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Abstract
The group Diff(M) of diffeomorphisms of a closed manifold M is naturally equipped with
various right-invariant Sobolev norms Ws,p . Recent work showed that for sufficiently weak
norms, the geodesic distance collapses completely (namely, when sp ≤ dimM and s < 1).
But when there is no collapse, what kind of metric space is obtained? In particular, does it
have a finite or infinite diameter? This is the question we study in this paper. We show that the
diameter is infinite for strong enough norms, when (s − 1)p ≥ dimM, and that for spheres
the diameter is finite when (s − 1)p < 1. In particular, this gives a full characterization of
the diameter of Diff(S1). In addition, we show that for Diffc(Rn), if the diameter is not zero,
it is infinite.
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1 Introduction andmain results

Right-invariant Sobolev metrics on diffeomorphism groups (or on subgroups thereof) arise
naturally in several contexts—they play a central role in mathematical shape analysis, appear
in symplectic geometry and their geodesic equations turn out to be related to several important
partial differential equations in hydrodynamics (some more details are given in Sect. 1.1
below).

The basic setting is the following (see Sect. 2 for details): The diffeomorphism group
Diff(M) of a compact manifoldM is a Lie group, whose associated Lie algebra is the space
of vector fields X(M). One can equip the diffeomorphism group with right-invariant Finsler
metrics, by considering norms on the Lie algebra X(M); in this article we will focus on
Sobolev norms Ws,p . For p = 2, these norms induce Riemannian metrics on the group
Diff(M); these are the most important metrics for hydrodynamics and shape analysis. The
corresponding geodesic distance between ϕ0, ϕ1 ∈ Diff(M) induced by this metric is then
given by the variational problem

dists,p(ϕ0, ϕ1) := inf
ϕ:[0,1]→Diffc(M)
ϕ(0)=ϕ0, ϕ(1)=ϕ1

∫ 1

0
‖∂tϕ ◦ ϕ−1‖Ws,p .

If the metric is weak enough, then this distance vanishes identically on every connected
component; this phenomenon was first shown by Michor and Mumford [47], and was then
analyzed in a series of works, culminating in a complete characterization in [32]. In this
article we study a finer property of the geodesic distance, namely, the diameter of (connected
components of) diffeomorphism groups with respect to the geodesic distance induced by
these metrics:

diams,p Diff(M) := sup
ϕ0,ϕ1∈Diff(M)

dists,p(ϕ0, ϕ1).

Our main result is the following characterization of boundedness/unboundedness of this
diameter:

Theorem 1.1 LetM be a compact manifold without boundary of dimension n ≥ 1. Then the
diameter of the connected component of the identity of the group of smooth diffeomorphisms
with respect to the right-invariant Ws,p-metric is

1. Zero when s ≤ n
p and s < 1, i.e., diams,p Diff(M) = 0;
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2. For M = Sn, bounded but non-zero for s ∈ ( np , 1 + 1
p ) ∪ [1, 1 + 1

p ), i.e.,
diams,p Diff(Sn) ∈ (0,∞);

3. Unbounded for s ≥ 1 + n
p , i.e., diams,p Diff(M) = ∞.

Here in Ws,p we denote by s the number of derivatives and by p the exponent. The
exact definition of these Sobolev norms, in particular for non-integer s, appears in Sect. 2.
As mentioned above, the first part of this theorem is known from recent previous results on
vanishing geodesic distance (see [32] and the references therein); the second and third parts
are the main contributions of this paper. More generally, we prove the second part of the
theorem for any closed manifold M that satisfies a certain uniform fragmentation property
(see Definition 4.4), which holds in particular for spheres.

Note that for M = S1 our theorem gives a complete characterization of boundedness
(unboundedness, resp.) of the diameter of Diff(S1), i.e., we have that diams,p Diff(S1) is
bounded for s < 1 + 1

p and unbounded otherwise. For higher dimensional spheres, there is

a gap in the range s ∈
[
1 + 1

p , 1 + n
p

)
, in which we do not know whether the diameter is

finite or not. We believe (as explained in Sect. 4.4), that the diameter is finite in this range,
that is, that the transition to infinite diameter happens at s = 1 + n

p .
If M is the non-compact space M = R

n , we prove that the diameter only exhibits two
different behaviors: it is either zero or unbounded. This leads to following complete charac-
terization:

Theorem 1.2 Let p ≥ 1. The diameter of diams,p Diffc(Rn) with respect to the right-
invariant Ws,p-metric is infinite if and only if s ≥ 1 or sp > n. In any other case the
diameter is zero.

HereDiffc(Rn) denotes the connected component of the identity of the group of compactly
supported diffeomorphisms. Again, the zero diameter part is due to previous work, and the
contribution of this paper is the infinite diameter part.

As described below, results on the boundedness/unboundedness of the diameter have
been studied for a long time in the context of metrics on symplectomorphisms and volume-
preserving diffeomorphisms. To the best of our knowledge, this work is the first to address
this question for the full diffeomorphism group, and to show a transition of zero to finite to
infinite diameter for a hierarchy of metrics.

1.1 Right-invariant Sobolevmetrics on diffeomorphism groups: where they arise

The interest in right-invariant metrics on diffeomorphism groups originates from Arnold’s
seminal observation [2] that Euler’s equation for themotion of an incompressible fluid admits
a geometric interpretation in this setup: it is the geodesic equation of the right-invariant L2-
metric on the group of all volume preserving diffeomorphisms (we will refer to this group
also as volumorphism group)1. Subsequent to Arnold’s geometric interpretations for Euler’s
equation similar formulations have been found for several other partial differential equations
that are of relevance in the field of mathematical physics; examples include

• the Camassa–Holm equation [18,40,49], which corresponds to the W 1,2-metric on
Diff(S1);

1 This is, by no means, an excessive survey.
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• the Hunter–Saxton equation [31,37,42,43], as the geodesic equation of the homoge-
neous W 1,2-metric on Diff(S1)/S1; and more generally the p-Hunter–Saxton equation,
the geodesic equation of the homogeneous W 1,p-metric on Diff(S1)/S1, as introduced
recently by Cotter et al. [20].

• the modified Constantin–Lax–Majda equation [11,19,25,62] corresponding to the homo-
geneous W 1/2,2-metric on the same space. See, e.g., [57] and the references therein
for further examples of Euler–Arnold equations, that are of relevance in mathematical
physics.

An additional motivation for the study of (higher order) right-invariant metrics on the full
diffeomorphism group stems from their central role in the field of mathematical shape analy-
sis, where differences between objects such as point clouds, images, surfaces, or densities are
encoded in the spirit of Grenander’s pattern analysis [27,28,51] by the cost of the minimal
(diffeomorphic) transformation that (approximately) transports a source shape to a target
shape. Using a right-invariant metric on the diffeomorphism group to measure the cost of
these diffeomorphic transformations yields the so-called LDDMM-setting [7,12,34,48,63],
which has proven successful in numerous applications in computational anatomy andmedical
imaging.

In yet another important line of research, right-invariant Sobolev metrics play a role in
symplectic and contact geometry, starting from the Hofer metric on Hamiltonian symplec-
tomorphisms [30], which is in this context a right-invariant W−1,∞ metric (which is also a
bi-invariant metric).

1.2 Previous results on the geometry induced by right-invariant Sobolevmetrics

The geodesic equations of right-invariant metrics, as they are related to many important par-
tial differential equations, have been studied extensively, starting from Ebin and Marsden
[21] who obtained local well-posedness and stability results for solutions to Euler’s equation
by studying the geodesic spray of the right-invariant L2-metric on volumorphisms. Sub-
sequently, local well-posedness results (and sometimes even global existence), have been
obtained, using analogous methods, for geodesic equations on the diffeomorphism group
as well [8,40,49,50,60]. See [16,39] for an overview on these results. Furthermore, Pre-
ston et al. [35,50] studied the curvature of the corresponding spaces and showed Fredholm
properties of the exponential map for both volumorphisms and diffeomorphism groups.

In addition to the geodesic equation itself, right-invariant Sobolev metrics enable us to
measure the lengths of curves, hence they give a structure of a length space on these diffeo-
morphism groups. A natural question is then—is this structure degenerate? That is, can the
distance between two distinct diffeomorphisms be zero (meaning that there are arbitrarily
short curves between them)? This is known as the vanishing geodesic distance phenomenon.
On the other hand, one can ask—can we find two diffeomorphisms that are arbitrarily far
away (i.e., the diameter is infinite)? This is the question we address in this paper. Note that
these questions are of importance when this geodesic distance is explicitly used, e.g., as the
regularization term in the LDDMM-setting.

The vanishing geodesic distance phenomenon was first shown for Hamiltonian symplec-
tomorphisms [23] under W−1,p metrics for p < ∞ (in contrast to the Hofer W−1,∞ metric,
which is non-degenerate). This was later extended to stronger metrics in [9]. Similar results
were later obtained for contactomorphisms [54]. In the context of the full diffeomorphism
group, the geodesic distance has been first investigated by Michor and Mumford in [47],
where they showed the degeneracy (vanishing) of the geodesic distance for the L2-metric
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and the non-degeneracy for metrics of order W 1,2 and above. These results have been later
generalized to fractional Ws,p-metrics and a complete characterization of vanishing (non-
vanishing) geodesic distance for this class of metrics has been obtained [5,6,9,32,33]. The
first part of Theorem 1.1 is essentially this characterization.

The diameter question was initiated by Shnirelman [55,56] who studied the diameter of
the volumorphism group Diffμ(M)with respect to the geodesic distance of the L2-metric. In
particular he showed the boundedness of the diameter for contractiblemanifolds of dimension
dimM ≥ 3, and conjectured the unboundedness in the two-dimensional case.2 ForM being
either a (two-dimensional) surface with boundary or a closed surface of genus g ≥ 2 this
conjecture has been shown to be true by Eliashberg and Ratiu [24] for any L p metric,
p ≥ 1. The case of the torus and the (significantly more complicated) case of S2 were
proved in [14], thus proving infinite diameter for any closed two dimensional surface with
respect to the L p metric. Eliashberg and Ratiu [24] also show that some higher dimensional
manifolds with non-trivial topology have infinite diameter for thismetric. So far, the analogue
of Shnirelman’s question regarding boundedness (unboundedness resp.) of the diameter of
the full diffeomorphism group, has not been investigated.

1.3 Main ideas in the proofs

Interestingly, the techniques used in this paper are completely orthogonal to the ones used
for studying the diameter of symplectomorphisms and volumorphisms, in the sense that all
our proofs, both of boundedness and unboundedness of diameter, rely on volume change.

For sufficiently strong metrics, such thatWs,p embeds inC1 (that is, when (s−1)p > n),
we show that we can bound from below the geodesic distance dists,p(Id, ϕ) of a diffeomor-
phism ϕ to the identity by the logarithm of the Jacobian determinant of ϕ at any point. In
particular, the distance from the identity to a diffeomorphismwith an arbitrarily large volume
change at a point is arbitrarily large. We call this the supercritical case.

The critical case is the one for which this embedding just fails, namelywhen (s−1)p = n.
Here we extend an idea of Lenells [42] to construct an isometry from a degenerate W 1,q -
type metric that sees only volume changes to the space of smooth functions onM, and from
this we obtain a lower bound for the diameter of this metric, which diverges with q . This
degenerate W 1,q -type metric is weaker, for any q < ∞, than our critical Ws,p metric, and
by using the bound above and controlling the Sobolev embedding constants, we obtain the
unboundedness of the diameter by letting q → ∞.

In the subcritical case, when (s −1)p < n, we aim to prove that the diameter is bounded,
at least for manifolds with nice fragmentation properties (see Sect. 4.3). In these cases the
question can be reduced to a local question on the diameter of the diffeomorphism group of
the Euclidean ball Diffc(B1(R

n)). We show, by a rescaling argument, that for (s − 1)p < n
the uniform boundedness of dists,p(Id, ϕ) for any ϕ ∈ Diffc(B1(R

n)) is equivalent to the
uniform boundedness of dists,p(Id, ψλ) for a class of diffeomorphisms ψλ(x) ≈ λx , as
λ → ∞. That is, boundedness of the diameter of an arbitrary, radially symmetric change
of volume at a point implies the boundedness of the whole diffeomorphism group. We then
show that when (s − 1)p < 1, dists,p(Id, ψλ) is indeed bounded, and give an indication of
the fact that arbitrary changes of volume should be of bounded cost for the whole subcritical
case (s − 1)p < n.

2 To be exact, Shnirelman proved the boundedness of the diameter of Diffμ(M) when M is the three-
dimensional cube, but his proof can be modified to show the result for contractible manifolds of dimension
dimM ≥ 3, 0 see, e.g., [3,38].
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1.4 Some open questions

• As mentioned, for spheres we have a gap in the range s ∈
[
1 + 1

p , 1 + n
p

)
; in order to

bridge it and prove the boundedness of diameter in this range, we need to find a better
way to transport the identity to the family of diffeomorphisms ψλ mentioned above.

• We do not knowwhether for other closedmanifolds, that do not satisfy our fragmentation
assumption, the diameter of Diff(M) is finite or not in the subcritical case. That is, are
there closed manifolds for which the diameter is either zero or infinity?

• Another open line of work is to extend the analysis to Ws,p metrics on volumorphisms
and symplectomorphisms, in particular for negative values of s. There it is not known
what is the critical case belowwhich the geodesic distance vanishes (it is known to vanish
for s ≤ −1+ 1

p and to not vanish for s ≥ 0, see [9]). Also, to the best of our knowledge,
it is not known if a similar phenomenon as seen here for Diff(Sn), namely a transition
zero→finite→infinite diameter, can occur for symplectomorphisms/volumorphisms on
closed manifolds.

• More generally, it would be interesting to better understand the connections between
the metric questions (vanishing geodesic distance, boundedness of diameter) to other
geometric properties (having a smooth geodesic spray, Fredholm properties, etc.).

The structure of this paper In Sect. 2 we define the (fractional order) Sobolev norms we are
considering in this paper, discuss some of their embedding properties, and define the right-
invariant metrics they induce on the diffeomorphism group. In Sect. 3 we discuss the one
dimensional case, namely, the full characterization of boundedness/unboundedness of the
diameter for Diff(S1); this case already includes most of the key ingredients that are used in
the higher dimensional case, which is the content of Sect. 4, in which we complete the proof
of Theorem 1.1. Finally, in Sect. 5, we discuss the case of Diffc(Rn) and prove Theorem 1.2.

2 Right-invariantWs,p-norms on diffeomorphism groups

Let N be a finite dimensional manifold. We are interested in the connected component of
the identity of the group Diffc(N) of all compactly supported, smooth diffeomorphisms on
N, where N is either a closed manifold, the Euclidean space R

n or the n-dimensional ball
Br (Rn) of radius r in R

n . In the following, by a slight abuse of notation, we will denote the
connected component of the identity by Diffc(N) as well.

For N = M a closed manifold the requirement of a compact support is redundant, and
we will simply write Diff(M). The following classical result, see e.g., [4], summarizes the
group and manifold structure of this infinite dimensional space:

Theorem 2.1 The space of smooth, compactly supported diffeomorphismsDiffc(N) is a sim-
ple, Fréchet Lie-group whose Lie-algebra is the set of compactly supported vector fields
Xc(N) = C∞

c (N, TN).

WhenN is compact, then Diffc(N) = Diff(N) is a Fréchet manifold and hence a Fréchet
Lie-group [44]; in the non-compact case, this is no longer true but Diffc(N) can be modeled
on an (LF)-space or a convenient vector space [41, Sect. 43]. This subtlety will not be relevant
for the subsequent analysis.

In Sect. 3 we will be in addition interested in the homogeneous space of all smooth
diffeomorphisms of the circle S1 modulo translations, which we will identify with the set of
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all diffeomorpisms that fix the point 0 ∈ S1, i.e.,

Diff(S1)/S1 ∼ {ϕ ∈ Diff(S1) : ϕ(0) = 0
}
,

where we identified the circle S1 with the interval [0, 1].

2.1 Fractional order Sobolev spaces onR
n

To introduce the class of right-invariant Ws,p-norms on the diffeomorphism group we will
start by introducing the fractional order Sobolev spaces Ws,p(Rn) for real valued functions
on R

n . There are several constructions of fractional order Sobolev spaces, which typically
coincide in the important Hilbert case p = 2. Here we will use the Gagliardo-seminorm (also
known as Slobodeckij seminorm) approach, resulting in the so called Sobolev–Slobodeckij
spaces.

Let p ∈ (1,∞). For a function f : R
n → R

d and s = k + σ with k ∈ N and σ ∈ (0, 1)
we define the homogeneous Ẇ s,p-norm using the Gagliardo-seminorm via

‖ f ‖Ẇ s,p =
(∫∫

Rn×Rn

|Dk f (x) − Dk f (y)|p
|x − y|n+σ p

dx dy

)1/p
, (2.1)

where Dk f denotes the k-th differential of f . We extend this definition to the fullWs,p-norm
by adding the L p-norm of the function, i.e.,

‖ f ‖Ws,p = ‖ f ‖Wk,p + ‖ f ‖Ẇ s,p . (2.2)

The fractional order Sobolev spaces Ws,p(Rn), as defined above, satisfy the Sobolev
embedding theorem, i.e., Ws,p(Rn) embeds in C0(Rn) iff sp > n (see, e.g., [13, Theo-
rem 3.7]). The following lemma deals with exact estimates for embeddings in Lq -spaces for
the critical case sp = n:

Lemma 2.2 Let p ∈ (1,∞). Then there exists C = C(p, n) such that for every f ∈
Wn/p,p(Rn),

‖ f ‖Lq (Rn) ≤ C‖ f ‖Wn/p,p(Rn)q
1− 1

p , ∀q ∈ [p,∞).

Proof For s = n/p being an integer see [45, Theorem 12.33]. When s is not an integer, then
the Gagliardo (Sobolev–Slobodeckij) spaces we consider here are equivalent to the Besov
spaces Bs

p,p(R
n), i.e., the interpolation space (L p(Rn),WN ,p(Rn)) s

N ,p for N > s (see e.g.,

[58, Section 2.5.1,Remark4], or [13,Theorem3.1].). The result for (L p(Rn),WN ,p(Rn)) s
N ,p

is the content of [52, Theorem 9.1], in which a more general statement is shown and where
the case treated here corresponds to p = r in the notation of [52]. 
�

Finally we state the behavior of the Ws,p-norm with respect to scalings:

Lemma 2.3 Let p ∈ (1,∞) and let λ ∈ R>0. For any f ∈ Ws,p(Rn) let f λ denote the
function

f λ(x) = 1

λ
f (λx).

We then have

‖ f λ‖Ẇ s,p = λ
(s−1)− n

p ‖ f ‖Ẇ s,p , ‖ f λ‖L p = λ
−1− n

p ‖ f ‖L p .

Proof This follows immediately by the chain rule and changing variables in the standard
Sobolev norm or the Gagliardo seminorm, depending on s. 
�
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2.2 Fractional order Sobolev norms on Riemannianmanifolds

We now introduce the corresponding space of real valued functionsWs,p(M) forM a (com-
pact) Riemannian manifold. Following [59, Sect. 7.2.1] let Bε(x) denote the ball of radius
ε with center x . We can then choose a finite cover of M by balls Bε(xα) with ε sufficiently
small, such that normal coordinates are defined in the ball Bε(x), and a partition of unity ρα ,
subordinated to this cover. Using this data we define the Ws,p-norm of a function f on M
via

‖ f ‖2Ws,p(M,g) =
∑
α

‖(ρα f ) ◦ expxα
‖2Ws,p(Rn)

Changing the cover or the partition of unity leads to equivalent norms, see [59, The-
orem 7.2.3] and thus this choice does not matter to us, as we are mainly interested in
boundedness (unboundedness, resp.) of the diameter, a property which remains invariant
under equivalent norms. For integer s and p = 2 we get norms which are equivalent to the
Sobolev norms treated in [22, Chapter 2]. The norms depend on the choice of the Riemannian
metric g, though again, different choices of metrics result in equivalent norms and thus are
immaterial to this paper. This dependence is worked out in detail in [22].

2.3 Right-invariant fractional order Sobolevmetrics on diffeomorphism groups

For vector fields we use the trivialization of the tangent bundle that is induced by the coor-
dinate charts and define the norm in each coordinate as above. This leads to a well-defined
Ws,p-norm (up to the equivalence discussed above) on the Lie algebra Xc(M) of (com-
pactly supported) vector fields on M. This norm can be extended in the usual way to a
right-invariant Finsler metric on the whole diffeomorphism group, i.e., for ϕ ∈ Diff(M) and
h ∈ Tϕ Diff(M),

Fs,p
ϕ (h) := ‖h ◦ ϕ−1‖Ws,p , (2.3)

where in the right-hand side the norm is the Ws,p norm on X(M). In the important case
p = 2 this norm is equivalent to the standard Hs norm that is induced from the inner product
〈., .〉Hs , and therefore we obtain a right-invariant Riemannian metric

Gs
ϕ(h, k) := 〈h ◦ ϕ−1, k ◦ ϕ−1〉Hs . (2.4)

This is mentioned here for the sake of completeness—the Riemannian structure will not
play a special role in this paper.

Equipping the diffeomorphism group with a Finsler metric gives rise to the corresponding
geodesic distance, which is defined in the usual way via

dists,p(ϕ0, ϕ1) := inf
ϕ

∫ 1

0
Fs,p

ϕ (∂tϕ)dt,

where the infimum is taken over all paths ϕ : [0, 1] → Diffc(M) with ϕ(0) = ϕ0 and
ϕ(1) = ϕ1. Using this we can define the diameter of the diffeomorphism group with respect
to the metric Fs,p to be

diams,p Diff(M) := sup
ϕ0,ϕ1∈Diff(M)

dists,p(ϕ0, ϕ1) = sup
ϕ∈Diff(M)

dists,p(id, ϕ). (2.5)

Here the second equality is due to the right invariance of the Finsler metric and thus of
the geodesic distance function. Note, that all these definitions remain valid if the compact
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manifold M is replaced by the non-compact space R
n or a connected open subset thereof

(with Diffc(Rn) and Xc(R
n) instead of Diff(M) and X(M)).

The study of the geodesic distance—and thus of the diameter—is closely related to the
study of the displacement energy [23], which in our context is defined as follows:

Definition 2.4 Given a manifoldM, the displacement energy of a set A ⊂ M with respect to
the Ws,p-metric is

Es,p(A) = inf
{
dists,p(Id, ϕ) : ϕ ∈ Diff(M), ϕ(A) ∩ A = ∅} .

In fact it turns out that the geodesic distance collapses if and only if there exists an open
set of zero displacement energy (see, e.g., [9,23,32,54]). This provides an important tool
for studying vanishing distance phenomena. One could hope for a similar relation between
bounded displacement energy and finite diameter, which is the geometric property that we
aim to study in this article. A result of this type, in general settings, appears in “Appendix C”,
however its assumptions are too restrictive for our applications to diffeomorphism groups
(see Lemma C.2). Nevertheless, we do analyze the displacement energy, as it still provides
some insight on the diameter.

3 The diameter of Diff(S1)

The aim of this section is to prove the following complete characterization of boundedness
(unboundedness, resp.) of the diameter of the diffeomorphism group of the circle S1 with
respect to right-invariant Ws,p-norms:

Theorem 3.1 Let p ∈ (1,∞). The diameter diams,p Diff(S1) of the diffeomorphism group
of S1 is zero for s ≤ 1/p, bounded (but non-zero) for 1/p < s < 1 + 1/p, and unbounded
for s ≥ 1 + 1/p.

Note, that for the important special case p = 2 this shows that the diameter
diams,2 Diff(S1) of the Hs-metric is zero for s ≤ 1

2 , bounded (but non-zero) for s < 3/2,
and unbounded for s ≥ 3

2 . For the case p = 1, the only change is that the diameter is finite
but non-zero for s = 1 (due to the fact thatW 1,1 embeds in C0 in the one dimensional case).

Proof The zero diameter result for s ≤ 1
p (s < 1 for p = 1) follows directly from the results

on vanishing geodesic distance in [9,32,33]. We will split the proof of the remaining cases
in three parts: the subcritical case s < 1 + 1/p, see Sect. 3.3, the critical case s = 1 + 1/p,
see Sect. 3.2, and the supercritical case s > 1 + 1/p, see Sect. 3.1. 
�

In the proof of the critical case in Sect. 3.2 we will show in addition that the diameter
of the homogeneous W 1,p-metric is bounded between p and 8p. Before we present this
analysis we want to point out an open question concerning the continuity of the diameter (in
the parameter s).

Question 3.2 Is the diameter continuous in the Sobolev index s at the critical exponents, i.e.,
do we have lims→1/p+ diams,p Diff(S1) = 0 and lims→(1+1/p)− diams,p Diff(S1) = ∞?

3.1 The supercritical case s > 1+ 1/p

The unboundedness for the supercritical case s ≥ 1 + 1/p also follows directly from the
analysis for the critical case, which is treated in Sect. 3.2. In the following we will present a
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more elementary proof that in addition contains an explicit bound for the geodesic distance
and will be of importance in the characterization of the displacement energy in Sect. 3.4.

Lemma 3.3 Let s > 1 + 1/p. Then the geodesic distance of the right-invariant Ws,p-norm
on Diff(S1) satisfies

logϕ′(x) ≤ C dists,p(Id, ϕ), (3.1)

where C = C(s, p) depends on s and p. It follows that diams,p Diff(S1) is unbounded.

Proof Note that in this regime we have the Sobolev embedding Ws,p(S1) ⊂ C1(S1). Let ϕt

be any curve starting at Id and ending at ϕ, and let ut be the associated vector field, that is
∂tϕt = ut ◦ ϕt . Denote ψt = ∂xϕt . We then have ∂tψt = ∂xut ◦ ϕt · ψt , or in other words,
∂t (logψt )(x) = ∂xut (ϕt (x)). Integrating this, and using the fact that logψ0 = 0, we have
for any (s − 1)p > 1 and any x ∈ S1,

logϕ′(x) =
∫ 1

0
∂t (logψt (x)) dt ≤

∫ 1

0
‖∂xut‖L∞ dt ≤ C

∫ 1

0
‖ut‖Ws,p dt, (3.2)

where in the last inequality we used the above-mentioned Sobolev embedding. Since the
above inequality holds for all paths ϕt connecting the idendity to ϕ this yields Eq. (3.1). By
choosing ϕ with ϕ′ arbitrarily large at a point, we get an arbitrarily large lower bound to the
diameter of Diff(S1) and thus the unboundedness follows. 
�
Remark 3.4 For p = 1, the claim and its proof holds also for s = 2, since W 2,1(S1) embeds
into C1(S1).

3.2 The critical case s = 1+ 1/p

In the critical case, we do not have Ws,p(S1) ⊂ C1(S1) as before (unless p = 1), however
we do have Ws,p(S1) ⊂ W 1,q(S1) for q < ∞. Inspired by this, the proof for the critical
case consists of two steps—first, we give a lower bound for the diameter with respect to
the Ẇ 1,q -metric, which blows up as q → ∞; second, we use Lemma 2.2 to show that the
diameter bound blows up faster than the embedding constants of Ws,p(S1) ⊂ W 1,q(S1),
hence the diameter with respect to Ws,p is infinite.

The following lower bound for the diameter with respect to the Ẇ 1,q -metric is based on a
generalization of a result of Lenells [42], where he constructed an explicit solution formula
for geodesics of the homogeneous Ẇ 1,2-metric. In the following lemma we will extend his
construction to all homogeneous Ẇ 1,q -norms with q ≥ 1:

Lemma 3.5 Let


 : Diff(S1)/S1 → C∞(S1, R), ϕ �→ q(ϕ′)1/q . (3.3)

We have:

1. The mapping 
 is an isometric embedding, where Diff(S1)/S1 is equipped with the
right-invariant homogeneous Ẇ 1,q -norm and C∞(S1, R) with the standard (i.e., non-
invariant) Lq-norm.

2. The image 
(Diff(S1)) ⊂ C∞(S1, R) is an open subset of the Lq-sphere of radius q
given by

Uq := { f ∈ C∞(S1; R) : f > 0, ‖ f ‖Lq = q
}
.
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3. For fixed q ≥ 1 the diameter of the set Uq is bounded from above and below by

q < diamUq ≤ 8q. (3.4)

As a consequence Uq is unbounded for q → ∞.

Proof The flat Lq metric on C∞(S1, R>0) is given by

|δ f | f =
(∫ 1

0
|δ f (θ)|q dθ

)1/q
, δ f ∈ T f C

∞(S1, R>0) ∼= C∞(S1). (3.5)

To see that the mapping 
 is an isometric embedding (where Diff(S1)/S1 is equipped
with the right-invariant Ẇ 1,q -metric) we need to calculate the derivative of 
. We have:

d
(ϕ) · h = (ϕ′)1/q−1h′ (3.6)

and thus

|d
(ϕ) · h| =
(∫ 1

0
(ϕ′(θ))1−q |h′(θ)|qdθ

)1/q
(3.7)

which equals exactly the right-invariant, homogeneous Ẇ 1,q -metric. The characterization of
the image of 
 follows directly from the definition of Diff(S1)/S1.

To calculate the lower bound for the diameter of Uq we consider the functions f = q and
g = cq(n1(0,n−q ) + ε1(n−q ,1)) for ε � 1 and c ≈ 1 such that ‖g‖Lq = q . Then

diamUq ≥ distUq ( f , g) ≥ ‖ f − g‖Lq ≈ 21/qq,

where diamUq and distUq refer to the intrinsic distance in Uq .
It remains to show that diamUq is bounded from above for each fixed q . Towards this aim

wewill construct paths that connect given elements f , g ∈ Uq and are bounded independently
of f and g. Let

ft (θ) = q

‖ f̃t (·)‖Lq
f̃t (θ) with f̃t (θ) = (1 − t) f (θ) + tg(θ). (3.8)

It is easy to see that ft (·) ∈ Uq for any t ∈ [0, 1]. It remains to bound the Lq -length of
ft (θ). We have

∂t ft (θ) = q

‖ f̃t (·)‖Lq
∂t f̃t (θ) − q

‖ f̃t (·)‖2Lq

∂t‖ f̃t (·)‖Lq f̃t (θ), (3.9)

and thus

distUq ( f , g) ≤
∫ 1

0
‖∂t ft (·)‖Lq dt ≤ q

⎛
⎝
∫ 1

0

‖∂t f̃t (·)‖Lq

‖ f̃t (·)‖Lq
dt +

∫ 1

0

∣∣∣∂t‖ f̃t (·)‖Lq

∣∣∣
‖ f̃t (·)‖Lq

dt

⎞
⎠

(3.10)

We will estimate the two integrals separately. For the first one we calculate

‖∂t f̃t (·)‖Lq = ‖g − f ‖Lq ≤ ‖g‖Lq + ‖ f ‖Lq ≤ 2q (3.11)
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and

‖ f̃t (·)‖qLq =
∫

((1 − t) f (θ) + tg(θ))q dθ

≥
∫

(1 − t)q f (θ)qdθ +
∫

tq g(θ)qdθ

= (1 − t)q‖ f ‖qLq + tq‖g‖qLq≥ 2

2q
qq .

(3.12)

Thus the first term can be estimated by 4. In these estimates we made repeatedly use of
the fact that all involved functions are positive. For the second term we calculate using the
Hölder inequality

∂t‖ f̃t (·)‖Lq = ∂t

(∫
f̃t (θ)qdθ

)1/q
=
(∫

f̃t (θ)qdθ

)1/q−1 ∫
f̃t (θ)q−1(g − f ) dθ

≤
(∫

f̃t (θ)qdθ

)1/q−1 (∫
f̃t (θ)qdθ

)(q−1)/q (∫
(g − f )q dθ

)1/q

=
(∫

(g − f )q dθ

)1/q
= ‖g − f ‖Lq ≤ 2q,

(3.13)

and thus the second term is bounded as well by 4. This, in turn, proves the desired bound for
the diameter of Up . 
�

Note that the upper bound above implies directly the boundedness of the diameter of
Diff(S1)/S1 with respect to the homogeneous Ẇ 1,q metric. We now use the lower bound,
together with the Sobolev embedding theorem of Lemma 2.2 to show the unboundedness of
diams,p Diff(S1) in the critical case:

Lemma 3.6 Let p ∈ (1,∞). Then the diameter diam1+1/p,p Diff(S1) of Diff(S1) with
respect to the right-invariant W 1+1/p,p-norm is unbounded.

Proof In Lemma 3.5 we have shown that diam1,q Diff(S1)/S1 > q , and thus we also have
diam1,q Diff(S1) > q . In particular we have shown that for any q ≥ 1 there is some ϕq ∈
Diff(S1) such that dist1,q(Id, ϕq) > q . Therefore, using Lemma 2.2, we have

q < dist1,q(Id, ϕ
q) = inf

∫ 1

0
‖ϕq

t ◦ (ϕ
q
t )−1‖W 1,q dt

< inf Cq1−
1
p

∫ 1

0
‖ϕq

t ◦ (ϕ
q
t )−1‖W 1+1/p,p dt

= Cq1−
1
p dist1+1/p,p(Id, ϕ

q).

(3.14)

Thus dist1+1/p,p(Id, ϕq) ≥ Cq1/p and taking q → ∞ completes the proof. 
�
Remark 3.7 It might be possible to use a similar argument to prove the second part of Ques-
tion 3.2, i.e., that lims→(1+1/p)− diams,p Diff(S1) = ∞, by controlling the embedding
constants of Ws,p into W 1,q for s ↗ 1 + 1/p and an appropriate q(s) → ∞.

3.3 The subcritical case s < 1+ 1/p

It remains to show the boundedness of the diameter for s < 1 + 1/p. Towards this aim we
will first show that if (controlled) arbitrary change in length (volume) has a bounded cost,
then the diameter is finite:
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Lemma 3.8 Identify S1 with the unit interval, and let (s − 1)p < 1. For any λ ∈ N and
δ ∈ (0, 1), denote by ψλ,δ ∈ Diff(S1) a map satisfying ψλ,δ(x) = λx for x ∈ [0, 1−δ

λ

]
. If

there exists C = C(s, p) > 0, independent of λ and δ, such that

distWs,p([0,1])(Id, ψλ,δ) < C for every λ ∈ N and δ ∈ (0, 1),

then

diams,p Diff(S
1) ≤ diams,p Diff([0, 1]) + 1 < 4C + 1.

Proof Let ϕ ∈ Diff(S1); by translating, we can assume that ϕ(0) = 0. This translation
costs at most 1, hence the “+1” in the statement of the theorem. We can always write
ϕ = ϕ1 ◦ ϕ2, where suppϕ1 ⊂ [0, 1 − δ], and suppϕ2 ⊂ [δ, 1] for some δ > 0. Since
dist(Id, ϕ) ≤ dist(Id, ϕ1) + dist(Id, ϕ2), it is enough to prove that both dist(Id, ϕ1) and
dist(Id, ϕ2) are smaller than 2C . Note that for ϕ ∈ Diff(S1) with ϕ(0)= 0 we have

distWs,p(S1)(Id, ϕ) ≤ distWs,p([0,1])(Id, ϕ),

hence it is enough to prove the statement for Ws,p([0, 1]). Henceforth in this proof, we will
only refer to [0, 1].

Following the decomposition above, from now on we will assume that suppϕ ⊂ [0, 1−δ]
for some δ > 0, and consider ϕ as a diffeomorphisms of R. Denote

ϕλ(x) = 1

λ
ϕ(λx) = ψ−1

λ,δ ◦ ϕ ◦ ψλ,δ(x),

where the last equality holds because suppϕ ⊂ [0, 1 − δ]. Using our assumption, we have

dists,p(Id, ϕ) = dists,p(Id, ψλ,δ ◦ ϕλ ◦ ψ−1
λ,δ) < 2C + dists,p(Id, ϕ

λ).

Wenowshow that dists,p(Id, ϕλ) canbe controlled bydists,p(Id, ϕ) times a small constant.
A direct calculation shows that the map ϕ(t, x) �→ ϕλ(t, x) = λ−1ϕ(t, λx) is a bijection
between paths supported on [0, 1] to paths supported on [0, 1/λ], with the corresponding
vector fields

uλ
t (x) = 1

λ
ut (λx).

Note that

‖uλ
t ‖Ẇ s,p = λ

(s−1)− 1
p ‖ut‖Ẇ s,p , ‖uλ

t ‖Ẇ 1,p = λ
− 1

p ‖ut‖Ẇ 1,p , ‖uλ
t ‖L p = λ

−1− 1
p ‖ut‖L p

where Ẇ s,p refers to the (s − 1)-Gagliardo seminorm on the derivative (if s > 1), c.f.,
Lemma 2.3. We therefore have

‖uλ
t ‖Ws,p ≤ λ

(s−1)− 1
p ‖ut‖Ws,p ,

and hence

lengthWs,p (ϕ
λ
t ) ≤ λ

(s−1)− 1
p lengthWs,p (ϕt ).

Therefore, taking the infimum over all possible paths between Id and ϕ, we have

dists,p(Id, ϕ
λ) ≤ λ

(s−1)− 1
p dists,p(Id, ϕ).

We conclude that

dists,p(Id, ϕ) <
2C

1 − λ
(s−1)− 1

p

.
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Since (s − 1)p < 1, taking λ → ∞ concludes the proof. 
�
The following lemma shows that distWs,p([0,1])(Id, ψλ,δ) is indeed uniformly bounded, by

showing that the affine homotopy is uniformly bounded (in λ and δ) in the subcritical regime.
As the proof is a rather technical calculation, we postpone it to Appendix A.

Lemma 3.9 Let s < 1 + 1/p. The there exists a sequence of maps ψλ,δ with ψλ,δ(x) = λx
for x ∈ [0, 1−δ

λ

]
such that

distWs,p([0,1])(Id, ψλ,δ) < C for every λ ∈ N and δ ∈ (0, 1)

where C = C(s, p) is independent of λ.

3.4 The displacement energy

Finally, we discuss boundedness properties of the displacement energy as introduced in
Definition 2.4. Even thoughwe do not have sufficiently strong result relating the boundedness
of the diameter and the displacement energy (see “AppendixC”,wewill now show that indeed
in our case boundedness (unboundedness resp.) of the displacement energy of arbitrarily large
open subsets of S1 is closely related to the boundedness of the diameter. While it is obvious
that bounded diameter implies bounded displacement energy, we give below a direct, simpler
proof for the boundedness of the displacement energy in the subcritical case.

Proposition 3.10 Identify S1 with the interval [0, 1]. We then have the following bounds

1. For an interval I with length smaller then 1/2, we have

Es,p(I ) ≤ 1/2 for all s, p.

2. For every s < 1 + 1/p, there exists C = C(s, p) > 0 such that

Es,p(I ) < C for every open interval I ⊂ [0, 1].
3. If s > 1 + 1/p then there exists c = c(s, p) > 0 such that

Es,p((0, 1 − δ)) > c| log δ|.
Remark 3.11 Note that we do not know whether the displacement energy is bounded or not
in the critical case s = 1 + 1/p.

Proof Thefirst assertion followsbyflowing for time1along the constant vectorfieldu(t, x) =
1/2, whose Ws,p-norm is 1

2 .
The last assertion follows from (3.2). Indeed, if ϕ ∈ Diff(S1) such that ϕ((0, 1 − δ)) ∩

(0, 1 − δ) = ∅, then ϕ((1 − δ, 1)) ⊃ (0, 1 − δ), and therefore

δmax(ϕ′) ≥
∫ 1

1−δ

ϕ′(x) dx = ϕ(1) − ϕ(1 − δ) ≥ (1 − δ) − 0 = 1 − δ.

Therefore max(ϕ′) > 1−δ
δ
, and so by (3.2), dists,p(Id, ϕ) ≥ c| log δ|.

The second assertion follows directly from Theorem 3.1. In the following we will sketch
an alternative simpler proof. Consider the vector field

uα,ε(x) =

⎧⎪⎨
⎪⎩

ε−αx x ∈ [0, ε)
x1−α x ∈ [ε, 3/4)
4
( 3
4

)1−α
(1 − x) x ∈ [3/4, 1),

(3.15)
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where α < 1 + 1
p − s and ε � 1 to be determined (note that this vector field is simply

x1−α with linear interpolations to 0 at 0 ∼ 1). A direct calculation shows that ‖uα,ε‖s,p <

C(s, p, α) < ∞ when (α + (s − 1))p < 1. Furthermore, we have that the flow ϕt along
uα,ε (that is, the solution to ∂tϕt = uα,ε ◦ ϕt , ϕ0(x) = x) satisfies, for x ≥ ε, and as long as
ϕt (x) < 3/4,

ϕt (x) = (xα + αt)1/α > (αt)1/α,

hence in particular, for t0 = 1
α2α , ϕα,ε = ϕt0 satisfies

ϕα,ε(0) = 0, ϕα,ε(1) = 1, ϕα,ε(x) > 1/2 for any x > ε

and

dists,p(Id, ϕ
α,ε) <

1

α2α
C(s, p, α).

Consider now the interval I = (δ, 1) for some δ < 1/2, and let ε < δ. Then

ψ = (ϕα,ε)−1 ◦ T1/2 ◦ ϕα,ε

where T1/2 is the translation by 1/2, satisfies

ψ(I ) ⊂ (ϕα,ε)−1 ◦ T1/2((1/2, 1)) = (ϕα,ε)−1(0, 1/2) ⊂ (0, δ),

hence ψ(I ) ∩ I = ∅. Since

dists,p(Id, ψ) ≤ 2 dists,p(Id, ϕ
α,ε) + dists,p(Id, T1/2) ≤ 2

α2α
C(s, p, α) + 1

2

and the right-hand side is uniformly bounded in δ, the proof is complete. 
�

4 The diameter of Diff(M) for compact manifolds in higher dimensions

In this sectionwe prove Theorem 1.1 in its full generality. Themain analytic ideas of the proof
are similar to the one-dimensional case, however their adaptation to the higher dimensional
settings is not always immediate; in particular, for the boundedness proof, we need the
diffeomorphism group to have a localization property, which we call uniform fragmentation
property, described in Sect. 4.3.

The structure of the section is as follows: in Sect. 4.1 we give a simple proof for the
unboundedness of the diameter of Diff(M) (for any manifold) when s > 1 + dimM

p , and in

Sect. 4.2 we give a more elaborate proof for the unboundedness in the case s ≥ 1 + dimM
p .

We then present and discuss the uniform fragmentation property in Sect. 4.3, and prove
boundedness of Diff(M) for manifolds that satisfy this property (like spheres), when s <

1+ 1
p . This completes the proof of Theorem 1.1, as the zero diameter result of item 1 follows

directly from the results on vanishing geodesic distance in [5,32,33].
As noted in the introduction, when dimM > 1, we have a gap in the range s ∈[

1 + 1
p , 1 + dimM

p

)
. We believe that in these cases the diameter is finite (assuming that

the fragmentation property is satisfied); we show an indication for this in Sect. 4.4.
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4.1 The supercriticial case s > 1+ dimM
p

Lemma 4.1 Let s > 1+ dimM
p . Then the geodesic distance of the right-invariant Ws,p-norm

on Diff(M) satisfies

log |Dϕ| ≤ C dists,p(Id, ϕ), (4.1)

where C = C(s, p, dimM, g), and |Dϕ| is the Jacobian determinant ϕ with respect to a
chosen Riemannian metric g on M. It follows that diams,p Diff(M) is unbounded.

Proof In this regime we have the Sobolev embeddingWs,p(M) ⊂ C1(M). Let ϕt be a curve
starting at Id and ending atϕ, and let ut its associated vector field, that is ∂tϕt = ut ◦ϕt . Denote
ψt = |Dϕt |, the Jacobian determinant with respect to g.We have ∂tψt = div(ut )◦ϕ ·ψt , or in
other words, ∂t (logψt )(x) = div(ut )(ϕt (x)). Integrating this, using the fact that logψ0 = 0,
we have for any (s − 1)p > dimM and any x ∈ M,

log |Dϕ|(x) =
∫ 1

0
∂t (logψt (x)) dt ≤

∫ 1

0
‖ div(ut )‖L∞ dt ≤ C

∫ 1

0
‖ut‖Ws,p dt,

where in the last inequality we used the above-mentioned Sobolev embedding. By choosing ϕ

with |Dϕ| arbitrarily large at a point, we get an arbitrarily large lower bound to the diameter.

�

Remark 4.2 As in the one dimensional case, for p = 1 this proof also works for the critical
case s = 1 + dimM, as W 1+dimM,1(M) ⊂ C1(M).

4.2 The critical case s = 1+ dimM
p

Lemma 4.3 Let p ≥ 1 and s = 1 + dimM
p . Then the diameter diams,p Diff(M) of Diff(M)

with respect to the right-invariant Ws,p-norm is unbounded.

Proof The proof of this result is inspired by connections between a homogeneous, degenerate
H1-metric—called the informationmetric—on the group of diffeomorphisms and the Fisher–
Rao metric on the space of probability densities, see [36]. Similarly as in the proof of the
one-dimensional situation we aim to generalize this result toW 1,q -metrics for general q ≥ 1.

We start by introducing a right-invariant, degenerate Sobolev (Finsler) metric of order one
on the diffeomorphism group:

FId(X) =
(∫

M
| div(X)|qμ

)1/q
(4.2)

where μ is some fixed volume form onM and div is the divergence with respect to μ. In the
Riemannian case, q = 2, this metric is also called information metric due to its connections
to the Fisher–Rao metric on the space of probability densities [10,36], which is the central
object of interest in the area of information geometry [1].

In particular, we have for h ∈ Tϕ Diff(M)

(Fϕ(h))
q =

∫
M

| div(h ◦ ϕ−1)|qμ =
∫
M

| div(h ◦ ϕ−1) ◦ ϕ|q ϕ∗μ. (4.3)

Consider the mapping


 : Diff(M) → C∞(M, R), ϕ �→ q|Dϕ|1/q , (4.4)

123



Can we run to infinity? The diameter of the diffeomorphism… Page 17 of 35 54

where |Dϕ| the Jacobian determinant of ϕ with respect to μ (that is, ϕ∗μ = |Dϕ|μ). Denote
the function ϕ �→ |Dϕ| by 
̃. We have that

d
(ϕ) · h = |Dϕ|1/q−1d
̃(ϕ) · h = |Dϕ|1/q div(h ◦ ϕ−1) ◦ ϕ, (4.5)

since if ϕ(t) is a curve with ϕ(0) = ϕ and ϕ̇(0) = h, then

d

dt

∣∣∣∣
t=0

ϕ(t)∗μ = d

dt

∣∣∣∣
t=0

(ϕ(t) ◦ ϕ−1 ◦ ϕ)∗μ = d

dt

∣∣∣∣
t=0

ϕ∗(ϕ(t) ◦ ϕ−1)∗μ

= ϕ∗
(

d

dt

∣∣∣∣
t=0

(ϕ(t) ◦ ϕ−1)∗μ
)

= ϕ∗ (Lh◦ϕ−1μ
) = ϕ∗ (div(h ◦ ϕ−1)μ

) = div(h ◦ ϕ−1) ◦ ϕ ϕ∗μ
= div(h ◦ ϕ−1) ◦ ϕ |Dϕ|μ.

After equipping C∞(M, R) with the flat Lq metric

|δ f | f =
(∫

M
|δ f |q μ

)1/q
, (4.6)

Equations (4.3) and (4.5) imply that the mapping 
 is a Riemannian immersion onto the
positive Lq -sphere in C∞(M, R) with image

Uq := { f ∈ C∞(M; R) : f > 0, ‖ f ‖Lq = q (Volμ(M))1/q
}
.

The proof now continues as in the one-dimensional case (Sect. 3.2): The intrinsic diameter
of Uq with respect to the Lq metric is bounded below by a constant (depending onM) times
q—indeed, by choosing f ≡ q and a function g ∈ Uq that is large on a small set and close
to zero on the rest of M , we have that ‖ f − g‖Lq ≥ Cq . Since the W 1,q -norm controls the
degenerate metric F , and the map 
 is an immersion, we have that

diam1,q Diff(M) ≥ Cq,

for some constant C independent of q . The infinite diameter with respect to theW 1+ dimM
p ,p-

norm follows in the same way as in Sect. 3.2, using the embedding W 1+ dimM
p ,p ⊂ W 1,q as

in Lemma 2.2 and taking q → ∞. 
�

4.3 The subcritical case s < 1+ 1
p

We start by introducing the geometric property of Diff(M) which we need to prove the
boundedness:

Definition 4.4 LetM be a compact finite dimensional manifold. The diffeomorphism group
Diff(M) is said to satisfy the uniform fragmentation property, if there exists a constant K > 0
and a finite cover ofM by balls Bεα (xα) on which normal coordinates are defined, such that
any diffeomorphism ϕ ∈ Diff(M) can we written as a product of K diffeomorphisms ϕi ,
where each ϕi is only supported in one ball Bεα (xα).

Remark 4.5 1. If we denote by K (ϕ) the minimal number of diffeomorphisms ϕi needed
in such a decomposition of ϕ ∈ Diff(M), then K (ϕ) < ∞ for any fixed cover of any
compact manifold—this is the content of the well-known “fragmentation lemma” (see,
e.g., [4, Lemma 2.1.8]). The quantity K (ϕ) is sometimes referred to as the fragmentation
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norm of ϕ with respect to this cover (see, e.g., in the context of homeomorphisms, [46,
Section 2.3]). We ask for this fragmentation norm to be uniformly bounded, independent
of ϕ.

2. If, instead of a fixed finite cover, we consider a cover by all open (topological) balls, then
K (ϕ) is a conjugation-invariant norm, in the sense of [17] (see Example 1.14 there). As
such, it is known to be uniformly bounded for manymanifolds, see, e.g., [26, TheoremVI]
for a recent account on this. Unfortunately, we cannot allow for the balls to be arbitrary,
as they are fixed a-priori in the definition of the norm, as discussed in Sect. 2.2 (see also
the proof of Proposition 4.7 below).

Next we show that the n-dimensional sphere Sn satisfies the uniform fragmentation prop-
erty:

Proposition 4.6 Let n ≥ 1 and let A, B ⊂ Sn be open geodesic balls, A ∪ B = Sn and
A, B �= Sn. Then Diff(Sn) has an uniform fragmentation property with respect to the cover
{A, B}.
Proof Let ϕ ∈ Diff(Sn). The proof consists of two steps:

1. First we split ϕ = ϕB ◦ ϕA, such that Sn \ suppϕA contains a ball UA satisfying U A ⊂
Bc ⊂ A, and similarly to ϕB .

2. We then show that each of ϕA and ϕB can be written as a composition of at most 3
diffeomorphisms, each supported either in A or in B.

Step I Fix x ∈ ϕ−1(Ac), then there exists an open ball VB , containing x , such that V B ⊂
ϕ−1(Ac), and therefore Bc∩ϕ(VB) = ∅.We can choose VB small enough such that Bc\VB �=
∅ as well. Then there exists ϕA ∈ Diff(Sn) such that ϕA|VB = ϕ|VB and Bc \ suppϕA �= ∅,
hence there exists a ball UA such that U A ⊂ Bc \ suppϕA. Setting ϕB = ϕ ◦ ϕ−1

A , we have
that ϕB |ϕ(VB ) = Id, hence ϕ(VB) ⊂ Ac \suppϕB . Choosing a ballUB such thatUB ⊂ ϕ(VB)

completes this step.
Step II We prove the result for ϕA; the case of ϕB is analogous. We decompose ϕA =
ϕ3 ◦ ϕ2 ◦ ϕ1, where each ϕi is supported in either A or B.

First, we construct ϕ1 to make all the points that end in B start in B. Consider the set
ϕ−1
A (B). Since U A ∩ ϕ−1

A (B) = ∅, we have
A ∩ ϕ−1

A (B) ⊂ A \U A. (4.7)

Since A \ U A is diffeomorphic to A ∩ B, there exists a diffeomorphism ϕ1 with ϕ1(A \
U A) = A ∩ B. Moreover, we can choose ϕ1 such that it is supported on A (see Fig. 1).

We now have that

ϕ1 ◦ ϕ−1
A (B) ⊂ B. (4.8)

Indeed, by (4.7) we have that

ϕ1

(
A ∩ ϕ−1

A (B)
)

⊂ A ∩ B,

and since ϕ1 is supported in A, we have also that

ϕ1

(
B ∩ ϕ−1

A (B)
)

⊂ B.

Next, we move all the points that end in a neighborhood of Ac to their final destination.
Let D be an open ball containing Ac, such that D ⊂ B. From (4.8) we have that ϕ1 ◦ϕ−1

A (D)
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Fig. 1 A sketch of the construction of ϕ1. The sets A and B that cover the sphere are the blue and crossed one,
respectively. On the left-hand figure, the orange domain is ϕ−1

A (B). Note that ϕ−1
A (B) does not wrap around

A because of (4.7). The map ϕ1 is supported in A, and maps the set ϕ−1
A (B) into B, as in the right-hand figure

is a closed ball contained in B. Therefore, there exists a diffeomorphism ψ , supported in B,
such that ψ |D = ϕ1 ◦ ϕ−1

A |D . Define ϕ2 := ψ−1.
Finally, define ϕ3 := ϕA ◦ ϕ−1

1 ◦ ϕ−1
2 . We have that ϕ3 is supported in A: indeed, for any

x ∈ D,

ϕ3(x) = ϕA ◦ ϕ−1
1 ◦ ψ(x) = ϕA ◦ ϕ−1

1 ◦ ϕ1 ◦ ϕ−1
A (x) = x .


�
We will now continue with proving the boundedness of diams,p Diff(M) by showing that

if Diff(M) satisfies the uniform fragmentation property, then the question of finiteness of
diams,p Diff(M) can be reduced to the finiteness of the diameter of diffeomorphisms groups
of Euclidean balls.

Proposition 4.7 Let M be a closed n-dimensional manifold, such that Diff(M) satisfies the
uniform fragmentation property with respect to some cover. Assume that diams,p Diffc(B) <

∞, where B is the unit ball of R
n. Then, diams,p Diff(M) < ∞.

Proof Note that by scaling, our assumption diams,p Diffc(B) < ∞ implies thefinite diameter
of the compactly-supported diffeomorphism group of any Euclidean ball of arbitrary radius.

Let {Bεα (xα)}α∈A be an open cover of M by geodesic balls, with respect to which the
uniform fragmentation property holds. Consider now the cover {Bηα (xα)}α∈A, whereηα > εα

for each α ∈ A, such that normal coordinates are defined on Bηα (xα) as well. To simplify
notation, we denote Bα = Bεα (xα) and B̃α = Bηα (xα). We will henceforth consider Ws,p-
metrics on Diff(M) with respect to {B̃α}α∈A and a partition of unity ρα subordinate to this
cover.

Let ϕ ∈ Diff(M). By the uniform fragmentation property, there exists ϕ1, . . . , ϕK ∈
Diff(M), with suppϕi ⊂ Bα for some α ∈ A, such that ϕ = ϕK ◦ · · · ◦ ϕ1. By right-
invariance of the norm and the triangle inequality we have

dists,p(Id, ϕ) ≤
K∑
i=1

dists,p(Id, ϕi ).

Therefore, in order to prove that diams,p Diff(M) < ∞, it is enough to prove that
dists,p(Id, ϕi ) is uniformly bounded. Therefore, we will henceforth assume that suppϕ ⊂

123



54 Page 20 of 35 M. Bauer, C. Maor

Bα0 for some α0 ∈ A. Since, by assumption, diams,p Diffc(B) < ∞, there exists a path ϕt

(with vector fields ut ) from Id to ϕ, supported on Bα0 , such that

lengthR
n

s,p(ϕ
t ) < C

for some C independent of ϕ (we identified Bα0 with a ball in R
n using normal coordinates

as in the definition of the norm on X(M)). This does not complete the proof as the support
of ut intersects other coordinate balls involved in the definition of the Ws,p-norm on X(M),
and therefore these balls also contribute to the length of the path. We now show that this
contribution is uniformly bounded (and depends only on εα0 and ηα0 ).

Let ρ
α0
α be another partition of unity subordinate to B̃α , such that ρ

α0
α0 |Bα0 ≡ 1. With

respect to this partition of unity, the length of the path ϕt is the same as in the coordinate
chart (since, by definition of ρ

α0
α , the support of ut intersect only the support of ρ

α0
α0 ), and is

therefore bounded independent of ϕ.
The norm with respect to ρ

α0
α is equivalent to the one with respect to the original ρα , and

therefore, since the choice of ρ
α0
α is independent of ϕ (depends only on εα0 and ηα0 ) and the

cover is finite, we obtain a uniform bound on the length of ϕt with respect to our original
norm as well. 
�

Using Proposition 4.7, we now complete the proof of Theorem 1.1 by showing that
diams,p Diffc(B) < ∞ for s < 1 + 1

p .

Lemma 4.8 Let s < 1 + 1
p and let B denote the unit ball in R

n. Then

diams,p Diffc(B) < C(s, p, n) < ∞.

Proof We will use polar coordinate on Bε , in the standard notation

B = {(r , θ) : r ∈ [0, 1], θ ∈ Sn−1} . (4.9)

Similar as in the one-dimensional situation the proof of this theorem will follow in two steps.
Step I First we show that the boundedness of the diameter follows if (controlled) arbitrary
change in volume has a bounded cost. To this end we denote by �λ,δ ∈ Diff(B) a map
satisfying

�λ,δ(r , θ) = (ψλ,δ(r), θ), (4.10)

where

ψλ,δ(r) = λr for r ∈
[
0,

1 − δ

λ

]
, (4.11)

with λ ∈ N and δ ∈ (0, 1). In addition we assume that for some C > 0, independent of λ and
δ, we have dists,p(Id, �λ,δ) < C . Let now ϕ ∈ Diffc(B) be an arbitrary diffeomorphism.
Since it has compact support, there exists δ > 0 such that

suppϕ ⊂ {[0, 1 − δ] × Sn−1} ⊂ B.

Denote

ϕλ(r , θ) = 1

λ
ϕ(λr , θ) = �−1

λ,δ ◦ ϕ ◦ �λ,δ(r , θ),

where the last equality holds because suppϕ ⊂ [0, 1 − δ] × Sd−1 and since multiplication
by a scalar in polar coordinates is given by λ(r , θ) = (λr , θ). Using the boundedness of
dists,p(Id, �λ,δ) we have

dists,p(Id, ϕ) = dists,p(Id, �λ,δ ◦ ϕλ ◦ �−1
λ,δ) < 2C + dists,p(Id, ϕ

λ).
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By a direct calculation, similar as in Lemma 3.8, we have that the map ϕ(t, x) �→
ϕλ(t, x) = λ−1ϕ(t, λx) is a bijection between paths supported on [0, 1] × Sn−1 to paths
supported on [0, 1/λ] × Sn−1, with the corresponding vector fields

uλ
t (r , θ) = 1

λ
ut (λr , θ).

From here the proof of the the above claims follows exactly as in Lemma 3.8, using
Lemma 2.3 to obtain that

dists,p(Id, ϕ
λ) ≤ λ

(s−1)− n
p dists,p(Id, ϕ).

Hence, by taking λ → ∞, we have dists,p(Id, ϕ) ≤ 2C . Note that it follows from Lemma 2.3
that this part of the proof holds whenever s < 1 + n

p , not merely when s < 1 + 1
p .

Step II It remains to bound the distance from the identity to �λ,δ independently of λ and δ.
Here we will rely on our construction from the one-dimensional case. From Lemma 3.9 we
know that there exists a curve ψ t

λ,δ in Diff([0, 1]) from Id[0,1] to ψλ,δ such that

lengths,p(ψ
t
λ,δ) < C(s, p), for every λ ∈ N and δ ∈ (0, 1). (4.12)

Let ut be the vector field associatedwith the curveψ t
λ,δ , and define a curve� t

λ,δ by flowing
from the identity map, along the vector field

Ut (x) = ut (|x |) x

|x | .

Obviously, �1
λ,δ = �λ,δ satisfies assumptions (4.10)–(4.11).

Since ut ∈ Ws,p
0 (0, 1) we have, using Corollary B.3 and (4.12), that there exists C =

C(s, p, n) > 0, independent of λ and δ, such that

distWs,p(B)(Id, �λ,δ) ≤ lengths,p(�
t
λ,δ) < C, for every λ ∈ N and δ ∈ (0, 1),

which completes the proof. 
�

4.4 The displacement energy

Since step I of the proof of Lemma 4.8 holds for any s < 1 + n
p , the only ingredient needed

for proving that diams,p Diff(M) < ∞ for s < 1 + n
p , is a better vector field Ut in step

II. That is, we need a better way of flowing from Id to �λ,δ . An indication that this should
be possible is the following proposition, which deals with the uniform boundedness of the
displacement energy of sets in Diff(Sn) (see Definition 2.4). Although, as discussed earlier,
we do not know that bounded displacement energy is equivalent to bounded diameter, all
our current examples are consistent with such a claim. Moreover, the proof shows that an
arbitrary radial change of volume (which is what �λ,δ does) is possible at a bounded cost
whenever s < 1 + n

p (at least when s ∈ N), although the change of volume in the proof is
not as controlled as the one induced by �λ,δ .

Proposition 4.9 The following bounds on the displacement energy of subsets of Sn hold:

1. If s > 1 + n/p then there exists c = c(s, p) > 0 such that

Es,p(S
n \ Bδ) > c| log δ|,

where Bδ is a ball of radius δ in Sn.
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2. For every integer k < 1 + n/p, there exists C = C(k, p, n) > 0 such that

Ek,p(A) < C for every closed set A � Sn .

Remark 4.10 Weexpect that the same line of proof belowalso yields the uniformboundedness
for any non-integer s < 1 + n/p; we did not pursue the more involved estimates for non-
integer values of s as the main point of this section is to indicate why we conjecture that
1 + n/p is the critical exponent. However, for some non-integer exponents (in particular
when 1+ n/p is an integer) we could simply use the Sobolev embedding theorem (see, e.g.,
[13]):

‖ · ‖Ws,p � ‖ · ‖Wr,q ,
1

q
− r

n
= 1

p
− s

n
, r > s.

For example, consider Hs = Ws,2 in two dimensions. Then we know that for s > 2 the
displacement energy is not bounded, while for s < 2, we can choose q = 2

3−s < 2, and then

‖ · ‖Hs � ‖ · ‖W 2,q .

The uniform boundedness of the displacement energy forW 2,q(S2), q < 2 therefore implies
the boundedness for Hs , s < 2.

Proof We start by proving the unboundedness for large s:
Unboundedness for s > 1 + n/p. Let δ > 0 be small enough. Denote Aδ = Sn \ Bδ . If
ϕ(Aδ) ∩ Aδ = ∅, then ϕ(Aδ) ⊂ Bδ , and therefore∫

Aδ

|Dϕ| dVol = Vol(ϕ(Aδ)) ≤ Vol(Bδ).

SinceVol(Aδ) is of order one, andVol(Bδ) = O(δn), it follows that there exists a point x ∈ Sn

such that |Dϕ(x)| = O(δn). The first part of the proposition now follows immediately from
the estimate 4.1.
Boundedness for k < 1+n/p. For simplicity, we endow Sn with a roundmetricwith diameter
1, and consider the cover of Sn with two balls of radius 3/4, one centered at the south pole
and the other at the north pole. Let A � Sn be a closed set. Then, there exists a ball of radius
ε > 0, disjoint of A. Denote it by Bε. Since an arbitrary rotation of Sn has a bounded cost,
we can assume without loss of generality that Bε is centered at the south pole.

We now construct ϕ such that ϕ(A) ⊂ Bε and distk,p(Id, ϕ) is bounded independently of
A and ε. Fix α ∈ (0, n

p + 1 − k). Let uα,ε ∈ C∞
c ((0, 3/4)) be such that

uα,ε(x) =
{
0 x ∈ [0, ε/2)
x1−α x ∈ [ε, 2/3)

and such that, for some C > 0 independent of ε,∣∣∣u( j)
α,ε(x)

∣∣∣ ≤ Cε1−α− j ∀ x ∈
[ ε
2
, ε
]
, j = 0 . . . k. (4.13)

Define now a vector field Uα,ε on the Euclidean ball of radius 3/4 by

Uα,ε(x) = uα,ε(|x |) x

|x | .
A straightforward calculation shows that

D( j)Uα,ε(x) =
j∑

i=0

u(i)
α,ε(|x |)
|x | j−i

Gi, j

(
x

|x |
)

,
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where Gi, j is a tensor-valued polynomial (independent of uα,ε). We therefore have that

∣∣∣D( j)Uα,ε(x)
∣∣∣ �

j∑
i=0

∣∣∣u(i)
α,ε(|x |)

∣∣∣
|x | j−i

. (4.14)

We now evaluate ‖D(k)Uα,ε‖p , and show that it is independent of ε. By (4.14) it is enough
to show that for every i ≤ k,

∫ 3/4

0

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr < C (4.15)

for some C independent of ε. Indeed

∫ 3/4

0

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr =
∫ ε

ε/2

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr +
∫ 2/3

ε

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr

+
∫ 3/4

2/3

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr

The third addend on the right-hand side can obviously be bounded independently of ε,
and therefore we can ignore it. The second addend can be evaluated explicitly, using the fact
that uα,ε(r) = r1−α in this region:

∫ 2/3

ε

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr = Cα,i

∫ 2/3

ε

∣∣∣∣r
1−α−i

r k−i

∣∣∣∣
p

rn−1 dr = Cα,i

∫ 2/3

ε

rn−1+(1−α−k)p dr

< Cα,i

∫ 1

0
rn−1+(1−α−k)p dr = C(α, i, n, k, p),

where in the last inequality we used the fact that n+ (1−α − k)p > 0 since α < n
p + 1− k.

As for the first addend, we have, using (4.13), that

∫ ε

ε/2

∣∣∣∣∣
u(i)

α,ε(r)

rk−i

∣∣∣∣∣
p

rn−1 dr ≤ Cε(1−α−i)p
∫ ε

ε/2
rn−1−(k−i)p dr

≤ C ′ε(1−α−i)pεn−(k−i)p = C ′εn+(1−α−k)p,

which is uniformly bounded in ε since n + (1− α − k)p > 0. In the transition to the second
line we use the fact that the lower bound of the integral is ε/2 rather than 0, and therefore
we get boundedness even if kp > n (for the case i = 0). This completes the proof of (4.15).

The proof for j < k is similar, and therefore we obtain that there exists C = C(k, p, n),
independent of ε, such that

‖Uα,ε‖Wk,p(Rn) < C . (4.16)

Let ψt be a flow along Uα,ε . Similar to the one dimensional case, after time t0 = 1
α2α we

have that

|ψt0(x)| > 1/2 whenever |x | > ε.

We now consider ψt0 as a diffeomorphism on Sn , using the normal coordinate chart
centered at the south pole. |ψt0(x)| > 1/2 for |x | > ε implies then that ψt0 maps the
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complement of Bε to the northern hemisphere. Note that, by the same arguments as in
Proposition 4.7, the bound (4.16) implies that

distS
n

k,p(Id, ψt0) < C(k, n, p), independent of ε.

Let R be a rotation of Sn that maps the south pole to the north pole, and consider

ϕ = ψ−1
t0 ◦ R ◦ ψt0 .

Since ψt0 maps the complement of Bε to the northern hemisphere, it follows that ϕ maps
the complement of Bε into Bε, and therefore ϕ(A) ⊂ Bε .

As the bound on distk,p(Id, ψt0) implies that distk,p(Id, ϕ) is bounded independent of ε,
the proof is complete. 
�

5 The diameter of Diffc(R
n)

In the following we will consider the base manifold to be n-dimensional Euclidean space,
i.e.,M = R

n . In this case it will turn out, that the diameter of the the diffeomorphism group
is either zero or unbounded (depending on the order s). We believe that the analogous results
are also true for diffeomorphism groups on more general non-compact manifolds, but for
simplicity, we will restrict ourselves here to the Euclidean case.

Proof of Theorem 1.2 The zero diameter result follows directly from the vanishing geodesic
distance results of [5,32,33]. It remains to show that the diameter is unbounded otherwise.

For sp > n, the proof of positive geodesic distance [9,33] uses the Sobolev embedding
Ws,p(Rn) ⊂ L∞(Rn). It shows that for any ϕ ∈ Diffc(Rn) and any x ∈ R

n ,

|ϕ(x) − x | ≤ C dists,p(Id, ϕ). (5.1)

Here C = C(s, p, n) > 0 is a constant depending on s, p and n. By choosing ϕ(0) to be
arbitrarily far away from the origin this shows that diams,p Diffc(Rn) = ∞ for sp > n.

For s ≥ 1 a scaling argument yields the result independently from n and p. Fix λ > 0, and
for ϕ ∈ Diffc(Rn), define ϕλ(x) := λ−1ϕ(λx). It is easy to see that suppϕλ = λ−1 suppϕ,
hence ϕλ ∈ Diffc(Rn). Similar arguments as in the proof of Lemma 3.8 show that given a
path ϕt from Id to ϕ with a vector field ut , ϕλ

t is a path from Id to ϕλ with a vector field

uλ
t (x) = 1

λ
ut (λx).

It follows from Lemma 2.3 that

‖uλ
t ‖p

L p = 1

λp+n
‖ut‖p

L p ‖uλ
t ‖p

Ẇ 1,p = 1

λn
‖ut‖p

Ẇ 1,p ,

and therefore, for λ < 1,

‖uλ
t ‖W 1,p >

1

λn/p
‖ut‖W 1,p .

Since ϕt �→ ϕλ
t is a bijection between the paths from Id to ϕ to the paths from Id to ϕλ,

we have

dist1,p(Id, ϕ
λ) ≥ 1

λn/p
dist1,p(Id, ϕ).
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Taking λ → 0, we obtain that diam1,p Diffc(Rn) = ∞ (since from [5,33] we already
know that dist1,p(Id, ϕ) is not zero). Since theWs,p norm for s > 1 controls theW 1,p norm,
we obtain that diams,p Diffc(Rn) = ∞ for any s ≥ 1. 
�
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Appendix A: Proof of Lemma 3.9

We consider the family of piecewise-linear maps ψλ+1,δ

ψλ+1,δ =

⎧⎪⎨
⎪⎩

(λ + 1)x x ∈
[
0, 1−δ

λ+1

]

δ(λ+1)
λ+δ

(
x − 1−δ

λ+1

)
+ 1 − δ x ∈

[
1−δ
λ+1 , 1

] =
⎧⎨
⎩

(λ + 1)x x ∈
[
0, 1−δ

λ+1

]
δ(λ+1)x+(1−δ)λ

λ+δ
x ∈

[
1−δ
λ+1 , 1

] .

Since piecewise-linear maps are not elements of the group of diffeomorphisms Diff(S1)
we have to smoothen the maps around the break points 1−δ

λ+1 and 0 ∼ 1. However, since the
Ws,p-metric can be extended to the space of Lipschitz-maps (for s < 1 + 1/p) and since
the smoothening can be done in such a way that the change in the distance to identity is
arbitrarily small, we ignore this in the following.

In the following we will bound the length of the linear homotopy ϕt (x) between Id and
ψλ+1,δ which albeit being straightforward turns out to be a somewhat tedious calculation.
We bound the length below with respect to the Ẇ s,p norm, under the assumption that s > 1.
Boundedness with respect to the lower order parts of Ws,p norm, as well as for Ws,p norm
for s ≤ 1, is similar, but simpler. We have

ϕt (x) = (1 − t)x + tψλ+1,δ(x) =
⎧⎨
⎩

(1 + λt)x x ∈
[
0, 1−δ

λ+1

]

x + t (1−δ)λ
λ+δ

(1 − x) x ∈
[
1−δ
λ+1 , 1

] .

Its inverse is then given by

ϕ−1
t (y) =

⎧⎨
⎩

y
1+λt y ∈

[
0, (1−δ)(1+λt)

λ+1

]
y−1

1−t (1−δ)λ
λ+δ

+ 1 y ∈
[

(1−δ)(1+λt)
λ+1 , 1

] ,

and its time derivative is

∂tϕt (x) = ψλ+1,δ(x) − x =
⎧⎨
⎩

λx x ∈
[
0, 1−δ

λ+1

]
(1−δ)λ
λ+δ

(1 − x) x ∈
[
1−δ
λ+1 , 1

] .
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The vector field ut defined by ∂tϕt = ut ◦ ϕt is therefore

ut (y) = ∂tϕt (ϕ
−1
t (y)) =

⎧⎨
⎩

λy
1+λt y ∈

[
0, (1−δ)(1+λt)

λ+1

]
(1−δ)λ
λ+δ

1−y

1−t (1−δ)λ
λ+δ

y ∈
[

(1−δ)(1+λt)
λ+1 , 1

]

=
⎧⎨
⎩

y
t+ 1

λ

y ∈
[
0, (1−δ)(1+λt)

λ+1

]
(1−δ)(1−y)

(1−t)(1−δ)+δ(1+ 1
λ
)

y ∈
[

(1−δ)(1+λt)
λ+1 , 1

] ,

and therefore

u′
t (y) =

⎧⎨
⎩

1
t+ 1

λ

y ∈
[
0, (1−δ)(1+λt)

λ+1

]
−(1−δ)

(1−t)(1−δ)+δ(1+ 1
λ
)

y ∈
[

(1−δ)(1+λt)
λ+1 , 1

] .

We now evaluate the Ẇ 1+σ,p-norm of ut , for σ p < 1. That is, we evaluate the (σ, p)-
Gagliardo seminorm of u′

t , whose pth power is
∫∫

R2

|u′
t (x) − u′

t (y)|p
|x − y|1+σ p

dx dy = 2
∫∫

y>x

|u′
t (x) − u′

t (y)|p
|x − y|1+σ p

dx dy

= 2
∫ ∞

−∞

∫ ∞

0

|u′
t (x) − u′

t (x + s)|p
s1+σ p

ds dx .

We split this double integral into different regions:
∫ ∞

−∞

∫ ∞

0

|u′
t (x) − u′

t (x + s)|p
s1+σ p

ds dx

=
∫ 0

−∞

∫ −x+ (1−δ)(1+λt)
λ+1

−x

(
t + 1

λ

)−p

s1+σ p
ds dx

+
∫ 0

−∞

∫ −x+1

−x+ (1−δ)(1+λt)
λ+1

(
1−δ

(1−t)(1−δ)+δ(1+ 1
λ
)

)p

s1+σ p
ds dx

+
∫ (1−δ)(1+λt)

λ+1

0

∫ −x+1

−x+ (1−δ)(1+λt)
λ+1

(
1

t+ 1
λ

+ 1−δ

(1−t)(1−δ)+δ(1+ 1
λ
)

)p

s1+σ p
ds dx

+
∫ 1

(1−δ)(1+λt)
λ+1

∫ ∞

−x+1

(
1−δ

(1−t)(1−δ)+δ(1+ 1
λ
)

)p

s1+σ p
ds dx .

We now evaluate each of the four integrals in the right-hand side separately. We will use
repeatedly the following: for α ∈ (0, 1) and a > 0,

lim
x→∞(x + a)α − xα = 0,

and

(1 − x)α ≥ 1 − xα x ∈ [0, 1].
All the constants C below are C = C(p, σ ) > 0, independent of λ, δ and t .
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For the first integral we have:

(
t + 1

λ

)−p ∫ 0

−∞

∫ −x+ (1−δ)(1+λt)
λ+1

−x

1

s1+σ p
ds dx

=
(
t + 1

λ

)−p 1

σ p

∫ 0

−∞

(
(−x)−σ p −

(
−x + (1 − δ)(1 + λt)

λ + 1

)−σ p
)

dx

=
(
t + 1

λ

)−p 1

σ p

∫ ∞

0

(
x−σ p −

(
x + (1 − δ)(1 + λt)

λ + 1

)−σ p
)

dx

=
(
t + 1

λ

)−p 1

(1 − σ p)σ p

(
x1−σ p −

(
x + (1 − δ)(1 + λt)

λ + 1

)1−σ p
)∞

0

=
(
t + 1

λ

)−p 1

(1 − σ p)σ p

(
(1 − δ)(1 + λt)

λ + 1

)1−σ p

< C

(
t + 1

λ

)−p+(1−σ p)

< Ct−p+(1−σ p).

The second integral can be bounded via:

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p ∫ 0

−∞

∫ −x+1

−x+ (1−δ)(1+λt)
λ+1

1

s1+σ p
ds dx

= 1

σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p

∫ 0

−∞

((
(1 − δ)(1 + λt)

λ + 1
− x

)−σ p

− (1 − x)−σ p

)
dx

= 1

σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p

∫ ∞

0

((
(1 − δ)(1 + λt)

λ + 1
+ x

)−σ p

− (1 + x)−σ p

)
dx

= 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p

((
(1 − δ)(1 + λt)

λ + 1
+ x

)1−σ p

− (1 + x)1−σ p

)∞

0

= 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
1 −

(
(1 − δ)(1 + λt)

λ + 1

)1−σ p
)

≤ 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
1 − (1 − δ)(1 + λt)

λ + 1

)1−σ p

= 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
δ + (1 − δ)

λ

λ + 1
(1 − t)

)1−σ p
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<
1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ

)p

(δ + (1 − δ)(1 − t))1−σ p

= (1 − δ)p

(1 − σ p)σ p
(δ + (1 − δ)(1 − t))−p+(1−σ p) < C(1 − t)−p+(1−σ p).

Simirlarly we calcualte for the third integral:
(

1

t + 1
λ

+ 1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p ∫ (1−δ)(1+λt)
λ+1

0

∫ −x+1

−x+ (1−δ)(1+λt)
λ+1

1

s1+σ p
ds dx

= p

((
t + 1

λ

)−p

+
(

1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p)∫ (1−δ)(1+λt)
λ+1

0

∫ −x+1

−x+ (1−δ)(1+λt)
λ+1

1

s1+σ p
ds dx

= 1

σ

((
t + 1

λ

)−p

+
(

1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p)

∫ (1−δ)(1+λt)
λ+1

0

((
(1 − δ)(1 + λt)

λ + 1
− x

)−σ p

− (1 − x)−σ p

)
dx

= 1

(1 − σ p)σ

((
t + 1

λ

)−p

+
(

1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p)

(
(1 − x)1−σ p −

(
(1 − δ)(1 + λt)

λ + 1
− x

)1−σ p
) (1−δ)(1+λt)

λ+1

0

= 1

(1 − σ p)σ

((
t + 1

λ

)−p

+
(

1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p)

((
1 − (1 − δ)(1 + λt)

λ + 1

)1−σ p

− 1 +
(

(1 − δ)(1 + λt)

λ + 1

)1−σ p
)

≤ 1

(1 − σ p)σ[(
t + 1

λ

)−p (
(1 − δ)(1 + λt)

λ + 1

)1−σ p

+
(

1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
1 − (1 − δ)(1 + λt)

λ + 1

)1−σ p
]

≤ 1

(1 − σ p)σ[(
t + 1

λ

)−p (
(1 − δ)(1 + λt)

λ + 1

)1−σ p

+
(

1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
δ + (1 − δ)

λ

λ + 1
(1 − t)

)1−σ p
]

<
1

(1 − σ p)σ[(
t + 1

λ

)−p ( 1 + λt

λ + 1

)1−σ p

+
(

1

(1 − t)(1 − δ) + δ

)p

(δ + (1 − δ)(1 − t))1−σ p

]

<
1

(1 − σ p)σ

[(
t + 1

λ

)−p+(1−σ p)

+ (δ + (1 − δ)(1 − t))−p+(1−σ p)

]

< C
(
t−p+(1−σ p) + (1 − t)−p+(1−σ p)

)
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Finally the last integral can be bounded by:(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p ∫ 1

(1−δ)(1+λt)
λ+1

∫ ∞

−x+1

1

s1+σ p
ds dx

= 1

σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p ∫ 1

(1−δ)(1+λt)
λ+1

(1 − x)−σ p dx

= 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p

(1 − x)1−σ p
∣∣ (1−δ)(1+λt)

λ+1
1

= 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
1 − (1 − δ)(1 + λt)

λ + 1

)1−σ p

= 1

(1 − σ p)σ p

(
1 − δ

(1 − t)(1 − δ) + δ(1 + 1
λ
)

)p (
δ + (1 − δ)

λ

λ + 1
(1 − t)

)1−σ p

<
(1 − δ)p

(1 − σ p)σ p

(
1

(1 − t)(1 − δ) + δ

)p

(δ + (1 − δ)(1 − t))1−σ p

= (1 − δ)p

(1 − σ p)σ p
(δ + (1 − δ)(1 − t))−p+(1−σ p) < C(1 − t)−p+(1−σ p).

Overall we obtained

‖u′
t‖Ẇ σ,p(R) < C

(
(1 − t)−p+(1−σ p) + t−p+(1−σ p)

)1/p
< C

(
(1 − t)−1+ 1−σ p

p + t−1+ 1−σ p
p

)

where we used the fact that (1 + x)α < 1 + xα for x > 0 and α ∈ (0, 1).
We therefore have, using the fact that 1 − σ p > 0, that
∫ 1

0
‖u′

t‖Ẇ σ,p(R) dt ≤ C
∫ 1

0
C

(
(1 − t)−1+ 1−σ p

p + t−1+ 1−σ p
p

)
dt = 2C

p

1 − σ p
,

which is a bound independent of λ and δ.

Appendix B: Sobolev norms of radial functions

In this section we prove a technical lemma on Sobolev functions, which is used in Sect. 4.3.

Lemma B.1 Let n > 1, and define the operator T : C∞
c ((0, 1)) → C∞

c (B1(R
n)) by

T f (x) = f (|x |).
Then for every s ≥ 0 and p ≥ 1, we have

‖T f ‖Ws,p ≤ C‖ f ‖Ws,p ,

for some C = C(s, p, n) > 0 independent of f . That is, T : Ws,p
0 (0, 1) → Ws,p

0 (B1(R
n))

is a bounded operator for every s ≥ 0 and p ≥ 1.

Proof Step I: integer Sobolev spacesWe first prove the theorem for Wk,p norms, where k is
an integer. For k = 0, moving to polar coordinates, we have

‖T f ‖p
L p =

∫
B1(Rn)

|T f (x)|p dx = ωn

∫ 1

0
| f (r)|prn−1 dr ≤ ωn ‖ f ‖p

L p ,
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where ωn is the measure of the (n − 1)-dimensional unit sphere. For k = 1, we note that
D(T f )(x) = f ′(|x |) x

|x | , hence |D(T f )(x)| = | f ′(r)| and the estimate is similar. Differen-
tiating further, we have for k = 2

D2(T f )(x) =
(
f ′′(|x |) − f ′(|x |)

|x |
)

x

|x | ⊗ x

|x | + f ′(|x |)
|x | Id,

and for higher derivatives we obtain

Dk(T f )(x) =
k∑
j=1

f ( j)(|x |)
|x |k− j

Gk
j

(
x

|x |
)

,

where Gk
j are smooth k-tensor-valued functions on Sn−1, which are independent of f .

In order to prove boundedness we need to prove that for j ≤ k we have that

∫ 1

0

∣∣∣∣∣
f ( j)(r)

rk− j

∣∣∣∣∣
p

rn−1 dr ≤
∫ 1

0

∣∣∣ f (k)(r)
∣∣∣p dr .

This follows from Jensen’s inequality: For k = 1, we have

∫ 1

0

∣∣∣∣ f
′(r)
r

∣∣∣∣
p

rn−1 dr =
∫ 1

0

∣∣∣∣1r
∫ r

0
f ′′(t) dt

∣∣∣∣
p

rn−1 dr ≤
∫ 1

0

(
1

r

∫ r

0

∣∣ f ′′(t)
∣∣p dt

)
rn−1 dr

=
∫ 1

0

∫ r

0

∣∣ f ′′(t)
∣∣p dt rn−2 dr ≤

∫ 1

0

∣∣ f ′′(t)
∣∣p dt ·

∫ 1

0
rn−2 dr

= 1

n − 1

∫ 1

0

∣∣ f ′′(t)
∣∣p dt .

For k = 2 we have
∫ 1

0

∣∣∣∣ f
′(r)
r2

∣∣∣∣
p

rn−1 dr =
∫ 1

0

∣∣∣∣1r
∫ r

0

1

r

∫ t

0
f (3)(s) ds dt

∣∣∣∣
p

rn−1 dr

≤
∫ 1

0

1

r

∫ r

0

∣∣∣∣1r
∫ t

0
f (3)(s) ds

∣∣∣∣
p

dt rn−1 dr

=
∫ 1

0

1

r

∫ r

0

t p

r p

∣∣∣∣1t
∫ t

0
f (3)(s) ds

∣∣∣∣
p

dt rn−1 dr

≤
∫ 1

0

1

r

∫ r

0

t p

r p
1

t

∫ t

0

∣∣∣ f (3)(s)
∣∣∣p ds dt rn−1 dr

≤
∫ 1

0

∣∣∣ f (3)(s)
∣∣∣p ds ·

∫ 1

0

1

r

∫ r

0

t p

r p
1

t
dt rn−1 dr

= 1

p(n − 1)

∫ 1

0

∣∣∣ f (3)(s)
∣∣∣p ds.

The result for higher values of k follows in a similar manner.
Step II: Interpolation Assume for now that s ∈ (0, 1). Since B1(R

n) is a convex set, we
have that theWs,p(Rn) norm on functions supported on B1(R

n) (the Gagliardo/Slobodeckij
norm) is equivalent to the norm of the real interpolation space

χ
s,p
0 (B1(R

n)) = (L p(B1(R
n)),W 1,p(B1(R

n)))s,p,
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defined by

‖ f ‖p
χ
s,p
0 (B1(Rn))

=
∫ ∞

0

(
K (t, f )

t s

)
dt

t
K (t, f )

= inf
g∈C∞

0 (B1(Rn))

(‖ f − g‖L p(B1(Rn)) + t‖g‖W 1,p(B1(Rn))

)
.

See [15, Theorem 4.7].3 Since χ
s,p
0 (B1(R

n)) is an interpolation space, the map T is

bounded as a map L p([0, 1]) → L p(B1(R
n)) and as a map W 1,p

0 ([0, 1]) → W 1,p
0 (B1(R

n))

and thus is also bounded as a map between the corresponding interpolation spaces
χ
s,p
0 ([0, 1]) → χ

s,p
0 (B1(R

n)) (see, e.g., [53, Section 2.3, Theorem 3]).
When s = k +σ , the proof is similar: T is bounded as a map of between the interpolation

spaces (Ẇ k,p(0, 1), Ẇ k+1,p(0, 1))σ,p → (Ẇ k,p(B1(R
n)), Ẇ k+1,p(B1(R

n)))σ,p , since by
the previous step it is bounded as maps on the interpolating spaces; and the norm on these
interpolation spaces is equivalent to the Ẇ s,p(Rn)-norm on C∞

0 (B1(R
n)) functions, by the

same results as for the k = 0 case. 
�
Remark B.2 This lemma could probably be proven, at least for low values of k, by brute force
evaluation of the Gagliardo seminorm, using the Funk–Hecke theorem (see, e.g., [29]).

An immediate corollary is the analogous result for vector fields, instead of functions:

Corollary B.3 Let n > 1, and define the operator T̃ : C∞
c ((0, 1)) → C∞

c (B1(R
n); R

n) by

T̃ f (x) = f (|x |) x

|x |
Then for every s ≥ 0 and p ≥ 1, we have

‖T̃ f ‖Ws,p ≤ C‖ f ‖Ws,p ,

for some C = C(s, p, n) > 0 independent of f . That is, T̃ : Ws,p
0 (0, 1) →

Ws,p
0 (B1(R

n); R
n) is a bounded operator for any s ≥ 0 and p ≥ 1.

Proof Let F ∈ C∞
c ((0, 1)) be an antiderivative of f . Then the corollary follows from

Lemma B.1 since T̃ f = D(T F). 
�

Appendix C: Diameter and displacement energy

In this section we prove a general result relating bounded displacement energy and bounded
diameter, inspired by previous results relating zero displacement energy and vanishing
geodesic distance [9,23,54]. However, as shown below, compared with the vanishing case
we need stronger assumptions on the norms involved, assumptions which are too restrictive
to the applications in this paper; therefore we used other means to prove boundedness of the
diameter.

Let G be a (possibly infinite dimensional) manifold and topological group with neutral
element e, Lie algebra g = TeG, and left and right translations L and R given by

g1g2 = Lg1(g2) = Rg2(g1), ∀g1, g2 ∈ G. (C.1)

3 In [15] the interpolation is defined with respect to the homogeneous Ẇ 1,p norm, but this does not matter as

it is, by the Poincaré inequality, equivalent to the fullW 1,p norm on the spaceW 1,p
0 which we are considering.

Similarly, the equivalence there is shown between the interpolation space and the homogeneous Ẇ s,p norm,
which is again equivalent to the full norm [15, Section 2.3].
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Assume for each g ∈ G that Rg : G → G is smooth, and let ‖ · ‖ be a norm on the Lie
algebra g. This gives rise to the following right-invariant Riemannian metric on G:

‖h‖g = ‖T Rg−1h‖, ∀g ∈ G, ∀h ∈ TgG. (C.2)

The corresponding geodesic distance function is defined as

dist(g1, g2) = inf
∫ 1

0
‖∂t g(t)‖g(t)dt, ∀g1, g2 ∈ G, (C.3)

where the infimum is taken over all smooth paths in G with g(0) = g1 and g(1) = g2.

Theorem C.1 Let G be as above. Assume that

1. Any transformation g can be written as a product g = g1g2 where both g1 and g2 are
supported on a proper closed subset of M.

2. For any proper closed subset A ⊂ M the group GA ⊂ G of all transformations that
have support in A is uniformly perfect, i.e., any g ∈ GA can be written as a product of
n commutators, where n is independent of g ∈ G.

3. The geodesic distance to a commutator of g and h is uniformly controlled by the minimum
of the distances to g and h, i.e.,

dist(e, [g, h]) = dist(g ◦ h, h ◦ g) ≤ C min(dist(e, g), dist(e, h)), ∀g, h ∈ G,(C.4)

where C is independent of both g and h.4

4. The displacement energy is globally bounded, i.e., for any proper closed subset A ⊂ M
we have

E(A) = inf {dist(e, g) : g ∈ G, g(A) ∩ A = ∅} ≤ D (C.5)

where D is independent of the set A.

Then the diameter of the group G is bounded.

Proof Using Assumption C.1 and the right invariance of the geodesic distance we can reduce
the boundedness of the diameter to consider only transformations that are supported on a
proper closed subset of M , since

dist(e, g) = dist(e, g1g2) = dist(g−1
2 , g1) ≤ dist(g−1

2 , e) + dist(e, g1)

= dist(e, g2) + dist(e, g1), (C.6)

where both g1 and g2 are supported in a proper subset of M .
Thus it remains to proof the boundedness of the distance from the identity to any trans-

formation g with support in a proper closed subset A. Using Assumption C.1 we write any
g1 = [h1, h2][h3, h4] · · · [h2n−1, h2n] with hi ∈ GA. By the same argument as above we
obtain

dist(e, g1) ≤
n∑

i=1

dist(e, [h2i−1, h2i−1]). (C.7)

To bound the distance from the identity to a commutator of transformations with support in
A we proceed as in [9, Theorem 1] and use Assumption C.1 to obtain

dist(e, [h2i−1, h2i−1]) ≤ (1 + C)2E(A). (C.8)

4 Note that this holds if the left multiplication Lg is Lipschitz with Lipschitz constant that is independent of
g, see [9, Theorem 1].
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Putting all of this together we have for each g ∈ G that

dist(e, g) ≤ 2n(1 + C)2E(A) (C.9)

and using assumption C.1 and the triangle inequality this yields

dist(g, h) ≤ 4n(1 + C)2D (C.10)

for any g, h ∈ G. 
�
Let now M = Sn and let G = Diff(Sn). Then Assumptions C.1 and C.1 are satisfied [17,

61]. Assumption C.1 is satisfied for Ws,p-metrics of low enough order, see Proposition 4.9.
In the following wewill however show that already in the case s = 1 and n = 1 condition C.1
is to restrictive for our purposes as, e.g., the Ḣ1 metric on Diff(S1), which corresponds to
bounded diameter, does not satisfy it:

Lemma C.2 There exist sequences ψn, ϕn ∈ Diff(S1) such that dist Ḣ1(ϕn ◦ ψn, ψn ◦ ϕn) →
π/2 but dist Ḣ1(Id, ϕn) → 0.

Proof By the analysis of Lenells [42] we have an explicit formula for the geodesic distance
of the homogeneous Ḣ1-metric given by:

dist1,2(ψ, ϕ) = arccos

(∫ 1

0

√
ψ ′√ϕ′dθ

)
(C.11)

Now define the functions

ϕn :

⎧⎪⎨
⎪⎩
0 0 ≤ θ ≤ 1

n

2x 1
n ≤ θ ≤ 2

n

x 2
n ≤ θ ≤ 1

ψn :
{
nx 0 ≤ θ ≤ 1

n

1 1
n ≤ θ ≤ 1

(C.12)

The functions ϕn andψn are not diffeomorphisms, but we can smooth themwith an arbitrarily
small change to the Ḣ1 distances considered. The claim now follows by a straightforward
calculation. 
�
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