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Abstract
Let (X , T 1,0X) be a compact connected orientable CR manifold of dimension 2n + 1 with
non-degenerate Levi curvature. Assume that X admits a connected compact Lie group G
action. Under certain natural assumptions about the group G action, we show that the G-
invariant Szegő kernel for (0, q) forms is a complexFourier integral operator, smoothing away
μ−1(0) and there is a precise description of the singularity nearμ−1(0), whereμ denotes the
CR moment map. We apply our result to the case when X admits a transversal CR S1 action
and deduce an asymptotic expansion for themth Fourier component of theG-invariant Szegő
kernel for (0, q) forms as m →+∞ and when q = 0, we recover Xiaonan Ma and Weiping
Zhang’s result about the existence of the G-invariant Bergman kernel for ample line bundles.
As an application, we show that if m large enough, quantization commutes with reduction.

Mathematics Subject Classification Primary: 58J40 · 32V20 · 53D50; Secondary: 57Q10

1 Introduction and statement of themain results

Let (X , T 1,0X) be a CR manifold of dimension 2n + 1, n ≥ 1. Let �(q)
b be the Kohn

Lalpacian acting on (0, q) forms. The orthogonal projection S(q) : L2
(0,q)(X) → Ker�(q)

b
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onto Ker�(q)
b is called the Szegő projection, while its distribution kernel S(q)(x, y) is called

the Szegő kernel. The study of the Szegő projection and kernel is a classical subject in several
complex variables and CR geometry. A very important case is when X is a compact strictly
pseudoconvex CR manifold. Assume first that X is the boundary of a strictly pseudoconvex
domain. Boutet deMonvel-Sjöstrand [2] showed that S(0)(x, y) is a complex Fourier integral
operator.

The Boutet de Monvel-Sjöstrand description of the Szegő kernel had a profound impact
in many research areas, especially through [4]: several complex variables, symplectic and
contact geometry, geometric quantization, Kähler geometry, semiclassical analysis, quantum
chaos, etc. cf. [6,8,11,22,29,32], to quote just a few. These ideas also partly motivated the
introduction of the recent direct approaches and their various extensions, see [18,19,21,22].

Now, we consider a connected compact Lie groupG acting on X . The study ofG-invariant
Szegő kernel is closely related to Mathematical physics and geometric quantization of CR
manifolds. It is a fundamental problem to establish G-invariant Boutet de Monvel-Sjöstrand
type theorems for G-invariant Szegő kernels and study the consequence of the G-invariant
Szegő kernel. This is the motivation of this work. In this paper, we consider G-invariant
Szegő kernel for (0, q) forms and we show that the G-invariant Szegő kernel for (0, q) forms
is a complex Fourier integral operator. In particular, S(q)(x, y) is smoothing outside μ−1(0)
and there is a precise description of the singularity near μ−1(0), where μ denotes the CR
moment map. We apply our result to the case when X admits a transversal CR S1 action
and deduce an asymptotic expansion for the mth Fourier component of the Szegő kernel for
(0, q) forms as m →+∞. As an application, we show that, if m large enough, quantization
commutes with reduction.

In [20], Ma and Zhang have studied the asymptotic expansion of the invariant Bergman
kernel of the spinc Dirac operator associated with high tensor powers of a positive line
bundle on a symplectic manifold admitting a Hamiltonian action of a compact connected Lie
group and its relation to the asymptotic expansion of Bergman kernel on symplectic reduced
space, also the Toeplitz operator aspect in [20, Section 4.5]. Their approach is inspired by the
analytic localization techniques developed by Bismut and Lebeau [3]. About the quantization
commutes with reduction problem in symplectic geometry, we refer the readers to [22]. In the
second part of [22], Ma described how the G-invariant Bergman kernel concentrates on the
Bergman kernel of the reduced space. Note that the “quantization commutes with reduction”
in the situations in symplectic case is a very active subject. When the action connected Lie
group is compact and the symplectic manifold is also compact, this question was solved
finally by Meinrenken [24] and Tian-Zhang [31]. When the action connected Lie group is
compact and the symplectic manifold is noncompact, this is a famous conjecture of Vergne
and was solved by Ma-Zhang in [23].

It should be mentioned that in [7], Charles relates the Toeplitz operators on a compact
complex manifold M with the Toeplitz operators on the “reduced” space for torus action, and
in [26], Paoletti studied equivariant Szegő kernels on complex manifolds ( cf. [20, Remark
0.5]).

We now formulate themain results.We refer to Sect. 2 for some notations and terminology
used here. Let (X , T 1,0X) be a compact connected orientable CR manifold of dimension
2n + 1, n ≥ 1, where T 1,0X denotes the CR structure of X . Fix a global non-vanishing real
1-form ω0 ∈ C∞(X , T ∗X) such that 〈ω0 , u 〉 = 0, for every u ∈ T 1,0X ⊕ T 0,1X . The
Levi form of X at x ∈ X is the Hermitian quadratic form on T 1,0

x X given by Lx (U , V ) =
− 1

2i 〈 dω0(x) , U ∧ V 〉, for all U , V ∈ T 1,0
x X . In this work, we assume that
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Assumption 1.1 The Levi form is non-degenerate of constant signature (n−, n+) on X. That
is, the Levi form has exactly n− negative and n+ positive eigenvalues at each point of X,
where n− + n+ = n.

Let HX = {Re u; u ∈ T 1,0X
}
and let J : HX → HX be the complex structure map

given by J (u + u) = iu − iu, for every u ∈ T 1,0X . In this work, we assume that X admits
a d-dimensional connected compact Lie group G action. We assume throughout that

Assumption 1.2 The G action preservesω0 and J . That is, g∗ω0 = ω0 on X and g∗ J = Jg∗
on H X, for every g ∈ G, where g∗ and g∗ denote the pull-back map and push-forward map
of G, respectively.

Let g denote the Lie algebra of G. For any ξ ∈ g, we write ξX to denote the vector field
on X induced by ξ . That is, (ξXu)(x) = ∂

∂t (u(exp(tξ) ◦ x)) |t=0, for any u ∈ C∞(X).

Definition 1.3 The moment map associated to the form ω0 is the map μ : X → g∗ such that,
for all x ∈ X and ξ ∈ g, we have

〈μ(x), ξ 〉 = ω0(ξX (x)). (1.1)

In this work, we assume that

Assumption 1.4 0 is a regular value of μ, the action G on μ−1(0) is freely and

g
x

⋂
g⊥b
x

= {0} at every point x ∈ Y , (1.2)

where g = Span (ξX ; ξ ∈ g), g⊥b =
{
v ∈ HX; b(ξX , v) = 0, ∀ξX ∈ g

}
, b is the nonde-

generate bilinear form on H X given by (2.4).

By Assumption 1.4, μ−1(0) is a d-codimensional submanifold of X . Let Y := μ−1(0)
and let HY := HX

⋂
TY . Note that if the Levi form is positive at Y , then (1.2) holds. Under

the condition (1.2), in Sect. 2.5, we will show that dim (HY
⋂

J HY ) = 2n − 2d at every
point of Y , μ−1(0)/G =: YG is a CR manifold with natural CR structure induced by T 1,0X
of dimension 2n − 2d + 1 and we can identify HYG with HY

⋂
J HY .

Fix a G-invariant smooth Hermitian metric 〈 · | · 〉 on CT X so that T 1,0X is orthogonal to
T 0,1X , g is orthogonal to HY

⋂
J HY at every point ofY , 〈 u | v 〉 is real if u, v are real tangent

vectors, 〈 T | T 〉 = 1 and T is orthogonal to T 1,0X ⊕ T 0,1X , where T is given by (2.2). The
Hermitianmetric 〈 · | · 〉 onCT X induces, by duality, aHermitianmetric onCT ∗X and also on
the bundles of (0, q) forms T ∗0,q X , q = 0, 1, · · · , n. We shall also denote all these induced
metrics by 〈 · | · 〉. Fix g ∈ G. Let g∗ : �r

x (CT
∗X) → �r

g−1◦x (CT
∗X) be the pull-back map.

SinceG preserves J , we have g∗ : T ∗0,qx X → T ∗0,q
g−1◦x X , for all x ∈ X . Thus, for u ∈ �0,q(X),

we have g∗u ∈ �0,q(X). Put �0,q(X)G := {u ∈ �0,q(X); g∗u = u, ∀g ∈ G
}
. Since the

Hermitian metric 〈 · | · 〉 on CT X is G-invariant, the L2 inner product ( · | · ) on �0,q(X)

induced by 〈 · | · 〉 is G-invariant. Let u ∈ L2
(0,q)(X) and g ∈ G, we can also define g∗u

in the standard way (see the discussion in the beginning of Sect. 3.2). Put L2
(0,q)(X)G :=

{
u ∈ L2

(0,q)(X); g∗u = u, ∀g ∈ G
}
. Let �(q)

b : Dom�(q)
b → L2

(0,q)(X) be the Gaffney

extension of Kohn Laplacian (see (3.1)). Put (Ker�(q)
b )G := Ker�(q)

b

⋂
L2

(0,q)(X)G . The

G-invariant Szegő projection is the orthogonal projection S(q)
G : L2

(0,q)(X) → (Ker�(q)
b )G

with respect to ( · | · ). Let S(q)
G (x, y) ∈ D′(X × X , T ∗0,q X � (T ∗0,q X)∗) be the distribution

kernel of S(q)
G . The first main result of this work is the following
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Theorem 1.5 With the assumptions and notations above, suppose that �(q)
b : Dom�(q)

b →
L2

(0,q)(X) has closed range. If q /∈ {n−, n+}, then S(q)
G ≡ 0 on X.

Suppose q ∈ {n−, n+}. Let D be an open set of X with D
⋂

μ−1(0) = ∅. Then, S(q)
G ≡ 0

on D.
Let p ∈ μ−1(0) and let U be an open set of p and let x = (x1, . . . , x2n+1) be local

coordinates defined in U. Then, there exist continuous operators SG− , SG+ : �
0,q
0 (U ) →

�0,q(U ) such that

S(q)
G ≡ SG− + SG+ on U ,

and SG− (x, y), SG+ (x, y) satisfy

SG∓ (x, y) ≡
∫ ∞

0
ei�∓(x,y)t a∓(x, y, t)dt on U ,

with

a+(x, y, t), a−(x, y, t) ∈ S
n− d

2
cl (U ×U × R+, T ∗0,q X � (T ∗0,q X)∗),

a−(x, y, t) = 0 if q �= n−, a+(x, y, t) = 0 if q �= n+,

a0−(x, x) �= 0, ∀x ∈ U , if q = n−, a0+(x, x) �= 0, ∀x ∈ U , if q = n+,

(1.3)

a0−(x, x), a0+(x, x), x ∈ μ−1(0)
⋂

U, are given by (1.8) below, �−(x, y) ∈ C∞(U ×U ),

Im�−(x, y) ≥ 0,
dx�−(x, x) = −dy�−(x, x) = −ω0(x), ∀x ∈ U

⋂
μ−1(0), (1.4)

there is a constant C ≥ 1 such that, for all (x, y) ∈ U ×U,

|�−(x, y)| + Im�−(x, y) ≤ C
(
inf
{
d2(g ◦ x, y); g ∈ G

}+ d2(x, μ−1(0))+ d2(y, μ−1(0))
)
,

|�−(x, y)| + Im�−(x, y) ≥ 1
C

(
inf
{
d2(g ◦ x, y); g ∈ G

}+ d2(x, μ−1(0))+ d2(y, μ−1(0))
)
,

Cd2(x, μ−1(0)) ≥ Im�−(x, x) ≥ 1
C d

2(x, μ−1(0)), ∀x ∈ U ,

(1.5)
and �−(x, y) satisfies (1.18) below and (1.19) below, and �+(x, y) ∈ C∞(U × U ),
−�+(x, y) satisfies (1.4), (1.5), (1.18) below and (1.19) below.

We refer the reader to the discussion before (2.1) and Definition 3.1 for the precise mean-

ings of A ≡ B and the symbol space S
n− d

2
cl , respectively.

Let� ∈ C∞(U×U ). We assume that� satisfies (1.4), (1.5), (1.18), (1.19). We will show
in Theorem 5.2 that the functions� and�− are equivalent onU in the sense of Definition 5.1
if and only if there is a function f ∈ C∞(U ×U ) with f (x, x) = 1, for every x ∈ μ−1(0),
such that �(x, y) − f (x, y)�−(x, y) vanishes to infinite order at diag

(
(μ−1(0)

⋂
U ) ×

(μ−1(0)
⋂

U )
)
. From this observation, we see that the leading term a0−(x, x), x ∈ μ−1(0),

is well-defined. To state the formula for a0−(x, x), we introduce some notations. For a given
point x0 ∈ X , let {Wj }nj=1 be an orthonormal frame of (T 1,0X , 〈 · | · 〉) near x0, for which the
Levi form is diagonal at x0. Put

Lx0(Wj ,W �) = μ j (x0)δ j� , j, � = 1, . . . , n .

We will denote by

detLx0 =
n∏

j=1
μ j (x0) . (1.6)
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G-invariant Szegő kernel asymptotics and CR reduction Page 5 of 48 47

Let {Tj }nj=1 denote the basis of T ∗0,1X , dual to {W j }nj=1. We assume that μ j (x0) < 0 if
1 ≤ j ≤ n− and μ j (x0) > 0 if n− + 1 ≤ j ≤ n. Put

N (x0, n−) := {cT1(x0) ∧ . . . ∧ Tn−(x0); c ∈ C
}
,

N (x0, n+) := {cTn−+1(x0) ∧ . . . ∧ Tn(x0); c ∈ C
}

and let

τn− = τx0,n− : T ∗0,qx0 X → N (x0, n−) , τn+ = τx0,n+ : T ∗0,qx0 X → N (x0, n+) , (1.7)

be the orthogonal projections onto N (x0, n−) and N (x0, n+) with respect to 〈 · | · 〉, respec-
tively.

Fix x ∈ μ−1(0), consider the linear map

Rx : gx → g
x
,

u → Rxu, 〈 Rxu | v 〉 = 〈 dω0(x) , Ju ∧ v 〉.
Let det Rx = λ1(x) · · · λd(x), where λ j (x), j = 1, 2, . . . , d , are the eigenvalues of Rx .

Fix x ∈ μ−1(0), put Yx = {g ◦ x; g ∈ G}. Yx is a d-dimensional submanifold of X . The
G-invariant Hermitian metric 〈 · | · 〉 induces a volume form dvYx on Yx . Put

Veff (x) :=
∫

Yx
dvYx .

Note that the function Veff (x) was already appeared in Ma-Zhang [23, (0,10)] as exactly the
role in the expansion, cf. [23, (0.14)].

Theorem 1.6 With the notations used above, for a0−(x, y) and a0+(x, y) in (1.3), we have

a0∓(x, x) = 2d−1 1

Veff (x)
π−n−1+ d

2 |det Rx |− 1
2 |detLx |τx,n∓ , ∀x ∈ μ−1(0). (1.8)

We now assume that X admits an S1 action: S1 × X → X . We write eiθ to denote the S1

action. Let T ∈ C∞(X , T X) be the global real vector field induced by the S1 action given
by (Tu)(x) = ∂

∂θ

(
u(eiθ ◦ x)) |θ=0, u ∈ C∞(X). We assume that the S1 action eiθ is CR

and transversal (see Definition 4.1). We take ω0 ∈ C∞(X , T ∗X) to be the global real one
form determined by 〈ω0 , u 〉 = 0, for every u ∈ T 1,0X ⊕ T 0,1X and 〈ω0 , T 〉 = −1. In
this paper, we assume that

Assumption 1.7

T is transversal to the space g at every point p ∈ μ−1(0),

eiθ ◦ g ◦ x = g ◦ eiθ ◦ x, ∀x ∈ X , ∀θ ∈ [0, 2π[, ∀g ∈ G, (1.9)

and

G × S1 acts freely near μ−1(0).

Let u ∈ �0,q(X) be arbitrary. Define

Tu := ∂

∂θ

(
(eiθ )∗u

)|θ=0 ∈ �0,q(X).

For every m ∈ Z, let

�
0,q
m (X) := {u ∈ �0,q(X); Tu = imu

}
, q = 0, 1, 2, . . . , n,

�
0,q
m (X)G = {u ∈ �0,q(X)G; Tu = imu

}
, q = 0, 1, 2, . . . , n.
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We denote C∞
m (X) := �

0,0
m (X), C∞

m (X)G := �
0,0
m (X)G . From the CR property of the S1

action and (1.9), it is not difficult to see that Tg∗∂b = g∗T ∂b = ∂bg∗T = ∂bTg∗ on
�0,q(X), for all g ∈ G. Hence,

∂b : �0,q
m (X)G → �

0,q+1
m (X)G , ∀m ∈ Z.

We now assume that the Hermitian metric 〈 · | · 〉 on CT X is G × S1 invariant. Then the L2

inner product ( · | · ) on �0,q(X) induced by 〈 · | · 〉 is G × S1-invariant. We then have

Tg∗∂∗b = g∗T ∂
∗
b = ∂

∗
bg

∗T = ∂
∗
bTg

∗ on �0,q(X), ∀g ∈ G,

Tg∗�(q)
b = g∗T�(q)

b = �(q)
b g∗T = �(q)

b Tg∗ on �0,q(X), ∀g ∈ G,

where ∂
∗
b is the L2 adjoint of ∂b with respect to ( · | · ).

Let L2
(0,q),m(X)G be the completion of �

0,q
m (X)G with respect to ( · | · ). We write

L2
m(X)G := L2

(0,0),m(X)G . PutHq
b,m(X)G := (Ker�(q)

b )Gm := (Ker�(q)
b )G
⋂

L2
(0,q),m(X)G .

It is not difficult to see that, for every m ∈ Z, (Ker�(q)
b )Gm ⊂ �

0,q
m (X)G and

dim (Ker�(q)
b )Gm < ∞. The mth G-invariant Szegő projection is the orthogonal projec-

tion S(q)
G,m : L2

(0,q)(X) → (Ker�(q)
b )Gm with respect to ( · | · ). Let S(q)

G,m(x, y) ∈ C∞(X ×
X , T ∗0,q X � (T ∗0,q X)∗) be the distribution kernel of S(q)

G,m . The second main result of this
work is the following

Theorem 1.8 With the assumptions and notations used above, if q /∈ n−, then, as m →+∞,
S(q)
G,m = O(m−∞) on X.

Suppose q = n−. Let D be an open set of X with D
⋂

μ−1(0) = ∅. Then, as m →+∞,

S(q)
G,m = O(m−∞) on D.

Let p ∈ μ−1(0) and let U be an open set of p and let x = (x1, . . . , x2n+1) be local
coordinates defined in U. Then, as m →+∞,

S(q)
G,m(x, y) = eim�(x,y)b(x, y,m)+ O(m−∞),

b(x, y,m) ∈ S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

b(x, y,m) ∼∑∞
j=0 mn− d

2− j b j (x, y) in S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

b j (x, y) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,

and

b0(x, x) = 2d−1 1

Veff (x)
π−n−1+ d

2 |det Rx |− 1
2 |detLx |τx,n− , ∀x ∈ μ−1(0), (1.10)

where τx,n− is given by (1.7), and �(x, y) ∈ C∞(U × U ), dx�(x, x) = −dy�(x, x) =
−ω0(x), for every x ∈ μ−1(0), �(x, y) = 0 if and only if x = y ∈ μ−1(0) and there is a
constant C ≥ 1 such that, for all (x, y) ∈ U ×U,

Im�(x, y) ≥ 1
C

(
d(x, μ−1(0))2 + d(y, μ−1(0))2 + infg∈G,θ∈S1 d(eiθ ◦ g ◦ x, y)2

)
,

Im�(x, y) ≤ C
(
d(x, μ−1(0))2 + d(y, μ−1(0))2 + infg∈G,θ∈S1 d(eiθ ◦ g ◦ x, y)2

)
.

(We refer the reader to Theorem 1.12 for more properties of the phase �(x, y).)

We refer the reader to the discussion in the beginning of Sect. 2.2 and Definition 2.1 for

the precise meanings of A = B + O(m−∞) and the symbol space S
n− d

2
loc , respectively.
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It is was proved in Theorem 1.12 in [15]) that when X admits a transversal and CR S1

action and the Levi form is non-degenerate of constant signature on X , then �(q)
b has L2

closed range.
Let YG := μ−1(0)/G. In Theorem 2.5, we will show that YG is a CR manifold with

natural CR structure induced by T 1,0X of dimension 2n − 2d + 1. Let LYG ,x be the Levi
form on YG at x ∈ YG induced naturally from L. Note that the bilinear form b is non-
degenerate on μ−1(0), where b is given by (2.4). Hence, on (g, g), b has constant signature
onμ−1(0). Assume that on (g, g), b has r negative eigenvalues and d−r positive eigenvalues
on μ−1(0). Hence LYG has q − r negative and n − d − q + r positive eigenvalues at each

point of YG . Let �(q−r)
b,YG

be the Kohn Laplacian for (0, q − r) forms on YG . Fix m ∈ N. Let

Hq−r
b,m (YG) :=

{
u ∈ �0,q−r (YG); �(q−r)

b,YG
u = 0, Tu = imu

}
. We will apply Theorem 1.8

to establish an isomorphism between Hq
b,m(X)G and Hq−r

b,m (YG) if m large enough. We
introduce some notations.

Since g
x
is orthogonal to HxY

⋂
J HxY and HxY

⋂
J HxY ⊂ g⊥b

x
(see Lemma 2.4 and

(2.5) for the meaning of g⊥b
x
), for every x ∈ Y , we can find a G-invariant orthonormal basis

{Z1, . . . , Zn} of T 1,0X on Y such that

Lx (Z j (x), Zk(x)) = δ j,kλ j (x), j, k = 1, . . . , n,

Z j (x) ∈ g
x
+ i Jg

x
, j = 1, 2, . . . , d,

Z j (x) ∈ CHxY
⋂

J (CHxY ), j = d + 1, . . . , n.

Let {e1, . . . , en} denote the orthonormal basis of T ∗0,1X on Y , dual to
{
Z1, . . . , Zn

}
. Fix

s = 0, 1, 2, . . . , n − d . For x ∈ Y , put

B∗0,sx X =
⎧
⎨

⎩

∑

d+1≤ j1<···< js≤n
a j1,..., js e j1 ∧ · · · ∧ e js ; a j1,..., js ∈ C, ∀d + 1 ≤ j1 < · · · < js ≤ n

⎫
⎬

⎭

and let B∗0,s X be the vector bundle of Y with fiber B∗0,sx X , x ∈ Y . Let C∞(Y , B∗0,s X)G

denote the set of all G-invariant sections of Y with values in B∗0,s X . Let

ιG : C∞(Y , B∗0,s X)G → �0,s(YG)

be the natural identification.
Assume that λ1 < 0, . . . , λr < 0, and λd+1 < 0, . . . , λn−−r+d < 0. For x ∈ Y , put

N̂ (x, n−) = {ced+1 ∧ · · · ∧ en−−r+d ; c ∈ C
}
,

and let

p̂ = p̂x : N (x, n−) → N̂ (x, n−),

u = ce1 ∧ · · · ∧ er ∧ ed+1 ∧ · · · ∧ en−−r+d → ced+1 ∧ · · · ∧ en−−r+d .

Let ι : Y → X be the natural inclusion and let ι∗ : �0,q(X) → �0,q(Y ) be the pull-back of
ι. Let q = n−. Let S(q−r)

YG ,m : L2
(0,q−r)(YG) → Hq−r

b,m (YG) be the orthogonal projection and let

f (x) = √Veff (x)|det Rx |− 1
4 ∈ C∞(Y )G .

Let

σm : Hq
b,m(X)G → Hq−r

b,m (YG),

u → m− d
4 S(q−r)

YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ u.
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In Sect. 6.2, we will show that

Theorem 1.9 With the notations and assumptions above, suppose that q = n−. If m is large,
then σm : Hq

b,m(X)G → Hq−r
b,m (YG) is an isomorphism.

In particular, if m large enough, then dim Hq
b,m(X)G = dim Hq−r

b,m (YG).

Remark 1.10 Let’s sketch the idea of the proof of Theorem 1.9. W can consider σm as a map
from �0,q(X) → Hq−r

b,m (YG):

σm : �0,q(X) → Hq−r
b,m (YG) ⊂ �0,q−r (YG),

u → m− d
4 S(q−r)

YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ S(q)
G,mu.

Let σ ∗m : �0,q−r (YG) → �0,q(X) be the adjoint of σm . From Theorem 1.8 and some
calculation of complex Fourier integral operators, we will show in Sect. 6.2 that Fm =
σ ∗mσm : �0,q(X) → �0,q(X) is the same type of operator as S(q)

G,m and

1

C0
Fm = (I + Rm)S(q)

G,m, (1.11)

where C0 > 0 is a constant and Rm is also the same type of operator as S(q)
G,m , but the

leading symbol of Rm vanishes at diag (Y × Y ). By using the fact that the leading symbol
of Rm vanishes at diag (Y × Y ), we will show in Lemma 6.8 that ‖Rmu‖ ≤ εm ‖u‖, for all
u ∈ �0,q(X), for all m ∈ N, where εm is a sequence with limm→∞ εm = 0. In particular, if
m is large enough, then the map

I + Rm : �0,q(X) → �0,q(X) (1.12)

is injective. From (1.11) and (1.12), we deduce that, if m is large enough, then Fm :
Hq
b,m(X)G → Hq

b,m(X)G is injective. Hence σm : Hq
b,m(X)G → Hq−r

b,m (YG) is injective.
Similarly, we can repeat the argument above with minor change and deduce that if m is

large enough, then the map F̂m = σmσ ∗m : Hq−r
b,m (YG) → Hq−r

b,m (YG) is injective. Hence,

if m is large enough, then the map σ ∗m : Hq−r
b,m (YG) → Hq

b,m(X)G is injective. Thus,

dim Hq
b,m(X)G = dim Hq−r

b,m (YG) and σm is an isomorphism if m large enough.

Let’s apply Theorem 1.9 to complex case. Let (L, hL) be a holomorphic line bundle over
a connected compact complex manifold (M, J ) with dim CM = n, where J denotes the
complex structure map of M and hL is a Hermitian fiber metric of L . Let RL be the curvature
of L induced by hL . Assume that RL is non-degenerate of constant signature (n−, n+) on M .
Let K be a connected compact Lie group with Lie algebra k. We assume that dim RK = d
and K acts holomorphically on (M, J ), and that the action lifts to a holomorphic action on
L . We assume further that hL is preserved by the K -action. Then RL is a K -invariant form.
Let ω = i

2π RL and let μ̃ : M → k∗ be the moment map induced by ω. Assume that 0 ∈ k∗
is regular and the action of K on μ̃−1(0) is freely. The analogue of the Marsden-Weinstein
reduction holds (see [10]). More precisely, the complex structure J on M induces a complex
structure JK on M0 := μ̃−1(0)/K , for which the line bundle L0 := L/K is a holomorphic
line bundle over M0.

For any ξ ∈ k, we write ξM to denote the vector field on M induced by ξ . Let k =
Span (ξM ; ξ ∈ k). On μ̃−1(0), let bL be the bilinear form on k × k given by bL( · , · ) =
ω( · , J · ). Assume that bL has r negative eigenvalues and d − r positive eigenvalues on
μ̃−1(0). Let q = n−. For m ∈ N, let Hq(M, Lm)K denote the K -invariant qth Dolbeault
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cohomology group with values in Lm and let Hq−r (M0, Lm
0 ) denote the (q− r)th Dolbeault

cohomology group with values in Lm
0 . Theorem 1.9 implies that, if m is large enough, then

there is an isomorphism map: σ̃m : Hq(M, Lm)K → Hq−r (M0, Lm
0 ). In particular, if m is

large enough,then

dim Hq(M, Lm)K = dim Hq−r (M0, L
m
0 ). (1.13)

Note that when m = 1 and q = 0, the equality (1.13) was first proved in [10, §5]. For
m = 1, the equality (1.13) was established in [30,33] when L is positive. Zhang [33] com-
bined the methods and results in [31] with Braverman’s idea [5] to construct a suitable
quasi-isomorphisim to prove the equality (1.13). The proof of the equality (1.13) in [30] is
completely algebraic, while the the proof of the equality (1.13) in [33] is purely analytic
where different quasi-homomorphisms between Dolbeault complexes under considerations
were constructed to prove the equality (1.13). Ifm is large enough and q = 0, an isomorphism
map in (1.13) was also constructed in [20, (0.27), Corollary 4.13].

If m large enough and q = 0, an isomorphism map in (1.13) was also constructed in [20,
(0.27), Corollary 4.13]. The point of [20, (0.27), Corollary 4.13] is to study the isometric
aspect of this map, as an consequence of the asymptotic of G-invariant Bergman kernel
of Ma-Zhang [20], they gave another proof that it is an isomorphism for m large, and this
approaches of the isomorphism for m large is adopted in this paper. It should be mentioned
that in this situation, a version of the full asymptotics of S(0)

G,m(x, y) including (1.10) was
established in [20, Theorem 0.1, 0.2].

1.1 The phase functions8−(x, y) and9(x, y)

In this section, we collect some properties of the phase functions �−(x, y), �(x, y) in
Theorem 1.5 and Theorem 1.8.

Let v = (v1, . . . , vd) be local coordinates of G defined in a neighborhood V of e0
with v(e0) = (0, . . . , 0). From now on, we will identify the element e ∈ V with v(e). Fix
p ∈ μ−1(0). In Theorem 3.7, wewill show that there exist local coordinates v = (v1, . . . , vd)

of G defined in a neighborhood V of e0 with v(e0) = (0, . . . , 0), local coordinates x =
(x1, . . . , x2n+1) of X defined in a neighborhood U = U1 × U2 of p with 0 ↔ p, where
U1 ⊂ R

d is an open set of 0 ∈ R
d , U2 ⊂ R

2n+1−d is an open set of 0 ∈ R
2n+1−d and a

smooth function γ = (γ1, . . . , γd) ∈ C∞(U2,U1) with γ (0) = 0 ∈ R
d such that

(v1, . . . , vd) ◦ (γ (xd+1, . . . , x2n+1), xd+1, . . . , x2n+1)
= (v1 + γ1(xd+1, . . . , x2n+1), . . . , vd + γd(xd+1, . . . , x2n+1), xd+1, . . . , x2n+1),
∀(v1, . . . , vd) ∈ V , ∀(xd+1, . . . , x2n+1) ∈ U2,

(1.14)

g = span
{

∂
∂x1

, . . . , ∂
∂xd

}
,

μ−1(0)
⋂

U = {xd+1 = · · · = x2d = 0} ,
On μ−1(0)

⋂
U , we have J ( ∂

∂x j
) = ∂

∂xd+ j
+ a j (x)

∂
∂x2n+1 , j = 1, 2, . . . , d,

(1.15)

where a j (x) is a smooth function on μ−1(0)
⋂

U , independent of x1, . . . , x2d , x2n+1 and
a j (0) = 0, j = 1, . . . , d ,
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T 1,0
p X = span {Z1, . . . , Zn} ,

Z j = 1
2 (

∂
∂x j

− i ∂
∂xd+ j

)(p), j = 1, . . . , d,

Z j = 1
2 (

∂
∂x2 j−1 − i ∂

∂x2 j
)(p), j = d + 1, . . . , n,

〈 Z j | Zk 〉 = δ j,k, j, k = 1, 2, . . . , n,

Lp(Z j , Zk) = μ jδ j,k, j, k = 1, 2, . . . , n

(1.16)

and
ω0(x) = (1+ O(|x |))dx2n+1 +∑d

j=1 4μ j xd+ j dx j
+∑n

j=d+1 2μ j x2 j dx2 j−1 −∑n
j=d+1 2μ j x2 j−1dx2 j

+∑2n
j=d+1 b j x2n+1dx j + O(|x |2),

(1.17)

where bd+1 ∈ R, . . . , b2n ∈ R. Put x ′′ = (xd+1, . . . , x2n+1), x̂ ′′ = (xd+1, xd+2, . . . , x2d),
x̊ ′′ = (xd+1, . . . , x2n). We have the following (see Theorem 3.11 and Theorem 3.12)

Theorem 1.11 With the notations above, the phase function �−(x, y) ∈ C∞(U × U ) is
independent of (x1, . . . , xd) and (y1, . . . , yd). Hence, �−(x, y) = �−((0, x ′′), (0, y′′)) :=
�−(x ′′, y′′). Moreover, there is a constant c > 0 such that

Im�−(x ′′, y′′) ≥ c
(
|x̂ ′′|2 + |ŷ′′|2 + |x̊ ′′ − ẙ′′|2

)
, ∀((0, x ′′), (0, y′′)) ∈ U ×U . (1.18)

Furthermore,

�−(x ′′, y′′) = −x2n+1 + y2n+1 + 2i
∑d

j=1|μ j |y2d+ j + 2i
∑d

j=1|μ j |x2d+ j
+i∑n

j=d+1|μ j ||z j − w j |2 +∑n
j=d+1 iμ j (z jw j − z jw j )

+∑d
j=1(−bd+ j xd+ j x2n+1 + bd+ j yd+ j y2n+1)

+∑n
j=d+1 1

2 (b2 j−1 − ib2 j )(−z j x2n+1 + w j y2n+1)
+∑n

j=d+1 1
2 (b2 j−1 + ib2 j )(−z j x2n+1 + w j y2n+1)

+(x2n+1 − y2n+1) f (x, y)+ O(|(x, y)|3),

(1.19)

where z j = x2 j−1 + i x2 j , w j = y2 j−1 + iy2 j , j = d + 1, . . . , n, μ j , j = 1, . . . , n,
and bd+1 ∈ R, . . . , b2n ∈ R are as in (1.17) and f is smooth and satisfies f (0, 0) = 0,
f (x, y) = f (y, x).

We now assume that X admits an S1 action: S1× X → X . We will use the same notations
as in Theorem 1.8. Recall that we work with Assumption 1.7. Let p ∈ μ−1(0). We can repeat
the proof of Theorem 3.7 with minor change and show that there exist local coordinates
v = (v1, . . . , vd) of G defined in a neighborhood V of e0 with v(e0) = (0, . . . , 0), local
coordinates x = (x1, . . . , x2n+1) of X defined in a neighborhoodU = U1×(Û2×]−2δ, 2δ[)
of p with 0 ↔ p, where U1 ⊂ R

d is an open set of 0 ∈ R
d , Û2 ⊂ R

2n−d is an open set
of 0 ∈ R

2n−d , δ > 0, and a smooth function γ = (γ1, . . . , γd) ∈ C∞(Û2×] − 2δ, 2δ[,U1)

with γ (0) = 0 ∈ R
d such that T = − ∂

∂x2n+1 and (1.14), (1.15), (1.16), (1.17) hold. We have
the following

Theorem 1.12 With the notations above, the phase function� satisfies�(x, y) = −x2n+1+
y2n+1 + �̂(x̊ ′′, ẙ′′), where �̂(x̊ ′′, ẙ′′) ∈ C∞(U × U ), x̊ ′′ = (xd+1, . . . , x2n), ẙ′′ =
(yd+1, . . . , y2n), and � satisfies (1.18) and (1.19).
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G-invariant Szegő kernel asymptotics and CR reduction Page 11 of 48 47

2 Preliminaries

2.1 Standard notations

Let M be aC∞ paracompact manifold. We let T M and T ∗M denote the tangent bundle of M
and the cotangent bundle of M , respectively. The complexified tangent bundle of M and the
complexified cotangent bundle ofM will be denoted byCT M andCT ∗M , respectively.Write
〈 · , · 〉 to denote the pointwise duality between T M and T ∗M . We extend 〈 · , · 〉 bilinearly
to CT M × CT ∗M . Let B be a C∞ vector bundle over M . The fiber of B at x ∈ M will be
denoted by Bx . Let E be a vector bundle over a C∞ paracompact manifold M1. We write
B�E∗ to denote the vector bundle over M×M1 with fiber over (x, y) ∈ M×M1 consisting
of the linear maps from Ey to Bx . Let Y ⊂ M be an open set. From now on, the spaces
of distribution sections of B over Y and smooth sections of B over Y will be denoted by
D′(Y , B) and C∞(Y , B), respectively. Let E ′(Y , B) be the subspace of D′(Y , B) whose
elements have compact support in Y .

We recall the Schwartz kernel theorem [12, Theorems5.2.1, 5.2.6], [19, ThoremB.2.7].
Let B and E be C∞ vector bundles over paracompact orientable C∞ manifolds M and M1,
respectively, equippedwith smooth densities of integration. If A : C∞

0 (M1, E) → D′(M, B)

is continuous, we write KA(x, y) or A(x, y) to denote the distribution kernel of A. The
following two statements are equivalent

(1) A is continuous: E ′(M1, E) → C∞(M, B),
(2) KA ∈ C∞(M × M1, B � E∗).

If A satisfies (1) or (2), we say that A is smoothing on M × M1. Let A, Â : C∞
0 (M1, E) →

D′(M, B) be continuous operators. We write

A ≡ Â(on M × M1) (2.1)

if A − Â is a smoothing operator. If M = M1, we simply write “on M”.
Let H(x, y) ∈ D′(M×M1, B�E∗).Wewrite H to denote the unique continuous operator

C∞
0 (M1, E) → D′(M, B)with distribution kernel H(x, y). In this work, we identify H with

H(x, y).

2.2 Some standard notations in semi-classical analysis

LetW1 be an open set inRN1 and letW2 be an open set inRN2 . Let E and F be vector bundles
over W1 and W2, respectively. An m-dependent continuous operator Am : C∞

0 (W2, F) →
D′(W1, E) is called m-negligible on W1 ×W2 if, for m large enough, Am is smoothing and,
for any K � W1 × W2, any multi-indices α, β and any N ∈ N, there exists CK ,α,β,N > 0
such that

|∂α
x ∂β

y Am(x, y)| ≤ CK ,α,β,Nm
−N on K , ∀m � 1.

In that case we write

Am(x, y) = O(m−∞) on W1 ×W2, or Am = O(m−∞) on W1 ×W2.

If Am, Bm : C∞
0 (W2, F) → D′(W1, E) are m-dependent continuous operators, we write

Am = Bm + O(m−∞) on W1 × W2 or Am(x, y) = Bm(x, y) + O(m−∞) on W1 × W2 if
Am − Bm = O(m−∞) on W1 ×W2. When W = W1 = W2, we sometime write “on W”.
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Let X and M be smooth manifolds and let E and F be vector bundles over X and M ,
respectively. Let Am, Bm : C∞(M, F) → C∞(X , E) bem-dependent smoothing operators.
We write Am = Bm + O(m−∞) on X × M if on every local coordinate patch D of X and
local coordinate patch D1 of M , Am = Bm + O(m−∞) on D × D1. When X = M , we
sometime write on X .

We recall the definition of the semi-classical symbol spaces

Definition 2.1 Let W be an open set in RN . Let

S(1;W ) :=
{
a ∈ C∞(W ) | ∀α ∈ N

N
0 : supx∈W |∂αa(x)| < ∞

}
,

S0loc (1;W ) :=
{
(a(·,m))m∈R | ∀α ∈ N

N
0 ,∀χ ∈ C∞

0 (W ) : supm∈R,m≥1 supx∈W |∂α(χa(x,m))| < ∞
}

.

For k ∈ R, let

Skloc(1) := Skloc(1;W ) =
{
(a(·,m))m∈R | (m−ka(·,m)) ∈ S0loc (1;W )

}
.

Hence a(·,m) ∈ Skloc(1;W ) if for every α ∈ N
N
0 and χ ∈ C∞

0 (W ), there exists Cα > 0
independent of m, such that |∂α(χa(·,m))| ≤ Cαmk holds on W .

Consider a sequence a j ∈ S
k j
loc (1), j ∈ N0, where k j ↘ −∞, and let a ∈ Sk0loc (1). We

say

a(·,m) ∼
∞∑

j=0
a j (·,m) in Sk0loc (1),

if, for every � ∈ N0, we have a−∑�
j=0 a j ∈ Sk�+1

loc (1). For a given sequence a j as above, we

can always find such an asymptotic sum a, which is unique up to an element in S−∞loc (1) =
S−∞loc (1;W ) := ∩k Skloc (1).

Similarly, we can define Skloc (1; Y , E) in the standard way, where Y is a smooth manifold
and E is a vector bundle over Y .

2.3 CRmanifolds and bundles

Let (X , T 1,0X) be a compact, connected and orientable CR manifold of dimension 2n + 1,
n ≥ 1, where T 1,0X is a CR structure of X , that is, T 1,0X is a subbundle of rank n of
the complexified tangent bundle CT X , satisfying T 1,0X ∩ T 0,1X = {0}, where T 0,1X =
T 1,0X , and [V,V] ⊂ V , where V = C∞(X , T 1,0X). There is a unique subbundle HX of
T X such that CHX = T 1,0X ⊕ T 0,1X , i.e. HX is the real part of T 1,0X ⊕ T 0,1X . Let
J : HX → HX be the complex structure map given by J (u + u) = iu − iu, for every
u ∈ T 1,0X . By complex linear extension of J to CT X , the i-eigenspace of J is T 1,0X ={
V ∈ CHX : JV = √−1V }. We shall also write (X , HX , J ) to denote a compact CR

manifold.
We fix a real non-vanishing 1 form ω0 ∈ C(X , T ∗X) so that 〈ω0(x) , u 〉 = 0, for every

u ∈ Hx X , for every x ∈ X . For each x ∈ X , we define a quadratic form on HX by

Lx (U , V ) = 1

2
dω0(JU , V ),∀ U , V ∈ Hx X .

We extend L to CHX by complex linear extension. Then, for U , V ∈ T 1,0
x X ,

Lx (U , V ) = 1

2
dω0(JU , V ) = − 1

2i
dω0(U , V ).
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The Hermitian quadratic form Lx on T 1,0
x X is called Levi form at x . We recall that in this

paper, we always assume that the Levi form L on T 1,0X is non-degenerate of constant signa-
ture (n−, n+) on X , where n− denotes the number of negative eigenvalues of the Levi form
and n+ denotes the number of positive eigenvalues of the Levi form. Let T ∈ C∞(X , T X)

be the non-vanishing vector field determined by

ω0(T ) = −1, dω0(T , ·) ≡ 0 on T X . (2.2)

Note that X is a contact manifold with contact form ω0, contact plane HX and T is the Reeb
vector field.

Fix a smoothHermitianmetric 〈 · | · 〉onCT X so that T 1,0X is orthogonal to T 0,1X , 〈 u | v 〉
is real if u, v are real tangent vectors, 〈 T | T 〉 = 1 and T is orthogonal to T 1,0X ⊕ T 0,1X .
For u ∈ CT X , we write |u|2 := 〈 u | u 〉. Denote by T ∗1,0X and T ∗0,1X the dual bundles
T 1,0X and T 0,1X , respectively. They can be identified with subbundles of the complexified
cotangent bundleCT ∗X . Define the vector bundle of (0, q)-forms by T ∗0,q X := ∧qT ∗0,1X .
The Hermitian metric 〈 · | · 〉 on CT X induces, by duality, a Hermitian metric on CT ∗X and
also on the bundles of (0, q) forms T ∗0,q X , q = 0, 1, · · · , n. We shall also denote all these
induced metrics by 〈 · | · 〉. Note that we have the pointwise orthogonal decompositions:

CT ∗X = T ∗1,0X ⊕ T ∗0,1X ⊕ {λω0 : λ ∈ C} ,
CT X = T 1,0X ⊕ T 0,1X ⊕ {λT : λ ∈ C} .

For x, y ∈ X , let d(x, y) denote the distance between x and y induced by the Hermitian
metric 〈· | ·〉. Let A be a subset of X . For every x ∈ X , let d(x, A) := inf {d(x, y); y ∈ A}.

Let D be an open set of X . Let �0,q(D) denote the space of smooth sections of T ∗0,q X
over D and let �0,q

0 (D) be the subspace of �0,q(D) whose elements have compact support
in D.

2.4 Contact reduction

LetG be a connected compact Lie groupwithLie algebra g such that dimR G = d .We assume
that the Lie group G acts on X preserving ω0, i.e. g∗ω0 = ω0, for any g ∈ G. For any ξ ∈ g,
there is an induced vector field ξX on X given by (ξXu)(x) = ∂

∂t (u(exp(tξ) ◦ x)) |t=0, for
any u ∈ C∞(X).

Definition 2.2 The contact moment map associated to the form ω0 is the map μ : X → g∗
such that, for all x ∈ X and ξ ∈ g, we have

〈μ(x), ξ 〉 = ω0(ξX (x)). (2.3)

We now recall the contact reduction from [1,9]. It was shown in [1,9] that the contact
moment map is G-equivariant, so G acts on Y := μ−1(0), where G acts on g∗ through
co-adjoint represent. Since we assume that the action of G on Y is freely, YG := μ−1(0)/G
is a smooth manifold. Let π : Y → YG and ι : Y ↪→ X be the natural quotient and inclusion,
respectively, then there is a unique induced contact form ω̃0 on YG such π∗ω̃0 = ι∗ω0. We
denote by HY := Ker ω0 ∩ T (μ−1(0)) = HX ∩ TY , then the induced contact plane on YG
is HYG := π∗HY . In particular, dim HY = 2n − d and dim HYG = 2n − 2d .
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2.5 CR reduction

In this subsectionwe study the reduction ofCRmanifoldswith non-degenerate Levi curvature
which is a CR analogue of the reduction on complex manifolds considered in [27, §2.1]. For
the case of strictly pseudoconvex CR manifolds, the CR reduction was also studied in [17].

Recall that we work with Assumption 1.2. Let b be the nondegenerate bilinear form on
HX such that

b(·, ·) = dω0(·, J ·). (2.4)

We denote by g := Span(ξX , ξ ∈ g) the tangent bundle of the orbits in X . Let

g⊥b =
{
v ∈ HX; b(ξX , v) = 0, ∀ξX ∈ g

}
. (2.5)

Since we assume that g
x
∩ g⊥b

x
= {0}, for every x ∈ Y , we immediately get

Lemma 2.3 When restricted to g× g, the bilinear form b is nondegenerate on Y .

For x ∈ Y , V ∈ Hx X and ξ ∈ g, by (2.3) and (2.4), we have

bx (ξX , JV ) = −dω0(x)(ξX , V ) = − (dμ(x)(V )) (ξ).

Therefore,
JV ∈ g⊥b |Y ⇐⇒ dμ(x)(V ) = 0. (2.6)

Since Y = μ−1(0), we have

dμ(x)(V ) = 0 ⇐⇒ V ∈ TxY . (2.7)

In particular, for x ∈ Y ,

dim g⊥b
x

= dim(Hx X ∩ TxY ) = dim HxY = 2n − d.

By (2.2), (2.7) and the definition of g, we have g ⊂ HX |Y . From Lemma 2.3, we can check
that g+ g⊥b = HX |Y . Since gx ∩ g⊥b

x
= {0}, for every x ∈ Y , this sum is a direct sum.

Let U be a small open G-invariant neighborhood of Y . Since G acts freely on Y , we can
thus also assume that G acts freely on U . Since g

x
∩ g⊥b

x
= {0}, for x ∈ Y , we have, for

x ∈ Y ,
HxU = g

x
⊕ g⊥b

x
. (2.8)

Then, by (2.8), we can choose the horizontal bundles of the fibrations U → UG := U/G
and Y → YG to be

HHU = g⊥b |U , HHY := HHU |Y ∩ HY . (2.9)

Hence

HY = g|Y ⊕ HHY .

Lemma 2.4

g⊥b |Y = J HY . (2.10)

HU |Y = Jg|Y ⊕ HY = g|Y ⊕ Jg|Y ⊕ HHY . (2.11)
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Proof The identity (2.10) follows from (2.6) and (2.7). For x ∈ Y , V ∈ HxY and ξ ∈ g,

bx (JξX , V ) = dω0(x)(ξX , V ) = (dμ(x)(V )) (ξ) = 0. (2.12)

Using (2.12), dim HxU = dim HxY + dim Jg
x
, and the fact that b is nondegenerate on

J HY , we obtain (2.11).  !
By (2.9), and (2.10), we have HHY = J HY ∩ HY . In particular, HHY is preserved by

J , so we can define the homomorphism JG on HYG in the following way: For V ∈ HYG ,
we denote by V H its lift in HHY , and we define JG on YG by

(JGV )H = J (V H ). (2.13)

Hence, we have JG : HYG → HYG such that J 2G = − id, where id denotes the identity
map id : HYG → HYG . By complex linear extension of JG to CTYG , we can define the
i-eigenspace of JG is given by T 1,0YG = {V ∈ CHYG : JGV = √−1V }.

Theorem 2.5 The subbundle T 1,0YG is a CR structure of YG.

Proof Let u, v ∈ C∞(YG , T 1,0YG), then we can find U , V ∈ C∞(YG , TYG) such that

u = U −√−1JGU , v = V −√−1JGV .

By (2.13), we have

uH = UH −√−1JU H , v = V H −√−1JV H ∈ T 1,0X ∩ CHY .

Since T 1,0X is a CR structure and it is clearly that [uH , vH ] ∈ CHY , we have [uH , vH ] ∈
T 1,0X ∩ CHY . Hence, there is a W ∈ C∞(X , HX) such that

[uH , vH ] = W −√−1JW .

In particular, W , JW ∈ HY . Thus, W ∈ HY ∩ J HY = HHY . Let XH ∈ HHY be a lift of
X ∈ TYG such that XH = W . Then we have

[u, v] = π∗[uH , vH ] = π∗(XH −√−1J XH ) = X −√−1JG X ∈ T 1,0YG ,

i.e. we have [C∞(YG , T 1,0YG),C∞(YG , T 1,0YG)] ⊂ C∞(YG , T 1,0YG). Therefore, T 1,0YG
is a CR structure of YG .  !

3 G-invariant Szegő kernel asymptotics

In this section, we will establish asymptotic expansion for the G-invariant Szegő kernel. We
first review some known results for Szegő kernel.

3.1 Szegő kernel asymptotics

In this subsection, we don’t assume that our CR manifold admits a compact Lie group action
but we still assume that the Levi form is non-degenerate of constant signature (n−, n+).
The Hermitian metric 〈 · | · 〉 on CT X induces, by duality, a Hermitian metric on CT ∗X and
also on the bundles of (0, q) forms T ∗0,q X , q = 0, 1, . . . , n. We shall also denote all these
induced metrics by 〈 · | · 〉. For u ∈ T ∗0,q X , we write |u|2 := 〈 u | u 〉. Let D ⊂ X be an open
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47 Page 16 of 48 C.-Y. Hsiao, R.-T. Huang

set. Let �0,q(D) denote the space of smooth sections of T ∗0,q X over D and let �0,q
0 (D) be

the subspace of �0,q(D) whose elements have compact support in D.
Let

∂b : �0,q(X) → �0,q+1(X)

be the tangential Cauchy-Riemann operator. Let dv(x) be the volume form induced by the
Hermitian metric 〈 · | · 〉. The natural global L2 inner product ( · | · ) on �0,q(X) induced by
dv(x) and 〈 · | · 〉 is given by

( u | v ) :=
∫

X
〈 u(x) | v(x) 〉 dv(x) , u, v ∈ �0,q(X) .

Wedenote by L2
(0,q)(X) the completion of�0,q(X)with respect to ( · | · ).Wewrite L2(X) :=

L2
(0,0)(X). We extend ( · | · ) to L2

(0,q)(X) in the standard way. For f ∈ L2
(0,q)(X), we denote

‖ f ‖2 := ( f | f ). We extend ∂b to L2
(0,r)(X), r = 0, 1, . . . , n, by

∂b : Dom ∂b ⊂ L2
(0,r)(X) → L2

(0,r+1)(X) ,

where Dom ∂b := {u ∈ L2
(0,r)(X); ∂bu ∈ L2

(0,r+1)(X)} and, for any u ∈ L2
(0,r)(X), ∂bu is

defined in the sense of distributions. We also write

∂
∗
b : Dom ∂

∗
b ⊂ L2

(0,r+1)(X) → L2
(0,r)(X)

to denote the Hilbert space adjoint of ∂b in the L2 space with respect to ( · | · ). Let �(q)
b

denote the (Gaffney extension) of the Kohn Laplacian given by

Dom�(q)
b =
{
s ∈ L2

(0,q)(X); s ∈ Dom ∂b ∩ Dom ∂
∗
b, ∂bs ∈ Dom ∂

∗
b, ∂

∗
bs ∈ Dom ∂b

}
,

�(q)
b s = ∂b∂

∗
bs + ∂

∗
b∂bs for s ∈ Dom�(q)

b .

(3.1)
By a result of Gaffney, for every q = 0, 1, . . . , n, �(q)

b is a positive self-adjoint operator (see

[19, Proposition3.1.2]). That is, �(q)
b is self-adjoint and the spectrum of �(q)

b is contained in
R+, q = 0, 1, . . . , n. Let

S(q) : L2
(0,q)(X) → Ker�(q)

b (3.2)

be the orthogonal projections with respect to the L2 inner product ( · | · ) and let

S(q)(x, y) ∈ D′(X × X , T ∗0,q X � (T ∗0,q X)∗)

denote the distribution kernel of S(q).
We recall Hörmander symbol space. Let D ⊂ X be a local coordinate patch with local

coordinates x = (x1, . . . , x2n+1).

Definition 3.1 For m ∈ R, Sm1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗) is the space of all

a(x, y, t) ∈ C∞(D×D×R+, T ∗0,q X � (T ∗0,q X)∗) such that, for all compact K � D×D
and all α, β ∈ N

2n+1
0 , γ ∈ N0, there is a constant Cα,β,γ > 0 such that

|∂α
x ∂β

y ∂
γ
t a(x, y, t)| ≤ Cα,β,γ (1+ |t |)m−γ , ∀(x, y, t) ∈ K × R+, t ≥ 1.

Put

S−∞(D × D × R+, T ∗0,q X � (T ∗0,q X)∗) :=
⋂

m∈R
Sm1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗).
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Let a j ∈ S
m j
1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . with m j → −∞, as

j → ∞. Then there exists a ∈ Sm0
1,0(D × D × R+, T ∗0,q X � (T ∗0,q X)∗) unique modulo

S−∞, such that a−∑k−1
j=0 a j ∈ Smk

1,0(D×D×R+, T ∗0,q X �(T ∗0,q X)∗
)
for k = 0, 1, 2, . . ..

If a and a j have the properties above, we write a ∼ ∑∞
j=0 a j in Sm0

1,0

(
D × D ×

R+, T ∗0,q X � (T ∗0,q X)∗
)
. We write

s(x, y, t) ∈ Smcl
(
D × D × R+, T ∗0,q X � (T ∗0,q X)∗

)

if s(x, y, t) ∈ Sm1,0
(
D × D × R+, T ∗0,q X � (T ∗0,q X)∗

)
and

s(x, y, t) ∼∑∞
j=0 s j (x, y)tm− j in Sm1,0

(
D × D × R+ , T ∗0,q X � (T ∗0,q X)∗

)
,

s j (x, y) ∈ C∞(D × D, T ∗0,q X � (T ∗0,q X)∗
)
, j ∈ N0.

The following was proved in Theorem 4.8 in [15]

Theorem 3.2 Given q = 0, 1, 2, . . . , n. Assume that q /∈ {n−, n+}. Then, S(q) ≡ 0 on X.

We have the following (see Theorem 1.2 in [13], Theorem 4.7 in [15] and see also [2] for
q = 0)

Theorem 3.3 We recall that weworkwith the assumption that the Levi form is non-degenerate
of constant signature (n−, n+) on X. Let q = n− or n+. Suppose that �(q)

b has L2 closed
range. Then, S(q)(x, y) ∈ C∞(X × X \ diag (X × X), T ∗0,q X � (T ∗0,q X)∗). Let D ⊂ X
be any local coordinate patch with local coordinates x = (x1, . . . , x2n+1). Then, there exist
continuous operators S−, S+ : �0,q

0 (D) → D′(D, T ∗0,q X) such that

S(q) ≡ S− + S+ on D,

and S−(x, y), S+(x, y) satisfy

S∓(x, y) ≡
∫ ∞

0
eiϕ∓(x,y)t s∓(x, y, t)dt on D,

with
s−(x, y, t), s+(x, y, t) ∈ Sncl (D × D × R+, T ∗0,q X � (T ∗0,q X)∗),
s−(x, y, t) = 0 if q �= n−, s+(x, y, t) = 0 if q �= n+,

s0−(x, x) �= 0, ∀x ∈ D, s0+(x, x) �= 0, ∀x ∈ D,

(3.3)

and the phase functions ϕ−, ϕ+ satisfy

ϕ+(x, y), ϕ− ∈ C∞(D × D), Im ϕ−(x, y) ≥ 0,
ϕ−(x, x) = 0, ϕ−(x, y) �= 0 if x �= y,
dxϕ−(x, y)

∣∣
x=y = −ω0(x), dyϕ−(x, y)

∣∣
x=y = ω0(x),

ϕ−(x, y) = −ϕ−(y, x), −ϕ+(x, y) = ϕ−(x, y).

Remark 3.4 It is well-known that for a strictly pseudoconvec CR manifold of dimension 3,
�(0)

b does not have L2 closed range in general (see [28]). Kohn [16] proved that if q = n− =
n+ or |n− − n+| > 1 then �(q)

b has L2 closed range.

The following result describes the phase function in local coordinates (see chapter 8 of
part I in [13])
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Theorem 3.5 For a given point p ∈ X, let {Wj }nj=1 be an orthonormal frame of T 1,0X in

a neighborhood of p such that the Levi form is diagonal at p, i.e. Lx0(Wj ,Ws) = δ j,sμ j ,
j, s = 1, . . . , n. We take local coordinates x = (x1, . . . , x2n+1), z j = x j + i xd+ j , j =
1, . . . , d, z j = x2 j−1 + i x2 j , j = d + 1, . . . , n, defined on some neighborhood of p such
that ω0(p) = dx2n+1, x(p) = 0, and, for some c j ∈ C, j = 1, . . . , n ,

W j = ∂

∂z j
− iμ j z j

∂

∂x2n+1
− c j x2n+1

∂

∂x2n+1
+

2n∑

k=1
a j,k(x)

∂

∂xk
+ O(|x |2), j = 1, . . . , n ,

(3.4)
where a j,k(x) ∈ C∞, a j,k(x) = O(|x |), for every j = 1, . . . , n, k = 1, . . . , 2n. Set
y = (y1, . . . , y2n+1),w j = y j+ iyd+ j , j = 1, . . . , d,w j = y2 j−1+ iy2 j , j = d+1, . . . , n.
Then, for ϕ− in Theorem 3.3, we have

Im ϕ−(x, y) ≥ c
2n∑

j=1
|x j − y j |2, c > 0, (3.5)

in some neighbourhood of (0, 0) and

ϕ−(x, y) = −x2n+1 + y2n+1 + i
∑n

j=1|μ j ||z j − w j |2 +∑n
j=1
(
iμ j (z jw j − z jw j )

+c j (−z j x2n+1 + w j y2n+1)+ c j (−z j x2n+1 + w j y2n+1)
)

+(x2n+1 − y2n+1) f (x, y)+ O(|(x, y)|3),
(3.6)

where f is smooth and satisfies f (0, 0) = 0, f (x, y) = f (y, x).

The following formula for the leading term s0− on the diagonal follows from [13, §9]. The
formula for the leading term s0+ on the diagonal follows similarly.

Theorem 3.6 We assume that the Levi form is non-degenerate of constant signature (n−, n+)

at each point of X. Suppose that �(q)
b has L2 closed range. If q = n∓, then, for the leading

term s0∓(x, y) of the expansion (3.3) of s∓(x, y, t), we have

s0∓(x0, x0) = 1

2
π−n−1|detLx0 |τx0,n∓ , x0 ∈ D,

where detLx0 is given by (1.6) and τx0,n∓ is given by (1.7).

3.2 G-invariant Szegő kernel

Fix g ∈ G. Let g∗ : �r
x (CT

∗X) → �r
g−1◦x (CT

∗X) be the pull-back map. Since G

preserves J , we have g∗ : T ∗0,qx X → T ∗0,q
g−1◦x X , ∀x ∈ X . Thus, for u ∈ �0,q(X),

we have g∗u ∈ �0,q(X) and we write (g∗u)(x) := u(g ◦ x). Put �0,q(X)G :={
u ∈ �0,q(X); g∗u = u, ∀g ∈ G

}
. Now, we assume that the Hermitian metric 〈 · | · 〉 on

CT X is G-invariant and g is orthogonal to HY
⋂

J HY at every point of Y . The Hermitian
metric is G-invariant means that, for any G-invariant vector fields U and V , 〈U | V 〉 is G-
invariant. Then the L2 inner product ( · | · ) on �0,q(X) induced by 〈 · | · 〉 is G-invariant, that
is, ( u | v ) = ( g∗u | g∗v ), for all u, v ∈ �0,q(X), g ∈ G. Let u ∈ L2

(0,q)(X) and let g ∈ G.

Take u j ∈ �0,q(X), j = 1, 2, . . ., with u j → u in L2
(0,q)(X) as j → ∞. Since ( · | · ) is

G-invariant, there is a v ∈ L2
(0,q)(X) such that v = lim j→∞ g∗u j . We define g∗u := v.
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It is clear that the definition is well-defined. We have g∗ : L2
(0,q)(X) → L2

(0,q)(X). Put

L2
(0,q)(X)G :=

{
u ∈ L2

(0,q)(X); g∗u = u, ∀g ∈ G
}
. It is not difficult to see that L2

(0,q)(X)G

is the completion of�0,q(X)G with respect to ( · | · ).Wewrite L2(X)G := L2
(0,0)(X)G . Since

G preserves J and ( · | · ) is G-invariant, it is straightforward to see that

g∗∂b = ∂bg∗ on Dom ∂b, g∗∂∗b = ∂
∗
bg

∗ on Dom ∂
∗
b,

g∗�(q)
b = �(q)

b g∗ on Dom�(q)
b .

Put (Ker�(q)
b )G := Ker�(q)

b

⋂
L2

(0,q)(X)G . TheG-invariant Szegő projection is the orthog-

onal projection S(q)
G : L2

(0,q)(X) → (Ker�(q)
b )G with respect to ( · | · ). Let S(q)

G (x, y) ∈
D′(X× X , T ∗0,q X � (T ∗0,q X)∗) be the distribution kernel of SG . Let dμ be a Haar measure
on G so that |G|dμ := ∫G dμ = 1.Then,

S(q)
G (x, y) =

∫

G
S(q)(x, g ◦ y)dμ(g). (3.7)

Note that the integral (3.7) is defined in the sense of distribution.

3.3 G-invariant Szegő kernel asymptotics near�−1(0)

In this section, we will study G-invariant Szegő kernel near μ−1(0).
Let e0 ∈ G be the identity element. Let v = (v1, . . . , vd) be the local coordinates of G

defined in a neighborhood V of e0 with v(e0) = (0, . . . , 0). From now on, we will identify
the element e ∈ V with v(e). We first need

Theorem 3.7 Let p ∈ μ−1(0). There exist local coordinates v = (v1, . . . , vd) of G defined
in a neighborhood V of e0 with v(e0) = (0, . . . , 0), local coordinates x = (x1, . . . , x2n+1)
of X defined in a neighborhood U = U1 × U2 of p with 0 ↔ p, where U1 ⊂ R

d is an
open set of 0 ∈ R

d , U2 ⊂ R
2n+1−d is an open set of 0 ∈ R

2n+1−d and a smooth function
γ = (γ1, . . . , γd) ∈ C∞(U2,U1) with γ (0) = 0 ∈ R

d such that

(v1, . . . , vd) ◦ (γ (xd+1, . . . , x2n+1), xd+1, . . . , x2n+1)
= (v1 + γ1(xd+1, . . . , x2n+1), . . . , vd + γd(xd+1, . . . , x2n+1), xd+1, . . . , x2n+1),
∀(v1, . . . , vd) ∈ V , ∀(xd+1, . . . , x2n+1) ∈ U2,

(3.8)

g = span
{

∂
∂x1

, . . . , ∂
∂xd

}
,

μ−1(0)
⋂

U = {xd+1 = · · · = x2d = 0} ,
On μ−1(0)

⋂
U, we have J ( ∂

∂x j
) = ∂

∂xd+ j
+ a j (x)

∂
∂x2n+1 , j = 1, 2, . . . , d,

(3.9)

where a j (x) is a smooth function on μ−1(0)
⋂

U, independent of x1, . . . , x2d , x2n+1 and
a j (0) = 0, j = 1, . . . , d,

T 1,0
p X = span {Z1, . . . , Zn} ,

Z j = 1
2 (

∂
∂x j

− i ∂
∂xd+ j

)(p), j = 1, . . . , d,

Z j = 1
2 (

∂
∂x2 j−1 − i ∂

∂x2 j
)(p), j = d + 1, . . . , n,

〈 Z j | Zk 〉 = δ j,k, j, k = 1, 2, . . . , n,

Lp(Z j , Zk) = μ jδ j,k, j, k = 1, 2, . . . , n

(3.10)
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and
ω0(x) = (1+ O(|x |))dx2n+1 +∑d

j=1 4μ j xd+ j dx j
+∑n

j=d+1 2μ j x2 j dx2 j−1 −∑n
j=d+1 2μ j x2 j−1dx2 j

+∑2n
j=d+1 b j x2n+1dx j + O(|x |2),

(3.11)

where bd+1 ∈ R, . . . , b2n ∈ R.

Proof From the standard proof of Frobenius Theorem, it is not difficult to see that there
exist local coordinates v = (v1, . . . , vd) of G defined in a neighborhood V of e0 with
v(e0) = (0, . . . , 0) and local coordinates x = (x1, . . . , x2n+1)of X defined in aneighborhood
U of p with x(p) = 0 such that

(v1, . . . , vd ) ◦ (0, . . . , 0, xd+1, . . . , x2n+1)
= (v1, . . . , vd , xd+1, . . . , x2n+1), ∀(v1, . . . , vd ) ∈ V , ∀(0, . . . , 0, xd+1, . . . , x2n+1) ∈ U ,

(3.12)
and

g = span

{
∂

∂x1
, . . . ,

∂

∂xd

}
. (3.13)

Since p ∈ μ−1(0), we haveω0(p)(
∂

∂x j
(p)) = 0, j = 1, 2, . . . , d , and hence ∂

∂x j
(p) ∈ HpX ,

j = 1, 2, . . . , d . Consider the linear map

R : g
p
→ g

p
,

u → Ru, 〈 Ru | v 〉 = 〈 dω0 , Ju ∧ v 〉.
Since R is self-adjoint, by using linear transformation in (x1, . . . , xd), we can take
(x1, . . . , xd) such that, for j, k = 1, 2, . . . , d ,

〈 R ∂

∂x j
(p) | ∂

∂xk
(p) 〉 = 4μ jδ j,k, 〈 ∂

∂x j
(p) | ∂

∂xk
(p) 〉 = 2δ j,k . (3.14)

By taking linear transformation in (v1, . . . , vd), (3.12) still hold.
Let ω0(

∂
∂x j

) = a j (x) ∈ C∞(U ), j = 1, 2, . . . , d . Since a j (x) is G-invariant, we have
∂a j (x)

∂xs
= 0, j, s = 1, 2, . . . , d . By the definition of the moment map, we have

μ−1(0)
⋂

U = {x ∈ U ; a1(x) = · · · = ad(x) = 0} .

Since p is a regular value of the moment map μ, the matrix
(

∂a j
∂xs

(p)
)

1≤ j≤d,d+1≤s≤2n+1 is

of rank d . We may assume that the matrix
(

∂a j
∂xs

(p)
)

1≤ j≤d,d+1≤s≤2d is non-singular. Thus,

(x1, . . . , xd , a1, . . . , ad , x2d+1, . . . , x2n+1) are also local coordinates of X . Hence, we can
take v = (v1, . . . , vd) and x = (x1, . . . , x2n+1) such that (3.12), (3.13), (3.14) hold and

μ−1(0)
⋂

U = {x = (x1, . . . , x2n+1) ∈ U ; xd+1 = · · · = x2d = 0} . (3.15)

On μ−1(0)
⋂

U , let

J (
∂

∂x j
) = b j,1(x)

∂

∂x1
+ · · · + b j,2n+1(x)

∂

∂x2n+1
, j = 1, 2, . . . , d.

Sincewe onlywork onμ−1(0), b j,k(x) is independent of xd+1, . . . , x2d , for all j = 1, . . . , d ,
k = 1, . . . , 2n + 1. Moreover, it is easy to see that b j,k(x) is also independent of
x1, . . . , xd , for all j = 1, . . . , d , k = 1, . . . , 2n + 1. Let x̃ ′′ = (x2d+1, . . . , x2n+1).
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Hence, b j,k(x) = b j,k (̃x ′′), j = 1, . . . , d , k = 1, . . . , 2n + 1. We claim that the matrix(
b j,k (̃x ′′)

)
1≤ j≤d,d+1≤k≤2d is non-singular near p. If not, it is easy to see that there is

a non-zero vector u ∈ Jg
⋂

HY , where Y = μ−1(0). Let u = Jv, v ∈ g. Then,
v ∈ g

⋂
J HY = g

⋂
g⊥b (see (2.10)). Since g ∩ g⊥b = {0} on μ−1(0), we deduce that

v = 0 and we get a contradiction. The claim follows. From the claim, we can use linear
transformation in (xd+1, . . . , x2d) (the linear transform depends smoothly on x̃ ′′) and we can
take (xd+1, . . . , x2d) such that on μ−1(0),

J (
∂

∂x j
) = b j,1(̃x

′′) ∂

∂x1
+ · · · + b j,d (̃x

′′) ∂

∂xd
+ ∂

∂xd+ j

+b j,2d+1(̃x ′′)
∂

∂x2d+1
+ · · · + b j,2n+1(̃x ′′)

∂

∂x2n+1
,

where j = 1, 2, . . . , d . Consider the coordinates change:

x = (x1, . . . , x2n+1) → u = (u1, . . . , u2n+1),
(x1, . . . , x2n+1) → (x1 −∑d

j=1 b j,1 (̃x ′′)xd+ j , . . . , xd −∑d
j=1 b j,d (̃x ′′)xd+ j , xd+1, . . . , x2d ,

x2d+1 −∑d
j=1 b j,2d+1 (̃x ′′)xd+ j , . . . , x2n+1 −∑d

j=1 b j,2n+1 (̃x ′′)xd+ j ).

Then,

∂
∂x j

→ ∂
∂u j

, j = 1, . . . , d, 2d + 1, . . . , 2n + 1,
∂

∂xd+ j
→−b j,1

∂
∂u1

− · · · − b j,d
∂

∂ud
+ ∂

∂ud+ j

−b j,2d+1 ∂
∂u2d+1 − · · · − b j,2n+1 ∂

∂u2n+1 , j = 1, . . . , d.

Hence, onμ−1(0)
⋂

U , J ( ∂
∂x j

) → ∂
∂ud+ j

, j = 1, . . . , d . Thus, we can take v = (v1, . . . , vd)

and x = (x1, . . . , x2n+1) such that (3.8), (3.13), (3.14), (3.15) hold and on μ−1(0)
⋂

U ,

J (
∂

∂x j
) = ∂

∂xd+ j
, j = 1, 2, . . . , d.

Let Z j = 1
2 (

∂
∂x j

− i ∂
∂xd+ j

)(p) ∈ T 1,0
p X , j = 1, . . . , d . From (3.14), we can check that

Lp(Z j , Zk) = μ jδ j,k, 〈 Z j | Zk 〉 = δ j,k, j, k = 1, . . . , d.

Since g
p
is orthogonal to HpY

⋂
J HpY and HpY

⋂
J HpY ⊂ g⊥b

p
, we can find an orthonor-

mal frame {Z1, . . . , Zd , V1, . . . , Vn−d} for T 1,0
p X such that the Levi formLp is diagonalized

with respect to Z1, . . . , Zd , V1, . . . , Vn−d , where V1 ∈ CHpY
⋂

JCHpY , . . . , Vn−d ∈
CHpY

⋂
JCHpY . Write

Re Vj =
2n+1∑

k=1
α j,k

∂

∂xk
, Im Vj =

2n+1∑

k=1
β j,k

∂

∂xk
, j = 1, . . . , n − d.

We claim that α j,k = β j,k = 0, for all k = d + 1, . . . , 2d , j = 1, . . . , n − d . Fix j =
1, . . . , n − d . Since Re Vj ∈ g⊥b

p
and span

{
∂

∂xd+1 , . . . ,
∂

∂x2d

}
∈ g⊥b

p
, we conclude that

d∑

k=1
α j,k

∂

∂xk
+

2n+1∑

k=2d+1
α j,k

∂

∂xk
∈ g⊥b

p

⋂
HpY . (3.16)
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From (2.10) and (3.16), we deduce that

d∑

k=1
α j,k

∂

∂xk
+

2n+1∑

k=2d+1
α j,k

∂

∂xk
∈ J HpY

⋂
HpY = g⊥b

p

⋂
HpY

and hence

J
( d∑

k=1
α j,k

∂

∂xk
+

2n+1∑

k=2d+1
α j,k

∂

∂xk

)
∈ g⊥b

p

⋂
HpY . (3.17)

From (3.17) and notice that J (Re Vj ) ∈ g⊥b
p
, we deduce that

J (

2d∑

k=d+1
α j,k

∂

∂xk
) ∈ g

p

⋂
g⊥b
p
= {0} .

Thus, α j,k = 0, for all k = d + 1, . . . , 2d , j = 1, . . . , n − d . Similarly, we can repeat the
procedure above and deduce that β j,k = 0, for all k = d + 1, . . . , 2d , j = 1, . . . , n − d .

Since span
{
Re Vj , Im Vj ; j = 1, . . . , n − d

}
is transversal to g

p
⊕ Jg

p
, we can take

linear transformation in (x2d+1, . . . , x2n+1) so that

Re Vj = α j,1
∂

∂x1
+ · · · + α j,d

∂
∂xd

+ ∂
∂x2 j−1+2d , j = 1, 2, . . . , n − d,

Im Vj = β j,1
∂

∂x1
+ · · · + β j,d

∂
∂xd

+ ∂
∂x2 j+2d , j = 1, 2, . . . , n − d.

Consider the coordinates change:

x = (x1, . . . , x2n+1) → u = (u1, . . . , u2n+1),
(x1, . . . , x2n+1) → (x1 −∑d

j=1 α j,1x2 j−1+2d −∑d
j=1 β j,1x2 j+2d , . . . , xd

−∑d
j=1 α j,d x2 j−1+2d −∑d

j=1 β j,d x2 j+2d , xd+1, . . . , x2n+1)

Then,

∂
∂x j

→ ∂
∂u j

, j = 1, . . . , 2d,
∂

∂x2 j−1+2d → −α j,1
∂

∂u1
− · · · − α j,d

∂
∂ud

+ ∂
∂u2 j−1+2d , j = 1, . . . , n − d,

∂
∂x2 j+2d → −β j,1

∂
∂u1

− · · · − β j,d
∂

∂ud
+ ∂

∂u2 j+2d , j = 1, . . . , n − d.

Thus, we can take v = (v1, . . . , vd) and x = (x1, . . . , x2n+1) such that (3.8), (3.9) and (3.10)
hold.

Now, we can take linear transformation in x2n+1 so that ω0(p) = dx2n+1. Let Wj , j =
1, . . . , n be an orthonormal basis of T 1,0X such that Wj (p) = Z j , j = 1, . . . , n, where
Z j ∈ T 1,0

p X , j = 1, . . . , n, are as in (3.10). Let x̃ = (̃x1, . . . , x̃2n+1) be the coordinates as
in Theorem 3.5. It is easy to see that

x̃ j = x j + a j x2n+1 + h j (x), h j (x) = O(|x |2), a j ∈ R, j = 1, 2, . . . , 2n,

x̃2n+1 = x2n+1 + h2n+1(x), h2n+1(x) = O(|x |2). (3.18)

We may change x2n+1 be x2n+1 + h2n+1(0, . . . , 0, xd+1, . . . , x2n, 0) and we have

∂2 x̃2n+1
∂x j∂xk

(p) = 0, j, k = {d + 1, . . . , 2n} . (3.19)

Note that when we change x2n+1 to x2n+1 + h2n+1(0, . . . , 0, xd+1, . . . , x2n, 0), ∂
∂x j

will

change to ∂
∂x j

+ α j (x)
∂

∂x2n+1 , j = d + 1, . . . , 2n, where α j (x) is a smooth function on
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μ−1(0)
⋂

U , independent of x1, . . . , xd , x2n+1 and α j (0) = 0, j = d + 1, . . . , 2n. Hence,
on μ−1(0)

⋂
U , we have J ( ∂

∂x j
) = ∂

∂xd+ j
+ a j (x)

∂
∂x2n+1 , j = 1, 2, . . . , d , where a j (x)

is a smooth function on μ−1(0)
⋂

U , independent of x1, . . . , x2d , x2n+1 and a j (0) = 0,
j = 1, . . . , d .

From (3.4) and (3.18), it is straightforward to see that

ω0 (̃x) = (1+ O(|̃x |))dx̃2n+1 +∑d
j=1 2μ j x̃d+ j d x̃ j +∑d

j=1(−2μ j x̃ j )dx̃d+ j

+∑n
j=d+1 2μ j x2 j dx2 j−1 +∑n

j=d+1(−2μ j x̃2 j−1)dx̃2 j +∑2n
j=1 b̂ j x̃2n+1dx̃ j + O(|x |2)

= (1+ O(|x |))dx2n+1 +∑d
j=1(2μ j xd+ j + ∂ x̃2n+1

∂x j
)dx j +∑d

j=1(−2μ j x j + ∂ x̃2n+1
∂xd+ j

)dxd+ j

+∑n
j=d+1(2μ j x2 j + ∂ x̃2n+1

∂x2 j−1
)dx2 j−1 +∑n

j=d+1(−2μ j x2 j−1 + ∂ x̃2n+1
∂x2 j

)dx2 j

+∑2n
j=1 b̃ j x2n+1dx j + O(|x |2),

(3.20)
where b̃ j ∈ R, b̂ j ∈ R, j = 1, . . . , 2n. Note that ω0 is G-invariant. From this observation
and (3.20), we deduce that

∂2 x̃2n+1
∂x j ∂xk

(p) = 0, j ∈ {1, . . . , d} , k ∈ {1, . . . , d}⋃ {2d + 1, . . . , 2n} ,
∂2 x̃2n+1

∂xd+ j ∂xk
(p) = 2μ jδ j,k, j, k ∈ {1, . . . , d} . (3.21)

From (3.21), (3.20) and (3.19), it is straightforward to see that

ω0(x) = (1+ O(|x |))dx2n+1 +∑d
j=1 4μ j xd+ j dx j

+∑n
j=d+1 2μ j x2 j dx2 j−1 −∑n

j=d+1 2μ j x2 j−1dx2 j +∑2n
j=1 b j x2n+1dx j + O(|x |2),

(3.22)
where b1 ∈ R, . . . , b2n ∈ R. Since ω0(p)(

∂
∂x j

) = 0 on xd+1 = · · · = x2d = 0, j =
1, 2, . . . , d , we deduce that b1 = · · · = bd = 0 and we get (3.11). The theorem follows.  !

We need

Theorem 3.8 Let p ∈ μ−1(0) and take local coordinates x = (x1, . . . , x2n+1) of X defined
in an open set Uof p with 0 ↔ p such that (3.9), (3.10) and (3.11) hold. Let ϕ−(x, y) ∈
C∞(U ×U ) be as in Theorem 3.3. Then,

ϕ−(x, y) = −x2n+1 + y2n+1 − 2
∑d

j=1 μ j x j xd+ j + 2
∑d

j=1 μ j y j yd+ j + i
∑n

j=1|μ j ||z j − w j |2
+∑n

j=1 iμ j (z jw j − z jw j )+∑d
j=1(− i

2 bd+ j )(−z j x2n+1 + w j y2n+1)
+∑d

j=1( i
2 bd+ j )(−z j x2n+1 + w j y2n+1)+∑n

j=d+1 1
2 (b2 j−1 − ib2 j )(−z j x2n+1 + w j y2n+1)

+∑n
j=d+1 1

2 (b2 j−1 + ib2 j )(−z j x2n+1 + w j y2n+1)+ (x2n+1 − y2n+1) f (x, y)+ O(|(x, y)|3),
(3.23)

where z j = x j + i xd+ j , j = 1, . . . , d, z j = x2 j−1 + i x2 j , j = 2d + 1, . . . , 2n, μ j ,
j = 1, . . . , n, and bd+1 ∈ R, . . . , b2n ∈ R are as in (3.11) and f is smooth and satisfies
f (0, 0) = 0, f (x, y) = f (y, x).

Proof Let x̃ = (̃x1, . . . , x̃2n+1) be the coordinates as in Theorem 3.5. It is easy to see that

x̃ j = x j + a j x2n+1 + h j (x), h j (x) = O(|x |2), a j ∈ R, j = 1, 2, . . . , 2n,

x̃2n+1 = x2n+1 + h2n+1(x), h2n+1(x) = O(|x |2). (3.24)

From (3.4), it is straightforward to see that

ω0 (̃x) = (1+ O(|̃x |))dx̃2n+1 +∑d
j=1 2μ j x̃d+ j d x̃ j +∑d

j=1(−2μ j x̃ j )dx̃d+ j

+∑n
j=d+1 2μ j x2 j dx2 j−1 +∑n

j=d+1(−2μ j x̃2 j−1)dx̃2 j +∑2n
j=1 b̂ j x̃2n+1dx̃ j + O(|x |2),

(3.25)
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where

b̂ j = c j + c j , j ∈ {1, . . . , d}⋃ {2d + 1, 2d + 3, . . . , 2n − 1} ,
b̂ j = ic j − ic j , j ∈ {d + 1, . . . , 2d}⋃ {2d + 2, . . . , 2n} .

From (3.25) and (3.11), it is not difficulty to see that (see also (3.20))

∂2 x̃2n+1
∂x j ∂xk

(p) = 0, j ∈ {1, . . . , d} , k ∈ {1, . . . , d} ,
∂2 x̃2n+1
∂x j ∂xk

(p) = 0, j ∈ {1, . . . , 2n} , k ∈ {2d + 1, . . . , 2n} ,
∂2 x̃2n+1

∂xd+ j ∂xk
(p) = 2μ jδ j,k, j, k ∈ {1, . . . , d} .

(3.26)

From (3.24), (3.26) and (3.6), it is straightforward to check that

ϕ−(x, y) = −x2n+1 + y2n+1 − 2
∑d

j=1 μ j x j xd+ j + 2
∑d

j=1 μ j y j yd+ j + i
∑n

j=1|μ j ||z j − w j |2
+∑n

j=1 iμ j (z jw j − z jw j )+∑n
j=1 β j (−z j x2n+1 + w j y2n+1)

+∑n
j=1 β j (−z j x2n+1 + w j y2n+1)+ (x2n+1 − y2n+1) f (x, y)+ O(|(x, y)|3),

(3.27)
where β j ∈ C, j = 1, . . . , n and f is smooth and satisfies f (0, 0) = 0, f (x, y) = f (y, x).
We now determine β j , j = 1, . . . , n. We can compute that

∂ϕ−
∂x j

(x, x) = −4μ j xd+ j − (β j + β j )x2n+1 + O(|x |2), j = 1, . . . , d,
∂ϕ−

∂xd+ j
(x, x) = −i(β j − β j )x2n+1 + O(|x |2), j = 1, . . . , d,

∂ϕ−
∂x2 j−1 (x, x) = −2μ j x2 j − (β j + β j )x2n+1 + O(|x |2), j = d + 1, . . . , n,
∂ϕ−
∂x2 j

(x, x) = 2μ j x2 j−1 + (−iβ j + iβ j )x2n+1 + O(|x |2), j = d + 1, . . . , n.

(3.28)

Note that dxϕ−(x, x) = −ω0(x). From this observation and (3.11), we deduce that

∂ϕ−
∂x j

(x, x) = −4μ j xd+ j + O(|x |2), j = 1, . . . , d,
∂ϕ−

∂xd+ j
(x, x) = −bd+ j x2n+1 + O(|x |2), j = 1, . . . , d,

∂ϕ−
∂x2 j−1 (x, x) = −2μ j x2 j − b2 j−1x2n+1 + O(|x |2), j = d + 1, . . . , n,
∂ϕ−
∂x2 j

(x, x) = 2μ j x2 j−1 − b2 j x2n+1 + O(|x |2), j = d + 1, . . . , n.

(3.29)

From (3.28) and (3.29), we deduce that

β j = − i
2bd+ j , j = 1, . . . , d, and β j = 1

2 (b2 j−1 − ib2 j ), j = d + 1, . . . , n.

(3.30)
From (3.30) and (3.27), we get (3.23).  !

We now work with local coordinates as in Theorem 3.7. From (3.23), we see that near
(p, p) ∈ U × U , we have ∂ϕ−

∂ y2n+1 �= 0. Using the Malgrange preparation theorem [12,
Th.7.5.7], we have

ϕ−(x, y) = g(x, y)(y2n+1 + ϕ̂−(x, ẙ)) (3.31)

in some neighborhood of (p, p), where ẙ = (y1, . . . , y2n), g, ϕ̂− ∈ C∞. Since Im ϕ− ≥ 0,
it is not difficult to see that Im ϕ̂− ≥ 0 in some neighborhood of (p, p). Wemay takeU small
enough so that (3.31) holds and Im ϕ̂− ≥ 0 on U ×U . From [25, Th.4.2], we see that since
ϕ−(x, y) and ϕ̂−(x, y) satisfy (3.31), ϕ−(x, y)t and (y2n+1+ϕ̂−(x, ẙ))t are equivalent in the
sense of Melin–Sjöstrand. More precisely, for any k ∈ R and any b1(x, y, t) ∈ Skcl

(
U ×U ×
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R+, T ∗0,q X�(T ∗0,q X)∗
)
, we can find b2(x, y, t) ∈ Skcl

(
U×U×R+, T ∗0,q X�(T ∗0,q X)∗

)

such that
∫ ∞

0
eiϕ−(x,y)t b1(x, y, t)dt ≡

∫ ∞

0
ei ϕ̂−(x,y)t b2(x, y, t)dt on U

and vise versa. We can replace the phase ϕ− by y2n+1+ ϕ̂−(x, ẙ). From now on, we assume
that ϕ−(x, y) has the form

ϕ−(x, y) = y2n+1 + ϕ̂−(x, ẙ). (3.32)

It is easy to check that ϕ−(x, y) satisfies (3.5) and (3.23) with f (x, y) = 0.
We now study S(q)

G (x, y). From Theorem 3.2, we get

Theorem 3.9 Assume that q /∈ {n−, n+}.Then, S(q)
G ≡ 0 on X.

Assume that q = n− and �(q)
b has L2 closed range. Fix p ∈ μ−1(0) and let v =

(v1, . . . , vd) and x = (x1, . . . , x2n+1) be the local coordinates of G and X as in Theo-
rem 3.7. Assume that dμ = m(v)dv = m(v1, . . . , vd)dv1 · · · dvd on V , where V is an open
neighborhood of e0 ∈ G as in Theorem 3.7. From (3.7), we have

S(q)
G (x, y) =

∫

G
χ(g)S(q)(x, g ◦ y)dμ(g)+

∫

G
(1− χ(g))S(q)(x, g ◦ y)dμ(g),

where χ ∈ C∞
0 (V ), χ = 1 near e0. Since G is freely on μ−1(0), ifU and V are small, there

is a constant c > 0 such that

d(x, g ◦ y) ≥ c, ∀x, y ∈ U , g ∈ Supp (1− χ), (3.33)

where U is an open set of p ∈ μ−1(0) as in Theorem 3.7. From now on, we take U and
V small enough so that (3.33) holds. In view of Theorem 3.3, we see that S(q)(x, y) is
smoothing away from diagonal. From this observation and (3.33), we conclude that

∫
G(1−

χ(g))S(q)(x, g ◦ y)dμ(g) ≡ 0 on U and hence

S(q)
G (x, y) ≡

∫

G
χ(g)S(q)(x, g ◦ y)dμ(g) on U . (3.34)

From Theorem 3.3 and (3.34), we have

S(q)
G (x, y) ≡ Ŝ−(x, y)+ Ŝ+(x, y) on U ,

Ŝ∓(x, y) = ∫G χ(g)S∓(x, g ◦ y)dμ(g),
(3.35)

Write x = (x ′, x ′′) = (x ′, x̂ ′′, x̃ ′′), y = (y′, y′′) = (y′, ŷ′′, ỹ′′), where x̂ ′′ =
(xd+1, . . . , x2d), ŷ′′ = (yd+1, . . . , y2d), x̃ ′′ = (x2d+1, . . . , x2n+1), ỹ′′ = (y2d+1, . . . , y2n+1).
Since S(q)

G (x, y) is G-invariant, we have S(q)
G (x, y) = S(q)

G ((0, x ′′), (γ (y′′), y′′)), where
γ ∈ C∞(U2,U1) is as in Theorem 3.7. From this observation and (3.35), we have

S(q)
G (x, y) ≡ Ŝ−((0, x ′′), (γ (y′′), y′′))+ Ŝ+((0, x ′′), (γ (y′′), y′′)) on U . (3.36)

Write x̊ ′′ = (xd+1, . . . , x2n), ẙ′′ = (yd+1, . . . , y2n) From (3.32), (3.36), Theorem 3.7 and
Theorem 3.3, we have

Ŝ−((0, x ′′), (γ (y′′), y′′))
≡ ∫ ei(y2n+1+ϕ̂−((0,x ′′),(v+γ (y′′),ẙ′′)))t s−((0, x ′′), (v + γ (y′′), y′′), t)m(v)dvdt .

(3.37)
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From (3.23), it is straightforward to see that

det
(( ∂2ϕ̂−

∂vk∂v j
(p, p)

)d

j,k=1

)
= (2i)d |μ1| · · · |μd | �= 0. (3.38)

We pause and introduce some notations. LetW be an open set of RN , N ∈ N. From now on,
we write WC to denote an open set in CN with WC

⋂
R

N = W and for f ∈ C∞(W ), from
now on, we write f̃ ∈ C∞(WC) to denote an almost analytic extension of f (see Section 2
in [25]). Let h(x ′′, y′′) ∈ C∞(U ×U ,Cd) be the solution of the system

∂˜̂ϕ−
∂ ỹ j

((0, x ′′), (h(x ′′, y′′)+ γ (y′′), ẙ′′)) = 0, j = 1, 2, . . . , d, (3.39)

and let
�−(x ′′, y′′) := y2n+1 + ˜̂ϕ−((0, x ′′), (h(x ′′, y′′)+ γ (y′′), ẙ′′)). (3.40)

It is known that (see page 147 in [25]) Im�−(x ′′, y′′) ≥ 0. Note that

∂ϕ̂−
∂v j

|x̂ ′′=ŷ′′=0,̃x ′′=ỹ′′,x ′=v+γ (y′′)=0 = −〈ω0(x) ,
∂

∂x j
〉 = 0,

where x = (0, (0, x̃ ′′)). We deduce that for x̂ ′′ = ŷ′′ = 0, x̃ ′′ = ỹ′′, v = −γ (y′′) are real
critical points. From this observation, we can calculate that

dx�−|x ′′=y′′,x̂ ′′=0 = − f (x ′′)ω0(x), dy�−|x ′′=y′′,x̂ ′′=0 = f (x ′′)ω0(x), (3.41)

where x = (0, x̃ ′′) and f ∈ C∞ is a positive function with f (p) = 1. By using stationary
phase formula of Melin–Sjöstrand [25], we can carry out the v integral in (3.37) and get

Ŝ−((0, x ′′), (γ (y′′), y′′)) ≡
∫

ei�−(x ′′,y′′)t a−(x ′′, y′′, t)dt on U ,

where a−(x ′′, y′′, t) ∼ ∑∞
j=0 tn−

d
2− j a0−(x ′′, y′′) in S

n− d
2

1,0 (U × U × R+, T ∗0,q X �
(T ∗0,q X)∗),

a j
−(x ′′, y′′) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, . . . ,

a0−(p, p) = 1

2
m(0)π−n−1+ d

2 |μ1| 12 · · · |μd | 12 |μd+1| · · · |μn |τp,n− . (3.42)

We now study the property of the phase �−(x ′′, y′′). We need the following which is known
(see Section 2 in [25])

Theorem 3.10 There exist a constant c > 0 and an open set � ∈ R
d such that

Im�−(x ′′, y′′) ≥ c inf
v∈�

{
Im ϕ̂−((0, x ′′), (v + γ (y′′), ẙ′′))+ |dvϕ̂−((0, x ′′), (v + γ (y′′), ẙ′′))|2} ,

(3.43)
for all ((0, x ′′), (0, y′′)) ∈ U ×U.

We can now prove

Theorem 3.11 If U is small enough, then there is a constant c > 0 such that

Im�−(x ′′, y′′) ≥ c
(
|x̂ ′′|2 + |ŷ′′|2 + |x̊ ′′ − ẙ′′|2

)
, ∀((0, x ′′), (0, y′′)) ∈ U ×U . (3.44)
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Proof From (3.5), we see that there is a constant c1 > 0 such that

Im ϕ̂−((0, x ′′), (v + γ (y′′), ẙ′′)) ≥ c1(|v + γ (y′′)|2 + |x̊ ′′ − ẙ′′|2), ∀v ∈ �, (3.45)

where � is any open set of 0 ∈ R
d . From (3.45) and (3.43), we conclude that there is a

constant c2 > 0 such that

Im�−(x ′′, y′′) ≥ c2(|x̊ ′′ − ẙ′′|2 + |dy′ ϕ̂−((0, x ′′), (0, x̊ ′′))|2). (3.46)

From (3.23), we see that the matrix
(

∂2ϕ̂−
∂x j∂xk

(p, p)+ ∂2ϕ̂−
∂ y j∂ yk

(p, p)

)

1≤k≤d,d+1≤ j≤2d

is non-singular. From this observation and notice that dy′ ϕ̂−((0, x ′′), (0, x̊ ′′))|x̂ ′′ = 0, we
deduce that if U is small enough then there is a constant c3 > 0 such that

|dy′ ϕ̂−((0, x ′′), (0, x ′′))| ≥ c3|x̂ ′′|. (3.47)

From (3.47) and (3.46), the theorem follows.  !
From now on, we assume that U is small enough so that (3.44) holds.
We now determine the Hessian of �−(x ′′, y′′) at (p, p). Let ĥ(x ′′, y′′) := h(x ′′, y′′) +

γ (y′′). From (3.39), we have

∂2ϕ̂−
∂xd+1∂ y1

(p, p)+
d∑

j=1

∂2ϕ̂−
∂ y1∂ y j

(p, p)
∂ ĥ j

∂xd+1
(p, p) = 0. (3.48)

From (3.23), we can calculate that

∂2ϕ̂−
∂xd+1∂ y1

(p, p) = 2μ1,
∂2ϕ̂−

∂ y1∂ y j
(p, p) = 2i |μ1|δ1, j , j = 1, 2, . . . , d. (3.49)

From (3.49) and (3.48), we obtain ∂ ĥ1
∂xd+1 (p, p) = i μ1|μ1| . We can repeat the procedure above

several times and deduce that

∂ ĥ j

∂xd+k
(p, p) = ∂ ĥ j

∂ yd+k
(p, p) = i

μ j

|μ j |δ j,k, j, k = 1, 2, . . . , d. (3.50)

From (3.50), (3.23), (3.40) and by some straightforward computation (we omit the details),
we get

Theorem 3.12 With the notations used above, we have

�−(x ′′, y′′) = −x2n+1 + y2n+1 + 2i
∑d

j=1|μ j |y2d+ j + 2i
∑d

j=1|μ j |x2d+ j
+i∑n

j=d+1|μ j ||z j − w j |2 +∑n
j=d+1 iμ j (z jw j − z jw j )

+∑d
j=1(−bd+ j xd+ j x2n+1 + bd+ j yd+ j y2n+1)

+∑n
j=d+1 1

2 (b2 j−1 − ib2 j )(−z j x2n+1 + w j y2n+1)
+∑n

j=d+1 1
2 (b2 j−1 + ib2 j )(−z j x2n+1 + w j y2n+1)

+(x2n+1 − y2n+1) f (x, y)+ O(|(x, y)|3),

(3.51)

where z j = x2 j−1+i x2 j , j = 2d+1, . . . , 2n,μ j , j = 1, . . . , n, and bd+1 ∈ R, . . . , b2n ∈ R

are as in (3.11) and f is smooth and satisfies f (0, 0) = 0, f (x, y) = f (y, x).
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We can change �−(x ′′, y′′) be �−(x ′′, y′′) 1
f (x ′′) , where f (x ′′) is as in (3.41). Thus,

dx�−|x ′′=y′′,x̂ ′′=0 = −ω0(x), dy�−|x ′′=y′′,x̂ ′′=0 = ω0(x), (3.52)

where x = (0, x̃ ′′). It is clear that �−(x ′′, y′′) still satisfies (3.44) and (3.51).
We now determine the leading term a0−(p, p). In view of (3.42), we only need to calculate

m(0). Put Yp = {g ◦ p; g ∈ G}. Yp is a d-dimensional submanifold of X . The G-invariant
Hermitian metric 〈 · | · 〉 induces a volume form dvYp on Yp . Put

Veff (p) :=
∫

Yp

dvYp .

For f (g) ∈ C∞(G), let f̂ (g ◦ p) := f (g), ∀g ∈ G. Then, f̂ ∈ C∞(Yp). Let dμ̂ be the
measure on G given by

∫
G f dμ̂ := ∫Yp

f̂ dvYp , for all f ∈ C∞(G). It is not difficult to see

that dμ̂ is a Haar measure and ∫

G
dμ̂ = Veff (p). (3.53)

Recall that we work with the local coordinates in Theorem 3.7. In view of (3.10), we see that{
1√
2

∂
∂x1

, . . . , 1√
2

∂
∂xd

}
is an orthonormal basis for g

p
. Hence m(0) = 2

d
2 1
Veff (p) . From this

observation, (3.53) and (3.42), we get

a0−(p, p) = 2
d
2−1 1

Veff (p)
π−n−1+ d

2 |μ1| 12 · · · |μd | 12 |μd+1| · · · |μn |τp,n− . (3.54)

Similarly, we can repeat the procedure above and deduce that

Ŝ+((0, x ′′), (γ (y′′), y′′)) ≡
∫

ei�+(x ′′,y′′)t a+(x ′′, y′′, t)dt on U ,

where a+(x ′′, y′′, t) ∼ ∑∞
j=0 tn−

d
2− j a j

+(x ′′, y′′) in S
n− d

2
1,0 (U × U × R+, T ∗0,q X �

(T ∗0,q X)∗),

a j
+(x ′′, y′′) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, . . . ,

a0+(p, p) = 2
d
2−1 1

Veff (p)
π−n−1+ d

2 |μ1| 12 · · · |μd | 12 |μd+1| · · · |μn |τp,n+ , (3.55)

and �+(x ′′, y′′) ∈ C∞(U × U ), Im�+(x ′′, y′′) ≥ 0, −�+(x ′′, y′′) satisfies (3.44), (3.51)
and (3.52).

Summing up, we get one of the main result of this work

Theorem 3.13 We recall that we work with the assumption that the Levi form is non-
degenerate of constant signature (n−, n+) on X. Let q = n− or n+. Suppose that �(q)

b
has L2 closed range. Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordi-
nates defined in an open set U of p such that x(p) = 0 and (3.8), (3.9), (3.10), (3.11) hold.
Write x ′′ = (xd+1, . . . , x2n+1). Then, there exist continuous operators SG− , SG+ : �0,q

0 (U ) →
�0,q(U ) such that

S(q)
G ≡ SG− + SG+ on U ,

and SG− (x, y), SG+ (x, y) satisfy

SG∓ (x, y) ≡
∫ ∞

0
ei�∓(x ′′,y′′)t a∓(x ′′, y′′, t)dt on U ,
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with

a−(x, y, t), a+(x, y, t) ∈ S
n− d

2
cl (U ×U × R+, T ∗0,q X � (T ∗0,q X)∗),

a0−(x, x) �= 0, ∀x ∈ U , a0+(x, x) �= 0, ∀x ∈ U ,

a0−(p, p) and a0+(p, p) are given by (3.54) and (3.55) respectively, �−(x ′′, y′′) ∈ C∞(U ×
U ) satisfies (3.52), (3.44) and (3.51), �+(x ′′, y′′) ∈ C∞(U × U ), −�+(x ′′, y′′) satisfies
(3.52), (3.44) and (3.51).

3.4 G-invariant Szegő kernel asymptotics away�−1(0)

The goal of this section is to prove the following

Theorem 3.14 Let D be an open set of X with D
⋂

μ−1(0) = ∅. Then, S(q)
G ≡ 0 on D.

We first need

Lemma 3.15 Let p /∈ μ−1(0). Then, there are open sets U of p and V of e ∈ G such that
for any χ ∈ C∞

0 (V ), we have
∫

G
S(q)(x, g ◦ y)χ(g)dμ(g) ≡ 0 on U . (3.56)

Proof If q /∈ {n−, n+}. By Theorem 3.2, we get (3.56). We may assume that q = n−.
Take local coordinates v = (v1, . . . , vd) of G defined in a neighborhood V of e0 with
v(e0) = (0, . . . , 0), local coordinates x = (x1, . . . , x2n+1) of X defined in a neighborhood
U = U1 × U2 of p with 0 ↔ p, where U1 ⊂ R

d is an open set of 0 ∈ R
d , U2 ⊂ R

2n+1−d
is an open set of 0 ∈ R

2n+1−d , such that

(v1, . . . , vd) ◦ (γ (xd+1, . . . , x2n+1), xd+1, . . . , x2n+1)
= (v1 + γ1(xd+1, . . . , x2n+1), . . . , vd + γd(xd+1, . . . , x2n+1), xd+1, . . . , x2n+1),
∀(v1, . . . , vd) ∈ V , ∀(xd+1, . . . , x2n+1) ∈ U2,

and

g = span

{
∂

∂x1
, . . . ,

∂

∂xd

}
,

where γ = (γ1, . . . , γd) ∈ C∞(U2,U1) with γ (0) = 0 ∈ R
d . Note that we don’t use the

local coordinates in Theorem 3.7. It should be notice that G needs not act locally freely on
near p, (3.33) need not be true. We can not use off-diagonal expansion for the Szegő kernel
to get this lemma. We will use some properties of the phase ϕ− and integrations by parts to
obtain this lemma. From Theorem 3.3, we have
∫

G
S(q)(x, g◦y)χ(g)dμ(g) ≡

∫

G
S−(x, g◦y)χ(g)dμ(g)+

∫

G
S+(x, g◦y)χ(g)dμ(g) on U .

(3.57)
From Theorem 3.3, we have

∫

G
S−(x, g ◦ y)χ(g)dμ(g)

≡
∫

ei(ϕ−(x,(v+γ (y′′),y′′))t s−(x, (v + γ (y′′), y′′), t)χ(v)m(v)dvdt,
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where y′′ = (yd+1, . . . , y2n+1), m(v)dv = dμ|V . Since p /∈ μ−1(0) and notice that
dyϕ−(x, x) = ω0(x, x), we deduce that if V and U are small then dv(ϕ−(x, (v +
γ (y′′), y′′))) �= 0, for every v ∈ V , (x, y) ∈ U × U . Hence, by using integration by
parts with respect to v, we get

∫

G
S−(x, g ◦ y)χ(g)dμ(g) ≡ 0 on U . (3.58)

Similarly, we have ∫

G
S+(x, g ◦ y)χ(g)dμ(g) ≡ 0 on U . (3.59)

From (3.57), (3.58) and (3.59), the lemma follows.  !

Lemma 3.16 Let p /∈ μ−1(0) and let h ∈ G. We can find open sets U of p and V of h such
that for every χ ∈ C∞

0 (V ), we have
∫
G S(q)(x, g ◦ y)χ(g)dμ(g) ≡ 0 on U.

Proof Let U and V be open sets as in Lemma 3.15. Let V̂ = hV . Then, V̂ is an open set of
G. Let χ̂ ∈ C∞

0 (V̂ ). We have

∫

G
S(q)(x, g ◦ y)χ̂(g)dμ(g) =

∫

G
S(q)(x, h ◦ g ◦ y)χ̂(h ◦ g)dμ(g)

=
∫

G
S(q)(x, g ◦ y)χ(g)dμ(g), (3.60)

where χ(g) := χ̂(h ◦ g) ∈ C∞
0 (V ). From (3.60) and Lemma 3.15, we deduce that

∫

G
S(q)(x, g ◦ y)χ̂(g)dμ(g) ≡ 0 on U .

The lemma follows.  !

Proof of Theorem 3.14 Fix p ∈ D. We need to show that S(q)
G is smoothing near p. Let h ∈ G.

By Lemma 3.16, we can find open setsUh of p and Vh of h such that for every χ ∈ C∞
0 (Vh),

we have ∫

G
S(q)(x, g ◦ y)χ(g)dμ(g) ≡ 0 on Uh . (3.61)

Since G is compact, we can find open sets Uh j and Vh j , j = 1, . . . , N , such that

G = ⋃N
j=1 Vh j . Let U = D

⋂(⋂N
j=1Uh j

)
and let χ j ∈ C∞

0 (Vh j ), j = 1, . . . , N , with
∑N

j=1 χ j = 1 on G. From (3.61), we have

S(q)
G (x, y) =

∫

G
S(q)(x, g ◦ y)dμ(g) =

N∑

j=1

∫

G
S(q)(x, g ◦ y)χ j (g)dμ(g) ≡ 0 on U .

The theorem follows.  !

From Theorems 3.9, 3.13 and 3.14, we get Theorem 1.5.
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4 G-invariant Szegő kernel asymptotics on CRmanifolds wit S1 action

Let (X , T 1,0X) be a compact CR manifold of dimension 2n + 1, n ≥ 1. We assume that
X admits an S1 action: S1 × X → X . We write eiθ to denote the S1 action. Let T ∈
C∞(X , T X) be the global real vector field induced by the S1 action given by (Tu)(x) =
∂
∂θ

(
u(eiθ ◦ x)) |θ=0, u ∈ C∞(X). We recall

Definition 4.1 We say that the S1 action eiθ is CR if [T ,C∞(X , T 1,0X)] ⊂ C∞(X , T 1,0X)

and the S1 action is transversal if for each x ∈ X , CT (x) ⊕ T 1,0
x X ⊕ T 0,1

x X = CTx X .
Moreover, we say that the S1 action is locally free if T �= 0 everywhere. It should be
mentioned that transversality implies locally free.

We assume now that (X , T 1,0X) is a compact connected CR manifold with a transversal
CR locally free S1 action eiθ and we let T be the global vector field induced by the S1 action.
Let ω0 ∈ C∞(X , T ∗X) be the global real one form determined by 〈ω0 , u 〉 = 0, for every
u ∈ T 1,0X ⊕ T 0,1X , and 〈ω0 , T 〉 = −1. Note that ω0 and T satisfy (2.2). Assume that X
admits a compact connected Lie group G action and the Lie group G acts on X preserving
ω0 and J . We recall that we work with Assumption 1.7.

We now assume that the Hermitian metric 〈 · | · 〉 on CT X is G × S1 invariant. Then the
L2 inner product ( · | · ) on �0,q(X) induced by 〈 · | · 〉 is G × S1-invariant. We then have

Tg∗∂∗b = g∗T ∂
∗
b = ∂

∗
bg

∗T = ∂
∗
bTg

∗ on �0,q(X), ∀g ∈ G,

Tg∗�(q)
b = g∗T�(q)

b = �(q)
b g∗T = �(q)

b Tg∗ on �0,q(X), ∀g ∈ G.

Let L2
(0,q),m(X)G be the completion of �

0,q
m (X)G with respect to ( · | · ). We write

L2
m(X)G := L2

(0,0),m(X)G . Put (Ker�(q)
b )Gm := (Ker�(q)

b )G
⋂

L2
(0,q),m(X)G . It is not dif-

ficult to see that, for every m ∈ Z, (Ker�(q)
b )Gm ⊂ �

0,q
m (X)G and dim (Ker�(q)

b )Gm < ∞.

The mth G-invariant Szegő projection is the orthogonal projection S(q)
G,m : L2

(0,q)(X) →
(Ker�(q)

b )Gm with respect to ( · | · ). Let S(q)
G,m(x, y) ∈ C∞(X × X , T ∗0,q X � (T ∗0,q X)∗) be

the distribution kernel of S(q)
G,m . We can check that

S(q)
G,m(x, y) = 1

2π

∫ π

−π

S(q)
G (x, eiθ ◦ y)eimθdθ. (4.1)

The goal of this section is to study the asymptotics of S(q)
G,m as m →+∞.

From Theorem 3.14, (4.1) and by using integration by parts several times, we get

Theorem 4.2 Let D ⊂ X be an open set with D
⋂

μ−1(0) = ∅. Then, S(q)
G,m =

O(m−∞) on D.

We now study S(q)
G,m near μ−1(0). We can repeat the proof of Theorem 3.7 with minor

change and get

Theorem 4.3 Let p ∈ μ−1(0). There exist local coordinates v = (v1, . . . , vd) of G defined
in a neighborhood V of e0 with v(e0) = (0, . . . , 0), local coordinates x = (x1, . . . , x2n+1) of
X defined in a neighborhood U = U1× (Û2×]− 2δ, 2δ[) of p with 0 ↔ p, where U1 ⊂ R

d

is an open set of 0 ∈ R
d , Û2 ⊂ R

2n−d is an open set of 0 ∈ R
2n−d , δ > 0, and a smooth

function γ = (γ1, . . . , γd) ∈ C∞(Û2×] − 2δ, 2δ[,U1) with γ (0) = 0 ∈ R
d such that

(v1, . . . , vd) ◦ (γ (xd+1, . . . , x2n+1), xd+1, . . . , x2n+1)
= (v1 + γ1(xd+1, . . . , x2n+1), . . . , vd + γd(xd+1, . . . , x2n+1), xd+1, . . . , x2n+1),
∀(v1, . . . , vd) ∈ V , ∀(xd+1, . . . , x2n+1) ∈ Û2×] − 2δ, 2δ[,

123



47 Page 32 of 48 C.-Y. Hsiao, R.-T. Huang

T = − ∂
∂x2n+1 , g = span

{
∂

∂x1
, . . . , ∂

∂xd

}
,

μ−1(0)
⋂

U = {xd+1 = · · · = x2d = 0} ,
On μ−1(0)

⋂
U , we have J ( ∂

∂x j
) = ∂

∂xd+ j
+ a j (x)

∂
∂x2n+1 , j = 1, 2, . . . , d,

(4.2)

where a j (x) is a smooth function on μ−1(0)
⋂

U, independent of x1, . . . , x2d , x2n+1 and
a j (0) = 0, j = 1, . . . , d,

T 1,0
p X = span {Z1, . . . , Zn} ,

Z j = 1
2 (

∂
∂x j

− i ∂
∂xd+ j

)(p), j = 1, . . . , d,

Z j = 1
2 (

∂
∂x2 j−1 − i ∂

∂x2 j
)(p), j = d + 1, . . . , n,

〈 Z j | Zk 〉 = δ j,k, j, k = 1, 2, . . . , n,

Lp(Z j , Zk) = μ jδ j,k, j, k = 1, 2, . . . , n

and

ω0(x) = (1+ O(|x |))dx2n+1 +∑d
j=1 4μ j xd+ j dx j

+∑n
j=d+1 2μ j x2 j dx2 j−1 −∑n

j=d+1 2μ j x2 j−1dx2 j + O(|x |2).

Remark 4.4 Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in
Theorem 4.3.We can change x2n+1 be x2n+1−∑d

j=1 a j (x)xd+ j , where a j (x), j = 1, . . . , d ,

are as in (4.2).With this new local coordinates x = (x1, . . . , x2n+1), onμ−1(0)
⋂

U , we have
J ( ∂

∂x j
) = ∂

∂xd+ j
, j = 1, 2, . . . , d . Moreover, it is clear that�−(x, y)+∑d

j=1 a j (x)xd+ j −
∑d=1

j=1 a j (y)yd+ j satisfies (1.19). Note that a j (x) is a smooth function on μ−1(0)
⋂

U ,
independent of x1, . . . , x2d , x2n+1 and a j (0) = 0, j = 1, . . . , d .

We now work with local coordinates as in Theorem 4.3. From (3.51), we see that near
(p, p) ∈ U × U , we have ∂�−

∂ y2n+1 �= 0. Using the Malgrange preparation theorem [12,
Th.7.5.7], we have

�−(x, y) = g(x, y)(y2n+1 + �̂−(x ′′, ẙ′′)) (4.3)

in some neighborhood of (p, p), where ẙ′′ = (yd+1, . . . , y2n), g, �̂− ∈ C∞. Since Im�− ≥
0, it is not difficult to see that Im �̂− ≥ 0 in some neighborhood of (p, p). We may take U
small enough so that (4.3) holds and Im �̂− ≥ 0 on U ×U . From [25, Th.4.2], we see that
since�−(x, y) and y2n+1+�̂−(x ′′, ẙ′′) satisfy (4.3),�−(x, y)t and (y2n+1+�̂−(x ′′, ẙ′′))t
are equivalent in the sense ofMelin–Sjöstrand (see the discussion after (3.31), for themeaning
of equivalent in the sense of Melin–Sjöstrand). We can replace the phase �− by y2n+1 +
�̂−(x, ẙ′′). From now on, we assume that

�−(x, y) = y2n+1 + �̂−(x ′′, ẙ′′). (4.4)

It is easy to check that�−(x, y) satisfies (3.44) and (3.51) with f (x, y) = 0. Similarly, from
now on, we assume that

�+(x, y) = −y2n+1 + �̂+(x ′′, ẙ′′). (4.5)

We now study S(q)
G,m(x, y). From Theorem 3.9, we get

Theorem 4.5 Assume that q /∈ {n−, n+}. Then, S(q)
G,m = O(m−∞) on X.

Assume that q = n−. It was proved in Theorem 1.12 in [15] that when X admits a
transversal S1 action, then�(q)

b has L2 closed range. Fix p ∈ μ−1(0) and let v = (v1, . . . , vd)
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and x = (x1, . . . , x2n+1) be the local coordinates of G and X as in Theorem 4.3 and let U
and V be open sets as in Theorem 4.3. We take U small enough so that there is a constant
c > 0 such that

d(eiθ ◦ g ◦ x, y) ≥ c, ∀(x, y) ∈ U ×U , ∀g ∈ G, θ ∈ [−π,−δ]
⋃
[δ, π], (4.6)

where δ > 0 is as in Theorem 4.3. We will study S(q)
G,m(x, y) in U . From (4.1), we have

S(q)
G,m(x, y) = 1

2π

∫ π

−π
S(q)
G (x, eiθ ◦ y)eimθdθ

= 1
2π

∫ π

−π
e−imx2n+1+imy2n+1 S(q)

G (x̊, eiθ ◦ ẙ)eimθdθ

= I + I I ,

I = 1
2π

∫ π

−π
e−imx2n+1+imy2n+1χ(θ)S(q)

G (x̊, eiθ ◦ ẙ)eimθdθ,

I I = 1
2π

∫ π

−π
e−imx2n+1+imy2n+1(1− χ(θ))S(q)

G (x̊, eiθ ◦ ẙ)eimθdθ,

where x̊ = (x1, . . . , x2n, 0) ∈ U , ẙ = (y1, . . . , y2n, 0) ∈ U , χ ∈ C∞
0 (] − 2δ, 2δ[), χ = 1

on [−δ, δ]. We first study I I . We have

I I = 1

2π

∫ π

−π

∫

G
e−imx2n+1+imy2n+1(1− χ(θ))S(q)(x̊, eiθ ◦ g ◦ ẙ)eimθdμ(g)dθ. (4.7)

From (4.7), (4.6) and notice that S(q) is smoothing away from diagonal, we deduce that

I I = O(m−∞).

We now study I . From Theorem 3.13, (4.1), (4.4) and (4.5), we have

I = I0 + I1,

I0 = 1
2π

∫∞
0

∫ π

−π
e−imx2n+1+imy2n+1χ(θ)ei(−θ+�̂−(x̊ ′′,ẙ′′))t+imθa−(x̊ ′′, (ẙ′′,−θ), t)dtdθ,

I1 = 1
2π

∫∞
0

∫ π

−π
e−imx2n+1+imy2n+1χ(θ)ei(θ+�̂+(x̊ ′′,ẙ′′))t+imθa+(x̊ ′′, (ẙ′′,−θ), t)dtdθ.

We first study I1. From ∂
∂θ

(
i(θ + �̂+(x̊ ′′, ẙ′′))t + imθ

)
�= 0, we can integrate by parts with

respect to θ several times and deduce that

I1 = O(m−∞).

We now study I0. We have

I0 = 1

2π

∫ ∞

0

∫ π

−π

e−imx2n+1+imy2n+1χ(θ)eim(−θ t+�̂−(x̊ ′′,ẙ′′)t+θ)ma−(x̊ ′′, (ẙ′′,−θ),mt)dtdθ.

(4.8)
We can use the complex stationary phase formula of Melin–Sjöstrand [25, Theorem 2.3]
to carry the dtdθ integration in (4.8) and get (the calculation is similar as in the proof of
Theorem 3.17 in [14], we omit the details)

I0 = eim�(x,y)b(x̊ ′′, ẙ′′,m)+ O(m−∞),

�(x, y) = �̂−(x̊ ′′, ẙ′′)− x2n+1 + y2n+1,
b(x̊ ′′, ẙ′′,m) ∈ S

n− d
2

loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),
b(x̊ ′′, ẙ′′,m) ∼∑∞

j=0 mn− d
2− j b j (x̊ ′′, ẙ′′) in S

n− d
2

loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),
b j (x̊ ′′, ẙ′′) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,

b0(p, p) = a0−(p, p) = 2
d
2−1 1

Veff (p)π
−n−1+ d

2 |μ1| 12 · · · |μd | 12 |μd+1| · · · |μn |τp,n− .
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Assume that q = n+ �= n−. Ifm →−∞, then the expansion for S(q)
G,m(x, y) asm →−∞

is similar to q = n− case. When m → +∞, we can repeat the method above with minor
change and deduce that S(q)

G,m(x, y) = O(m−∞) on X . Summing up, we get Theorem 1.8.

5 Equivalent of the phase function 8−(x, y)

Let p ∈ μ−1(0) and let U be a small open set of p. We need

Definition 5.1 With the assumptions and notations used in Theorem 3.13, let �1,�2 ∈
C∞(U × U ). We assume that �1 and �2 satisfy (3.52), (3.51) and (3.44). We say that �1

and�2 are equivalent onU if for any b1(x, y, t) ∈ S
n− d

2
cl

(
U×U×R+, T ∗0,q X�(T ∗0,q X)∗

)

we can find b2(x, y, t) ∈ S
n− d

2
cl

(
U ×U × R+, T ∗0,q X � (T ∗0,q X)∗

)
such that

∫ ∞

0
ei�1(x,y)t b1(x, y, t)dt ≡

∫ ∞

0
ei�2(x,y)t b2(x, y, t)dt on U

and vise versa.

We characterize now the phase �−.

Theorem 5.2 Let�−(x, y) ∈ C∞(U ×U ) be as in Theorem 3.13. Let� ∈ C∞(U ×U ). We
assume that� satisfies (3.52), (3.51) and (3.44). The functions� and�− are equivalent onU
in the sense ofDefinition5.1 if andonly if there is a function f ∈ C∞(U×U )with f (x, x) = 1

such that �(x, y) − f (x, y)�−(x, y) vanishes to infinite order at diag
(
(μ−1(0)

⋂
U ) ×

(μ−1(0)
⋂

U )
)
.

Proof The “⇐” part follows from global theory of complex Fourier integral operator
of Melin–Sjöstrand [25]. We only need to prove the “⇒” part. Take local coordinates
x = (x1, . . . , x2n+1) defined in some small neighbourhood of p such that x(p) = 0 and
ω0(p) = dx2n+1. Since dy�(x, y)|x=y∈μ−1(0) = dy�−(x, y)|x=y∈μ−1(0) = ω0(x), we have

∂�
∂ y2n+1 (p, p) =

∂�−
∂ y2n+1 (p, p) = 1. From this observation and the Malgrange preparation

theorem [12, Theorem 7.5.7], we conclude that in some small neighborhood of (p, p), we
can find f (x, y), f1(x, y) ∈ C∞ such that

�−(x, y) = f (x, y)(y2n+1 + h(x, ẙ)), �(x, y) = f1(x, y)(y2n+1 + h1(x, ẙ)) (5.1)

in some small neighborhood of (p, p), where ẙ = (y1, . . . , y2n). For simplicity, we assume
that (5.1) hold on U × U . It is clear that �−(x, y) and y2n−1 + h(x, ẙ) are equivalent in
the sense of Definition 5.1, �(x, y) and y2n+1 + h1(x, ẙ) are equivalent in the sense of
Definition 5.1, we may assume that �−(x, y) = y2n+1 + h(x, ẙ) and �(x, y) = y2n+1 +
h1(x, ẙ). Fix x0 ∈ μ−1(0)

⋂
U . We are going to prove that h(x, ẙ) − h1(x, ẙ) vanishes to

infinite order at (x0, x0) ∈ (μ−1(0)
⋂

U )× (μ−1(0)
⋂

U ). Take

b(x, y, t) ∼
∞∑

j=0
b j (x, y)t

n− d
2− j ∈ S

n− d
2

cl

(
U ×U × R+, T ∗0,q X � (T ∗0,q X)∗

)

with b0(x, x) �= 0 at each x ∈ U
⋂

μ−1(0). Since � and �− are equivalent on U in the

sense of Definition 5.1, we can find a(x, y, t) ∈ S
n− d

2
cl

(
U ×U ×R+, T ∗0,q X � (T ∗0,q X)∗

)
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such that
∫ ∞

0
ei�−(x,y)t b(x, y, t)dt ≡

∫ ∞

0
ei�(x,y)t a(x, y, t)dt on U .

Put x0 = (x10 , x
2
0 , . . . , x

2n+1
0 ) and x̊0 = (x10 , . . . , x

2n
0 ). Take τ ∈ C∞

0 (R2n+1), τ1 ∈
C∞
0 (R2n), χ ∈ C∞

0 (R) so that τ = 1 near x0, τ1 = 1 near x̊0, χ = 1 near x2n+10 and
Supp τ � U , Supp τ1 × Suppχ � U ′ × Suppχ � U , whereU ′ is an open neighborhood of
x̊0 in R

2n . For each k > 0, we consider the distributions

Ak : u "→
∫∞
0 ei(y2n−1+h(x,ẙ))t−iky2n+1τ(x)b(x, y, t)τ1(ẙ)χ(y2n+1)u(ẙ)dydt,

Bk : u "→
∫∞
0 ei(y2n+1+h1(x,ẙ))t−iky2n+1τ(x)a(x, y, t)τ1(ẙ)χ(y2n+1)u(ẙ)dydt,

for u ∈ C∞
0 (U ′, T ∗0,q X). By using the stationary phase formula of Melin–Sjöstrand [25],

we can show that (cf. the proof of [14, Theorem 3.12]) Ak and Bk are smoothing operators
and

Ak(x, ẙ) ≡ eikh(x,ẙ)g(x, ẙ, k)+ O(k−∞),

Bk(x, ẙ) ≡ eikh1(x,ẙ) p(x, ẙ, k)+ O(k−∞),

g(x, ẙ, k), p(x, ẙ, k) ∈ S
n− d

2
loc (1;U ×U ′, T ∗0,q X � (T ∗0,q X)∗),

g(x, ẙ, k) ∼∑∞
j=0 g j (x, ẙ)kn−

d
2− j in S

n− d
2

loc (1;U ×U ′, T ∗0,q X � (T ∗0,q X)∗),

p(x, ẙ, k) ∼∑∞
j=0 p j (x, y′)kn−

d
2− j in S

n− d
2

loc (1;U ×U ′, T ∗0,q X � (T ∗0,q X)∗),
g j (x, ẙ), p j (x, ẙ) ∈ C∞(U ×U ′, T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, . . . ,
g0(x0, x̊0) �= 0.

Since
∫ ∞

0
ei(y2n+1+h(x,ẙ))t b(x, y, t)dt −

∫ ∞

0
ei(y2n+1+h1(x,ẙ))t a(x, y, t)dt

is smoothing, by using integration by parts with respect to y2n+1, it is easy to see that
Ak − Bk = O(k−∞) (see [14, Section 3]). Thus,

eikh(x,ẙ)g(x, ẙ, k) = eikh1(x,ẙ) p(x, ẙ, k)+ Fk(x, ẙ),
Fk(x, ẙ′) = O(k−∞).

(5.2)

Now, we are ready to prove that h(x, ẙ)− h1(x, ẙ) vanishes to infinite order at (x0, x̊0). We
assume that there exist α0 ∈ N

2n+1
0 , β0 ∈ N

2n
0 , |α0| + |β0| ≥ 1 such that

|∂α0
x ∂

β0
ẙ (ih(x, ẙ)− ih1(x, ẙ))|(x0,x̊0) = Cα0,β0 �= 0

and

|∂α
x ∂

β

ẙ (ih(x, ẙ)− ih1(x, ẙ))|(x0,x̊0) = 0 if |α| + |β| < |α0| + |β0|.
From (5.2), we have

|∂α0
x ∂

β0
ẙ

(
eikh(x,ẙ)−ikh1(x,ẙ)g(x, ẙ, k)− p(x, ẙ, k)

)
|(x0,x̊0)

= −|∂α0
x ∂

β0
ẙ

(
e−ikh1(x,ẙ)Fk(x, ẙ)

)
|(x0,x̊0).

(5.3)

Since h1(x0, x̊0) = −x2n+10 and Fk(x, ẙ) = O(k−∞), we have

lim
k→∞ k−n+

d
2−1|∂α0

x ∂
β0
ẙ

(
e−ikh1(x,ẙ)Fk(x, ẙ)

)
|(x0,x̊0) = 0. (5.4)
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On the other hand, we can check that

limk→∞ k−n+ d
2−1|∂α0

x ∂
β0
ẙ

(
eikh(x,ẙ)−ikh1(x,ẙ)g(x, ẙ, k)− p(x, ẙ, k)

)
|(x0,x̊0)

= Cα0,β0g0(x0, x̊0) �= 0
(5.5)

since g0(x0, x̊0) �= 0. From (5.3), (5.4) and (5.5), we get a contradiction. Thus, h(x, ẙ) −
h1(x, ẙ) vanishes to infinite order at (x0, x̊0). Since x0 is arbitrary, the theorem follows.  !

6 The proof of Theorem 1.9

6.1 Preparation

Fix p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in Remark 4.4
defined in an open set U of p. We may assume that U = �1 × �2 × �3 × �4, where
�1 ⊂ R

d , �2 ⊂ R
d are open sets of 0 ∈ R

d , �3 ⊂ R
2n−2d is an open set of 0 ∈ R

2n−2d
and �4 is an open set of 0 ∈ R. From now on, we identify �2 with

{(0, . . . , 0, xd+1, . . . , x2d , 0, . . . , 0) ∈ U ; (xd+1, . . . , x2d) ∈ �2} ,
�3 with {(0, . . . , 0, x2d+1, . . . , x2n, 0) ∈ U ; (xd+1, . . . , x2n) ∈ �3}, �2 ×�3 with

{(0, . . . , 0, xd+1, . . . , x2n, 0) ∈ U ; (xd+1, . . . , x2n) ∈ �2 ×�3} .
For x = (x1, . . . , x2n+1), we write x ′′ = (xd+1, . . . , x2n+1), x̊ ′′ = (xd+1, . . . , x2n), x̂ ′′ =
(xd+1, . . . , x2d),

x̃ ′′ = (x2d+1, . . . , x2n+1), ˜̊x
′′ = (x2d+1, . . . , x2n).

From now on, we identify x ′′ with (0, . . . , 0, xd+1, . . . , x2n+1) ∈ U , x̊ ′′ = (xd+1, . . . , x2n)
with (0, . . . , 0, xd+1, . . . , x2n, 0) ∈ U , x̂ ′′ with (0, . . . , 0, xd+1, . . . , x2d , 0, . . . , 0) ∈ U , x̃ ′′
with (0, . . . , 0, x2d+1, . . . , x2n+1) ∈ U ,˜̊x

′′
with (0, . . . , 0, x2d+1, . . . , x2n, 0). Since G× S1

acts freely on μ−1(0), we take �2 and �3 small enough so that if x, x1 ∈ �2 × �3 and
x �= x1, then

g ◦ eiθ ◦ x �= g1 ◦ eiθ1 ◦ x1, ∀(g, eiθ ) ∈ G × S1, ∀(g1, eiθ1) ∈ G × S1. (6.1)

We now assume that q = n− and let �(x, y) ∈ C∞(U ×U ) be as in Theorem 1.8. From
S(q)
G,m = (S(q)

G,m)∗, we get

eim�(x,y)b(x, y,m) = e−im�(y,x)b∗(x, y,m)+ O(m−∞), (6.2)

where (S(q)
G,m)∗ : L2

(0,q)(X) → L2
(0,q)(X) is the adjoint of S(q)

G,m : L2
(0,q)(X) → L2

(0,q)(X)

with respect to ( · | · ) and b∗(x, y,m) : T ∗0,qx X → T ∗0,qy X is the adjoint of b(x, y,m) :
T ∗0,qy X → T ∗0,qx X with respect to 〈 · | · 〉. From (6.2), we can repeat the proof of Theorem 5.2
with minor change and deduce that

�(x, y)+�(y, x) vanishes to infinite order at diag
(
(μ−1(0)

⋂
U )× (μ−1(0)

⋂
U )
)
.

(6.3)
From ∂bS

(q)
G,m = 0, we can check that

∂b�(x, y) vanishes to infinite order at diag
(
(μ−1(0)

⋂
U )× (μ−1(0)

⋂
U )
)
. (6.4)
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From (6.3), (6.4) and notice that ∂
∂x j

− i ∂
∂xd+ j

∈ T 0,1
x X , j = 1, . . . , d , where x ∈ μ−1(0)

(see Remark 4.4), and ∂
∂x j

�(x, y) = ∂
∂ y j

�(x, y) = 0, j = 1, . . . , d , we conclude that

∂
∂xd+ j

�(x, y)|xd+1=···=x2d=0 and ∂
∂ yd+ j

�(x, y)|yd+1=···=y2d=0 vanish to infinite order at

diag
(
(μ−1(0)

⋂
U )× (μ−1(0)

⋂
U )
)
.

Let G j (x, y) := ∂
∂ yd+ j

�(x, y)|yd+1=···=y2d=0, Hj (x, y) := ∂
∂xd+ j

�(x, y)|xd+1=···=x2d=0.
Put

�1(x, y) := �(x, y)−
d∑

j=1
yd+ j G j (x, y), �2(x, y) := �(x, y)−

d∑

j=1
xd+ j H j (x, y).

Then, for j = 1, 2, . . . , d ,

∂

∂ yd+ j
�1(x, y)|yd+1=···=y2d=0 = 0 and

∂

∂xd+ j
�2(x, y)|xd+1=···=x2d=0 = 0, (6.5)

and, for j = 1, 2,

�(x, y)−� j (x, y) vanishes to infinite order at diag
(
(μ−1(0)

⋂
U )× (μ−1(0)

⋂
U )
)
.

(6.6)
We also write u = (u1, . . . , u2n+1) to denote the local coordinates of U . Recall that for

any smooth function f ∈ C∞(U ), we write f̃ ∈ C∞(UC) to denote an almost analytic
extension of f (see the discussion after (3.38)). We consider the following two systems

∂�̃1

∂ ũ2d+ j
(̃x, ˜̃u′′)+ ∂�̃2

∂ x̃2d+ j
( ˜̃u′′, ỹ) = 0, j = 1, 2, . . . , 2n − 2d, (6.7)

and
∂�̃1

∂ ũd+ j
(̃x, ũ′′)+ ∂�̃2

∂ x̃d+ j
(ũ′′, ỹ) = 0, j = 1, 2, . . . , 2n − d, (6.8)

where ˜̃u′′ = (0, . . . , 0, ũ2d+1, . . . , ũ2n+1), ũ′′ = (0, . . . , 0, ũd+1, . . . , ũ2n+1). From (6.5)
and Theorem 1.12, we can take �̃1 and �̃2 so that for every j = 1, 2, . . . , d ,

∂�̃1

∂ ũd+ j
(̃x, ũ′′) = 0 and

∂�̃2

∂ x̃d+ j
(ũ′′, ỹ) = 0, if ũd+1 = · · · = ũ2d = 0, (6.9)

and, for j = 1, 2,

�̃ j (̃x, ỹ) = −x̃2n+1 + ỹ2n+1 + ˜̂� j ( ˜̊x ′′, ˜̊y′′), ˜̂� j ∈ C∞(UC ×UC), (6.10)

where ˜̊x ′′ = (0, . . . , 0, x̃d+1, . . . , x̃2n, 0), ˜̊y′′ = (0, . . . , 0, ỹd+1, . . . , ỹ2n, 0).
From Theorem 1.12, (1.19) and dx�(x, x) = −dy�(x, x) = −ω0(x), ∀x ∈ μ−1(0), it

is not difficult to see that

∂�̃1

∂ ũd+ j
(̃x ′′, x̃ ′′)+ ∂�̃2

∂ x̃d+ j
(̃x ′′, x̃ ′′) = 0, j = 1, 2, . . . , 2n − d,

and the matrices
(

∂2�

∂u2d+ j∂u2d+k
(p, p)+ ∂2�

∂x2d+ j∂x2d+k
(p, p)

)2n−2d

j,k=1
,
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(
∂2�

∂ud+ j∂ud+k
(p, p)+ ∂2�

∂xd+ j∂xd+k
(p, p)

)2n−d

j,k=1
are non-singular. Moreover,

det
(

∂2�
∂u2d+ j ∂u2d+k

(p, p)+ ∂2�
∂x2d+ j ∂x2d+k

(p, p)
)2n−2d
j,k=1 = (4i |μd+1| · · · 4i |μn |)2,

det
(

∂2�
∂ud+ j ∂ud+k

(p, p)+ ∂2�
∂xd+ j ∂xd+k

(p, p)
)2n−d
j,k=1 = (8i |μ1| · · · 8i |μd |)(4i |μd+1| · · · 4i |μn |)2.

Hence, near (p, p), we can solve (6.7) and (6.8) and the solutions are unique. Let α(x, y) =
(α2d+1(x, y), . . . , α2n(x, y)) ∈ C∞(U × U ,C2n−2d) and β(x, y) = (βd+1(x, y), . . . , β2n

(x, y)) ∈ C∞(U × U ,C2n−d) be the solutions of (6.7) and (6.8), respectively. From (6.9),
it is easy to see that

β(x, y) = (βd+1(x, y), . . . , β2n(x, y)) = (0, . . . , 0, α2d+1(x, y), . . . , α2n(x, y)). (6.11)

From (6.11), we see that the value of �̃1(x, ˜̃u′′) + �̃2( ˜̃u′′, y) at critical point ˜̃u′′ = α(x, y)
is equal to the value of �̃1(x, ũ′′)+ �̃2(ũ′′, y) at critical point ũ′′ = β(x, y). Put

�3(x, y) := �̃1(x, α(x, y))+ �̃2(α(x, y), y) = �̃1(x, β(x, y))+ �̃2(β(x, y), y). (6.12)

�3(x, y) is a complex phase function. From (6.10), we have

�3(x, y) = −x2n+1 + y2n+1 + �̂3(x̊
′′, ẙ′′), �̂3(x̊

′′, ẙ′′) ∈ C∞(U ×U ).

Moreover, we have the following

Theorem 6.1 The function �3(x, y) − �(x, y) vanishes to infinite order at diag
(
(μ−1(0)

⋂
U )× (μ−1(0)

⋂
U )
)
.

Proof We consider the kernel S(q)
G,m ◦ S(q)

G,m on U . Let V � U be an open set
of p. Let χ(x̊ ′′) ∈ C∞

0 (�2 × �3). From (6.1), we can extend χ(x̊ ′′) to W :={
g ◦ eiθ ◦ x; (g, eiθ ) ∈ G × S1, x ∈ �2 ×�3

}
by χ(g ◦ eiθ ◦ x̊ ′′) := χ(x̊ ′′), for every

(g, eiθ ) ∈ G × S1. Assume that χ = 1 on some neighborhood of V . Let χ1 ∈ C∞
0 (U )

with χ1 = 1 on some neighborhood of V and Suppχ1 ⊂ {x ∈ X; χ(x) = 1}. We have

χ1S
(q)
G,m ◦ S(q)

G,m = χ1S
(q)
G,mχ ◦ S(q)

G,m + χ1S
(q)
G,m(1− χ) ◦ S(q)

G,m . (6.13)

Let’s first consider χ1S
(q)
G,m(1− χ) ◦ S(q)

G,m . We have

(χ1S
(q)
G,m(1− χ))(x, u) = 1

2π
χ1(x)

∫ π

−π

∫

G
S(q)(x, g ◦ eiθ ◦ u)(1− χ(u))eimθdμ(g)dθ.

(6.14)
If u /∈ {x ∈ X; χ(x) = 1}. Since Suppχ1 ⊂ {x ∈ X; χ(x) = 1} and χ(x) = χ(g ◦ eiθ ◦ x),
for every (g, eiθ ) ∈ G × S1, for every x ∈ X , we conclude that g ◦ eiθ ◦ u /∈ Suppχ1, for
every (g, eiθ ) ∈ G × S1. From this observation and notice that S(q) is smoothing away from
diagonal, we can integrate by parts with respect to θ in (6.14) and deduce that χ1S

(q)
G,m ◦ (1−

χ) = O(m−∞) and hence

χ1S
(q)
G,m(1− χ) ◦ S(q)

G,m = O(m−∞). (6.15)

From (6.13) and (6.15), we get

χ1S
(q)
G,m ◦ S(q)

G,m = χ1S
(q)
G,mχ ◦ S(q)

G,m + O(m−∞). (6.16)
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We can check that on U ,

(χ1S
(q)
G,mχ ◦ S(q)

G,m)(x, y)

= (2π)
∫
eim�(x,u′′)+im�(u′′,y)χ1(x)b(x, ů′′,m)χ(ů′′)b(ů′′, y,m)dv(ů′′)+ O(m−∞)

= (2π)
∫
eim�1(x,u′′)+im�2(u′′,y)χ1(x)b(x, ů′′,m)χ(ů′′)b(ů′′, y,m)dv(ů′′)+ O(m−∞)

(here we use (6.6)),
(6.17)

where dμ(g)dθdv(ů′′) = dv(x) onU . We use complex stationary phase formula of Melin–
Sjöstrand [25] to carry out the integral (6.17) and get

(χ1S
(q)
G,mχ ◦ S(q)

G,m)(x, y) = eim�3(x,y)a(x, y,m)+ O(m−∞) on U ,

a(x, y,m) ∈ S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

a(x, y,m) ∼∑∞
j=0 mn− d

2− j a j (x, y) in S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

a j (x, y) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,
a0(p, p) �= 0.

(6.18)
From (6.16), (6.18) and notice that (χ1S

(q)
G,m ◦ S(q)

G,m)(x, y) = (χ1S
(q)
G,m)(x, y), we deduce

that
eim�3(x,y)a(x, y,m) = eim�(x,y)χ1(x)b(x, y,m)+ O(m−∞) on U . (6.19)

From (6.19), we can repeat the proof of Theorem 5.2 with minor change and deduce that

�3(x, y)−�(x, y) vanishes to infinite order at diag
(
(μ−1(0)

⋂
U )× (μ−1(0)

⋂
U )
)
.  !

The following two theorems follow from (6.6), (6.12), Theorem 6.1, complex stationary
phase formula of Melin–Sjöstrand [25] and some straightforward computation. We omit the
details.

Theorem 6.2 With the notations used above, let

Am(x, y) = eim�(x,y)a(x, y,m), Bm(x, y) = eim�(x,y)b(x, y,m),

a(x, y,m) ∈ Skloc (1;U ×U , H � F∗), b(x, y,m) ∈ S�
loc (1;U ×U , F � E∗),

a(x, y,m) ∼∑∞
j=0 mk− j a j (x, y) in Skloc (1;U ×U , H � F∗),

b(x, y,m) ∼∑∞
j=0 m�− j b j (x, y) in S�

loc (1;U ×U , F � E∗),
a j (x, y) ∈ C∞(U ×U , H � F∗), b j (x, y) ∈ C∞(U ×U , F � E∗), j = 0, 1, 2, . . . ,

where E, F and H are vector bundles over X. Let χ(x̊ ′′) ∈ C∞
0 (�2 ×�3). Then, we have

∫
Am(x, u)χ(ů′′)Bm(u, y)dv(ů′′) = eim�(x,y)c(x, y,m)+ O(m−∞),

c(x, y,m) ∈ S
k+�−(n− d

2 )

loc (1;U ×U , H � E∗),
c(x, y,m) ∼∑∞

j=0 mk+�−(n− d
2 )− j c j (x, y) in S

k+�−(n− d
2 )

loc (1;U ×U , H � E∗),
c0(x, x) = 2−n− d

2 πn− d
2 |detLx |−1|det Rx | 12 a0(x, x)b0(x, x)χ(x̊ ′′), ∀x ∈ μ−1(0)

⋂
U ,

where |det Rx | is in the discussion before Theorem 1.6.
Moreover, if there are N1, N2 ∈ N, such that |a0(x, y)| ≤ C |(x, y) − (x0, x0)|N1 ,

|b0(x, y)| ≤ C |(x, y) − (x0, x0)|N2 , for all x0 ∈ μ−1(0)
⋂

U, where C > 0 is a constant,
then,

|c0(x, y)| ≤ Ĉ |(x, y)− (x0, x0)|N1+N2 ,

for all x0 ∈ μ−1(0)
⋂

U, where Ĉ > 0 is a constant.
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Theorem 6.3 With the notations used above, let

Am(x, ỹ′′) = eim�(x ,̃y′′)α(x, ỹ′′,m), Bm (̃x ′′, y) = eim�(̃x ′′,y)β(̃x ′′, y,m),

α(x, ỹ′′,m) ∈ Skloc (1;U × (�3 ×�4), H � F∗), β(̃x ′′, y,m)

∈ S�
loc (1; (�3 ×�4)×U , F � E∗),

α(x, ỹ′′,m) ∼∑∞
j=0 mk− jα j (x, ỹ′′) in Skloc (1;U × (�3 ×�4), H � F∗),

β(̃x ′′, y,m) ∼∑∞
j=0 m�− jβ j (̃x ′′, y) in S�

loc (1; (�3 ×�4)×U , F � E∗),
α j (x, ỹ′′) ∈ C∞(U × (�3 ×�4), H � F∗), β j (̃x ′′, y)
∈ C∞((�3 ×�4)×U , F � E∗), j = 0, 1, 2, . . . ,

where E, F and H are vector bundles over X. Let χ1(̃x̊
′′
) ∈ C∞

0 (�3). Then, we have

∫ Am(x, ũ′′)χ1(̃ů
′′
)Bm (̃u′′, y)dv(̃ů) = eim�(x,y)γ (x, y,m)+ O(m−∞),

γ (x, y,m) ∈ Sk+�−(n−d)
loc (1;U ×U , H � E∗),

γ (x, y,m) ∼∑∞
j=0 mk+�−(n−d)− jγ j (x, y) in Sk+�−(n−d)

loc (1;U ×U , H � E∗),
γ0(x, x) = 2−nπn−d |detLx |−1|det Rx |α0(x, x̃ ′′)β0 (̃x ′′, x)χ1(̃x̊

′′
), ∀x ∈ μ−1(0)

⋂
U ,

where |det Rx | is in the discussion before Theorem 1.6.
Moreover, if there are N1, N2 ∈ N, such that |α0(x, ỹ′′)| ≤ C |(x, ỹ′′) − (x0, x0)|N1 ,

|β0(x, ỹ′′)| ≤ C |(x, ỹ′′)− (x0, x0)|N2 , for all x0 ∈ μ−1(0)
⋂

U, where C > 0 is a constant,
then,

|γ0(x, y)| ≤ Ĉ |(x, y)− (x0, x0)|N1+N2 ,

for all x0 ∈ μ−1(0)
⋂

U, where Ĉ > 0 is a constant.

6.2 The proof of Theorem 1.9

Since g
x
is orthogonal to HxY

⋂
J HxY and HxY

⋂
J HxY ⊂ g⊥b

x
, for every x ∈ Y , we can

find a G-invariant orthonormal basis {Z1, . . . , Zn} of T 1,0X on Y such that

Lx (Z j (x), Zk(x)) = δ j,kλ j (x), j, k = 1, . . . , n, x ∈ Y ,

Z j (x) ∈ g
x
+ i Jg

x
, ∀x ∈ Y , j = 1, 2, . . . , d,

Z j (x) ∈ CHxY
⋂

J (CHxY ), ∀x ∈ Y , j = d + 1, . . . , n.

Let {e1, . . . , en} denote the orthonormal basis of T ∗0,1X on Y , dual to
{
Z1, . . . , Zn

}
. Fix

s = 0, 1, 2, . . . , n − d . For x ∈ Y , put

B∗0,sx X =
⎧
⎨

⎩

∑

d+1≤ j1<···< js≤n
a j1,..., js e j1 ∧ · · · ∧ e js ; a j1,..., js ∈ C, ∀d + 1 ≤ j1 < · · · < js ≤ n

⎫
⎬

⎭

and let B∗0,s X be the vector bundle of Y with fiber B∗0,sx X , x ∈ Y . Let C∞(Y , B∗0,s X)G

denote the set of all G-invariant sections of Y with values in B∗0,s X . Let

ιG : C∞(Y , B∗0,s X)G → �0,s(YG)

be the natural identification.
Assume that λ1 < 0, . . . , λr < 0, and λd+1 < 0, . . . , λn−−r+d < 0. For x ∈ Y , put

N̂ (x, n−) = {ced+1 ∧ · · · ∧ en−−r+d ; c ∈ C
}
,
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and let

p̂ = p̂x : N (x, n−) → N̂ (x, n−),

u = ce1 ∧ · · · ∧ er ∧ ed+1 ∧ · · · ∧ en−−r+d → ced+1 ∧ · · · ∧ en−−r+d .

Let ι : Y → X be the natural inclusion and let ι∗ : �0,q(X) → �0,q(Y ) be the
pull-back of ι. Recall that we work with the assumption that q = n−. Let �(q−r)

b,YG

be the Kohn Laplacian for (0, q − r) forms on YG . Fix m ∈ N. Let Hq−r
b,m (YG) :={

u ∈ �0,q−r (YG); �(q−r)
b,YG

u = 0, Tu = imu
}
. Let S(q−r)

YG ,m : L2
(0,q−r)(YG) → Hq−r

b,m (YG)

be the orthogonal projection and let S(q−r)
YG ,m (x, y) be the distribution kernel of S(q−r)

YG ,m . Let

f (x) = √Veff (x)|det Rx |− 1
4 ∈ C∞(Y )G .

Let

σm : �0,q(X) → Hq−r
b,m (YG),

u → m− d
4 S(q−r)

YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ S(q)
G,mu.

Recall that τx,n− is given by (1.7). Let σ ∗m : �0,q−r (YG) → �0,q(X) be the adjoints of σm . It

is easy to see that σ ∗mu ∈ Hq
b,m(X)G := (Ker�(q)

b )Gm , ∀u ∈ �0,q−r (YG). Let σm(x, y) and
σ ∗m(x, y) denote the distribution kernels of σm and σ ∗m , respectively.

Let’s pause and recall some results for S(q−r)
YG ,m . We first introduce some notations. Let

LYG ,x be the Levi form on YG at x ∈ YG induced naturally from L. The Hermitian metric
〈 · | · 〉 on T 1,0X induces a Hermitian metric 〈 · | · 〉 on T 1,0YG . Let det LYG ,x = λ1 . . . λn−d ,
where λ j , j = 1, . . . , n − d , are the eigenvalues of LYG ,x with respect to the Hermitian

metric 〈 · | · 〉. For x ∈ YG , let τ̂x : T ∗0,q−rx YG → N̂ (x, n−) be the orthogonal projection.
Let π : Y → YG be the natural quotient. Let S(q−r)

YG
: L2

(0,q−r)(YG) → Ker�(q−r)
b,YG

be the

Szegő projection as (3.2). Since S(q−r)
YG

is smoothing away from diagonal (see Theorem 3.3),

it is easy to see that for any x, y ∈ Y , if π(eiθ ◦ x) �= π(eiθ ◦ y), for every θ ∈ [0, 2π[,
then there are open sets U of π(x) in YG and V of π(y) in YG such that for all χ̂ ∈ C∞

0 (U ),
χ̃ ∈ C∞

0 (V ), we have

χ̂ S(q−r)
YG ,m χ̃ = O(m−∞) on YG . (6.20)

Fix p ∈ Y and let x = (x1, . . . , x2n+1) be the local coordinates as in Remark 4.4. We will
use the same notations as in the beginning of Sect. 6.1. From now on, we identify x̃ ′′ as local
coordinates of YG near π(p) ∈ YG and we identifyW := �3×�4 with an open set of π(p)
in YG . It was proved in Theorem 4.11 in [14] that as m →+∞,

S(q−r)
YG ,m (̃x ′′, ỹ′′) = eimφ(̃x ′′ ,̃y′′)b(̃x ′′, ỹ′′,m)+ O(m−∞) on W ,

β(̃x ′′, ỹ′′,m) ∈ Sn−dloc (1;W ×W , T ∗0,q−r YG � (T ∗0,q−r YG)∗),
β(̃x ′′, ỹ′′,m) ∼∑∞

j=0 mn−d− j b j (̃x ′′, ỹ′′) in Sn−dloc (1;W ×W , T ∗0,q−r YG � (T ∗0,q−r YG)∗),
β j (̃x ′′, ỹ′′) ∈ C∞(W ×W , T ∗0,q−r YG � (T ∗0,q−r YG)∗), j = 0, 1, 2, . . . ,
β0 (̃x ′′, x̃ ′′) = 1

2π−(n−d)−1|det LYG ,̃x ′′ |τ̂x̃ ′′ , ∀x̃ ′′ ∈ W ,
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and
φ(̃x ′′, ỹ′′) = −x2n+1 + y2n+1 + φ̂(̃x̊

′′
,˜̊y

′′
) ∈ C∞(W ×W ),

dx̃ ′′φ(̃x ′′, ỹ′′) = −dỹ′′φ(̃x ′′, x̃ ′′) = −ω0 (̃x ′′),
Im φ̂(̃x̊

′′
,˜̊y

′′
) ≥ c|̃x̊ ′′ − ˜̊y′′|2, where c > 0 is a constant,

p0 (̃x ′′, dx̃ ′′φ(̃x ′′, ỹ′′)) vanishes to infinite order at ˜̊x
′′ = ˜̊y′′,

φ(̃x ′′, ỹ′′) = −x2n+1 + y2n+1 + i
∑n

j=d+1|μ j ||z j − w j |2
+∑n

j=d+1 iμ j (z jw j − z jw j )+ O(|(̃x̊ ′′,˜̊y′′)|3),

(6.21)

where p0 denotes the principal symbol of �(q−r)
b,YG

, z j = x2 j−1+ i x2 j , j = d+ 1, . . . , n, and
μd+1, . . . , μn are the eigenvalues of LYG ,p .

Note that for any φ1(̃x ′′, ỹ′′) ∈ C∞(W ×W ), if φ1 satisfies (6.21), then φ1 − φ vanishes
to infinite order at ˜̊x

′′ = ˜̊y′′ (see Remark 3.6 in [14]). It is not difficult to see that the phase
function�(̃x ′′, ỹ′′) satisfies (6.21). Hence, we can replace the phase φ(̃x ′′, ỹ′′) by�(̃x ′′, ỹ′′)
and we have

S(q−r)
YG ,m (̃x ′′, ỹ′′) = eim�(̃x ′′ ,̃y′′)β(̃x ′′, ỹ′′,m)+ O(m−∞) on W . (6.22)

We can now prove

Theorem 6.4 With the notations used above, if y /∈ Y , then for any open set D of y with
D
⋂

Y = ∅, we have
σm = O(m−∞) on YG × D. (6.23)

Let x, y ∈ Y . If π(x) �= π(eiθ ◦ y), for every θ ∈ [0, 2π[, then there are open sets UG of
π(x) in YG and V of y in X such that

σm = O(m−∞) on UG × V . (6.24)

Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in Remark 4.4.
Then,

σm (̃x ′′, y) = eim�(̃x ′′,y′′)α(̃x ′′, y′′,m)+ O(m−∞) on W ×U ,

α(̃x ′′, y′′,m) ∈ S
n− 3

4 d
loc (1;W ×U , T ∗0,q−r YG � (T ∗0,q X)∗),

α(̃x ′′, y′′,m) ∼∑∞
j=0 mn− 3

4 d− jα j (̃x ′′, y′′) in S
n− 3

4 d
loc (1;W ×U , T ∗0,q−r YG � (T ∗0,q X)∗),

α j (̃x ′′, y′′) ∈ C∞(W ×U , T ∗0,q−r YG � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,

(6.25)

α0 (̃x
′′, x̃ ′′) = 2−n+2d−1π

d
2−n−1 1√

Veff (̃x ′′)
|det Lx̃ ′′ ||det Rx |− 3

4 τ̂x̃ ′′τx̃ ′′,n− , ∀x̃ ′′ ∈ W , (6.26)

where U is an open set of p, W = �3 ×�4, �3 and �4 are open sets as in the beginning of
Sect. 6.1.

Proof Note that S(q)
G,m = O(m−∞) away Y . From this observation, we get (6.23). Let x, y ∈

Y . Assume that π(x) �= π(eiθ ◦ y), for every θ ∈ [0, 2π[. Since

S(q)
G,m(x, y) = 1

2π |G|dμ

∫ π

−π

∫

G
S(q)(x, eiθ ◦ g ◦ y)eimθdμ(g)dθ

and S(q) is smoothing away from diagonal, we can integrate by parts with respect to θ and
deduce that there are open sets U1 of x in X and V1 of y in X such that

S(q)
G,m = O(m−∞) on U1 × V1. (6.27)
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From (6.20), we see that there are open sets ÛG of π(x) in YG and V̂G of π(y) in YG such
that

S(q−r)
YG ,m = O(m−∞) on ÛG × V̂G . (6.28)

From (6.27) and (6.28), we get (6.24).
Fix u = (u1, . . . , u2n+1) ∈ Y

⋂
U . From (6.23) and (6.24), we only need to show that

(6.25) and (6.26) hold near u and we may assume that u = (0, . . . , 0, u2d+1, . . . , u2n, 0) =
˜̊u
′′
. Let V be a small neighborhood of u. Let χ(̃x̊

′′
) ∈ C∞

0 (�3). From (6.1), we can extend

χ(̃x̊
′′
) to

Q =
{
g ◦ eiθ ◦ x; (g, eiθ ) ∈ G × S1, x ∈ �3

}

by χ(g ◦ eiθ ◦ ˜̊x ′′) := χ(̃x̊
′′
), for every (g, eiθ ) ∈ G × S1. Assume that χ = 1 on some

neighborhood of V . Let VG = {π(x); x ∈ V }. Let χ1 ∈ C∞
0 (YG) with χ1 = 1 on some

neighborhood of VG and Suppχ1 ⊂ {π(x) ∈ YG; x ∈ Y , χ(x) = 1}. We have

χ1σm = m− d
4 χ1S

(q−r)
YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ S(q)

G,m

= m− d
4 χ1S

(q−r)
YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ χ S(q)

G,m

+m− d
4 χ1S

(q−r)
YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ (1− χ)S(q)

G,m .

(6.29)

If u ∈ Y but u /∈ {x ∈ X; χ(x) = 1}. Since Suppχ1 ⊂ {π(x) ∈ X; x ∈ Y , χ(x) = 1} and
χ(x) = χ(g ◦ eiθ ◦ x), for every (g, eiθ ) ∈ G × S1, for every x ∈ X , we conclude that
π(eiθ ◦ u) /∈ Suppχ1, for every eiθ ∈ S1. From this observation and (6.20), we get

m− d
4 χ1S

(q−r)
YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ (1− χ)S(q)

G,m = O(m−∞) on YG × X . (6.30)

From (6.29) and (6.30), we get

χ1σm = m− d
4 χ1S

(q−r)
YG ,m ◦ ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ χ S(q)

G,m + O(m∞) on YG × X .

From (6.22) and Theorem 1.8, we can check that on U ,

χ1σm (̃x ′′, y) = (2π)

∫
eim�(̃x ′′ ,̃v′′)+im�(v′′,y)χ1 (̃x)β(̃x ′′,˜̊v′′,m)b̂(̃v̊

′′
, y,m)dv(̃v̊

′′
)+ O(m−∞),

(6.31)

where b̂(̃v̊
′′
, y,m) =

(
ιG ◦ p̂ ◦ τx,n− ◦ f ◦ ι∗ ◦ χ(̃v̊

′′
) ◦ b
)
(̃v̊
′′
, y,m). From (6.31) and

Theorem 6.3, we see that (6.25) and (6.26) hold near u. The theorem follows.  !

Let

Fm := σ ∗mσm : �0,q(X) → Hq
b,m(X)G , F̂m := σmσ ∗m : �0,q−r (YG) → Hq−r

b,m (YG).

Let Fm(x, y) and F̂m(x, y) be the distribution kernels of Fm and F̂m respectively. From
Theorems 6.2 and 6.3, we can repeat the proof of Theorem 6.4 with minor change and
deduce the following two theorems

Theorem 6.5 With the notations used above, if y /∈ Y , then for any open set D of y with
D
⋂

Y = ∅, we have Fm = O(m−∞) on X × D.
Let x, y ∈ Y . If π(x) �= π(eiθ ◦ y), for every θ ∈ [0, 2π[, then there are open sets D1 of

x in X and D2 of y in X such that Fm = O(m−∞) on D1 × D2.
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Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in Remark 4.4.
Then,

Fm(x, y) = eim�(x ′′,y′′)a(x ′′, y′′,m)+ O(m−∞) on U ×U ,

a(x ′′, y′′,m) ∈ S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

a(x ′′, y′′,m) ∼∑∞
j=0 mn− d

2− j a j (̃x ′′, y′′) in S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

a j (x ′′, y′′) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,

and

a0 (̃x
′′, x̃ ′′) = 2−3n+4d−1π−n−1 1

Veff (̃x ′′)
|det Lx̃ ′′ ||det Rx |− 1

2 τx̃ ′′,n− , ∀x̃ ′′ ∈ U
⋂

Y ,

(6.32)
where U is an open set of p.

Theorem 6.6 Let x, y ∈ Y . If π(x) �= π(eiθ ◦ y), for every θ ∈ [0, 2π[, then there are open
sets DG of π(x) in YG and VG of π(y) in YG such that F̂m = O(m−∞) on DG × VG.

Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in Remark 4.4.
Then,

F̂m(x, y) = eim�(̃x ′′ ,̃y′′)â(̃x ′′, ỹ′′,m)+ O(m−∞) on W ×W ,

â(̃x ′′, ỹ′′,m) ∈ Sn−dloc (1;W ×W , T ∗0,q−r YG � (T ∗0,q−r YG)∗),
â(̃x ′′, ỹ′′,m) ∼∑∞

j=0 mn−d− j â j (̃x ′′, ỹ′′) in Sn−dloc (1;W ×W , T ∗0,q−r YG � (T ∗0,q−r YG)∗),
â j (̃x ′′, ỹ′′) ∈ C∞(W ×W , T ∗0,q−r YG � (T ∗0,q−r YG)∗), j = 0, 1, 2, . . . ,

â0 (̃x ′′, x̃ ′′) = 2−3n+ 5
2 d−1π−n+ d

2−1|det LYG ,̃x ′′ |τ̂x̃ ′′ , ∀x̃ ′′ ∈ W

where W = �3 ×�4, �3 and �4 are open sets as in the beginning of Sect. 6.1.

Let Rm := 1
C0

Fm − S(q)
G,m : �0,q(X) → Hq

b,m(X)G , where C0 = 2−3d+3nπ d
2 . Since

Fm = FmS
(q)
G,m , it is clear that

1

C0
Fm = S(q)

G,m + Rm = S(q)
G,m + RmS

(q)
G,m = (I + Rm)S(q)

G,m . (6.33)

Our next goal is to show that for m large, I + Rm : �0,q(X) → �0,q(X) is injective.
From Theorem 6.5 and Theorem 1.8, we see that if y /∈ Y , then for any open set D of y with
D
⋂

Y = ∅, we have
Rm = O(m−∞) on X × D. (6.34)

Let x, y ∈ Y . If π(x) �= π(eiθ ◦ y), for every θ ∈ [0, 2π[, then there are open sets D1 of x
in X and D2 of y in X such that

Rm = O(m−∞) on D1 × D2. (6.35)

Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in Remark 4.4.
Then,

Rm(x, y) = eim�(x ′′,y′′)r(x ′′, y′′,m)+ O(m−∞) on U ×U ,

r(x ′′, y′′,m) ∈ S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

r(x ′′, y′′,m) ∼∑∞
j=0 mn− d

2− j r j (x ′′, y′′) in S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

r j (x ′′, y′′) ∈ C∞(U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . .
(6.36)
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Moreover, from (6.32) and (1.10), it is easy to see

|r0(x, y)| ≤ C |(x, y)− (x0, x0)|, (6.37)

for all x0 ∈ μ−1(0)
⋂

U , where C > 0 is a constant. We need

Lemma 6.7 Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in
Remark 4.4 defined in an open set U of p. Let

Hm(x, y) = eim�(x ′′,y′′)h(x, y,m) on U ×U ,

h(x, y,m) ∈ S
n−1− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

h(x, y,m) ∼∑∞
j=0 mn−1− d

2− j h j (x, y) in S
n−1− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

h j (x, y) ∈ C∞
0 (U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . .

Assume that h(x, y,m) ∈ C∞
0 (U × U , T ∗0,q X � (T ∗0,q X)∗). Then, there is a constant

Ĉ > 0 independent of m such that

‖Hmu‖ ≤ δm ‖u‖ , ∀u ∈ �0,q(X), ∀m ∈ N, (6.38)

where δm is a sequence with limm→∞ δm = 0.

Proof Fix N ∈ N. It is not difficult to see that

‖Hmu‖ ≤
∥∥∥(H∗

mHm)2
N
u
∥∥∥

1
2N+1 ‖u‖1− 1

2N+1 , ∀u ∈ �0,q(X), (6.39)

where H∗
m denotes the adjoint of Hm . From Theorem 6.2, we can repeat the proof of Theo-

rem 6.4 with minor change and deduce that

(H∗
mHm)2

N
(x, y) = eim�(x ′′,y′′) p(x, y,m)+ O(m−∞) on U ×U ,

p(x, y,m) ∈ S
n−2N+1− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

p(x, y,m) ∈ C∞
0 (U ×U , T ∗0,q X � (T ∗0,q X)∗).

Hence,
|(H∗

mHm)2
N
(x, y)| ≤ Ĉmn−2N+1− d

2 , ∀(x, y) ∈ U ×U , (6.40)

where Ĉ > 0 is a constant independent ofm. Take N large enough so that n−2N+1− d
2 < 0.

From (6.40) and (6.39), we get (6.38).  !
We also need

Lemma 6.8 Let p ∈ μ−1(0) and let x = (x1, . . . , x2n+1) be the local coordinates as in
Remark 4.4 defined in an open set U of p. Let

Bm(x, y) = eim�(x ′′,y′′)g(x, y,m) on U ×U ,

g(x, y,m) ∈ S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

g(x, y,m) ∼∑∞
j=0 mn− d

2− j g j (x, y) in S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

g j (x, y) ∈ C∞
0 (U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,

g(x, y) ∈ C∞
0 (U ×U , T ∗0,q X � (T ∗0,q X)∗).

Suppose that

|g0(x, y)| ≤ C |(x, y)− (x0, x0)|,
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for all x0 ∈ μ−1(0)
⋂

U, where C > 0 is a constant. Then,

‖Bmu‖ ≤ εm ‖u‖ , ∀u ∈ �0,q(X), ∀m ∈ N, (6.41)

where εm is a sequence with limm→∞ εm = 0.

Proof Fix N ∈ N. It is not difficult to see that

‖Bmu‖ ≤
∥∥∥(B∗m Bm)2

N
u
∥∥∥

1
2N+1 ‖u‖1− 1

2N+1 , ∀u ∈ �0,q(X), (6.42)

where B∗m denotes the adjoint of Bm . From Theorem 6.2, we can repeat the proof of Theo-
rem 6.4 with minor change and deduce that

(B∗m Bm)2
N
(x, y) = eim�(x ′′,y′′) ĝ(x, y,m)+ O(m−∞) on U ×U ,

ĝ(x, y,m) ∈ S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

ĝ(x, y,m) ∼∑∞
j=0 mn− d

2− j ĝ j (x, y) in S
n− d

2
loc (1;U ×U , T ∗0,q X � (T ∗0,q X)∗),

ĝ j (x, y) ∈ C∞
0 (U ×U , T ∗0,q X � (T ∗0,q X)∗), j = 0, 1, 2, . . . ,

ĝ(x, y,m) ∈ C∞
0 (U ×U , T ∗0,q X � (T ∗0,q X)∗),

and
|ĝ0(x, y)| ≤ C |(x, y)− (x0, x0)|2N+1 , (6.43)

for all x0 ∈ μ−1(0)
⋂

U , where C > 0 is a constant. Let

(B∗m Bm)2
N

0 (x, y) = eim�(x ′′,y′′)ĝ0(x, y,m), (B∗m Bm)2
N

1 (x, y) = eim�(x ′′,y′′)h(x, y,m),

where h(x, y,m) = ĝ(x, y,m)− ĝ0(x, y,m). It is clear that h(x, y,m) ∈ S
n−1− d

2
loc (1;U ×

U , T ∗0,q X � (T ∗0,q X)∗). From Lemma 6.7, we see that
∥∥∥(B∗m Bm)2

N

1 u
∥∥∥ ≤ δm ‖u‖ , ∀u ∈ �0,q(X), ∀m ∈ N, (6.44)

where δm is a sequence with limm→∞ δm = 0.
From (6.43), we see that

|ĝ0(x, y)| ≤ C1

(
|x̂ ′′| + |ŷ′′| + |̃x̊ ′′ − ˜̊y′′|

)2N+1
, (6.45)

where C1 > 0 is a constant. From (3.44), we see that

|Im�(x, y)| ≥ c
(
|x̂ ′′|2 + |ŷ′′|2 + |̃x̊ ′′ − ˜̊y′′|2

)
, (6.46)

where c > 0 is a constant. From (6.45) and (6.46), we conclude that

|(B∗m Bm)2
N

0 (x, y)| ≤ Ĉm−2N+n− d
2 , ∀(x, y) ∈ U ×U , (6.47)

where Ĉ > 0 is a constant independent of m. From (6.47), we see that if N large enough,
then ∥∥∥(B∗m Bm)2

N

0 u
∥∥∥ ≤ δ̂m ‖u‖ , ∀u ∈ �0,q(X), ∀m ∈ N, (6.48)

where δ̂m is a sequence with limm→∞ δ̂m = 0.
From (6.42), (6.44) and (6.48), we get (6.41).  !
From (6.34), (6.35), (6.36), (6.37) and Lemma 6.8, we get
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Theorem 6.9 With the notations above, we have ‖Rmu‖ ≤ εm ‖u‖ , ∀u ∈ �0,q(X), ∀m ∈
N, where εm is a sequence with limm→∞ εm = 0.

In particular, if m is large enough, then themap I+Rm : �0,q(X) → �0,q(X) is injective.

Proof of Theorem 1.9 From (6.33) and Theorem 6.9, we see that ifm is large enough, then the
map Fm = σ ∗mσm : Hq

b,m(X)G → Hq
b,m(X)G is injective. Hence, if m is large enough, then

the map σm : Hq
b,m(X)G → Hq−r

b,m (YG) is injective and dim Hq
b,m(X)G ≤ dim Hq−r

b,m (YG).
Similarly, we can repeat the proof of Theorem 6.9 with minor change and deduce that,

if m is large enough, then the map F̂m = σmσ ∗m : Hq−r
b,m (YG) → Hq−r

b,m (YG) is injective.

Hence, if m is large enough, then the map σ ∗m : Hq−r
b,m (YG) → Hq

b,m(X)G is injective. Thus,

dim Hq
b,m(X)G = dim Hq−r

b,m (YG) and σm is an isomorphism if m large enough.  !
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32. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)
33. Zhang, W.: Holomorphic quantization formula in singular reduction. Commun. Contemp. Math. 1(3),

281–293 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1506.04526

	G-invariant Szegő kernel asymptotics and CR reduction
	Abstract
	1 Introduction and statement of the main results
	1.1 The phase functions Φ-(x,y) and Ψ(x,y)

	2 Preliminaries
	2.1 Standard notations
	2.2 Some standard notations in semi-classical analysis
	2.3 CR manifolds and bundles
	2.4 Contact reduction
	2.5 CR reduction

	3 G-invariant Szegő kernel asymptotics
	3.1 Szegő kernel asymptotics
	3.2 G-invariant Szegő kernel
	3.3 G-invariant Szegő kernel asymptotics near µ-1(0)
	3.4 G-invariant Szegő kernel asymptotics away µ-1(0)

	4 G-invariant Szegő kernel asymptotics on CR manifolds wit S1 action
	5 Equivalent of the phase function Φ-(x,y)
	6 The proof of Theorem 1.9
	6.1 Preparation
	6.2 The proof of Theorem 1.9

	References




