Calc. Var. (2021) 60:47

https://doi.org/10.1007/500526-020-01912-4 Calculus of Variations
()

Check for
updates

G-invariant Szeg6 kernel asymptotics and CR reduction

Chin-Yu Hsiao' - Rung-Tzung Huang?

Received: 20 January 2020 / Accepted: 30 September 2020 / Published online: 28 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract

Let (X, T'9X) bea compact connected orientable CR manifold of dimension 2n + 1 with
non-degenerate Levi curvature. Assume that X admits a connected compact Lie group G
action. Under certain natural assumptions about the group G action, we show that the G-
invariant Szegd kernel for (0, ¢) forms is acomplex Fourier integral operator, smoothing away
1~ 1(0) and there is a precise description of the singularity near ="' (0), where u denotes the
CR moment map. We apply our result to the case when X admits a transversal CR S! action
and deduce an asymptotic expansion for the mth Fourier component of the G-invariant Szegd
kernel for (0, ¢) forms as m — +o00 and when g = 0, we recover Xiaonan Ma and Weiping
Zhang’s result about the existence of the G-invariant Bergman kernel for ample line bundles.
As an application, we show that if m large enough, quantization commutes with reduction.

Mathematics Subject Classification Primary: 58J40 - 32V20 - 53D50; Secondary: 57Q10

1 Introduction and statement of the main results

Let (X, T19X) be a CR manifold of dimension 22 4+ 1, n > 1. Let O be the Kohn
Lalpacian acting on (0, ¢) forms. The orthogonal projection S : L%O‘q)(X ) — Ker D,(;”
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onto Ker D,(;’) is called the Szegd projection, while its distribution kernel S@ (x, y) is called
the Szeg6 kernel. The study of the Szeg projection and kernel is a classical subject in several
complex variables and CR geometry. A very important case is when X is a compact strictly
pseudoconvex CR manifold. Assume first that X is the boundary of a strictly pseudoconvex
domain. Boutet de Monvel-Sjostrand [2] showed that S O (x, y) is a complex Fourier integral
operator.

The Boutet de Monvel-Sjostrand description of the Szegd kernel had a profound impact
in many research areas, especially through [4]: several complex variables, symplectic and
contact geometry, geometric quantization, Kihler geometry, semiclassical analysis, quantum
chaos, etc. cf. [6,8,11,22,29,32], to quote just a few. These ideas also partly motivated the
introduction of the recent direct approaches and their various extensions, see [18,19,21,22].

Now, we consider a connected compact Lie group G acting on X. The study of G-invariant
Szegd kernel is closely related to Mathematical physics and geometric quantization of CR
manifolds. It is a fundamental problem to establish G-invariant Boutet de Monvel-Sjostrand
type theorems for G-invariant Szeg6 kernels and study the consequence of the G-invariant
Szegd kernel. This is the motivation of this work. In this paper, we consider G-invariant
Szegd kernel for (0, ¢) forms and we show that the G-invariant Szeg6 kernel for (0, ¢) forms
is a complex Fourier integral operator. In particular, S (x, y) is smoothing outside w1(0)
and there is a precise description of the singularity near =" (0), where u denotes the CR
moment map. We apply our result to the case when X admits a transversal CR S' action
and deduce an asymptotic expansion for the mth Fourier component of the Szeg6 kernel for
(0, g) forms as m — +o00. As an application, we show that, if m large enough, quantization
commutes with reduction.

In [20], Ma and Zhang have studied the asymptotic expansion of the invariant Bergman
kernel of the spin® Dirac operator associated with high tensor powers of a positive line
bundle on a symplectic manifold admitting a Hamiltonian action of a compact connected Lie
group and its relation to the asymptotic expansion of Bergman kernel on symplectic reduced
space, also the Toeplitz operator aspectin [20, Section 4.5]. Their approach is inspired by the
analytic localization techniques developed by Bismut and Lebeau [3]. About the quantization
commutes with reduction problem in symplectic geometry, we refer the readers to [22]. In the
second part of [22], Ma described how the G-invariant Bergman kernel concentrates on the
Bergman kernel of the reduced space. Note that the “quantization commutes with reduction”
in the situations in symplectic case is a very active subject. When the action connected Lie
group is compact and the symplectic manifold is also compact, this question was solved
finally by Meinrenken [24] and Tian-Zhang [31]. When the action connected Lie group is
compact and the symplectic manifold is noncompact, this is a famous conjecture of Vergne
and was solved by Ma-Zhang in [23].

It should be mentioned that in [7], Charles relates the Toeplitz operators on a compact
complex manifold M with the Toeplitz operators on the “reduced” space for torus action, and
in [26], Paoletti studied equivariant Szegd kernels on complex manifolds ( cf. [20, Remark
0.5]).

We now formulate the main results. We refer to Sect. 2 for some notations and terminology
used here. Let (X, T19X) be a compact connected orientable CR manifold of dimension
2n +1,n > 1, where T19X denotes the CR structure of X. Fix a global non-vanishing real
1-form wg € C®(X, T*X) such that (wy, u) = 0, for every u € T'0X @ TO1X. The
Levi form of X at x € X is the Hermitian quadratic form on TXl Ox given by L, (U, V) =
—%(dwo(x) ,UAV), forallU,V e TXI’OX. In this work, we assume that
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Assumption 1.1 The Levi form is non-degenerate of constant signature (n_, ny) on X. That
is, the Levi form has exactly n_ negative and n positive eigenvalues at each point of X,
where n_ +ny = n.

Let HX = {Reu; u e TI*OX} and let / : HX — H X be the complex structure map
given by J(u + ) = iu — iu, for every u € T'OX. In this work, we assume that X admits
a d-dimensional connected compact Lie group G action. We assume throughout that

Assumption 1.2 The G action preserves wy and J. That is, g*wy = woon X and g.J = J g4
on HX, for every g € G, where g* and g, denote the pull-back map and push-forward map
of G, respectively.

Let g denote the Lie algebra of G. For any &£ € g, we write £x to denote the vector field
on X induced by &. That is, (§xu)(x) = % (u(exp(t&) o x)) |0, for any u € C®°(X).

Definition 1.3 The moment map associated to the form wy is the map p : X — g* such that,
forall x € X and & € g, we have

(u(x), &) = wo(Ex (x)). (L.
In this work, we assume that

Assumption 1.4 0 is a regular value of ., the action G on u='(0) is freely and
g, ﬂgi‘b = {0} at every pointx € Y, (1.2)

where g = Span (§x; & € g), gJ-b = [v e HX; b(éx,v) =0, Véx € g], b is the nonde-
generate bilinear form on HX given by (2.4).

By Assumption 1.4, 1~1(0) is a d-codimensional submanifold of X. Let Y := .~ '(0)
andlet HY := HX () TY . Note that if the Levi form is positive at Y, then (1.2) holds. Under
the condition (1.2), in Sect. 2.5, we will show that dim (HY (| JHY) = 2n — 2d at every
point of ¥, u=1(0)/G =: Y; is a CR manifold with natural CR structure induced by 710X
of dimension 2n — 2d + 1 and we can identify HYg with HY (\JHY.

Fix a G-invariant smooth Hermitian metric (- | -) on CT X so that 710X is orthogonal to
701X, gisorthogonalto HY (| JHY atevery pointof ¥, (u | v ) isreal if u, v are real tangent
vectors, (T | T') = 1 and T is orthogonal to 10X @ T%! X, where T is given by (2.2). The
Hermitian metric ( - | - ) on CT X induces, by duality, a Hermitian metric on C7T* X and also on
the bundles of (0, ¢) forms T*0-q0 %, g =0,1,---,n. We shall also denote all these induced
metrics by (- |-).Fixg € G.Letg* : AL(CT*X) — A;f,ox (CT*X) be the pull-back map.
Since G preserves J, we have g* : 7% x T;P;ZXX, forallx € X.Thus, foru € Q%9(X),
we have g*u € Q%9 (X). Put Q*4(X)9 := {u € Q"9(X); g*u =u, Vg € G}. Since the

Hermitian metric (-|-) on CTX is G-invariant, the L? inner product (-|-) on Q%9(X)
induced by (-|-) is G-invariant. Let u € L(zo’q)(X) and ¢ € G, we can also define g*u
in the standard way (see the discussion in the beginning of Sect. 3.2). Put L(Z0 q)(X )G =
[u € L%o,q)(X); g'u=u, Vge G]. Let ng) : Dom qu) — L%o,q)(X) be the Gaffney
extension of Kohn Laplacian (see (3.1)). Put (Ker Dl()q))G := Ker Di()q) N L%o q)(X)G. The
G-invariant Szeg6 projection is the orthogonal projection Sg’ ) L%O,q)(X ) — (Ker DZ"))G
with respect to (- |-). Let S& (x, y) € D'(X x X, T*%4 X R (T*4 X)*) be the distribution
kernel of S, (Gq ). The first main result of this work is the following
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Theorem 1.5 With the assumptions and notations above, suppose that D](Qq) : Dom D;}q) —
L%O q)(X) has closed range. If ¢ ¢ {n_, ny}, then Sgl) =0on X.

Suppose q € {n_,n}. Let D be an open set of X with D (1 1~"(0) = @. Then, Sg) =0
on D.

Let p € w='(0) and let U be an open set of p and let x = (xi, ..., Xon+1) be local

coordinates defined in U. Then, there exist continuous operators SC, Sf : Qg’q(U ) —
Q%4 (U) such that

SO =59 459 onu,

and S° (x, y), Sf(x, y) satisfy

oo
S:g(x7 y) = /0 el(b;(x,y)ta:':(x’ y, [)d[ on U,

with

_d
ay(x,y,0),a-(x, y,1) € Sy > (U x U x Ry, T4 X R (T*04X)*),
a(x,y,0) =0 ifg#n_, ay(x,y,1) =0 ifq #ny, (1.3)
a(x,x)#0, Vx e U, ifg=n_, al(x,x)#0, Vx e U, ifqg=ny,

a (x, x), ag)r(x,x), x e 10 (U, are given by (1.8) below, ®_(x,y) € C*®(U x U),

Im ®_(x, ) > 0,

dy®_(x,x) = —dy®_(x,x) = —wp(x), Yx € U1 (0), (1.4)

there is a constant C > 1 such that, for all (x,y) € U x U,

|®_(x, )| +Im®_(x,y) < C(inf {d*(gox,y); g € G} +d*(x, u ' (0)) +d*(y, =1 (0)))
|®_(x, »)| +ImP_(x,y) = & (inf {d*(gox,y): g € G} +d*(x, ™' (0) +d*(y. = (0))) ,
Cd*(x, = 1(0)) = Im @_(x,x) = £d*(x,u™1(0)), Vx e U,
(1.5)
and ®_(x,y) satisfies (1.18) below and (1.19) below, and ®,(x,y) € C*®U x U),
— @ (x, y) satisfies (1.4), (1.5), (1.18) below and (1.19) below.

We refer the reader to the discussion before (2.1) and Definition 3.1 for the precise mean-

ings of A = B and the symbol space S:l_ 2, respectively.

Let ® € C*°(U x U). We assume that ® satisfies (1.4), (1.5), (1.18), (1.19). We will show
in Theorem 5.2 that the functions ® and ®_ are equivalent on U in the sense of Definition 5.1
if and only if there is a function f € C*°(U x U) with f(x, x) = 1, for every x € /L_l 0),

such that ®(x, y) — f(x, y)®_(x, y) vanishes to infinite order at diag (([,L_l O)NU) x

(w1 (0) N U)). From this observation, we see that the leading term a®(x,x), x € u=N0),

is well-defined. To state the formula for a° (x, x), we introduce some notations. For a given
point xg € X, let {W; }’}:1 be an orthonormal frame of (79X, (- |-)) near xo, for which the
Levi form is diagonal at xg. Put

Lig(W;i, We) = pwj(x0)8je, j,L=1,....n.

We will denote by

n
det Ly = [ [ wjxo). (1.6)
j=1
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Let {T; }’,'.=1 denote the basis of 7*%1 X, dual to {Wj}';zl. We assume that 1 (xg) < 0 if
l<j<n_andp;(xg) >0if n_+1<;<nPut

N(xg,n_):
N(xp,ny) :

cTi(xo) AN ...ANT,,_(x0); c € (C} ,
cTu_+1(x0) A ... ATy(xp); c € (C}

and let
0, 0,
T =Tegn : Tay 17X = N(x0,n-), Tny, = Txgny : Tng 7 X = N(xo,ng), (1.7

be the orthogonal projections onto N (xg, n—) and A (xqg, n4) with respect to (- | - ), respec-
tively.
Fix x € u~1(0), consider the linear map

R, ‘g4
u— Ryu, (Ryulv)= (dwg(x), Junv).
Letdet Ry = A1(x)---Aq(x), where A ;(x), j = 1,2, ...,d, are the eigenvalues of R,.

Fix x € u~1(0), put Yy = {g o x; g € G}. Y, is a d-dimensional submanifold of X. The
G-invariant Hermitian metric (- | - ) induces a volume form dvy, on Y. Put

Vet (x) ;:/ dvy, .

Note that the function Vegr (x) was already appeared in Ma-Zhang [23, (0,10)] as exactly the
role in the expansion, cf. [23, (0.14)].

Theorem 1.6 With the notations used above, for a® (x, y) and aﬂ)_ (x, y) in (1.3), we have
1
Vetr (x)

We now assume that X admits an S! action: S! x X — X. We write ¢'? to denote the S!
action. Let T € C*(X, T X) be the global real vector field induced by the S! action given
by (Tu)(x) = % (u(eie o x)) lo—o, u € C®(X). We assume that the S! action ¢'? is CR
and transversal (see Definition 4.1). We take wg € C*°(X, T*X) to be the global real one
form determined by (wo, u) = 0, forevery u € T'"°X & T%'X and (wy, T) = —1.In
this paper, we assume that

— pd—1

al (x, x) 71 | det Rx|_%|detﬁx|rx,n¥, Vx € u”1(0). (1.8)

Assumption 1.7
T is transversal to the space g at every point p € /L_l 0),
é0gox=goe?ox, VxeX, V9el0,2n], VgeG, (1.9)
and
G xS! acts freely near ufl(O).

Letu € Q%4(X) be arbitrary. Define
a9 .
Tu:= £((e’9)*u)|9=0 e Q% (X).

For every m € 7Z, let

Q7 (X) == {u € Q¥4(X); Tu=imu}, ¢=0,1,2,....n,
()9 = {u € Q¥4(X)C; Tu=imu}, ¢=0,1,2,....n.
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We denote Co0(X) = QS{O(X), C,?LO(X)G = Q?,;O(X)G. From the CR property of the s1

action and (1.9), it is not difficult to see that Tg*d, = g*Td, = 0,¢*T = 3,Tg* on
Q0.4 (X), for all g € G. Hence,

3y Q%1 xS = QYT x)G | ym e 7.

We now assume that the Hermitian metric (- |-) on CT X is G x S' invariant. Then the L2
inner product (- |-) on %9(X) induced by (- |-) is G x S'-invariant. We then have

Tg*d, = g*T0), = 0,8*T =0, Tg* on Q*4(X), Vg e G,
Tg*O = ¢ TO = 0P " T = O Tg* on Q¥4(X), Yg € G,

where 9, is the L2 adjoint of 9, with respect to (- | -).

Let L%o,q).m(X)G be the completion of Qg{q(X)G with respect to (-|-). We write
L2(X)% = L%, (X)9 PutH]  (X)6 = (Ker 0§ = (Ker OJ)O N L2 ), (X)C.

It is not difficult to see that, for every m € Z, (Ker D;}"))fn; c @%(x)¢ and
dim (Ker Dl(]q))fj < 00. The mth G-invariant Szeg6 projection is the orthogonal projec-
tion S+ L) (X) — (Ker[)”)§ with respect to (+|-). Let Sir), (x, y) € C®(X x

X, T*09X X (T*%9X)*) be the distribution kernel of S(Gq)m The second main result of this
work is the following

Theorem 1.8 With the assumptions and notations used above, if ¢ ¢ n_, then, as m — 00,
S = 0(m=) on X.

Suppose g = n_. Let D be an open set of X with D ) w=1(0) = @. Then, as m — +oo,
S = 0m™®) on D.

Let p € w='(0) and let U be an open set of p and let x = (xi, ..., Xon+1) be local
coordinates defined in U. Then, as m — 400,

SO (x, ) = emYEDp(x, y, m) + O,
_d
b(x,y,m) € Sp. > (1; U x U, T*%4 X B (T*09 X)"),
da ; -4
b(x, yom) ~ Y om" T b (x, y) in Sp? (1; U x U, T*4X ® (T4 X)),

J
bi(x,y) € C¥(WU x U, T*4X K (T*9X)*), j=0,1,2,...,

and

1
Verr (x)
where Ty ,_ is given by (1.7), and W(x,y) € C®°WU x U), d;¥(x,x) = —d,¥(x,x) =

—wo(x), for every x € n=1(0), W(x,y) = 0 ifand only ifx =y € u~'(0) and there is a
constant C > 1 such that, for all (x,y) e U x U,

bo(x, x) = 24-1 7714 det Ry |72 |det Ly [Ty, Vax € w1(0),  (1.10)

ImW(x, y) > é(d(x, 1002 +d(y, w10 + infyeg pest d (e o g ox, y)z),

ImW(x,y) < C(d(x, 1N 0)? +d(y, pH(0)? +inf g gesi d(e’ 0 gox, y)z).
(We refer the reader to Theorem 1.12 for more properties of the phase V(x, y).)

We refer the reader to the discussion in the beginning of Sect. 2.2 and Definition 2.1 for

_d
the precise meanings of A = B + O (m~°°) and the symbol space Slrgc 2, respectively.
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It is was proved in Theorem 1.12 in [15]) that when X admits a transversal and CR s1
action and the Levi form is non-degenerate of constant signature on X, then D,(;’) has L?
closed range.

Let Y = /fl (0)/G. In Theorem 2.5, we will show that Y is a CR manifold with
natural CR structure induced by 71°X of dimension 2n — 2d + 1. Let Ly, . be the Levi
form on Y5 at x € Yg induced naturally from £. Note that the bilinear form b is non-
degenerate on LL_I (0), where b is given by (2.4). Hence, on (g, g), b has constant signature
on 1~ 1(0). Assume that on (g, g), b has r negative eigenvalues and d — r positive eigenvalues
on 1~ 1(0). Hence Ly; has g — r negative and n — d — g + r positive eigenvalues at each

point of Y. Let qu;Gr) be the Kohn Laplacian for (0, g — r) forms on Y. Fix m € N. Let
HI 7 (Yg) = !u € Q9 (vg): O u =0, Tu= imu}. We will apply Theorem 1.8

b,m
to establish an isomorphism between HZ ()¢ and HZ o
introduce some notations.
Since g is orthogonal to H,Y (\JH,Y and H,Y (\JH,Y C g;h (see Lemma 2.4 and
(2.5) for the meaning of gi”), for every x € Y, we can find a G-invariant orthonormal basis
{Z1,...,Z,) of T1-0X on Y such that

(Yg) if m large enough. We

Lo(Zj(x), Zk(x)) = 8j 50 (x), jok=1,....n,
Zix)eg +ilg,. j=12.....4d,
Zj(x) e CH,Y NJ(CH,Y), j=d+1,....n.

Let {eq, ..., e,} denote the orthonormal basis of 7**'X on Y, dual to {Z, ..., Z,}. Fix
s=0,1,2,...,n—d.Forx € Y, put

*0,s _ . L. L. . . i i
B X = Z aj,...jejy N-ANejsaj i €CoVd+1<ji<--<js<n
d+1<ji<-<js=n

and let B*®* X be the vector bundle of ¥ with fiber B;O’SX, x € Y. Let C®(Y, B*0s x)C
denote the set of all G-invariant sections of ¥ with values in B**5 X. Let

161 C®Y, B X)Y — Q% (¥g)

be the natural identification.
Assume that A} < 0,..., A, <0,and Ay4+1 <0, ..., Ay_—r4q4 <0.Forx €Y, put

N(x,n-) ={cear1 A+ Aen —ria; ¢ €CJ,
and let

ﬁ:ﬁx :N(xsnf)ﬁN(x»nf),
M=C€1/\"'/\er/\ed+1/\"’/\eni_r_;,_d—>C€d+1/\"'/\€ni_r+d.

Let:: Y — X be the natural inclusion and let ¢* : Q%9 (X) — Q%4(Y) be the pull-back of

t.Letg =n_.Let S%fr;) : L%O q,r)(YG) — HZ;

F@) = Verr (0)ldet R|"7 € C(¥)C.

(Y ) be the orthogonal projection and let

Let
m i HYL, (0% — HI (Y6,

—4 o(g—n) A *
u—m 4SYG‘m olGopoTy, o fol*ou.
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In Sect. 6.2, we will show that

Theorem 1.9 With the notations and assumptions above, suppose that g = n_. If m is large,
then oy, : Hl;{m (X)° > Hq r(Yc) is an isomorphism.

In particular, if m large enough, then dim Hb,m (X)% = dim Hq "(Yo).

Remark 1.10 Let’s sketch the idea of the proof of Theorem 1.9. W can consider o, as a map
from Q%4 (X) — H; " (Y;):

om : QM(X) > H " (Y6) € QY17 (Ye),

r)

u—m 4S§,’ém olgopoTy, ofor* oS(q)

Let o : QY1 (Yg) — Q99(X) be the adjoint of o,,. From Theorem 1.8 and some
calculation of complex Fourier integral operators, we will show in Sect. 6.2 that F,, =

oXoy, : QU9(X) > Q09(X) is the same type of operator as S and
m Yp P G.m

L F = (4 RS, (11D
Co G,m
where Cp > 0 is a constant and Ry, is also the same type of operator as Sg.)m, but the

leading symbol of R,, vanishes at diag (¥ x Y). By using the fact that the leading symbol
of R, vanishes at diag (Y x Y), we will show in Lemma 6.8 that ||R,,u|| < &, ||u]|, for all
u e Q%4(X), forall m € N, where ¢, is a sequence with lim,, .~ &, = 0. In particular, if
m is large enough, then the map

I+ Ry : QY9(X) - Q%(X) (1.12)

is injective. From (1.11) and (1.12), we deduce that, if m is large enough, then F,, :
HY, (X)¢ — H! (X)Y is injective. Hence 0y, : Hyl  (X)¢ — H/! "(Y() is injective.
Similarly, we can repeat the argument above with minor change and deduce that if m is

large enough, then the map Fm = 00, HZ mr(YG) — Hb m "(Yg) is injective. Hence,

if m is large enough, then the map o, : Hq r(Yc) — HZ (X)9 is injective. Thus,

dim H | (X)% = dim Hy\"(YG) and 6y, is an 1somorphlsm if m large enough.

Let’s apply Theorem 1.9 to complex case. Let (L, i) be a holomorphic line bundle over
a connected compact complex manifold (M, J) with dim cM = n, where J denotes the
complex structure map of M and i’ is a Hermitian fiber metric of L. Let R” be the curvature
of L induced by 1. Assume that R” is non-degenerate of constant signature (n_, n.) on M.
Let K be a connected compact Lie group with Lie algebra £. We assume that dimr K = d
and K acts holomorphically on (M, J), and that the action lifts to a holomorphic action on
L. We assume further that A% is preserved by the K -action. Then R’ is a K -invariant form.
Letw = ﬁRL and let ;t : M — ¥* be the moment map induced by w. Assume that 0 € £*
is regular and the action of K on =1 (0) is freely. The analogue of the Marsden-Weinstein
reduction holds (see [10]). More precisely, the complex structure J on M induces a complex
structure Jx on My := ji~'(0)/K, for which the line bundle Lo := L/K is a holomorphic
line bundle over M.

For any & € €, we write &), to denote the vector field on M induced by &. Let £ =
Span (£y; £ € £). On 2~ 1(0), let b be the bilinear form on £ x £ given by b (-, -) =
(-, J-). Assume that bl has r negative eigenvalues and d — r positive eigenvalues on
4~10). Let g = n_. Form € N, let H1(M, L™)X denote the K -invariant gth Dolbeault
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cohomology group with values in L™ and let HY~" (M, L}') denote the (¢ — r)th Dolbeault
cohomology group with values in L{j'. Theorem 1.9 implies that, if m is large enough, then
there is an isomorphism map: o,, : H1(M, L™K — HI (M, Ly). In particular, if m is
large enough,then

dim HY(M, L™ = dim H™" (Mo, LY). (1.13)

Note that when m = 1 and ¢ = 0, the equality (1.13) was first proved in [10, §5]. For
m = 1, the equality (1.13) was established in [30,33] when L is positive. Zhang [33] com-
bined the methods and results in [31] with Braverman’s idea [5] to construct a suitable
quasi-isomorphisim to prove the equality (1.13). The proof of the equality (1.13) in [30] is
completely algebraic, while the the proof of the equality (1.13) in [33] is purely analytic
where different quasi-homomorphisms between Dolbeault complexes under considerations
were constructed to prove the equality (1.13). If m is large enough and ¢ = 0, an isomorphism
map in (1.13) was also constructed in [20, (0.27), Corollary 4.13].

If m large enough and ¢ = 0, an isomorphism map in (1.13) was also constructed in [20,
(0.27), Corollary 4.13]. The point of [20, (0.27), Corollary 4.13] is to study the isometric
aspect of this map, as an consequence of the asymptotic of G-invariant Bergman kernel
of Ma-Zhang [20], they gave another proof that it is an isomorphism for m large, and this
approaches of the isomorphism for m large is adopted in this paper. It should be mentioned
that in this situation, a version of the full asymptotics of Sg )m (x, y) including (1.10) was
established in [20, Theorem 0.1, 0.2].

1.1 The phase functions P _ (x, y) and W (x, y)

In this section, we collect some properties of the phase functions ®_(x, y), ¥(x, y) in
Theorem 1.5 and Theorem 1.8.

Let v = (vq,...,vg) be local coordinates of G defined in a neighborhood V of eq
with v(eg) = (0, ..., 0). From now on, we will identify the element ¢ € V with v(e). Fix
pE /fl (0). In Theorem 3.7, we will show that there exist local coordinates v = (vy, ..., vg)
of G defined in a neighborhood V of eg with v(eg) = (0, ..., 0), local coordinates x =
(X1, ..., Xx2p+1) of X defined in a neighborhood U = U; x U; of p with 0 < p, where
U; c RY is an open set of 0 € R?, U, ¢ R**1=4 is an open set of 0 € R*"*1=¢ and a

smooth function y = (y1, ..., Yq) € C®°U,, Up) with y(0) =0 € R4 such that
W15+ v2) © (Y (Xdg1s - ooy X204 1)s Xd 1o - - - X204 1)
= W1+ V1Xd41s - Xon41)s -0 Va + Va(Xat1s o3 X2041), Xdt1s - - > X2n41),
Vi, ...,vq) €V, Y(xg+1,...,X2u+1) € Un,

(1.14)
_ 9 )

g—span {m,,m},
w=HO)NU = {xa11 = =x4 =0}, ‘ (1.15)
On ' O) U, wehave J (55) = 50— +a; (W) gy J =1, 2,....d,

where a;(x) is a smooth function on w10 (U, independent of xi, ..., x24, x2n+1 and

aj0)=0,j=1,....d,
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TPI’OXZS {Z],.. v Zn},
1,0
Zj=§(ﬁ_,: axd+ )p), j=1,....4d,
Zj = %(axi—l sz )(P) ] =d+ 1 n, (116)
(Zi|Zy) = ks Jok=12,...,n

and
wo(x) = (1 + O(|x]))dxon41 + Z? 14/“ijd+jdxj
+Z] —dt1 21 jx2jdx2j—1 — Z'}:d-&-l 2 jx2j—1dxzj (1.17)
+ Y7 i bixonadxj + O(1x]?),
where bg1 € R, ..., by, € R. Put ¥ = (Xd41s - -+ X2n+1)s = (Xd+15 Xd42s - - - » X2d)>
= (Xd+1, - - - , X24). We have the following (see Theorem 3.11 and Theorem 3.12)

Theorem 1.11 With the notations above, the phase function ®_(x,y) € C®(U x U) is
independent of (x1, ...,xq) and (y1, ..., yq). Hence, ®_(x,y) = ®_((0,x"), (0, y")) :=
®_(x",y"). Moreover, there is a constant ¢ > O such that

Im®_(x",y") > c(|”’| + |”’| + | = °”|2), Y((0,x"), (0,y") e U x U. (1.18)
Furthermore,

O_(x",y") = —xonp1 + Yanr1 + 20 Yo 1y3 e + 20 X lmjlx3
i Y llzg = wilP Y i @w) — W)
+2 51— bd+szz+]X2n+1 + bayjYa+jyans1) (1.19)
+Z] =d+1 2(b2] 1= le])( ZjXon+1 + Wjyan+1)
+Z] —d+l 2(172, 1 +ib2j)(=ZjXon41 +Wjy2ns1)
+(X2nt1 — Yanr1) f (. y) + O((x, W),

where zj = x2j—1 +ix2j, wj = y2j—1 + iy, j=d+1,....n uj, j=1,...,n,
and bg41 gR,...,bzn € R are as in (1.17) and f is smooth and satisfies f(0,0) = 0,
f,y)=fy, x).

We now assume that X admits an S! action: S! x X — X. We will use the same notations
as in Theorem 1.8. Recall that we work with Assumption 1.7. Let p € 2~ '(0). We can repeat
the proof of Theorem 3.7 with minor change and show that there exist local coordinates
v = (v, ...,vq) of G defined in a neighborhood V of ep with v(eg) = (0, ..., 0), local
coordinates x = (xp, ..., x2,41) of X defined in a neighborhood U = Uj x (ﬁzx] —26,268])
of p with 0 <> p, where U; C R? is an open set of 0 € R?, U,  R?"~4 is an open set
of 0 € R4 _§ = 0, and a smooth function y=Wi,...,Yd) € C°°(l72x] — 268,268, Uy)
with y(0) =0 € R such that T = —ax23+l and (1.14), (1.15), (1.16), (1.17) hold. We have

the following

Theorem 1.12 With the notations above, the phase function W satisfies W (x, y) = —x2,41+
Vo1 + W@R", "), where W(E",3") € CPW x U), ¥ = (Xga1s....xm), ¥ =
(Yd+1s - - - » Y2n), and WV satisfies (1.18) and (1.19).
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2 Preliminaries
2.1 Standard notations

Let M be a C* paracompact manifold. We let T M and T* M denote the tangent bundle of M
and the cotangent bundle of M, respectively. The complexified tangent bundle of M and the
complexified cotangent bundle of M will be denoted by CT M and CT* M, respectively. Write
(-, -) to denote the pointwise duality between TM and T*M. We extend (-, -) bilinearly
to CTM x CT*M. Let B be a C*™ vector bundle over M. The fiber of B at x € M will be
denoted by By. Let E be a vector bundle over a C* paracompact manifold M;. We write
B X E* to denote the vector bundle over M x M| with fiber over (x, y) € M x M consisting
of the linear maps from E to B,. Let Y C M be an open set. From now on, the spaces
of distribution sections of B over Y and smooth sections of B over Y will be denoted by
D' (Y, B) and C*(Y, B), respectively. Let E'(Y, B) be the subspace of D'(Y, B) whose
elements have compact support in Y.

We recall the Schwartz kernel theorem [12, Theorems5.2.1, 5.2.6], [19, ThoremB.2.7].
Let B and E be C* vector bundles over paracompact orientable C*° manifolds M and M|,
respectively, equipped with smooth densities of integration. If A : C§°(My, E) — D'(M, B)
is continuous, we write K4 (x, y) or A(x, y) to denote the distribution kernel of A. The
following two statements are equivalent

(1) A is continuous: E'(My, E) — C*(M, B),
2) Ko € C®(M x My, BX E*).

If A satisfies (1) or (2), we say that A is smoothing on M x M. Let A, A: Cy°(My, E) —
D'(M, B) be continuous operators. We write

A= A(on M x M;) Q2.1

ifA—Aisa smoothing operator. If M = M, we simply write “on M”.

Let H(x,y) € D'(M x M, BKE*). We write H to denote the unique continuous operator
C§°(My, E) — D’(M, B) with distribution kernel H (x, y). In this work, we identify H with
H(x,y).

2.2 Some standard notations in semi-classical analysis

Let Wy be an open set in RM1 and let W5 be an open set in RM2 Let E and F be vector bundles
over Wy and W, respectively. An m-dependent continuous operator A,, : Cg° (W, F) —
D' (W, E) is called m-negligible on W; x Wj if, for m large enough, A,, is smoothing and,
for any K € Wy x W5, any multi-indices c, 8 and any N € N, there exists Cx o, g8 > 0
such that

10298 A (x. V)| < Cxapym ™ on K, ¥m > 1.
In that case we write
Apn(x,y) =0m ) on Wy x W, or A, = 0@m ) on W; x W,.

If Ay, By @ C°(Wa, F) — D'(Wj, E) are m-dependent continuous operators, we write
Ay = By +0(m™ ) on Wy x Whor Ay (x,y) = Byu(x,y) + O(m™°) on W x Wy if
Ay — By = O(m™°) on Wi x Wo. When W = W = W, we sometime write “on W”.
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Let X and M be smooth manifolds and let E and F be vector bundles over X and M,
respectively. Let A,,, By, : C°(M, F) — C°°(X, E) be m-dependent smoothing operators.
We write A, = B, + O(m~°°) on X x M if on every local coordinate patch D of X and
local coordinate patch Dy of M, A, = By, + O(m~>°) on D x D;. When X = M, we
sometime write on X.

We recall the definition of the semi-classical symbol spaces

Definition 2.1 Let W be an open set in RV, Let

S(1; W) = {a € C®(W) |Va € Név Dsup,ewld%a(x)| < oo},
Sﬂw 1, W) = {(a(~,m))meR|V0l € N(I)V,VX € C3°(W) @ Sup,,cr m>1 SUPyew 8% (xalx, m))| < oo} .

For k € R, let
She(1) = She(1: W) = {@C.m)mer | n ™ a(,m)) € Sf (15 W)

Hence a(-,m) € Sk (1; W) if for every o € N(’;’ and x € Cy°(W), there exists Cy > 0

loc
independent of m, such that |9% (xa(-, m))| < Com* holds on W.
Consider a sequence a; € Sﬁ'fc (1), j € Ng, where k; \( —oco, and let a € Sﬁ?c (1). We
say

a(.m) ~ Y aj(-.m) in S (1),
=0

if, for every £ € Np, we have a — Zﬁ'zo aj € S{Zg’l (1). For a given sequence a; as above, we
can always find such an asymptotic sum a, which is unique up to an element in S, .>° (1) =
S0 (1; W) i= Mg Sk (1),

Similarly, we can define S{;C (1; Y, E) in the standard way, where Y is a smooth manifold
and F is a vector bundle over Y.

2.3 CR manifolds and bundles

Let (X, T1.0x ) be a compact, connected and orientable CR manifold of dimension 2n + 1,
n > 1, where T10X is a CR structure of X, that is, T19X is a subbundle of rank n of
the complexified tangent bundle CT X, satisfying 710X N 701X = {0}, where T*'X =
T1.0X, and [V, V] C V, where V = C®(X, T"°X). There is a unique subbundle HX of
TX such that CHX = T'9X @ T%!X, i.e. HX is the real part of T'0X @ TO1X. Let
J : HX — HX be the complex structure map given by J(u 4+ u) = iu — iu, for every
u € THOX. By complex linear extension of J to CT X, the i-eigenspace of J is T10X =
{[VveCHX : JV = J/=1V}. We shall also write (X, HX, J) to denote a compact CR
manifold.

We fix a real non-vanishing 1 form wy € C(X, T*X) so that {wo(x), u) = 0, for every
u € Hy X, for every x € X. For each x € X, we define a quadratic form on H X by

1
Ly(U,V)= Eda)o(JU, V),YU,V € H: X.
We extend £ to CH X by complex linear extension. Then, for U, V € TX1 Ox R

— 1 — 1 —
Ly(U,V) = Edwo(JU, V)= —?dwo(U, V).
i
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The Hermitian quadratic form £, on TXI‘OX is called Levi form at x. We recall that in this
paper, we always assume that the Levi form £ on 71-0X is non-degenerate of constant signa-
ture (n_, n4) on X, where n_ denotes the number of negative eigenvalues of the Levi form
and n4 denotes the number of positive eigenvalues of the Levi form. Let T € C*°(X, T X)
be the non-vanishing vector field determined by

wo(T)=—-1, dwo(T,)=0 onTX. (2.2)

Note that X is a contact manifold with contact form wy, contact plane H X and T is the Reeb
vector field.

Fix a smooth Hermitian metric ( - | - ) on CT X sothat 710X is orthogonal to T%' X, (u | v)
is real if u, v are real tangent vectors, (7| T ) = 1 and T is orthogonal to T @ 701X,
For u € CTX, we write |u|? := (u|u). Denote by T*10X and T7*%1 X the dual bundles
719X and T%! X, respectively. They can be identified with subbundles of the complexified
cotangent bundle CT* X . Define the vector bundle of (0, ¢)-forms by 7*09 X := A9T*01 X
The Hermitian metric (- | -) on CT X induces, by duality, a Hermitian metric on C7T*X and
also on the bundles of (0, ¢) forms T*0ax, g =0,1,---,n. We shall also denote all these
induced metrics by (- | - ). Note that we have the pointwise orthogonal decompositions:

CT*X =T*'9X @ T*01X @ {pewp : X € C},
CTX=T'"X®T""Xa®{AT : 1 € C}.

For x, y € X, letd(x, y) denote the distance between x and y induced by the Hermitian
metric (- | -). Let A be a subset of X. For every x € X, letd(x, A) :=inf {d(x, y); y € A}.

Let D be an open set of X. Let %9 (D) denote the space of smooth sections of 7704 X
over D and let Qg’q (D) be the subspace of 2%:9(D) whose elements have compact support
in D.

2.4 Contact reduction

Let G be a connected compact Lie group with Lie algebra g such that dimr G = d. We assume
that the Lie group G acts on X preserving wy, i.e. g*wo = wop, forany g € G. Forany § € g,
there is an induced vector field £x on X given by (§éxu)(x) = % (u(exp(t€) o x)) |;=0, for
any u € C®(X).

Definition 2.2 The contact moment map associated to the form wy is the map u : X — g*
such that, for all x € X and & € g, we have

(n(x), &) = wo(§x (x)). (2.3)

We now recall the contact reduction from [1,9]. It was shown in [1,9] that the contact
moment map is G-equivariant, so G acts on ¥ := u~!(0), where G acts on g* through
co-adjoint represent. Since we assume that the action of G on Y is freely, Yg := T (0)) /G
is a smooth manifold. Letw : ¥ — Yg and: : Y < X be the natural quotient and inclusion,
respectively, then there is a unique induced contact form wg on Y such 7*@wy = t*wg. We
denote by HY := Ker wp N T(uw='(0)) = HX N TY, then the induced contact plane on Yg
is HYg := nw,HY . In particular, dim HY = 2n — d and dim HYg = 2n — 2d.
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2.5 CRreduction

In this subsection we study the reduction of CR manifolds with non-degenerate Levi curvature
which is a CR analogue of the reduction on complex manifolds considered in [27, §2.1]. For
the case of strictly pseudoconvex CR manifolds, the CR reduction was also studied in [17].
Recall that we work with Assumption 1.2. Let b be the nondegenerate bilinear form on

H X such that
b(-,-) =dwo(-, J-). 24

We denote by g := Span(§x, § € g) the tangent bundle of the orbits in X. Let

gt = {v € HX: b(Ex,v) =0, Véx € g}. (2.5)

Since we assume thatg N gJ‘b =

5 {0}, for every x € Y, we immediately get

Lemma 2.3 When restricted to g X g, the bilinear form b is nondegenerate on Y.
Forx e Y,V € H X and § € g, by (2.3) and (2.4), we have

by(€x, JV) = —dwo(x)(x, V) = — (du(x)(V)) (§).

Therefore,
JVeghly & dux)(V)=0. (2.6)

Since Y = ,u_l (0), we have
du(x)(V)=0 < V eT,Y. 2.7)
In particular, for x € Y,
dim g = dim(H,X N 7,,Y) = dim H,Y = 2n —d.

By (2.2), (2.7) and the definition of g, we have g C H X|y. From Lemma 2.3, we can check
that g + gJ-b = HX|y. Since g, N gi-b = {0}, for every x € Y, this sum is a direct sum.
Let U be a small open G-invariant neighborhood of Y. Since G acts freely on Y, we can
thus also assume that G acts freely on U. Since g9, N gi” = {0}, for x € Y, we have, for
xey,
HU=g &g, (2.8)

Then, by (2.8), we can choose the horizontal bundles of the fibrations U — Ug := U/G
and Y — Y5 tobe

H"U = g**|y, H"Y:=H"U|ynHY. (2.9)
Hence
HY =gly® H"Y.
Lemma 2.4
gy =JHY. (2.10)
HU|y =Jgly @ HY =gly ® Jgly ® H"Y. (2.11)
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Proof The identity (2.10) follows from (2.6) and (2.7). Forx € Y,V € H,Y and &€ € g,

by(Jéx, V) =dwo(x)(Ex, V) = (dux)(V)) (§) = 0. (2.12)
Using (2.12), dim H,U = dim H,Y + dim J 9. and the fact that b is nondegenerate on
JHY, we obtain (2.11). ]

By (2.9), and (2.10), we have HY = JHY N HY. In particular, H"Y is preserved by
J, so we can define the homomorphism Jg on HYg in the following way: For V € HYg,
we denote by V¥ its lift in H¥ Y, and we define Jg on Y by

U = JvH). (2.13)

Hence, we have J; : HYg — HYg such that Jé = —id, where id denotes the identity
map id : HYg — HYg. By complex linear extension of Jg to CTYg, we can define the
i-eigenspace of Jg is givenby 7Y = {V € CHY; : JgV = =1V}

Theorem 2.5 The subbundle T'°Yg is a CR structure of Y.

Proof Letu,v € C®(Yg, T10Y;), then we can find U, V € C®(Yg, TY¢) such that
u=U—+=1JgU, v=V-/-1JGV.
By (2.13), we have
uft =t —/—1uvf, v=vH" —/—1Jv" e "X nCHY.

Since T1-9X is a CR structure and it is clearly that [uff,vH] € CHY, we have [u®?, vH] e
T'.9X N CHY. Hence, thereis a W € C*°(X, HX) such that

W, v =W — V=1JW.

In particular, W, JW € HY.Thus, W e HY N JHY = HY . Let X € H"Y be a lift of
X € TYg such that X = W. Then we have

[u, v] = me[u, v = m. (X7 — V/=17X") = X — V=1JX € T Y,

i.e. we have [C® (Y, T1O0Yg), C®(Yg, THOY6)] € C®(Yg, TH0Y4). Therefore, T1-0Y
is a CR structure of Y. O

3 G-invariant Szeg6 kernel asymptotics

In this section, we will establish asymptotic expansion for the G-invariant Szegd kernel. We
first review some known results for Szegd kernel.

3.1 Szegd kernel asymptotics

In this subsection, we don’t assume that our CR manifold admits a compact Lie group action
but we still assume that the Levi form is non-degenerate of constant signature (n_, n.).
The Hermitian metric (- | -) on CT X induces, by duality, a Hermitian metric on C7T*X and
also on the bundles of (0, ¢) forms T**4X, ¢ = 0, 1, ..., n. We shall also denote all these
induced metrics by (- |- ). Foru € T*0-9 X we write |u|? ;= (u|u).Let D C X be an open
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set. Let Q99(D) denote the space of smooth sections of T*0-9 X over D and let Qg’q (D) be
the subspace of 2°-7(D) whose elements have compact support in D.
Let

3 QX)) > QYItl(X)

be the tangential Cauchy-Riemann operator. Let dv(x) be the volume form induced by the
Hermitian metric (- | -). The natural global L? inner product (- |-) on Q%4 (X) induced by
dv(x) and (-|-) is given by

(u|v):=/(u(x)|v(x))dv(x), u,veQO’q(X).
X

We denote by L%O ? (X) the completion of Q%4 (X) with respectto (- |-). We write L3(X) :=

L%O,O) (X). Weextend (-|-) to L(zo,q)(X) in the standard way. For f € L%O,q)(X)’ we denote

I£17 = (f1f). Weextend 3, to L2, , (X),r =0,1,...,n,by
0.r)
3y : Dom 3, C Ly ) (X) = Lo, 1)(X),

where Dom 3, := {u € L%O,r)(X); Apu € L%O,rJrl)(X)} and, for any u € L%OJ)(X), Apu is
defined in the sense of distributions. We also write

. _
3, : Domdy, C LY ,1)(X) = L, (X)

to denote the Hilbert space adjoint of 9, in the L2 space with respect to (-|-). Let D,(jq)
denote the (Gaffney extension) of the Kohn Laplacian given by

DomDéq) = {s S L%O’q)(X); s € Dom 9, ﬂDomgz, Aps € Domgz, 5Zs € Domgb} )

OWs = 3y9ys + 0,9ps fors € Dom Y.
(3.1)
By aresult of Gaffney, foreveryg =0, 1, ...,n, Dl(jq) is a positive self-adjoint operator (see
[19, Proposition 3.1.2]). That is, D(bq) is self-adjoint and the spectrum of Dl(,q) is contained in
ﬁ_,_,q =0,1,...,n. Let
S@ L% (X) — Ker (7 (3.2)

be the orthogonal projections with respect to the L2 inner product (- | - ) and let
S@(x,y) e D'(X x X, T*"9X R (T**1X)*)

denote the distribution kernel of §).
We recall Hérmander symbol space. Let D C X be a local coordinate patch with local
coordinates x = (X1, ..., X241)-

Definition3.1 For m € R, S{";(D x D x R4, 799X ® (T*09 X)*) is the space of all

a(x,y,t) € C®(D x D xR, T*%7 X K (T*09 X)*) such that, for all compact K € D x D
andall o, 8 € N(z)”H, y € Ny, there is a constant Cy, g, > 0 such that

105900 a(x, y, 0] < Capy(L+ 1)V, V(x,y.0) € K xRy, 1> 1.
Put

S™®(D x D x Ry, T*4 X X (T*%9X)*) .= ﬂ SPo(D x D x Ry, T4 X B (T*4X)%).

meR
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Leta; € S| )(D x D x Ry, T*X R (T*09X)*), j = 0,1,2,... with m; — —o0, as
Jj — o0. Then there exists a € S;’fg(D x D x Ry, T*09 X ® (799 X)*) unique modulo
>, suchthata—) ""ja; € x D xR4, ’ ’ ork=0,1,2,....
§7%, such th bZhaj € SU'H(Dx Dx Ry, T4 X K(T*09X)*) fork =0, 1,2
If a and a; have the properties above, we write @ ~ > 72 a; in ST0(D x D x
Ry, 7*04X K (T*09X)*). We write

s(x,y,1) € S% (D x D x Ry, T*4X K (T*"1 X))
if s(r,y.1) € S (D x D x Ry, T*%X ® (T*%9X)*) and

s, y, 1) ~ Z;?‘;O s e, "4 in S7o(D x D x Ry, T*04X R (T4 X)*),
s/ (x,y) € C®°(D x D, T*4X R (T*%4X)*), j € No.

The following was proved in Theorem 4.8 in [15]
Theorem 3.2 Giveng =0, 1,2, ..., n. Assume that g ¢ {n_, ny}. Then, S0 =0 on X.

We have the following (see Theorem 1.2 in [13], Theorem 4.7 in [15] and see also [2] for
q=0)

Theorem 3.3 We recall that we work with the assumption that the Levi form is non-degenerate
of constant signature (n_,ny) on X. Let ¢ = n_ or ny. Suppose that Déq) has L? closed
range. Then, SO (x,y) € C®(X x X \ diag (X x X), T*09X K (T*%9X)*). Let D C X
be any local coordinate patch with local coordinates x = (x1, ..., Xon+1). Then, there exist
continuous operators S—_, Sy : Qg’q(D) — D/(D, T*9X) such that

$S@W =58 +8, onD,

and S_(x,y), Sy (x,y) satisfy
0 .
Se(x,y) = / e"”ﬂx‘y)ts;(x, vy, t)dt on D,
0

with

s_(x, y, 1), 54 (x, y, 1) € S (D x D x Ry, T*00X K (T*09X)"),

S_()C,y,t)=0 lfq#n—? S+(x9yst)=0 lfq #I’l+, (33)

sO(x,x) #0, Vx e D, s%(x,x) #0, Vx €D,

and the phase functions ¢_, ¢ satisfy

P+ (x,y), 90— € C®(D x D), Img_(x,y) >0,
p—(x,x) =0, o_(x,y) #0 if x #,

dep—(x, )|,_, = —w0(x), dyp-(x.y)|,_, = @),
p—(x,y) =—9_(y,x), —9,(x,y) =¢_(x,).

Remark 3.4 1t is well-known that for a strictly pseudoconvec CR manifold of dimension 3,
D}(70) does not have L2 closed range in general (see [28]). Kohn [16] proved thatifg = n_ =
nyor|n_ —n4| > 1then Dl(yq) has L? closed range.

The following result describes the phase function in local coordinates (see chapter 8 of
part Lin [13])
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Theorem 3.5 For a given point p € X, let {W; 7:1 be an orthonormal frame of T'0X in
a neighborhood of p such that the Levi form is diagonal at p, i.e. Ly, (W}, W) = 8jsj,

Jj»s = 1,...,n. We take local coordinates x = (X1, ...,X41), 2j = Xj + iXq4+j, ] =
I,....d, zj = x2j_1 +ixyj, j =d+1,...,n, defined on some neighborhood of p such
that wo(p) = dxou41, x(p) =0, and, for somecj € C, j=1,...,n,
9 2 9
Wi = —— —ipZ——— —cjXoms1 +) a0 —+0(xP), j=1,....n,
/ 0z; J jaxan et 0X2n+1 ; J 0Xk
(3.4)
where a; i (x) € C*>, ajr(x) = O(x|), for every j = 1,...,n, k = 1,...,2n. Set
Y=t Yomt1), Wi =yj+ivayj, J=1,....d, wj =yrj_1+iy2j, j=d+1,....n
Then, for ¢_ in Theorem 3.3, we have
2n
Imp_(x,y) = e 5=y’ >0, (3.5)
j=1

in some neighbourhood of (0, 0) and

9 (X, ) = —Xous1 + Yaus1 +1i 2 mjllzy — wil* + Z;f:l(iuj(zjwj —z;W;)
+cj(=zjxom+1 +wjyam+1) + ¢ (—ZjXom+1 +Ejy2n+1)>

+(x2n41 = Y2ur ) F (6, ¥) + O((x, 1P,
(3.6)
where f is smooth and satisfies £(0,0) =0, f(x,y) = f(y, x).

The following formula for the leading term 52 on the diagonal follows from [13, §9]. The

formula for the leading term 33_ on the diagonal follows similarly.

Theorem 3.6 We assume that the Levi form is non-degenerate of constant signature (n_, n..)

at each point of X. Suppose that Dl(f) has L? closed range. If ¢ = n=, then, for the leading
term s% (x,y) of the expansion (3.3) of s+(x, y, t), we have

1
0 —n—1
52 (x0, X0) = 37 "7 |det Ly |Txg.ny » X0 € D,

where det Ly, is given by (1.6) and Ty, n-. is given by (1.7).

3.2 G-invariant Szegd kernel

Fix g € G. Let g* : ALCCT*X) — A;,,OX(CT*X) be the pull-back map. Since G
preserves J, we have g* : Tx*o’qX — T;E),’ZXX, Vx € X. Thus, for u € Qo’q(X),
we have g*u € Q09(X) and we write (g*u)(x) = u(g o x). Put Q¥9(X)C :=
{u e Q1(X); g*u =u, Vg e G}. Now, we assume that the Hermitian metric (-|-) on
CT X is G-invariant and g is orthogonal to HY () JHY atevery point of ¥. The Hermitian
metric is G-invariant means that, for any G-invariant vector fields U and V, (U |V ) is G-

invariant. Then the L? inner product (- | -) on Q%9 (X) induced by (- | - ) is G-invariant, that
is, (u|v) = (g*u|g*v), forallu,v € Q*4(X), g € G.Letu € L%O,q)(X) andletg € G.

Take u; € Q04 (X), j=L12,..,withu; — uin L%O q)(X) as j — oo. Since (-]-) is
G-invariant, there isa v € L%O q)(X) such that v = lim;_, o g*u;. We define g*u := v.
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It is clear that the definition is well-defined. We have g* : (0 q)(X) — L(0 q)(X). Put

(0 q)(X) = {u IS L(o q)(X) g*u=u, Vg € G} ItlsnotdlfﬁculttoseethatL(O q)(X)G

is the completion of Q%9(X)C with respectto (- |-). We write L3(X)9 := L%O 0) (X)C. Since
G preserves J and (- |-) is G-invariant, it is straightforward to see that

g%, = dpg" on Dom 9y, g*gz = 5Zg* on Domgz,
O = 0@ g* on Dom O

Put (Ker Dl(,q))c Ker D(") N L(0 »X )¢ . The G-invariant Szegd projection is the orthog-
onal projection Sg) : (0 q)(X) — (Ker D(q))G with respect to (-|-). Let S(q)(x y) €

D'(X x X, T*09 X ) (T*0-9 X)*) be the distribution kernel of S¢. Let d i be a Haar measure
on G so that |Gy, := [;dp = 1.Then,

S (x,y) = /G SD(x, g o y)du(g). (3.7)

Note that the integral (3.7) is defined in the sense of distribution.

3.3 G-invariant Szegd kernel asymptotics near £~ (0)

In this section, we will study G-invariant Szeg6 kernel near w=10).

Let ¢p € G be the identity element. Let v = (vy, ..., vg) be the local coordinates of G
defined in a neighborhood V of eg with v(eg) = (0, ..., 0). From now on, we will identify
the element e € V with v(e). We first need

Theorem 3.7 Let p € /L_l (0). There exist local coordinates v = (vy, ..., vyq) of G defined
in a neighborhood V of eq with v(eg) = (0, ..., 0), local coordinates x = (x1, ..., X2n+1)
of X defined in a neighborhood U = Uy x Uy of p with 0 <> p, where Uy C R? is an
open set of 0 € R, Uy ¢ R4 is an open set of 0 € R***1=% and a smooth function
Y =Wl ..., va) € C®Uy, Up) with y (0) = 0 € R? such that

W15 e o v0) 0 (V(Xdt1s - o X204 1)s Xd+1s -+ X2041)
= U1 +V1&xd+1, -+ X2n41)s -5 Va + Va(Xa+1s -+ s X2n41), Xd+15 - - > X2n+1), (3.8)
Vi, ...,v) €V, Y(Xg+1, ..., Xon+1) € Un,
_ 3 9
g—span {Txl,,m
YO U = {xg41 = -+ = x24 = 0}, (3.9

On = (0) U, we have J (55) = 550— +a; () gy, J = 1,2,....d,

where aj(x) is a smooth function on u_] (0) U, independent of xi, ..., X2d, Xon+1 and
aj(0)=0,j=1,....d,

T pan{Zl,...,Z,,},
Zj %ui zam Yp), J=1,....d,
Zj z(axz ige)(p), j=d+1.. (3.10)

(Zlek)—rS,k, Jok=12,.
ﬁ(ZJ,Zk) M//kvjk_]z
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and
wo(x) = (1+ O(xD)dxant1 + X 4t jxayjdx,
+ Zﬂ:d-&-l 2ujxajdxaj—1 — Z?:d—}—l 2 jxoj—1dxy; 3.11)
Y ey bjxaedx + O(x ),
where by € R, ..., by, € R

Proof From the standard proof of Frobenius Theorem, it is not difficult to see that there
exist local coordinates v = (v, ...,v4) of G defined in a neighborhood V of ey with
v(eg) = (0, ..., 0)andlocal coordinates x = (x1, ..., x2,+1) of X defined in aneighborhood
U of p with x(p) = 0 such that

W1y v2) 0 (0,0, 0, X041, -+ s X20n41)
= V1, .oy Vd, Xdg1s -5 X2n41), Y1, ...,v9) €V, V(0,...,0,x541,...,x2441) €U,
3.12)

and

d 0
= — e, (- 3.13
g = span {axl 8xd} (3.13)

Since p € M’I(O),wehavewo(p)(%j(p)) =0,j=1,2,...,d,and hence %(p) € H,X,
j=1,2,...,d. Consider the linear map

R :gp — gp,
u— Ru, (Rul|v)=(dwy, Jurnv).
Since R is self-adjoint, by using linear transformation in (xg,...,x4), we can take
(x1,...,xq) such that, for j,k=1,2,...,d,
(Ra()la())—4 i8j (8()|a())—25' (3.14)
0x;j p 0Xg PIT= S0k ox; P 0Xx Py = 20) k- '

By taking linear transformation in (v, ..., vg), (3.12) still hold.

Let G)O(%j) =aj(x) € C*W), j=1,2,...,d. Since aj(x) is G-invariant, we have
Ma%x(sx) =0,j,s =1,2,...,d. By the definition of the moment map, we have

pWOU =l eUsai@) = =aqg(x) = 0}.

. . . daj .
Since p is a regular value of the moment map u, the matrix (—’ ) is
P J P o, (P) 1<j<d.d+1<s<2n+1

of rank d. We may assume that the matrix (?(p)) is non-singular. Thus,
Xs I<j<d,d+1<s<2d

(X1, vy X4, A1y -y ad, X2441, - - - » X2n+1) are also local coordinates of X. Hence, we can
take v = (vy, ..., vg) and x = (x1, ..., X2,+1) such that (3.12), (3.13), (3.14) hold and
' O)(\U = {x=(1..... xon41) € Us xayq =+ = x24 = 0}. (3.15)

On =1 0) N U, let

9 0 il .
J(—)=bj1(X)—+ -+ bjomp1(x) j=12,...,.d.
0x; dx1

OX2nt1
Since we only work on ,u’l(O),bj,k(x)isindependent of X441, ..., x4, forallj =1,...,d,
k = 1,...,2n + 1. Moreover, it is easy to see that b; ;(x) is also independent of
Xl,...,xg, forall j = 1,...,d, k = 1,...,2n + 1. Let X" = (x2441, .., X2m+1)-
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Hence, bj x(x) = bj (X", j = 1,....d, k = 1,...,2n + 1. We claim that the matrix

N : : . .
(bj,k(x ))15j§d,d+15k52d is non-singular near p. If not, it is easy to see that there is

a non-zero vector u € JgﬂHY where ¥ = p~'(0). Let u = Jv, v € g. Then,

vegJHY = gﬂg“ (see (2.10)). Since g N glh = {0} on pn~1(0), we deduce that
v = 0 and we get a contradiction. The claim follows. From the claim, we can use linear

transformation in (X441, . . . , X24) (the linear transform depends smoothly on X”') and we can
take (X441, - - ., X24) such that on pﬁl (0),
a9 . 0 . 0 a
J(=—)=bj 1 X)—+ - +bja&® ”)7 +
0x; 0x1 0xqg  0Xg+j
~ 0 ~
+bj 2041 (X") + -+ b1 (X7) ,
8)C2d+1 a-x2n+l
where j = 1,2, ..., d. Consider the coordinates change:
X =(xr, .o Xop1) > u = (U1, ... U2pt),
(1, X2n41) = (X1 — Zd 1 0j 1" )Xty Xd — Z?:l bj.a(X")Xdvj» Xd41s - - - X2d,
X2d+1 —Z‘f 1B 2av1 ) Xavjs - Xong1 — Zle bjon+1(X")Xaj)-
Then,
9 9 .
i e 1,....d,2d+1,...,2n+1,
; ) ] )
Ty " litmn T T bidmg T v
f) 0 .
=bjratigy — T b,y S =L d
Hence, on u~1(0) NU, J(%) — au;, -,j=1,...,d. Thus, wecantake v = (vy, ..., vg)
and x = (x1, ..., xX2,41) such that (3.8), (3.13), (3.14), (3.15) hold and on =" (0) nu,
Rl 0
J(—)=—, j=1,2,....d.
0x; 0Xd+j

LetZ; = %(32 -)(p) € T1 0X j=1,...,d. From (3.14), we can check that

ax,
Lo(Zj Zk) = wiSjk, (ZjlZk)=38jx, j.k=1,....d.

Since g, is orthogonalto H,Y (\JH,Y and H,Y (JH,Y C g#, we can find an orthonor-

mal frame {Zy, ..., Z4, Vi, ..., V,_4} for T,}’OX such that the Levi form £, is diagonalized
with respect to Zi, ..., Zq, Vi, ..., Vu—q, where Vi € CH,Y (JCH,Y,...,V,_q €
CH,Y (JCH,Y. Write

2n+1 2n+1 9
ReV; = , ImV; = s =1, —d.
Z a]k X ]{2} ,Bjkax J

We claim that oy = Bjx = 0, forallk =d+1,...,2d,j =1,...,n —d. Fix j =

I,...,n—d.SinceReV; € gﬁ;b and span {3x§ﬁ""’ a;?z,,] egjb,we conclude that
2n+1
Z,k—+ > (x]k—eg () HpY. (3.16)
k=2d+1
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From (2.10) and (3.16), we deduce that

2n+1

9
Za,k—+ > kg e]HpYﬂHPY=g#meY
k=2d+1
and hence
2n+1
(Za]k—Jr > g )egj;bﬂHpY. (3.17)
k=2d+1

From (3.17) and notice that J(Re V) € gj;b, we deduce that

J(Z kg — )eg (e, =10}

k=d+1

Thus, ojx =0, forallk =d+1,...,2d, j = 1,...,n — d. Similarly, we can repeat the
procedure above and deduce that 8 x =0, forallk =d +1,...,2d,j=1,...,n—d.

Since span {Re Vi,ImV;; j=1,...,n— d} is transversal to gp [4>) Jgp, we can take
linear transformation in (X2441, - .., X2,+1) SO that
S I 0y s _
Re V; =015, + +°‘deaxd + FICTRYETE j=12,...,n—d,

d d 9 .
ImVj:ﬂ.j,lm‘f‘""‘r‘ﬂj,dm‘f'm, j:1,2,...,l’l—d.

Consider the coordinates change:

X =(x1,...,Xm41) = u= (Ui, ..., U2+1),
d d
X1y ey Xong1) = (01— 25 01X —142d — D51 BjaX2j42d, - -+ Xd
d d
— 2 G 9jaxaj—142d — X Gy BjdX2j4+2ds Xd+1, - -, Xon41)
Then,
3 9 .
3 o = 1,...,2d,
3 3 3 _ .
3X2/—E1’+2d - T 18141 T d3ud + 3142‘,) e’ T L....,n—d,
i _ﬂlldul - ‘Bjddud+f’L¢2]+2d j=1...n—d

Thus, we can take v = (v, ..., vg) andx = (xy, ..., X2,41) such that (3.8), (3.9) and (3.10)
hold.

Now, we can take linear transformation in x2,+1 so that wy(p) = dxz,11. Let W;, j =
1,...,n be an orthonormal basis of 710X such that Wi(p) = Z;, j = 1,...,n, where
Zj e TIJ’OX, j=1,...,n,areasin (3.10). Let X = (X1, ..., X2,+1) be the coordinates as
in Theorem 3.5. It is easy to see that

Yj=Xj+aszn+1+hj(x), hj(x)=0(|x|2), aj eR, j=1,2,...,2n,

~ 3.18
Fanit = Vo1 + hont1 (1), B () = O(x]?). G189
We may change x2;,41 be x2,+1 4+ h2,41(0, ..., 0, X441, - - ., X2,, 0) and we have
32%.
Al oy —0, jk=1{d+1,...,2n). (3.19)
0x;j0xg
Note that when we change x2,41 to x2,41 + h2p+1(0, ..., 0, Xg41, ..., X24, 0), % will
change to ‘7 + aj(x )sz o ,J =d+1,...,2n, where a;(x) is a smooth function on
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T (0) (\ U, independent of xi, .. .,xd, X241 and o (0) =0,j=d+1,...,2n. Hence,
-1 9
on = (0)(U, we have J(E) = 3xd+ + a,(x)dx2 e Jj=12,...,d, where a;(x)
is a smooth function on ,u’l(O) (U, independent of xi, ..., Xa4, X2,+1 and a;j(0) =0,
j=1,...,d.
From (3.4) and (3.18), it is straightforward to see that

wo(X) = (1 + O(X])dX2n 41 + Z] 1 21 Xa 4 dX; + Z, (= ZMJXJ)dXdﬂ
+Z i=d+1 2M]x21dx2j 1+ Z/ d+l( ZMJXZJ ])dXZJ +Zj 1b x2n+]dxj + 0(|x|2)
= (1 + O0(xD)dxon+1 + Z] 1 Qujxatj + Xz”“ ydxj + Z; 1(—2pjxj + (,ff;“ YdXat
+ 2 ica1 Crjxaj + a;Zf: Ydxzj—1 + Zj=d+1( 2pjxzj-1+ 331”5‘ )dxs
+ 37 byxanpadxj + O(1x ),

(3.20)
where b; € R,b; € R, j = 1,...,2n. Note that wg is G-invariant. From this observation
and (3.20), we deduce that

32%ons1
%x]ax]( (p)=0, je{l,....d},ke{l,...,d}yU{2d +1,...,2n}, 3.21)
(,xd’ffj”;;k (p) =2ujdjk, j.kell,....d}.

From (3.21), (3.20) and (3.19), it is straightforward to see that

wo(x) = (1+ O(x)dxans1 + Y9 4jxa4 jdx;
3 g 20 j2dxa ot = Y g 20 gxaj1dxa) + 0L bjxansdx + O(1x ),

(3.22)
where by € R, ..., by, € R. Since wo(p)(ax ) =0onxg4; = - =x4q =0,j =
1,2,...,d,we deduce that b| = =b; =0 and we get (3.11). The theorem follows. O

We need
Theorem 3.8 Let p € /L_l (0) and take local coordinates x = (x1, ..., xon+1) of X defined

in an open set Uof p with 0 <> p such that (3.9), (3.10) and (3.11) hold. Let ¢_(x, y) €
C®(U x U) be as in Theorem 3.3. Then,

Q_(x,y) = —X2n41 + Yons1 — ZZ/ lﬂjxjxaurj +221 1 MjYjYd+j +lZ/ [“‘L]HZ] j|2
+Z, ViR Ejw) = zjw)) + Z, 1 (= 5bag ) (=2 jX2ug1 + WjYans1)
+Z]:1( bas+ ) (=ZjXont1 +Wjyont1) + gy L(baj—1 — ibj)(—zjxXont1 + W Vout1)
+Z'}:d+1 %(sz-1 +ib2))(—ZjXon41 + WjYant1) + (2041 — Yous) F (. 3) + O((x, )P,
(3.23)
where z; = xj +ixqrj, j = 1,...,d, zj = x2j_1 +ix2j, j = 2d +1,...,2n, uj,
j=1,....n,and bgy1 € R, ..., by, € Rareasin (3.11) and f is smooth and satisfies

£0,0) =0, f(x,y) = f(y,x).
Proof LetX = (X1, ..., X2n+1) be the coordinates as in Theorem 3.5. It is easy to see that

fj =Xxj+ajxopu1 +hjx), hjx)= 0(|x|2), aj €R, j=1,2,...,2n, (3.24)
¥ont1 = Xong1 + hong1(x), hopp1(x) = O(|x]?). '

From (3.4), it is straightforward to see that

(@ = (1 0D Tans + 9y 2T, + X (20,
+Z/ —d+1 2ujxajdxgj— 1+ZJ d-H( 2M1x21 l)dx21 +Z/ 1b x2]1+1dxj +0(|x| )
(3.25)
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where

bj=cj+¢;, jell,....,dyUf2d +1,2d +3,...,2n -1},
bj =icj—ic;, jeld+1,....2dyJ{2d +2,...,2n}.

From (3.25) and (3.11), it is not difficulty to see that (see also (3.20))

Py =0, jell,....d), ke(l,....d),

dx ;9 Xk
%fg;; (P =0, je(l,....2n} ,ke(2d+1,...,2n}, (3.26)
S (p) = 2p1jdj 6, ok €1, d}.

From (3.24), (3.26) and (3.6), it is straightforward to check that

d d ‘
Q- (X, ¥) = —Xoni1 F Vanrt — 2 0G0y WX a2 5y 1Y Yasj iyl — w)?
+ i @wy = zjwy) + 3y Bi (=2 x4t + wjyont1)
+ 211 B (=Zjxons1 + W yant1) + (ans1 = y2ur1) £ (x, ) + O((x, Y)P),

(3.27)
where B; € C, j =1,...,nand f is smooth and satisfies f(0,0) =0, f(x,y) = f(y, x).
We now determine 8, j =1, ..., n. We can compute that
dp—

Wj(x,x> = —4pjxarj — (Bj + Bxams + O(xP), j=1,....d,
()xd+ ( X) _l(ﬂj - ﬂj)x2n+1 + 0(|X|2), j = 1’ Tt d’ (3 28)
aizj (6, X) = =2ux2) — (Bj + B)xamr + O(x?), j=d+1,.

G (. x) = 2pjxaj 1 + (i) + B et + O(x D), j=d+1,.

Note that dy¢_(x, x) = —w(x). From this observation and (3.11), we deduce that

"%(x X) = —dpixgr;+ 0(x?), j=1,....,d,
9= (1 x) = —bay s + O(xD). j=1.....d.

0x4+

o= (¢ ) = 232 — b1 + O(xP), j=d +1,.

szj 1

3x2 (x,x) = 2M1x2] 1 _b2jx2n+l + 0(|x|2) J=d+1,.

(3.29)

From (3.28) and (3.29), we deduce that

Bj=—%barj, j=1,....d, and B; = 3(byj—1 —ibyj), j=d+1,....n
(3.30)
From (3.30) and (3.27), we get (3.23). O

We now work with local coordlnates as in Theorem 3.7. From (3.23), we see that near
(p,p) € U x U, we have ;é 0. Using the Malgrange preparation theorem [12,
Th.7.5.7], we have

3}2
o (x,y) = g, Y)(yont1 + 0 (x,9) (3.31)

in some neighborhood of (p, p), where y = (y1, ..., Yan), & $— € C*. Since Imgp_ > 0,
it is not difficult to see that Im ¢— > 0 in some neighborhood of (p, p). We may take U small
enough so that (3.31) holds and Im¢_ > 0 on U x U. From [25, Th.4.2], we see that since
@—(x,y)and ¢_(x, y) satisfy (3.31), ¢o—(x, y)f and (y2,+1 +@— (x, ¥))t are equivalent in the
sense of Melin—Sjostrand. More precisely, for any k € R and any by (x, y, ) € Sfl (U x U x
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Ry, T4 XR(T*09X)*), wecan find by (x, y, 1) € S (Ux U xRy, T4 X R(T*04 X)*)
such that

00 oo
/ -y (x, y, Ddt = / -y (x, y, 1)dt on U
0 0
and vise versa. We can replace the phase ¢_ by yz,41 + ¢—(x, ¥). From now on, we assume
that ¢_ (x, y) has the form
§07(X, y) = Y2n+1 +¢)*(xa)o))' (332)

It is easy to check that ¢_ (x, y) satisfies (3.5) and (3.23) with f(x,y) = 0.
We now study S(Gq )(x, y). From Theorem 3.2, we get

Theorem 3.9 Assume that q ¢ {n_, ny.}.Then, S(Gq) =0on X.

Assume that ¢ = n_ and Dgf’) has L? closed range. Fix p € u~'(0) and let v =
(v1,...,vg) and x = (x1,...,x2,+1) be the local coordinates of G and X as in Theo-
rem 3.7. Assume that dpu = m(v)dv = m(vy, ..., vg)dv; - --dvg on V, where V is an open
neighborhood of ¢g € G as in Theorem 3.7. From (3.7), we have

S(Gq)(x,w:/Gx(g)SW)(x,goy)du(ngG(l — x(@)SDV(x, g 0 y)du(g),

where x € C3°(V), x = I near e. Since G is freely on w10, if U and V are small, there
is a constant ¢ > 0 such that

d(x,goy)>c, Vx,yeU,g e Supp(l —x), (3.33)

where U is an open set of p € 1~ '(0) as in Theorem 3.7. From now on, we take U and
V small enough so that (3.33) holds. In view of Theorem 3.3, we see that S@D(x, y) is
smoothing away from diagonal. From this observation and (3.33), we conclude that |, e =
x(@))SD(x, g o y)du(g) = 0 on U and hence

SO, y) = fc X(@SD(x, g 0 Vdpu(g) on U. (3.34)
From Theorem 3.3 and (3.34), we have

S (x,3) = 8-(x,3) + 84 (x, ») on U, (3.35)

S+(x, ) =[5 x(@)S5(x, g o y)du(g),
Write X — (X/, x//) — ()C/, )2//’ _’)‘C’//)’ y — (y/7 y//) — (y/7 )A)//7 ')‘)‘//), Where )’e// —
(Xdt1s - %20), " = Va1 o Y200, X" = (X2d415 -+ 5 X2041), Y = (V2d41s - -5 Y2nt1)-
Since Sg])(x, y) is G-invariant, we have Sg])(x, y) = Sg])((O,x”), (Y&, y"), where

y € C®(U,, U)) is as in Theorem 3.7. From this observation and (3.35), we have

S (e, y) = 80, x"), (), ¥") + (00, x7), (¥ (y"), ")) on U. (3.36)

Write 27 = (xg+1,-+-»%2m), ¥ = (Yas1, ..., y2n) From (3.32), (3.36), Theorem 3.7 and
Theorem 3.3, we have

S0, x"), (y &), ¥"))

= fei(_v2n+1+f/37((O,X”).(v+y(y”),y°’”)))ts_((07 ), v+ y "), y"), Hm(v)dvdt. (3.37)
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From (3.23), it is straightforward to see that

2

N d
0°¢Q_
det((—“’(p,m) )= @il lal #0. (3.38)
jk=1

VLIV

We pause and introduce some notations. Let W be an open set of RV, N e N. From now on,
we write W€ to denote an open set in CV with WE (RN = W and for f € C®(W), from
now on, we write f € C°°(WF) to denote an almost analytic extension of f (see Section 2
in [25]). Let h(x"”, y") € C®(U x U, C?) be the solution of the system

¢p_
%((0, X (" YD) +y () YN =0, j=1,2,....d, (3.39)
Yj
and let »
D_(x",y") = yong1 + ¢ (0, x"), (h(x", Y") + v ("), 3. (3.40)

It is known that (see page 147 in [25]) Im ®_(x”, y”) > 0. Note that
0p_
ij )?”:9”:0,)7”:7’,):/=U+y(y”):O = _(CL)(](.X) s Tx/ ) = O,

where x = (0, (0,X”)). We deduce that for x” = 3" = 0,X" =", v = —y(y”) are real
critical points. From this observation, we can calculate that

dxq)—|x”:y”,)?”:0 = _f(x”)Q)O(x)v dyq>—|x”:y“,)?”:0 = f(x//)wO(x)s (3.41)

>~

where x = (0,x”) and f € C™ is a positive function with f(p) = 1. By using stationary
phase formula of Melin—Sjostrand [25], we can carry out the v integral in (3.37) and get

S,((O,xﬁ), (y(y”), y//)) = /eicb’(x”sy”)ta,(x”, y//’ l‘)d[ on U,
. _d
where a_(x",y", 1) ~ Y205 a (") in $) T (U x U x Ry, T*04X ®
(T*1X)"),
al (x",y") e C°WU x U, T* X R (T*9X)"), j=0,1,...,
0 1 ied, 1 1
a_(p,p) = Em(O)ﬂ 2 ]2 - al 2 a1l - [l Tpn_ - (3.42)

We now study the property of the phase ®_(x”, y”). We need the following which is known
(see Section 2 in [25])

Theorem 3.10 There exist a constant ¢ > 0 and an open set 2 € R such that

Im®_(x",y") > Cvlgsfz {Im@_((0.x"), 0+ y (). 3") + |duf—((0. x")., v + ¥ "), 3" NI*}.
(3.43)
forall ((0,x"),(0,y") e U x U.

We can now prove
Theorem 3.11 [f U is small enough, then there is a constant ¢ > 0 such that

M- (", y") = (187 + 15"+ | = §"F), Y(0,x"),0,") € U x U, (3:44)
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Proof From (3.5), we see that there is a constant ¢; > 0 such that
m@_((0.x"), W+ v, 3" = ci(v+ v+ ¥ =31, YweQ, (345

where € is any open set of 0 € R?. From (3.45) and (3.43), we conclude that there is a
constant ¢ > 0 such that

Im®_(x",y") > e2(1#" = 3”12 + 1dy ¢ (0, x"), (0, ") |?). (3.46)

From (3.23), we see that the matrix

3¢ 32¢_
(a 5 (p,p)Jra 5 (p,p))
XjOXk YjoYk I<k<d,d+1<j<2d

is non-singular. From this observation and notice that dy¢_((0, x”), (0, ”))|z» = 0, we
deduce that if U is small enough then there is a constant ¢3 > 0 such that

ldy (0, x"), (0, x"))| = c3]%"|. (3.47)
From (3.47) and (3.46), the theorem follows. ]

From now on, we assume that U is small enough so that (3.44)Aholds.
We now determine the Hessian of ®_(x”, y") at (p, p). Let h(x",y") := h(x",y") +
y(y"). From (3.39), we have

2;\

d 2 A ~
- 0°¢Q_ oh;j
——F—(@@.p+ (p, p) (p, p) =0. (3.48)
dxg410y1 p-p ; dy10y; bp 0xd+1 p-p

From (3.23), we can calculate that

9P 9*f_ . .
——— (@, p) =2m1, ——(p,p)=2ilmldr;, j=12,...,d. (3.49)
9x4+19y1 dy10y;
From (3.49) and (3.48), we obtain 3?&] (p,p) = i\%\' We can repeat the procedure above
several times and deduce that
oh; ah; LMW .
L(p.p)=—1(p.p=i—L8jr jk=12,....4d (3.50)
0Xd1k 0Yd-+k [l

From (3.50), (3.23), (3.40) and by some straightforward computation (we omit the details),
we get

Theorem 3.12 With the notations used above, we have

D_(x", ") = —Xonp1 + yowr1 + 20 25 113+ 20 9 lwylxd
+i Zd'}=d+1 wjllzj = wil? + 3 gy iy @jw) — 20,)
+ 2 5=1(=batjXarjXont1 + batjYa+jym1) 3.51)
+ 3 a1 $(b2j—1 — ib2j)(—2j X241 + W) Y2nt1)
+ a1 $(baj—1 +ib2j)(—=ZjXon41 + W Yons1)
+(X2n g1 — y2ur ) f(x, 3) + O((x, )P,

wherez; = x2j_1+ixaj, j =2d+1,...,2n,uj, j = 1,...,n,andbdi1 eR,...,by, eR
are as in (3.11) and f is smooth and satisfies f(0,0) =0, f(x,y) = f(y, x).
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We can change ®_(x”, y”) be ®_(x", y”)ﬁ, where f(x”) is as in (3.41). Thus,
A ®_|yr—yr gr—g = —wo(x), dy®_|r_yr zr_g = wo(x), (3.52)

where x = (0, X”). It is clear that ®_(x”, y”) still satisfies (3.44) and (3.51).

We now determine the leading term a® (p, p).In view of (3.42), we only need to calculate
m(0). Put Y, = {g o p; g € G}. Y}, is a d-dimensional submanifold of X. The G-invariant
Hermitian metric (- | -) induces a volume form dvy, on Y. Put

Vett (p) 22/ dvy,.
Y

)4
For f(g) € C®(G), let f(gop) = f(g), Yg € G.Then, f € C®(Y,). Let dfi be the
measure on G given by fG fdin = pr fdvyp, for all f € C*°(G). It is not difficult to see
that d i is a Haar measure and

/G dit = Vet (p). (3.53)

Recall that we work with the local coordinates in Theorem 3.7. In view of (3.10), we see that

[%3871, R \%%} is an orthonormal basis for gp. Hence m(0) = 2% m From this

observation, (3.53) and (3.42), we get

1
Vet (p)

Similarly, we can repeat the procedure above and deduce that

0 d_ —n—1+4 1 1
a_(p,p) =2z 7 2 |2 e a2 a1l lkal Tpu_ - (3.54)

50, /0. = [0 a @y e on

where ay(x",y",t) ~ 230:0 l‘"f%*jai(x”,y”) in ST,B%(U x U x Ry, 704X
(T*1X)"),
al(x",y") e CPW x U, T 9X R (T*1X)), j=0,1,...,
1 1
Vet (p)
and &, (x”,y") € C®WU x U),Im d,(x”,y") = 0, =D, (x", y") satisfies (3.44), (3.51)

and (3.52).
Summing up, we get one of the main result of this work

0 d_ a1l b 1
ay(p, p) =2z 7 Z |2 - a2 gt - - 1altpuy,  (3.55)

Theorem 3.13 We recall that we work with the assumption that the Levi form is non-
degenerate of constant signature (n_,ny) on X. Let ¢ = n_ or ny. Suppose that Dl()q)

has L? closed range. Let p € ,u’l(O) and let x = (X1, ..., Xop+1) be the local coordi-
nates defined in an open set U of p such that x(p) = 0 and (3.8), (3.9), (3.10), (3.11) hold.
Write x”" = (X441, . . ., Xon+1). Then, there exist continuous operators s9, Sf : Qo’q(U) —

QO9(U) such that
S =59 459 onu,

and S¢ (x,y), Sf(x, y) satisfy

o0
SS(x, y) E/o A PF D G (X" Y dt on U,
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with

_d
a—(x,y, 1), a1 (x,y,1) € Sy > (U x U x Ry, T*4X K (T*04X)*),
a’(x,x) #0, Vx e U, al(x,x) #0, Vx €U,

a® (p, p) and a3_ (p, p) are given by (3.54) and (3.55) respectively, q),(ic”, y") e C®U x
U) satisfies (3.52), (3.44) and (3.51), @, (x",y") € C®WU x U), —d,(x",y") satisfies
(3.52), (3.44) and (3.51).

3.4 G-invariant Szeg6 kernel asymptotics away 1~ (0)

The goal of this section is to prove the following

Theorem 3.14 Ler D be an open set of X with D) w=1(0) = @. Then, Sg]) =0 on D.
We first need

Lemma3.15 Let p ¢ u~'(0). Then, there are open sets U of p and V of e € G such that
forany x € C;°(V), we have

/G S@(x. g o y)x(g)du(g) =0 on U. (3.56)

Proof If ¢ ¢ {n_,ny}. By Theorem 3.2, we get (3.56). We may assume that ¢ = n_.
Take local coordinates v = (vi,...,vq) of G defined in a neighborhood V of ey with
v(ep) = (0, ..., 0), local coordinates x = (xy, ..., x2,+1) of X defined in a neighborhood
U = U; x Uy of p with 0 < p, where U; C R4 is an open set of 0 € RY, U, c R2n+1-d
is an open set of 0 € R21+1-d guch that

(V1,05 V2) 0 (¥ (Xda 1, - oy X2041)5 Xd 15 -+ - 5 X2n4+1)
=1+ 1&gty -5 X2041)s oV F Va(Xat1s o0 X2001), Xd 1o - - > X2n41),
Y(i,...,vq) €V, Y(Xgt1,...,X2n+1) € Un,
and
d d
= Span Ty ey T
g p 0x1 0x4

where y = (y1, ..., ya) € C®U,, Up) with y(0) = 0 € R. Note that we don’t use the
local coordinates in Theorem 3.7. It should be notice that G needs not act locally freely on
near p, (3.33) need not be true. We can not use off-diagonal expansion for the Szeg6 kernel
to get this lemma. We will use some properties of the phase ¢_ and integrations by parts to
obtain this lemma. From Theorem 3.3, we have

/G S (x, goy)x (g)dpu(g) = /G S_(x. goy)x ()du(g)+ /G S, (x. goy)x (g)dpu(g) on U.

(3.57)
From Theorem 3.3, we have

/G S_(x. g0 Y)x()du(g)

- / /PO (e (0 4y (37, ) DX WIm()dvd,
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where ¥/ = (Vgt1,...» Yang1), m()dv = dpuly. Since p ¢ n~'(0) and notice that
dyp_(x,x) = wo(x,x), we deduce that if V and U are small then dy,(¢_(x, (v +
y("),¥")) # 0, for every v € V, (x,y) € U x U. Hence, by using integration by
parts with respect to v, we get

| 5=t x@dnts) =0 onv. (3.58)
Similarly, we have
/ Si(x,g0y)x(g)du(g) =0 onU. (3.59)
G
From (3.57), (3.58) and (3.59), the lemma follows. O

Lemma3.16 Let p ¢ u~'(0) and let h € G. We can find open sets U of p and V of h such
that for every x € C3°(V), we have fG SD(x,goy)x(g)du(g) =0 onU.

Proof Let U and V be open sets as in Lemma 3.15. Let V = hV.Then, V is an open set of
G.Let ¥ € C§°(V). We have

/G SD(x, g 0 ) (Q)du(g) = /G SD(x,hogoy)Zhog)du(g)
- /G SD(x, g 0 y)x(9)dug). (3.60)

where x(g) := x(hog) € C§°(V). From (3.60) and Lemma 3.15, we deduce that

fc S (x, g o )7 (g)du(g) = 0 on U.

The lemma follows. O

Proof of Theorem 3.14 Fix p € D. We need to show that Sg] ) is smoothing near p.Leth € G.
By Lemma 3.16, we can find open sets Uy, of p and V}, of & such that for every x € C5°(Vy),
we have

/G S (x, g o y)x(g)du(g) =0 on Uy, (3.61)

Since G is compact, we can find open sets Uh]. and th, j = 1,..., N, such that
G=UY Vi LetU = Dm(mj.vzl U,,_,.) and let x; € CF(Vy,), j = 1,..., N, with
Y%, xj = 1 on G. From (3.61), we have

N
SP(x,y) = /G SD(x, goy)du(g) = Z/G S@(x, g0 y)xj(g)du(g) =0 onU.
j=1

The theorem follows. ]

From Theorems 3.9, 3.13 and 3.14, we get Theorem 1.5.
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4 G-invariant Szeg6 kernel asymptotics on CR manifolds wit S' action

Let (X, TLOx ) be a compact CR manifold of dimension 2n 4+ 1, n > 1. We assume that
X admits an S! action: S! x X — X. We write ¢? to denote the S' action. Let T €
C*°(X, T X) be the global real vector field induced by the S action given by (Tu)(x) =
2 (u(e' 0x)) lg=0, u € C®(X). We recall

Definition 4.1 We say that the S! action ¢/? is CR if [T, C®(X, T"9X)] c C®(X, T'0X)
and the S! action is transversal if for each x € X, CT(x) & TX]’OX &) Txo’lX = CT,X.
Moreover, we say that the S! action is locally free if T # 0 everywhere. It should be
mentioned that transversality implies locally free.

We assume now that (X, T'9X) is a compact connected CR manifold with a transversal
CR locally free S' action ¢’? and we let 7' be the global vector field induced by the S' action.
Let wg € C*°(X, T*X) be the global real one form determined by (wg, u ) = 0, for every
ueT" WX @T%' X, and (wy, T) = —1. Note that wp and T satisfy (2.2). Assume that X
admits a compact connected Lie group G action and the Lie group G acts on X preserving
wo and J. We recall that we work with Assumption 1.7.

We now assume that the Hermitian metric (- |-) on CTX is G x S! invariant. Then the
L? inner product (-|-) on Q%4 (X) induced by (-]|-)is G x S'-invariant. We then have

Tg*d, = g*T0), = 0,¢*T =0, Tg* on Q*4(X), Vg e G,
Tg*DI(f) = g*TDl()q) = Dl()q)g*T = Dl(jq)Tg* on Q%4 (X), VgeG.

Let L%O.q) L (X)C be the completion of Q%4 (x)C with respect to (-|-). We write
L2x)% =12 (X)%. Put (Ker J7)G = (Ker O)7")C M L2, (X)C. Tt is not dif-

ficult to see that, for every m € Z, (Ker qu))g - Qg,’q (X)% and dim (Ker qu))g < 00.
The mth G-invariant Szegd projection is the orthogonal projection Sg{)m : Lfqu)(X ) —
(Ker )G with respect to (- |-). Let Sg), (x, y) € C®(X x X, T**4X & (T*4X)*) be
the distribution kernel of Sg’)m We can check that

1 T . .
S (. y) = —/ S (e o y)e™de. .1
’ 27 J_»
The goal of this section is to study the asymptotics of Sg] )m as m — +o00.
From Theorem 3.14, (4.1) and by using integration by parts several times, we get

Theorem4.2 Let D C X be an open set with Dﬂu_l(O) = . Then, Sg)m =
O(m=°) on D.

We now study Sg ) near 1~ 1(0). We can repeat the proof of Theorem 3.7 with minor

,m
change and get

Theorem4.3 Let p € w=10). There exist local coordinates v = (vi, . . ., vg) of G defined
in a neighborhood V of eq withv(eg) = (0, ..., 0), local coordinates x = (x1, ..., Xon+1) of
X defined in a neighborhood U = Uy x ((jzx] —28,28[) of p withO < p, where U; C R?
is an open set of 0 € R, Uy R~ is an open set of 0 € R¥~4, § > 0, and a smooth
functiony = (y1,...,V4) € C°°(02><] —26,28[, Uy withy(0) =0 € R4 such that

W1, .o v2) o (Y (Xaa1s - ooy X2041)5 Xdt1s -+ - s X2041)
= W1 +V1Xds1s oo Xon41)s - o5 Va + Ya(Xa41s oo o s X2041)s Xd41s -+ o5 X204 1),
V(U]a R} Ud) € V7 V(-xd+]a e ax2n+1) € UZX] - 287 28[7
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T:_axzaﬁ’ g = span {%%],
wHOYNU = {xg41 = -+ = x24 = 0}, 4.2)
On =Y (0)N U, we have J(%) = ﬁ +aj(x)ﬁ+l,j =1,2,....d,
where a;(x) is a smooth function on w10 (U, independent of x\, . .., X2d, X2n+1 and
aj(0)=0,j=1,....d,
TI}’OX = span { X ,Znt,
Zj= ;(62 W ). J= L,
Zj _2(8x2 ‘sz )(p), j—d+1

(Z; |zkl_5,,k, jk=1.2...n
Lp(Zj,Zy) =pjbjr, j,k=1,2,....n

and

wo(x) = (1 + O(x)dx2n41 + Z] |4 jXayjdx;
Y g 2ixjdajot = Y gy 20gxejo1dxaj + O(Ix ).

Remark 4.4 Let p € //fl (0) and let x = (x1,...,x2,41) be the local coordinates as in
Theorem 4.3. We can change x2;,+1 be x2,4+1 — Z?:l aj(x)xqyj,wherea;(x),j=1,...,d,
are as in (4.2). With this new local coordinates x = (x, ..., X2,41),0n ,u’l (0) (U, we have

J(aa ) = 8x3+- i =1,2,...,d. Moreover, it is clear that ®_ (x, y)—}-Z?:l aj(xX)xqyj—

j:1 aj(y)yay; satisfies (1.19). Note that a;(x) is a smooth function on w=10) nu,
independent of x1, ..., x24, X2p+1 and a;(0) =0, j = 1,...,d.

‘We now work with local cqordmates as in Theorem 4.3. From (3.51), we see that near
(p,p) € U x U, we have av # 0. Using the Malgrange preparation theorem [12,
Th.7.5.7], we have

D_(x, ) = g(x, ) ag1 + D_(x", ") (4.3)

in some neighborhood of (p, p), where 3" = (ya41, ..., yan), g, P— € C. Since Im d_ >
0, it is not difficult to see that Im ®_ > 0 in some neighborhood of (p, p). We may take U
small enough so that (4.3) holds and Im®_ > 0 on U x U. From [25, Th.4.2], we see that
since ®_(x, y) and y2, 11+ P_(x”, 3") satisfy (4.3), ®_(x, y)t and (2,41 + P_(x", "))t
are equivalent in the sense of Melin—Sjostrand (see the discussion after (3.31), for the meaning
of equivalent in the sense of Melin—Sjostrand). We can replace the phase ®_ by y2,+1 +
D_ (x, y” ). From now on, we assume that
O (x,y) =y + D", 5. (4.4)
It is easy to check that ®_ (x, y) satisfies (3.44) and (3.51) with f(x, y) = 0. Similarly, from
now on, we assume that
Do(x,y) = —yoni1 + D, 3. 4.5)

We now study S (q) (X, y). From Theorem 3.9, we get

Theorem 4.5 Assume that q ¢ {n_,n.}. Then, Sgi)m =0(m *)onX.

Assume that ¢ = n_. It was proved in Theorem 1.12 in [15] that when X admits a
transversal S' action, then Dg]) has L2 closed range. Fix p € w=l0)andletv = (vy, ..., vq)
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and x = (xq, ..., x2,4+1) be the local coordinates of G and X as in Theorem 4.3 and let U
and V be open sets as in Theorem 4.3. We take U small enough so that there is a constant
¢ > 0 such that

de?ogox,y)>c, Vx,y)eUxU, VgeG,0 e [—m,—8] U[s, 71, (4.6)
where § > 0 is as in Theorem 4.3. We will study S(q) (x,y)in U. From (4.1), we have

S @ y) = 5 [T S (x, e 0 y)emPde

_ 1 nﬂ e—lmxz,,+1+lmy2,,+lsgl)(x, eiQ ° f))eimf)de

I = % ffn 67imx2”+l+imy2"+]X(Q)Sg/)()%, eiQ ° )0))ez'm9dg7
j‘” e—imx2n+1+imy2,,+1(1 _ X(Q))Sg)(fé, ei@ ° i})eimed@’

where X = (x1,...,Xx2,,0) € U,y = (y1,...,y2,0) € U, x € C°(1—28,28D, x =1
on [—48, §]. We first study /7. We have

1 (7 . ; ; ;
1= / / emimxmitimnet (1 — x(0))S(%, ¢! 0 g o )™ du(g)do. (4.7)
v

From (4.7), (4.6) and notice that $(¢) is smoothing away from diagonal, we deduce that
I1 = 0O(m™).
We now study /. From Theorem 3.13, (4.1), (4.4) and (4.5), we have
I = Io + 11,

= 271 fO f_ﬂ —lmX2n+l+lmy2n+1X(g)el( —0+d_ (3", " Nt+im G, (", —0), 1)dtde,
Efo f_ﬂ —lmx2n+1+tm)2n+1X(Q)et(0+fl>+(X” y”))t-&-zmea G, (3", —6), 1)dtd.

We first study /1. From 57 (l O+ E, ")+ 1m9) # 0, we can integrate by parts with
respect to 6 several times and deduce that

= 0(m™ ™).
We now study /p. We have

0o pm N
Iy = i / / e*imxz,,+1+imy2n+1 X(Q)eim(79t+<l>_()”c”,j?”)l+9)ma ()%// (o//’ —0), mt)drde.
-

(4.8)
We can use the complex stationary phase formula of Melin—Sjostrand [25, Theorem 2.3]
to carry the dtd6 integration in (4.8) and get (the calculation is similar as in the proof of
Theorem 3.17 in [14], we omit the details)

Iy =™ ENpE" " m) + 0(m™),
W(x,y) = d_(&", ”)—x2n+1+)’2n+1,
b, 3", m) € S1007 (1; U x U, T*O"fX®(T*0‘1X) ),

bR, 5" m) ~ Y5 m" 2 b (R, §") in Sy LU X UL TOIX R (1709 X)"),
bj(x",§") € C®(U x U, T*qux(T*OqX)) j=0,1,2,.

bo(p, p) = a%(p, p) =25 w2 g2 |ud+1|---|un|rp,n_.
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Assumethatg = ny # n_.If m — —oo, then the expansion for Sg’)

(X, y)asm — —oo
is similar to ¢ = n_ case. When m — +o00, we can repeat the method above with minor

change and deduce that Sg )

Jm

(x,y) = O(m~°) on X. Summing up, we get Theorem 1.8.

5 Equivalent of the phase function ®_(x, y)

Let p € u~1(0) and let U be a small open set of p. We need

Definition 5.1 With the assumptions and notations used in Theorem 3.13, let @1, ®, €
C®(U x U). We assume that ®; and ®; satisfy (3.52), (3.51) and (3.44). We say that &

_d
and ®; are equivalenton U if forany by (x, y, t) € S:l 2 (U xU xRy, T*O’qXX(T*O’qX)*)
_d
we can find by (x, y, t) € S:l 2(Ux U xRy, XD ¢ (T*O’qX)*) such that

o0 o0
/ I (x, y, dt = / P2 ) (x, vy, Hdt on U
0 0
and vise versa.

We characterize now the phase ®_.

Theorem 5.2 Let @ _(x,y) € C®°(U x U) be as in Theorem 3.13. Let ® € C®°(U x U). We
assume that ® satisfies (3.52), (3.51) and (3.44). The functions ® and ®_ are equivalent on U
inthe sense of Definition 5.1 if and only if there is afunction f € C®°(U xU) with f (x,x) =1
such that ®(x,y) — f(x,y)®_(x,y) vanishes to infinite order at diag ((u_l(O) NU) x

WroNw).

Proof The “«<” part follows from global theory of complex Fourier integral operator
of Melin—Sjostrand [25]. We only need to prove the “=" part. Take local coordinates
x = (x1,...,Xx2,41) defined in some small neighbourhood of p such that x(p) = 0 and
wo(p) = dxou41. Since d, D (x, Wle=yep-10) = dy®_(x, Wle=yeu-1(0) = @o(x), we have
3 )?zfll (p,p) = 3‘1211 (p, p) = 1. From this observation and the Malgrange preparation
theorem [12, Theorem 7.5.7], we conclude that in some small neighborhood of (p, p), we
can find f(x, y), fi(x,y) € C* such that

P_(x,y) = fx, )t Hh(x,9), P, y) = file, Y (ons1 +hi(x, ¥) (5.

in some small neighborhood of (p, p), where y = (y1, ..., y2,). For simplicity, we assume
that (5.1) hold on U x U. It is clear that ®_(x, y) and y»,—1 + h(x, y) are equivalent in
the sense of Definition 5.1, ®(x, y) and yp,+1 + A1 (x, y) are equivalent in the sense of
Definition 5.1, we may assume that ®_(x, y) = y2,+1 + h(x, ¥) and ®(x, y) = you4+1 +
hi(x, y). Fix xo € n~'(0) () U. We are going to prove that h(x, y) — hj(x, y) vanishes to
infinite order at (xo, x0) € (u~'(0) O U) x (u~'(0) N U). Take

ad . _d
br,y. 1)~ > bj(e, " E T € S 7 (U x U x Ry, T4X R (T79X)*)
j=0
with bo(x,x) # 0 ateach x € U[) w=1(0). Since ® and d_ are equivalent on U in the

d
2

sense of Definition 5.1, we can find a(x, y, f) € SZI_ (U x U xRy, T*04 x X (T*O"fX)*)
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such that

/ e”b*(x’y)tb(x, y, Hdt = / e'q)(x’wza(x, y,t)dt onU.

0 0
Put xo = (x(]),xé,.. 2"H) and Xy = (x(;,...,xg”). Take T € Cgo(Rz”H), T €
C(‘)’O(Rz”), x € CPR) so that T = 1 near xo, 7y = 1 near Xo, x = 1 near xé”“ and

Suppt @ U, Supp 71 X Supp x € U’ x Supp x € U, where U’ is an open neighborhood of
%0 in R?", For each k > 0, we consider the distributions

A u s [oF el OmmrthC =ik 2 (b (x, y, D1 (9) X (2 (P)dydt,
Biiu s [§F el mnth @k (na(x, y, D1 (9 x GanrDu(@)dydt,

foru e Cg°(U’, 7+0-9 X). By using the stationary phase formula of Melin-Sjéstrand [25],
we can show that (cf. the proof of [14, Theorem 3.12]) A and By are smoothing operators
and

Ap(x, §) = e*heNg(x, §.0) + 0h™™),
Bi(x, ) = e MEH p(x, § K+ 00),

g(x, §,k), p(x, $,k) € Sp. 2 (1, U x U, T*OqX®(T*O‘7X) ),
g, ¥, k) ~ 372 g5, $)k"=%7J in SIOC2 (1, U x U, T*%4 X R (T*09X)*),

plx, $,k) ~ 3520 pjx, YK 5=/ in Sloc (LU xU, T*O”’X®(T*OqX) ),
gi(x, ¥, pj(x, y)eC°°(U><U’ 704X X (T*4X)*), j=0,1,
go(xo, Xo) # 0.

Since
oo o0
/ ei(y2n+1+h(x,}u'))lb(x’ y, t)dt _ / ei(.\’2n+l+h1(x,}3))ta(x, y, t)dt
0 0

is smoothing, by using integration by parts with respect to yz,1, it is easy to see that
Ap — B = O(k—®) (see [14, Section 3]). Thus,

N e(x, 5, k) = MM p(x, §, k) + Fe(x, ),

Fie(x,3") = O(k™). (5.2)

Now, we are ready to prove that 4(x, y) — hj(x, y) vanishes to infinite order at (xq, Xo). We
assume that there exist o € N%"H, Bo € N(Q)", laol + |Bol = 1 such that

1920050 i (x, §) — ih1 0, ). = Cao o # 0
and
19598 (v, ) = i1 (5, )l i = O F lerl + 18] < letol + 1fiol.
From (5.2), we have

0000 (MM g, 5, K) = p(x, 5,8 g

. . (5.3)
= —|8;t0 850 <€_lkhl(x’y) Fi(x, Y)> |(xo,)°co)'
Since hi(xg, X)) = —xg’”rl and F(x, ¥) = O(k~°), we have
lim k757200 (D By, §) g i) = 0. (5.4)
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On the other hand, we can check that

1imy_s oo k*ﬂ%‘%*l |3;(0 ag() (eikh(xyf)*ikhl(xvf’)g(x, _)O), k) — p(x, _ff, k)) |(x(),)°co) (5 5)
= Cuy,p,80(x0, X0) # 0

since go(xo, X0) # 0. From (5.3), (5.4) and (5.5), we get a contradiction. Thus, h(x, y) —
hi(x, y) vanishes to infinite order at (xo, Xo). Since xq is arbitrary, the theorem follows. O

6 The proof of Theorem 1.9

6.1 Preparation

Fix p € /L_l (0) and let x = (x1,...,x2,+1) be the local coordinates as in Remark 4.4
defined in an open set U of p. We may assume that U = Q| x Qp x Q3 x 4, where

Q) Cc R4, Qy, c RY are open sets of 0 € R, Q3 C R2=2d ig an open set of 0 € R2n—2d
and Q24 is an open set of 0 € R. From now on, we identify €, with

{0,...,0,x441,...,%24,0,...,0) € U; (Xg41,...,%24) € Q},
Qg with {(0, ..., 0, x2d+1,...,x2n,0) e U,; (de, ..., Xo) € Qg}, Qg X 93 with

{©,...,0,xq41,...,%22,0) € U; (xg41,...,X2,) € Q2 x Q3}.
For x = (x1, ..., X2p41), wWe write x”" = (Xg11, ..., X2441), " = (Xa41, ..., x2), 2" =
(Xd+15 -+ X2d),

~n
= (X2d+15 -+ > X2n+1)s X = (X2d+1s - -+ X2n)-

From now on, we identify x” with (0, ..., 0, xg41, ..., X2n+1) € U, " = (X441, - - - » X21)
with (0, ...,0, xg4+1,...,x2,,0) € U, x w1th(0 0, %441, ...,%24,0,...,0) € U, X"
with (0, ...,0, x2441, ..., Xm41) € U, % with (0 ,0, X2441, - -+, X1, 0). Since G x sl

acts freely on 1w 1(0), we take €, and Q3 small enough so that if x, x; € Qp x Q3 and
X # x1, then

goe®ox £gioe? oxy, V(g e eG xS, V(g e eG xS (6.1)

We now assume that g = n_ and let ¥ (x, y) € C°°(U x U) be as in Theorem 1.8. From
Sg’) = (S(q) )*, we get

MYy, m) = eV, y m) + O (™), 6.2)

where (S(q) )< (0 q)(X) — L )(X) is the adjoint of S(q) (0 q)(X) — L%O q)(X)
with respect to (-|-) and b*(x, y, m) *OqX — T*O 7X is the adjoint of b(x, y, m) :

T;k Oay T);kO "4 X withrespectto ( - | - ). From (6.2), we can repeat the proof of Theorem 5.2
with minor change and deduce that

W(x, y) + W(y, x) vanishes to infinite order at diag ((M*1 0) m U) x (,Lf] 0) m U)).
(6.3)
From 9, Sg )m = 0, we can check that

3, W (x, y) vanishes to infinite order at diag ((,u_1 0) ﬂ U) x (/,L_l 0) ﬂ U)). (6.4)
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From (6.3), (6.4) and notice that 7 — iz ’— e 78X, j =1,...,d, where x € = 1(0)

0xd+j

(see Remark 4.4), and %\P(x, y) = ij\I/(x, y)=0,j=1,...,d, we conclude that

f) )
mlll(x, Y lxgsr=-=x29=0 and Tyar;

diag (1~ O N V) x @ O N V).

W(x, ¥)|yyy1=--=ysy=0 vanish to infinite order at

Let Gj(x,y) = g W@ Mlymemyp=0s Hj(xy) = g8= W0 Yl =msa=0-
Put
d d
Wi, y) =00 y) = Y varjGi(xy), Walx,y) = Wx,y) — Y xaqHi(x, y).
j=1 j=1

Then, for j =1,2,...,d,

W (x, y)|y4+1=~~=y2d=0 =0 and Wy (x, y)'xd+1=~~:X2d:0 =0, (65)

0ya+j 90X+ j
and, for j = 1,2,
W(x,y) — ¥, (x, y) vanishes to infinite order at diag ((M_I(O) ﬂ U) x (M_I(O) ﬂ U)).
(6.6)
We also write u = (uy, ..., uz,+1) to denote the local coordinates of U. Recall that for

any smooth function f € C*®(U), we write f € C®(U®) to denote an almost analytic
extension of f (see the discussion after (3.38)). We consider the following two systems

v o BX7 S~
T ® A+ =2 @) =0, j=1,2,...,2n—2d, (6.7)
OUddj 0X2d+
and - ~
v o~ oy ~ .
— U+ —=—W",y)=0, j=1,2,...,2n—d, (6.8)
gy 0Xd+j
where 0/ = 0,...,0, U441, c ’72"+~1)’ W= 0,...,0,4441,...,Usut1). From (6.5)
and Theorem 1.12, we can take W, and W5 so that forevery j = 1,2, ...,d,
AW~ AW, ~ o -
L @) =0 and o, ) =0, ifilgp1 = =24 =0,  (69)
gy j Xd+j
and, for j =1, 2,
U;(F,5) = —Xonst + Yonsr + WG, 37, W; e C¥WUC x UD), (6.10)
where £ = (0, ..., 0, X415 -+ s %20, 0), 5" = (0, ..., 0, g1 - - » Tau, 0).

From Theorem 1.12, (1.19) and d, ¥ (x, x) = —d, ¥ (x, x) = —wp(x), Vx € w10, it
is not difficult to see that

al, . Ay
L@ @7 =0, j=1.2,....2n—d,
gy j 0Xd+j

and the matrices

82\11 2 2n—2d
(7(17, P+ —( P)) ,
Oy jOUL 4k 0X2d-+j0X2d-+k k=1
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2 82 2n—d
— .+t — (P, P))
(3ud+j3ud+k 0xd+j0xd+k k=1

are non-singular. Moreover,

. . 2
det (gt (p. ) + ,d (p, p)) = (ilpar| -4l )2,
det (Gt (. p) + e (p, p>) - (8i|/1~l|"‘8i|Md|)(4i|Md+l|"‘4i|Mn|)2~

Hence, near (p, p), we can solve (6.7) and (6.8) and the solutions are unique. Let a(x, y) =

(02d41(x,Y), ..., 024 (x, ¥)) € C®(U x U, C* 24y and B(x, y) = (Bag1(x, ¥), ..., Pon
(x,y)) € C®U x U, C¥~4) be the solutions of (6.7) and (6.8), respectively. From (6.9),
it is easy to see that

Bx.y) = Bar1(x,¥)..... f2a(x, y)) = (0,...,0, 02q41(x, ), ..., a2 (x, y)). (6.11)

From (6.11), we see that the value of \Ill(x u”) + \Ilz(u” ) at critical point W= a(x,y)
is equal to the value of \Ill(x u”) + \Ilz(u” y) at critical point W = B(x,y).Put

W3(x, y) = Uy (x, ax, ) + Paalx, y), y) = Ui (x, B, ) + T (B(x, y). ). (6.12)
W3 (x, y) is a complex phase function. From (6.10), we have
W3(x, ) = —X2041 + youp1 + U3, 3, U3, §) € COU x U).

Moreover, we have the following

Theorem 6.1 The function V3(x, y) — W(x, y) vanishes to infinite order at diag ((//fl 0)
NU) x @O NW)).

Proof We consider the kernel S(q)m S(q)m on U. Let V &€ U be an open set
of p. Let x(x") € C§(Q2 x Q3). From (6.1), we can extend X&) to W =
{goe’9 ox; (g, e G xS x e x Q3} by x(g o e? o ") = y ("), for every
(g, %y € G x S!. Assume that x = 1 on some neighborhood of V. Let x; € Cé’o(U)
with x; = 1 on some neighborhood of V and Supp x1 C {x € X; x(x) = 1}. We have

XIS 0 S = X1Sgh X 0 S, + x1Seh, (1= x) 0 S . (6.13)

Let’s first consider y S(q) (I—x)o Sg’)m We have

aSE A= )@ u) = —m(x) f / SD(x,g0e” ouy(l — x(u))e™ du(g)do.

(6.14)
Ifu ¢ {x € X; x(x) = 1}. Since Supp x1 C {x € X; x(x) = 1} and x(x) = x(goe? ox),
for every (g, €'y € G x S, for every x € X, we conclude that g o ¢! o u ¢ Supp x, for
every (g, ¢'?) € G x S'. From this observation and notice that () is smoothing away from

diagonal, we can integrate by parts with respect to 6 in (6.14) and deduce that xS (q) o(l—
x) = O(m~°°) and hence

(qun(l —X)OSE?,)m = 0(m™%). (6.15)
From (6.13) and (6.15), we get

Xls(q) OS(q) = 1 S(q) XoS(q) + 0(m™™). (6.16)
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We can check that on U,

1S x oS5 )(x, )
—em) [ VI 4 (e, ) X @G 3, (@) + O =)
= (2n) fezmklll(x ) +imW (u” y)xl(x)b(x 7 m)x (@b, y, mydv(@’) + O (m=>)
(here we use (6.6)),
(6.17)
where du(g)d0dv(ii”) = dv(x) on U. We use complex stationary phase formula of Melin—
Sjostrand [25] to carry out the integral (6.17) and get

(Xls(q) Xo S(q) )(x y) = e"™¥ENg(x, y,m) + 0(m™>®) onU,
ax,y,m) € Sloc (LU xU, 799X ® (T*OqX) )s

ax,y,my~ Y52 om"" Taj(x,y)in S|, 2(1 U x U, T*4X X (T*9X)"),
a,-(x,y)eCOO(UxU,T*OqX&(T*OqX) ), j=0,1,2,...,

aop(p, p) # 0.
(6.18)

From (6.16), (6.18) and notice that (Xng) S(q) )(x,y) = (XlS(q) )(x, y), we deduce
that ' . '
MY g (x v, m) = ™YE 31 (x)b(x, y,m) + O(m™>) on U. (6.19)

From (6.19), we can repeat the proof of Theorem 5.2 with minor change and deduce that
W3(x, y) — W(x, y) vanishes to infinite order at diag ((;r‘ O NU) x w1 o)N U)). O

The following two theorems follow from (6.6), (6.12), Theorem 6.1, complex stationary
phase formula of Melin—Sjostrand [25] and some straightforward computation. We omit the
details.

Theorem 6.2 With the notations used above, let

Ap(x,y) =e™YCNa(x, y,m), Bu(x,y) =™V Db(x, y, m),

a(x,y,m) € 1Oc(l UxU,HXF*), b(x,y,m)e 1Oc(l UxU,FXE®),
a(x,y,m)~ Z _Omk Jaj(x,y) mSlOC(l UxU,HKF*),

b(x, y,m)~ 3] _Om‘Z Ibj(x,y)in St (1; U x U, F X E*),

aj(x,y)eC"o(UxU H&F*) bj(x,y) eC®WU xU,FRE*), j=0,1,2,...,

where E, F and H are vector bundles over X. Let x (¥") € COo (2 x 23). Then, we have

[ Am e, ) x @) By (u, y)dvo (") = ™Y Ee(x, y, m) + O(m=),
_(n—d
e, y.m) e STV (LU x U HREY),

c(x,y,m) ~ Z;’i mktt=(=9)— Tej(x, y) in S, (1; U x U, HX E*),
cox, x) = 27" 3 2= % |det £,|~"|det Ry |2 ag(x, x)bo(x, ) x (&), Vx en '(OONOU,

k+€—(n— 2)

where |det R, | is in the discussion before Theorem 1.6.

Moreover, if there are N1, Ny € N, such that |ag(x,y)| < Cl(x,y) — (x0,x0)|™,
|bo(x, y)| < C|(x,y) — (x0, xo)|N2,f0r all xg € M_I(O) (U, where C > 0 is a constant,
then,

lco(x, Y| < Cl(x, ¥) — (xo, x0) V12,

for all xo € n=1(0) U, where C > 0 is a constant.
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Theorem 6.3 With the notations used above, let

A, 5" = 6™V a(x, T m), B y) ="V DBE" y, m),
ax, ¥ m) € SE (1 U x (3 x Qq), HRF*), BE".y.m)

€ Sf (1; (3 x Q4) x U, FRE®),

a(x, y//,n’l) ~ 2710 mk—J:o(j(x’ 5;‘//) in Sﬁ)e (1; U x (3 x Q4), HX F*),
BE",y, m) ~ Zjozo m*=IB; (X", y)in Sk, (1; (23 x Q4) x U, F R E*),
aj(x,5) € C¥(U x (R x Q). HRF), ;T )

€EC®(Q x Q) xU, FRE*, j=0,1,2,...,

where E, F and H are vector bundles over X. Let Xl(E//) € C3°(823). Then, we have

[ A G, @) x1 G VB (i, y)du (i) = ™Y@y (x, y, m) + O (m=),
vy, y,m)e S D (.U x U, HR E),

loc

yx,y,m) ~> %, mk“‘@_(”_d)_j)/j(x, y) in ghtt=(n=d) (1; U xU,HR E"Y),

J loc

yo(x, x) = 277"~ |det £, | |det R, |ao(x, ) Bo X, x)x1 &), Vx € u= O)OU,

where |det R, | is in the discussion before Theorem 1.6.

Moreover, if there are N1, N» € N, such that |ag(x,5")| < C|(x,5") — (x0, x0)|™,
1Bo(x, 3| < C|(x,5") — (x0, x0) |2, for all xo € w="(0) (U, where C > 0 is a constant,
then,

lyo(x, y)| < é|(x, y) — (x0, x0)|N1+N2,

Sforall xy € /L’l 0)( U, where C > 0is a constant.

6.2 The proof of Theorem 1.9
Since g, is orthogonal to H,Y (| JH,Y and H,Y (| JH.Y C gi“’, for every x € Y, we can
find a G-invariant orthonormal basis {Z1, ..., Z,} of T19X on Y such that

LA(Zj (). Zi(x) = 8judj(x), jok=1,....n, x€¥,
Z.,'(x)egx+ilgx, VxeY, j=1,2,...,d,
Zi(x) e CHY(J(CHY), VxeVY, j=d+1,...,n.

Let {eq, ..., e,} denote the orthonormal basis of 7**!X on Y, dual to {Z, ..., Z, }. Fix
s=0,1,2,...,n—d.Forx € Y, put
B:O’SXZ Z Ajyjs€jy N Nejs ajy j:e(C, Vi+1<ji<---<j<n

d+1<ji<-<js<n

and let B*%5 X be the vector bundle of ¥ with fiber B; X, x € Y. Let C*(Y, B*05X)C
denote the set of all G-invariant sections of ¥ with values in B*0* X. Let

G C®(Y, B X)¢ — Q" (vg)

be the natural identification.
Assume that .1 <0, ..., 4 <0,and Ag4+1 <0, ..., Ay_—r44 < 0.Forx € Y, put

/\7(x, n_)= {ced_H A+~ ANen_—r+d; CE (C} ,
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and let

ﬁ:ﬁx :N(xanf) —>N(x,n,),
u=-ceyN---Ney /\€d+1 /\-n/\eni_,_,_d —> Celq+1 /\"'/\6',17_r+d.

Let ¢ : Y — X be the natural inclusion and let (* : QO"I(X) — QO’Q(Y) be the
pull-back of ¢. Recall that we work with the assumption that ¢ = . Let D,(f;r)

be the Kohn Laplacian for (0,q — r) forms on Y. Fix m € N. Let Hq n(YG)

[u € QU1 (Yg); OF,u =0, Tu :imu} Let S0 1 L2 (Vo) — Hb‘{m’(YG)
S(q r)

be the orthogonal projection and let Sy " (x, ) be the distribution kernel of Sl(%_};). Let

F) = Vet (1)|det R[5 € C®(¥)C.
Let

om : QY(X) — H! ' (Y6),

u —m 4S(q )

olGopoTy, ofolf oS(q)

Recall that 7, , _ is given by (1.7). Let 0% : QU477 (Y5) — QU9 (X) be the adjoints of oy, It
is easy to see that o u € H, m(X)G (Ker D(q))m, Yu € Q%477 (Yg). Let oy, (x, y) and
o, (x, y) denote the dlstrlbutlon kernels of o,, and o}, respectively.

Let’s pause and recall some results for S (“13 ") We first introduce some notations. Let
Ly, x be the Levi form on Y at x € Y induced naturally from £. The Hermitian metric
(-1-)on T'0X induces a Hermitian metric (- |-) on T10Y¥4. Let det Lygx =A ... An—q,

where A;, j = 1,...,n — d, are the eigenvalues of Ly, , with respect to the Hermitian
metric (- |-). Forx € Yg, let 7, : Tx*o'qerG — /\7(x n_) be the orthogonal projection.

q g L%Oq r

Szeg6 projection as (3.2). Since S;‘é is smoothmg away from diagonal (see Theorem 3.3),

Let 7 : Y — Yg be the natural quotlent Let Sy ¢ ,(YG) — Ker Dgf;;) be the

it is easy to see that for any x,y € Y, if 7(e!? o x) # m(e'? o y), for every 6 € [0, 27,
then there are open sets U of 7 (x) in Y and V of 7 (y) in Y such that for all ¥ € CgO(U),
x € C§°(V), we have

ASYIT = 00m™) on Y. (6.20)
Fix p € Y and let x = (x1, ..., x2,41) be the local coordinates as in Remark 4.4. We will

use the same notations as in the beginning of Sect. 6.1. From now on, we identify X as local
coordinates of Y near 7 (p) € Y and we identify W := Q3 x 4 with an open set of 7 (p)
in Y. It was proved in Theorem 4.11 in [14] that as m — o0,

S§IJG ’;)(~// ~//) _ ezmd)(x” v”)b(~// ~1 .m)+ Om=°) on W,
BE".Y" . m) € St (1, W x W, T*O‘i"'YG b (T*O»q—"YG)*),
ﬂ(x” ~//’m) Z Omn —d— /b (~// y//) in Sloc (LW x W, T*O,q—rYG X (T*O,qerG)*)’
BiG". ") eC°°(W x W, 70~ Yo R(T*97"Y6)%), j=0,1,2,...,

Bo G, 5"y =1 g (n=d)— 1|det ‘cYG |, VX" e W,
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and
~ N oo
(", V") = —xon41 + Y1 F O,y ) € CX(W x W),
dp .5 = ~dyp . F) = —an(®),

N/ /A .
Im¢pEF ,y )>clx —y >, wherec > 0is aconstant,
~ir (6.21)

o

po(X”, d-¢(~/ ’,5")) vanishes to infinite order at 7= v,
PG, V") = —Xong1 + Yo +i 2 g lillzi — wjl?
. — — AR
+Z'}=d+1 injZjw; —z;wp)+ oG, y)IP),
where pg denotes the principal symbol of qu;cr), zj =x2j_1+ixp;, j=d+1,...,nand
Md+1, - - - M are the eigenvalues of Ly, p.

Note that for any ¢ (X", 7") € C®(W x W), if ¢; satisfies (6.21), then ¢»; — ¢ vanishes

to infinite order at 7 = 3"7/ (see Remark 3.6 in [14]). It is not difficult to see that the phase
function W (X", 3" satisfies (6.21). Hence, we can replace the phase ¢ (X", y) by ¥ (X", y")
and we have

S(q r) (~//’ ’)7”) ;mq/(?”,i”)ﬂ(;’/’ ’)*;//’ m) + O(m=>) on W. (6.22)

Yg,m
We can now prove
Theorem 6.4 With the notations used above, if y ¢ Y, then for any open set D of y with

BﬂY =, we have
om=0m ) onYs x D. (6.23)

Letx,y € Y. Ifw(x) # m(e'? o y), for every 6 € [0, 21|, then there are open sets Ug of
w(x)inYg and V of y in X such that

om =0(m™ ) onUg x V. (6.24)

Let p € ,u_] (0) and let x = (x1, ..., Xan+1) be the local coordinates as in Remark 4.4.
Then,

Um(}w, y) = etm\l/(x Ri0) (N” y”’ m)+ O0m=>) on W x U,
2a
~rro . *0,q—r *0,q yy*
a(x”,y", m)ESloc (1 WxU,T Yo X (T*1X)¥), (6.25)

3
aX, ", m) ~ Zj‘iom"—*d Ta; (R, y"yin Sy * Y1 w x U, T~ ’Y6®(T*0‘1X) ),
o (3, y") € C®(W x U, T*04~ fYG®(T*04X) ), j=0,1,2,.

N 1 5, -
(&00] (X/, X ) 2- n2d— 1 2 =1 ﬁ |det ;Cf// | |det Rx | 4 T TR n_» VX,/ € W, (626)
eff

where U is an open set of p, W = Q3 x Q4, Q23 and Q4 are open sets as in the beginning of
Sect. 6.1.

Proof Note that Sg’)m = O(m~°°) away Y. From this observation, we get (6.23). Let x, y €
Y. Assume that 7w (x) # (e o y), for every 6 € [0, 2r[. Since

S () = / / SD(x, e o g 0 y)e™ dpu(g)do
2n|G|du .

and $@ is smoothing away from diagonal, we can integrate by parts with respect to 6 and
deduce that there are open sets U; of x in X and V; of y in X such that

SP = 0m™) onU; x Vi. 6.27)
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From (6.20), we see that there are open sets 06 of m(x) in Yg and \7(; of m(y) in Yg such
that

Sy = 0m™>) on Ug x V. (6.28)

From (6.27) and (6.28), we get (6.24).
Fix u = (uy,...,upp41) € Y[\ U. From (6.23) and (6.24), we only need to show that
(6.25) and (6.26) hold near u and we may assume that u = (0, ..., 0, u2g41, ..., u2,,0) =

7' Let V be a small neighborhood of u. Let x (}%W) € C{°(£23). From (6.1), we can extend
=~
x(x)to

0= [goemox; (g,eie)erSl,xeSh}

by x(goe® oX ) = x(X ), for every (g, ¢!’) € G x S'. Assume that ¥ = 1 on some
neighborhood of V. Let Vg = {m(x); x € V}. Let x1 € C;°(Ys) with x; = 1 on some
neighborhood of Vi and Supp x; C {7w(x) € Yg; x € Y, x(x) = 1}. We have

-4 (g—r) N (@
X10m = m 4XISY(;,m olGoPpoTy, o foifo SG,m

=m_%XISI(Z;;:1)°tG 0 PO Ty OfOL*OXSg])m (6.29)
+m_%X151(/qu;:1) olGopotyy o forfo(l— X)Sg],)m'
Ifu €Y butu ¢ (x € X; x(x) = 1). Since Supp x1 C {7 (x) € X; x € ¥, x(x) = 1} and

x(x) = x(g o€ ox), forevery (g,¢'?) € G x S!, for every x € X, we conclude that
(e’ o u) ¢ Supp x1, for every e € S!. From this observation and (6.20), we get

m S ot o poten o foro(l—)SE = 0m™™) on¥g x X. (6.30)

From (6.29) and (6.30), we get
X10m = m*%XlS%:;) olGopoTy, o folfo XS(G[{)m + 0@m*™) onYs x X.

From (6.22) and Theorem 1.8, we can check that on U,

K1om@'y) = (27) / VG TV )y @& T )by, mydv@) + 0m=),

(6.31)
where b3, y, m) =(LG opotim ofot*ox®)o b)(ﬁ”, y, m). From (6.31) and
Theorem 6.3, we see that (6.25) and (6.26) hold near u. The theorem follows. ]

Let

F = oo : QM(X) > H (X)9, Fp = opoy : QM7 (Yg) — HY,  (Yo).
Let Fy,(x,y) and ﬁm (x, y) be the distribution kernels of F;, and ﬁm respectively. From
Theorems 6.2 and 6.3, we can repeat the proof of Theorem 6.4 with minor change and
deduce the following two theorems

Theorem 6.5 With the notations used above, if y ¢ Y, then for any open set D of y with
DY =0, we have F,, = O(m~>°) on X x D.

Letx,y € Y. Ifw(x) # n(e'? oy), for every 6 € [0, 21|, then there are open sets Dy of
x in X and Dy of y in X such that F,, = O(m~%) on D| x Dy.
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Let p € ,u’l (0) and let x = (x1, ..., X2n41) be the local coordinates as in Remark 4.4.
Then,

Fp(x,y) = ™Y@ ax" y" m) + 0(m=>) onU x U,
_d
a(x”,y",m)y e S, > (1, U x U, T*%4X R (T**9X)*),

. _d
a(x",y",m)~ 3%, m"_%_faj(f”, vy in S{;C 21U x U, T*4X )R (T*01X)*),
aj(x",y") e C®WU x U, T*X R (T*9X)*), j=0,1,2,...,

and

1 1
~I1 ~N _ ~A=—3n+4d—1__—n—1 - —5 ~1/
ag(F, X"y = 27t g Voo Gy et L lldet R ™2, VX eu(r,
(6.32)

where U is an open set of p.

Theorem 6.6 Letx,y € Y. If w(x) # m(e'? o y), for every 6 € [0, 2], then there are open
sets Dg of m(x) in Y and Vg of w(y) in Y such that F, = O(m~°) on Dg x Vg.

Let p € ,u’l (0) and let x = (x1, ..., X2n41) be the local coordinates as in Remark 4.4.
Then,

Fo(x,y) = e™YE 0GR 5", m) + O(m=>) on W x W,
QG ¥ m) € S (1, Wox W, T Y6 ) (T Yg)*),
a3 m) ~ Yy m I (F T in Sppct (15 Wox W, T Y6 B (T4 ¥g)%),

aj(X",5") € COW x W, T4y R(T*%477Y5)%), j=0,1,2,...,
(¥, X" = 2733 ot Sl det Ly v Fpr, VR € W

where W = Q3 x Qu4, Q23 and Q24 are open sets as in the beginning of Sect. 6.1.

Let R, = CiOFm - Sg)m c Q0 (X) - Him(X)G, where Cp = 273443175 Since
F, =F, Sg’)m, it is clear that
1
—Fp = S+ R = g + RS = (I + Ru)SE. (6.33)

Co

Our next goal is to show that for m large, I + R, : QY1(X) > QO9(X) is injective.
From Theorem 6.5 and Theorem 1.8, we see that if y ¢ Y, then for any open set D of y with
DY = @, we have

Rn=0(m ) onX x D. (6.34)

Letx,y € Y.Ifw(x) # n(e'? o y), for every 6 € [0, 2rr[, then there are open sets D of x
in X and D, of y in X such that

Ry, = O0@m™ ) on Dy x D>. (6.35)

Let p € [,L_l (0) and let x = (x1, ..., x2,41) be the local coordinates as in Remark 4.4.
Then,

Ry (x,y) = ™Y& (2 3" m) + O(m=>) on U x U,
_d
r(x", " m) € S 2 (1, U x U, T4 X ® (T4 X)),
. _d
Py m) ~ S5 m T (Y in St (1 U X UL T4 X B (T040 X)),

loc

ri(x",y") e C®WU x U, T*4X R(T*4X)*), j=0,1,2,....
(6.36)
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Moreover, from (6.32) and (1.10), it is easy to see

lro(x, y)I = Cl(x, y) = (x0, X0)I, (6.37)

for all xg € u_l (0) U, where C > 0 is a constant. We need

Lemma 6.7 Let p € ,u’l(O) and let x = (X1, ..., X2n+1) be the local coordinates as in
Remark 4.4 defined in an open set U of p. Let

Hp(x,y) = eim\ll(x”,)’”)h(x, y,m) onU x U,
_1-4d
h(x,y.m) € S T2 (LU x U, T4X & (T4 X)"),
. _1-4

hx, yom) ~ XX om" =5, y) in Sy 2 (13U x U, T*09X R (T*04X)"),

hj(x,y) € CWU x U, T*4X R(T*4X)*), j=0,1,2,....
Assume that h(x,y,m) € C;°(U x U, 7*04X ® (T*09X)*). Then, there is a constant
C>0 independent of m such that

| Hnuel < 8 llull, Yu € Q¥4(X), Vm €N, (6.38)

where 8, is a sequence with lim,,_, 5, 8;, = 0.

Proof Fix N € N. It is not difficult to see that

1 |
| Hpull < H (X H) 2 w2 )T v e Q09(X), (6.39)

where H,; denotes the adjoint of H,,. From Theorem 6.2, we can repeat the proof of Theo-
rem 6.4 with minor change and deduce that

(Hyy Ho)? (x, ) = ™Y@ pix, y,m) + 0 ™) on U x U,
m
_AN+1_d

p.y.m) e Sh2 TR (LU x U, T*9X R (T4 X)%),

p(x,y,m) e CPWU x U, T*4X K (T*1X)*).
Hence,

N 1_d
I(HEH) ()] < Cm" 2725 W(x, y) e U x U, (6.40)

where C > 0 is a constant independent of m. Take N large enough so that n — 2V +1 — % < 0.
From (6.40) and (6.39), we get (6.38). ]

We also need
Lemma 6.8 Let p € ,u_] (0) and let x = (x1, ..., Xm+1) be the local coordinates as in

Remark 4.4 defined in an open set U of p. Let

By (x,y) = eimq’ilx//”’//)g(x, y,m) onU x U,
g, y,m) € Sp. 2 (1, U x U, T*4X ® (T*04X)*),
. _d
glx,y,m) ~ Z?’io m"_%_fgj(x, y) in S{;C 21U x U, T*99X ) (T*94X)*),
gj(x,y) € CPWU x U, T*4X R (T*4X)*), j=0,1,2,...,
g(x,y) € CU x U, T*4X K (T*04X)%).

Suppose that

|g0(x7 y)' = C|(X, Y) - (X(),XQ)l,
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Sforall xy € T (0) (U, where C > 0 is a constant. Then,
I Buull < em llull, Yu e Q%9(X), VmeN, (6.41)
where &, is a sequence with lim,,_, », &, = 0.

Proof Fix N € N. It is not difficult to see that

_ 1 1
| Bnul < H(B;,’;Bm)zNu M) T v e 09 (X), (6.42)

where B;, denotes the adjoint of B,,. From Theorem 6.2, we can repeat the proof of Theo-
rem 6.4 with minor change and deduce that

(BfBy)*" (x,y) = ™YYV 3(x, y.m) + O(m=°) on U x U,
_d
g, y,m) € Sp 2 (1, U x U, T*4X K (T*04X)*),

. _d
B yom) ~ Y m" g, y) in S (15U x U, T*9X ) (TH9X)%),
gi(x,y) e CWU x U, T*X R (T*9X)%), j=0,1,2,...,
g(x,y,m) € C(U x U, T4 X K (T*09X)"),

and N+1
180Cx, M| < Cl(x, y) — (x0, x0) [, (6.43)

for all xg € u=1(0) (U, where C > 0 is a constant. Let

N ; ANVAWN N i "o
(BiBn)g (x,y) =™ O 50(x, y,m), (BiBn)T (x,y) =™ Y h(x, y,m),

A N . —1-4
where h(x, y,m) = g(x,y,m) — go(x, y, m). It is clear that h(x, y, m) € S{;C 2(1; U x
U, T*%4X K (T*94 X)*). From Lemma 6.7, we see that

| B BT u| < m . vue @900, vmen, (6.4)

where §,, is a sequence with lim,;,_, o 8,, = 0.
From (6.43), we see that

oN+1

N ~ ~ ~iosn
lgote. 1 = (413" + 17 =57)" (6.45)
where C| > 0 is a constant. From (3.44), we see that
n n ~ ~
Im W, )] = o182+ 157 + 77 = 5'7), (6.46)

where ¢ > 0 is a constant. From (6.45) and (6.46), we conclude that

d

I(BXB)E (x,y)] < Cm ™22 V(x,y) e U x U, (6.47)

where C > 0 is a constant independent of m. From (6.47), we see that if N large enough,
then N
H (B B2 uH <8 llull, Vu € QU9(X), Vm €N, (6.48)

where Sm is a sequence with lim,,_, o Sm =0.
From (6.42), (6.44) and (6.48), we get (6.41). O

From (6.34), (6.35), (6.36), (6.37) and Lemma 6.8, we get
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Theorem 6.9 With the notations above, we have || Ryl < &m lull, VYu € Q%9(X), Vm €
N, where gy, is a sequence with limy,_, oo €, = 0.
In particular, if m is large enough, then the map I+ Ry, : Q%4(X) — Q04(X) is injective.

Proof of Theorem 1.9 From (6.33) and Theorem 6.9, we see that if m is large enough, then the
map Fy, = 0,50y, : Hgm(X)G — Hbq’m (X)C is injective. Hence, if m is large enough, then
the map oy, : Hg’m (X)¢ - HZ’Z(Y(;) is injective and dim Hg’m (X)¢ < dim HZ’;Z(Y(;).
Similarly, we can repeat the proofA of Theorem 6.9 with minor change and deduce that,
if m is large enough, then the map F,, = ono0,, : H " (Y6) — H, ' (YG) is injective.
Hence, if m is large enough, then the map o), : Hg;nr Yg) — Hbqym(X)G is injective. Thus,
dim lem (X)¢ = dim Hg;nr (Y) and o, is an isomorphism if m large enough. O
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