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Abstract
Nonexistence of nontrivial nonnegative classical solutions is obtained for the problems:{

�2u = u p in R
N\B,

u = �u = 0 on ∂B
(0.1)

with 1 < p ≤ N+4
N−4 , and {

�2u = u p in R
N\B,

u = ∂u
∂ν

= 0 on ∂B,
(0.2)

where 1 < p < N+4
N−4 , B ⊂ R

N (N ≥ 5) is the unit ball, ν is the unit outward normal
vector of ∂B relative to B. The interesting features in our proof are that neither asymptotic
behavior of u at infinity nor symmetric property of u are required.Moreover, when p = N+4

N−4 ,
we can also obtain nonexistence of nontrivial nonnegative classical radial solutions of (0.2).
Nonexistence of nontrivial nonnegative classical solutions without symmetry property of
(0.2) with p = N+4

N−4 is still open. It is well known that problems (0.1) and (0.2) admit a

unique positive radial solution u ∈ C4(RN\B) for p > N+4
N−4 respectively.

Mathematics Subject Classification Primary 35B45; Secondary 35J40

Communicated by M Del Pino.

The research of the first author is supported by NSFC (Nos. 11171092, 11571093), the research of the
second author is supported by NSFC (No. 11971147)and CPSF (No. 2019M662475).

B Zhongyuan Liu
liuzy@henu.edu.cn

Zongming Guo
gzm@htu.cn

1 Department of Mathematics, Henan Normal University, Xinxiang 453007, China

2 School of Mathematics and Statistics, Henan University, Kaifeng 475004, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-020-1721-y&domain=pdf


66 Page 2 of 26 Z. Guo, Z. Liu

1 Introduction andmain results

We consider nonexistence of solutions for the semilinear biharmonic problems:⎧⎨
⎩

�2u = u p in R
N\B,

u > 0 in R
N\B,

u = �u = 0 on ∂B
(P)

and ⎧⎨
⎩

�2u = u p in R
N\B,

u > 0 in R
N\B,

u = ∂u
∂ν

= 0 on ∂B,

(Q)

where B ⊂ R
N (N ≥ 5) is the unit ball, i.e., B = {x ∈ R

N : |x | < 1}, ν is the unit outward
normal vector of ∂B relative to B and 1 < p ≤ N+4

N−4 . In the following, we use Br to denote
the ball of radius r centered at the origin.

The study of the equations in (P) and (Q) plays an important role in conformal geometry
[9,14,37] and other related fields [18,24]. The problems, similar to the Yamabe problem, are
concerned with the existence of conformal metrics with constant or prescribed Q-curvature.
For more results, we refer to [10,15,16,26,35,38,50] and the references therein.

The structure of positive solutions of the equation

�2u = u p in R
N (N ≥ 5), p > 1 (1.1)

is considered by many authors recently, see [1,2,13,17,19,22,23,27,29,31,33,40,43,48]. The
classification of positive entire solutions of (1.1) via Morse index has also been obtained, see
[12,36,40,41,49].

Recently, existence and nonexistence of positive supersolutions of the equation

�2u = g(u) in R
N\B (1.2)

have been studied in [7]. More precisely, Pérez, Melián and Quaas in [7] obtained that when
1 ≤ N ≤ 4, (1.2) does not admit any positive classical supersolution u verifying

− �u > 0 in R
N\B, (1.3)

provided g is continuous and nondecreasing in [0,∞). When N ≥ 5, such supersolutions
exist if and only if ∫ δ

0

g(s)

s
2(N−2)
N−4

ds < ∞ (1.4)

for any δ > 0. If g(u) = u p and 1 < p ≤ N
N−4 , N ≥ 5, we see that (1.2) does not admit any

positive classical solution u verifying (1.3). For p > N
N−4 , Gazzola and Grunau [22] have

obtained that

u(x) = C(N , p)|x |− 4
p−1 ,

where

C(N , p) = 8

(p − 1)4

[
(N − 2)(N − 4)(p − 1)3 + 2(N 2 − 10N + 20)(p − 1)2

−16(N − 4)(p − 1) + 32
]
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is a positive solution of (1.2) with g(u) = u p , which satisfies (1.3). It should be pointed out
that the nonexistence results in [7] rely on the crucial assumption (1.3) but do not rely on
any boundary condition. Under the boundary conditions in (P) and (Q), if p > N+4

N−4 , it is

known from [28,34] that (P) and (Q) admit a unique positive radial solution u ∈ C4(RN\B)

verifying lim|x |→∞ sup |x |N−4u(x) < ∞ respectively. For 1 < p ≤ N
N−4 , if we can show

that any solution u of (P) satisfies the assumption (1.3), then Theorem 1 in [7] can be applied
to derive that such solutions cannot exist. However, by the maximum principle, we see that
the crucial assumption (1.3) cannot hold for solution u ∈ C4(RN\B) of the problem (Q).
Thus the arguments in [7] cannot be used to obtain the nonexistence result for the problem
(Q).

In this paper, we first show that if u ∈ C4(RN\B) is a solution of (P)with 1 < p ≤ N+4
N−4 ,

then−�u > 0 inRN\B. Then, by Theorem 1 in [7], we can directly obtain the nonexistence
results for (P) with 1 < p ≤ N

N−4 . We will do further to show that, for N
N−4 < p ≤ N+4

N−4 ,
problem (P) does not admit any classical solution either. This extends the nonexistence range
of p in [7]. Moreover, when 1 < p < N+4

N−4 , similar nonexistence results for problem (Q)

are also obtained, but the arguments in [7] cannot be applied.
The main results of this paper are the following Liouville type results.

Theorem 1.1 Assume N ≥ 5 and 1 < p ≤ N+4
N−4 . Then problem (P) does not admit any

solution u ∈ C4(RN\B).

Theorem 1.2 Assume N ≥ 5 and 1 < p < N+4
N−4 . Then problem (Q) does not admit any

solution u ∈ C4(RN\B).

Remark 1.3 If u ∈ C4(RN\B) is a nontrivial nonnegative solution to the problem
{

�2u = u p in R
N\B,

u = �u = 0 on ∂B,
(P ′)

we find, by the maximum principle, that u > 0 inRN\B and u is a solution to (P). Theorem
1.1 implies that problem (P ′) with 1 < p ≤ N+4

N−4 does not admit any nontrivial nonnegative
solution.

If u ∈ C4(RN\B) is a nontrivial nonnegative solution to the problem
{

�2u = u p in R
N\B,

u = ∂u
∂ν

= 0 on ∂B,
(Q′)

we cannot directly conclude that u > 0 in R
N\B. However, we will see that the arguments

in the proof of Theorem 1.2 can also be used to obtain nonexistence of nontrivial nonnegative
solutions of (Q′) under the assumptions of Theorem 1.2. Therefore, the results of Theorem
1.2 still hold for problem (Q′). For p = N+4

N−4 , we can also prove the nonexistence of nontrivial
nonnegative radial solutions of (Q′), hence the nonnegative classical radial solution of (Q′)
with p = N+4

N−4 is u ≡ 0.

It seems interesting that neither asymptotic behavior of u at infinity nor symmetric property
of u is required in the proof of Theorems 1.1 and 1.2. On the other hand, we make the Kelvin
transformation for the solutions of (P) and (Q), that is,

v(y) = |x |N−4u(x), y = x

|x |2 .
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We see from Lemma 3.1 in [33] that v ∈ C4(B\{0}) satisfies the problems⎧⎨
⎩

�2v = |y|(N−4)p−(N+4)v p in B\{0},
v > 0 in B\{0},
v = 0, �v − 4 ∂v

∂ν
= 0 on ∂B

(1.5)

and ⎧⎨
⎩

�2v = |y|(N−4)p−(N+4)v p in B\{0},
v > 0 in B\{0},
v = ∂v

∂ν
= 0 on ∂B

(1.6)

respectively, where ν is the unit outward normal vector of ∂B relative to B. Simple calcula-
tions imply that −�xu > 0 in R

N\B is not equivalent to −�yv > 0 in B\{0}. However,
for (1.5), we can still show that −�yv > 0 in B\{0}. This fact does not hold for (1.6) by
the maximum principle. The results of Theorems 1.1 and 1.2 can also be used to obtain
nonexistence results for problems (1.5) and (1.6).

Remark 1.4 (1) The nonexistence result in Theorem 1.2 for p = N+4
N−4 is still open. When

1 < p < N+4
N−4 , ifu ∈ C4(RN\B) is a solution of (Q),we canuse blow-up arguments to obtain

the decay rate of u at infinity. Combining with the Pohozaev identity in the “Appendix”, such
decay rate can be used to obtain the nonexistence results in Theorem 1.2. If u ∈ C4(RN\B)

is a solution of (Q) with p = N+4
N−4 , then v ∈ C4(B\{0}) satisfies the problem
⎧⎨
⎩

�2v = v
N+4
N−4 in B\{0},

v > 0 in B\{0},
v = ∂v

∂ν
= 0 on ∂B,

(1.7)

where ν is the unit outward normal vector of ∂B relative to B. We can see that 0 is a non-
removable singularity point of v. Otherwise, there is R 
 1 such that u(x) ≤ C |x |4−N for
x ∈ R

N\BR , which implies, by the Pohozaev identity, that u ≡ 0 in R
N\B. On the other

hand, it follows from the maximum principle that we cannot have −�yv > 0 in B\{0}. If
we put an extra assumption on v:

(A) There is 0 < R < 1 such that

− �yv > 0 in BR\{0}, (1.8)

(we think that this assumption holds for v, but we cannot provide a proof here), we can obtain
the asymptotic behavior of v at 0 by using Theorem 1.1 in [39]. From this we can obtain the
decay rate of u at infinity. Unfortunately, this decay rate of u is not good enough to derive
the nonexistence of u by using the Pohozaev identity. For the Navier boundary condition,
we can use the moving-plane argument to show that v is radially symmetric and then derive
the nonexistence of v by studying the detailed properties of v. However, since 0 is a non-
removable singularity point of v for (1.7), the method of moving plane developed in [5] does
not work. So we do not know how to use the moving-plane argument for the solution v of
(1.7).

(2)Wewill see fromRemark 3.3 below that the assumption (A) holds for radial solutions of
problem (1.7). Therefore, we can obtain the nonexistence of radial solutions of problem (1.7)
and hence the problem (Q)with p = N+4

N−4 does not admit any radial solution u ∈ C4(RN\B).

This paper is organized as follows. In Sect. 2, we give some preliminaries needed in
Sect. 3. The main results will be obtained in Sect. 3. In “Appendix A”, we present the
Pohozaev identities corresponding to problems (P) and (Q). In “Appendix B”, we estimate
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the upper bound of singular solutions needed in Sect. 2. Throughout this paper, we denote ν

the unit outward normal vector of ∂B relative to B.

2 Some preliminaries

In this section, we first use the blow-up argument to get the decay estimate of u, and then
obtain �u < 0 in R

N\B if u ∈ C4(RN\B) is a solution of (P). Moreover, we can also
obtain the negativity of �v in B\{0}, where v(y) = |x |N−4u(x), y = x

|x |2 and v is a solution
of (1.5).

Lemma 2.1 Let u be a nonnegative solution of �2u = u p in R
N\B. Assume that 1 < p <

N+4
N−4 , then

u(x) ≤ C |x |− 4
p−1 for |x | > 2, (2.1)

where C is a positive constant depending only on N and p.

Proof Argue by contradiction that there is a sequence of nonnegative solutions {uk} of�2u =
u p in R

N\B and a sequence of points {xk} ⊂ R
N\B2, such that

Mk(xk)d(xk) > 2k for k = 1, 2, . . . ,

where Mk(x) := (uk(x))
p−1
4 , d(x) := dist(x, ∂B). By the doubling lemma in [44], there

exists another sequence {yk} ⊂ R
N\B2 such that

Mk(yk)d(yk) > 2k, Mk(yk) ≥ Mk(xk)

and

Mk(z) ≤ 2Mk(yk) for |z − yk | ≤ kλk,

where λk := M−1
k (yk).

Define

wk(x) = λ
4

p−1
k uk(yk + λk x), x ∈ Bk .

Thuswk is a nonnegative solution of�2wk = w
p
k in Bk .Note thatwk(0) = 1 andmaxBk wk ≤

2
4

p−1 , by elliptic estimates, we may assume, up to a subsequence, that {wk} converges to w

in C4
loc(R

N ), where w is a nonnegative solution of �2w = w p in R
N . Using Theorem 1.4

in [43], we see that w ≡ 0, which is a contradiction with w(0) = 1. ��
Proposition 2.2 Let 1 < p ≤ N+4

N−4 . Assume that u ∈ C4(RN\B) is a solution of (P). Then

�u(x) < 0 ∀x ∈ R
N\B. (2.2)

Moreover,
∂u(x)

∂ν
> 0,

∂(�u)(x)

∂ν
< 0 ∀x ∈ ∂B, (2.3)

where ν is the unit outward normal vector of ∂B relative to B.

Proof We first show that for 1 < p ≤ N+4
N−4 ,

|�u(x)| → 0 as |x | → ∞. (2.4)
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We consider two cases here: (i) 1 < p < N+4
N−4 , (ii) p = N+4

N−4 .
For the case (i), by Lemma 2.1, we see that there are C := C(N , p) > 0 and R > 2 such

that
u(x) ≤ C |x |−4/(p−1) ∀x ∈ R

N\BR . (2.5)

For the case (ii), we cannot use the blow-up argument.We need to use some new arguments
to get similar estimates as in the case (i), i.e., there are C := C(N ) > 0 and R 
 1 such that

u(x) ≤ C |x |− N−4
2 ∀x ∈ R

N\BR . (2.6)

To this end, making the Kelvin transformation:

v(y) = |x |N−4u(x), y = x

|x |2 ,

it follows from Lemma 3.1 of [33] that v ∈ C4(B\{0}) satisfies the problem
⎧⎨
⎩

�2v = v
N+4
N−4 in B\{0},

v > 0 in B\{0},
v = 0, �v − 4 ∂v

∂ν
= 0 on ∂B,

(2.7)

where ν is the unit outward normal vector of ∂B relative to B. Problem (2.7) is the critical
Steklov biharmonic problem with critical value 4 in the coefficient of the normal derivatives.
The corresponding variational problems have been studied in [3,4,6].

Note that u = 0, �u = 0 on ∂B and ∂v
∂ν

≤ 0 on ∂B, we see that

v = 0, �v ≤ 0 on ∂B. (2.8)

Taking p = N+4
N−4 in (2.23) below, we find that v

N+4
N−4 ∈ L1(B). As in the proof of (2.24) in

Proposition 2.3, we deduce that −�v is a superharmonic function in B in the distributional
sense. Note that −�v ≥ 0 on ∂B, we infer that

− �v ≥ 0 in B\{0}. (2.9)

Then, v ∈ C4(B\{0}) is a solution to the equation in (2.7) satisfying (2.9). Using Proposition
5.2, we obtain

v(y) ≤ C |y|− N−4
2 ∀y ∈ B\{0}. (2.10)

By the Kelvin transformation, we find that (2.6) holds.
We next show that (2.4) holds. For 1 < p ≤ N+4

N−4 and any λ > 1, define

u(x) = λ
4

p−1 u(λx).

Then u is a solution of (P) in R
N\B 1

λ
. By (2.5) and (2.6), we see

u(x) ≤ C for x ∈ R
N\BR, (2.11)

where C and R are the same constants as in (2.5) and (2.6). For any x0 ∈ R
N\B10R , taking

λ = |x0|
5R and ξ0 = λ−1x0, we see that |ξ0| = 5R. By (2.11) and standard elliptic estimates,

we have ∑
k≤3

|∇ku(ξ0)| ≤ C .
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Rescaling back we obtain that for x ∈ R
N\B10R ,∑

k≤3

|x | 4
p−1+k |∇ku(x)| ≤ C . (2.12)

Thus, (2.4) holds.
It follows from (2.4) that for any ε > 0, we can find Rε 
 1 such that �u ≤ ε on

R
N\BRε . Using the subharmonicity of �u and �u = 0 on ∂B, we deduce

�u(x) ≤ ε, ∀1 ≤ |x | ≤ Rε . (2.13)

Sending ε to 0, we find
�u(x) ≤ 0, ∀x ∈ R

N\B. (2.14)

By the strong maximum principle, we see that (2.2) holds. Then (2.3) follows from (2.2) and
Hopf’s boundary lemma. This completes the proof of this proposition. ��

Let u be a solution of the problem⎧⎨
⎩

�2u = u p in R
N\B,

u > 0 in R
N\B,

u = �u = 0 on ∂B.

(2.15)

Using the Kelvin transformation:

v(y) = |x |N−4u(x), y = x

|x |2 ,

we find, by Lemma 3.1 in [33], that v(y) satisfies the problem⎧⎨
⎩

�2v = |y|(N−4)p−(N+4)v p in B\{0},
v > 0 in B\{0},
v = 0, �v − 4 ∂v

∂ν
= 0 on ∂B,

(2.16)

where ν is the unit outward normal vector of ∂B relative to B. Problem (2.16) is closely
related to the study of isolated singularities of polyharmonic equations, see [8,11] for more
details.

Let u(x) = u(r , θ) with r = |x | and v(y) = v(ρ, θ) with ρ = |y|. It is easy to check that
�xu = ρN

(
�yv − 4

vρ

ρ
− 2(N − 4)

v

ρ2

)
, (2.17)

where vρ = ∂v
∂ρ
. From (2.17), we see that�xu < 0 inRN\B does not directly imply�yv < 0

in B\{0}.
To obtain �yv < 0 in B\{0}, we have to present a new proof independently, which is

interesting itself.

Proposition 2.3 Let 1 < p ≤ N+4
N−4 and v ∈ C4(B\{0}) be a solution to (2.16). Then

�yv < 0 in B\{0}. (2.18)

Moreover,
∂v

∂ν
< 0, �yv < 0,

∂(�v)

∂ν
> 0 on ∂B, (2.19)

where ν is the unit outward normal vector of ∂B relative to B.
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Proof Since ∂u
∂ν

= − ∂v
∂ν

on ∂B, it follows from (2.3) that

∂v

∂ν
< 0 on ∂B. (2.20)

Since v(1, θ) ≡ 0 for θ ∈ SN−1, we easily see that (�θv)(1, θ) ≡ 0 for θ ∈ SN−1. Thus,
�xu = 0 is equivalent to �yv − 4 ∂v

∂ν
= 0 on ∂B, which implies that vρρ + (N − 5)vρ = 0

on ∂B. By (2.20), we obtain

�yv = 4
∂v

∂ν
< 0 on ∂B. (2.21)

It is easy to check that

(�xu)ρ = −ρN+1[N�yv − 6(N − 2)ρ−1vρ + ρ(�yv)ρ − 4vρρ − 2(N − 2)(N − 4)ρ−2v].
Due to (2.3) and �yv = 4 ∂v

∂ν
on ∂B, we can deduce

ρ(�yv)ρ >4vρρ + 6(N − 2)ρ−1vρ − N�yv + 2(N − 2)(N − 4)ρ−2v

=4vρρ + 6(N − 2)ρ−1vρ − N�yv

=4(5 − N )vρ + 6(N − 2)vρ − 4Nvρ

= − 2(N − 4)vρ > 0 on ∂B,

which implies
∂(�yv)

∂ν
> −2(N − 4)

∂v

∂ν
> 0 on ∂B. (2.22)

We next prove (2.18). We first claim that

|y|(N−4)p−(N+4)v p ∈ L1(B). (2.23)

To do so, we take the cut-off function η ∈ C∞(R) with values in [0,1] satisfying

η(t) =
{
0, for t ≤ 1,

1, for t ≥ 2.

Let q = 4p
p−1 and define ϕε(y) = η(ε−1|y|)q , where 0 < ε � 1. Multiplying the equation

in (2.16) by ϕε(x) and integrating by parts, we have∫
B

|y|(N−4)p−(N+4)v pϕε =
∫
B

v�2ϕε +
∫

∂B

∂(�v)

∂ν
dσ1.

Since

|�2ϕε | ≤ Cε−4ϕ1/p
ε χ{ε≤|y|≤2ε}.

By Hölder inequality, we have∣∣∣∣
∫
B

v�2ϕε

∣∣∣∣ ≤ Cε−4
∫

ε≤|y|≤2ε
vϕ

1
p
ε

≤ Cε
N− N

p −4
( ∫

ε≤|y|≤2ε
v pϕε

)1/p

≤ Cε
N− N

p −4−(N−4)+ N+4
p

( ∫
B

|y|(N−4)p−(N+4)v pϕε

)1/p

≤ C
( ∫

B
|y|(N−4)p−(N+4)v pϕε

)1/p
.
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Thus∫
B

|y|(N−4)p−(N+4)v pϕε ≤ C
( ∫

B
|y|(N−4)p−(N+4)v pϕε

)1/p +
∫

∂B

∂(�v)

∂ν
dσ1,

which implies ∫
B

|y|(N−4)p−(N+4)v pϕε ≤ C .

Letting ε to 0, we obtain ∫
B

|y|(N−4)p−(N+4)v p ≤ C .

We now show that �v is a subharmonic function in B in the distributional sense. Let
ψ ∈ C∞

c (B) be a nonnegative function. We only need to prove that
∫
B

�v�ψ ≥ 0. (2.24)

Multiplying (2.16) by ϕεψ and integrating by parts, we obtain

0 ≤
∫
B

|y|(N−4)p−(N+4)ϕεψv p

=
∫
B

�(ϕεψ)�v

=
∫
B

�v(�ψϕε + 2∇ψ · ∇ϕε + ψ�ϕε).

Denote ζ = 2∇ψ · ∇ϕε + ψ�ϕε . Then ζ(y) ≡ 0 for |y| ≤ ε and for |y| ≥ 2ε, and

|�ζ(y)| ≤ Cε−4.

Thus, we have
∣∣∣
∫
B

�vζ

∣∣∣ ≤
∫
B

v|�ζ |

≤ Cε−4
( ∫

ε≤|y|≤2ε
v p

)1/p
εN (1−1/p)

≤ Cε
N− N

p −4−(N−4)+ N+4
p

( ∫
B

|y|(N−4)p−(N+4)v p
)1/p

≤ Cε4/p → 0 as ε → 0.

Hence, we infer ∫
B

�v�ψ = lim
ε→0

∫
B

�v(�ψϕε + 2∇ψ · ∇ϕε + ψ�ϕε)

= lim
ε→0

∫
B

|y|(N−4)p−(N+4)ϕεψv p ≥ 0.

Therefore, �v is a subharmonic function in B in the distributional sense. On the other hand,
from (2.21), we see that �v < 0 on ∂B. By the maximum principle, we conclude that (2.18)
holds and the proof of this proposition is completed. ��
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3 Proof of themain results

In this section, we present the proof of Theorems 1.1 and 1.2. For the subcritical cases, we
use the Pohozaev identities and decay estimates to prove Theorems 1.1 and 1.2. The proof
of the critical case of Theorem 1.1 needs some new arguments, since the Pohozaev identity
cannot be used to deal with this case.

Proof of the subcritical case of Theorem 1.1 As in the proof of Proposition 2.2, we find that,
for 1 < p < N+4

N−4 , there are C := C(N , p) > 0 and R∗ > 2 such that (see (2.12)) for
|x | > R∗, ∑

k≤3

|x | 4
p−1+k |∇ku(x)| ≤ C . (3.1)

Thus, for any R > R∗ and k = 0, 1, 2, 3,

|∇ku(x)| ≤ C |x |− 4+k(p−1)
p−1 , ∀|x | ≥ R. (3.2)

By Corollary 4.2, we have

( N

p + 1
− N − 4

2

) ∫
BR\B

u p+1 =
∫

∂BR

G(u,�u)(x)dσR +
∫

∂B

∂u

∂ν

∂(�u)

∂ν
dσ1, (3.3)

where

G(u, w)(x) = R

p + 1
u p+1 − 2

R
(x · ∇u)(x · ∇w)

+R∇u∇w − N − 2

R
u(x · ∇w) + R

2
w2

− N

2R
(w(x · ∇u) − u(x · ∇w)).

Using (3.2), by direct calculations, we deduce

∣∣∣
∫

∂BR

G(u,�u)(x)dσR

∣∣∣ ≤ CRN− 4(p+1)
p−1 ∀R > R∗, (3.4)

where C > 0 is independent of R. Since N − 4(p+1)
p−1 < 0, we see from (3.4) that

∫
∂BR

G(u,�u)(x)dσR → 0 as R → ∞. (3.5)

Thanks to (3.3) and (3.5), we see

( N

p + 1
− N − 4

2

) ∫
RN \B

u p+1 =
∫

∂B

∂u

∂ν

∂(�u)

∂ν
dσ1. (3.6)

By Proposition 2.2, we find
∫

∂B

∂u

∂ν

∂(�u)

∂ν
dσ1 < 0.

Since N
p+1 − N−4

2 > 0 and u > 0 in RN \ B, this contradicts (3.6). This completes the proof
of Theorem 1.1 for the subcritical case. ��
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Proof of Theorem 1.2 As in the proof of Theorem 1.1, we have that, for 1 < p < N+4
N−4 , there

are C := C(N , p) > 0 and R∗ > 2 such that (see (2.12)) for |x | > R∗,∑
k≤3

|x | 4
p−1+k |∇ku(x)| ≤ C . (3.7)

Thus, for any R > R∗ and k = 0, 1, 2, 3,

|∇ku(x)| ≤ C |x |− 4+k(p−1)
p−1 ∀|x | ≥ R. (3.8)

Due to Corollary 4.3, we have
[ N

p + 1
− N − 4

2

] ∫
BR\B

u p+1 =
∫

∂BR

G(u,�u)(x)dσR − 1

2

∫
∂B

(�u)2dσ1, (3.9)

whereG(u,�u) is given in (3.3).Meanwhile, (3.4) and (3.5) hold for
∫
∂BR

G(u,�u)(x)dσR .
Then, letting R → ∞ in (3.9), we find

[ N

p + 1
− N − 4

2

] ∫
RN \B

u p+1 = −1

2

∫
∂B

(�u)2dσ1. (3.10)

Since N
p+1 − N−4

2 > 0 and u > 0 in R
N \ B, this contradicts (3.10). This completes the

proof of Theorem 1.2. ��
Proof of the critical case of Theorem 1.1 Let u be a solution to (P) for p = N+4

N−4 . Set v(y) =
|x |N−4u(x), y = x

|x |2 , then v(y) satisfies the problem

⎧⎨
⎩

�2v = v
N+4
N−4 in B\{0},

v > 0 in B\{0},
v = 0, �v − 4 ∂v

∂ν
= 0 on ∂B.

(3.11)

By Proposition 2.3, we have
�v < 0 in B\{0}. (3.12)

Moreover,
∂v

∂ν
< 0, �v < 0,

∂(�v)

∂ν
> 0 on ∂B. (3.13)

In the following, instead of showing the nonexistence of u, we show the nonexistence of v.
We first claim that 0 is a non-removable singularity point of v. Suppose that 0 is a removable
singularity point of v, then v ∈ C4(B). We can also establish the corresponding Pohozaev
identity for (3.11) in B, but we cannot use it directly to derive a contradiction because of the
inhomogeneous boundary conditions. On the other hand, since 0 is a removable singularity
point of v, we see that lim|x |→∞ |x |N−4u(x) = v(0) > 0. Thus there is R∗ 
 1 such that

u(x) ≤ 10v(0)|x |−(N−4) ∀|x | ≥ R∗, (3.14)

which implies ∑
k≤3

|x |N−4+k |∇ku(x)| ≤ C ∀|x | ≥ 20R∗. (3.15)

Using (3.15) and Corollary 4.2, we have
( N

p + 1
− N − 4

2

) ∫
BR\B

u p+1 =
∫

∂BR

G(u,�u)(x)dσR +
∫

∂B

∂u

∂ν

∂(�u)

∂ν
dσ1 (3.16)
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and ∣∣∣
∫

∂BR

G(u,�u)(x)dσR

∣∣∣ ≤ CR4−N → 0 as R → ∞.

Recall that p = N+4
N−4 and let R → ∞ in (3.16), we find∫

∂B

∂u

∂ν

∂(�u)

∂ν
dσ1 = 0.

This contradicts (2.3). ��
Lemma 3.1 Let N ≥ 5 and v ∈ C4(B\{0}) be a solution to (3.11) satisfying (3.12) and
(3.13). Then v is radially symmetric about 0.

Proof The moving-plane method as in [47] is used to prove this lemma. We rewrite the
equation of v into a system of equations:⎧⎨

⎩
−�v = z in B\{0},
−�z = v

N+4
N−4 in B\{0},

v = 0, z = −4 ∂v
∂ν

on ∂B.

(3.17)

Due to (3.12) and (3.13), we see that (v, z) is a positive solution to (3.17). Moreover, the
system (3.17) is cooperative. Note that v = 0, z = −�v > 0 and ∂v

∂ν
< 0, ∂z

∂ν
< 0 on ∂B.

However, since (3.17) is an inhomogeneous boundary condition for z, the arguments in [47]
cannot be directly used here. We need to overcome some extra difficulties in the proof.

Let Tλ := {x ∈ R
N : x1 = λ}, �(λ) := {x ∈ B : 0 < λ < x1 < 1} and �′(λ) denote

the reflection of �(λ) with respect to the plane Tλ. Let x = (x1, x2, . . . , xN ) ∈ �(λ) and
xλ = (xλ

1 , x2, . . . , xN ) be the reflection of x with respect to the plane Tλ. Then xλ
1 = 2λ−x1.

Define Vλ(x) := v(xλ) − v(x) and Zλ(x) := z(xλ) − z(x) for x ∈ �(λ). Then (Vλ, Zλ)

satisfies the system: {−�V = Z in �(λ),

−�Z =
(
N+4
N−4

)
ξ

8
N−4 V in �(λ),

(3.18)

where ξ is between v(x) and v(xλ).
First we claim that there exist t0 > 0 and α > 0 depending only on B, such that v(x − tn)

and z(x− tn) are increasing for t ∈ [0, t0], where n ∈ R
N satisfies |n| = 1 and (n, ν(x)) ≥ α

and x ∈ ∂B. Indeed, for any x0 ∈ ∂B, define

Oε = B ∩ {x ∈ R
N : |x − x0| < ε}

and

Sε = ∂B ∩ {x ∈ R
N : |x − x0| < ε}.

Since ∂v(x0)
∂νx0

< 0 and ∂z(x0)
∂νx0

< 0, we see that there exist ε0 > 0 and 1 > α0 > 0 such that

for 0 < ε ≤ ε0, α0 ≤ α < 1 and x ∈ Sε with (νx , νx0) ≥ α,

∂v(x)

∂νx0
< 0 and

∂z(x)

∂νx0
< 0. (3.19)

Otherwise, there are sequences {(εi , αi )} with εi → 0, αi → 1 as i → ∞, and {xi } with
xi ∈ Sεi and (νxi , νx0) ≥ αi such that

∂v(xi )

∂νx0
≥ 0 or

∂z(xi )

∂νx0
≥ 0. (3.20)
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Since xi → x0 and νxi → νx0 as i → ∞, it follows from (3.20) that

∂v(x0)

∂νx0
≥ 0 or

∂z(x0)

∂νx0
≥ 0. (3.21)

This is a contradiction with the fact

∂v

∂ν
< 0 and

∂z

∂ν
< 0 on ∂B. (3.22)

We next show that there exist t0 > 0 and α0 > 0 such that for any x ∈ Sε0 with
(νx0 , νx ) ≥ α0, v(x − tνx0) and z(x − tνx0) are increasing for t ∈ [0, t0]. Suppose that t0
does not exist, then there is a sequence {x j } ⊆ Oε0 with x j → x0 as j → ∞ such that
∂v(x j )
∂νx0

≥ 0 or ∂z(x j )
∂νx0

≥ 0. Let a j be the intersection point on Sε0 in the positive νx0 direction

from x j , then ∂v(a j )
∂νx0

≤ 0 and ∂z(a j )
∂νx0

≤ 0. Since a j → x0 as j → ∞, we find

∂v(x0)

∂νx0
= 0 or

∂z(x0)

∂νx0
= 0,

which contradicts (3.22). Therefore, there exists 0 < ε̃ < ε0 such that for any λ ∈ (1− ε̃, 1)

∂v

∂x1
< 0,

∂z

∂x1
< 0 for x ∈ �(λ)

and

v(x) < v(xλ), z(x) < z(xλ) for x ∈ �(λ).

Let

λ0 = inf{λ ≥ 0 : v(x) < v(xτ ), z(x) < z(xτ ) for x ∈ �(τ) with τ ≥ λ}.
We will show that λ0 = 0. On the contrary, we assume that 0 < λ0 < 1. Then, we have

v(x) ≤ v(xλ0), z(x) ≤ z(xλ0) for x ∈ �(λ0). (3.23)

We first show
v(x) < v(xλ0), z(x) < z(xλ0) for x ∈ �(λ0). (3.24)

Suppose that (3.24) does not hold, then there is x0 ∈ �(λ0) such that

(a) v(x0) = v(xλ0
0 ), or (b) z(x0) = z(xλ0

0 ). (3.25)

We need to consider two cases here: (i) 0 /∈ �′(λ0), (ii) 0 ∈ �′(λ0).
For the case (i), we first show that (a) of (3.25) cannot hold. On the contrary, since Vλ0 ≥ 0

and Zλ0 ≥ 0 in �(λ0), by the maximum principle, we obtain that Vλ0 ≡ 0 in �(λ0). This
contradicts the fact that v = 0 on ∂B and v > 0 in B. Therefore, Vλ0 > 0 in �(λ0), which
implies that (b) of (3.25) holds. Using the maximum principle again, we see that Zλ0 ≡ 0 in
�(λ0). Since Vλ0 > 0 in �(λ0), this contradicts the second equation of (3.18). Therefore,
(3.24) holds.

For the case (ii), if (3.25) holds, we see that xλ0
0 �= 0 (note that 0 is a non-removable

singularity point of v). Let x1 ∈ �(λ0) and xλ0
1 = 0. Suppose that (a) of (3.25) holds, by the

maximum principle, we find that Vλ0 ≡ 0 in �(λ0)\{x1}. This contradicts the fact that v = 0
on ∂B and v > 0 in B. Therefore, Vλ0 > 0 in �(λ0)\{x1}. Suppose that (b) of (3.25) holds,
from themaximum principle, we derive that Zλ0 ≡ 0 in�(λ0)\{x1}. This also contradicts the
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second equation of (3.18). Therefore, (3.24) holds. Since Vλ0 = 0 and Zλ0 = 0 on B ∩ Tλ0 ,
by (3.24) and the maximum principle, we find

∂Vλ0

∂x1
> 0,

∂Zλ0

∂x1
> 0 on B ∩ Tλ0 . (3.26)

Since
∂Vλ0
∂x1

= −2 ∂v
∂x1

,
∂Zλ0
∂x1

= −2 ∂z
∂x1

on B ∩ Tλ0 , we have

∂v

∂x1
< 0,

∂z

∂x1
< 0 on B ∩ Tλ0 . (3.27)

We now show that there is a sufficiently small ε > 0 such that for λ ∈ (λ0 − ε, λ0),

v(x) < v(xλ), z(x) < z(xλ) for x ∈ �(λ) (3.28)

and
∂v

∂x1
< 0,

∂z

∂x1
< 0 on B ∩ Tλ. (3.29)

Otherwise, there is an increasing sequence {λk} with λk ↗ λ0 as k → ∞, such that for each
k there is a point xk ∈ �(λk) satisfying

v(xk) ≥ v(xλk
k ) or z(xk) ≥ z(xλk

k ). (3.30)

Up to a subsequence, we may assume that {xk} converges to a point x∗ ∈ �(λ0) as k → ∞.
Hence,

(a) v(x∗) ≥ v(xλ0∗ ) or (b) z(x∗) ≥ z(xλ0∗ ). (3.31)

By (3.24), we see that x∗ ∈ ∂�(λ0). We claim that x∗ ∈ B ∩ Tλ0 . Suppose that this claim
is not true, then x∗ ∈ ∂B\Tλ0 and xλ0∗ ∈ B, hence 0 = v(x∗) < v(xλ0∗ ). Thus (a) of (3.31)
cannot occur. Suppose that (b) of (3.31) holds, we find that z(x∗) = z(xλ0∗ ). Thus, by (3.24)
and the strong maximum principle, we find

∂Zλ0(x∗)
∂x1

< 0. (3.32)

Hence there are ε0, δ > 0 such that Zλ0(x − tγ ) > Zλ0(x) for x ∈ S∗
ε0
, t ∈ (0, δ), where

γ = (1, 0, . . . , 0), S∗
ε0

= ∂B ∩ {x ∈ R
N : |x − x∗| < ε0}. Then we have

z((x − tγ )λ0) > z(x − tγ ) for x ∈ S∗
ε0

, t ∈ (0, δ).

This contradicts (3.30). Therefore, our claim is true.
For k large, however, the line segment joining xk to x

λk
k is contained in B. Thus, by (3.30)

and the mean value theorem, we obtain that there is a point yk on this line segment such that

∂v(yk)

∂x1
≥ 0 or

∂z(yk)

∂x1
≥ 0. (3.33)

Since yk → x∗ as k → ∞, we have

∂v(x∗)
∂x1

≥ 0 or
∂z(x∗)
∂x1

≥ 0. (3.34)

By (3.27), we obtain that x∗ ∈ B ∩ Tλ0 cannot occur.
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We next show that (3.34) does not hold for x∗ ∈ ∂B ∩ Tλ0 . Since v = 0 on ∂B, we see
that ∇v = ∂v

∂ν
ν on ∂B. Note that νx∗ · γ > 0, we find

∂v(x∗)
∂x1

= ∂v(x∗)
∂νx∗

(νx∗ , γ ) < 0.

Thus the first case of (3.34) is impossible. To deal with the second case in (3.34), we now
claim

∂Zλ0(x∗)
∂x1

�= 0. (3.35)

Otherwise, by Zλ0 |Tλ0
≡ 0, we see that ∇Zλ0(x∗) = (0, 0, . . . , 0). On the other hand, by

the Hopf “corner” lemma (see Lemma 1 of [45] and Lemma S of [25]), we infer that for any
direction s at x∗ which enters �λ0 non-tangentially,

∂Zλ0(x∗)
∂s

> 0 or
∂2Zλ0(x∗)

∂s2
> 0. (3.36)

It follows from simple calculations that
∂2Zλ0 (x∗)

∂s2 = 0, then only (3.36)1 holds. Therefore,
∇Zλ0(x∗) �= (0, 0, . . . , 0) and our claim (3.35) holds. From (3.26), (3.35) and the continuity

of
∂Zλ0
∂x1

, we obtain
∂Zλ0(x∗)

∂x1
> 0, (3.37)

which implies ∂z(x∗)
∂x1

< 0. This is a contradiction with the second case of (3.34).
Thus, (3.28) and (3.29) hold. But this contradicts the definition of λ0. Hence, λ0 = 0 and

v(−x1, x2, . . . , xN ) ≥ v(x1, x2, . . . , xN ), z(−x1, x2, . . . , xN ) ≥ z(x1, x2, . . . , xN )

for x = (x1, x2, . . . , xN ) ∈ B with x1 > 0. By reversing the direction of x1-axis, we can
also obtain

v(−x1, x2, . . . , xN ) ≤ v(x1, x2, . . . , xN ), z(−x1, x2, . . . , xN ) ≤ z(x1, x2, . . . , xN )

for x = (x1, x2, . . . , xN ) ∈ B with x1 > 0. Therefore, v and z are symmetric to the x1-axis.
Since x1 can be an arbitrary direction and our equation is invariant under the rotations, we
eventually obtain that v and z are radially symmetric about 0. This completes the proof of
this lemma. ��
Lemma 3.2 Let N ≥ 5. Then (3.11) does not admit a radially symmetric solution with a
non-removable singularity point 0.

Proof Suppose that (3.11) admits a radial solution v(y) := v(ρ), ρ = |y| and v(0) = ∞.
Under the transformations:

w(t) = |y| N−4
2 v(|y|), t = log |y|, (3.38)

w(t) satisfies the equation

w(4)(t) + K2w
′′(t) + K0w(t) = w(t)

N+4
N−4 in (−∞, 0), (3.39)

where

K2 = −N 2 − 4N + 8

2
, K0 = N 2(N − 4)2

16
. (3.40)
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By Lemma 2.1 in [30], we see that if limt→−∞ w(t) = ϑ , then ϑ ∈ {0, K
N−4
8

0 }. In the
following, we show that both the cases cannot occur. If limt→−∞ w(t) = 0, it follows from

the proof of Lemma 2.5 in [30] that w(t) = O(e
N−4
2 t ) for t near −∞, which implies

v(ρ) = O(1) for ρ near 0.

This contradicts v(0) = ∞.

We next show that limt→−∞ w(t) = K
N−4
8

0 cannot hold either. Suppose that it holds, by

Lemma 2.3 in [30], we find that limt→−∞ w(k)(t) = 0 for all k ≥ 1. Let ẑ(τ ) = r
N−4
2 u(r)

where τ = log r , u(r) = ρN−4v(ρ), r = ρ−1, we see that limτ→∞ ẑ(τ ) = K
N−4
8

0 and
limτ→∞ ẑ(k)(τ ) = 0 for all k ≥ 1. Moreover, by direct calculations, we find that for r
sufficiently large,

u(r) =
(
K

N−4
8

0 + or (1)
)
r− N−4

2 , (3.41)

u′(r) =
(

− N − 4

2
K

N−4
8

0 + or (1)
)
r− N−2

2 , (3.42)

u′′(r) =
( (N − 4)(N − 2)

4
K

N−4
8

0 + or (1)
)
r− N

2 , (3.43)

u′′′(r) =
(

− N (N − 2)(N − 4)

8
K

N−4
8

0 + or (1)
)
r− N+2

2 . (3.44)

Thus, for r sufficiently large, we have

�u(r) =
(

− N (N − 4)

4
K

N−4
8

0 + or (1)
)
r− N

2 , (3.45)

(�u)′(r) =
(N 2(N − 4)

8
K

N−4
8

0 + or (1)
)
r− N+2

2 . (3.46)

On the other hand, by Corollary 4.2, we get

0 = RN−1
[N − 4

2N
Ru

2N
N−4 (R) − 2Ru′(R)(�u)′(R) + Ru′(R)(�u)′(R)

− (N − 2)u(R)(�u)′(R) + R

2
(�u)2(R) − N

2
(�u)(R)u′(R) + N

2
u(R)(�u)′(R)

]

+ u′(1)(�u)′(1).

Using (3.41)–(3.46) and sending R → ∞ in the above identity, we have

− 2

N
K

N
4
0 + u′(1)(�u)′(1) = 0.

This is a contradiction with u′(1)(�u)′(1) < 0. Therefore, limt→−∞ w(t) = K
N−4
8

0 cannot
hold.

Thus, w′(t) = 0 admits infinitely many roots in (−∞, 0). Moreover, by (2.10), we see
that w(t) ≤ C for t ∈ (−∞, 0). As in the proof of (c) of Proposition 3 in [20], we deduce
that w is periodic, has a unique local maximum and minimum per period and is symmetric
with respect to its local extrema. On the other hand, since w(0) = 0 and w(t) is nonnegative
and periodic, we see that mint∈(−∞,0) w(t) = 0 and there is a sequence {ρ j } ⊂ (0, 1) such
that v(ρ j ) = 0. But this is a contradiction with the fact �v < 0 in B\{0}, which implies that
w(t) cannot exist and thus v(ρ) cannot exist. This completes the proof of this lemma. ��
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Lemmas 3.1 and 3.2 imply that the solution u of problem (P) with p = N+4
N−4 does not

exist. This completes the proof of the critical case of Theorem 1.1 and hence the proof of
Theorem 1.1 is completed. ��
Remark 3.3 The assumption (A) in Remark 1.4 holds for radial solutions v ∈ C4(B\{0}) ∩
C3(B\{0}) of (1.7). Indeed, it follows from Remark 1.4 that 0 is a non-removable singularity

point of v. As in the proof of Proposition 2.3, we find that v
N+4
N−4 ∈ L1(B). Taking advantage

of the equation

(ρN−1(�v)′(ρ))′ = ρN−1v
N+4
N−4 ∀ρ ∈ (0, 1),

we have

lim
ρ→0

ρN−1(�v)′(ρ) = 0

and therefore,
(�v)′(ρ) > 0 for ρ ∈ (0, 1). (3.47)

We can conclude that (�v)(1) > 0. On the contrary, we assume that (�v)(1) ≤ 0. By
(3.47), we see that (�v)(ρ) < 0 for ρ ∈ (0, 1), which contradicts v′(1) = 0 by using the
Hopf’s boundary lemma. We now claim that there is R ∈ (0, 1) such that (�v)(ρ) < 0 for
ρ ∈ (0, R), (�v)(R) = 0 and (�v)(ρ) > 0 for ρ ∈ (R, 1). Suppose that such R does not
exist, then, by (�v)(1) > 0, we obtain that (�v)(ρ) > 0 for ρ ∈ (0, 1). It follows from
(3.47) that limρ→0(�v)(ρ) = ς ∈ [0,∞). This implies that 0 is a removable singularity
point of v, which is a contradiction. Therefore, our claim holds. Thus, the assumption (A)
in (1) of Remark 1.4 holds in BR\{0}. Nonexistence of radial solutions v of (1.7) with a
non-removable singularity point 0 can be obtained by the similar arguments in the proof
Lemma 3.2. Therefore, problem (Q) with p = N+4

N−4 does not admit any radial solution.

Acknowledgements The authors would like to thank the referee for the careful reading and the valuable and
useful suggestions, which greatly improved the manuscript.

4. Appendix A: Pohozaev identity

In this section, we establish the Pohozaev identities corresponding to problems (P) and (Q).

Proposition 4.1 Assume that N ≥ 5 and p > 1. Suppose that u ∈ C4(RN\B) ∩C3(RN\B)

is a positive solution of the equation

�2u = u p in R
N\B.

Then, for any R > 1, the following Pohozaev identity holds:
[ N

p + 1
− N − 4

2

] ∫
BR\B

u p+1

=
∫

∂BR

[ R

p + 1
u p+1 − 2

R
(x · ∇u)(x · ∇w) + R∇u∇w

−N − 2

R
u(x · ∇w) + R

2
w2 − N

2R
(w(x · ∇u) − u(x · ∇w))

]
dσR

+
∫

∂B

[
2(x · ∇u)(x · ∇w) − 1

p + 1
u p+1 − ∇u∇w + (N − 2)u(x · ∇w)
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−1

2
w2 + N

2
(w(x · ∇u) − u(x · ∇w))

]
dσ1,

where w = �u.

Proof Note that

(x · ∇u)�w = div
(
x · u p+1

p + 1

)
− N

p + 1
u p+1.

By simple calculation, we find

(x · ∇u)�w = div
(
(x · ∇u)∇w − x∇u · ∇w

)
+ (N − 2)∇u∇w + ∇(x · ∇w)∇u.

Thus, we have∫
BR\B

div
(
(x · ∇u)∇w − x∇u · ∇w

)

= 1

R

∫
∂BR

(x · ∇u)(x · ∇w)dσR − R
∫

∂BR

∇u∇wdσR

−
∫

∂B
(x · ∇u)(x · ∇w)dσ1 +

∫
∂B

∇u∇wdσ1,∫
BR\B

∇u∇w = 1

R

∫
∂BR

u(x · ∇w)dσR −
∫

∂B
u(x · ∇w)dσ1 −

∫
BR\B

u p+1,

and ∫
BR\B

∇(x · ∇w)∇u

= 1

R

∫
∂BR

(x · ∇w)(x · ∇u)dσR −
∫

∂B
(x · ∇w)(x · ∇u)dσ1

− R

2

∫
∂BR

w2dσR + 1

2

∫
∂B

w2dσ1 + N

2R

∫
∂BR

w(x · ∇u)dσR

− N

2

∫
∂B

w(x · ∇u)dσ1 − N

2R

∫
∂BR

u(x · ∇w)dσR

+ N

2

∫
∂B

u(x · ∇w)dσ1 + N

2

∫
BR\B

u p+1

= 1

R

∫
∂BR

(x · ∇w)(x · ∇u)dσR −
∫

∂B
(x · ∇w)(x · ∇u)dσ1

− R

2

∫
∂BR

w2dσR + 1

2

∫
∂B

w2dσ1 + N

2R

∫
∂BR

(w(x · ∇u) − u(x · ∇w))dσR

− N

2

∫
∂B

(w(x · ∇u) − u(x · ∇w))dσ1 + N

2

∫
BR\B

u p+1.

Hence, we get ∫
BR\B

(x · ∇u)�w

= 2

R

∫
∂BR

(x · ∇u)(x · ∇w)dσR − R
∫

∂BR

∇u∇wdσR
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+ N − 2

R

∫
∂BR

u(x · ∇w)dσR − R

2

∫
∂BR

w2dσR

+ N

2R

∫
∂BR

(w(x · ∇u) − u(x · ∇w))dσR

− 2
∫

∂B
(x · ∇u)(x · ∇w)dσ1 +

∫
∂B

∇u∇wdσ1

− (N − 2)
∫

∂B
u(x · ∇w)dσ1 + 1

2

∫
∂BR

w2dσR

− N

2

∫
∂B

(w(x · ∇u) − u(x · ∇w))dσ1 − N − 4

2

∫
BR\B

u p+1.

On the other hand, we have∫
BR\B

(x · ∇u)�w = R

p + 1

∫
∂BR

u p+1dσR − 1

p + 1

∫
∂B

u p+1dσ1 − N

p + 1

∫
BR\B

u p+1.

Hence, we can obtain

( N

p + 1
− N − 4

2

) ∫
BR\B

u p+1

= R

p + 1

∫
∂BR

u p+1dσR − 2

R

∫
∂BR

(x · ∇u)(x · ∇w)dσR

+ R
∫

∂BR

∇u∇wdσR − N − 2

R

∫
∂BR

u(x · ∇w)dσR + R

2

∫
∂BR

w2dσR

− N

2R

∫
∂BR

(w(x · ∇u) − u(x · ∇w))dσR

− 1

p + 1

∫
∂B

u p+1dσ1 + 2
∫

∂B
(x · ∇u)(x · ∇w)dσ1

−
∫

∂B
∇u∇wdσ1 + (N − 2)

∫
∂B

u(x · ∇w)dσ1 − 1

2

∫
∂B

w2dσ1

+ N

2

∫
∂B

(w(x · ∇u) − u(x · ∇w))dσ1.

This completes the proof of this proposition. ��

Corollary 4.2 Suppose that the assumptions of Proposition 4.1 hold and u = w = 0 on ∂B.
Then

( N

p + 1
− N − 4

2

) ∫
BR\B

u p+1

=
∫

∂BR

[ R

p + 1
u p+1 − 2

R
(x · ∇u)(x · ∇w)

+ R∇u∇w − N − 2

R
u(x · ∇w) + R

2
w2

− N

2R
(w(x · ∇u) − u(x · ∇w))

]
dσR +

∫
∂B

∂u

∂ν

∂w

∂ν
dσ1,

where ν is the unit outward normal vector of ∂B relative to B.
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Proof Since u = w = 0 on ∂B, we see that ∇u = ∂u
∂ν

ν, ∇w = ∂w
∂ν

ν on ∂B. Therefore,∫
∂B

∇u∇wdσ1 =
∫

∂B

∂u

∂ν

∂w

∂ν
dσ1.

This completes the proof. ��
Corollary 4.3 Suppose that the assumptions of Proposition 4.1 hold and u = ∂u

∂ν
= 0 on ∂B.

Then [ N

p + 1
− N − 4

2

] ∫
BR\B

u p+1

=
∫

∂BR

[ R

p + 1
u p+1 − 2

R
(x · ∇u)(x · ∇w)

+ R∇u∇w − N − 2

R
u(x · ∇w) + R

2
w2

− N

2R
(w(x · ∇u) − u(x · ∇w))

]
dσR − 1

2

∫
∂B

w2dσ1.

Proof Since ∂u
∂ν

= 0 on ∂B, we have∫
∂B

∇u∇wdσ1 = 0.

This completes the proof. ��

5. Appendix B: the upper bound estimate of singular solutions

In this section, we estimate the upper bound of singular solutions, which we have used in
the proof of Proposition 2.2. The results in this section are essentially developed in [39].
For reader’s convenience, we only present the proof for the biharmonic equation. For more
related results, we refer the interested reader to [39].

First, we recall some known facts. Let G1(x, y) be the Green function of −� on B, i.e.,

G1(x, y) = 1

(N − 2)ωN−1

(
|x − y|2−N −

∣∣∣∣ x

|x | − |x |y
∣∣∣∣
2−N

)
,

where ωN−1 is the measure of the unit sphere in RN , N ≥ 3. Then, for u ∈ C2(B), we have

u(x) =
∫
B
G1(x, y)(−�u)(y)dy +

∫
∂B

H(x, y)u(y)dσ1,

where

H(x, y) = − ∂

∂νy
G1(x, y) = 1 − |x |2

ωN−1|x − y|N , x ∈ B, y ∈ ∂B.

Similarly, for u ∈ C4(B), we have

u(x) =
∫
B
G2(x, y)�

2u(y)dy +
∫

∂B

∫
B
G1(x, y)H(y, z)(−�)u(z)dydσ1

+
∫

∂B
H(x, y)u(y)dσ1,
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where

G2(x, y) =
∫
B
G1(x, z)G1(z, y)dz = γN |x − y|4−N + A(x, y),

γN = N2�( N−4
2 )

16(N−2)2π
N
2
, N ≥ 5 and A(x, y) is smooth in B× B. Here we have used the following

integral identity ∫
RN

1

|x − y|N−α

1

|y|N−β
dy = γ (α)γ (β)

γ (α + β)
|x |α+β−N ,

where α > 0, β > 0, α + β < N , γ (α) = 2απ
N
2 �( α

2 )

�( N−α
2 )

.

Lemma 5.1 Assume that u ∈ C4(B\{0}) ∩ L
N+4
N−4 (B) is a positive solution of �2u = u

N+4
N−4

in B\{0}. Then u has the following integral representation

u(x) =
∫
B
G2(x, y)u

N+4
N−4 (y)dy +

∫
∂B

∫
B
G1(x, y)H(y, z)(−�)u(z)dydσ1

+
∫

∂B
H(x, y)u(y)dσ1.

Proof Defining

v(x) =
∫
B
G2(x, y)u

N+4
N−4 (y)dy +

∫
∂B

∫
B
G1(x, y)H(y, z)(−�)u(z)dydσ1

+
∫

∂B
H(x, y)u(y)dσ1,

andw = u−v, we see that (−�)2w = 0 in B\{0},w = �w = 0 on ∂B. Since u
N+4
N−4 ∈ L1(B)

and |x |4−N is weak type (1, N
N−4 ), then v ∈ L1(B)∩ L

N
N−4
weak(B). Moreover, for ∀ε > 0, there

exists � ∈ (0, 1
4 ) such that

∫
B2�

u
N+4
N−4 dy < ε and

∫
B�

u
N

N−4 dx < ε. Thus, for λ large enough,
we find

{x ∈ B� : |v(x)| > λ/2} ⊆
{
x ∈ B� : γN

∫
B2�

|x − y|4−Nu
N+4
N−4 dy > λ/4

}
.

Hence
∣∣{x ∈ B� : |v(x)| > λ/2}∣∣ ≤

∣∣∣{x ∈ B� : γN

∫
B2�

|x − y|4−Nu
N+4
N−4 dy > λ/4

}∣∣∣
≤Cλ− N

N−4

∫
B2�

u
N+4
N−4 dy ≤ Cελ− N

N−4 .

Due to u ∈ L
N

N−4 (B), we have

|{x ∈ B� : u(x) > λ/2}| ≤
(
2

λ

) N
N−4

∫
B�

u
N

N−4 dy ≤ Cελ− N
N−4 .

Thus, w ∈ L1(B) ∩ L
N

N−4
weak(B), and

|{x ∈ B� : |w(x)| > λ}| ≤ Cλ− N
N−4 ε. (5.1)
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By the generalized Bôcher theorem for polyharmonic functions in [21], we have

w(x) =
∑
|α|≤3

AαD
α(|x |4−N ) + g(x),

where Aα are constants and g is a biharmonic function on B.
We claim that Aα = 0 for |α| ≤ 3, then w(x) is a classical biharmonic function on B,

that is,

w(x) = g(x) in B.

By contradiction, we may assume that Aα0 �= 0, where |α0| ≤ 3. Thus, for large λ, we
infer

|{x ∈ B� : |w(x)| > λ}| ≥ Cλ− N
N−4 .

This is a contradiction with (5.1) provided that ε is small enough. Hence, the claim follows.
Therefore, (−�)2w = 0 in B, w = �w = 0 on ∂B, which implies that w ≡ 0 in B and we
complete the proof of the Lemma. ��

Proposition 5.2 Assume that u ∈ C4(B\{0})∩L
N+4
N−4 (B) is a positive solution of�2u = u

N+4
N−4

in B\{0} satisfying −�u ≥ 0 in B\{0}. Then there is a positive constant C such that

u(x) ≤ C |x |− N−4
2 for x ∈ B.

Proof If u is a radial solution, the result has been obtained inTheorem5 in [46]. For simplicity,

wemay consider the equation in B2 by replacing u(x) by ( 12 )
N−4
2 u( x2 ). Argue by contradiction

that there is a sequence {xk} ⊂ B2 with xk → 0 such that

|xk | N−4
2 u(xk) → ∞, as k → ∞.

Set

vk(x) =
( |xk |

2
− |x − xk |

) N−4
2

u(x) for |x − xk | ≤ |xk |
2

.

Choosing ξk ∈ B|xk |/2(xk) such that

vk(ξk) = max
|x−xk |≤ |xk |

2

vk(x).

Let 2τk = |xk |
2 − |ξk − xk |, then

0 < 2τk ≤ |xk |
2

and
|xk |
2

− |x − xk | ≥ τk for |x − ξk | ≤ τk .

Thus

(2τk)
N−4
2 u(ξk) = vk(ξk) ≥ vk(x) ≥ τ

N−4
2

k u(x) for |x − ξk | ≤ τk,

which implies

2
N−4
2 u(ξk) ≥ u(x) for |x − ξk | ≤ τk (5.2)

and

(2τk)
N−4
2 u(ξk) = vk(ξk) ≥ vk(xk) = (|xk |/2) N−4

2 u(xk) → ∞ as k → ∞. (5.3)
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Define

wk(y) = 1

u(ξk)
u

(
ξk + y

u(ξk)
2

N−4

)
,

then we see

wk(0) = 1 and wk(y) ≤ 2
N−4
2 in BRk , where Rk = τku(ξk)

2
N−4 .

Since �2wk = w
N+4
N−4
k in BRk , by standard elliptic estimates, we infer, up to a subsequence,

that wk → w in C4
loc(R

N ), where w is a nonnegative solution of �2w = w
N+4
N−4 in R

N . By
Theorem 1.3 in [43], we have

w(x) = CN

(
�

1 + �2|x − x0|2
) N−4

2

for some x0 ∈ R
N , (5.4)

where CN = [N (N −4)(N −2)(N +2)]− N−4
8 ,� is a positive constant satisfyingw(0) = 1.

On the other hand, since −�u ≥ 0 and u > 0 in B\{0}. By the maximum principle, we

find that c0 := inf
B
u = inf

∂B
u > 0. Note that u ∈ L

N+4
N−4 (B), then there exists δ ∈ (0, 1) such

that

γN

∫
Bδ

|A(x, y)||u(y)| N+4
N−4 dy <

c0
2

, x ∈ Bδ. (5.5)

By Lemma 5.1, we have

u(x) = γN

∫
Bδ

u(y)
N+4
N−4

|x − y|N−4 dy + h(x),

where

h(x) =γN

∫
Bδ

|A(x, y)||u(y)| N+4
N−4 dy +

∫
B\Bδ

G2(x, y)u
N+4
N−4 (y)dy

+
∫

∂B

∫
B
G1(x, y)H(y, z)(−�u)(z)dydσ1 +

∫
∂B

H(x, y)u(y)dσ1

≥ − c0
2

+
∫

∂B
H(x, y)u(y)dσ1

≥ − c0
2

+ inf
B
u = c0

2
, x ∈ Bδ,

here we have used the fact that −�u ≥ 0 on ∂B and
∫
∂B H(x, y)dσ1 = 1.

Define

hk(y) = 1

u(ξk)
u

(
ξk + y

u(ξk)
2

N−4

)
in �k,

where

�k :=
{
y ∈ R

N : ξk + y

u(ξk)
2

N−4

∈ B2

}
.
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By extending wk to be zero in R
N\�k , then we can rewrite wk into the following integral

equation

wk(x) =
∫
RN

w
N+4
N−4
k (y)

|x − y|N−4 dy + hk(x), x ∈ �k . (5.6)

Set

wλ
k (x) =

(
λ

|x |
)N−4

wk(x
λ), xλ = λ2x

|x |2 , λ > 0.

Using the moving sphere argument for the integral equation in the proof of theorem 1.1 in
[42], we can deduce that for any λ > 0, we have

wλ
k (x) ≤ wk(x) for |x | ≥ λ.

Let k → ∞, we have

wλ(x) ≤ w(x) for |x | ≥ λ.

This is a contradiction with (5.4) and the proof of the proposition is completed. ��
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