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Abstract
The existence and nonexistence of the minimizer of the L2-constraint minimization problem
e(α) := inf{E(u)| u ∈ H1(RN ), ‖u‖2

L2(RN )
= α} are studied. Here,

E(u) := 1

2

∫
RN

|∇u|2 + V (x)|u|2dx −
∫
RN

F(|u|)dx,

V (x) ∈ C(RN ), 0 �≡ V (x) ≤ 0, V (x) → 0 (|x | → ∞) and F(s) = ∫ s
0 f (t)dt is a rather

general nonlinearity. We show that there exists α0 ≥ 0 such that e(α) is attained for α > α0

and e(α) is not attained for 0 < α < α0. We study differences between the cases V (x) �≡ 0
and V (x) ≡ 0, and obtain sufficient conditions for α0 = 0. In particular, if N = 1, 2, then
α0 = 0, and hence e(α) is attained for all α > 0.

Mathematics Subject Classification 35Q55 · 35J20 · 35B35

1 Introduction andmain theorems

In this paper we are interested in the attainability of the L2-constraint minimization problem

e(α) := inf
u∈M(α)

E(u),
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where α > 0 is a constant,

E(u) := 1

2

∫
RN

|∇u|2 + V (x)|u|2dx −
∫
RN

F(|u|)dx, F(s) :=
∫ s

0
f (t)dt for s ≥ 0,

M(α) :=
{
u ∈ H1(RN ) | ‖u‖2L2(RN )

= α
}

, H1(RN ) = H1(RN ,C),

and f (s) and V (x) satisfy certain assumptions. This problem plays a role when we study the
orbital stability of the standing wave of the nonlinear Schrödinger equation

iUt = −�U + V (x)U − f (U ) for (t, x) ∈ R × R
N . (1.1)

The standing wave is a solution of (1.1) of the special formU (t, x) = eiλt u(x) and the orbital
stability is defined in Theorem A. We impose the following assumptions (F1)–(F4) on f (s):

(F1) f ∈ C(C,C), f (0) = 0.
(F2) f (s) ∈ R for s ∈ R, f (eiθ z) = eiθ f (z) for θ ∈ R and z ∈ C.
(F3) lims→0 f (s)/s = 0.
(F4) lims→∞ f (s)/|s|pc = 0, where pc := 1 + 4/N .

We impose the following assumption (V1) on V (x):

(V1) V (x) ∈ C(RN ), 0 �≡ V (x) ≤ 0 and lim|x |→∞ V (x) = 0.

The assumptions (F1)–(F4) and (V1) are assumed throughout the present paper. In addition
to (F1)–(F4) and (V1), we introduce the following conditions:

(F5) f (s) is locally Hölder continuous with exponent ν ∈ (0, 1) in R, f (s) > 0 for s > 0
and there exists δ1 > 0 such that f (s)/s is nondecreasing in (0, δ1).

(F6) If N ≥ 5, then lim infs→0 f (s)/|s|psg > 0, where psg := N/(N − 2).
(V2) If N ≥ 5, then

V ∈ W 1,∞(RN ) and ∇V (x) · x ≤ (N − 2)2

2|x |2 for a.e. x ∈ R
N \ {0}.

In order to obtain the orbital stability we further need the following:

(F7) There exist K > 0 and 1 < p < 2∗ − 1 such that | f (z1) − f (z2)| ≤ K (1 + |z1| +
|z2|)p−1|z1 − z2| for z1, z2 ∈ C. Here, 2∗ = 2N/(N − 2) if N ≥ 3, and 2∗ = ∞ if
N = 1, 2.

(F8) There exist L > 0 and 1 < p < pc such that F(|s|) ≤ L(|s|2 + |s|p+1) for s ∈ R.

It is known that the global well-posedness of (1.1) in H1(RN ) holds if (F1), (F2), (F7) and
(F8) hold and V (x) ∈ L∞(RN ). See [10, Corollary 6.1.2] for details.

To state our main theorems we recall related results. Lions [20] showed that every mini-
mizing sequence for e(α) has a convergent subsequence in H1(RN ) if and only if the strict
subadditivity condition holds, i.e.,

e(α) < e(β) + e∞(α − β) for all β ∈
{

(0, α) if V (x) ≡ 0,

[0, α) if V (x) �≡ 0.
(1.2)

Here, e∞(α) is the problem at infinity, i.e.,

e∞(α) := inf
u∈M(α)

E∞(u),

where

E∞(u) := 1

2

∫
RN

|∇u|2dx −
∫
RN

F(|u|)dx .
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The characterization (1.2) holds for rather wide class of functionals E(u). However, it is not
easy to check (1.2) for given f and V .

First, we consider the homogeneous case V (x) ≡ 0. Then, E(u) = E∞(u) and e(α) =
e∞(α). In the model case f (u) = |u|p−1u (1 < p < pc), Cazenave–Lions [11] showed that
(1.2) holds for all α > 0 and that e∞(α) < 0 for all α > 0. In the case of a general nonlinear
term f , the attainability for e∞(α) was mentioned in [11, Remark II.3]. However, in [11] the
following condition was assumed:

there exists u0 ∈ L2(RN ) such that ‖u0‖L2(RN ) ≤ α and E∞(u0) < 0. (1.3)

The same attainability problem for e∞(α) was recently studied by [5,13,22]. In particular,
Shibata [22] showed that there exists α0,∞ ∈ [0,∞) uniquely determined by f and N such
that

e∞(α)

{
= 0 if 0 ≤ α ≤ α0,∞,

< 0 if α > α0,∞.
(1.4)

Moreover, he showed that e∞(α) is not attained for 0 < α < α0,∞ and e∞(α) is attained
for α > α0,∞. See Proposition 2.1 of the present paper for details. It was shown in [22,
Lemma 2.3] that e∞(α) is nonincreasing. Hence the assumption (1.3) leads to e∞(α) < 0
for each α ≥ ‖u0‖L2(RN ).

Our result is about the attainability of the inhomogeneous problem e(α).

Theorem A Suppose (F1)–(F5) and (V1), and suppose (F6) or (V2). Let α0,∞ be given in
(1.4). Then there exists α0 ∈ [0, α0,∞] such that the following hold:

(i) If α > α0, then e(α) < 0 and every minimizing sequence for e(α) has a strong conver-
gent subsequence in H1(RN ). Therefore, e(α) is attained, the set of all the minimizers,
which is denoted by Sα , is precompact and (1.2) holds. Moreover, if (F7) and (F8) hold,
then Sα is orbitally stable, i.e., for any ε > 0, there exists δ > 0 such that for any
solution U of (1.1) with distH1(U (0, · ), Sα) < δ satisfies

distH1(U (t, · ), Sα) < ε for all t ∈ R.

(ii) If 0 < α < α0, then e(α) = 0 and e(α) is not attained.

Remark 1.1 (i) Notice that (F6) and (V2) are necessary only for N ≥ 5. Therefore, when
1 ≤ N ≤ 4, Theorem A holds under (F1)–(F5) and (V1) (for the orbital stability, we
also need (F7) and (F8)).

(ii) If α0,∞ = 0, then α0 = 0 and Theorem A (i) always occurs. Remark that if N ≥ 5, then
psg < pc. Hence, when N ≥ 5 and (F6) hold, we have α0,∞ = 0 = α0 by [22, Theorem
1.3] (see also Proposition 2.2 below).

(iii) Compared to the conditions (F1)–(F4), the conditions (F5) and (F6) seem technical. The
condition (F5) is used in interaction estimates in Lemmas 2.4 and 3.3 and (F6) is used
to prove the nonexistence of the minimizer in Lemma 3.1.

(iv) If we assume 0 �≡ V (x) ≥ 0 and lim|x |→∞ V (x) = 0 instead of (V1), then e(α) is not
attained for all α > 0, and e(α) = e∞(α) for α ≥ 0. See Theorem A.1 in Appendix A.

As mentioned above, in [22, Theorem 1.3], Shibata observed whether α0,∞ > 0 or
α0,∞ = 0. We also consider the same question: whether α0 > 0 or α0 = 0 under the
presence of the potential term V (x).

Theorem B Suppose (F1)–(F4) and (V1). Then the following (i) and (ii) hold:
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(i) In addition, assume that there exists an s0 > 0 such that f (s) ≥ 0 in [0, s0] and the
following (V3) holds:

(V3) inf‖ϕ‖L2(RN )
=1

∫
RN

(|∇ϕ|2 + V (x)ϕ2) dx < 0.

Then α0 = 0. Moreover, when N = 1, 2, (V1) implies (V3) and α0 = 0.
(ii) Suppose N ≥ 3 and the following condition (F9) in addition to (F1)–(F4) and (V1):

(F9) lim sups↓0 F(s)/s pc+1 < ∞.

Then there exists α1 = α1(N , f ) > 0 satisfying the following property: for each α ∈
(0, α1)wemay find a cα > 0 such that V (x) ≥ −cα|x |−2 for |x | > 0 impliesα0 ≥ α > 0.

Remark 1.2 Notice that Theorem B (i) may be used to see a difference between the cases
V (x) ≡ 0 and V (x) �≡ 0. Indeed, since (F6) plays a role only for N ≥ 5, when N = 1, 2, if
(V1), (F1)–(F5) and (F9) hold, then we obtain 0 = α0 < α0,∞ due to Theorems A, B (i) and
[22, Theorem 1.3].

Let us mention other related results. For the homogeneous problem e∞(α), Bellazzini et
al. [5] showed that there exists ᾱ ≥ 0 such that e∞(α) is attained for α > ᾱ if (F5’) given in
Proposition 2.1, (F8) and the following assumption are satisfied:

there exist C1, C2 ≥ 0, 1 < q ≤ p < 2∗ − 1 such that | f (s)| ≤ C1|s|q + C2|s|p.
(1.5)

Moreover, they proved that ᾱ = 0 if

there exists 1 < p < pc such that F(s) > s p+1 for small s > 0. (1.6)

Note that (F10) in Proposition 2.2 is a generalization of (1.6). In [22] the threshold α0,∞
was found and Proposition 2.1 was obtained. In particular, the nonexistence part (Proposi-
tion 2.1 (ii)) was proved. In Garrisi–Georgiev [13] the one-dimensional case was studied and
the orbital stability of the minimizers was obtained if (1.5), (F5′) and the following hold:

there exist 1 < p < 5(= pc) and s0 ≥ 0 such that F(s) ≤ C |s|p+1 for s ≥ s0.

See [12] for a quasilinear homogeneous problem and [7] for a Schrödinger-Poisson problem
with pure power nonlinearity. For the inhomogeneous problem e(α), in [6,8,18] the attain-
ability was studied. In [6,8], they deal with the rather special type of nonlinearity, that is,
f (u) = |u|p−1u in [6] and f (u) = Q(x)|u|p−1u in [8]. In Jeanjean–Squassina [18, 2.4 A
Stuart’s type problem] the nonlinear term is F(x, u). They showed that e(α) is attained if F
satisfies

lim|x |→∞ F(x, s) = 0 uniformly in s ∈ R. (1.7)

Here, (1.7) leads to the weak lower semicontinuity of E(u) which our problem does not
satisfy.

Let us explain technical details for the proof of Theorem A. To prove Theorem A, we
try to establish (1.2) in a scheme similar to [22], and a difficulty is to exclude dichotomy
since we treat V ∈ L∞(RN ) and E(u) is not weak lower semicontinuous. Furthermore,
since our nonlinearity is general and there is a term V (x), a scaling argument in [10] or the
scaled function u(λx) in the homogeneous case may not be useful. Therefore, we need to
bring another idea to overcome this difficulty. In this paper, we perform a careful interaction
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estimate to exclude dichotomy in Lemma 3.3 where (F5) is used. This usage of the interaction
estimate is inspired by Hirata [15] where the unconstrained problem is studied and we try
to apply this estimate in the L2-constraint setting. To do so, we modify any minimizing
sequence to be an approximated positive solution of the Euler-Lagrange equation and prove
the precompactness of the modified minimizing sequence. This reduction is done in Lemmas
2.6 and 2.8, and is also used in [16] for the homogeneous case. In addition to the reduction, to
follow the scheme in [22], we also need the nonexistence result of theminimizer for which the
condition 1 ≤ N ≤ 4, (F6) or (V2) is used. See Lemma 3.1. Here we also have a difference
between the cases V (x) ≡ 0 and V (x) �≡ 0 because the scaled function u(λx) may not be
useful.

Finally we make a comment on the usage of the interaction estimate. Our argument is also
applied to a minimizing problems with two constraint conditions and potentials. This will be
discussed in [17].

This paper consists of five sections. In Sect. 2 we recall fundamental properties of the
problems e(α) and e∞(α). In Sect. 3 we study the existence and nonexistence of the mini-
mizers of e(α) and prove Theorem A. In Sect. 4 we prove Theorem B. In “Appendix A” we
show that e(α) is not attained if 0 �≡ V (x) ≥ 0 and lim|x |→∞ V (x) = 0.

Notations

• For p ≥ 1, L p(�) denotes the space of complex-valued measurable functions u on � ⊂
R

N satisfying
∫
�

|u|pdx < ∞ whose norm is defined by ‖u‖L p(�) := (∫
�

|u|pdx)1/p.
When � = R

N , write ‖u‖p := ‖u‖L p(RN ).
• L∞(�) denotes the space of complex-valued essentially bounded measurable functions

u on� ⊂ R
N whose norm is defined by ‖u‖L∞(�) := esssupx∈�|u(x)|. When� = R

N ,
write ‖u‖∞ := esssupx∈RN |u(x)|.

• We regard L2(RN ) as a Hilbert space over R by the inner product 〈u, v〉L2 :=
Re

∫
RN f (x)g(x)dx .

• The set H stands for the space of complex-valued measurable functions u of the Sobolev

space of order 1 whose norm is defined by ‖u‖H := (∫
RN |u|2dx + ∫

RN |∇u|2dx)1/2,
i.e., H := H1(RN ). We denote its inner product by 〈u, v〉H := 〈∇u,∇v〉L2 + 〈u, v〉L2

and the dual space of H by H∗.

2 Preliminaries

We first recall known facts about the homogeneous problem e∞(α).

Proposition 2.1 ([22, Theorems 1.1 and 1.5]) Suppose (F1)–(F4) and the following (F5′):
(F5’) There exists s0 > 0 such that F(s0) > 0.

Then there exists a unique α0,∞ ∈ [0,∞) such that (1.4) and the following (i) and (ii) hold:

(i) If α > α0,∞, then every minimizing sequence for e∞(α) has a convergent subsequence
in H up to translations. Therefore, e∞(α) is attained, the set of all minimizers is pre-
compact in H up to translations and (1.2) holds. Moreover, in addition, if (F7) and (F8)
hold, then the set of all minimizers is orbitally stable.

(ii) If 0 < α < α0,∞, then e∞(α) is not attained.

Note that (F5) implies (F5′). The next proposition concerns when α0,∞ = 0 or α0,∞ > 0
holds.
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Proposition 2.2 ([22, Theorems 1.3]) Suppose (F1)–(F4) and (F5′). Then the following (i)
and (ii) hold:

(i) If the following (F10) holds:

(F10) lim infs↓0 F(s)/s pc+1 = ∞,

then α0,∞ = 0.
(ii) If (F9) holds, then α0,∞ > 0.

Next, we collect some properties about F(s). We begin with a variant of [22,
Lemma 2.2 (i)].

Lemma 2.3 Suppose (F1)–(F4), u0 ∈ H and that (un) is bounded in H. If ‖un − u0‖p → 0
for some p ∈ [2,∞], then limn→∞

∫
RN F(|un |)dx = ∫

RN F(|u0|)dx.
Proof We remark that we may assume un ≥ 0 without loss of generality since ‖|un | −
|u0|‖p ≤ ‖un − u0‖p and ‖∇|u|‖2 ≤ ‖∇u‖2 (see [19, Theorem 6.17]). By Sobolev’s
inequality and Hölder’s inequality, ‖un − u0‖q → 0 for any q ∈ (2, 2∗). We also set
M0 := supn≥1 ‖un‖H < ∞.

Next, by (F3) and (F4), for each ε > 0, one may find a Cε > 0 such that

| f (s)| ≤ ε|s| + Cε|s|pc for all s ∈ R.

From

|F(un) − F(u0)| =
∣∣∣∣
∫ 1

0

d

dθ
F (θun + (1 − θ)u0) dθ

∣∣∣∣
≤

∫ 1

0
| f (θun + (1 − θ)u0)| dθ |un − u0|

≤
∫ 1

0

{
ε (un + u0) + Cε (un + u0)

pc
}
dθ |un − u0|

= {
ε (un + u0) + Cε (un + u0)

pc
} |un − u0|

and Hölder’s inequality, we have∣∣∣∣
∫
RN

{F(un) − F(u0)} dx
∣∣∣∣ ≤

∫
RN

{
ε (un + u0) + Cε (un + u0)

pc
} |un − u0|dx

≤ ε (‖un‖2 + ‖u0‖2) ‖un − u0‖2
+ Cε ‖un + u0‖pc

pc+1 ‖un − u0‖pc+1.

Noting 2 < pc + 1 < 2∗, we obtain

lim sup
n→∞

∣∣∣∣
∫
RN

{F(un) − F(u0)} dx
∣∣∣∣ ≤ 4M2

0 ε.

Since ε > 0 is arbitrary,
∫
RN F(un)dx → ∫

RN F(u0)dx as n → ∞. ��
Next, we borrow one lemma from [15], which is used for the interaction estimate in the

proof of Lemma 3.3. For a proof, see [15].

Lemma 2.4 ([15, Lemma 4.4]) Assume (F1) and (F5). Let δ1 > 0 be as in (F5). Then the
following (i) and (ii) hold:
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(i) There exists δ2 ∈ (0, δ1] such that

F(u1) + F(u2) − F(u1 + u2) + 1

2
( f (u1)u2 + f (u2)u1) ≤ 0 for u1, u2 ∈ [0, δ2].

(ii) For each compact set K ⊂ (0,∞), there exist CK > 0 and δK > 0 such that

F(u1) + F(u2) − F(u1 + u2) + 1

2
( f (u1)u2 + f (u2)u1)

≤ −CKu2 for u1 ∈ K and u2 ∈ [0, δK ].
In the next lemma we state fundamental properties of e(α) and e∞(α).

Lemma 2.5 Assume (F1)–(F4) and (V1). Then the following hold:

(i) e(α) > −∞ for α > 0.
(ii) For α > 0, every minimizing sequence for e(α) is bounded in H.
(iii) e(α) ≤ e∞(α) ≤ 0 for α ≥ 0.
(iv) e(α) ≤ e(β) + e∞(α − β) for 0 ≤ β < α.
(v) e(α) is nonincreasing in α ≥ 0.

Proof (i) The proof is almost the same as [22, Lemma 2.2 (ii)]. By the assumptions (F1)–
(F4), for ε > 0, there exists a positive constant Cε > 0 such that

F(|u|) ≤ Cε|u|2 + ε|u|pc+1. (2.1)

By the Gagliardo–Nirenberg inequality we have

‖u‖pc+1
pc+1 ≤ C ‖u‖4/N2 ‖∇u‖22 . (2.2)

Thus, (2.1) and (2.2) give∣∣∣∣
∫
RN

F(|u|)dx
∣∣∣∣ ≤ Cε ‖u‖22 + εCα2/N ‖∇u‖22 .

We choose ε > 0 such that εCα2/N = 1/4. Then for u ∈ M(α),∫
RN

F(|u|)dx ≤ Cεα + 1

4
‖∇u‖22 ,

which implies

E(u) ≥ 1

4
‖∇u‖22 − Cεα. (2.3)

Hence, (i) holds.
(ii) Since u ∈ M(α), the conclusion immediately follows from (2.3).
(iii) Because E(u) ≤ E∞(u) for each u ∈ H due to (V1), we easily see that e(α) ≤ e∞(α).

For the inequality e∞(α) ≤ 0, see [22, Lemma 2.3 (i)].
(iv) For ε > 0, we can find ϕε , ψε ∈ C∞

0 (RN ) such that

ϕε ∈ M(β), ψε ∈ M(α − β), E(ϕε) ≤ e(β) + ε, E∞(ψε) ≤ e∞(α − β) + ε.

Let uε,n(x) := ϕε(x) + ψε(x − ne1). Since ϕε and ψε have compact support, we see
that uε,n ∈ M(α) for large n and that e(α) ≤ E(uε,n) = E(ϕε) + E(ψε(· − ne1)).
From E(ψε(· − ne1)) → E∞(ψε) as n → ∞ thanks to (V1), it follows that

e(α) ≤ lim
n→∞ (E(ϕε) + E(ψε(· − ne1))) = E(ϕε) + E∞(ψε) ≤ e(β) + e∞(α − β) + 2ε.

Since ε > 0 is arbitrary, (iv) holds.
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(v) By (iii) and (iv), we have

e(α) ≤ e(β) + e∞(α − β) ≤ e(β) for 0 ≤ β < α.

Thus, e(α) is nonincreasing in α.
��

In the next two lemmas we collect some properties of a minimizing sequence for e(α).

Lemma 2.6 Assume (F1)–(F4) and (V1). The following hold:

(i) Let (un) ⊂ M(α) be a minimizing sequence for e(α), and let |un |(x) := |un(x)|. Then
(|un |) is also a minimizing sequence.

(ii) If u0 ∈ H and (un) is a minimizing sequence for e(α) with ‖un − u0‖2 → 0, then
‖un −u0‖H → 0. Furthermore, if u0 ∈ H and (un) is a minimizing sequence of for e(α)

and ‖|un | − |u0|‖2 → 0, then ‖un − u0‖H → 0.

Proof (i) By ‖∇|un |‖22 ≤ ‖∇u‖22 ([19, Theorem 6.17]) and |un | ∈ M(α), we see that
E(|un |) ≤ E(un) and (|un |) is also a minimizing sequence.

(ii) From ‖un − u0‖2 → 0, it follows that

u0 ∈ M(α) and lim
n→∞

∫
RN

V (x)u2ndx =
∫
RN

V (x)u20dx . (2.4)

Moreover, by Lemma 2.5 (ii), (un) is bounded in H . Thanks to ‖un − u0‖2 → 0, we
obtain un⇀u0 weakly in H . Thus, Lemma 2.3 and the weak lower semicontinuity of
‖∇ · ‖2 yield

e(α) ≤ E(u0) ≤ lim inf
n→∞ E(un) = lim

n→∞ E(un) = e(α),

which implies ‖∇un‖22 → ‖∇u0‖22. Combining this fact with ∇un⇀∇u0 weakly in
L2(RN ), we observe that ‖∇un − ∇u0‖2 → 0 and ‖un − u0‖H → 0.
Assume that (un) is a minimizing sequence for e(α) with ‖|un | − |u0|‖2 → 0. By
Lemma 2.5 (ii), (un) is bounded in H , hence, choosing a subsequence if necessary, we
may assume un → u0 in L2

loc(R
N ) without loss of generality. Since ‖|un | − |u0|‖2 → 0

and un → u0 in L2
loc(R

N ), we may find a w0 ∈ L2(RN ) and a subsequence (unk )
such that |unk (x)| ≤ w0(x) and unk (x) → u0(x) a.e. RN . The dominated convergence
theorem gives ‖unk − u0‖2 → 0 and the former assertion gives ‖unk − u0‖H → 0 due
to the fact that (unk ) is a minimizing sequence for e(α). Since the limit is independent
of subsequences, we have ‖un − u0‖H → 0 and the proof is completed.

��
Remark 2.7 A similar argument to the proof of Lemma 2.6 shows that if u0 ∈ M(α) is a
minimizer, then so is |u0(x)|. Hence, when e(α) is attained, wemay always find a nonnegative
minimizer.

Lemma 2.8 Let (un) ⊂ M(α) be a minimizing sequence for e(α). Then there exist (vn) ⊂
M(α) and (λn) ⊂ R such that (λn) is bounded and

‖un − vn‖H → 0, E ′(vn) + λnQ
′(vn) → 0 strongly in H∗, (2.5)

where Q(u) := ‖u‖22. Furthermore, if (un) is real-valued, then we may choose vn as real-
valued function.
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Remark 2.9 We notice that if (vn) in Lemma 2.8 has a strongly convergent subsequence in
H , then so is (un).

Proof of Lemma 2.8 We first remark that Q is smooth and Q′(u)u = 2Q(u). By M(α) =
Q−1(α), we notice thatM(α) is closed and aHilbertmanifoldwith codimension 1.Moreover,
the tangent space of M(α) at u and the tangent derivative DTuM(α)E of E at u are given by

TuM(α) = {v ∈ H | 〈∇Q(u), v〉H = 0} ,

DTuM(α)E(u) = E ′(u) − E ′(u)∇Q(u)

‖∇Q(u)‖2H
Q′(u),

(2.6)

where ∇Q(u) ∈ H is the unique element satisfying 〈∇Q(u), v〉H = Q′(u)v for every
v ∈ H .

WenowapplyEkeland’s variational principle for E(u) and (un)onM(α) to get vn ∈ M(α)

satisfying

‖un − vn‖H ≤ √
εn, E(vn) ≤ E(w) + √

εn‖vn − w‖H for each w ∈ M(α), (2.7)

where εn := E(un) − e(α) ≥ 0. Putting w = un in (2.7) and the fact vn ∈ M(α) assert that
(vn) is also a minimizing sequence. In addition, (2.6) and (2.7) imply that
∥∥DTvn M(α)E(vn)

∥∥
(Tun M(α))∗ := sup

{
DTvn M(α)E(vn)ϕ | ‖ϕ‖H = 1, ϕ ∈ Tvn M(α)

} → 0.

(2.8)

Since (vn) is bounded in H , E ′ maps bounded sets into bounded sets and ‖∇Q(vn)‖H ≥
2α/‖vn‖H for any n ≥ 1 due to Q′(vn)vn = 2Q(vn) = 2α, setting λn :=
−E ′(vn)∇Q(vn)/‖∇Q(vn)‖2H , from (2.6) and (2.8), we see that (2.5) holds.

If (un) is real-valued, then we restrict ourselves into HR := {u ∈ H | u is real-valued}
and MR(α) := M(α) ∩ HR. Since e(α) = infu∈MR(α) E(u) holds, we may use the above
argument on MR(α) to obtain real-valued functions (vn) satisfying (2.5). Thus we complete
the proof. ��

3 Proof of Theorem A

We first observe the case when e(α) is not attained.

Lemma 3.1 Assume (F1)–(F5) and (V1) and assume (F6) or (V2). If there are α > 0 and
β > 0 such that e(α) = e(β) and α > β, then e(β) is not attained.

Proof We first prove the following:

If e( · ) is constant in [β, β + ε) for small ε > 0, then e(β) is not attained. (3.1)

Remark that (3.1) implies our conclusion. Indeed, we see by Lemma 2.5 (v) that e( · ) is
nonincreasing. Since e(α) = e(β), we observe that e( · ) is constant in the interval [β, α].
Then by (3.1), e(β) is not attained.

Now we prove (3.1) by contradiction and let u0 ∈ M(β) be a minimizer for e(β). Thanks
to Remark 2.7, we may assume u0 ≥ 0. Notice that u0 is a (classical) solution of

− �u0 + V (x)u0 − f (u0) = −2λu0 in R
N (3.2)
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for some λ ∈ R. Next, we show by contradiction that λ ≤ 0. If λ > 0, then

d

dt
E(tu0)

∣∣∣∣
t=1

=
∫
RN

|∇u0|2 + V (x)u20 − f (u0)u0dx = −2λ
∫
RN

|u0|2dx = −2λβ < 0.

Hence, for sufficiently small η > 0, the monotonicity of e(α) yields

e(β + ε) ≤ e((1 + η)2β) ≤ E((1 + η)u0) < E(u0) = e(β),

which is a contradiction. Thus, λ ≤ 0.
We prove (3.1). Since V (x) ≤ 0 ≤ u0(x) and λ ≤ 0, by (3.2) and f (s) ≥ 0 (s ≥ 0) due

to (F5), we have

− �u0 ≥ f (u0) ≥ 0 in R
N and u0 ≥ 0 in R

N . (3.3)

Hence, the strong maximum principle and u0 ∈ M(β) give u0 > 0 in R
N .

If N = 1, 2, then −�u0 ≥ 0 in R
N . Since u0 is a positive super-harmonic function in R

orR2, we see that u0 is constant (see [21, Chapter 2, Theorem 29] for N = 2). However, this
contradicts u0 ∈ L2(RN ) and e(β) is not attained.

If N = 3, 4, then we show that (3.2) has no solution in H . This claim is proved in [16,
Lemma A.2], however, we give another simple proof which is similar to [4, Lemma 3.12].
Let c1 > 0 and w(x) := u0(x) − c1|x |2−N . Here c1 > 0 can be chosen so that w(x) ≥ 0
for all |x | = 1 due to u0 > 0 in R

N . From −�w = −�u0 ≥ 0 for |x | > 1 and w(x) → 0
as |x | → ∞, the weak maximum principle asserts that w ≥ 0 in |x | ≥ 1, which implies
u0(x) ≥ c1|x |2−N for |x | ≥ 1. However, this contradicts u0 ∈ L2(RN ) when N = 3, 4.
Hence, e(β) is not attained.

We consider the case N ≥ 5. In this case we assume (F6) or (V2). If (F6) holds, then it
follows from the result of [1] that (3.3) has no solution. Hence, e(β) is not attained.

On the other hand, when (V2) holds, we first observe from (3.2) that u0 satisfies the
Pohozaev identity:

0 = N − 2

2
‖∇u0‖22 − N

∫
RN

F(u0) − λu20 − V (x)

2
u20dx + 1

2

∫
RN

(x · ∇V (x))u20dx .

Then we have

0 ≥ e(β)

= E(u0)

= 1

2
‖∇u0‖22 + 1

2

∫
RN

V (x)u20dx −
∫
RN

F(u0)dx

= 1

N
‖∇u0‖22 − λ ‖u0‖22 − 1

2N

∫
RN

x · ∇V (x)u20dx

≥ 1

N

(
‖∇u0‖22 − 1

2

∫
RN

x · ∇V (x)u20dx

)
,

where we used λ ≤ 0. Since ∇V (x) ∈ L∞(RN ), the strict inequality in (V2) holds on
A ⊂ R

N , where the Lebesgue measure of A is strictly positive. Since u0 > 0 in RN , we get

1

2

∫
RN

x · ∇V (x)u20dx <
(N − 2)2

4

∫
RN

u20
|x |2 dx .

From Hardy’s inequality, it follows that

0 ≥ Ne(β) ≥ ‖∇u0‖22 − 1

2

∫
RN

x · ∇V (x)u20dx > ‖∇u0‖22 − (N − 2)2

4

∫
RN

u20
|x |2 dx ≥ 0.
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This is a contradiction and e(β) is not attained. Thus (3.1) holds. ��
Next we observe a behavior of minimizing sequence when the compactness does not hold.

Lemma 3.2 Assume (F1)–(F5) and (V1) and assume (F6) or (V2). Let (un) ⊂ M(α) be a
minimizing sequence for e(α) such that un⇀u0 weakly in H and let β := ‖u0‖22. If either
0 < β < α or both β = 0 and e(α) < 0, then there exist (yn) ⊂ R

N and w0 ∈ H\{0} such
that

|yn | → ∞, un( · + yn)⇀w0 weakly in H , (3.4)

lim
n→∞ ‖un − u0 − w0( · − yn)‖2 = 0 and α = β + γ, (3.5)

where γ := ‖w0‖22. Moreover, the following hold:

E(u0) = e(β), E∞(w0) = e∞(γ ) and e(α) = e(β) + e∞(γ ). (3.6)

Proof We divide the proof into three steps.

Step 1:We find (yn) ⊂ R
N and w0 ∈ H\{0} such that (3.4) holds.

First, we show by contradiction that

lim inf
n→∞ sup

z∈ZN
‖un − u0‖L2(QN+z) > 0 where QN := [0, 1]N . (3.7)

Suppose on the contrary that supz∈ZN ‖un − u0‖L2(QN+z) → 0. Then, un → u0 strongly in
Lq(RN ) for 2 < q < 2∗ (See [23]). By Lemmas 2.3 and 2.5, we have

e(α) ≤ e(β) ≤ E(u0) ≤ lim
n→∞ E(un) = e(α). (3.8)

When β = 0 and e(α) < 0, we get a contradiction. Hence (3.7) holds provided β = 0 and
e(α) < 0.

Next, let us consider the case 0 < β < α. In this case, (3.8) asserts e(α) = E(u0) = e(β)

and u0 is a minimizer due to ‖u0‖22 = β. However, this contradicts Lemma 3.1. Therefore,
(3.7) holds.

From (3.7) and un → u0 in L2
loc(R

N ), we can find (yn) ⊂ R
N such that ‖un‖L2(QN+yn) →

c0 > 0 and |yn | → ∞. Let

un(· + yn)⇀w0 weekly in H .

Note that w0 �≡ 0 because c0 > 0. Therefore, (yn) and w0 satisfy (3.4). The proof of Step 1
is complete.

Since |yn | → ∞ (n → ∞), we have

‖un − u0 − w0(· − yn)‖22 = ‖un‖22 + ‖u0‖22 + ‖w0‖22
− 2 〈un, u0〉L2 − 2 〈un(· + yn), w0〉L2 + o(1)

= ‖un‖22 − ‖u0‖22 − ‖w0‖22 + o(1). (3.9)

In particular,

γ := ‖w0‖22 ≤ lim inf
n→∞ (‖un‖22 − ‖u0‖22) = α − β.

Note that γ > 0 because w0 �= 0.

Step 2:We show that (yn) and w0 satisfy (3.5).
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Let δ := limn→∞ ‖un − u0 − w0(· − yn)‖22. Then, we see by (3.9) that δ = α − β − γ .
Our aim is to show that δ = 0. Suppose on the contrary that

δ > 0. (3.10)

By direct calculation we have

1

2

(‖∇un‖22 − ‖∇u0‖22 − ‖∇w0(· − yn)‖22 − ‖∇(un − u0 − w0(· − yn))‖22
)

= −‖∇u0‖22 + 〈∇un,∇u0〉L2 − ‖∇w0(· − yn)‖22
− 〈∇u0,∇w0(· − yn)〉L2 + 〈∇un(· + yn),∇w0〉L2

= o(1). (3.11)

Similarly,

1

2

∫
RN

V (x)
(|un |2 − |u0|2 − |w0(· − yn)|2 − |un − u0 − w0(· − yn)|2

)
dx = o(1).

(3.12)

By the Brezis–Lieb lemma [9, Theorem 2], we have∫
RN

F(|un |)dx =
∫
RN

F(|u0|)dx +
∫
RN

F(|un − u0|)dx + o(1),
∫
RN

F(|un(· + yn) − u0(· + yn)|)dx =
∫
RN

F(|w0|)dx

+
∫
RN

F(|un(· + yn) − u0(· + yn) − w0|)dx + o(1).

Thus, ∫
RN

F(|un |)dx −
∫
RN

F(|u0|)dx

−
∫
RN

F(|w0(· − yn)|)dx −
∫
RN

F(|un − u0 − w0(· − yn)|)dx = o(1). (3.13)

Combining (3.11)–(3.13), we have

E(un) − E(u0) − E(w0(· − yn)) − E(un − u0 − w0(· − yn)) = o(1). (3.14)

Since V (x) → 0 as |x | → ∞, un⇀u0 weakly in H and |yn | → ∞, we have∫
RN

V (x)|un(x) − u0(x) − w0(x − yn)|2dx → 0. (3.15)

Noting

E(un − u0 − w0(· − yn)) = E∞(un − u0 − w0(· − yn))

+1

2

∫
RN

V (x)|un(x) − u0(x) − w0(x − yn)|2dx,

we have

lim inf
n→∞ E(un − u0 − w0(· − yn)) ≥ e∞(δ) and lim inf

n→∞ E(w0(· − yn)) ≥ e∞(γ ).

(3.16)
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Hence, by (3.14)–(3.16) we have

e(α) ≥ e(β) + e∞(γ ) + e∞(δ). (3.17)

By (3.17) and Lemma 2.5 (iv), we have

e(α) ≥ e(β) + e∞(γ ) + e∞(δ) ≥ e(β + γ ) + e∞(δ) ≥ e(β + γ + δ) = e(α).

(3.18)

Hence, e(α) = e(β) + e∞(γ ) + e∞(δ). Since δ > 0, by Proposition 2.1 (i), we see that if
γ + δ > α0,∞, then e∞(γ ) + e∞(δ) > e∞(γ + δ). This gives a contradiction because

e(α) = e(β) + e∞(γ ) + e∞(δ) > e(β) + e∞(γ + δ) ≥ e(β + γ + δ) = e(α).

Thus, γ + δ ≤ α0,∞ and e∞(γ ) = e∞(δ) = 0 thanks to Proposition 2.1. By (3.18) we have
e(α) = e(β). Thus, when β = 0 and e(α) < 0, we obtain a contradiction and (3.10) does
not hold, which gives δ = 0.

In the case 0 < β < α, by (3.16), e∞(δ) = 0 = e∞(γ ) and (3.14), we have

e(β) ≤ E(u0) + E(w0(· − yn)) + E(un − u0 − w0(· − yn)) + o(1)

= E(un) + o(1) → e(α). (3.19)

Since ‖u0‖22 = β, by (3.19), we see that e(β) is attained by u0 as well as e(β) = e(α).
However, by Lemma 3.1, e(β) is not attained and we obtain a contradiction. Hence, δ = 0
and Step 2 is proved.

Step 3: We show that (yn) and w0 satisfy (3.6).
In Step 2 we saw that (3.14)–(3.16) hold when δ > 0 is assumed. However, (3.14)–

(3.16) hold even in the case δ = 0, since (3.10) is not used in deriving (3.14)–(3.16). By
(3.14)–(3.16) we have

e(α) = lim inf
n→∞ E(un)

= lim inf
n→∞ (E(u0) + E(w0(· − yn)) + E(un − u0 − w0(· − yn)))

≥ E(u0) + E∞(w0) + lim inf
n→∞ E (un − u0 − w0(· − yn))

≥ e(β) + e∞(γ ) + e∞(δ),

(3.20)

where δ = limn→∞ ‖un − u0 − w0(· − yn)‖22. In Step 2 we have shown that δ = 0, and
hence α = β + γ . Since γ > 0 and e∞(δ) = 0, by Lemma 2.5 (iv), we have

e(β) + e∞(γ ) + e∞(δ) = e(β) + e∞(γ ) ≥ e(α). (3.21)

By (3.21) and (3.20) we see that e(α) = e(β)+ e∞(γ ). Hence, by (3.20), E(u0) = e(β) and
E∞(w0) = e∞(γ ). Thus, Step 3 is proved, and the proof of Lemma 3.2 is completed. ��

Now we prove the precompactness of minimizing sequence.

Lemma 3.3 Assume (F1)–(F5) and (V1) and assume (F6) or (V2). Let α > 0. If e(α) < 0,
then every minimizing sequence for e(α) has a strong convergent subsequence in H.

Proof Let (un) ⊂ M(α) be a minimizing sequence for e(α). By Lemma 2.6, it suffices to
show that (|un |) has a strongly convergent subsequence in L2(RN ). Moreover, from Lemma
2.8 and Remark 2.9, we may assume that (un) satisfies
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E ′(un) + λn Q
′(un) → 0 strongly in H∗ and (un)− := max{−un(x), 0} → 0 strongly in L2(RN )

(3.22)

for some bounded sequence (λn) ⊂ R. We may also suppose

un⇀u0 weakly in H and λn → λ in R.

Let β := ‖u0‖22. Then, β ≤ α.
If β = α, then un → u0 strongly in L2(RN ) and Lemma 2.6 asserts that (un) has a

strongly convergent subsequence in H . Hence, the conclusion holds.
When 0 ≤ β < α, by Lemma 3.2, there exist (yn) ⊂ R and w0 ∈ H\{0} such that

(3.4)–(3.6) hold. From (3.22) and the definition ofw0 in Step 1 of Lemma 3.2, it follows that

− �w0 + 2λw0 = f (w0) in R
N , w0 ≥ 0 in R

N . (3.23)

Since f (s) ≥ 0 for s ≥ 0 by (F5) and −�w0 + (2λ)+w0 ≥ −�w0 + 2λw0 = f (w0) ≥ 0
in R

N , the strong maximum principle and ‖w0‖22 = α − β > 0 give

w0 > 0 in R
N . (3.24)

Now we may exclude the case β = 0. In this case, we have e(α) = e∞(α) = E∞(w0)

and w0 is a minimizer for e∞(α). However, (V1) and (3.24) give a contradiction:

e(α) ≤ E(w0) < E∞(w0) = e∞(α) = e(α).

Hence, the case β = 0 does not occur.
Hereafter we prove that the case

0 < β < α (3.25)

does not occur. Suppose on the contrary that (3.25) holds.
We divide the proof into two steps.

Step 1 We show that λ > 0.
By (3.23), we observe that w0 satisfies the Pohozaev identity

0 = N − 2

2
‖∇w0‖22 − N

∫
RN

F(w0) − λw2
0dx .

Therefore, we obtain

0 ≥ e∞(α − β) = E∞(w0) = 1

N
‖∇w0‖22 − λ‖w0‖22.

Now we infer from (3.24) that λ ≥ 1
N (α−β)

‖∇w0‖22 > 0.

Step 2 Conclusion.
In this step, we borrow the idea from [15]. Set

wn(x) := w0(x − ne1), τn :=
√

α

‖u0 + wn‖2 and κn := 〈u0, wn〉L2 .

Remark that τn(u0 + wn) ∈ M(α), κn → 0 as n → ∞ and

τ 2n = α

α + 2κn
= 1 − 2κn

α
+ O(κ2

n ) and τn = 1 − κn

α
+ O(κ2

n ).
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Since it follows from (3.22), ‖u0‖22 = β > 0 and a similar argument to w0 that

− �u0 + V (x)u0 + 2λu0 = f (u0) in R
N , u0 > 0 in R

N , (3.26)

combining this fact with (3.23) and (3.26), we have

τ 2n

2

∫
RN

|∇(u0 + wn)|2 + V (x)(u0 + wn)
2dx

= 1

2

(
1 − 2κn

α
+ O(κ2

n )

) ∫
RN

|∇u0|2 + V (x)u20

+ |∇wn |2 + V (x)w2
n + 2∇u0 · ∇wn + 2V (x)u0wndx

= 1

2

(
1 − 2κn

α

) ∫
RN

|∇u0|2 + V (x)u20 + |∇w0|2 + V (x)w2
ndx

+
(
1 − 2κn

α

) ∫
RN

1

2
(∇u0 · ∇wn + V (x)u0wn)

+ 1

2
(∇u0 · ∇wn + V (x)u0wn)dx + O(κ2

n )

= 1

2

(
1 − 2κn

α

) ∫
RN

|∇u0|2 + V (x)u20 + |∇w0|2 + V (x)w2
ndx

+
(
1 − 2κn

α

) ∫
RN

1

2
(−2λu0wn + f (u0)wn)

+ 1

2
(−2λu0wn + f (wn)u0) + 1

2
V (x)u0wndx + O(κ2

n )

= 1

2

(
1 − 2κn

α

) ∫
RN

|∇u0|2 + V (x)u20 + |∇w0|2 + V (x)w2
ndx

+
(
1 − 2κn

α

) {
−2λκn + 1

2

∫
RN

f (u0)wn + f (wn)u0dx

}

+ 1

2

(
1 − 2κn

α

) ∫
RN

V (x)u0wndx + O(κ2
n ).

From u0, w0 ∈ L∞(R) with u0, w0 ≥ 0, (F3) and (F5), it follows that

0 ≤
∫
RN

f (u0)wn + f (wn)u0dx ≤
∫
RN

C0 (u0wn + wnu0) dx = 2C0κn . (3.27)

Since V (x) ≤ 0 and we may assume 1 − 2κn/α ≥ 0, we have

E(τn(u0 + wn))

≤ 1

2

(
1 − 2κn

α

) ∫
RN

|∇u0|2 + V (x)u20 + |∇wn |2 + V (x)w2
ndx − 2λκn

+
∫
RN

1

2
( f (u0)wn + f (wn)u0)dx −

∫
RN

F(τn(u0 + wn))dx + O(κ2
n )

≤ E(u0) + E∞(wn) − κn

α

∫
RN

|∇u0|2 + V (x)u20 + |∇w0|2dx − 2λκn

+
∫
RN

1

2
( f (u0)wn + f (wn)u0)dx

+
∫
RN

F(u0) + F(wn) − F(τn(u0 + wn))dx + O(κ2
n ). (3.28)
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Noting f ∈ Cν
loc(R) due to (F5), we have

∫
RN

F(τn(u0 + wn))dx =
∫
RN

F
((

1 − κn

α
+ O(κ2n )

)
(u0 + wn)

)
dx

=
∫
RN

F(u0 + wn) + f (u0 + wn)
(
−κn

α

)
(u0 + wn)dx + O(κ1+ν

n ).

(3.29)

By (3.28), (3.29) and α = ‖u0‖22 + ‖w0‖22, we have

E(τn(u0 + wn))

≤ E(u0) + E∞(w0) − κn

α

∫
RN

|∇u0|2 + V (x)u20 + |∇w0|2dx − 2
λ

α

(
‖u0‖22 + ‖w0‖22

)
κn

+
∫
RN

1

2
( f (u0)wn + f (wn)u0)dx

+
∫
RN

F(u0) + F(wn) − F(u0 + wn) + κn

α
f (u0 + wn)(u0 + wn)dx + O(κ1+ν

n )

= E(u0) + E∞(w0) − κn

α

∫
RN

f (u0)u0 + f (wn)wndx

+
∫
RN

F(u0) + F(wn) − F(u0 + wn) + 1

2
( f (u0)wn + f (wn)u0)dx

+ κn

α

∫
RN

f (u0 + wn)(u0 + wn)dx + O(κ1+ν
n )

= E(u0) + E∞(w0) +
∫
RN

F(u0) + F(wn) − F(u0 + wn) + 1

2
( f (u0)wn + f (wn)u0)dx

+ κn

α

∫
RN

( f (u0 + wn) − f (u0))u0 + ( f (u0 + wn) − f (wn))wndx + O(κ1+ν
n ). (3.30)

From (3.23), (3.26), V (x) → 0 as |x | → ∞ and λ > 0 due to Step 1, it follows that u0
and w0 decay exponentially as |x | → ∞. In fact, we may prove that if 0 < η1 < 2λ < η2,
then there exist Cη1 > 0 and Cη2 > 0 such that

Cη2e
−√

η2|x | ≤ u0(x) ≤ Cη1e
−√

η1|x | and Cη2e
−√

η2|x | ≤ w0(x) ≤ Cη1e
−√

η1|x |.(3.31)

Noting | f (u0 + wn) − f (u0)| ≤ Cwν
n , we see that∫

RN
| f (u0 + wn) − f (u0)||u0|dx ≤ C

∫
RN

wν
nu0dx = C

∫
RN

(wnu0)
νu1−ν

0 dx

≤ C

(∫
RN

wnu0dx

)ν (∫
RN

u0dx

)1−ν

= O(κν
n ).

By a similar argument, we have
∫
RN

| f (u0 + wn) − f (wn)||wn |dx ≤ C
∫
RN

(u0wn)
νw1−ν

n dx

≤ C

(∫
RN

u0wndx

)ν (∫
RN

wndx

)1−ν

= O(κν
n ).
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Using two inequalities, by (3.30) we have

E(τn(u0 + wn))

≤ E(u0) + E∞(w0) +
∫
RN

F(u0)

+ F(wn) − F(u0 + wn) + 1

2
( f (u0)wn + f (wn)u0)dx + O(κ1+ν

n ). (3.32)

Let δ2 > 0 be given in Lemma 2.4 (i). We can choose an R0 > 0 such that if n ≥ 2R0,
then

max
x∈RN \(BR0 (O)∪BR0 (ne1))

u0(x) ≤ δ2 and max
x∈RN \(BR0 (O)∪BR0 (ne1))

wn(x) ≤ δ2.

By Lemma 2.4 (i) we see that if n ≥ 2R0, then∫
RN \(BR0 (O)∪BR0 (ne1))

F(u0) + F(wn) − F(u0 + wn) + 1

2
( f (u0)wn + f (wn)u0)dx ≤ 0.

(3.33)

Next, set

K :=
{
u0(x)| x ∈ BR0(O)

}
∪

{
wn(x)| x ∈ BR0(ne1)

}
.

Then K ⊂ (0,∞) and K is compact. Let δK be given in Lemma 2.4. We can choose
nR0 ≥ 2R0 such that if n ≥ nR0 , then

max
x∈BR0 (ne1)

u0(x) ≤ δK and max
x∈BR0 (O)

wn(x) ≤ δK .

By Lemma 2.4 (ii) we see that if n ≥ nR0 , then∫
BR0 (O)∪BR0 (ne1)

F(u0) + F(wn) − F(u0 + wn) + 1

2
( f (u0)wn + f (wn)u0)dx

≤ −CK

(∫
BR0 (O)

wn(x)dx +
∫
BR0 (ne1)

u0(x)dx

)
. (3.34)

Thus, from (3.32)–(3.34), we see that if n ≥ nR0 , then

E(τn(u0 + wn)) ≤ E(u0) + E∞(w0)

− CK

(∫
BR0 (O)

wn(x)dx +
∫
BR0 (ne1)

u0(x)dx

)
+ O(κ1+ν

n ). (3.35)

Now recalling (3.31), we obtain∫
BR0 (O)

wn(x)dx +
∫
BR0 (ne1)

u0(x)dx ≥ Cη2e
−√

η2n for η2 > 2λ.

Remark also that for each η1 ∈ (0, 2λ), it is possible to prove

κn ≤ Cη1e
−√

η1n .

For instance, see [2, Proposition 1.2], [3, Lemma II.2] and [17].
Put η1 := (

√
2λ − ε)2 and η2 := (

√
2λ + ε)2. If ε > 0 is sufficiently small, then

√
η2 − (1 + ν)

√
η1 = −ν

√
2λ + (2 + ν)ε < 0.
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Thus,

κ1+ν
n e

√
η2n ≤ C1+ν

η1
e(

√
η2−(1+ν)

√
η1)n → 0 as n → ∞.

Therefore, O(κ1+ν
n ) = o(e−√

η2n). By (3.35) we see that if n is large, then

e(α) ≤ E(τn(u0 + wn)) ≤ E(u0) + E∞(w0) − cη2e
−√

η2n + o(e−√
η2n)

< E(u0) + E∞(w0) = e(α),

which is a contradiction. Hence, (3.25) does not occur and the proof is completed. ��
Proof of Theorem A Let α0 := inf{α ≥ 0| e(α) < 0}. It is clear that α0 ≤ α0,∞. Since α0,∞
exists and α0,∞ < ∞ thanks to Proposition 2.1, we see that α0 exists and α0 < ∞. By
Lemma 2.5 (v), e(α) is nonincreasing. Since e(0) = 0, we easily see that e(α) = 0 for
0 < α < α0 and that e(α) < 0 for α > α0. It follows from Lemma 3.3 that if α > α0, then
every minimizing sequence has a strong convergent subsequence in H . It is well known that
the orbital stability of Sα follows from the precompactness of every minimizing sequence
for e(α). Moreover, Lemma 3.1 and the definition of α0 imply Theorem A (ii). Therefore,
Theorem A holds. ��

4 Proof of Theorem B

Proof of Theorem B (i) We first prove α0 = 0 when (V3) holds. By (V3), there is a ϕ ∈
C∞
0 (RN ) such that ‖ϕ‖2 = 1 and

1

2

∫
RN

|∇ϕ|2 + V (x)ϕ2dx < 0.

Replacing |ϕ| if necessary, we may suppose ϕ ≥ 0. Let α ∈ (0, s20/‖ϕ‖2∞). Since√
αϕ ∈ M(α) and F(

√
αϕ) ≥ 0, we get

e(α) ≤ E(
√

αϕ) ≤ α

2

∫
RN

|∇ϕ|2 + V (x)ϕ2dx < 0.

By the monotonicity of e(α) in Lemma 2.5, we see that α0 = 0 holds.
Next, we show that N = 1, 2 and (V1) imply (V3). Let V (x) satisfy

(V1) and ϕ ∈ C∞
0 (RN ). Put ϕt (x) := t N/2ϕ(t x) for t > 0. Choose also an R0 > 0 so that∫

|x |≤R0
V (x)dx < 0. Then we have∫

RN
|∇ϕt |2 + V (x)|ϕt |2dx = t2‖∇ϕ‖22 + t N

∫
RN

V (x)|ϕ(t x)|2dx

≤ t2
(

‖∇ϕ‖22 + t N−2
∫

|x |≤R0

V (x)|ϕ(t x)|2dx
)

.

(4.1)

Remark that

lim
t→0

∫
|x |≤R0

V (x)|ϕ(t x)|2dx = |ϕ(0)|2
∫

|x |≤R0

V (x)dx .

Hence, when N = 1, by selecting ϕ ∈ C∞
0 (R) so that ϕ(0) �= 0, if t > 0 is sufficiently

small, then (4.1) and the choice of R0 imply
∫
R

|∇ϕt |2 + V (x)|ϕt |2dx < 0.
When N = 2, from (− log |x |)α+ ∈ H1(R2) for 0 < α < 1/2, we may find a ψk ∈
C∞
0 (R2) so that ‖∇ψk‖2 = 1, ψk ≥ 0 and ψk(0) → ∞ as k → ∞. Setting ϕ = ψk and

selecting a sufficiently large k0, we obtain
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‖∇ψk0‖22 + |ψk0(0)|2
∫

|x |≤R0

V (x)dx < 0.

Thus, if t > 0 is sufficiently small, then (4.1) gives
∫
R2 |∇(ψk0)t |2 +V (x)|(ψk0)t |2dx <

0. Therefore, when N = 2, (V3) holds.
(ii) We show that there exists V (x) such that α0 > 0. Let b := sups>0 F(s)/s pc+1. By
(F4) and (F9) we see that b < ∞. Let C0 denote the best constant of the inequality
‖u‖pc+1

pc+1 ≤ C0 ‖u‖4/N2 ‖∇u‖22 and define α1 = α1(N , f ) > 0 by α1 := (2bC0)
−N/2.

For α ∈ (0, α1), we also set cα := (N − 2)2(1 − 2bC0α
2/N )/4 > 0 and suppose that

V (x) ≥ −cα|x |−2 for |x | > 0. Then by Hardy’s inequality and the definition of b, C0

and cα , we obtain

E(u) ≥ 1

2

∫
RN

|∇u|2dx − cα

2

∫
RN

u2

|x |2 dx − b‖u‖pc+1
pc+1

≥
(
1

2
− 1

2
+ bC0α

2/N − bC0α
2/N

) ∫
RN

|∇u|2dx = 0.

This inequality indicates that e(α) = 0 and α0 ≥ α > 0 follows from from the mono-
tonicity of e(α).
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Appendix A: Nonexistence of minimizer

We consider the following case:

(V4) 0 �≡ V (x) ≥ 0 and lim|x |→∞ V (x) = 0.

Theorem A.1 Suppose (V4) and the following (F11):

(F11) f (s) ≤ f (|s|) for s ∈ R, f (s) ≥ 0 for s ≥ 0, | f (s)| ≤ C(|s| + |s|pc),
lims→∞ f (s)/s pc = 0.

Then e(α) = e∞(α) for α ≥ 0 and e(α) is not attained for α > 0.

The assumption (F11) is weaker than (F1)–(F5).

Proof First, we show that e(α) = e∞(α). Since V (x) ≥ 0, we see that e(α) ≥ e∞(α). On
the other hand, for any u ∈ M(α) and n ∈ N, we obtain

e(α) ≤ E(u( · − ne1)) = E∞(u) + 1

2

∫
RN

V (x + ne1)|u|2dx .
Letting n → ∞, we obtain e(α) ≤ E∞(u). Since u is arbitrary, we see that e(α) ≤ e∞(α).
Thus, e(α) = e∞(α).

Second, we show by contradiction that e(α) is not attained. Suppose on the contrary
that e(α) is attained by u0 ∈ H ∩ M(α). By Remark 2.7, we may assume u0 ≥ 0. Since
E ∈ C1(HR,R) due to (F11), there exists a λ ∈ R such that −�u0 + (V (x) + 2λ)+u0 ≥
−�u0 + (V (x) + 2λ)u0 = f (u0) ≥ 0 in R

N . Thus, the weak Harnack inequality [14,
Theorem 8.18] yields u0 > 0 in R

N . Using this fact and 0 �≡ V (x) ≥ 0, we obtain

e(α) = E(u0) = E∞(u0) + 1

2

∫
RN

V (x)u20dx > E∞(u0) ≥ e∞(α).

This is a contradiction, because e(α) = e∞(α). Therefore, e(α) has no minimizer. ��
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