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Abstract
We consider nonlocal variational problems in L p , like those that appear in peridynamics,
where the functional object of the study is given by a double integral. It is known that
convexity of the integrand implies the lower semicontinuity of the functional in the weak
topology of L p . If the integrand is not convex, a usual approach is to compute the relaxation,
which is the lower semicontinuous envelope in the weak topology. In this paper we compute
such a relaxation for a scalar problem with a double-well integrand. The relaxation is non-
trivial, and, contrary to the local case, it cannot be represented as a double integral, as the
original problem. Nonetheless, we show that, as for the local case, the relaxation can be
expressed in terms of the energy of a suitable truncation of the considered function.

Mathematics Subject Classification 49J45 · 49J40 · 49K21

1 Introduction

The object of this paper are functionals I of the form

I (u) = −
∫

Ω

−
∫

Ω

w(x, x ′, u(x), u(x ′)) dx ′ dx . (1.1)
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where Ω ⊂ R
n is a bounded open subset, u : Ω → R is in some Lebesgue space L p

with 1 < p < ∞, and the integrand w : Ω × Ω × R × R → R satisfies some natural
regularity, coercivity and growth conditions. The symbol −

∫
indicates the integral divided by

the measure ofΩ; the use of the average integral is just a convenient normalization. This kind
of functionals represents an energy and appears in many contexts in the modelling of some
nonlocal processes, such as peridynamics [37], phase transitions [2], pattern formation [21],
image processing [23] and diffusion [4]. Our main motivation comes from peridynamics:
in such a context, Ω represents the reference configuration of a solid which undergoes a
deformation u, and I measures the energy of that deformation. The nonlocal behavior comes
from the fact that the energy density takes into account the interaction between all points of
the body.

A usual procedure for showing the existence of minimizers of the energy functional I is
the direct method of the Calculus of variations, whose main ingredients are coercivity and
lower semicontinuity. The natural topology in this context is the weak topology in L p , since
it is in this case where the coercivity implies the compactness. The works [10,11,13,20,33]
deal precisely with the issue of existence of minimizers, and, as a part of the study, they
analyze necessary and sufficient conditions for the lower semicontinuity of I in the weak
topology of L p . One of such necessary and sufficient conditions involves a nonlocal property
of convexity which is difficult to understand, even for n = 1; see [12,19,29]. Nevertheless,
when the integrand w = w(x, x ′, y, y′) does not depend on (x, x ′), and the dependence on
(y, y′) is through the difference y − y′, i.e., when, given a function f : R → R, the energy
functional is

I (u) = −
∫

Ω

−
∫

Ω

f (u(x) − u(x ′)) dx ′ dx, (1.2)

such a nonlocal property of convexity is equivalent to convexity of f : see, e.g., [11, Sect. 7].
Thus, if f is not convex, the functional I is not lower semicontinuous in the weak topology

of L p . A usual approach to tackle this obstacle is to consider the relaxation I ∗, which consists
in finding the lower semicontinuous envelope of I . In the classical local context of nonlinear
elasticity, understanding the relaxation is capital to study the microstructure of the material
[8], although in this nonlocal context the relaxation has a slightly different interpretation in
terms of microstructure, as will be seen in Sect. 10.

Relaxation for nonlocal functionals similar to I but depending on ∇u was analyzed in
[12,19,29,30]. These works study necessary and sufficient conditions for the weak lower
semicontinuity, as well as abstract relaxation functionals, but they do not compute the lower
semicontinuous envelope of the considered functional. The article [11], on the other hand,
analyzes the relaxation of the functional I in terms of Young measures, which are, roughly
speaking, families of probability measures parametrized by x ∈ Ω that capture the informa-
tion of the possible oscillations of sequences converging weakly in L p(Ω).

In this paper we compute the relaxation I ∗ of I for a particular, but paradigmatic, case of
non-convex f ; namely,

f (t) = −2αt2 + t4, α > 0, (1.3)

one of the most used double-well potentials for modelling phase transitions. For such an
integrand, we give an explicit formula for the relaxation which allows us, among other
results, to solve the question, in the negative, of the integral representation for the relaxed
functional, i.e., we show that there does not exist any function g such that I ∗(u) can be
written in the form

−
∫

Ω

−
∫

Ω

g(u(x) − u(x ′)) dx dx ′. (1.4)

123



Relaxation of a nonlocal variational problem with… Page 3 of 30 67

Such a result was suggested in [11,33] but its proof was left open. Moreover, even though for
this f the functional I (u) only depends on the second and fourth moments of u (see Sect. 6),
its relaxation I ∗ cannot be written as a function depending on those moments.

The main steps of the proof are the following:

(i) We start with the result of Bellido andMora-Corral [11], which states that the relaxation
of I in the space of Young measures is the functional Ī defined in the space of Young
measures in Ω × R as

Ī (ν) = −
∫

Ω×R

−
∫

Ω×R

f (y − y′) dν(x ′, y′) dν(x, y),

and show (see Proposition 4.1) that I ∗(u) can be characterized as the minimum of Ī (ν)

among Young measures ν with barycenter u. This result is totally analogous to classical
results in local problems.

(ii) In Propositions 5.1 and 5.2 , where we consider a general integrand w, we obtain (first
and second order) optimality conditions satisfied by any measure ν that solves the
minimization problem of Step (i). To do so, we adapt the method of Pedregal [32], who
established optimality conditions for a problem defined in the set of Young measures
with no restrictions. Since the original problem in [32] contains ∇u, the analysis was
limited to n = 1. Here, we obtain optimality conditions for any n ≥ 1, and, in addition,
we incorporate the restriction that the barycenter of ν has to be u.
Later, an analysis of our optimality conditions for the specific f given in (1.3) allows us
to conclude (see Steps 1–3 in the proof of Theorem 6.2) that the optimal Youngmeasure
has the form

νx =
{

δu(x) for x ∈ Ω1,
v2(x)−u(x)
v2(x)−v1(x)

δv1(x) + u(x)−v1(x)
v2(x)−v1(x)

δv2(x) for x ∈ Ω2.

for some disjoint sets Ω1,Ω2 with union Ω and some functions v1, v2.
(iii) We do variations of the v1 and v2 and conclude that v1 + v2 = 0 and v1 and v2 are

constant (see Steps 4–5 in the proof of Theorem 6.2). Moreover, v21 = v22 = bu where
bu is the only solution b > 0 to the equation

b = α − 3−
∫

Ω

max{u2, b}

(see Sect. 7).
(iv) We do variations ofΩ1 and conclude thatΩ1 is the set where u2 ≥ bu (see Step 6 in the

proof of Theorem 6.2). Thus, ν is completely determined, I ∗(u) = Ī (ν) and, in fact,

I ∗(u) = I
(
max

{
|u|,√max{bu, 0}

})
(1.5)

(see Theorem 7.2 and Corollary 7.3).

It is worth noticing that, even though Young measures are extensively used in the charac-
terization of I ∗, our final formula for I ∗ does not involve Young measures, as can be seen
from (1.5).

The impossibility of expressing I ∗ as a functional of the style (1.4) represents a remarkable
difference with the local case. Nevertheless, there are also some similitudes, since, as formula
(1.5) shows and will be explained in Sect. 10, both local and nonlocal relaxations can be
obtained through a suitable truncation of u.
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We mention two relevant works related to ours: [25,26]. In [26], lower semicontinuity
and relaxation for nonlocal problems are also studied, but in the context of L∞. In such a
work the functional involves the essential supremum and the authors show that the relaxed
functional has the same structure as the original one (with another supremand), a remarkable
difference with our negative representation result (see Proposition 9.1). A follow-up of [26]
is [25], where they show that, in general, the relaxation in L p of functionals I of the style of
(1.1) is not given by a double integral. They also show instances where the relaxation does
preserve the structure of a double integral. Their approach is very different from ours and is
based on the study of nonlocal inclusions.

Although the relaxation is determined here for the specific f given in (1.3), we believe
that the same techniques can be used to compute the relaxation for I in (1.2) when f is a C2

even function with a typical profile of a double-well potential. However, the relaxation of I
for an integrand depending explicitly on (x, x ′) seems to be substantially more difficult, as
does the vectorial case (when u takes values in Rd ).

This paper is organized as follows. Section 2 presents some definitions about Young
measures in L p . In Sect. 3 we review the results of [11], which shows the formula for Ī , the
relaxation of I in the space of Young measures. In Sect. 4 we prove an abstract formula for
I ∗ in terms of Ī , namely, I ∗(u) is the minimum of Ī (ν) among the Young measures ν with
barycenter u. In the same section we also review the necessary and sufficient conditions for
I to be lower semicontinuous in the weak topology of L p . In Sect. 5 we adapt the method of
[32] to find optimality conditions for the Young measures that minimize Ī , for general n ≥ 1
and under the constraint that their barycenter is u. The core of the paper are Sects. 6 and
7 . For the particular case of (1.2) when f is given by (1.3), we give in Sect. 6 a complete
description of the Young measures with given barycenter that minimize Ī . Using this result,
in Sect. 7 we compute I ∗. Section 8 illustrates the relaxation result of Sect. 7 to compute
I ∗(u) for particular examples of u, while in Sect. 9 we use such examples to show that I ∗
is not given by a functional of the form (1.4) or by a function depending only on the second
and fourth moments of u. Finally, in Sect. 10, we compare our relaxation formula with that
of the local case, and give an interpretation in terms of the microstructure of the deformed
material.

2 Youngmeasures in Lp

In this section we briefly recall the definitions and results concerning Young measures that
are needed in the paper; for the proofs and general expositions, we refer the reader to [5–
7,11,22,31,38,39].

We start with some general notation of measure theory. Throughout the paper, Ω denotes
a non-empty bounded open set of Rn , n ≥ 1; from Sect. 3 it will be assume to be connected
(so, a domain) and with a Lipschitz boundary.

We will use both Lebesgue and Borel measurability: Lebesgue measurability will be in a
Lebesgue measurable subset of Rn , while Borel measurability will be in R. The Lebesgue
measure in R

n will be denoted by Ln ; the Lebesgue measure of a measurable E ⊂ R
n is

denoted by Ln(E) or |E |. When we just write measurable, it means Lebesgue measurable,
while, when we sayB-measurable, it means Borel measurable. Likewise,Ln ⊗B-measurable
means measurable inΩ ×Rwith respect to the product measure. In fact, the paper deals with
functions defined either inΩ×Ω×R×R (in which case we assumeL2n ⊗B2-measurability)
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or inR (in which case we assume B-measurability). In the notation of the introduction, these
two cases correspond to the integrands w = w(x, x ′, y, y′) and w = f (y − y′).

Given a measurable set E and 1 ≤ p < ∞, the Lebesgue space L p(E) is defined in the
usual way. Weak convergence in L p is denoted by ⇀.

Given a ∈ R, the Dirac delta at a is denoted by δa , while the average integral −
∫

E denotes
the integral in E divided by Ln(E).

Given E ⊂ R
n , C(E) is the set of continuous functions in E . Its subset of bounded

functions is denoted by Cb(E), and is endowed with the supremum norm ‖·‖∞. In addition,
C0(E) is its subset of functions u such that for every ε > 0 there exists a compact K ⊂ E
such that |u(x)| < ε for all x ∈ E \ K .

A Young measure in Ω × R is a measure ν in Ω × R, equipped with the Ln ⊗ B-sigma
algebra, such that for any measurable E ⊂ Ω ,

ν(E × R) = Ln(E).

We denote by Y(Ω) the set of Young measures in Ω × R.
Thanks to the procedure of disintegration (or slicing; see, e.g., [6, Th. 4.2.4]), any ν ∈

Y(Ω) can be identified with a family (νx )x∈Ω of probability measures on R such that for all
f ∈ C0(Ω × R), the map

Ω  x �→
∫
R

f (x, y) dνx (y)

is measurable and∫
Ω×R

f (x, y) dν(x, y) =
∫

Ω

(∫
R

f (x, y) dνx (y)

)
dx .

Thus, we write ν = (νx )x∈Ω . In the sequel, we will use both approaches.
Any measurable function u : Ω → R can be identified with the Young measure νu =(

νu
x

)
x∈Ω

given by νu
x = δu(x) for all x ∈ Ω , i.e.,
∫

Ω×R

ϕ(x, y) dνu(x, y) =
∫

Ω

ϕ(x, u(x)) dx

for all ϕ ∈ C0(Ω × R). With a small abuse of notation, we write u ∈ Y(Ω).
Given p ≥ 1, we denote by Y p(Ω) the set of ν ∈ Y(Ω) such that∫

Ω×R

|y|p dν(x, y) < ∞.

As a consequence of Hölder’s inequality, Y p(Ω) ⊂ Yq(Ω) if 1 ≤ q ≤ p.

3 Relaxation in the set of Youngmeasures

In this section we recall some results of [11] that will be used later. Given a function w :
Ω × Ω ×R×R → R, it is said to be symmetric if w(x, x ′, y, y′) = w(x ′, x, y′, y) for a.e.
x, x ′ ∈ Ω and all y, y′ ∈ R. We say that w is Carathéodory if it is L2n ⊗B2-measurable and
for a.e. x, x ′ ∈ Ω , the function w(x, x ′, ·, ·) is continuous.

We fix p > 1 and define the functional I in L p(Ω) as in (1.1). In this work, no boundary
conditions are imposed, although a slight variant of the proofs can easily deal with them; in
any case, boundary conditions in a nonlocal context are different from the usual Dirichlet or
Neumann conditions in a local setting; see, e.g., [11].We assume that the problem is invariant
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under translations, i.e., I (u) = I (u + a) for all u ∈ L p(Ω) and a ∈ R. This is the case, for
example, if w depends on y and y′ only through the difference y − y′, as we will assume
from Sect. 6. Thus, we can assume, without loss of generality, that

∫
Ω

u = 0. We denote by
L p
0 (Ω) the set of u ∈ L p(Ω) such that

∫
Ω

u = 0. Accordingly, our problem is to calculate
the relaxation I ∗ of (1.1) in the weak topology of L p

0 (Ω).
Given ν ∈ Y p(Ω) and i ∈ Nwith i ≤ p, we define its i thmoment Mi (ν) as themeasurable

function Mi (ν) : Ω → R

Mi (ν)(x) :=
∫
R

yi dνx (y).

Jensen’s (or Hölder’s) inequality shows at once that Mi (ν) ∈ L
p
i (Ω).

The first result that we recall from [11] gives the relaxation of I in Y p(Ω). The precise
statement is the following, where we denote by χB(0,δ) the characteristic function of the ball
B(0, δ) of Rn .

Theorem 3.1 ([11], Th. 6.3) Let Ω be a Lipschitz domain of Rn, fix δ > 0 and let p > 1.
Assume w : Ω × Ω × R × R → R is symmetric, Carathéodory and there exist a1, a2 ∈
L1(Ω × Ω) and c > 0 such that

a1(x, x ′) + 1

c
χB(0,δ)(x − x ′)

∣∣y − y′∣∣p ≤ ∣∣w(x, x ′, y, y′)
∣∣≤a2(x, x ′) + c

(|y|p +∣∣y′∣∣p)
,

(3.1)
for a.e. x, x ′ ∈ Ω and all y, y′ ∈ R. Let Y p,0(Ω) be the set of ν ∈ Y p(Ω) whose first
moment u lies in L p

0 (Ω). Define I1, Ī : Y p(Ω) → R ∪ {∞} as

I1(ν) :=
{

I (u) if ν = (
δu(x)

)
x∈Ω

for some u ∈ L p
0 (Ω),

∞ otherwise,

Ī (ν) :=
⎧⎨
⎩

∫
Ω×R

∫
Ω×R

w(x, x ′, y, y′) dν(x, y) dν(x ′, y′) if ν ∈ Y p,0(Ω),

∞ otherwise.

Then, the lower semicontinuous envelope of I1 with respect to the narrow topology is Ī .

We point out that the term |y′|p in the right-hand side of (3.1) was mistakenly missed out
in [11]. Theorem 3.1 mentions the narrow topology for Young measures: we refer to [11] or
general references on Young measures [5–7,22,31,38,39] for its definition, because it is not
essential here; indeed, it is only used in the proof of Proposition 4.1 below.

A second key result that we will need is the following nonlocal Poincaré inequality. It
has been proved, with different versions, in [14], [15, Th. 1], [34, Th. 1.1], [3, Prop. 4.1], [1,
Cor. 3.4] and [24, Cor. 4.6]. The following formulation is taken from [10, Prop. 4.2] and [11,
Prop. 4.3].

Proposition 3.2 ([11], Prop. 4.3) Let Ω be a Lipschitz domain of Rn, fix δ > 0 and let p ≥ 1.
Then there exists λ > 0 such that for all u ∈ L p

0 (Ω),

∫
Ω

|u(x)|p dx ≤ λ

∫
Ω

∫
Ω∩B(x,δ)

∣∣u(x) − u(x ′)
∣∣p dx ′ dx .
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4 Relaxation in Lp

As mentioned in the previous sections, we denote by I ∗ the lower semicontinuous envelope
of I in the weak topology of L p

0 (Ω), i.e., I ∗ is the greatest lower semicontinuous function
in L p

0 (Ω) that is below I :

I ∗ := sup
{

J : J : L p
0 (Ω) → R is l.s.c. in the weak topology and J ≤ I

}
.

Condition (3.1) and Proposition 3.2 imply at once that, for any u ∈ L1
0(Ω), the quantity I (u)

is well defined and finite if and only if u ∈ L p(Ω). In fact, given a subset A ⊂ L p
0 (Ω), we

have thatA is bounded in L p(Ω) if and only if {I (u) : u ∈ A} is bounded. As a consequence,
in order to calculate I ∗ it suffices to consider bounded sets in L p

0 (Ω). As bounded sets in
the weak topology are metrizable (see, e.g., [16, Th. 3.29]), the topology in those sets A is
metrizable. In particular (see, e.g., [6, Th. 11.1.1] or [22, Prop. 3.12]), for any u ∈ L p

0 (Ω),

I ∗(u) = inf

{
lim inf

j→∞ I (u j ) : {u j } j∈N ⊂ L p
0 (Ω) and u j⇀u as j → ∞

}

and, moreover, we have that a functional I ∗ is the relaxation of I if and only if:

(i) For any sequence {u j } j∈N in L p
0 (Ω) such that u j⇀u as j → ∞ for some u ∈ L p

0 (Ω),
we have

I ∗(u) ≤ lim inf
j→∞ I (u j ).

(ii) For any u ∈ L p
0 (Ω) there exists a sequence {u j } j∈N in L p

0 (Ω) such that u j⇀u as j → ∞
and

I ∗(u) = lim
j→∞ I (u j ).

Although Γ -convergence is not used in this paper, we mention that the relaxation I ∗ is
nothing but the Γ -limit of the constant sequence I .

Given u ∈ L p
0 (Ω), we denote by Y p

u (Ω) the set of ν ∈ Y p(Ω) such that M1(ν) = u.
We are nowable to give the result that establishes the relation between I ∗ and the functional

Ī introduced in Theorem 3.1; it shows a total analogy with the local case (see, e.g., [22, Th.
8.20]) and will be the starting point for our analysis. As pointed out above, its proof is the
only place in the article where narrow convergence of Young measures is actually used and
we send the reader to any of [5–7,11,22,31,38,39] for its definition and properties.

Proposition 4.1 Let w : Ω ×Ω ×R×R → R satisfy the same assumptions of Theorem 3.1.
Then, for every u ∈ L p

0 (Ω),

I ∗(u) = min
{

Ī (ν) : ν ∈ Y p
u (Ω)

}
.

Proof Let u ∈ L p
0 (Ω) and denote by mu the infimum of

{
Ī (ν) : ν ∈ Y p

u (Ω)
}
. We first show

that this infimum is attained, so it is in fact a minimum. Condition (3.1) shows that mu ∈ R.
Let {ν j } j∈N be a sequence in Y p

u (Ω) such that Ī (ν j ) → mu as j → ∞. Then, { Ī (ν j )} j∈N
is bounded, and, by (3.1) and Proposition 3.2, we have that

sup
j∈N

∫
Ω×R

|y|p dν j (x, y) < ∞.
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According to the criterionof tightness forYoungmeasures (see, e.g., [11,Th. 3.3]), there exists
ν ∈ Y(Ω) such that, for a subsequence, {ν j } j∈N converges narrowly to ν. By semicontinuity
(see, e.g., [11, Prop. 3.8]),

Ī (ν) ≤ lim inf
j→∞ Ī (ν j ) = mu .

In particular, ν ∈ Y p(Ω). Let h ∈ L∞(Ω). We apply the semicontinuity result for Young
measures (see, e.g., [6, Prop. 4.3.3]) to the function ϕ : Ω × R → R defined by ϕ(x, y) =
h(x) y. We thus obtain∫

Ω

h(x) M1(ν)(x) dx =
∫

Ω

h(x)

∫
R

y dνx (y) dx

≤ lim inf
j→∞

∫
Ω

h(x)

∫
R

y dν j
x (y) dx =

∫
Ω

h(x) u(x) dx .

When we apply the same result to −ϕ, we obtain the opposite inequality, so we obtain∫
Ω

h(x) M1(ν)(x) dx =
∫

Ω

h(x) u(x) dx .

As this is true for every h ∈ L∞(Ω), we conclude that M1(ν) = u a.e. in Ω . Hence,
ν ∈ Y p

u (Ω) and ν is a minimizer of Ī in Y p
u (Ω).

We set J (u) := min
{

Ī (ν) : ν ∈ Y p
u (Ω)

}
and show that J satisfies conditions (i)–(ii)

above. This will imply that J = I ∗.
Let {u j } j∈N be a sequence converging weakly in L p

0 (Ω) to some u ∈ L p
0 (Ω). By the

criterion of compactness for Young measures (see, e.g., [31, Th. 6.2], [6, Rk. 4.3.3] or [22,
Th. 8.2]), there exists ν ∈ Y p(Ω) such that {u j } j∈N converges narrowly to ν in Y p(Ω). As
before, M1(ν) = u, so ν ∈ Y p

u (Ω). By the semicontinuity of Ī (see [11, Prop. 5.9]),

J (u) ≤ Ī (ν) ≤ lim inf
j→∞ Ī (u j ) = lim inf

j→∞ I (u j ).

This proves condition (i).
Toprove condition (ii), givenu ∈ L p

0 (Ω)weconsider aν ∈ Y p
u (Ω) such that J (u) = Ī (ν).

As Ī is the relaxation of I and I1 inY p,0 (see Theorem 3.1 and the discussion at the beginning
of this section), there exists a sequence {u j } j∈N in L p

0 (Ω) such that u j⇀ν in the narrow
topology of Y p(Ω) and I (u j ) → Ī (ν) = J (u) as j → ∞. Moreover, u j⇀u in L p(Ω)

(see, e.g., [31, Th. 6.8], [22, Th. 8.11] or [11, Lemma 3.13]). This proves condition (ii) for J
and shows that J = I ∗. ��

Obviously, I ∗ = I if and only if I is lower semicontinuous in theweak topology of L p
0 (Ω).

Conditions for this lower semicontinuity were analyzed in [11,13,20]. In those papers it is
proved, as a particular case, the following result, where we denote by w− the negative part
of w.

Proposition 4.2 ([11], Cor. 5.6) Let p > 1. Let w : Ω × Ω ×R×R → R be Carathéodory
and symmetric. Assume that there exist a ∈ L1(Ω × Ω), a continuous strictly increasing
g : [0,∞) → [0,∞) with

lim
t→∞

g(t)

t p
= 0

and a constant c > 0 such that∣∣w(x, x ′, y, y′)
∣∣ ≤ a(x, x ′) + c

(|y|p + ∣∣y′∣∣p)
, for a.e. x, x ′ ∈Ω and all y, y′ ∈R (4.1)
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and

w−(x, x ′, y, y′)≤a(x, x ′) + g (|y|) + g
(∣∣y′∣∣) , for a.e. x, x ′ ∈Ω and all y, y′ ∈R. (4.2)

Then, the functional I of (1.1) is lower semicontinuous in the weak topology of L p
0 (Ω) if and

only if for a.e. x ∈ Ω and every v ∈ L p
0 (Ω), the function

y �→
∫

Ω

w(x, x ′, y, v(x ′)) dx ′

is convex.

We point out that in [11] the terms
∣∣y′∣∣p in (4.1) and g

(∣∣y′∣∣) in (4.2) were mistakenly
missed out.

When the function w only depends on y − y′, Proposition 4.2 takes the following form.

Proposition 4.3 Let p > 1. Let f : R → R be continuous. Assume that there exist a ∈
L1(Ω × Ω), a continuous strictly increasing g : [0,∞) → [0,∞) with

lim
t→∞

g(t)

t p
= 0

and a constant c > 0 such that

| f (t)| ≤ c
(
1 + |t |p) , for all t ∈ R

and

f −(t) ≤ g (|t |) , for all t ∈ R.

Then, the functional I of (1.2) is lower semicontinuous in the weak topology of L p
0 (Ω) if and

only if f is convex.

5 Variations of Youngmeasures

Proposition 4.1 in the previous section reduces the problem of relaxation of I ∗ in L p
0 (Ω) to

the problem of finding a minimizer ν of Ī in Y p
u (Ω). In this section we compute (first and

second order) optimality conditions on ν. For this we follow Pedregal [32], who developed
a method of ascertaining optimality conditions for Young measures. To be precise, we adapt
his method to deal with the constraint M1(ν) = u, and, since our functional does not involve
gradients, we are able to treat the general case n ≥ 1.

Apart from [32], there are several works in which optimality conditions for Young mea-
sures are derived; see, e.g., [35] for a very general approach, [36] for an analogue of the
classical Weierstrass condition, [27] in the context of micromagnetics, and [9,18] for appli-
cations of the optimality condition to a numerical approximation.

We fix a function w : Ω × Ω × R × R → R such that:

(i) w is symmetric,
(ii) w is L2n ⊗ B2-measurable and for a.e. x, x ′ ∈ Ω , the function w(x, x ′, ·, ·) is of class

C2,
(iii) there exist a symmetric a ∈ L1(Ω × Ω) and c > 0 such that∣∣w(x, x ′, y, y′)

∣∣+∣∣∂1w(x, x ′, y, y′)
∣∣+∣∣∂211w(x, x ′, y, y′)

∣∣+∣∣∂212w(x, x ′, y, y′)
∣∣

≤ a(x, x ′) + c
(|y|p + ∣∣y′∣∣p)

,

123



67 Page 10 of 30 C. Mora-Corral, A. Tellini

for a.e. x, x ′ ∈ Ω and all y, y′ ∈ R.

We have denoted by ∂1 the partial derivative of w with respect to y, and by ∂2 the partial
derivative with respect to y′. Analogous notation is employed for the second derivatives. The
symmetry and the C2 regularity imply that, for a.e. x, x ′ ∈ Ω and all y, y′ ∈ R,

∂1w(x, x ′, y, y′) = ∂2w(x ′, x, y′, y), ∂212w(x, x ′, y, y′) = ∂212w(x ′, x, y′, y). (5.1)

Let ν ∈ Y p
u (Ω), fix R > 0 and, for a.e. x ∈ Ω and νx -a.e. y ∈ R, let μy

x ∈ P(R) satisfy

μ
y
x (R \ [−R, R]) = 0,

i.e., μ
y
x has compact support. Define μx (y, z) = μ

y
x (z) ⊗ νx (y), meaning that μx is the

positive, linear and bounded operator in Cb(R × R) defined by

〈μx , ψ〉 =
∫
R

∫
R

ψ(y, z) dμy
x (z) dνx (y) ∀ψ ∈ Cb(R × R),

soμx is a positive Borel measure inR×R and, in fact, a probability measure. For each t ∈ R

and a.e. x ∈ Ω define the probability measure νt
x in R as

〈νt
x , ϕ〉 =

∫
R×R

ϕ(y + t z) dμx (y, z), ∀ϕ ∈ Cb(R).

Note that ν0 = ν. It is immediate to see that νt belongs to Y(Ω). Moreover,∫
Ω×R

|y|p dνt (x, y) =
∫

Ω

∫
R×R

|y + t z|p dμx (y, z) dx

≤ 2p−1
∫

Ω

∫
R

∫
R

(|y|p + |t |p|z|p) dμy
x (z) dνx (y) dx

= 2p−1
[∫

Ω×R

|y|p dν(x, y) + |t |p
∫

Ω×R

∫ R

−R
|z|p dμy

x (z) dν(x, y)

]

< ∞,

so νt ∈ Y p(Ω). Finally, if ∫
R

M1(μ
y
x ) dνx (y) = 0

for a.e. x ∈ Ω then

M1(ν
t
x ) =

∫
R

y dνt
x (y) =

∫
R

∫
R

(y + t z) dμy
x (z) dνx (y)

= u(x) + t
∫
R

M1(μ
y
x ) dνx (y) = u(x)

for a.e. x ∈ Ω , so νt ∈ Y p
u (Ω).

Define g : R → R as g(t) = Ī (νt ). We show that g admits two derivatives by checking
that differentiation under the integral sign is allowed. Thanks to (iii) and the fact νt ∈ Y p(Ω),
for each t ∈ R,

−
∫

Ω×R

−
∫

Ω×R

∣∣w(x, x ′, y, y′)
∣∣ dνt (x ′, y′) dνt (x, y)

≤ −
∫

Ω

−
∫

Ω

a(x, x ′) dx ′ dx + 2c−
∫

Ω×R

|y|p dνt (x, y) < ∞.
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Now,

g(t) = −
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

w(x, x ′, y + t z, y′ + t z′) dμx ′(y′, z′) dμx (y, z) dx ′ dx

and, for all t ∈ R, for a.e. x, x ′ ∈ Ω , forμx -a.e. (y, z) ∈ R×R andμx ′ -a.e. (y′, z′) ∈ R×R,
using (5.1),

d

dt
w(x, x ′, y + t z, y′ + t z′) = ∂1w(x, x ′, y + t z, y′ + t z′)z + ∂1w(x ′, x, y′ + t z′, y + t z)z′

so we obtain that, for all t ∈ [−1, 1],
∣∣∣∣ ddt

w(x, x ′, y+t z, y′+t z′)
∣∣∣∣ ≤ [

a(x, x ′)+c
(|y + t z|p + ∣∣y′ + t z′∣∣p)] [|z| + ∣∣z′∣∣]

≤ [
a(x, x ′)+2p−1c

(|y|p +|z|p +∣∣y′∣∣p +∣∣z′∣∣p)] [|z|+∣∣z′∣∣] ,
and the integral −

∫
Ω

−
∫
Ω

∫
R×R

∫
R×R

of the last term in the previous expression with respect to
dμx ′(y′, z′) dμx (y, z) dx ′ dx can be bounded by

2R−
∫

Ω

−
∫

Ω

a(x, x ′) dx ′ dx + 2p+1Rc

[
−
∫

Ω×R

|y|p dν(x, y) + R p
]

< ∞.

Similarly, using (5.1) again,

d2

dt2
w(x, x ′, y + t z, y′ + t z′) = ∂211w(x, x ′, y + t z, y′ + t z′)z2

+ 2∂212w(x, x ′, y + t z, y′ + t z′)zz′ + ∂211w(x ′, x, y′ + t z′, y + t z)(z′)2,

so, for all t ∈ [−1, 1],
∣∣∣∣ d

2

dt2
w(x, x ′, y + t z, y′ + t z′)

∣∣∣∣
≤ 4a(x, x ′) + 2p−1c

(|y|p + |z|p + ∣∣y′∣∣p + ∣∣z′∣∣p) (|z| + ∣∣z′∣∣)2 ,

and the integral −
∫
Ω

−
∫
Ω

∫
R×R

∫
R×R

of the last term in the previous expression with respect to
dμx ′(y′, z′) dμx (y, z) dx ′ dx is again bounded.

Therefore, we can differentiate under the integral sign and obtain

g′(0) = −
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂1w(x, x ′, y, y′)z dμx ′(y′, z′) dμx (y, z) dx ′ dx

+ −
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂1w(x ′, x, y′, y)z′ dμx ′(y′, z′) dμx (y, z) dx ′ dx

= 2−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂1w(x, x ′, y, y′)z dμx ′(y′, z′) dμx (y, z) dx ′ dx

= 2−
∫

Ω×R

−
∫

Ω×R

∂1w(x, x ′, y, y′)M1(μ
y
x ) dν(x ′, y′) dν(x, y).
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Similarly,

g′′(0) = 2−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂211w(x, x ′, y, y′)z2 dμx ′(y′, z′) dμx (y, z) dx ′ dx

+ 2−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂212w(x, x ′, y, y′)zz′ dμx ′(y′, z′) dμx (y, z) dx ′ dx

= 2−
∫

Ω×R

−
∫

Ω×R

∂211w(x, x ′, y, y′)M2(μ
y
x ) dν(x ′, y′) dν(x, y)

+ 2−
∫

Ω×R

−
∫

Ω×R

∂212w(x, x ′, y, y′)M1(μ
y
x )M1(μ

y′
x ′) dν(x ′, y′) dν(x, y).

In conclusion, if ν is a minimizer of Ī in Y p
u (Ω) then g′(0) = 0 and g′′(0) ≥ 0. We

summarize the above findings in the following proposition.

Proposition 5.1 Let p ≥ 1 and assume w : Ω×Ω×R×R → R satisfies conditions (i)–(iii).
Let u ∈ L p

0 (Ω) and let ν be a minimizer of Ī in Y p
u (Ω). For a.e. x ∈ Ω and νx -a.e. y ∈ R,

let μ
y
x ∈ P(R) have compact support and satisfy∫

R

M1(μ
y
x ) dνx (y) = 0

for a.e. x ∈ Ω . Then

−
∫

Ω×R

−
∫

Ω×R

∂1w(x, x ′, y, y′)M1(μ
y
x ) dν(x ′, y′) dν(x, y) = 0 (5.2)

and

−
∫

Ω×R

−
∫

Ω×R

∂211w(x, x ′, y, y′)M2(μ
y
x ) dν(x ′, y′) dν(x, y)

+ −
∫

Ω×R

−
∫

Ω×R

∂212w(x, x ′, y, y′)M1(μ
y
x )M1(μ

y′
x ′) dν(x ′, y′) dν(x, y) ≥ 0.

(5.3)

The conclusion of Proposition 5.1 is too abstract and heavily depends on the choice of μ
y
x .

We will see in the following result how to manage it and, in particular, how to remove the
dependence on μ

y
x .

Proposition 5.2 Let p ≥ 1 and assume w : Ω×Ω×R×R → R satisfies conditions (i)–(iii).
Let u ∈ L p

0 (Ω) and let ν be a minimizer of Ī in Y p
u (Ω). Define H1 : Ω × R → R and

H2 : Ω × R → R as

H1(x, y) := −
∫
Ω×R

∂1w(x, x ′, y, y′) dν(x ′, y′),
H2(x, y) := −

∫
Ω×R

∂211w(x, x ′, y, y′) dν(x ′, y′).

Then for a.e. x ∈ Ω ,

supp νx ⊂
{

y ∈ R : H1(x, y) =
∫
R

H1(x, y′) dνx (y′), H2(x, y) ≥ 0

}
. (5.4)

Moreover,

−
∫

Ω×R

−
∫

Ω×R

∂211w(x, x ′, y, y′)γ (x, y)2 dν(x ′, y′) dν(x, y)

+ −
∫

Ω×R

−
∫

Ω×R

∂212w(x, x ′, y, y′)γ (x, y)γ (x ′, y′) dν(x ′, y′) dν(x, y) ≥ 0
(5.5)
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for any γ ∈ Cb(Ω × R) with
∫
R

γ (x, y) dνx (y) = 0 for all x ∈ Ω. (5.6)

Proof Given η ∈ Cb(Ω) and γ ∈ Cb(Ω × R), define γ̄ ∈ Cb(Ω) and γ1 ∈ Cb(Ω × R) as

γ̄ (x) =
∫
R

γ (x, y) dνx (y), γ1(x, y) = η(x)
[
γ (x, y) − γ̄ (x)

]
.

For each x ∈ Ω and y ∈ R, take μ
y
x = δγ1(x,y). It satisfies M1(μ

y
x ) = γ1(x, y), the measure

μ
y
x has compact support and, for all x ∈ Ω ,

∫
R

M1(μ
y
x ) dνx (y) =

∫
R

γ1(x, y) dνx (y) = η(x)
[
γ̄ (x) − γ̄ (x)

] = 0.

Therefore, by (5.2) of Proposition 5.1,

0 = −
∫

Ω×R

−
∫

Ω×R

∂1w(x, x ′, y, y′) γ1(x, y) dν(x ′, y′) dν(x, y)

= −
∫

Ω

η(x)

∫
R

H1(x, y)
[
γ (x, y) − γ̄ (x)

]
dνx (y) dx .

As this is true for every η ∈ Cb(Ω), we conclude that
∫
R

H1(x, y)
[
γ (x, y) − γ̄ (x)

]
dνx (y) = 0, a.e. x ∈ Ω. (5.7)

But ∫
R

H1(x, y)γ̄ (x) dνx (y) =
∫
R

H1(x, y)

∫
R

γ (x, y′) dνx (y′) dνx (y)

=
∫
R

∫
R

H1(x, y′)γ (x, y) dνx (y′) dνx (y).

Therefore, (5.7) reads as
∫
R

[
H1(x, y) −

∫
R

H1(x, y′) dνx (y′)
]

γ (x, y) dνx (y) = 0, a.e. x ∈ Ω.

As this is true for all γ ∈ Cb(Ω × R) we obtain

H1(x, y) −
∫
R

H1(x, y′) dνx (y′) = 0, νx -a.e. y ∈ R,

which shows that, for a.e. x ∈ Ω , the support of νx is contained in the set of y ∈ R such that

H1(x, y) =
∫
R

H1(x, y′) dνx (y′),

which is a closed set since H1(x, ·) is continuous.
Now let γ ∈ Cb(Ω × R) satisfy γ ≥ 0. For each x ∈ Ω and y ∈ R take

μ
y
x = 1

2
δ−√

γ (x,y) + 1

2
δ√

γ (x,y).

123



67 Page 14 of 30 C. Mora-Corral, A. Tellini

Then, μ
y
x ∈ P(R) has compact support, M1(μ

y
x ) = 0 and M2(μ

y
x ) = γ (x, y). By (5.3) of

Proposition 5.1,

0 ≤ −
∫

Ω×R

−
∫

Ω×R

∂211w(x, x ′, y, y′)M2(μ
y
x ) dν(x ′, y′) dν(x, y)

+ −
∫

Ω×R

−
∫

Ω×R

∂212w(x, x ′, y, y′)M1(μ
y
x )M1(μ

y′
x ′) dν(x ′, y′) dν(x, y)

= −
∫

Ω×R

H2(x, y) γ (x, y) dν(x, y).

As this is true for any γ ∈ Cb(Ω ×R)with γ ≥ 0, we conclude that H2(x, y) ≥ 0 a.e. x ∈ Ω

and νx -a.e. y ∈ R, so for a.e. x ∈ Ω , the support of νx is contained in the set of y ∈ R such
that H2(x, y) ≥ 0, which, again, is a closed set since H2(x, ·) is continuous. Thus, inclusion
(5.4) is proved.

Finally, let γ ∈ Cb(Ω × R) satisfy (5.6). For each x ∈ Ω and y ∈ R take μ
y
x = δγ (x,y).

Then, μ
y
x ∈ P(R) has compact support, M1(μ

y
x ) = γ (x, y) and M2(μ

y
x ) = γ (x, y)2;

moreover, ∫
R

M1(μ
y
x ) dνx (y) =

∫
R

γ (x, y) dνx (y) = 0.

By (5.3) of Proposition 5.1, we readily obtain (5.5), which concludes the proof. ��

The proof of Proposition 5.2 consists in showing that Conditions (5.2)–(5.3) imply (5.4)–
(5.5). It is not difficult to check that, in fact, (5.2)–(5.3) and (5.4)–(5.5) are equivalent. In the
sequel of our analysis, we will solely use (5.4), since relation (5.5) is, in general, difficult to
handle.

6 Structure of theminimizing Youngmeasures for a double-well
potential

From this section onwards, we focus on a paradigmatic example of a double-well potential.
First, assume w has the form w(x, x,′ y, y′) = f (y − y′) for some f : R → R. The fact
that the dependence of w on (y, y′) is through the difference y − y′ is realistic in most of
the models mentioned in the introduction, and, particularly, in peridynamics. However, the
assumption thatw does not depend on (x, x ′) is not realistic in peridynamics or other models,
but we have been unable to derive from Proposition 5.2 tractable conditions whenw depends
on (x, x ′). Thus, the functionals I of (1.1) and Ī of Theorem 3.1 read as

I (u) = −
∫

Ω

−
∫

Ω

f (u(x) − u(x ′)) dx ′ dx,

Ī (ν) = −
∫

Ω×R

−
∫

Ω×R

f (y − y′) dν(x ′, y′) dν(x, y),

(6.1)

and Proposition 5.2 takes the following form.

Proposition 6.1 Let p ≥ 1 and assume f : R → R is even, of class C2 and that there exists
c > 0 such that

| f (t)| + ∣∣ f ′(t)
∣∣+ ∣∣ f ′′(t)

∣∣ ≤ c
(
1 + |t |p) , t ∈ R.
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Let u ∈ L p
0 (Ω), let Ī be as in (6.1), and let ν be a minimizer of Ī in Y p

u (Ω). Define
H1 : R → R and H2 : R → R as

H1(y) := −
∫

Ω×R

f ′(y − y′) dν(x ′, y′), H2(y) := −
∫

Ω×R

f ′′(y − y′) dν(x ′, y′). (6.2)

Then, for a.e. x ∈ Ω ,

supp νx ⊂
{

y ∈ R : H1(y) =
∫
R

H1(y′) dνx (y′), H2(y) ≥ 0

}
. (6.3)

Finally,

−
∫

Ω×R

−
∫

Ω×R

f ′′(y − y′)
[
γ (x, y)2 − γ (x, y)γ (x ′, y′)

]
dν(x ′, y′) dν(x, y) ≥ 0

for any γ ∈ Cb(Ω × R) satisfying (5.6).

It is important to notice, that, although f does not depend on (x, x ′), themeasure ν depends
on x , as we will see in Theorem 6.2.

According to Proposition 4.3, the functional I of (6.1) is lower semicontinuous in the
weak topology of L p

0 (Ω) if and only if f is convex. Thus, for the relaxation not to be trivial,
we take a non-convex f and, in order to apply Proposition 6.1, we take an even function with
p growth. The simplest choice, that we will consider from now on, is, for fixed α > 0,

f (t) = −2αt2 + t4 (6.4)

(thus we are taking p = 4), which represent a typical example of a double-well potential.
As in Sect. 4, we denote by I ∗ the relaxation of I in (6.1) in the weak topology of L4

0(Ω)

and by Ī the relaxed functional in the space of Young measures. Our goal here is to obtain
a characterization of the measures ν that minimize Ī among all Young measures whose first
moment is u. Such a characterization is obtained in Theorem 6.2 below and paves the way
for the computation of I ∗ in the next section.

By using that −
∫
Ω

M1(νx ) dx = −
∫
Ω

u(x) dx = 0 and defining the function G : R2 → R

G(s, t) := −4αs + 6s2 + 2t, (6.5)

it is immediate to see that, with the choice (6.4), the functionals I : L4
0(Ω) → R and

Ī : Y4,0(Ω) → R of (6.1) read as

I (u) = G

(
−
∫

Ω

u2,−
∫

Ω

u4
)

, Ī (ν) = G

(
−
∫

Ω

M2(ν),−
∫

Ω

M4(ν)

)
, (6.6)

where we have made the abbreviation

−
∫

Ω

Mi (ν) for −
∫

Ω

Mi (νx ) dx, i ∈ N.

From (6.2) we compute the quantities H1 : R → R and H2 : R → R when f is as in
(6.4):

H1(y) = 4

(
y3 − By − −

∫
Ω

M3(ν)

)
, H2(y) = 4

(
3y2 − B

)
,

where we have set

B = α − 3−
∫

Ω

M2(ν). (6.7)
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As a consequence, for a.e. x ∈ Ω ,∫
R

H1(y′) dνx (y′) = 4

(
M3(νx ) − Bu(x) − −

∫
Ω

M3(ν)

)
.

Thus, setting
A(x) = M3(νx ) − Bu(x), (6.8)

condition (6.3) of Proposition 6.1 entails that, if ν is a minimizer of Ī in Y p
u (Ω), it satisfies,

for a.e. x ∈ Ω ,

supp νx ⊂ {
y ∈ R : y3 − By − A(x) = 0, y2 ≥ B/3

}
. (6.9)

We present themain result of this section, in whichwe use (6.9), as well as other optimality
conditions that we will progressively establish, to describe the structure of the minimizers of
Ī . Its proof follows the steps (ii)–(iv) described in the introduction.

Theorem 6.2 Let u ∈ L4
0(Ω) and ν be a minimizer in Y4

u (Ω) of the functional Ī defined
in (6.6). Then, there exist two disjoint measurable sets Ω1 and Ω2 contained in Ω with
|Ω \ (Ω1 ∪ Ω2)| = 0 and a constant v > 0 such that −v < u(x) < v for all x ∈ Ω2, and

νx =
{

δu(x) for x ∈ Ω1,(
1
2 − u(x)

2v

)
δ−v +

(
1
2 + u(x)

2v

)
δv for x ∈ Ω2.

(6.10)

In addition, the following relations involving the quantity B defined in (6.7) hold true:

B = α − 3
|Ω|

∫
Ω1

u2

1 + 3 |Ω2||Ω|
, (6.11)

u2(x) ≥ B for all x ∈ Ω1, u2(x) < B for all x ∈ Ω2, (6.12)

if |Ω2| > 0 then B = v2. (6.13)

Proof The proof is divided into several steps.
Step 1 We begin by constructing Ω1 and Ω2. Condition (6.9) implies that, for a.e. x ∈ Ω ,

the measure νx is a convex combination of three Dirac masses supported in the roots of the
polynomial

y3 − By − A(x) = 0. (6.14)

We will now show that, when such a polynomial has three real distinct roots, one of them
does not satisfy

y2 ≥ B/3 (6.15)

and thus can be discarded in view of condition (6.9).
Let us thus assume that the polynomial (6.14) has three real distinct roots. A necessary and

sufficient condition for that is the discriminant 4B3 − 27A(x)2 of Eq. (6.14) to be positive,

which gives B > 0 and −1 <
A(x)
2

√
27
B3 < 1. Let θ ∈ (0, π) satisfy cos θ = A(x)

2

√
27
B3 .

According to Viète’s formula, the three real roots y1, y2, y3 of (6.14) are given by

yk = 2

√
B

3
cos

(
θ + 2(k − 1)π

3

)
, k = 1, 2, 3. (6.16)

Wenowclaim that y3 does not fulfill condition (6.15),which is equivalent to cos2
(

θ+4π
3

) ≥ 1
4 .

Indeed, since θ ∈ (0, π), we have θ+4π
3 ∈

(
4π
3 , 5π

3

)
and, hence, cos2

(
θ+4π

3

)
< 1

4 .
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This discussion allows us to define Ω1 as the set of x ∈ Ω such that supp νx consists of
one point, and Ω2 as the set of x ∈ Ω such that supp νx consists of two points.

Step 2We show thatΩ1 andΩ2 aremeasurable. As |Ω\(Ω1∪Ω2)| = 0, it suffices to show
that Ω1 is measurable. According to our definition, and recalling that M1(νx ) = u(x), we
have Ω1 = {x ∈ Ω : νx = δu(x)}. In fact, we claim that Ω1 = {x ∈ Ω : M2(νx ) = u(x)2}.
Indeed, if x ∈ Ω1, then M2(νx ) = M2(δu(x)) = u(x)2. Conversely, let x ∈ Ω satisfy
M2(νx ) = u(x)2. Then, by Hölder’s inequality,

|u(x)| = |M1(νx )| ≤
∫
R

|y| dνx (y) ≤ √
M2(νx ) = |u(x)|,

so all inequalities of this string are in fact equalities. Equality∫
R

|y| dνx (y) = √
M2(νx )

expresses the case of equality in Hölder’s inequality, which implies that there exists r ≥ 0
such that y2 = r2 for νx -a.e. y ∈ R. Hence νx = t1δ−r + t2δr for some t1, t2 ≥ 0 with
t1 + t2 = 1. But then

u(x)2 = M2(νx ) =
∫
R

y2 dνx (y) = t1r2 + t2r2 = r2,

so r = |u(x)|. On the other hand,

u(x) = M1(νx ) =
∫
R

y dνx (y) = −t1|u(x)| + t2|u(x)| = (t2 − t1)|u(x)|,

which implies that u(x) = 0 or {t1, t2} = {0, 1}, which, in either case, shows that supp νx

consists of one point. Therefore, as claimed, Ω1 = {x ∈ Ω : M2(νx ) = u(x)2}. As ν is a
Young measure, the map x �→ M2(νx ) is measurable. Since u2 is also measurable, the set
Ω1 is measurable.

Step 3 There exist v1, v2 ∈ L4(Ω2) such that v1(x) < u(x) < v2(x) for all x ∈ Ω2 and

νx = v2(x) − u(x)

v2(x) − v1(x)
δv1(x) + u(x) − v1(x)

v2(x) − v1(x)
δv2(x) for x ∈ Ω2. (6.17)

Indeed, according to our definition of Ω2, for each x ∈ Ω2 there exist v1(x) < v2(x) and
λ(x) ∈ (0, 1) such that νx = λ(x)δv1(x) + (1−λ(x))δv2(x). Condition M1(νx ) = u(x) yields
λ(x)v1(x) + (1 − λ(x))v2(x) = u(x), thus

λ(x) = v2(x) − u(x)

v2(x) − v1(x)
and 1 − λ(x) = u(x) − v1(x)

v2(x) − v1(x)
.

In addition, the restriction λ(x) ∈ (0, 1) leads to v1(x) < u(x) < v2(x).
Now we show that the functions v1, v2 are measurable. Indeed, using (6.16), it is easy to

see that y2 < 0 < y1, thus v1 = y2 and v2 = y1. Since A(x) is measurable, so is θ = θ(x),
as a composition of a continuous function after a measurable one, and the same occurs for
v1 and v2.

Finally, we check that v1, v2 ∈ L4(Ω2). Given x ∈ Ω2, let y ∈ R satisfy y3−By−A(x) =
0. By Young’s inequality,

|y|3 ≤ |B||y| + |A(x)| ≤ 2|B|3/2
3

+ |y|3
3

+ |A(x)|,
so

2

3
|y|3 ≤ 2|B|3/2

3
+ |A(x)|. (6.18)
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Looking at (6.8), we note that A ∈ L
4
3 (Ω2), since M3(ν) ∈ L

4
3 (Ω2) (because ν ∈ Y4(Ω))

and u ∈ L4(Ω). In view of (6.14) and (6.18), we obtain that v1, v2 ∈ L4(Ω2).
Step 4 We show that v1 + v2 = 0 a.e. in Ω2, by performing variations of the functions v1

and v2. We can assume in this step that |Ω2| > 0. We fix ε > 0 and set

Ω2,ε := {x ∈ Ω2 : v1(x) ≤ u(x) − ε and u(x) + ε ≤ v2(x)}.
For ε > 0 small enough, |Ω2,ε| > 0. We take ϕ ∈ L∞(Ω2,ε) \ {0} and define, for each
t, s ∈ R with

|t |, |s| <
ε

‖ϕ‖∞
,

the functions vt
1, v

s
2 : Ω2,ε → R as vt

1 := v1 + t ϕ and vs
2 := v2 + s ϕ. Then, vt

1 < u < vs
2

in Ω2,ε and, if we set

λ
t,s
1 := vs

2 − u

vs
2 − vt

1
, λ

t,s
2 := u − vt

1

vs
2 − vt

1
,

we have λ
t,s
1 , λ

t,s
2 > 0 and λ

t,s
1 + λ

t,s
2 = 1. Consider now νt,s ∈ Y(Ω) defined by

νt,s =
{

ν in Ω \ Ω2,ε,

λ
t,s
1 δvt

1
+ λ

t,s
2 δvs

2
in Ω2,ε,

which, due to (6.17), coincides with ν for t = s = 0, and satisfies M1(ν) = u,

M2(ν
t,s) =

{
M2(ν) in Ω \ Ω2,ε,

λ
t,s
1

(
vt
1

)2 + λ
t,s
2

(
vs
2

)2 in Ω2,ε,

M4(ν
t,s) =

{
M4(ν) in Ω \ Ω2,ε,

λ
t,s
1

(
vt
1

)4 + λ
t,s
2

(
vs
2

)4 in Ω2,ε.

As u ∈ L4(Ω) and v1, v2 ∈ L4(Ω2), we have that νt,s ∈ Y4
u (Ω).

We compute thefirst termsof theTaylor developmentwhen (t, s) → (0, 0)of the functions
involved: up to order O(|(t, s)|2), we have

(
vt
1

)2 = v21 + 2tv1ϕ,
(
vs
2

)2 = v22 + 2sv2ϕ,(
vt
1

)4 = v41 + 4tv31ϕ,
(
vs
2

)4 = v42 + 4sv32ϕ,

λ
t,s
1 = v2 − u

v2 − v1
+ t

v2 − u

(v2 − v1)2
ϕ + s

u − v1

(v2 − v1)2
ϕ,

λ
t,s
2 = u − v1

v2 − v1
− t

v2 − u

(v2 − v1)2
ϕ − s

u − v1

(v2 − v1)2
ϕ,

so

λ
t,s
1

(
vt
1

)2 + λ
t,s
2

(
vs
2

)2 = u(v1 + v2) − v1v2 − t(v2 − u)ϕ + s(u − v1)ϕ

and

λ
t,s
1

(
vt
1

)4 + λ
t,s
2

(
vs
2

)4 = − v1v2(v
2
1 + v1v2 + v22) + u(v31 + v21v2 + v1v

2
2 + v32)

− t(v2 − u)(3v21 + 2v1v2 + v22)ϕ

+ s(u − v1)(v
2
1 + 2v1v2 + 3v22)ϕ,
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again up to O(|(t, s)|2) terms. Using these developments and recalling (6.5), (6.6) and (6.7),
we obtain that

Ī (νt,s) = Ī (ν) − t

|Ω|
∫

Ω2,ε

[−4B + 2(3v21 + 2v1v2 + v22)
]
(v2 − u) ϕ

+ s

|Ω|
∫

Ω2,ε

[−4B + 2(v21 + 2v1v2 + 3v22)
]
(u − v1) ϕ

up to O(|(t, s)|2) terms. As ν is a minimizer of Ī , the function (t, s) �→ Ī (νt,s) has a
minimum in (0, 0), implying

d

dt
Ī (νt,s)

∣∣∣∣
t=s=0

= d

ds
Ī (νt,s)

∣∣∣∣
t=s=0

= 0,

which yields
∫

Ω2,ε

[−2B + 3v21 + 2v1v2 + v22
]
(v2 − u) ϕ = 0,

∫
Ω2,ε

[−2B + v21 + 2v1v2 + 3v22
]
(u − v1) ϕ = 0.

Since this is true for all ϕ ∈ L∞(Ω2,ε), we infer that(−2B + 3v21 + 2v1v2 + v22
)
(v2 − u) = (−2B + v21 + 2v1v2 + 3v22

)
(u − v1) = 0

a.e. in Ω2,ε. As v1 < u < v2 in Ω2,ε we obtain that

− 2B + 3v21 + 2v1v2 + v22 = −2B + v21 + 2v1v2 + 3v22 = 0. (6.19)

Subtracting these equalities, we find that v22 − v21 = 0, so v1 + v2 = 0 a.e. in Ω2,ε. As
Ω2 = ⋃

n∈N Ω2,1/n , we conclude that v1 + v2 = 0 a.e. in Ω2.
Step 5 We now construct the constant v and prove (6.10), (6.11) and (6.13). First of

all, observe that, if |Ω2| = 0 we can redefine Ω2 as the empty set, so there is no need of
constructing v, thus (6.10) has been established in this case. On the other hand, (6.11) reduces
to (6.7).

Assume, instead, that |Ω2| > 0. By adding the two equalities in (6.19) we obtain v21 +
v1v2 + v22 = B a.e. in Ω2,ε, thus, as above, v21 + v1v2 + v22 = B a.e. in Ω2. By combining
this relation with the one established in Step 4, we obtain that v21 = v22 = B a.e. in Ω2. Due
to the fact that v1 < v2, we find that there exists a constant v > 0 such that v2 = −v1 = v

a.e. in Ω2 and v2 = B > 0.
Using the definition of B given in (6.7), as well as (6.17), we obtain

B = α − 3

|Ω|
(∫

Ω1

u2 + |Ω2|v2
)

= α − 3

|Ω|
(∫

Ω1

u2 + |Ω2|B
)

and, by solving in B, we get (6.11).
Step 6 Finally, we prove (6.12). The second relation easily follows from the previous

points: if |Ω2| = 0, as already mentioned, we can redefine Ω2 as the empty set, so there is
nothing to prove; otherwise, if |Ω2| > 0, it follows from the fact that u2 < v2 a.e. in Ω2 and
that, in this case, we have v2 = B from (6.13).

The main idea to prove the first relation is to perform some variations on the domain Ω1.
Let S := {x ∈ Ω1 : u(x)2 < B}. We shall show that |S| = 0. If B ≤ 0, this is immediate,
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so assume B > 0. By Lebesgue’s differentiation theorem, there exists a set S′ ⊂ S such that

|S′| = |S| and, for all x0 ∈ S′, if we set Sx0,t := B(x0, t
1
n ) ∩ S for t > 0, we have that

lim
t↘0

|Sx0,t |
ωnt

= 1, lim
t↘0

1

ωnt

∫
Sx0,t

u2 = u(x0)
2, lim

t↘0

1

ωnt

∫
Sx0,t

u4 = u(x0)
4,

where ωn is the volume of the unit ball ofRn . These equalities can be equivalently written as

d

dt
|Sx0,t |

∣∣∣∣
t=0+

= ωn,
d

dt

∫
Sx0,t

u2

∣∣∣∣∣
t=0+

= ωnu(x0)
2,

d

dt

∫
Sx0,t

u4

∣∣∣∣∣
t=0+

= ωnu(x0)
4. (6.20)

We want to show that S′ = ∅. Assume, for a contradiction, that S′ �= ∅, fix x0 ∈ S′ and,
for t > 0, define νt ∈ Y4

u (Ω) as

νt
x :=

{
νx if x ∈ Ω \ Sx0,t ,(
1
2 − u(x)

2
√

B

)
δ−√

B +
(
1
2 − u(x)

2
√

B

)
δ√

B if x ∈ Sx0,t .

Then,

M2(ν
t
x ) =

{
M2(νx ) if x ∈ Ω \ Sx0,t ,

B if x ∈ Sx0,t ,
M4(ν

t
x ) =

{
M4(νx ) if x ∈ Ω \ Sx0,t ,

B2 if x ∈ Sx0,t ,

so

−
∫

Ω

M2(ν
t ) = 1

|Ω|

(∫
Ω

M2(ν) −
∫

Sx0,t

u2 + |Sx0,t | B

)
,

−
∫

Ω

M4(ν
t ) = 1

|Ω|

(∫
Ω

M4(ν) −
∫

Sx0,t

u4 + |Sx0,t | B2

)
.

By (6.20),

d

dt
−
∫

Ω

M2(ν
t )

∣∣∣∣
t=0+

= ωn

|Ω|
(−u(x0)

2 + B
)
,

d

dt
−
∫

Ω

M4(ν
t )

∣∣∣∣
t=0+

= ωn

|Ω|
(−u(x0)

4 + B2) .
Thus, using (6.5), (6.6) and (6.7),

d

dt
Ī (νt )

∣∣∣∣
t=0+

=
(

−4α+12−
∫

Ω

M2(ν)

)
ωn

|Ω|
(−u(x0)

2+B
)+ 2ωn

|Ω|
(−u(x0)

4+B2)

= −4ωn B

|Ω|
(−u(x0)

2 + B
)+ 2ωn

|Ω|
(−u(x0)

4 + B2)

= −2ωn

|Ω|
(
u(x0)

2 − B
)2

.

Since ν0 = ν and ν minimizes Ī , we have d
dt Ī (νt )

∣∣
t=0+ ≥ 0, so u(x0)2 = B, a contradiction

with the fact that x0 ∈ S′. Therefore, S′ = ∅ and, hence, |S| = 0, which shows that u2 ≥ B
a.e. in Ω1. We redefine Ω1 by removing a set of measure zero, so that u2 ≥ B in Ω1. ��
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7 Computation of the relaxation

In this section we present the formula for I ∗. In view of Theorem 6.2, it is important to study
equality (6.11). Considering also (6.12), given u ∈ L4

0(Ω) and b ≥ 0, we introduce the sets

Ω1,u,b = {x ∈ Ω : u(x)2 ≥ b}, Ω2,u,b = Ω \ Ω1,u,b, (7.1)

and we define Fu : [0,∞) → R as

Fu(b) := b − α + 3

|Ω|

[∫
Ω1,u,b

u2 + b|Ω2,u,b|
]

. (7.2)

Thanks to (6.12), equality (6.11) holds for B = b if and only if

Fu(b) = 0. (7.3)

The following simple result shows important properties of Fu .

Lemma 7.1 Let u ∈ L4
0(Ω). Then the function Fu defined in (7.2) is continuous, strictly

increasing and satisfies Fu
(

α
4

) ≥ 0. Moreover, Fu
(

α
4

) = 0 if and only if u2 ≤ α
4 a.e. in Ω .

Proof We notice that

Fu(b) = b − α + 3−
∫

Ω

max{u2, b}.

With this expression, using dominated convergence, it is easy to see that Fu is continuous
and strictly increasing. Moreover,

Fu

(α

4

)
= −3

4
α + 3−

∫
Ω

max{u2,
α

4
} ≥ −3

4
α + 3

α

4
= 0,

with equality if and only if max{u2, α
4 } = α

4 a.e. in Ω , that is to say, u2 ≤ α
4 a.e. in Ω . ��

Given u ∈ L4
0(Ω), the function Hu : [0,∞) → R defined by

Hu(b) := G

(
−
∫

Ω

max{u2, b},−
∫

Ω

max{u4, b2}
)

, (7.4)

where G is as in (6.5), will be important in the sequel.
The following is the central result of the article and calculates I ∗.

Theorem 7.2 Assume Ω is a connected Lipschitz open set of Rn and let u ∈ L4
0(Ω). For

each b ≥ 0 consider the sets (7.1), as well as the functions Fu of (7.2) and Hu of (7.4). The
following assertions hold:

(a) If

α − 3−
∫

Ω

u2 ≤ 0,

then I ∗(u) = I (u).
(b) If

α − 3−
∫

Ω

u2 > 0, (7.5)

then there exists a unique solution of equation (7.3), which will be denoted by bu, satisfies
0 < bu ≤ α

4 , and I ∗(u) = Hu(bu).
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Proof We start with (a). Let B be the quantity defined in (6.7), let ν be a minimizer of Ī in
Y4

u (Ω) and let Ω1,Ω2 be the sets given by Theorem 6.2. Then
∫

Ω

M2(ν) =
∫

Ω1

u2 + B|Ω2| ≥
∫

Ω1

u2 +
∫

Ω2

u2 =
∫

Ω

u2,

so

B = α − 3−
∫

Ω

M2(ν) ≤ α − 3−
∫

Ω

u2 ≤ 0,

so by (6.13), |Ω2| = 0, which shows that νx = δu(x) for a.e. x ∈ Ω , and, consequently,
I ∗(u) = I (u).

We show (b). We have

Fu(0) = −α + 3−
∫

Ω

u2 < 0,

so, by Lemma 7.1, Eq. (7.3) has one and only one solution b = bu in (0,∞), and it satisfies
bu ≤ α

4 . As a consequence of Theorem 6.2, we obtain that

I ∗(u) = min{I (u), Hu(bu)}. (7.6)

Assume, for the moment, that u is continuous: we shall show that

I ∗(u) = Hu(bu). (7.7)

As u is continuous and integrates 0 over the connected set Ω , it has a zero. Therefore, in a
non-empty open set we have

u2 < α − 3−
∫

Ω

u2. (7.8)

Assume, for a contradiction, that I ∗(u) = I (u). Then, there exists a minimizer ν of Ī in
Y4

u (Ω) for which, using the notation of Theorem 6.2, one has |Ω2| = 0. By (6.11) and
(6.12), we obtain that

u2 ≥ B = α − 3−
∫

Ω

u2 a.e. in Ω,

contrary to (7.8). Therefore, I ∗(u) �= I (u), so by (7.6) we obtain (7.7).
Thus, (7.7) holds for continuous functions u. We now drop the continuity assumption, so

let u ∈ L4
0(Ω), and let {v j } j∈N be a sequence in C(Ω) ∩ L4(Ω) converging to u in L4(Ω).

Set

α j := −
∫

Ω

v j , j ∈ N.

Then α j → 0 as j → ∞. Define u j := v j − α j for j ∈ N. Then {u j } j∈N ⊂ L4
0(Ω) and

u j → u in L4
0(Ω) as j → ∞. In particular,

−
∫

Ω

u2
j → −

∫
Ω

u2 as j → ∞,

so by (7.5) we can assume without loss of generality that

α − 3−
∫

Ω

u2
j > 0, j ∈ N,
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and bu j is well defined. By compactness, for a subsequence (not relabelled), there exists
b ∈ [0, α

4 ] such that bu j → b as j → ∞, and, by the continuity of Fu we have that
Fu(b) = 0. Thus, b is the only solution to (7.3) corresponding to u, and, due to (7.5),
b = bu > 0.

As u j is continuous, by (7.6) and (7.7),

Hu j (bu j ) ≤ I (u j ), j ∈ N.

Due to the continuity of I with respect to the strong convergence in L4(Ω) (see (6.6)),
we obtain that I (u j ) → I (u) as j → ∞. Analogously Hu j (bu j ) → Hu(bu). Therefore,
Hu(bu) ≤ I (u). Thanks to (7.6), we conclude that (7.7) also holds. ��

We finally observe that, if u ∈ L4
0(Ω) is such that Fu(0) < 0, then bu > 0 satisfies

−
∫

Ω

max{u2, bu} = α − bu

3
,

hence we have the simplified expression

Hu(bu) = G

(
α − bu

3
,−
∫

Ω

max{u4, b2u}
)

. (7.9)

A more compact way of writing Theorem 7.2 is as follows. Given u ∈ L4
0(Ω), if we

define Fu : R → R with the same formula as (7.2) but letting b ∈ R, we still have that Fu

is continuous, increasing, Fu
(

α
4

) ≥ 0 and, in addition, Fu(b) = b − α + 3−
∫
Ω

u2 for b ≤ 0.
Consequently,

Fu

(
min{α − 3−

∫
Ω

u2, 0}
)

≤ 0;

therefore, Eq. (7.3) has a unique solution in R, in fact, in[
min{α − 3−

∫
Ω

u2, 0}, α

4

]
.

The alternative way of stating Theorem 7.2 reads as follows.

Corollary 7.3 Assume Ω is a connected Lipschitz open set of Rn. Let u ∈ L4
0(Ω). Then

I ∗(u) = I
(
max

{
|u|,√max{bu, 0}

})
,

where bu is the only solution of (7.3) in R.

8 Computation of the relaxation for some specific examples

After having established, in the previous section, the general way to compute the relaxation,
we present here some examples where we apply such results. Apart from being useful to
clarify the method described in Theorem 7.2, they will be the key point to obtain the results
of the next section.

The following example was essentially shown in [11, Ex. 2]. Here we give a proof based
on Theorem 7.2.

Example 8.1 Let u ∈ L4
0(Ω) be such that u2 ≤ α

4 a.e. in Ω . Then I ∗(u) = −α2

2 .
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Proof By Lemma 7.1, Fu
(

α
4

) = 0, so bu = α
4 , and, by Theorem 7.2, I ∗(u) = Hu (bu) =

G
(
bu, b2u

) = −α2

2 . ��
In the next example, we compute the relaxation for functions taking only two values.

Example 8.2 Fix a ∈ (
0, 1

2

]
, let M > 0, consider any A ⊂ Ω with |A| = a|Ω| and define

the function

u =
{

(1 − a)M in A,

−aM in Ω \ A.
(8.1)

Then,

I ∗(u)=

⎧⎪⎨
⎪⎩

I (u)=2a(1 − a)M4−4a(1 − a)αM2 if α
M2 < a(3 − 2a),

8a(1−a)4M4−4a(1−a)2αM2−2(1−a)α2

4−3a if a(3−2a)≤ α
M2 <4(1−a)2,

−α2

2 if α
M2 ≥ 4(1 − a)2.

(8.2)

Proof We have

−
∫

Ω

u2 = a(1 − a)M2, −
∫

Ω

u4 = a(1 − a)(1 − 3a + 3a2)M4,

so, if α
M2 ≤ 3a(1 − a), which represents a subcase of the first line in (8.2), Theorem 7.2(a)

gives I ∗(u) = I (u), as desired.
Assume now that α

M2 > 3a(1 − a). In this case, we apply Theorem 7.2(b) to compute
the relaxation. To this end, we have to find the unique solution of (7.3), thus we write the
expression of Fu , according to the different values of b. Observe that a2 ≤ (1 − a)2 and
Fu(0) < 0.

Values of b Ω1,u,b Ω2,u,b Fu(b)

0 < b ≤ a2M2 Ω ∅ b − α + 3a(1 − a)M2

a2M2 < b ≤ (1 − a)2M2 A Ω \ A (4 − 3a)b − α + 3a(1 − a)2M2

b > (1 − a)2M2 ∅ Ω 4b − α

We distinguish three cases:

– If Fu
(
a2M2

)
> 0, which is equivalent to the condition in the first line of (8.2), then the

unique solution of (7.3) lies in (0, a2M2) and, according to the first line of the previous
table and Theorem 7.2(b), we have

I ∗(u) = Hu(bu) = G

(
−
∫

Ω

u2,−
∫

Ω

u4
)

= I (u).

– If Fu
(
a2M2

) ≤ 0 < Fu
(
(1 − a)2M2

)
, which is equivalent to the condition in the second

line of (8.2) (observe that such a condition is nonempty only if 0 < a < 1
2 ), the second

line of the table for Fu gives that the solution of (7.3) is

bu = α − 3a(1 − a)2M2

4 − 3a
,

thus, thanks to Theorem 7.2(b),

I ∗(u) = Hu(bu) = G
(
a(1 − a)2M2 + bu(1 − a), a(1 − a)4M4 + b2u(1 − a)

)
,
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which gives the desired expression.
– Finally, if Fu

(
(1 − a)2M2

) ≤ 0, which is equivalent to the condition in the third line of
(8.2), then, from the table of Fu , we obtain bu = α

4 and

I ∗(u) = Hu(bu) = G
(
bu, b2u

) = G

(
α

4
,
α2

16

)
= −α2

2
.

Observe that the same conclusion can be achieved from Example 8.1. ��
The last example for which we compute the relaxation is for odd extensions of power

functions.

Example 8.3 Let Ω = (−1, 1) and u(x) = M |x |p sgn x , with M > 0 and p > 0. Then,

I ∗(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I (u) = − 4αM2

2p+1 + 8M4 p2+4p+1
(2p+1)2(4p+1)

if α
M2 ≤ 3

2p+1 ,

G

⎛
⎜⎜⎝α − bu

3
,

M4 + 4pb2u
(√

bu
M

) 1
p

4p + 1

⎞
⎟⎟⎠ if 3

2p+1 < α
M2 ≤ 4,

−α2

2 if α
M2 > 4,

(8.3)

where bu is the unique solution b of the equation

b + 6p

2p + 1
b

(√
b

M

) 1
p

= α − 3M2

2p + 1
. (8.4)

Proof We start, as in Example 8.2, computing

−
∫

Ω

u2 = M2

2p + 1
, −

∫
Ω

u4 = M4

4p + 1
;

thus, if α
M2 ≤ 3

2p+1 , Theorem 7.2(a) gives I ∗(u) = I (u), as desired.

If, instead, α
M2 > 3

2p+1 , according to Theorem 7.2(b), we have to determine the unique

solution bu of (7.3). Using Lemma 7.1 we find that, if α
M2 ≤ 4, we have that Fu

(
M2

) ≥
Fu
(

α
4

) ≥ 0, so 0 < bu ≤ M2 = u(1)2. As a consequence, if we denote by xu the unique
solution x of u(x)2 = bu lying in (0, 1], i.e.,

xu =
(√

bu

M

) 1
p

,

we have Ω1,u,b = [−1,−xu] ∪ [xu, 1], Ω2,u,b = (−xu, xu) and

Fu(b) = b − α + 3
∫ 1

xu

u(x)2 dx + 3bxu = b − α + 3M2

2p + 1

(
1 − x2p+1

u

)
+ 3bxu .

By using the definition of xu , it can be easily seen that Fu(b) = 0 is equivalent to (8.4).
Therefore, we conclude by using Theorem 7.2(b) and (7.9),

I ∗(u) = Hu(bu) = G

(
α − bu

3
,

∫ 1

xu

u4 + b2u xu

)

= G

(
α − bu

3
,

M4(1 − x4p+1
u )

4p + 1
+ b2u xu

)
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which, using again the definition of xu , can be reduced to the expression in the second line
of (8.3).

Finally, if α
M2 > 4, then u2 < α

4 in Ω , thus, by Example 8.1, we have I ∗(u) = −α2

2 . ��

9 Negative representation results for the relaxation

By using the examples provided in the previous section, we are now able to provide some
negative representation results for the relaxed functional I ∗. This is in contrast with the local
case, in which the relaxation is given by the convexification of the integrand (see, e.g., [22,
Th. 7.13 and Prop. 7.15]), and with abstract relaxation results, which assert that under some
general assumptions (most notably, the additivity with respect to the set of integration, which
is not satisfied in the nonlocal setting), the relaxation has an integral representation (see, e.g.,
[17]).

Now we show that I ∗ is not given by a double integral of the form (6.1).

Proposition 9.1 There does not exist a Borel measurable function g : R → R such that

I ∗(u) = −
∫

Ω

−
∫

Ω

g(u(x) − u(x ′)) dx ′ dx, u ∈ L4
0(Ω).

Proof Assume, for a contradiction, the existence of such a g and note that it can be assumed
to be even, since g and the function

y �→ g(y) + g(−y)

2

give rise to the same functional.

First, if we take u = 0, then Example 8.1 gives g(0) = −α2

2 .
Consider now the functions u treated in Example 8.2, so let a ∈ (

0, 1
2

]
and M > 0 be

such that α
M2 < a(3 − 2a). On the one hand, from there, we know that

I ∗(u) = I (u) = −4a(1 − a)αM2 + 2a(1 − a)M4.

On the other hand, assuming the existence of an even g, by using (8.1) we would have that

I ∗(u) = (1 − 2a + 2a2)g(0) + 2a(1 − a)g(M).

Therefore,

g(M) = −1 − 2a + 2a2

2a(1 − a)
g(0) − 2αM2 + M4,

which is a contradiction because the right-hand side depends on a, since g(0) �= 0, and the
left-hand side does not. ��

By looking at the expression (6.6), one might think that the relaxation of I ∗ is given by a
function which depends only on the second and fourth moments of u. We show that this is
not the case.

Proposition 9.2 There does not exist any function Ḡ : R2 → R such that

I ∗(u) = Ḡ

(
−
∫

Ω

u2,−
∫

Ω

u4
)

.
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Proof ConsiderΩ = (−1, 1). On the one hand, we take u1 to be the function of Example 8.3

with p = 1 and M =
√

2α
3 , i.e.,

u1(x) =
√
2α

3
x, x ∈ Ω.

It is easy to see that the solution of (8.4) is bu1 = α
6 , thus Example 8.3 gives

I ∗(u1) = G

(
5α

18
,
α2

10

)
= −121

270
α2.

On the other hand, consider u2 as in (8.1) with a = 1
2 − 1

2
√
6
and M = 4

√
α
15 . Example 8.2

gives

I ∗(u2) = − 2

1215

2646 + 281
√
6

10 + √
6

α2.

Thus, since −
∫
Ω

u2
1 = −

∫
Ω

u2
2 = 2

9α and −
∫
Ω

u4
1 = −

∫
Ω

u4
2 = 4

45α
2, but I ∗(u1) �= I ∗(u2), the

existence of a function Ḡ as in the statement is excluded. ��

10 Discussion and comparison with the local case

We finish this article with a discussion of Theorem 7.2, which, at the same time, points out
the analogies and differences with the local case.

First of all, we recall the results for the local case. Define the functionals J : L4(Ω) → R

and J̄ : Y4(Ω) → R as

J (u) = −
∫

Ω

f (u(x)) dx, J̄ (ν) = −
∫

Ω×R

f (y) dν(x, y).

It is well known (see, e.g., [22, Th. 7.13 and Prop. 7.15]) that the relaxation of J in the weak
topology is given by

J ∗(u) = −
∫

Ω

f c(u(x)) dx,

where f c is the convexification of f , which in the particular case of (6.4) reads

f c(t) =
{

−2αt2 + t4 if |t | ≥ √
α,

−α2 if |t | <
√

α.

In fact, it is easy to see (see, e.g., [22, Th. 8.20]) that, for a given u ∈ L4(Ω), the measure
ν ∈ Y4(Ω) that satisfies J̄ (ν) = J ∗(u) and M1(ν) = u is

νx =
{

δu(x) if |u(x)| ≥ √
α(

1
2 − u(x)

2
√

α

)
δ−√

α +
(
1
2 + u(x)

2
√

α

)
δ√

α if |u(x)| <
√

α.
(10.1)

Therefore, an equivalent way of expressing J ∗ is through the replacement of u2 with
max{u2, α}, that is to say,

J ∗(u) = J (max{|u|,√α}).
After these preliminaries, we are able to compare our result for the relaxation in the

nonlocal case with the local one.
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(a) Part (a) of Theorem 7.2 can be rephrased as follows: if u is large (in the form −
∫
Ω

u2 ≥ α
3 )

then I ∗(u) = I (u). Likewise, in the local case, if u is large (in the form |u| ≥ √
α a.e. in

Ω) then J ∗(u) = J (u). Observe that the condition of “being large” in the local case is
pointwise, while in the nonlocal case is an integral condition.

(b) Part (b) of Theorem 7.2, as well as Corollary 7.3, can be rephrased as follows. If u is small
(in the form −

∫
Ω

u2 < α
3 ) then I ∗(u) ≤ I (u) and, in fact, for a well defined bu ∈ (0, α

4 ]
we have I ∗(u) = I

(
max

{|u|,√bu
})
. We consider two subcases.

(b1) If bu = α
4 then, by Lemma 7.1, u is very small, in the form |u| ≤

√
α

2 a.e., so
|u(x) − u(x ′)| ≤ √

α for a.e. (x, x ′) ∈ Ω × Ω . Then the optimal Young measure is

νx =
(
1

2
− u(x)√

α

)
δ−

√
α
2

+
(
1

2
+ u(x)√

α

)
δ√

α
2

, x ∈ Ω

(this was shown in [11, Ex. 2], but it can also be quickly inferred from Theorem 6.2
and Example 8.1), so that {y − y′ : y, y′ ∈ supp νx } = {−√

α, 0,
√

α}. The analogy
with the local case is that if |u| ≤ √

α a.e. then the optimal Young measure is

νx =
(
1

2
− u(x)

2
√

α

)
δ−√

α +
(
1

2
+ u(x)

2
√

α

)
δ√

α, x ∈ Ω,

which is supported in the wells of f , whereas in the nonlocal case there appears
another point in the set {y − y′ : y, y′ ∈ supp νx } due to the nonlocal interactions.

(b2) If bu < α
4 then, by Lemma 7.1, u2 > α

4 in a set of positive measure; at the same
time, since −

∫
Ω

u2 < α
3 we also have that u2 < α

3 in a set of positive measure. Thus,
u is neither large nor very small. Then, the point bu ∈ (0, α

4 ) is the threshold that
distinguishes whether it is worthwhile to truncate u2. To be precise, if u(x)2 ≥ bu

then the optimal Young measure is νx = δu(x), while if u(x)2 < bu then the optimal
Young measure is

(
1

2
− u(x)

2
√

bu

)
δ−√

bu
+
(
1

2
+ u(x)

2
√

bu

)
δ√

bu
.

In either case, this amounts to the replacement of u2 withmax{u2, bu}, hence I ∗(u) =
I
(
max

{|u|,√bu
})
. Similarly, in the local case, if u2 ≤ α in a set of positive measure

and u2 > α in a set of positive measure, then both cases of (10.1) appear.

To sum up, in both the local and nonlocal cases the relaxation is given by a truncation of u
from above. The main difference is that, in the local case, the level of truncation is a number
independent of u, while, in the nonlocal case, this level depends on u.

With the above explanation in mind, we can interpret the relaxation as the formation of
microstructure as follows. In the classical (local) case (see, e.g., [8,28]), in the region where
the optimal Young measure is a convex combination of two Dirac deltas, a microstructure
appears: thematerial develops finer and finer oscillationswith gradients located in the support
of the two deltas. In our nonlocal case, Theorem 6.2 indicates that in Ω2 the value of u2 is
small and a microstructure develops as a fine oscillation of the values of u between

√
bu and

−√
bu . Recall that

√
bu lies in (0,

√
α

2 ], so the points at which u oscillates may not be exactly
the half of the wells of f , because of the nonlocal interactions.
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