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Abstract
Weprove that the geodesic equations of all Sobolevmetrics of fractional order one and higher
on spaces of diffeomorphisms and, more generally, immersions are locally well posed. This
result builds on the recently established real analytic dependence of fractional Laplacians
on the underlying Riemannian metric. It extends several previous results and applies to a
wide range of variational partial differential equations, including the well-known Euler–
Arnold equations on diffeomorphism groups as well as the geodesic equations on spaces of
manifold-valued curves and surfaces.
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1 Introduction

Background

Many prominent partial differential equations (PDEs) in hydrodynamics admit variational
formulations as geodesic equations on an infinite-dimensional manifold of mappings. These
include the incompressible Euler [2], Burgers [35], modified Constantin–Lax–Majda [14,19,
61], Camassa–Holm [17,39,48], Hunter–Saxton [30,43], surface quasi-geostrophic [20,60]
and Korteweg–de Vries [51] equations of fluid dynamics as well as the governing equation
of ideal magneto-hydrodynamics [44,59]. This serves as a strong motivation for the study
of Riemannian geometry on mapping space. An additional motivation stems from the field
of mathematical shape analysis, which is intimately connected to diffeomorphisms groups
and other infinite-dimensional mapping spaces via Grenander’s pattern theory [27,63] and
elasticity theory [9,53].

The variational formulations allow one to study analytical properties of the PDEs in
relation to geometric properties of the underlying infinite-dimensional Riemannian manifold
[4,5,13,34,49,52]. Most importantly, local well-posedness of the PDE, including smooth
dependence on initial conditions, is closely related to smoothness of the geodesic spray
on Sobolev completions of the configuration space [23]. This has been used to show local
well-posedness of PDEs in many specific examples, cf. the recent overview article [38].
An extension of this successful methodology to wider classes of PDEs requires an in-depth
study of smoothness properties of partial and pseudo differential operators with non-smooth
coefficients such as those appearing in the geodesic spray or, more generally, in the Euler–
Lagrange equations. This is the topic of the present paper.

Contribution

This article establishes local well-posedness of the geodesic equation for fractional order
Sobolevmetrics on spaces of diffeomorphisms and,more generally, immersions. A simplified
version of our main result reads as follows:

Theorem On the space of immersions of a closed manifold M into a Riemannian manifold
(N , ḡ), the geodesic equation of the fractional-order Sobolev metric

G f (h, k) =
∫
M
ḡ
(
(1+� f ∗ ḡ)ph, k

)
vol f

∗ ḡ, h, k ∈ T f Imm(M, N ),

is locally well-posed in the sense of Hadamard for any p ∈ [1,∞).
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This follows from Theorems 4.4 and 4.6. The result unifies and extends several previously
known results:

• For integer-order metrics, local well-posedness on the space of immersions from M to
N has been shown in [11]. However, the proof contained a gap, which was closed in
[50] for N = R

n , and which is closed in the present article for general N . The strategy
of proof, which goes back to Ebin and Marsden [23], is to show that the geodesic spray
extends smoothly to certain Sobolev completions of the space. Our generalization to
fractional-order metrics builds on recent results about the smoothness of the functional
calculus of sectorial operators [6].

• For N = R
n , the set of N -valued immersions becomes a vector space, which simplifies

the formulation of the geodesic equation; seeCorollary 5.3. The treatment of generalman-
ifolds N requires a theory of Sobolev mappings between manifolds, which is developed
in Sect. 2.2. Moreover, in the absence of global coordinate systems for these mapping
spaces, we recast the geodesic equation using an auxiliary covariant derivative following
[11]; see Lemma 2.6 and Theorem 4.3.

• For M = N our result specializes to the diffeomorphism group Diff(M), which is an
open subset of Imm(M, M). On Diff(M)we obtain local well-posedness of the geodesic
equation for Sobolevmetrics of order p ∈ [1/2,∞); see Corollary 5.1. Analogous results
have been obtained by different methods (smoothness of right-trivializations) for inertia
operators that are defined as abstract pseudo-differential operators [3,10,24].

• For M = S1, our result specializes to the space of immersed loops in N . For loops in
N = R

d , local well-posedness has been shown by different methods (reparameterization
to arc length) in [8]. Our analysis extends this result to manifold-valued loops and also
to higher-dimensional and more general base manifolds M .

2 Sobolevmappings

2.1 Setting

We use the notation of [11] and write N for the natural numbers including zero. Smooth will
mean C∞ and real analytic Cω. Sobolev regularity is denoted by Hr , and Sobolev spaces
Hs
Hr of mixed order r in the foot point and s in the fiber are introduced in Theorem 2.4.
Throughout this paper, without any further mention, we fix a real analytic connected

closed manifold M of dimension dim(M) and a real analytic manifold N of dimension
dim(N ) ≥ dim(M).

2.2 Sobolev sections of vector bundles

[6, Section 2.3] We write Hs(Rm,Rn) for the Sobolev space of order s ∈ R of Rn-valued
functions on R

m . We will now generalize these spaces to sections of vector bundles. Let E
be a vector bundle of rank n ∈ N>0 over M . We choose a finite vector bundle atlas and a
subordinate partition of unity in the following way. Let (ui : Ui → ui (Ui ) ⊆ R

m)i∈I be
a finite atlas for M , let (ϕi )i∈I be a smooth partition of unity subordinated to (Ui )i∈I , and
let ψi : E |Ui → Ui × R

n be vector bundle charts. Note that we can choose open sets U ◦i
such that supp(ψi ) ⊂ U ◦i ⊂ U ◦i ⊂ Ui and each ui (U ◦i ) is an open set in R

m with Lipschitz
boundary (cf. [15, Appendix H3]). Then we define for each s ∈ R and f ∈ �(E)
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‖ f ‖2�Hs (E) :=
∑
i∈I
‖ prc fRn ◦ ψi ◦ (ϕi · f ) ◦ u−1i ‖2Hs (Rm ,Rn).

Then ‖ · ‖�Hs (E) is a norm, which comes from a scalar product, and we write �Hs (E) for the
Hilbert completion of �(E) under the norm. It turns out that �Hs (E) is independent of the
choice of atlas and partition of unity, up to equivalence of norms. We refer to [58, Section 7]
and [28, Section 6.2] for further details.

The following theorem describesmodule properties of Sobolev sections of vector bundles,
which will be used repeatedly throughout the paper.

2.3 Theorem Module properties. [6, Theorem 2.4] Let E1, E2 be vector bundles over M
and let s1, s2, s ∈ R satisfy

s1 + s2 ≥ 0, min(s1, s2) ≥ s, and s1 + s2 − s > dim(M)/2.

Then the tensor product of smooth sections extends to a bounded bilinear mapping

�Hs1 (E1)× �Hs2 (E2) → �Hs (E1 ⊗ E2).

The following theorem describes the manifold structure of Sobolev mappings between finite-
dimensionalmanifolds. It is an elaboration of [46, 5.2 and 5.4] and an extension to the Sobolev
case of parts of [41, Section 42].

2.4 Theorem Sobolevmappings betweenmanifolds. The following statements hold for any
r ∈ (dim(M)/2,∞) and s, s1, s2 ∈ [−r , r ]:
(a) The space Hr (M, N ) is a C∞ and a real analytic manifold. Its tangent space satisfies

in a natural (i.e., functorial) way

T Hr (M, N ) = Hr (M, T N )
(πN )∗−−−−−→

πHr (M,N )

Hr (M, N )

with foot point projection given by πHr (M, N ) = (πN )∗ : h �→ πN ◦ h.
(b) The space Hs

Hr (M, T N ) of ‘Hs mappings M → T N with foot point in Hr (M, N )’ is
a real analytic manifold and a real analytic vector bundle over Hr (M, N ). Similarly,
spaces such as L(Hs1

Hr (M, T N ), Hs2
Hr (M, T N )) are real analytic vector bundles over

Hr (M, N ).
(c) The space MetHr (M) of all Riemannian metrics of Sobolev regularity Hr is an open

subset of the Hilbert space �Hr (S2T ∗M), and thus a real analytic manifold.

Proof (a) Let us recall the chart construction: we use an auxiliary real analytic Riemannian
metric ĝ on N and its exponential mapping expĝ; some of its properties are summarized
in the following diagram:

0N
zero section

N
diagonal

T N V T N
open

(πN ,expĝ)

∼= V N×N
open N × N

Without loss we may assume that V N×N is symmetric:

(y1, y2) ∈ V N×N ⇐⇒ (y2, y1) ∈ V N×N .
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A chart, centered at a real analytic f ∈ Cω(M, N ), is:

Hr (M, N ) ⊃ U f = {g : ( f , g)(M) ⊂ V N×N } u f−→ Ũ f ⊂ �Hr ( f ∗T N )

u f (g) = (πN , expĝ)−1 ◦ ( f , g), u f (g)(x) = (expĝf (x))
−1(g(x))

(u f )
−1(s) = expĝf ◦s, (u f )

−1(s)(x) = expĝf (x)(s(x))

Note that Ũ f is open in �( f ∗T N ). The chartsU f for f ∈ Cω(M, N ) cover Hr (M, N ):
sinceCω(M, N ) is dense in Hr (M, N ) by [41, 42.7] and since Hr (M, N ) is continuously
embedded in C0(M, N ), a suitable C0-norm neighborhood of g ∈ Hr (M, N ) contains a
real analytic f ∈ Cω(M, N ), thus f ∈ Ug , and by symmetry of V N×N we have g ∈ U f .
The chart changes,

�Hr ( f ∗1 T N ) ⊃ Ũ f1 � s �→ (u f2, f1)∗(s):=(expĝf2)
−1 ◦ expĝf1 ◦s ∈ Ũ f2 ⊂ �Hr ( f ∗2 T N ),

for charts centered on real analytic f1, f2 ∈ Cω(M, N ) are real analytic by Lemma A.5
since r > dim(M)/2.
The tangent bundle T Hr (M, N ) is canonically glued from the following vector bundle
chart changes, which are real analytic by Lemma A.5 again:

Ũ f1 × �Hr ( f ∗1 T N ) � (s, h) �→ (T (u f2, f1)∗)(s, h) =
= (

(u f2, f1)∗(s), (dfiberu f2, f1)∗(s, h)
) ∈ Ũ f2 × �Hr ( f ∗2 T N ) (1)

It has the canonical charts

T Hr (M, N ) ⊃ TŨ f
T u f−−−−−−−→

(T (expĝf )
−1∗ )

Ũ f × �Hr ( f ∗T N ).

These identify T Hr (M, N ) canonically with Hr (M, T N ) since

Tu−1f (s, s′) = T (expĝf ) ◦ vl ◦(s, s′) : M → T N ,

where we used the vertical lift vl : T N ×N T N → T T N which is given by vl(ux , vx ) =
∂t |t=0(ux + t .vx ); see [45, 8.12 or 8.13]. The corresponding foot-point projection is then

πHs (M,N )(T (expĝf ) ◦ vl ◦(s, s′)) = expĝf ◦s = πN ◦ T (expĝf ) ◦ (s, s′).

(b) The canonical chart changes (1) for T Hr (M, N ) extend to

Ũ f1 × �Hs ( f ∗1 T N ) � (s, h) �→ (Tu f2, f1)∗(s, h) =
= (

(u f2, f1)∗(s), (dfiberu f2, f1 ◦ s)∗(h)
) ∈ Ũ f2 × �Hs ( f ∗2 T N ),

since dfiberu f2, f1 : f ∗1 T N ×M f ∗1 T N = f ∗1 (T N ×N T N ) → f ∗2 T N is fiber respecting
real analytic by the module properties 2.3. Note that dfiberu f2, f1 ◦ s is then an Hr -section
of the bundle L( f ∗1 T N , f ∗1 T N ) → M , which may be applied to the Hs-section h by
the module properties 2.3. These extended chart changes then glue the vector bundle

Hs
Hr (M, T N )

(πN )∗−−−→ Hr (M, T N ).

(c) The space �Hr (S2T ∗M) is continuously embedded in �C1(S2T ∗M) because r >

dim(M)/2+ 1. Thus, the space of metrics is open.
��
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2.5 Connections, connectors, and sprays

This sections reviews some relations between connections, connectors, and sprays. It holds
for general convenient manifolds N , including infinite-dimensional manifolds of mappings,
and will be used in this generality in the sequel (see e.g. the proofs of Theorems 4.3 and 4.4).

(a) Connectors. [45, 22.8–9] Any connection ∇ on T N is given in terms of a connector
K : T T N → T N as follows: For any manifold M and function h : M → T N , one has
∇h = K ◦ Th : T M → T N . In the subsequent points we fix such a connection and
connector on N .

(b) Pull-backs. [45, (22.9.6)] For any manifold Q, smooth mapping g : Q → M and Zy ∈
TyQ, one has ∇Tg.Zy s = ∇Zy (s ◦ g). Thus, for g-related vector fields Z ∈ X(Q) and
X ∈ X(M), one has ∇Z (s ◦ g) = (∇X s) ◦ g, as summarized in the following diagram:

T 2N
K

T Q
Tg

T (s◦g)

T M
Ts

T N

T N

πNQ
g

Z

M

X
∇X s

Q
g

M

s

f
N .

(c) Torsion. [45, (22.10.4)] For any smooth mapping f : M → N and vector fields X , Y ∈
X(M) we have

Tor(T f .X , T f .Y ) = ∇X (T f ◦ Y )− ∇Y (T f ◦ X)− T f ◦ [X , Y ]
= (K ◦ κM − K ) ◦ T T f ◦ T X ◦ Y .

(d) Sprays. [45, 22.7] Any connection ∇ induces a one-to-one correspondence between
fiber-wise quadratic Cα mappings � : T N → T N and Cα sprays S : T N → T T N .
Here ∇∂t ct = �(ct ) corresponds to ctt = S(ct ) for curves c in N . Equivalently, in terms
of the connector K , the relation between � and S is as follows:

T T NT (πN ) πT N

T N
πN

T N
πNN

T T NT (πN ) K

T N T N

T N �

S

The diagram on the left introduces the projections T (πN ) and πT N , which define the
two vector bundle structures on T T N . The diagram on the right shows that � and S are
related by � = K ◦ S.
The following lemma describes how any connection on T N induces via a product-

preserving functor from finite to infinite-dimensional manifolds [37,40] a connection on
the mapping space Hs

Hr (M, T N ). The induced connection will be used as an auxiliary tool
for expressing the geodesic equation; see Theorem 4.3.

2.6 Lemma Induced connection onmapping spaces. Let r ∈ (dim(M)/2,∞), s ∈ [−r , r ],
and α ∈ {∞, ω}. Then any Cα connection on T N induces in a natural (i.e., functorial) way
a Cα connection on Hs

Hr (M, T N ).

Proof Note that T N �→ Hs
Hr (M, T N ) is a product-preserving functor from finite-

dimensionalmanifolds to infinite-dimensionalmanifolds as described in [40] and [41, Section
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31]. Furthermore, note that T Hs
Hr (M, T N ) = Hr ,s,r ,s(M, T T N ), where (r , s, r , s) denotes

the Sobolev regularity of the individual components in any local trivialization T T N ⊃
T TU

TTu−−→ u(U )× (Rn)3 ⊂ (Rn)4 induced by a chart N ⊃ U
u−→ u(U ) ⊂ R

n ; cf. the proof
of Theorem 2.4. Applying the functor Hs

Hr (M, ·) to the connector K : T T N → T N gives
the induced connector

K∗ = Hs
Hr (M, K ) : T Hs

Hr (M, T N ) → Hs
Hr (M, T N ), h �→ K ◦ h.

The induced connector is Cα by Lemma A.5. ��

3 Sobolev immersions

This section collects some results about the differential geometry of immersionswith Sobolev
regularity.More specifically, it describes the Sobolev regularity of the inducedmetric, volume
form, normal and tangential projections, and fractional Laplacian, as well as variations of
these objects with respect to the immersion. Here the term fractional Laplacian is understood
as a p-th power of the operator 1+�, where � is the Bochner Laplacian and p ∈ R; see [6,
Section 3].

3.1 Lemma Geometry of Sobolev immersions. The following statements hold for any r ∈
(dim(M)/2+ 1,∞) and any smooth Riemannian metric ḡ on N:

(a) The space ImmHr (M, N ) of all immersions f : M → N of Sobolev class Hr is an open
subset of the real analytic manifold Hr (M, N ).

(b) The pull-back metric is well defined and real analytic as a mapping

Immr (M, N ) � f �→ f ∗ḡ ∈ MetHr−1(M) := �Hr−1(S2+T ∗M).

(c) The Riemannian volume form is well defined and real analytic as a mapping

Immr (M, N ) � f �→ vol f
∗ ḡ ∈ �Hr−1(VolM).

(d) The tangential projection �: T Imm(M, N ) → X(M) and the normal projection
⊥: T Imm(M, N ) → T Imm(M, N ) are defined for smooth h ∈ T f Imm(M, N ) via
the relation h = T f .h� + h⊥, where ḡ(h⊥(x), Tx f (TxM)) = 0 for all x ∈ M. They
extend real analytically for any real number s ∈ [1− r , r − 1] to

⊥ ∈ �Cω

(
L(Hs

Immr (M, T N ), Hs
Immr (M, T N ))

)
,

� ∈ Cω
(
Hs
Immr (M, T N ),XHs (M)

)
,

where Hs
Immr (M, T N ) is the space of ‘Hs mappings M → T N with foot point in

Immr (M, N )’ described in Theorem 2.4.
(e) For any real numbers s, p with s, s − 2p ∈ [1− r , r ], the fractional Laplacian

f �→ (1+� f ∗ ḡ)p

is a real analytic section of the bundle

GL(Hs
Immr (M, T N ), Hs−2p

Immr (M, T N )).

Proof (a) The space Hr (M, N ) is continuously embedded in C1(M, N ) because r >

dim(M)/2+ 1. Thus, the space of immersions is open.
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(b) follows from the formula f ∗ḡ = ḡ(T f , T f ).
(c) follows from (b) and the real analyticity of g �→ volg; see [6, Lemma 3.3].
(d) Let U be an open subset of M which carries a local frame X ∈ �(GL(Rm, TU )). For

any f ∈ Immr (M, N ), the Gram-Schmidt algorithm transforms X into an ( f ∗ḡ)-ortho-
normal frame Y f ∈ �Hr−1(GL(Rm, TU )), which is given by

∀ j ∈ {1, . . . ,m} : Y j
f =

X j −∑ j−1
k=1( f ∗ḡ)(Y

k
f , X

j )Y k
f∥∥∥X j −∑ j−1

k=1( f ∗ḡ)(Y
k
f , X

j )Y j
f

∥∥∥
f ∗ ḡ

.

This defines a real analytic map

Y : Immr (M, N ) → �Hr−1(GL(Rm, TU )).

We write T N as a sub-bundle of a trivial bundle N × V and denote the corresponding
inclusion and projection mappings by

i : T N → N × V , π : N × V → T N .

This allows one to define a projection from N × V onto T N and further onto the normal
bundle of f , which is real analytic as a map

p : Immr (M, N ) → Hr−1(U , L(V , V )),

p f (x)(v) := v −
m∑
i=1

ḡ
(
π( f (x), v), Tx f .Y

i
f (x)

)
.

This construction can be repeated for any open set Ũ such that TŨ is parallelizable, and
the resulting projections p f coincide on U ∩ Ũ . Thus, one obtains a real analytic map

p : Immr (M, N ) → Hr−1(M, L(V , V )).

By the module properties 2.3, this induces a real analytic map

p̃ : Immr (M, N )× Hs(M, V ) → Hs(M, V ), p̃( f , h) := p f .h.

These maps fit into the commutative diagrams

T f (x)N
⊥

i

T f (x)N

π

V
p f (x)

V

Hs
Immr (M, T N )

⊥

i∗

Hs
Immr (M, T N )

π∗

Immr (M, N )× Hs(M, V )
p̃

Immr (M, N )× Hs(M, V )

The maps i∗ and π∗ are real analytic, as shown in part (b’) of the proof of Lemma A.5.
Therefore, the map ⊥ = π∗ ◦ p̃ ◦ i∗ is real analytic. The tangential projection h� =
T f −1(h − h⊥) is then also real analytic.

(e) There is a bundle E over N such that T N ⊕ E is a trivial bundle, i.e., T N ⊕ E ∼= N ×V
for some vector space V . We endow the bundle E with a smooth connection and the
bundle N × V ∼= T N ⊕ E with the product connection. By construction, the inclusion
i : T N → N × V and projection π : N × V → T N respect the connection. At the level
of Sobolev sections of these bundles, this means that the natural inclusion and projection
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mappings fit into the following commutative diagram with p = 1:

Hs
Immr (M, T N )

(1+�)p

i∗

Hs−2p
Immr (M, T N )

π∗

Immr (M, N )× Hs(M, V )
(Id,(1+�)p)

Immr (M, N )× Hs−2p(M, V )

As the functional calculus preserves commutation relations, this extends to all p. Thus,
we have reduced the situation to the bottom row of the diagram, where the fractional
Laplacian acts on Hs(M, V ). In this case real analytic dependence of the fractional
Laplacian on the metric has been shown in [6, Theorem 5.4]. Now the claim follows
from the chain rule and (b).

��
The following lemma describes the first variation of the metric and fractional Laplacian.
The key point is that the variation in normal directions is more regular than the variation in
tangential directions. This will be of importance in Theorem 4.6. The lemma is formulated
using an auxiliary connection ∇̂ on N , e.g., the Levi–Civita connection of a Riemannian
metric ḡ on N .

3.2 Lemma First variation formulas. Let ḡ be a smooth Riemannian metric on N, and let
∇̂ be a Cα connection on N for α ∈ {∞, ω}.
(a) For any r ∈ (dim(M)/2+1,∞) and s ∈ [2− r , r ], the variation of the pull-back metric

extends to a real analytic map

Hs
Immr (M, T N ) � m �→ D f ,m( f ∗ḡ) ∈ �Hs−1(S2T ∗M).

(b) For any r ∈ (dim(M)/2 + 2,∞) and s ∈ [2 − r , r − 2], the variation of the pull-back
metric in normal directions extends to a real analytic map

Hs
Immr (M, T N ) � m �→ D f ,m⊥( f ∗ḡ) ∈ �Hs (S2T ∗M).

(c) For any r > dim(M)/2+ 2 and p ∈ [1, r − 1] the variation of the fractional Laplacian
in normal directions extends to a Cα map

H2p−r
Immr (M, T N ) � m �→ ∇̂m⊥(1+� f ∗ ḡ)p ∈ L(Hr

Immr (M, T N ), H1−r
Immr (M, T N )),

where ∇̂ is the induced connection on GL(Hr
Immr (M, T N ), H1−r

Immr (M, T N )) described

in Lemma 2.6, and L(Hr
Immr (M, T N ), H1−r

Immr (M, N )) is the vector bundle over
Immr (M, N ) described in Theorem 2.4.

Proof We will repeatedly use the module properties 2.3.

(a) follows from the following formula for the first variation of the pull-back metric [11,
Lemma 5.5]:

D f ,m( f ∗ḡ) = ḡ(∇m, T f )+ ḡ(T f ,∇m)

(b) Splitting the above formula into tangential and normal parts of m yields

D f ,m( f ∗ḡ) = −2ḡ(m⊥,∇T f )+ g(∇m�, ·)+ g(·,∇m�).

Now the claim follows from the real analyticity of the projection ⊥ in Lemma 3.1.
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(c’) We claim for any bundle E over M with fixed fiber metric and fixed connection (i.e.,
not depending on g) that the following map is real analytic:

MetHr−1(M)× �Hs (S2T ∗M)) � (g,m) �→ Dg,m�g ∈ L(�Hq (E), �Hs+q−r−1(E)),

where s ∈ [2 − r , r − 1] and q ∈ [2 − s, r ]. To prove the claim we proceed similarly
to [6, Lemma 3.8]. As the connection on E does not depend on the metric g,

Dg,m�gh = −Dg,m(Trg
−1 ∇g∇h) = −(Dg,m Trg

−1
)∇g∇h − Trg

−1
(Dg,m∇g)∇h.

Here ∇g is the covariant derivative on T ∗M ⊗ E . The proof of [6, Lemma 3.8] and
some multi-linear algebra show that Dg,m∇g is tensorial and real analytic as a map

MetHr−1(M)× �Hs (S2T ∗M) � (g,m)

�→ Dg,m∇g ∈ �Hs−1(T ∗M ⊗ L(T ∗M ⊗ E, T ∗M ⊗ E)).

Moreover, the following maps are real analytic by [6, Lemmas 3.2 and 3.5]:

MetHr−1(M) � g �→ g−1 ∈ �Hr−1(S2T M),

MetHr−1(M) � g �→ ∇g ∈ L(�Hq−1(T ∗M ⊗ E), �Hq−2(T ∗M ⊗ T ∗M ⊗ E)).

Together with the module properties 2.3 this establishes (c’).
(c”) Using (c’) we will now study the smooth dependence of fractional Laplacians. In par-

ticular we claim for any bundle E over M with fixed fiber metric and fixed connection
and any p ∈ (1, r − 1] that the following map is real analytic:

MetHr−1(M)×�H2p−r (S2T ∗M)) � (g,m) �→ Dg,m(1+�g)p∈L(�Hr (E), �H1−r (E)).

The claim is a generalization of [6, Lemma 5.5] to perturbations m with even lower
Sobolev regularity and uses the fact that the connection on E does not depend on the
metric g. Let X , Y , Z be the spaces of operators given by

X = L(�Hr (E), �Hr−2(E)) ∩ L(�H3−r (E), �H1−r (E)),

Y = L(�Hr (E), �H−r+2p−1) (E)) ∩ L(�Hr−2p+2(E), �H1−r (E)),

Z = L(�Hr (E), �Hr−2(E)) ∩ L(�Hr−2p+2(E), �Hr−2p (E)).

Note that the conditions r > 2 and p > 1 ensure that X , Y , and Z are intersections of
operator spaces on distinct Sobolev scales, as required in [6, Theorem 4.5] Moreover,
let U ⊆ X be an open neighborhood of 1 + �g with g ∈ MetHr−1(M) such that the
holomorphic functional calculus is well-defined and holomorphic on U in the sense of
[6, Theorem 4.5]. Then the desired map is the composition of the following two maps:

MetHr−1(M)× �H2p−r (S2T ∗M) ∈ (g,m) �→ (1+�g, Dg,m�g) ∈ (X , Y ),

(U , Y ) � (A, B) �→ DA,B A
p ∈ L(�Hr (E), �H1−r (E)).

The first map is real analytic by Lemma 3.1.(e) and (c’). The second map has to be
interpreted via the following identity, which is shown in the proof of [6, Lemma 5.5]
using the resolvent representation of the functional calculus:

∀A ∈ U ,∀B ∈ Y ∩ Z : DA,B A
p = Ar−1−pDA,Ap−r+1B A

p.
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The right-hand side above is the composition of the following maps, which are again
real analytic by [6, Theorem 4.5]:

(U , Y ) � (A, B) �→ (A, Ap−r+1/2B) ∈ (U , Z),

(U , Z) � (A, B) �→ (A, DA,B A
p) ∈ U × L(�Hr (E), �Hr−2p (E))

U × L(�Hr (E), �Hr−2p (E)) � (A, B) �→ Ar−p−1/2B ∈ L(�Hr (E), �H1−r (E))

This proves (c”). Note that (c”) extends to p = 1 thanks to (c’).
(c) As in the proof of Lemma 3.1.(e), we write i and π for the inclusion and projection

mappings of T N , seen as a sub-bundle of a trivial bundle T N ⊕ E ∼= N × V with
Cα product connection. If we consider i∗ and π∗ as real analytic sections of operator
bundles,

i∗ ∈ �Cω (L(Hr
Immr (M, T N ), Hr

Immr (M, N × V )),

π∗ ∈ �Cω (L(Hr−2p
Immr (M, T N ), Hr−2p

Immr (M, N × V )),

then the covariant derivative of the fractional Laplacian can be expressed as follows:

∇̂m⊥(1+� f ∗ ḡ)p = (∇̂m⊥π∗)(Id, (1+� f ∗ ḡ)p)i∗
+π∗

(∇̂m⊥(Id, (1+� f ∗ ḡ)p)
)
i∗ + π∗(Id, (1+� f ∗ ḡ)p)(∇̂m⊥ i∗).

The maps i∗ and π∗ are real analytic, and consequently their covariant derivatives are
Cα . According to Lemma 2.6, the canonical connection D on the vector space V induces
a real analytic connection on the bundle of bounded linear operators L(Hr

Immr (M, N ×
V ), H1−r

Immr (M, N × V )). By general principles, this connection differs from ∇̂ by a
Cα tensor field, often called the Christoffel symbol. Thus, it suffices to show that the
following map is Cα:

H2p−r
Immr (M, T N ) � m �→ D f ,m⊥(Id, (1+� f ∗ ḡ)p)

∈ L(Hr
Immr (M, N × V ), H1−r

Immr (M, N × V )).

As D is the canonical connection, this is equivalent to the following map being Cα:

H2p−r
Immr (M, T N ) � m �→ D f ,m⊥(1+� f ∗ ḡ)p ∈ L(Hr (M, V ), H1−r (M, V )).

By (b) with s = 2p − r , the variation of the pull-back metric in normal directions is
real analytic as a map

H2p−r
Immr (M, T N ) � m �→ D f ,m⊥( f ∗ḡ) ∈ �H2p−r (S2T ∗M).

Thus, (c) follows from (c”) and the chain rule. ��

4 Weak Riemannianmetrics on spaces of immersions

The main result of this section is that the geodesic equation of Sobolev-type metrics is
locally well posed under certain conditions on the operator governing the metric. The setting
is general and encompasses several examples, including in particular fractional Laplace
operators.
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4.1 Sobolev-typemetrics

Within the setup of Sect. 2.1, we consider Sobolev-type Riemannian metrics on the space of
immersions f : M → N of the form

GP
f (h, k) =

∫
M
ḡ(Pf h, k) vol( f ∗ḡ), h, k ∈ T f Imm(M, N ),

where ḡ is a Cα Riemannian metric on N for α ∈ {∞, ω}, and where P is an operator field
which satisfies the following conditions for some p ∈ [0,∞), some r0 ∈ (dim(M)/2+1,∞),
and all r ∈ [r0,∞):

(a) Assume that P is a Cα section of the bundle

GL(Hr
Immr (M, T N ), Hr−2p

Immr (M, T N )) → Immr (M, N ),

where GL denotes bounded linear operators with bounded inverse.
(b) Assume that P is Diff(M)-equivariant in the sense that one has for all ϕ ∈ Diff(M),

f ∈ Immr (M, N ), and h ∈ T f Immr (M, N ) that

(Pf h) ◦ ϕ = Pf ◦ϕ(h ◦ ϕ).

(c) Assume for each f ∈ Immr (M, N ) that the operator Pf is nonnegative and symmet-
ric with respect to the H0(g) inner product on T f Immr (M, N ), i.e., for all h, k ∈
T f Immr (M, N ):∫

M
ḡ(Pf h, k) vol(g) =

∫
M
ḡ(h, Pf k) vol(g),

∫
M
ḡ(Pf h, h) vol(g) ≥ 0.

(d) Assume that the normal part of the adjoint Adj(∇P)⊥, defined by∫
M
ḡ((∇m⊥ P)h, k) vol(g) =

∫
M
ḡ(m,Adj(∇P)⊥(h, k)) vol(g)

for all f ∈ Imm(M, N ) and m, h, k ∈ T f Imm, exists and is a Cα section of the bundle
of bilinear maps

L2(Hr
Immr (M, T N ), Hr

Immr (M, T N ); Hr−2p
Immr (M, T N )).

Here ∇ denotes the induced connection (see Lemma 2.6) of the Levi–Civita connection
of ḡ.

4.2 Remark In [11, Section 6.6] we had more complicated conditions, and we implicitly
claimed that they imply the conditions in Sect. 4.1 above. There was, however, a significant
gap in the argumentation of the main result. Namely, we did not show the smoothness of
the extended mappings on Sobolev completions. This article closes this gap and extends the
analysis to the larger class of fractional order metrics.

We now derive the geodesic equation of Sobolev-type metrics. Recall that the usual form
of the geodesic equation is ftt = � f ( ft , ft ), where the time derivatives ft and ftt as well
as the Christoffel symbols � are expressed in a chart. This raises the problem that the space
Imm(M, N ) lacks canonical charts, unless N admits a global chart. However, Imm(M, N )

carries a canonical connection, namely, the one induced by the metric ḡ on N , which has
been described in Lemma 2.6. This auxiliary connection, which will be denoted by∇, allows
one to write the geodesic equation as ∇∂t ft = � f ( ft , ft ), where � is a difference between
two connections and therefore tensorial. In the special case where N is an open subset of
Euclidean space, this coincides with the usual derivative ∇∂t ft = ftt ; cf. Corollary 5.3.
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4.3 Theorem Geodesic equation. [11, Theorem 6.4] Assume the conditions of Sect. 4.1.
Then a smooth curve f : [0, 1] → Imm(M, N ) is a critical point of the energy functional

E( f ) = 1

2

∫ 1

0

∫
M
ḡ(Pf ft , ft ) vol

g dt

if and only if it satisfies the geodesic equation

∇∂t ft =
1

2
P−1f

(
Adj(∇P) f ( ft , ft )

⊥ − 2T f ḡ(Pf ft ,∇ ft )
� − ḡ(Pf ft , ft ) Tr

g(∇T f )
)

− P−1f

(
(∇ ft P) ft + Trg

(
ḡ(∇ ft , T f )

)
Pf ft

)
.

This also holds for smooth curves in Immr (M, N ) for any r ≥ r0.

Here we used the following notation: g = f ∗ḡ is the pull-back metric and � =
g−1 its associated musical isomorphism, the operator P is seen as a map P : Imm →
GL(T Imm, T Imm), its composition with f is denoted by Pf : R→ GL(T Imm, T Imm),
its covariant derivative with respect to the connection on L(T Imm, T Imm) induced by ∇ is
denoted by ∇P : T Imm → L(T Imm, T Imm), the canonical vector field on R is denoted
by ∂t : R → TR, the time derivative ft = ∂t f is viewed as a map ft : R × M → T N in
the expression ∇ ft : R × M → T ∗M ⊗ f ∗T N and as a map ft : R → T Imm elsewhere,
the spatial derivative T f is viewed as a map T f : R × M → T ∗M ⊗ f ∗T N , and the map
∇T f : R× M → T ∗M ⊗ T ∗M ⊗ f ∗T N is the second fundamental form.

Proof We will consider variations of the curve energy functional along one-parameter fam-
ilies f : (−ε, ε) × [0, 1] × M → N of curves of immersions with fixed endpoints. The
variational parameter will be denoted by s ∈ (−ε, ε), the time-parameter by t ∈ [0, 1]. Then
the first variation of the energy E( f ) can be calculated as follows:

∂s E( f ) = ∂s
1

2

∫ 1

0

∫
M
ḡ(Pf ft , ft ) vol

g dt .

As the connection respects ḡ and is a derivation of tensor products, and as the operator Pf is
symmetric, we have

∂s E( f ) = 1

2

∫ 1

0

∫
M
ḡ

(
(∇∂s P f ) ft + 2Pf ∇∂s ft +

∂s volg

volg
Pf ft , ft

)
volg dt .

We will treat each of the three summands above separately, making extensive use of proper-
ties 2.5 of the (induced) connection ∇:
(a) For the first summand we have by the definition of the adjoint that

1

2

∫ 1

0

∫
M
ḡ((∇∂s P f ) ft , ft ) vol

g dt = 1

2

∫ 1

0

∫
M
ḡ((∇ fs P) ft , ft ) vol

g dt

= 1

2

∫ 1

0

∫
M
ḡ
(
fs,Adj(∇P)( ft , ft )

⊥ + Adj(∇P)( ft , ft )
�)

volg dt .

To calculate the tangential part of the adjoint, thereby establishing its existence, we need
the following formula for the tangential variation of P , which holds for any vector field
X on M :
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(∇T f .X P)(h) = (∇∂t |0 Pf ◦FlXt )(h ◦ FlX0 )

= ∇∂t |0
(
Pf ◦FlXt (h ◦ FlXt )

)− Pf ◦FlX0
(∇∂t |0(h ◦ FlXt )

)
= ∇∂t |0

(
Pf (h) ◦ FlXt

)− Pf
(∇∂t |0(h ◦ FlXt )

)
= ∇X

(
Pf (h))− Pf

(∇Xh
)
,

where FlXt denotes the flow of the vector field X at time t and where we used the
equivariance of P in the step from the second to the third line.Using this and the symmetry
of P we get

1

2

∫ 1

0

∫
M
ḡ
(
fs,Adj(∇P)( ft , ft )

�)
volg dt =

∫
M
ḡ
(
(∇T f . f �s P) ft , ft

)
vol(g)

=
∫
M
ḡ
(∇ f �s (Pf ft )− Pf (∇ f �s ft ), ft

)
vol(g)

=
∫
M

(
ḡ(∇ f �s (Pf ft ), ft )− ḡ(∇ f �s ft , Pf ft )

)
vol(g)

=
∫
M
ḡ
(
T f . f �s , T f .

(
ḡ(∇(Pf ft ), ft )− ḡ(∇ ft , Pf ft )

)�
)
vol(g)

=
∫
M
ḡ
(
T f . f �s , T f .

(∇ ḡ(Pf ft , ft )− 2ḡ(∇ ft , Pf ft )
)�

)
vol(g)

=
∫
M
ḡ
(
fs, T f .

(∇ ḡ(Pf ft , ft )− 2ḡ(∇ ft , Pf ft )
)�

)
vol(g).

Thus we obtain the following formula for the first summand of the variation of E :

1

2

∫ 1

0

∫
M
ḡ((∇∂s P f ) ft , ft ) vol

g dt

= 1

2

∫ 1

0

∫
M
ḡ
(
fs,Adj(∇P)( ft , ft )

⊥ + T f .
(∇ ḡ(P ft , ft )− 2ḡ(∇ ft , P ft )

)�
)
volg dt .

(b) As Pf is symmetric and the covariant derivative on Imm(M, N ) is torsion-free (see
Sect. 2.5), i.e.,

∇∂t fs − ∇∂s ft = T f .[∂t , ∂s] + Tor( ft , fs) = 0,

we get for the second summand
∫ 1

0

∫
M
ḡ

(
Pf ∇∂s ft , ft

)
volg dt =

∫ 1

0

∫
M
ḡ

(∇∂t fs, Pf ft
)
volg dt .

Integration by parts for ∂t yields∫ 1

0

∫
M
ḡ

(∇∂t fs, Pf ft
)
volg dt

=
∫ 1

0

∫
M

(
ḡ

(
fs,−(∇ ft P) ft − Pf (∇ ft ft )

)− ∂t volg

volg

)
volg dt
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To further expand the last term we use the following formula for the variation of the
volume form [11, Lemma 5.7]:

∂t volg

volg
= Trg

(
ḡ(∇ ft , T f )

) = −∇∗(ḡ( ft , T f ))− ḡ
(
ft ,Tr

g(∇T f )
)
,

where ∇T f is the second fundamental form and where ∇∗ denotes the adjoint of the
covariant derivative. Using the first of the above formulas we obtain for the second
summand:∫ 1

0

∫
M
ḡ

(∇∂t fs, Pf ft
)
volg dt

=
∫ 1

0

∫
M

(
ḡ

(
fs,−(∇ ft P) ft − Pf (∇ ft ft )

)− Trg
(
ḡ(∇ ft , T f )

)
Pf ft

)
volg dt .

(c) Using the second version of the variational formula for the volume in the third summand
in the variation of the energy yields

1

2

∫ 1

0

∫
M

∂s volg

volg
ḡ

(
Pf ft , ft

)
volg dt

= −1

2

∫ 1

0

∫
M

(
∇∗(ḡ( fs, T f ))+ ḡ

(
fs,Tr

g(∇T f )
))
ḡ

(
Pf ft , ft

)
volg dt

= −1

2

∫ 1

0

∫
M

(
ḡ( fs, T f .(∇ ḡ (

Pf ft , ft
)
)� + Trg(∇T f )ḡ

(
Pf ft , ft

) )
volg dt .

Taken together, the calculations of (a)–(c) yield

∂s E( f ) = 1

2

∫ 1

0

∫
M
ḡ

(
fs,Adj(∇P)( ft , ft )

⊥ − 2T f .ḡ(∇ ft , P ft )
� − 2(∇ ft P) ft

−2Pf (∇ ft ft )− 2 Trg
(
ḡ(∇ ft , T f )

)
Pf ft − Trg(∇T f )ḡ

(
Pf ft , ft

) )
volg dt .

Setting ∂s E( f ) = 0 for arbitrary perturbations fs yields the geodesic equation on the space
Imm(M, N ) of smooth immersions. This statement extends to the space Immr (M, N ) of
Sobolev immersions because the right-hand side of the geodesic equation is continuous in
f ∈ C∞([0, 1], Immr (M, N )), as shown in part (a) of the proof of Theorem 4.4. ��
We next show well-posedness of the geodesic equation using the Ebin–Marsden approach

[23] of extending the geodesic spray to a smooth vector field on T Immr for sufficiently high
r and showing that the solutions exist on a time interval which is independent of r .

4.4 Theorem Local well-posedness of the geodesic equation. Assume the conditions of
Sect. 4.1 with p ≥ 1. Then the following statements hold for all r ∈ [r0,∞):

(a) The initial value problem for geodesics has unique local solutions in Immr (M, N ). The
solutions depend Cα on t and on the initial condition ft (0) ∈ T Immr (M, N ).

(b) The Riemannian exponential map expP exists and is Cα on a neighborhood of the zero
section in T ImmHr , and (π, expP ) is a diffeomorphism from a (smaller) neighborhood
of the zero section to a neighborhood of the diagonal in Immr (M, N )× Immr (M, N ).

(c) Theneighborhoods in (a)–(b) are uniform inr and canbe chosenopen in the Hr0 topology.
Thus, (a)–(b) continue to hold for r = ∞, i.e., on the Fréchet manifold Imm(M, N ) of
smooth immersions.
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Proof (a) This can be shown as in [11, Theorem 6.6]. Let �( ft ) denote the right-hand side
of the geodesic equation, i.e.,

�( ft ) = 1

2
P−1

(
Adj(∇P)( ft , ft )

⊥ − 2T f ḡ(P ft ,∇ ft )
� − ḡ(P ft , ft ) Tr

g(∇T f )
)

−P−1
(
(∇ ft P) ft + Trg

(
ḡ(∇ ft , T f )

)
P ft

)
.

A term-by-term investigation using the conditions 4.1 and the module properties 2.3
shows that � is a fiber-wise quadratic Cα map

� : T Immr (M, N ) → T Immr (M, N ).

Here the condition p ≥ 1 is needed to ensure that the term P−1
(
ḡ(Ph, h) Trg(∇T f )

)
is

again of regularity Hr . The map� corresponds uniquely to a Cα spray S via the induced
connection described in Lemma 2.6. In more detail: The right-hand side diagram in the
proof of Sect. 2.5.(d) holds for anymanifold N with connector K . Thus, replacing (N , K )

by (Immr (M, N ), K∗), one obtains the diagram

T T Immr (M, N )T (πN )∗ K∗

T Immr (M, N ) T Immr (M, N )

T Immr (M, N )
�

S

The spray S is Cα because the connection K∗ and the map � are Cα . Therefore, by the
theorem of Picard-Lindelöf, S admits a Cα flow

FlS : U → T Immr (M, N )

for a maximal open neighborhood U of {0} × T Immr (M, N ) in R × T Immr (M, N ).
The neighborhood U is Diff(M)-invariant thanks to the Diff(M)-equivariance of S.

(b) follows from (a) as in [11, Theorem 6.6], and (c) follows from Lemma B.1 by writing
Imm(M, N ) as the intersection of all Immr0+k(M, N ) with k ∈ N≥0.

��
4.5 Corollary Theorem 4.4 with α = ω remains valid if the assumptions in Sect. 4.1 are
modified as follows: the metric ḡ is only C∞, and the connection ∇ in condition (d) is
replaced by an auxiliary connection ∇̂, which is induced by a torsion-free Cω connection on
N, as described in Lemma 2.6.

Proof In the proof of Theorem 4.3, the geodesic equation is derived by expressing the first
variation ∂s E of the energy functional using the Levi–Civita connection of ḡ. If the auxiliary
connection ∇̂ is used instead, then the following additional terms appear in the formula for
∂s E :∫ 1

0

∫
M

(
− 1

2
(∇̂T f . f �s ḡ)(Pf ft , ft )− (∇̂ ft ḡ)( fs, Pf ft )+ 1

2
(∇̂ fs ḡ)(Pf ft , ft )

)
volg dt

Accordingly, letting � denote the right-hand side of the original geodesic equation with ∇P
replaced by ∇̂P , i.e.,

�( ft ) = 1

2
P−1

(
Adj(∇̂P)( ft , ft )

⊥ − 2T f ḡ(P ft ,∇ ft )
� − ḡ(P ft , ft ) Tr

g(∇T f )
)

−P−1
(
(∇̂ ft P) ft + Trg

(
ḡ(∇ ft , T f )

)
P ft

)
,
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the geodesic equation becomes

∇̂∂t ft = �( ft )− 1

2
T f .

(
ḡ−1(∇̂ ḡ)(Pf ft , ft )

)� − ḡ−1(∇̂ ft ḡ)(·, Pf ft )

+1

2
ḡ−1(∇̂ ḡ)(Pf ft , ft ).

One verifies as in the proof of Theorem 4.4 that the right-hand side, seen as a function of ft , is
a fiber-wise quadratic real analytic map T Immr (M, N ) → T Immr (M, N ). As the auxiliary
connection ∇̂ is real analytic, this implies that the corresponding spray is real analytic, as
well; see Sect. 2.5. Since the spray is independent of the auxiliary connection ∇̂, one may
proceed as in the proof of Theorem 4.4. ��

The following theorem shows that (scale-invariant) fractional-order Sobolev metrics sat-
isfy the conditions in Sect. 4.1. This implies local well-posedness of their geodesic equations
by Theorem 4.4. Further metrics considered in the literature include curvature weighted
metrics and the so-called general elastic metric [33], which can also be formulated in the
present framework [12]. The proof takes advantage of the fact that the adjoint in the geodesic
equation 4.3 has been split into normal and tangential parts. The normal part has the correct
Sobolev regularity thanks to Lemma 3.2. The tangential part incurs a loss of derivatives, but
the bad terms cancel out with some other terms in the geodesic equation as shown in part (a)
of the proof of Theorem 4.3.

4.6 Theorem The following operators satisfy the conditions in Sect. 4.1 with α = ω for any
p ∈ [1,∞) and r0 ∈ (dim(M)/2+ 2,∞) ∩ [p + 1,∞):

Pf :=
(
1+� f ∗ ḡ)p, and Pf :=

(
Vol−1−

2
dim M +Vol−1 � f ∗ ḡ

)p
.

Thus, the geodesic equations of these metrics are well posed in the sense of Theorem 4.4.

Proof We will prove this result only for the first field of operators because the proof for the
second one is analogous. We shall check conditions (a)–(d) of Sect. 4.1.

(a) follows from Lemma 3.1.
(b) Diff(M)-equivariance of (1 + � f ∗ ḡ) is well-known for smooth f and follows in the

general case by approximation, noting that the pull-back along a smooth diffeomorphism
is a bounded linear map between Sobolev spaces of the same order of regularity [31,
Theorem B.2]. As the functional calculus preserves commutation relations, this implies
the Diff(M)-equivariance of (1+�g)p .

(c) is well-known for smooth f , h, k and follows in the general case by approximation using
the continuity of f �→ 〈·, ·〉H0( f ∗ ḡ) established in [6, Lemma 3.3] and the continuity of
f �→ Pf .

(d) Recall from Lemma 3.2 that the derivative of Pf in normal directions extends to a real
analytic map

H2p−r
Immr (M, T N ) � m �→ (

h �→ ∇̂m⊥ Pf h
) ∈ L(Hr

Immr (M, T N ), H1−r
Immr (M, T N )).

Equivalently, the following map is real analytic:

Hr
Immr (M, T N ) = T Immr (M, N ) � h �→ (

m �→ ∇̂m⊥ Pf h
)

∈ L(H2p−r
Immr (M, T N ), H1−r

Immr (M, N )).
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Dualization using the H0(g) duality shows that the adjoint is real analytic

T Immr (M, N ) � h �→ Adj(∇̂P)(h, ·)⊥ ∈ L(Hr−1
Immr (M, T N ), Hr−2p

Immr (M, T N )).

In particular, the adjoint is real analytic

T Immr (M, N ) � h �→ Adj(∇̂P)(h, ·)⊥ ∈ L(Hr
Immr (M, T N ), Hr−2p

Immr (M, T N )).

��
4.7 Remark For Sobolev metrics of integer order p ∈ N>0, condition (d) of Sect. 4.1 can
be verified directly by a term-by-term investigation of the following explicit formula for
the normal part of the adjoint [11, Section 8.2], assuming that ∇̂ = ∇ is the Levi–Civita
connection of ḡ:

Adj(∇P)(h, k)⊥ = 2
p−1∑
i=0

Tr
(
g−1∇T f g−1ḡ(∇(1+�)p−i−1h,∇(1+�)i k)

)

+
p−1∑
i=0

(∇∗ḡ(∇(1+�)p−i−1h, (1+�)i k)
)
Trg(∇T f )

+
p−1∑
i=0

Trg
(
Rḡ((1+�)p−i−1h,∇(1+�)i k)T f

)

−
p−1∑
i=0

Trg
(
Rḡ(∇(1+�)p−i−1h, (1+�)i k)T f

)
.

Here g = f ∗ḡ, � = �g , ∇ = ∇g , and Rḡ denotes the curvature on (N , ḡ). This direct
calculation is consistent with the more general argument of Theorem 4.6.

5 Special cases

This section describes several applications of the general well-posedness result, Theorem 4.4.
First, we consider the geodesic equation of right-invariant Sobolev metrics on the diffeomor-
phism group Diff(M). In Eulerian coordinates, this equation is called Euler–Arnold [2] or
EPDiff [29] equation and reads as

mt + ∇um + ḡ(∇u,m)+ (div u)m = 0, m := PIdu, u := ϕt ◦ ϕ−1.

In Lagrangian coordinates, the equation takes the form shown in the following corollary. The
conditions for local well-posedness in this corollary agree with the ones in [3], where metrics
governed by a general class of pseudo-differential operators are investigated. The proof is an
application of Theorem 4.4 to Diff(M), seen as an open subset of Imm(M, M). Moreover,
the proof extends Theorem 4.4 to lower Sobolev regularity using some cancellations which
are due to the vanishing normal bundle. The notation is as in Theorem 4.4.

5.1 Corollary Diffeomorphisms. A smooth curve ϕ : [0, 1] → Diff(M) is a critical point of
the energy functional

E(ϕ) = 1

2

∫ 1

0

∫
M
ḡ(Pϕϕt , ϕt ) vol

g dt
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if and only if it satisfies the geodesic equation

∇∂t ϕt = P−1ϕ

(
− Tϕ ḡ(Pϕϕt ,∇ϕt )

� − (∇ϕt P)ϕt − Trg
(
ḡ(∇ϕt , Tϕ)

)
Pϕϕt

)
.

The geodesic equation is well-posed in the sense of Theorem 4.4 if P satisfies conditions (a)–
(c) of Sect. 4.1 for some p ∈ [1/2,∞) and all r ∈ [r0,∞) with r0 ∈ (dim(M)/2 + 1,∞).
In particular, this is the case if P = (1+�)p with

• p ∈ [1,∞) and r ∈ (dim(M)/2+ 1,∞) ∩ [p + 1,∞); or
• p ∈ [1/2, 1) and r ∈ (dim(M)/2+ 1,∞) ∩ [p + 3/2,∞).

Proof The formula for the geodesic equation follows from Theorem 4.3 because the terms
Adj(∇P)⊥ and ∇T f = (∇T f )⊥ vanish. To show well-posedness of the geodesic equation,
note that condition (d) ofSect. 4.1 is trivially satisfiedbecauseAdj(∇P)⊥ vanishes.Moreover,
note that the condition p ∈ [1,∞) in Theorem 4.4 can be replaced by the weaker condition
p ∈ [1/2,∞) because the term ∇T f , which is of second order in f , vanishes. This can be
seen by a term-by-term investigation of the right-hand side of the geodesic equation as in the
proof of Theorem 4.4. Therefore, the geodesic equation is well-posed for any operator field
P satisfying conditions (a)–(c) of Sect. 4.1 for some p ∈ [1/2,∞) and all r ∈ [r0,∞) with
r0 ∈ (dim(M)/2+ 1,∞), as claimed.

It remains to verify these conditions for the specific operator P = (1+�)p . Condition (a)
for p ≥ 1 follows from Lemma 3.1, and condition (a) for p ∈ [1/2, 1) is verified as follows.
We split the operator Pϕ in two components,

Pϕ = (1+�ϕ∗ ḡ)−1(1+�ϕ∗ ḡ)1+p.

As 1+ p ≥ 1, Lemma 3.1 shows that the operator (1+�ϕ∗ ḡ)1+p is a real analytic section
of the bundle

GL(Hr
Diffr (M, T M), Hr−2p−2

Diffr (M, T M)) → Diffr (M)

for any r such that r − 2p − 2 ≥ 1 − r , i.e., r ≥ p + 3/2. Similarly, under even weaker
conditions, the operator (1+�ϕ∗ ḡ)−1 is a real analytic section of the bundle

GL(Hr−2p−2
Diffr (M, T M), Hr−2p

Diffr (M, T M)) → Diffr (M).

By the chain rule, the operator Pϕ is real analytic as required in condition (a). Conditions (b)
and (c) can be verified as in the proof of Theorem 4.6. ��

Next we consider reparametrization-invariant Sobolev metrics on spaces of immersed
curves, i.e., we consider the special case M = S1. Our interest in these spaces stems from
their fundamental role in the field of mathematical shape analysis; see e.g. [7,9,36,56,62] for
R
n-valued curves and [18,42,54,55] for manifold-valued curves. For curves inRn local well-

posedness of the geodesic equation for integer-order metrics has been shown in [47]. This
has recently been extended to fractional-order metrics in [8]. The following corollary of our
main result further generalizes this to fractional-order metrics on spaces of manifold-valued
curves:

5.2 Corollary Curves. A smooth curve c : [0, 1] → Imm(S1, N ) is a critical point of the
energy functional

E(c) = 1

2

∫ 1

0

∫
M
ḡ(Pcct , ct )|∂θc|dθdt

123



62 Page 20 of 27 M. Bauer et al.

if and only if it satisfies the geodesic equation

∇∂t ct =
1

2
P−1c

(
Adj(∇P)c(ct , ct )

⊥ − 2 ḡ(Pcct ,∇∂s ct )vc − ḡ(Pcct , ct ) Hc

)

− P−1c

(
(∇ct P)ct +

(
ḡ(∇∂s ct , vc)

)
Pcct

)
,

where ∂s = |cθ |−1∂θ denotes the normalization of the coordinate vector field ∂θ , vc = ∂sc
the unit-length tangent vector, and Hc = (∇∂svc)

⊥ the vector-valued curvature of c.
If the operator P satisfies the conditions of Sect. 4.1 for some p ∈ [1,∞) and all r ∈

[r0,∞) with r0 ∈ (dim(M)/2 + 1,∞), then the geodesic equation is well-posed in the
sense of Theorem 4.4. This is in particular the case for the operator P = (1 − ∇∂s∇∂s )

p if
p ∈ [1,∞) and r ∈ (dim(M)/2+ 1,∞) ∩ [p + 1,∞).

Proof This follows directly from Theorems 4.3, 4.4 and 4.6. ��
The last special case to be discussed in this section is N = R

n , which includes in particular
the space of surfaces in R

3. In the article [11] we proved a local well-posedness result for
integer-order metrics. The proof given there had a gap, which has been corrected in the article
[50]. The following corollary of our main result extends this to fractional order metrics:

5.3 Corollary Flat ambient space. A smooth curve f : [0, 1] → Imm(M,Rn) is a critical
point of the energy functional

E( f ) = 1

2

∫ 1

0

∫
M
〈Pf ft , ft 〉 volg dt

if and only if it satisfies the geodesic equation

ftt = 1

2
P−1f

(
Adj(dP) f ( ft , ft )

⊥ − 2d f 〈Pf ft , d ft 〉� − 〈Pf ft , ft 〉 H f

)

− P−1f

(
(∇ ft P) ft + Trg

(〈d ft , d f 〉)Pf ft
)
,

where 〈·, ·〉 denotes the Euclidean scalar product on R
n, g = f ∗〈·, ·〉 the induced pullback

metric on M, and H f = Trg(d2 f )⊥ the vector-valued mean curvature of f .
If the operator P satisfies the conditions of Sect. 4.1 for some p ∈ [1,∞) and all r ∈

[r0,∞) with r0 ∈ (dim(M)/2+1,∞), then the geodesic equation is well-posed in the sense
of Theorem 4.4. This is in particular the case for the operator P = (1+�)p with p ∈ [1,∞)

and r ∈ (dim(M)/2+ 1,∞) ∩ [p + 1,∞).

Proof This follows from Theorems 4.3, 4.4, and 4.6 with N = R
n , noting that the covariant

derivative onRn and the induced covariant derivative on Immr (M,Rn) coincidewith ordinary
derivatives. ��
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Appendix A: The push-forward operator on Sobolev spaces

A.1 Theorem Smooth curves in convenient vector spaces. [26, 4.1.19] Let c : R→ E be a
curve in a convenient vector space E. Let V ⊂ E ′ be a subset of bounded linear functionals
such that the bornology of E has a basis of σ(E,V)-closed sets. Then the following are
equivalent:

(a) c is smooth
(b) For each k ∈ N there exists a locally bounded curve ck : R → E such that for each

� ∈ V the function � ◦ c is smooth R→ R with (� ◦ c)(k) = � ◦ ck .
If E is reflexive, then for any point separating subset V ⊂ E ′ the bornology of E has a basis
of σ(E,V)-closed subsets, by [26, 4.1.23].

This theorem is surprisingly strong: Note that V does not need to recognize bounded sets. We
shall use the theorem in situations where V is just the set of all point evaluations on suitable
Sobolev spaces.

A.2 Lemma Smooth curves in Sobolev spaces of sections. Let E be a vector bundle over
M, and let ∇ be a connection on E. Then it holds for each r ∈ (dim(M)/2,∞) that the
space C∞(R, �Hr (E)) of smooth curves in �Hr (E) consists of all continuous mappings
c : R× M → E with p ◦ c = pr2 : R× M → M such that:

• For each x ∈ M the curve t �→ c(t, x) ∈ Ex is smooth; let (∂
p
t c)(t, x) = ∂

p
t (c(t, x)),

and
• For each p ∈ N≥0, the curve ∂

p
t c has values in �Hr (E) so that ∂ p

t c : R→ �Hr (E), and
t �→ ‖∂t c(t, )‖Hr is bounded, locally in t .

Proof To see this we first choose a second vector bundle F → M such that E ⊕M F is a
trivial bundle, i.e., isomorphic to M×R

n for some n ∈ N. Then �Hr (E) is a direct summand
in Hr (M,Rn), so that we may assume without loss that E is a trivial bundle, and then, that
it is 1-dimensional. So we have to identify C∞(R, Hr (M,R)). But in this situation we can
just apply Theorem A.1 for the set V ⊂ Hs(M,R)′ consisting just of all point evaluations
evx : Hr (M,R) → R. ��
A.3 Lemma Function spaces of mixed smoothness. Let U be an open subset of a finite-
dimensional vector space, let r ∈ (dim(M)/2,∞), let α ∈ {∞, ω}, and let Cα(U ) =
lim←−p

Ep be the representation of the complete locally convex space Cα(U ) as a projective

limit of Banach spaces Ep. Then

HrCα(M ×U ) := Cα(U , Hr (M)) = Hr (M)⊗̂Cα(U ) = Hr (M,Cα(U )),

where ⊗̂ is the injective, projective, or bornological tensor product, or any tensor product
in-between, and where Hr (M,Cα(U )) is defined as the projective limit lim←−p

Hr (M, Ep).

The lemma justifies the following notation, which shall be used in Lemma A.5 below. If
E1 and E2 are vector bundles over M , andU ⊆ E1 is an open neighborhood of the image of
an Hr section, then we write �Hr (Cα(U , E2)) for the set of all fiber-preserving functions
F : U → E2 which have regularity HrCα in every Cα vector bundle chart of E1. Loosely
speaking, these are sections of regularity Hr in the foot point and regularity Cα in the fibers.

Proof The spaceC∞(U ) is nuclear by [57, Corollary to Theorem 51.4], and the spaceCω(U )

is nuclear as a countable inductive limit of nuclear spaces of holomorphic functions [41,
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Theorem 30.11]. Let⊗ε ,⊗π , and⊗β be the injective, projective, and bornological completed
tensor products, respectively. Then

Cα(U )⊗ε Hr (M) = Cα(U )⊗π Hr (M) = Cα(U )⊗β Hr (M),

where the first equality holds because Cα(U ) is nuclear, and the second equality holds by
[41, Proposition 5.8] using that Hr (M) is a normed space, and Cω(V ) is an (LF)-space and
therefore bornological. Thus, all tensor spaces Cα(U )⊗̂Hr (M) are equal. Moreover,

C∞(U , Hr (M)) = C∞(U )⊗ε Hr (M)

by [57, Theorem 44.1], and

Cω(U , Hr (M)) = lim←−̃
U

H(Ũ , Hr (M)) = lim←−̃
U

H(Ũ )⊗̂Hr (M) = Cω(U )⊗̂Hr (M)

by [32, Corollary 16.7.5], where H denotes holomorphic functions and Ũ are open neigh-
borhoods of U in the complexification of the underlying vector space. Let �2 be the natural
norm on L2 functions [22, 7.1]. Then

Hr (M)⊗̂Cα(U ) = Hr (M)⊗̂�2C
α(U ) = lim←−

p

Hr (M)⊗̂�2Ep = lim←−
p

Hr (M, Ep),

where the first equality holds because ε ≤ �2 ≤ π [22, 7.1], the second one by the definition
of tensor products of locally convex spaces [22, 35.2], and the third one because the fractional
Laplacian (1 + �g) : Hr (M) → L2(M) with respect to any auxiliary Riemannian metric
g ∈ Met(M) is an isometry and because L2(M, Ep) = L2(M)⊗�2 Ep by the definition of
�2 [22, 7.2]. ��
A.4 Lemma Push-forward of functions. Let U be an open subset of R, and let r ∈
(dim(M)/2,∞). Then Hr (M,U ) is open in Hr (M,R), and the following statements hold.

(a) The following map is smooth:

HrC∞(M ×U )× Hr (M,U ) � (F, h) �→ F ◦ (IdM , h) ∈ Hr (M).

(b) The following map is real analytic:

HrCω(M ×U )× Hr (M,U ) � (F, h) �→ F ◦ (IdM , h) ∈ Hr (M).

Proof The set �Hr (U ) is open in �Hr (E1) because �Hr (E1) is continuously included in
�C (E1) thanks to the Sobolev embedding theorem.

(a) follows from the more general statement Lemma A.5.(a).
(b’) As an intermediate step, we claim that the following map is real analytic:

Cω(U )× Hr (M,U ) � ( f , h) �→ f ◦ h ∈ Hr (M).

For any f ∈ Cω(U ) and h ∈ Hr (M,U ), the composition f ◦ h coincides with the Riesz
functional calculus f (h), which is defined as follows [21, Theorem 4.7]. As the spectrum
σ(h) equals the range of h, which is a compact subset of U , there is a set of positively
oriented curves � = {γ1, . . . , γn} in U \ σ(h) such that σ(h) is inside of �, and C \ U
is outside of � [21, Proposition 4.4]. Then one defines f (h) as the following Bochner
integral over the resolvent of h:

f (h) = −1
2π i

∫
�

f (λ)(h − λ)−1dλ

For any fixed �, this integral is well-defined and real analytic as claimed.
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(b) The following map is real analytic thanks to (b’) and the boundedness of multiplication
Hr (M)× Hr (M) → Hr (M):

Hr (M)× Cω(U )× Hr (M,U ) � (a, f , h) �→ (a ⊗ f ) ◦ (IdM , h) ∈ Hr (M),

where (a ⊗ f ) ◦ (IdM , h) denotes the map x �→ a(x) f (h(x)). Equivalently, by the real
analytic exponential law [41, 11.18], the following map is real analytic:

Hr (M)× Cω(U ) � (a, f ) �→ (
h �→ (a ⊗ f ) ◦ (IdM , h)

) ∈ Cω(Hr (M,U ), Hr (M)).

This map is bilinear and real analytic, and therefore bounded. By the universal property
of the bornological tensor product ⊗β [41, 5.7], it descends to a bounded linear map

Hr (M)⊗β Cω(U ) � F �→ (
h �→ F ◦ (IdM , h)

) ∈ Cω(Hr (M,U ), Hr (M)).

The domain of this map equals HrCω(M ×U ) by Lemma A.3.

��
A.5 Lemma Push-forward of sections. Let E1, E2 be vector bundles over M, let U ⊂ E1 be
an open neighborhood of the image of a smooth section, let F : U → E2 be a fiber preserving
function, and let r ∈ (dim(M)/2,∞). Then �Hr (U ) is open in �Hr (E1), and the following
statements hold:

(a) If F is smooth or belongs to �Hr (C∞(U , E2)), then the push-forward F∗ is smooth:

F∗ : �Hr (U ) → �Hr (E2), h �→ F ◦ h.

(b) If F is real analytic or belongs to �Hr (Cω(U , E2)), then the pushforward F∗ is real
analytic.

The notation �Hr (C∞(U , E2)) and �Hr (Cω(U , E2)) is explained in “Section A.3”.

Proof (a) Let c : R � t �→ c(t, ·) ∈ �Hr (U ) be a smooth curve. As r > dim(M)/2, it holds
for each x ∈ M that the mapping R � t �→ Fx (c(t, x)) ∈ (E2)x is smooth. By the Faà
di Bruno formula (see [25] for the 1-dimensional version, preceded in [1] by 55 years),
we have for each p ∈ N>0, t ∈ R, and x ∈ M that

∂
p
t Fx (c(t, x)) =

∑
j∈N>0

∑
α∈N j

>0
α1+···+α j=p

1

j !d
j (Fx )(c(t, x))

(∂
(α1)
t c(t, x)

α1! , . . . ,
∂

(α j )

t c(t, x)

α j !
)

.

For each x ∈ M and αx ∈ (E2)
∗
x the mapping s �→ 〈s(x), αx 〉 is a continuous linear

functional on the Hilbert space �Hr (E2). The set V2 of all of these functionals separates
points and therefore satisfies the condition of Theorem A.1. We also have for each p ∈
N>0, t ∈ R, and x ∈ M that

∂
p
t 〈Fx (c(t, x)), αx 〉 = 〈∂ p

t Fx (c(t, x)), αx 〉.
Using the explicit expressions for ∂

p
t Fx (c(t, x)) from above we may apply Lemma A.2

to conclude that t �→ F(c(t, )) is a smooth curve R→ �Hr (E2). Thus, F∗ is a smooth
mapping, and we have shown (a).

(b’) We claim that (b) holds when F is fiber-wise linear. Then F can be identified with a map
in F̌ ∈ �Hr (L(E1, E2)). For any h ∈ �Hr (E1), the composition F ◦ h equals the trace
F̌ .h, which is real analytic in h by the module properties 2.3.
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(b) To prove the general case, we write E1 and E2 as sub-bundles of a trivial bundle M ×V .
The corresponding inclusion and projection mappings are real analytic mappings of
vector bundles and are denoted by

i1 : E1 → M × V , i2 : E2 → M × V , π1 : M × V → E1, π2 : M × V → E2.

Then the set Ũ := π−11 (U ) ⊆ M×V and the map F̃ := i2 ◦ F ◦π1 fit into the following
commutative diagrams:

U
F

i1

E2

π2

Ũ
F̃

M × V

�Hr (U )
F∗

(i1)∗

�Hr (E2)

(π2)∗

�Hr (Ũ )
F̃∗

�Hr (M × V )

All maps in the diagram on the left are real analytic by definition. The map (F̃)∗ is real
analytic by Lemma A.4.(b) applied component-wise to the trivial bundle M × V , and
the maps (i1)∗ and (π2)∗ are real analytic by (b’). Therefore, F∗ = (π2)∗ ◦ (F̃)∗ ◦ (i1)∗
is real analytic, which proves (b).

��

Appendix B: A real analytic no-loss no-gain result

The following lemma is a variant of the no-loss-no-gain theorem of Ebin and Marsden [23],
adapted to the real analytic sprays on spaces of immersions as in the setting of Theorem 4.4.
The proof is a minor adaptation of the proof in [23]; see also [16].

B.1 Lemma Real analytic no-loss no-gain. Let r0 > dim(M)/2 + 1 and let α ∈ {∞, ω}.
For each r ≥ r0, let Sr be a Diff(M)-invariant Cα vector field on T Immr (M, N ) such that
T ir ,s◦Sr = Ss◦ir ,s where ir ,s : T Immr (M, N ) → T Imms(M, N ) is theCα-embedding for
r0 ≤ s < r . By the theorem of Picard-Lindelöf each Sr has a maximal Cα-flow FlS

r : Ur →
T Immr (M, N ) for anopenneighborhoodUr of {0}×T Immr (M, N ) inR×T Immr (M, N ).

Then Ur = Us ∩ (R× T Immr (M, N )) for all r0 + 1 ≤ r and r0 ≤ s ≤ r . Thus, there is
no loss or gain in regularity during the evolution along any Sr for r ≥ r0 + 1.

Proof (a) We shall use the following result [23, Lemma 12.2]: Any h ∈ Hr (M, T N ) such
that T h ◦ X ∈ Hr (M, T T N ) for all X ∈ X(M) satisfies h ∈ Hr+1(M, T N ).

(b) For h ∈ T Immr (M, N ) let Jrh be the open interval such thatUr ∩ (R×{h}) = Jrh ×{h},
i.e., Jrh is the maximal domain of the integral curve of Sr through h in T Immr (M, N );
see [41, 32.14]. Since ir ,s ◦ FlSrt = FlS

s

t ◦ (see [41, 32.16]), for h ∈ T Immr (M, N ) we
have Jrh ⊆ J sh for r0 ≤ s < r .

(c) Claim. For h ∈ T Immr+1(M, N ) we have Jrh = Jr+1h .
Since Sr is invariant under the pullback action of Diff(M), we have for h ∈
T Immr+1(M, N ) and any X ∈ X(M) that

FlS
r

t (h ◦ FlXu ) = FlS
r

t (h) ◦ FlXu .

Differentiating both side we get

T (FlS
r

t (h)) ◦ X = ∂u |0(FlSrt (h) ◦ FlXu ) = ∂u |0(FlSrt (h ◦ FlXu ))

= T (FlS
r

t )(∂u |0(h ◦ FlXu )) = T (FlS
r

t )(Th ◦ X)
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Since Th◦X ∈ Hr (M, T T N )we see that T (FlS
r

t (h))◦X ∈ Hr (M, T T N ). By result (a)
we get FlS

r

t (h) ∈ T Immr+1(M, N ), and thus Jrh ⊇ Jr+1h . The converse inclusion is (b).
(d) Let r0 + 1 ≤ s < r < s + 1 and let h ∈ T Immr (M, N ). Then

Jrh ⊆ J sh ⊆ Jr−1h = Jrh ,

where the inclusions follow from (b), (b), and (c) , respectively. Thus we have Jrh =
J sh = Jr−1h . ��
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