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Abstract
In this paper, we study the nonlocal dispersal logistic equation

⎧
⎪⎨

⎪⎩

ut = J ∗ u − u + λu − [b(x)q(t) + δ]u p in �̄ × (0,∞),

u(x, t) = 0 inRN \ �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),

here � ⊂ R
N is a bounded domain, J is a nonnegative dispersal kernel, p > 1, λ is a fixed

parameter and δ > 0. The coefficients b, q are nonnegative and continuous functions, and
q is periodic in t . We are concerned with the asymptotic profiles of positive solutions as
δ → 0. We obtain that the temporal degeneracy of q does not make a change of profiles, but
the spatial degeneracy of bmakes a large change. We find that the sharp profiles are different
from the classical reaction–diffusion equations. The investigation in this paper shows that
the periodic profile has two different blow-up speeds and the sharp profile is time periodic
in domain without spatial degeneracy.

Keywords Positive solution · Periodic profile · Nonlocal dispersal

Mathematics Subject Classification 35B40 · 35K57 · 35P05

1 Introduction andmain results

Let J : RN → R be a nonnegative continuous function and � ⊂ R
N be a bounded domain.

We consider the periodic nonlocal dispersal equation
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⎧
⎪⎨

⎪⎩

ut = J ∗ u − u + λu − a(x, t)u p in �̄ × (0,+∞),

u(x, t) = 0 in (RN \ �̄) × (0,+∞),

u(x, 0) = uI (x) in �̄,

(1.1)

where p > 1 and λ is a real parameter, the coefficient a is nonnegative, T -periodic in t and

Du(x, t) = J ∗ u(x, t) − u(x, t) =
∫

RN
J (x − y)u(y, t)dy − u(x, t)

represents a nonlocal dispersal operator. It is known that the dispersal operator D and varia-
tions of it have been used to model different dispersal phenomena from applications as well
as pure mathematics, see [1,2,4,10,29]. The nonlocal dispersal equation (1.1) arises typically
in population dynamics [11,17,18]. Let u(y, t) be the density of population at location y at
time t , and J (x − y) be the probability distribution of the population jumping from y to x ,
then

∫

RN J (x − y)u(y, t)dy denotes the rate at which individuals are arriving to location x
from all other places and −u(x, t) = − ∫

RN J (y − x)u(x, t)dy is the rate at which they are
leaving location x to all other places. Thus Du(x, t) is the dispersal of population and (1.1)
describes the change of population density u(x, t)with initial value uI (x) and periodic logis-
tic type growth rate. In (1.1), the dispersal takes place in RN , but we impose that u vanishes
outside �̄, which is called homogeneous nonlocal Dirichlet boundary condition [17]. The
operator D is a nonlocal operator since the dispersal of u at location x and time t does not
only depend on u, but on all the values of u in a fixed spatial neighborhood of x through the
term J ∗ u. There is quite an extensive literature for the study of nonlocal problems recently,
among others, the papers [5,6,14,23,24,26–28].

Since the coefficient a(x, t) may have temporal or spatial degeneracies, the degenerate
periodic logistic nonlinearity plays a great role on the dynamical behavior of (1.1), see [27].
In fact, the study of diffusion problems with refuge goes back to the classical works of Fraile
et al. [12]. There is quite an extensive literature on the study of degenerate diffusion problems,
for example, the papers [8,12–15,20–22,25] and the references therein. In this paper, we shall
investigate the influence of degenerate heterogeneous environment on the nonlocal dispersal
system (1.1). To this end, we take a(x, t) = b(x)q(t), where q is T -periodic in t and consider
the nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

ut = J ∗ u − u + λu − b(x)q(t)u p in �̄ × (0,∞),

u(x, t) = 0 inRN \ �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞).

(1.2)

Throughout this paper, we make the following assumptions on J (x), b(x) and q(t).

(H1) J ∈ C(RN ) is nonnegative, symmetric with unit integral and J (0) > 0.
(H2) b ∈ C(�̄) and q ∈ C[0,∞) satisfies q(t) = q(t + T ) in [0,∞) for some T > 0.

Our interest here is that the nonlinearity has degeneracies. That is, b(x) or q(t) vanishes
in a proper subset. We shall distinguish the following two different cases.

(A1) b(x) > 0 for all x ∈ �̄ and q(tq) > 0 for some tq ∈ [0, T ].
(A2) q(t) > 0 for all t ∈ [0, T ] and b(x) = 0 on �0, while

b(x) > 0 for all x ∈ �̄ \ �̄0,

here �0 ⊂ � is a proper subdomain with positive measure.
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The first case is that only the temporal degeneracy exists. We may assume that there exist
t0, t1 ∈ [0, T ] such that q(t) = 0 for t ∈ [t0, t1] and b(x) > 0 for x ∈ �̄. Then the assumption
(A1) holds and the positive solution of the periodic problem (1.2) is well studied, see [23,27].
Let λP (�) be the unique principle eigenvalue of nonlocal equation

{
J ∗ φ − φ = −λφ in �̄,

φ(x) = 0 inRN \ �̄,

we know that (1.2) admits a unique positive solution if and only if λ > λP (�). If b(x) has
a spatial degeneracy, the results are different. If (A2) holds, it follows from [27] that (1.2)
admits a unique positive solution if and only if λP (�) < λ < λP (�0).

It is well known from [8,27] that the dynamical behavior of nonlocal equation (1.2) is
different from the classical reaction–diffusion equation

⎧
⎪⎨

⎪⎩

ut = �u + λu − b(x)q(t)u p in� × (0,∞),

u(x, t) = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in� × [0,∞),

here we assume further that � is smooth. In order to find the sharp influence of complex
environment on the nonlocal dispersal system, we consider the asymptotic profiles of positive
periodic solutions. More precisely, we study the perturbed nonlocal dispersal equation

⎧
⎪⎨

⎪⎩

ut = J ∗ u − u + λu − [b(x)q(t) + δ]u p in �̄ × (0,∞),

u(x, t) = 0 inRN \ �̄ × (0,∞),

u(x, t) = u(x, t + T ) in �̄ × [0,∞),

(1.3)

where δ > 0 is a small parameter. In this case, we know that the degeneracy disappears and
(1.3) admits a unique positive solution

uδ ∈ C1([0, T ];C(�̄))

for λ > λP (�), see [23,27]. We want to obtain the sharp behavior of positive solutions when
degeneracy appears. So we first establish the asymptotic profiles of positive solutions.

Theorem 1.1 Assume that (A1) holds. Let uδ(x, t) be the unique positive solution of (1.3)
for λ > λP (�) and δ > 0. Then we have

lim
δ→0+ uδ(x, t) = u(x, t) uniformly in �̄ × [0, T ],

where u(x, t) is the unique positive solution of (1.2).

Theorem 1.2 Assume that (A2) holds. Let uδ(x, t) be the unique positive solution of (1.3)
for λ > λP (�) and δ > 0. Then the following hold.

(i) If λP (�) < λ < λP (�0), then

lim
δ→0+ uδ(x, t) = u(x, t) uniformly in �̄ × [0, T ],

where u(x, t) is the unique positive solution of (1.2).
(ii) If λ ≥ λP (�0), then

lim
δ→0+ uδ(x, t) = ∞ uniformly in �̄ × [0, T ]. (1.4)
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Remark 1.3 If b(x) > 0 for x ∈ �̄ and q(t) > 0 for t ∈ [0, T ], we know that the assumption
(A1) still holds. In this case, there is no temporal degeneracy, the conclusion of Theorem 1.1
is also true. We show that only the temporal degeneracy of q(t) does not make a change of
the profiles. But if the spatial degeneracy appears, the profiles make a large change. In case of
spatial degeneracy, the profiles are also different to the classical reaction–diffusion equation.
Let λL(�) be the principal eigenvalue of

{
�u = −λu in�,

u = 0 on ∂�.

Then we know from [7,9,16,20] that the classical reaction–diffusion equation
⎧
⎪⎨

⎪⎩

ut = �u + λu − [b(x)q(t) + δ]u p in� × (0,∞),

u = 0 on ∂� × (0,∞),

u(x, t) = u(x, t + T ) in� × (0,∞)

(1.5)

admits a unique positive periodic solution uLδ (x, t) for λ > λL(�) and the asymptotic profiles
of uLδ (x, t) with respect to δ are well established. If (A1) holds and λ > λL(�), then

lim
δ→0+ uLδ (x, t) = uL(x, t) uniformly in �̄ × [0, T ],

where uL(x, t) is the unique positive solution of (1.5) for δ = 0. Meanwhile, if (A2) holds,
then we have

lim
δ→0+ uLδ (x, t) = uL(x, t) uniformly in �̄ × [0, T ]

for any λ ∈ (λL(�), λL (�0)) and

lim
δ→0+ uLδ (x, t) = ∞ uniformly in �̄0 × [0, T ]

for any λ ≥ λL(�0). In the later case, we know that uLδ (x, t) is still bounded as δ → 0+ in
any compact subset of �̄ \ �̄0 × [0, T ]. However, from (1.4) we obtain that the profiles of
nonlocal dispersal equation (1.3) are unbounded in �̄ × [0, T ] as δ → 0+. Thus we know
from Theorems 1.1–1.2 that only the temporal degeneracy dose not change the profiles of
positive solutions both for nonlocal and classical reaction–diffusion problems. However, the
spatial degeneracy makes different changes.

To reveal the complex influence of spatial degeneracy environment on the nonlocal dis-
persal system (1.3), we investigate the sharp spatial pattern of positive periodic solutions.

Theorem 1.4 Assume that (A2) holds. Let uδ(x, t) be the unique positive solution of (1.3)

for λ > λP (�) and δ > 0. Set vδ(x, t) = δ
1

p−1 uδ(x, t), we have the following results.

(i) If λP (�) < λ ≤ λP (�0), then

lim
δ→0+ vδ(x, t) = 0 uniformly in �̄ × [0, T ].

(ii) If λ > λP (�0), then

lim
δ→0+ vδ(x, t) = θ(x) uniformly in �̄0 × [0, T ], (1.6)
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and

lim
δ→0+ vδ(x, t) = 0 uniformly in any compact subset of �̄ \ �̄0 × [0, T ], (1.7)

where θ ∈ C(�̄0) satisfies θ(x) > 0 in �̄0 and

∫

�0

J (x − y)θ(y)dy − θ(x) = −λθ(x) + θ p(x) in �̄0. (1.8)

Let us note that (1.8) exists a unique positive solution for any λ > λP (�0) [14]. Since
θ(x) > 0 in �̄0, the sharp pattern of uδ(x, t) in �̄0 × [0, T ] is given by (1.6). Due to the
effect of nonlocal effect, we know from (1.7) that the pattern is different in �̄ \ �̄0 × [0, T ].
We obtain the sharp profiles of uδ(x, t) in �̄ \ �̄0 × [0, T ] as follows.
Theorem 1.5 Assume that (A2) holds. Let uδ(x, t) be the unique positive solution of (1.3)

for λ > λP (�0) and δ > 0. Set ωδ(x, t) = δ
1

p(p−1) uδ(x, t), we have

lim
δ→0+ ωδ(x, t) = ∞ uniformly in �̄0 × [0, T ],

and

lim
δ→0+ ωδ(x, t) = η(x, t) uniformly in any compact subset of �̄ \ �̄0 × [0, T ],

where

η(x, t) =
[∫

�0
J (x − y)θ(y)dy

b(x)q(t)

] 1
p

, (1.9)

and θ(x) > 0 in �̄0 is given by (1.8).

Remark 1.6 In the above theorems, we obtain the sharp profiles of positive solutions to
the nonlocal dispersal equation (1.3). If (A2) holds, we establish that the sharp profiles in
degeneracy domain are different from the domain without degeneracy. In fact, we prove that
both the nonlocal effect and the degeneracy of b(x) make the positive periodic solutions
of (1.3) blow up, but have different blow-up speeds. Furthermore, we know from (1.9) that
the sharp pattern of nonlocal dispersal equation (1.3) is time periodic in domain without
degeneracy.

Comparing with the classical reaction–diffusion equation, the sharp pattern for nonlocal
dispersal equation is quite different. Our main results reveal the following phenomena for
nonlocal dispersal equation (1.3).
(i) The asymptotic profiles are unbounded in the whole domain �.
(ii) The asymptotic profiles have different blow-up speeds, depending on domain �0.
(iii) The sharp profiles are time independent in degeneracy domain �0, but time periodic in
non-degeneracy domain.

The rest of this paper is organized as follows. In Sect. 2, we investigate the asymptotic
profiles. The behavior of principal eigenfunction with respect to parameter is also obtained.
Section 3 is devoted to the proofs of sharp profiles.
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2 Asymptotic profiles and eigenvalue problems

In this section, we investigate the asymptotic profiles for positive solutions of (1.3). To begin
with, we consider the case (A1).

Lemma 2.1 Assume that (A1) holds. Let uδ(x, t) be the unique positive solution of (1.3) for
λ > λP (�) and δ > 0. Then we have

uδ2(x, t) ≤ uδ1(x, t) ≤ u(x, t) in �̄ × [0, T ] (2.1)

for δ2 ≥ δ1 > 0, here u(x, t) is the unique positive solution of (1.2). Moreover, we have

lim
δ→0+ uδ(x, t) = u(x, t) uniformly in �̄ × [0, T ]. (2.2)

Proof Since δ2 ≥ δ1 > 0, we can see that uδ2(x, t) is a lower-solution of (1.3) for δ = δ1.
Note that uδ1(x, t) is the unique solution of (1.3) for δ = δ1, then by upper-lower solutions
argument (see [2,27]), we get

uδ2(x, t) ≤ uδ1(x, t) in �̄ × [0, T ].
Similarly, we have

uδ(x, t) ≤ u(x, t) in �̄ × [0, T ]
for δ > 0 and (2.1) holds.

Now by (2.1), we can find a bounded function u0(x, t) such that

lim
δ→0+ uδ(x, t) = u0(x, t)

for (x, t) ∈ �̄ × [0, T ]. Thus we know from (1.3) that u0(x, 0) = u0(x, T ) in �̄ and

u0(x, t) − u0(x, 0)

=
∫ t

0

∫

�

[
J (x − y)u0(y, s) − u0(x, s) + λu0(x, s) − b(x)q(s)u p

0 (x, s)
]
dyds (2.3)

for (x, t) ∈ �̄ × [0, T ]. Let ε be a small parameter, we have

u0(x, t + ε) − u0(x, t)

=
∫ t+ε

t

∫

�

[
J (x − y)u0(y, s) − u0(x, s) + λu0(x, s) − b(x)q(s)u p

0 (x, s)
]
dyds

for (x, t) ∈ �̄0 × [0, T ]. Since u0(x, t) is uniformly bounded in �̄ × [0, T ], we get
u0 ∈ C([0, T ]; L∞(�)).

On the other hand, we have

lim
ε→0

u0(x, t + ε) − u0(x, t)

ε

= lim
ε→0

1

ε

∫ t+ε

t

[∫

�

J (x − y)u0(y, s)dy + (λ − 1)u0(x, s) − b(x)q(s)u p
0 (x, s)

]

ds

=
∫

�

[
J (x − y)u0(y, t) − u0(x, t) + λu0(x, t) − b(x)q(s)u p

0 (x, t)
]
dy,
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and so

u0 ∈ C1([0, T ]; L∞(�)).

Then by (2.3) we know that u0(x, t) is a positive solution of (1.2) and the uniqueness shows
that u0(x, t) = u(x, t) in �̄ × [0, T ]. Thus we obtain (2.2) by Dini’s theorem. 	


If the spatial degeneracy appears, the case is quite different. To do this, we need to study
the periodic nonlocal eigenvalue equation

⎧
⎪⎨

⎪⎩

−φt + J ∗ φ − φ − μb(x)q(t)φ = −λφ in �̄ × (0,∞),

φ(x, t) = 0 in (RN \ �̄) × (0,∞),

φ(x, t) = φ(x, t + T ) in �̄ × [0,∞),

(2.4)

here μ ≥ 0. By the pioneering work of J. López-Gómez [19], we have the following lemma,
one can see [27] for a similar proof.

Lemma 2.2 Assume that (A2)holds. Ifμ ≥ 0, then (2.4)admits a unique principal eigenvalue
λP (μ,�). Moreover, λP (μ,�) is strictly increasing with respect to μ, λP (0,�) = λP (�)

and

lim
μ→∞ λP (μ,�) = λP (�0).

Nowwegive the asymptotic behavior of positive eigenfunctions associatedwithλP (μ,�),
which is a nonlocal version of the classical problem [3].

Theorem 2.3 Assume that (A2) holds. Let φμ(x, t) and ψ(x) be the positive eigenfunctions
associated with λP (μ,�) for μ ≥ 0 and λP (�0) such that

1

T

∫ T

0

∫

�

φμ(x, s)dxds = 1 and
∫

�

ψ(x)dx = 1, (2.5)

respectively. Then we have

lim
μ→∞ φμ(x, t) = ψ(x) uniformly in �̄0 × [0, T ],

and

lim
μ→∞ φμ(x, t) = 0 uniformly in any compact subset of �̄ \ �̄0 × [0, T ].

Proof We will prove the main results by the following four steps.
Step 1. We show that φμ(x, t) is uniformly bounded in �̄ × [0, T ].

It follows from (2.4) that

(φμ)t (x, t) ≤
∫

�

J (x − y)φμ(y, t)dy − φμ(x, t) − μb(x)q∗φμ(x, t) + λP (μ,�)φμ(x, t),

where q∗ = min[0,T ] q(t). Denote

J ∗ = max
�̄×�̄

J (x − y),
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since λP (μ,�) ≤ λP (�0) < 1, a direct comparison argument gives

φμ(x, t) ≤ e[λP (μ,�)−1−μb(x)q∗]tφμ(x, 0)

+
∫ t

0
e[λP (μ,�)−1−μb(x)q∗](t−s)

∫

�

J (x − y)φμ(y, s)dyds

≤ e[λP (�0)−1]tφμ(x, 0) +
∫ t

0

∫

�

J (x − y)φμ(y, s)dyds

≤ e[λP (�0)−1]tφμ(x, 0) + J ∗T

(2.6)

for (x, t) ∈ �̄ × [0, T ]. This yields

φμ(x, 0) = φμ(x, T ) ≤ J ∗T
1 − e[λP (�0)−1]T

for x ∈ �̄. Set

M = J ∗T
1 − e[λP (�0)−1]T + J ∗T ,

again by (2.6) we get

0 < φμ(x, t) ≤ φμ(x, 0) + J ∗T ≤ M (2.7)

for (x, t) ∈ �̄ × [0, T ].
Step 2. The eigenfunction φμ(x, t) in �̄0 × [0, T ].

Let x1, x2 ∈ �̄0, we denote

v(t) = φμ(x1, t) − φμ(x2, t) in [0, T ].
Without loss of generality, we assume that v(T ) > 0. By (2.4) we obtain that

vt (t) =
∫

�

[J (x1 − y) − J (x2 − y)]φμ(y, t)dy + [λP (μ,�) − 1]v(t)

≤
∫

�

|J (x1 − y) − J (x2 − y)|φμ(y, t)dy + [λP (μ,�) − 1]v(t)

≤G(x1, x2)
∫

�

φμ(y, t)dy + [λP (μ,�) − 1]v(t),

where t ∈ [0, T ] and
G(x1, x2) = max

y∈�̄
|J (x1 − y) − J (x2 − y)|.

Since λP (�) ≤ λP (μ,�) < λP (�0) < 1 for μ ≥ 0, we get

v(t) ≤e[λP (μ,�)−1]tv(0) + G(x1, x2)
∫ t

0
e[λP (μ,�)−1](t−s)

∫

�

φμ(y, s)dyds

≤e[λP (μ,�)−1]tv(0) + G(x1, x2)
∫ t

0

∫

�

φμ(y, s)dyds

(2.8)

for t ∈ [0, T ]. But v(0) = v(T ), we have

|v(T )| ≤ G(x1, x2)T

1 − e[λP (�0)−1]T .
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Meanwhile, we know from (2.8) that

|v(t)| =|φμ(x1, t) − φμ(x2, t)|
≤|v(T )| + G(x1, x2)T

≤ G(x1, x2)T

1 − e[λP (�0)−1] + G(x1, x2)T

for x1, x2 ∈ �̄0.
On the other hand, for x ∈ �̄0 and 0 ≤ t1 < t2 ≤ T , it follows from

φμ(x, t) = e[λP (μ,�)−1]tφμ(x, 0)

+
∫ t

0
e[λP (μ,�)−1](t−s)

∫

�

J (x − y)φμ(y, s)dyds

that there exist t∗1 , t∗2 ∈ (t1, t2) such that

φμ(x, t2) − φμ(x, t1)

= [e[λP (μ,�)−1]t2 − e[λP (μ,�)−1]t1 ]φμ(x, 0)

+
∫ t1

0

[
e[λP (μ,�)−1](t1−s) − e[λP (μ,�)−1](t2−s)

] ∫

�

J (x − y)φμ(y, s)dyds

−
∫ t2

t1
e[λP (μ,�)−1](t2−s)

∫

�

J (x − y)φμ(y, s)dyds

≤ [λP (μ,�) − 1]e(λP (μ,�)−1)t∗1 φμ(x, 0)(t2 − t1)

+ [λP (μ,�) − 1](t1 − t2)
∫ t1

0

[
e[λP (μ,�)−1](t∗2−s)

] ∫

�

J (x − y)φμ(y, s)dyds

−
∫ t2

t1
e[λP (μ,�)−1](t2−s)

∫

�

J (x − y)φμ(y, s)dyds

≤ M |λP (μ,�) − 1|(t2 − t1) + J ∗MT |λP (μ,�) − 1|(t2 − t1) + J ∗M(t2 − t1).

Thus we have

|φμ(x, t2) − φμ(x, t1)| ≤ [M |λP (μ,�) − 1| + J ∗MT |λP (μ,�) − 1| + J ∗M]|t2 − t1|
for x ∈ �̄0 and t1, t2 ∈ [0, T ].

Accordingly, subject to a subsequence, we know that there exists φ̂ ∈ C(�̄0 × [0, T ])
such that

lim
μ→∞ φμ(x, t) = φ̂(x, t) uniformly in �̄0 × [0, T ]. (2.9)

Step 3. The eigenfunction φμ(x, t) in �̄ \ �̄0 × [0, T ].
From (2.6)–(2.7), we know that

φμ(x, t) ≤ e[λP (�0)−1−μb(x)q∗]tφμ(x, 0)

+
∫ t

0
e[λP (�0)−1−μb(x)q∗](t−s)

∫

�

J (x − y)φμ(y, s)dyds

≤ Me[λP (�0)−1−μb(x)q∗]t + M − Me[λP (�0)−1−μb(x)q∗]t

1 − λP (�0) + μb(x)q∗
.
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Thus we know that

lim
μ→∞ φμ(x, t) = 0 (2.10)

for (x, t) ∈ �̄ \ �̄0 × [0, T ] and
lim

μ→∞ φμ(x, t) = 0 uniformly in any compact subset of �̄ \ �̄0 × [0, T ].

Step 4. We show φ̂(x, t) = ψ(x) in �̄0 × [0, T ].
In view of (2.9) and (2.10), we get

φ̂(x, t) = φ̂(x, 0) +
∫ t

0

[∫

�0

J (x − y)φ̂(y, s)dy − φ̂ + λP (�0)φ̂

]

ds

by the dominated convergence theorem. Then we have

φ̂(x, t + ε) − φ̂(x, t) =
∫ t+ε

t

[∫

�0

J (x − y)φ̂(y, s)dy − φ̂ + λP (�0)φ̂

]

ds

for (x, t) ∈ �̄0 × [0, T ], here ε is a small parameter. Thus we know from (2.7) that

|φ̂(x, t + ε) − φ̂(x, t)| ≤ [2 + λP (�0)]Mε.

This gives that φ̂(x, ·) ∈ C[0, T ]. Furthermore, we have

lim
ε→0

φ̂(x, t + ε) − φ̂(x, t)

ε
= lim

ε→0

1

ε

∫ t+ε

t

[∫

�0

J (x − y)φ̂(y, s)dy − φ̂ + λP (�0)φ̂

]

ds

=
∫

�0

J (x − y)φ̂(y, s)dy − φ̂ + λP (�0)φ̂

and φ̂(x, ·) ∈ C1([0, T ]) for x ∈ �̄. Hence,
⎧
⎪⎨

⎪⎩

−φ̂t + J ∗ φ̂ − φ̂ = −λP (�0)φ̂ in �̄0 × (0,∞),

φ̂(x, t) = 0 in (RN \ �̄0) × (0,∞),

φ̂(x, t) = φ̂(x, t + T ) in �̄0 × [0,∞).

In view of (2.5), we know that

1

T

∫ T

0

∫

�0

φ̂(x, s)dxds = 1 (2.11)

and the maximum principle shows that

φ̂(x, t) > 0 in �̄0 × (0,∞).

At last, as ψ(x) is a positive eigenfunction associated with λP (�0), by the uniqueness of
principal eigenfunction we obtain

φ̂(x, s) = cψ(x) in �̄0 × (0,∞)

for some constant c > 0. It follows from (2.5) and (2.11) that c = 1, this also shows that
(2.9) holds for the entire sequences. 	


By a similar argument as in the proof of Theorem 2.3, we have the following lemma.
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Lemma 2.4 Assume that (A2) holds. Let φμ(x, t) and ψ(x) be the positive eigenfunctions
associated with λP (μ,�) for μ ≥ 0 and λP (�0) such that

1

T

∫ T

0

∫

�

φμ(x, s)dxds =
∫

�

ψ(x)dx = 1/M,

respectively, here

M = J ∗T
1 − e[λP (�0)−1]T + max

�̄×�̄
J (x − y)T .

Then we have φμ(x, t) ≤ 1 in �̄ × [0, T ],
lim

μ→∞ φμ(x, t) = ψ(x) uniformly in �̄0 × [0, T ],

and

lim
μ→∞ φμ(x, t) = 0 uniformly in any compact subset of �̄ \ �̄0 × [0, T ].

For the time independent nonlocal eigenvalue equation
{
J ∗ φ − φ − μb(x)φ = −λφ in �̄,

φ(x) = 0 inRN \ �̄,
(2.12)

we know form [27] that (2.12) admits a unique principal eigenvalue σP (μ,�) for μ ≥ 0 if
b(x) exists spatial degeneracy. Then we have the following result.

Corollary 2.5 Assume that b ∈ C(�̄) is nontrivial, nonnegative and �0 = {x ∈ � : b(x) =
0} has a positive measure. Let φμ(x) andψ(x) be the positive eigenfunctions associated with
σP (μ,�) for μ ≥ 0 and λP (�0) such that

∫

�

φμ(x)dx = 1 and
∫

�

ψ(x)dx = 1,

respectively. Then we have

lim
μ→∞ φμ(x) = ψ(x) uniformly in �̄0,

and

lim
μ→∞ φμ(x) = 0 uniformly in any compact subset of �̄ \ �̄0.

Theorem 1.1 is followed by Lemma 2.1. At the end of this section, we prove Theorem 1.2.

Proof of Theorem 1.2 The conclusion (i) can be proved by the same way as in Lemma 2.1.
We only show that claim (ii) is true.

Since λP (μ,�) < λP (�0) for μ > 0 and λ ≥ λP (�0), we can take δ small such that

δ ≤ λ − λP (μ,�)

μ
.

Let φμ(x, t) be a positive eigenfunction associated with λP (μ,�) and

1

T

∫ T

0

∫

�

φμ(x, s)dxds = 1/M,
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where M is given in Lemma 2.4. Then we know that 0 < φμ(x, t) ≤ 1 in �̄ × [0, T ] and
we can check that μ

1
p−1 φμ(x, t) is a lower-solution to (1.3). Since uδ(x, t) is monotone with

respect to δ, by the uniqueness of positive solutions, we get

μ
1

p−1 φμ(x, t) ≤ lim
δ→0

uδ(x, t) in� × [0, T ].

Letting μ → ∞, again by Lemma 2.4, we have

lim
δ→0+ uδ(x, t) = ∞ uniformly in �̄0 × [0, T ].

Now let ûδ(x) be the unique positive solution of

{
J ∗ u − u = −λu + [b(x)q∗ + δ]u p in �̄,

u(x) = 0 inRN \ �̄,

for λ ≥ λP (�0), here q∗ = max[0,T ] q(t). Similarly to the above argument, we know that

lim
δ→0+ ûδ(x) = ∞ uniformly in �̄0.

Since
∫

�

J (x − y)ûδ(y)dy = (1 − λP (�0) + [b(x)q∗ + δ]û p−1
δ )ûδ(x)

and
∫

�

J (x − y)ûδ(y)dy ≥
∫

�0

J (x − y)ûδ(y)dy,

we get

lim
δ→0+ ûδ(x) = ∞ uniformly in �̄.

Then by the comparison principle we have

lim
δ→0+ uδ(x, t) ≥ lim

δ→0+ ûδ(x) in �̄ × [0, T ]

and

lim
δ→0+ vδ(x) = ∞ uniformly in �̄ × [0, T ].

	


3 Sharp profiles

In this section, we establish the sharp profiles for positive solutions of (1.3). We first give
some preliminaries and then prove the main theorems.
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3.1 Preliminaries

To begin with, we give some estimates on the profiles of positive solutions to (1.3). Let
uδ ∈ C1([0, T ];C(�̄)) be the positive solution of (1.3) for λ > λP (�) and δ > 0. Denote

vδ(x, t) = δ
1

p−1 uδ(x, t), then we have
⎧
⎪⎪⎨

⎪⎪⎩

(vδ)t = J ∗ vδ − vδ + λvδ −
[
b(x)q(t)

δ
+ 1

]
v
p
δ in �̄ × (0,∞),

vδ(x, t) = 0 inRN \ �̄ × (0,∞),

vδ(x, t) = vδ(x, t + T ) in �̄ × [0,∞).

(3.1)

In order to obtain lower and upper bounds for vδ(x, t), we consider the nonlocal dispersal
equations

{
J ∗ u − u = −λu + u p in �̄,

u(x) = 0 inRN \ �̄,
(3.2)

and
{
J ∗ u − u = −λu + u p in �̄0,

u(x) = 0 inRN \ �̄0.
(3.3)

It follows from [14,26] that (3.2) exists a unique positive solution û ∈ C(�̄) for λ > λP (�)

and (3.3) exists a unique positive solution ū ∈ C(�̄) for λ > λP (�0).

Lemma 3.1 Assume that (A2) holds and δ > 0. Let û(x) be the positive solution of (3.2)
and ū(x) be the positive solution of (3.3), respectively. Then we have

0 < vδ(x, t) ≤ û(x) in �̄ × [0, T ] (3.4)

for λ > λP (�) and

vδ(x, t) ≥ ū(x) in �̄0 × [0, T ] (3.5)

for λ > λP (�0).

Proof Since b(x) and q(t) are nonnegative, we can see that û(x) is an upper-solution of (3.1).
The uniqueness gives that (3.4) holds.

On the other hand, we know that vδ(x, t) satisfies the nonlocal dispersal equation
⎧
⎪⎨

⎪⎩

ut = J ∗ u − u + λu − u p + fδ(x, t) in �̄0 × (0,∞),

u(x, t) = 0 inRN \ �̄0 × (0,∞),

u(x, t) = u(x, t + T ) in �̄0 × [0,∞),

(3.6)

where

fδ(x, t) =
∫

�\�0

J (x − y)vδ(y, t)dy.

By a simple argument (see the proof of Theorem 5.4 in [27]), we know that vδ(x, t) is the
only continuous positive solution of (3.6). But ū(x) is a lower-solution to (3.6), we get (3.5).
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Lemma 3.2 Assume that (A2) holds and λ ≥ λP (�0). Then there exists l > 0 which is
independent of δ such that

1 − λ + v
p−1
δ (x, t) ≥ l in �̄0 × [0, T ] (3.7)

for δ > 0.

Proof Since λP (�0) ∈ [0, 1) and vδ(x, t) is nonnegative, we can see that (3.7) holds for
λ = λP (�0).

If λ > λP (�0), let ū(x) be the unique solution of (3.3), we know from (3.5) that

1 − λ + v
p−1
δ (x, t) ≥ 1 − λ + ū p−1(x) =

∫

�0
J (x − y)ū(y)dy

ū(x)
.

Since ū(x) > 0 in �̄0, we complete the proof. 	


3.2 Proof of Theorems 1.4–1.5

In this subsection, we will prove the main theorems.

Proof of Theorems 1.4–1.5 The long discuss is divided into the following steps.
Step 1. The asymptotic profile for λP (�) < λ < λP (�0).

In this case, we know from Theorem 1.2 that

lim
δ→0+ vδ(x, t) = lim

δ→0+ ωδ(x, t) = 0 uniformly in �̄ × [0, T ].

Step 2. The profile vδ(x, t) in �̄0 × [0, T ] for λ > λP (�0).
By (3.4) we can find C > 0 which is independent to δ such that

max
�̄×[0,T ]

vδ(x, t) ≤ C .

For any given x1, x2 ∈ �̄0, we denote

ω(t) = vδ(x1, t) − vδ(x2, t) in [0, T ].
Without loss of generality, we assume that ω(0) = ω(T ) > 0. Since ω(t) is continuous in
[0, T ], we first show that ω(T ) satisfies

|ω(T )| = |vδ(x1, T ) − vδ(x2, T )| ≤ C

l

∫

�

|J (x1 − y) − J (x2 − y)|dy, (3.8)

where l > 0 is given by (3.7).
If ω(t) is not sign-changing in [0, T ], we assume that ω(t) ≥ 0 for t ∈ [0, T ]. Then we

know from (3.1) and (3.7) that

ωt (t) =
∫

�

[J (x1 − y) − J (x2 − y)]vδ(y, t)dy + [λ − 1 − pθ p−1(t)]ω(t)

≤ [λ − 1 − v
p−1
δ (x2, t)]ω(t) + C

∫

�

|J (x1 − y) − J (x2 − y)|dy

≤ −lω(t) + C
∫

�

|J (x1 − y) − J (x2 − y)|dy,
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where θ(t) is between vδ(x2, t) and vδ(x1, t). Thus we get

ω(t) ≤ e−ltω(0) + 1 − e−lt

l
C

∫

�

|J (x1 − y) − J (x2 − y)|dy (3.9)

for t ∈ [0, T ]. But ω(0) = ω(T ), we know (3.8) holds.
If ω(t) is sign-changing in [0, T ]. In this case, (3.8) still true for ω(T ) = 0. If ω(T ) > 0,

since ω ∈ C([0, T ]) is sign-changing in [0, T ], we can see that there exists t∗ ∈ (0, T ) such
that ω(T ) ≥ ω(t∗) and

ω(t) > 0 in [t∗, T ].
It follows from (3.1) that

{
ωt (t) ≤ −lω(t) + C

∫

�
|J (x1 − y) − J (x2 − y)|dy in (t∗, T ],

ω(t∗) = ω(t∗),

and so

ω(t) ≤ e−l(t−t∗)ω(t∗) + 1 − e−l(t−t∗)

l
C

∫

�

|J (x1 − y) − J (x2 − y)|dy

≤ e−l(t−t∗)ω(T ) + 1 − e−l(t−t∗)

l
C

∫

�

|J (x1 − y) − J (x2 − y)|dy.

We get ω(T ) satisfies (3.8). For ω(T ) < 0, a similar argument from −ω(T ) gives that ω(T )

satisfies (3.8).
Now for any x1, x2 ∈ �̄0, without loss of generality, we assume that

ω(t) = vδ(x1, t) − vδ(x2, t) ≥ 0 in [0, T ].
Then by (3.8) and (3.9), we have

|ω(t)| ≤ 2C

l

∫

�

|J (x1 − y) − J (x2 − y)|dy (3.10)

for t ∈ [0, T ].
Note that vδ(x, t) satisfies

vδ(x, t) =
∫ t

0

[∫

�

J (x − y)vδ(y, s)dy − vδ + λvδ − v
p
δ

]

ds in �̄0 × (0,∞),

we have

|vδ(x, t1) − vδ(x, t2)| ≤ (2 + λ + C p−1)C |t1 − t2| (3.11)

for t1, t2 ∈ [0, T ].
By a compactness argument from (3.10) and (3.11), subject to a subsequence, we know

that there exists v ∈ C(�̄0 × [0, T ]) such that

lim
δ→0+ vδ(x, t) = v(x, t) uniformly in �̄0 × [0, T ]. (3.12)

Step 3. The profiles vδ(x, t) in �̄ \ �̄0 × [0, T ] for λ > λP (�0).
We consider the nonlocal dispersal equation

{
J ∗ uδ − uδ = −λuδ +

[
b(x)q∗

δ
+ 1

]
u p

δ in �̄,

uδ(x) = 0 inRN \ �̄,
(3.13)
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where q∗ = min[0,T ] q(t). Let uδ(x) be the unique solution of (3.13) for λ > λP (�), then
the upper-lower solutions argument gives that

0 ≤ vδ(x, t) ≤ uδ(x) ≤ û(x)

for any (x, t) ∈ �̄ × [0, T ], here û(x) is given by (3.4). Since

uδ(x) =
[
J ∗ uδ − uδ + λuδ

b(x)q∗
δ

+ 1

]1/p

in �̄ \ �̄0,

we get

lim
δ→0+ vδ(x, t) = 0 locally uniformly in �̄ \ �̄0 × [0, T ] (3.14)

and

lim
δ→0+ vδ(x, t) = 0 (3.15)

for any (x, t) ∈ �̄ \ �̄0 × [0, T ].
Step 4. We show that v(x, t) = θ(x) in �̄0 × [0, T ].

In view of (3.12) and (3.15), by dominated convergence theorem, we know that

v(x, t) =
∫ t

0

[∫

�0

J (x − y)v(y, s)dy − v + λv − v p
]

ds in �̄0 × (0,∞),

and v(x, 0) = v(x, T ) in �̄. Meanwhile, we know from Lemma 3.1 that v(x, t) is positive
and boundned in �̄0 × [0, T ]. Then a simple argument gives that

v ∈ C1([0, T ];C(�̄0)).

So we get
⎧
⎪⎨

⎪⎩

vt = J ∗ v − v + λv − v p in �̄0 × (0,∞),

v(x, t) = 0 in (RN \ �̄0) × (0,+∞),

v(x, t) = v(x, t + T ) in �̄0 × [0,∞).

(3.16)

Let θ(x) be the unique continuous positive solution of (1.8) for λ > λP (�0), we can see that
θ(x) satisfies (3.16). Since the positive solution is unique, we necessarily have

v(x, t) = θ(x) in �̄0 × [0, T ].
This also implies that (3.12) holds for the entire original sequences.
Step 5. The profiles ωδ(x, t) in �̄ × [0, T ] for λ > λP (�0).

Since ωδ(x, t) = δ
1

p(p−1) uδ(x), we can see that vδ(x, t) = δ
1
p ωδ(x, t) and so

lim
δ→0+ ωδ(x, t) = ∞ uniformly in �̄0 × [0, T ].

Take f to be a smooth T-periodic function such that f (0) = f (T ) = 0. Multiplying (3.1)
by f and integrating in [0, T ], we obtain

∫ T

0
vδ(x, t) f (t)dt =

∫ T

0

[
J ∗ vδ − vδ + λvδ − (b(x)q(t)/δ + 1)v p

δ

]
f (t)dt .
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Letting δ → 0+, we know from (3.12) and (3.14) that

lim
δ→0+

∫ T

0

[
b(x)q(t)

δ
+ 1

]

v
p
δ f (t)dt =

∫ T

0

∫

�0

J (x − y)θ(y) f (t)dydt,

which is uniform in any compact subset of �̄\�̄0. Due to the arbitrariness of f , we necessary
have

lim
δ→0+

[
b(x)q(t)

δ
+ 1

]

v
p
δ (x, t) =

∫

�0

J (x − y)θ(y)dy (3.17)

for almost everywhere t ∈ [0, T ] and the convergence is uniform in any compact subset of
�̄ \ �̄0. Let �c be a compact subset of �̄ \ �̄0 and denote

H(x) =
[
b(x)q(t)

δ
+ 1

]

v
p
δ (x, t)

for any given t ∈ [0, T ]. Then we know from (3.17) that H(x) is equicontinuous in �c.
Now we know from (3.15) and (3.17) that there exists δ0 > 0 and such that

|vδ(x, t)| ≤ 1 in�c × [0, T ],
∣
∣
∣
∣

[
b(x)q(t)

δ
+ 1

]

v
p
δ (x, t)

∣
∣
∣
∣ ≤ C1 = max

�c

∫

�0

J (x − y)θ(y)dy + 1 in�c × [0, T ],

and
∣
∣
∣
∣

[
b(x)

δ

]

v
p
δ (x, t)

∣
∣
∣
∣ ≤ C2 = C1

min[0,T ] q(t)
in�c × [0, T ]

for δ ≤ δ0. Since

vδ(x, t) =
∫ t

0

[∫

�

J (x − y)vδ(y, s)dy − vδ + λvδ − (b(x)q(t)/δ + 1)v p
δ

]

ds

for (x, t) ∈ �̄c × [0, T ], we get
|vδ(x, t1) − vδ(x, t2)| ≤ (2 + λ + C1)|t1 − t2|

for any x ∈ �̄c and t1, t2 ∈ [0, T ]. Then by (3.1) we obtain that

|(vδ)t (x, t1) − (vδ)t (x, t2)|
≤

∣
∣
∣
∣

∫

�

J (x − y)[vδ(y, t1) − vδ(y, t2)]dy + [λ + 1][vδ(x, t1) − vδ(x, t2)]
∣
∣
∣
∣

+
[
b(x)q(t1)

δ
+ 1

]

pθ p−1
δ (x, t)|vδ(x, t1) − vδ(x, t2)|

+
[
b(x)

δ

]

v
p
δ (x, t)|q(t1) − q(t2)|

≤ (2 + λ + C1)(2 + λ + pC1)|t1 − t2| + C2|q(t1) − q(t2)|
≤ (2 + λ + pC1)

2|t1 − t2| + C2|q(t1) − q(t2)|
for any x ∈ �̄c and t1, t2 ∈ [0, T ], here θδ(x, t) is between v

p
δ (x, t1) and v

p
δ (x, t2).

Let us denote

V (t) =
[
b(x)q(t)

δ
+ 1

]

v
p
δ (x, t)
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for any given x ∈ �̄c. Then by (3.1) we know that

|V (t1) − V (t2)| ≤ (2 + λ)|vδ(x, t1) − vδ(x, t2)| + |(vδ)t (x, t1) − (vδ)t (x, t2)|
≤ (2 + λ + pC1)

2|t1 − t2| + C2|q(t1) − q(t2)|
for t1, t2 ∈ [0, T ].

Now it follows from (3.17) that

lim
δ→0+

[
b(x)q(t)

δ
+ 1

]

v
p
δ (x, t) =

∫

�0

J (x − y)θ(y)dy, (3.18)

which is uniform in any compact subset of �̄ \ �̄0 × [0, T ].
At last, since vδ(x, t) = δ

1
p ωδ(x, t), (3.18) yields that

lim
δ→0+[b(x)q(t) + δ]ωp

δ (x, t) =
∫

�0

J (x − y)θ(y)dy

and so

lim
δ→0+ ωδ(x, t) =

[∫

�0
J (x − y)θ(y)dy

b(x)q(t)

]1/p

,

which is uniform in any compact subset of �̄ \ �̄0 × [0, T ].
Step 6. The profiles vδ(x, t) in �̄ × [0, T ] for λ = λP (�0).

In this case, we know that the only nonnegative solution of (3.16) is u(x, t) = 0 in
�̄0 × [0, T ]. A similar arguments as in the previous steps, we know that

lim
δ→0+ vδ(x, t) = 0 uniformly in �̄0 × [0, T ]

and

lim
δ→0+ vδ(x, t) = 0

for any (x, t) ∈ �̄ \ �̄0 × [0, T ]. Note that vδ(x, t) is monotone with respect to δ, we end
our proof by Dini’s theorem. 	
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