 0asn — oo for

alli =1, ---, k. Then from Theorem 1.5, we derive
1 k+1 Fin
/ W () 2rdr = Z/ u) ,(r)rdr =2(k + 1) — ‘;7’3; —I—o( 215 )
0 i=1""i-ln Wic1n Wit
) 2-py
abs By (1 _ %) P |
=2k+1)— b +o 2 Bn

(log %ﬂ) K (log %”) P

This finishes the proof.

6 Counterparts

In this final section, we discuss the counterparts of our classification result, Theorem 1.1.
In the following, we suppose k € {0} U N. Then we first remark that for any sequences
(X)) € (0, Ay) and (B,) C (1,2) ((0,2) if k = 0) of values, there exists a sequence (i)
of radial solutions which satisfies the assumptions in the theorem. To see this, for any such
sequences (A,) and (B,), we define the sequence (u,) of solutions so that u,, € S 3,5, and
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1,8, (Un) = ck a,,p, foralln € N where ¢ 3, g is the number defined in Sect. 1.1. This choice
is possible by [2] and [7]. Consequently, since Iy, g, (i) < 27k + co 3,6, < 27w (k + 1)
for any n € N, which is proved in the same papers, a standard argument shows that (u,) is
bounded in HOl (B). Hence (uj) satisfies all the assumptions in the theorem.

Then we can immediately show some easy examples with this sequence (u,,). Indeed, let
us suppose (A, Bn) — (hy, Bx) for (Mg, Bs) € [0, A1) x (0,2) if & = 0 and (A, By) €
[0, A1) x [1,3/2) if kK > 1. Then, it follows from Theorem 1.1 thatif A, =0 and g8, > 1
(Bn < 1) forall n € N, then (u,) behaves as in (i) ((ii) respectively) of the theorem. On the
other hand, if k = 0and A, # 0,0ork > 1, 1, % 0, and B, > 1, then (u,) behaves as in (vii)
with ug # 0.

We shall find more examples for (iii) and (vii). To this end, recalling Sp .1 # @ if and
only if A € (0, A1) ([2]), we define

A" :=inf{A € (0, A1) | u(0) < a/2 forany u € Sp .1 with I, 1 (u) = co1.1
if A € (A, AD)}.

It follows that A* € (0, A1). (See Lemma 6.8 below.) On the other hand, noting the nonex-
istence result by [8], we define

Ay = 1Inf{A > 0| S1, a1 # O} (= sup{A > 0| Sx,a,1 = ¥ forany k € N}),

and get A, > 0. Moreover, our necessary condition on the weak limit in (iii) of Theorem 1.1
allows to see A, < A™* as follows.

Corollary 6.1 Assume {(A,, Bn)} C (0, A1) x (1,2) and let (u,) be a sequence of solu-
tions such that u, € Si,.8, and I, g,(un) = ci,,p, for all n € N. Moreover, suppose
s Br) = (A, Bx) € (0, A1) x {1} and |[u(0)| < «/2 for all u € Spj,1 with
I, 1(uw) = co.,.1 (Which is verified if L. € (A*, Ay1)). Then (u,) behaves as in (vii) of
Theorem 1.1 with ug # 0. In particular, there exists at least one pair of solutions u™ € Sl
suchthatu=(0) <0 < ut(0), u™ = —u=, and I 1 (u*) < 2w +co 1. p, forall . € (A*, Ay)
and thus, it holds that 0 < A, < A* < Aj.

Remark 6.2 The latter assertion is not covered by Theorem 1.3 in [7] since the nonlinearity
f@) = t5°+1 does not satisfy (2) of Theorem 1.2 there.

Then we can give the next result. Notice that by the previous corollary and the argument
in the first paragraph of this section, we ensure the existence of a sequence satisfying each
assumption of (a)-(d) below.

Proposition 6.3 Lerk € {0} UN and {(A,,, Bn)} C (0, A1) x (0, 2) and suppose (A, Bn) —
(A, Bx) € (0, A1] x (0, 2). Moreover, we assume (uy) is a sequence of solutions such that
Up € Sk, B, and fB |Vu,,|2dx is uniformly bounded for all n € N. Then we have the next
assertion.

(a) Let Ay = A1. Then, if k = 0, (vii) of Theorem 1.1 occurs with ug = 0. Moreover, assume
By > 1foralln € N. Then ifk > 1 and B, € (1,3/2), ork = 1 and B, = 1, we have
that (u,) behaves as in (vii) with ug # 0.

Moreover, we assume k > 1, B, > 1 foralln € N, B, = 1 and A, € (0, Ay). Then we get
the following.

(b) If Sc.p,1 =9 forall 1 <k <k, (which is satisfied if A, € (0, Ay),) then (u,) behaves
as in (iii) of Theorem 1.1 with N = k.
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In addition, we suppose 1, g, (un) = ck »,,p, for any n € N. Then we obtain the following.

(c) For any Ay € [Ay, A1), there exists a natural number ky, such that if k > k;,, (u,)
behaves as in (iii) of Theorem 1.1 with some natural numberk —k), < N < k. Moreover,
we have k, > 2 if A, > A*.

(d) Assume that any solution u € So,,1 with I, 1(u) = co,,,1 satisfies lu(0)| < a/2
(which is verified if .« € (A*, A1)). Then if k > 2 and (iii) of Theorem 1.1 holds true,
then N # k. In particular, for any Ay € (A*, A1), chossing the number k;, > 2 from
(c) above, we get that for all k > k; ,, (u,) behaves as in (iii) of Theorem 1.1 with some
number k — k), < N < k.

From the conclusion in (a), we get an additional existence result for A = A as follows.

Corollary 6.4 Let B € [1,3/2). Then forany k € Nif 8 > 1 and fork = 1 if 8 = 1, there
exists at least one pair of solutions u,j:ﬁ € Sk,A,,p Such that u;ﬁ(O) <0< u,jﬂ(O), u;rﬁ =

—uk_ﬁ and IAl,ﬂ(uki’ﬁ) < 2mk. Moreover, choosing a suitable sequence (B,) C (1,3/2)
such that B, — 1, we have that (utﬁ”) behaves as in (vii) of Theorem 1.1 with uy # 0 and

there exists a natural number ky, > 2, such that if k > kp,, (u,jﬂn) behaves as in (iii) of
Theorem 1.1 withk —kp, < N < k.

The behavior in (b) of Proposition 6.3 has already been observed in [20] for low energy
nodal radial solutions. Our present work gives new information by Theorem 1.6 without
imposing the low energy characterization. Moreover, notice that our necessary condition in
(iii) of Theorem 1.1 suggests that such behavior (i.e., (iii) with k = N) can happen only if
0 < Ay < A and A, is not too closed to A (by Lemma 6.8 below). On the other hand, in
view of (v) of Theorem 1.1, a similar phenomenon seems possibly to occur also in the case
of B, 1 1. Interestingly, the corresponding necessary condition has the inequality opposite
to that in the case of g8, | 1. It leads us to expect the following.

Conjecture 6.5 Let (Ay, By) € (A*, A1) x {1}. Then there exist sequences of values (1,) C
(0, Ay) and (By) C (0, 1) and solutions (uy) such that (A,, Bn) — (A, Bx), un € S11,,8,
foralln € N, and (u,) behaves as in (v) of Theorem 1.1.

Remark 6.6 Similar behavior would also occur in the general bounded domain case.

Remark 6.7 We also expect that there exist sequences of concentrating solutions which behave
asin (iv) withk = 1 and 0 < A, < Aj and (vi) with k = 1, A, = Ay, and B, € (0, 1]
respectively. The corresponding phenomena on the Brezis-Nirenberg problem are observed
in [24] and [25].

We also remark on the final assertions in (d) of Proposition 6.3 and in Corollary 6.4. Since
0 < N < k, these assertions prove the existence of a concentrating sequence of solutions
which weakly converges to a sign-changing solution of (1.1). We emphasize that this conclu-
sion holds true when A, < A is sufficiently closed to A . This phenomenon is new in view
of the previous works, [20] and [19], where the authors observed a concentrating sequence of
solutions which weakly converges to a sign-definite solution of (1.1) with sufficiently small
A > 0. We naturally expect that we can choose k;, = 2 for any A, € (A*, Aq].

We finally conjecture that more counterparts of (iii)-(vi) would exist in the case L, > A
and B, < 1.Our necessary condition on the weak limit will be useful to detect such sequences
of solutions.

@ Springer



66 Page 48 of 54 D. Naimen

6.1 Proofs

Let us prove the results above. We first put a basic lemma. Recall that max, g |u(x)| = |u(0)]
forany u € So ;. g and all (A, B) € (0, A1) x (0, 2) by [17].

Lemma 6.8 Fix any B € (0,2). Then, for any constants M > ¢ > 0, there exist values
0 < A <A < Ay such that if o € (0, 1), then [u(0)| > M for any u € So g, and if
A€ (A, A1), then |u(0)| < e forallu € Sp ;. p-

Proof 1If the former assertion fails, there exists a constant M > 0 and sequences (A,) C
(0, A1) and (u,) such that A, — 0, u, € So,,p and 0 < u,(0) < M for all n € N. This
is impossible since by Theorem 1.1, we get that A, — 0 yields u,(0) — oc0. On the other
hand, if the latter conclusion does not hold, there exists a constant &g > 0 and sequences
(An) C (0, Ay) and (u,,) such that A, — Ay, u, € Soz,,p and u,(0) > &g for any n € N.
This is again impossible since by Theorem 1.1 and the fact that Sp 5, 5 = ¥, we get that
An — Ap implies u, — 0 in C2(§). This finishes the proof. O

We show Corollary 6.1.

Proof of Corollary 6.1 Assume as in the corollary. Then we claim that (,) behaves as in (vii)
of Theorem 1.1. If not, since A, # 0, (iii) would happen for N = 1 and then, by Lemma 5.1,
the weak limit ug of (u,) would verify ug € So,x,.1, Ir,,1(10) = co,x,,1 and |ug(0)| > o /2.
This contradicts our choice of .. This proves the claim. Then, since A, < Aj, the weak
limit ug of (u,) is nontrivial. This ensures the former conclusion. Moreover notice that by
Lemma 5.1, we get I, 1 (uo) < 2m +cp,5,,1- Then, since there exists a sequence of solutions
(uy,) verifying the assumption of this corollary for any A, € (A*, A) by the argument in the
first paragraph of this section, the latter conclusion clearly follows. This finishes the proof. O

In order to prove (d) of Proposition 6.3, we use Lemma 6.11 below which ensures the
nonexistence of low energy solutions with many nods. To show the lemma, we refer to the
argument in [27] and obtain the a priori lower estimate of the energy of elements in S ; 1.
We apply the next lemma. (See Corollary 5.2 on p346 in [23] or Lemma 3 in [27].) In the
following we let a, b € R be constants such thata < b.

Lemma 6.9 Let q(t) be a continuous function on [a, b). Let v(t) # 0 be a solution of the
equation:

V' +q()v=0, t€la,b]

Assume that v(t) has exactly k zeros in (a, b]. Then we have

1

1 b 2
k < 3 ((b —a)/ q+(t)dt> +1

where g™ (t) = max{q(t), 0}.
Using this, we prove the next lemma.

Lemma 6.10 Assume k € N, k > 2 and . > A,. Then there exists a number L = L()) > 0
which depends on A and is independent of k such that

/ IVul?dx > L(k —2)> — 1
B

forany u € Si 5 1.
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Proof Fix A > A, and suppose k > 2. For any u € Sk, with u(0) > 0, we write
u = u(|x|) and define a number r,» € (0, 1) so that there exists a value r,,1 € (0,r,2)
such that u(r,;) = Ofori = 1,2 and u(r) > O forall r € [0,7,,1) and u(r) < O for all
r € (ry,1,74,2). Then we claim that

r = inf inf ru2 > 0.
k>2 ueSy ;.1,u(0)>0

Assume that r, = 0 on the contrary. Then for any ¢ € (0, 1), we can choose k; > 2 and
a nodal radial solution u, € Sk, 1 with uz(0) > 0 such that r,, » € (0, ¢). Here we fix
e € (0, 1) so small that 821 € (0, A,) and define v, (x) := ug(ry, 21x]) (x € B). Then we
getve € 8 2 2l This is impossible by the definition of A. Hence we ensure the claim.

Choose any u e Sk.,1 with #(0) > 0 and regard u = u(|x|). Then we perform the Liouville
transformation r = 1/(1 — logt), v(r) = ru(t) for t € (r, 2, 1]. It follows that

1
V' +gr)v=0, re|—mm—, 1
1 —logryn
where

q(r) _ t2 (10g §)4 )\.f(u(t)) — e]—l/r)’

wy

and f(u) = ue"’+elul Notice that v has exactly k — 1 zeros in (1/(1 —logry2), 1]. Then
noting f(1)/t < e!'+% 4 12¢""+l!l for any t € R, we apply Lemma 6.9 and get

k—1

1

1
1 ) qrydr | +1
1- logru 2 T=Togr, » logr 2
) 3
10 A t
1 ) Aww) N\
1 — logru 2 ruz (1 - logt)2 u(t)
5 (

1 2
— (1 ) log ) ( Ale! T 4 u(t)f(u(t)))tdt) +1
2 1 — log I w2
1

ﬁ<1+/B|Vu|2dx) +1

for some constant L = L(X) > 0. This completes the proof. O

| —

1

IA

Then we can prove the next key lemma.

Lemma 6.11 For any A € [Ay, A1], there exists a natural number k) such that for any
k > kj, there exists no radial nodal solution u € S 1 satisfying I 1(u) < 2wk + co,»,1-

Proof Assume A € [Ax, A1], k € Nand u € Sy 1 satisfies Iy 1(u) < 2wk + cox,1. We
claim that there exists a constant M = M (A) > 0 which depends only on X and independent
of k and u such that

/ IVul’dx < 4wk +1) + M. 6.1)
B
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To see this, choose u as above and put f(r) = te’’ 1 and F@t) = fot f(s)ds. Then an
elementary calculation shows that for any ¢ > 0, there exists a constant z. > 0 such that
ef(t)t — F(t) > 0 for any [t| > t.. (See formula (2.3) in [12]). We choose ¢ € (0, 1/2) so
small that 2wk +co,3,1)/(1/2 — €) < 4m (k 4 1). This choice is possible since cp ;1 < 27
([2]). Then there exists a constant C, > 0 which is independent of k and u such that

2k +co1 = I gu) — 8(1){,,3(14), u)

> (% - g> / [Vul?dx + x/ (e f(u)u — F(u))dx
B

BN{u<t:}

1
> <f—e>/ [Vul?dx — AC,.
2 B

This proves (6.1) by putting M = AC./(1/2 — €). Then take a constant L = L()1) > 0 from
the previous lemma. Choose a natural number ky>2sothat L(k—2)2—1 > 4x(k+1)+M
for all k > l;)\. As a consequence, it follows from the previous lemma and (6.1) that k > Ig,x
and u € Sy 5,1 yield I 1 (u) > 2wk + g 3,1. This finishes the proof. O

Let us complete the proof of Proposition 6.3.

Proof of Proposition 6.3 Assume as in the proposition. First suppose A, = Aj. Thenifk = 0,
since A, # Oand Sp 5, = ¥, we clearly have that (vii) of Theorem 1.1 occurs with ug = 0.
In addition, assume B, > 1 for all n € N and suppose k > 1 and B8, € (1,3/2) ork = 1
and B, = 1. Then in the former case, noting B8, > 1 and on the other hand, in the latter
case, using So a,,1 = ¥, we see that (u,) does not blow up and thus, (u,) behaves as in
(vii) with ug # 0 since 0 < Ay = A < Ag41 in both cases. This completes (a). Next
suppose k > 1, A, € (0, A1), B, > 1 foralln € N and B, = 1. Then, since A, # 0, (up)
behaves as in (iii) or (vii) of Theorem 1.1. Hence, if we additionally suppose Si.x,.1 = @
for all 0 < x < k, the only possibility is (iii) with N = k to happen. This completes (b).
Finally, suppose 1, g, (un) = ci,z,.p, foralln € N. Set A, € [A4, Ay) and k > k;, where
k. is chosen from Lemma 6.11. It follows that (u,,) behaves as in (iii) with a natural number
k —k;, < N < k. Otherwise, there would be integers 0 < N <k —k;_, k =k — N and an
element up € S 3,.1 such that

L, g, (up) = 2N + L, 1(uo) < 2k + co 54,1

by Lemma 5.1. This implies 7, 1(uo) < 2wk + co,3,,1. Since k > kj,, this is impossible
by Lemma 6.11. This proves the former conclusion of (c). Then noting the first conclusion
of Corollary 6.1, we get the latter one. Lastly let us show (d). Set A, as in the assumption.
Suppose k > 2 and (u,,) behaves as in (iii). If N = k on the contrary, then by Lemma 5.1, the
weak limit uq of (u,) satisfies ug € So .1, Ir,,1 (o) = co,x,,1 and |up(0)| > «/2. This is
a contradiction. Hence we get N # k. This proves the first assertion. Especially, combining
(c) with the previous conclusion, we obviously get the final conclusion. This completes the
proof. O

Finally, we complete the proof of Corollary 6.4.

Proof of Corollary 6.4 Fix B € [1,3/2). Note that the first assertion in (a) of the previous
proposition implies ¢ 3, g — 0if A, T Aj. Then, wesetk = 1if B = land k > 1if
B > 1 and choose sequences (A,) C (0, Ay) and (u,) so that A, t Ay, u, € Sk, and
L, p(uy) < 2wk + co,3,,p for all n € N. This choice is valid by the argument in the first
paragraph of this section and Corollary 6.1. Then from the latter assertion in (a) of the previous
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proposition, we have a solution ug € Sk a,,p such that I, g(u,) — Ix, g(ug) < 2mk. This
proves the former conclusion. The latter assertion is clear by noting So A,,1 = @, choosing
kp, from Lemma 6.11 and arguing as in the proof of Corollary 6.1 and (d) of Proposition 6.3.

This finishes the proof. O
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1 Proof of Lemma 2.5

In this appendix we show the proof of Lemma 2.5.

Proof of Lemma 2.5 Without loss of the generality we may assume u; , > 0. First we claim
thatr; ,,/yi n» — oo. If not, we have a constant C > O such thatr; ,/y; , < C foralln € N.
Then putting v, (r) = u; (i nr) forr € [ri—1,n /i, 11, we get from (2.1) that

_v'/; - %vlg = )‘Vlriz,nfn(vn)a (_l)iill}n >0 in (r,-,l’n, ri,n),
v (1) =0= v;,(pi,n/r,‘,n),
vy (Ficin/rin) =0ifi > 2.

Then the above equation implies

_v”_lv/<)\_r.2f(u-)—L Fisn 2<72_)0

" r" T M TR 2':ui,n Yi,n - 2,bLi,n '
uniformly on [r;—1,,/7i ., 1]. It follows that v, — O uniformly in [r;—1,/7i ., 1]. This
contradicts our assumption (2.2). This proves the claim. In particular, we get y; , — 0. Next,
we claim p; ,/ri , — 0. Thisis trivial fori = 1. Hence we assume i > 2. Define v, as above.
It follows from our assumption (2.3) and Lemma 2.1 that there exist constants ¢, C > 0 such

that
1 2
Ij,. .
CZ/ v(r)rdr>—l”2<'ol”>.
Ficin/Tin 2rc Tin

Then (2.2) shows the claim. In particular, we get p; , — O and (r; , — pi.n)/Vi.n — 00 by
the first claim. Next, by the definition of z; , and (2.8), we get that

0<—z" 1 " < lon |:ri—1,n —Pin Tin — pi,ni|

4 Z;
— ion Ln —
r—+ '3 = Yi.n Yi,n
nn

Then, for any r € r‘"y”;p’” r’"yﬂ] multiplying the equation by r +o0 Bin and integrating
in in

over (0, r) if r > 0 and over (r, 0) if r < O give

2 Pin

5 r
0<-z/,(r)< ——ifr >0, and
V
2 m': (1.1
0<7z (r)<—ﬂ1fr<0
— ~i,n — r+ptn
Yi,n
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Integrating this again, we get

s (12)
Pin

= 2
r2 Pin \ r 1 Pi,n Yi,n if .
4 + Yion 272 Yin 10g Pin > ifi = 27

Yi,n

for any r € [”‘1;77)‘”, r"’yj%] Then from (1.1) and (1.2), we get that z; , is uni-

formly bounded in Clloc((—l, 00)) (CIIOC([O, 00)) if I = 0). Furthermore, since (1.1) implies
|z;yn(r)/(r ~+ pi.n/Vin)l is locally uniformly bounded in (—/, 00) ([0, o0) if I = 0), using
the equation in (2.8), we get that z; , is uniformly bounded in Clzoc((—l, 0)) (Clzoc([O, 00))
if [ = 0). Then it follows from the Ascoli-Arzela theorem and the equation in (2.8) that
there exists a function z such that z; , — z in C2_((—1, 00)) (C2.((0, 00)) N CL ([0, 00))
if 1 =0).

Now our final aim is to show [ = m < oo. This is clear if i = 1. Hence after this we
assume i > 2. We first claim / < co. We suppose / = 0o on the contrary. Then m = oo. It
follows from (2.8) that z satisfies

—7"=e*inR,
z(0) =0 = Z/(0).

This implies z(r) = log ﬁr)z (r € R). Then by (2.3), there exits a constant C > 0 such
2r

4e
(1+e[
that

Tin
C > )»n/ Uy fn(un)rdr
P,

i,n

2 B B
Ti,n—Pi.n Zin “in ta Lﬁn Gino 1)

il TR W) (€75 i
=3 ;- tl)e r+ dr

2 Jo Wi n Yin

2 B B
Tin—Pin Zi “in +0l/J./.3” Zi,n +1) =1

1 Pi,n Yin Zin b 4;1,-21” in 2“1'2,n
> - e dr. (1.3)

2%in Jo 2“[,;1

Here the Fatou lemma implies

2

. B
b it +au?';{<;‘z’ +l) 1} %
.. Yi.n in i) ! i)
hmlnf/ +1]e o o dr 2/ etdr.

n—>o0o Jqg 2 /Liz.n 0

Since the right hand side of the inequality above is positive value and m = oo, we get that the
right hand side of (1.3) diverges to infinity which is a contradiction. This proves the claim.
Finally we show [ = m. Let us assume / < m on the contrary. Then we claim that there exists
a constant C > 0 such that

|2 ()| < Cforalln € Nand r € [uo] .
’ Yi.n
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In fact, if m = oo, the claim follows easily by the latter formula in (1.1). If m < oo, using
(1.1) again we get a constant C > 0 such that

uniformly for all » € [

0% a0 = L TTm

Fi—l.n—Pi.n

in

s O]. This proves the claim. On the other hand, by the mean

Yin

value theorem, we have a sequence (&) C (M, O) such that

Ticln—pi.
—aa ("520) 2,

Pin—ri—1.n = l+0(l)
Yin

Z,/',n(%_n) =

since [ € [0, co). This is a contradiction. We finish the proof.
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